1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Aggr
; use Exp_Aggr
;
33 with Exp_Atag
; use Exp_Atag
;
34 with Exp_Ch2
; use Exp_Ch2
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch6
; use Exp_Ch6
;
37 with Exp_Ch7
; use Exp_Ch7
;
38 with Exp_Ch9
; use Exp_Ch9
;
39 with Exp_Disp
; use Exp_Disp
;
40 with Exp_Fixd
; use Exp_Fixd
;
41 with Exp_Intr
; use Exp_Intr
;
42 with Exp_Pakd
; use Exp_Pakd
;
43 with Exp_Tss
; use Exp_Tss
;
44 with Exp_Util
; use Exp_Util
;
45 with Freeze
; use Freeze
;
46 with Inline
; use Inline
;
48 with Namet
; use Namet
;
49 with Nlists
; use Nlists
;
50 with Nmake
; use Nmake
;
52 with Par_SCO
; use Par_SCO
;
53 with Restrict
; use Restrict
;
54 with Rident
; use Rident
;
55 with Rtsfind
; use Rtsfind
;
57 with Sem_Aux
; use Sem_Aux
;
58 with Sem_Cat
; use Sem_Cat
;
59 with Sem_Ch3
; use Sem_Ch3
;
60 with Sem_Ch8
; use Sem_Ch8
;
61 with Sem_Ch13
; use Sem_Ch13
;
62 with Sem_Eval
; use Sem_Eval
;
63 with Sem_Res
; use Sem_Res
;
64 with Sem_Type
; use Sem_Type
;
65 with Sem_Util
; use Sem_Util
;
66 with Sem_Warn
; use Sem_Warn
;
67 with Sinfo
; use Sinfo
;
68 with Snames
; use Snames
;
69 with Stand
; use Stand
;
70 with SCIL_LL
; use SCIL_LL
;
71 with Targparm
; use Targparm
;
72 with Tbuild
; use Tbuild
;
73 with Ttypes
; use Ttypes
;
74 with Uintp
; use Uintp
;
75 with Urealp
; use Urealp
;
76 with Validsw
; use Validsw
;
78 package body Exp_Ch4
is
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 procedure Binary_Op_Validity_Checks
(N
: Node_Id
);
85 pragma Inline
(Binary_Op_Validity_Checks
);
86 -- Performs validity checks for a binary operator
88 procedure Build_Boolean_Array_Proc_Call
92 -- If a boolean array assignment can be done in place, build call to
93 -- corresponding library procedure.
95 function Current_Anonymous_Master
return Entity_Id
;
96 -- Return the entity of the heterogeneous finalization master belonging to
97 -- the current unit (either function, package or procedure). This master
98 -- services all anonymous access-to-controlled types. If the current unit
99 -- does not have such master, create one.
101 procedure Displace_Allocator_Pointer
(N
: Node_Id
);
102 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
103 -- Expand_Allocator_Expression. Allocating class-wide interface objects
104 -- this routine displaces the pointer to the allocated object to reference
105 -- the component referencing the corresponding secondary dispatch table.
107 procedure Expand_Allocator_Expression
(N
: Node_Id
);
108 -- Subsidiary to Expand_N_Allocator, for the case when the expression
109 -- is a qualified expression or an aggregate.
111 procedure Expand_Array_Comparison
(N
: Node_Id
);
112 -- This routine handles expansion of the comparison operators (N_Op_Lt,
113 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
114 -- code for these operators is similar, differing only in the details of
115 -- the actual comparison call that is made. Special processing (call a
118 function Expand_Array_Equality
123 Typ
: Entity_Id
) return Node_Id
;
124 -- Expand an array equality into a call to a function implementing this
125 -- equality, and a call to it. Loc is the location for the generated nodes.
126 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
127 -- on which to attach bodies of local functions that are created in the
128 -- process. It is the responsibility of the caller to insert those bodies
129 -- at the right place. Nod provides the Sloc value for the generated code.
130 -- Normally the types used for the generated equality routine are taken
131 -- from Lhs and Rhs. However, in some situations of generated code, the
132 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
133 -- the type to be used for the formal parameters.
135 procedure Expand_Boolean_Operator
(N
: Node_Id
);
136 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
137 -- case of array type arguments.
139 procedure Expand_Short_Circuit_Operator
(N
: Node_Id
);
140 -- Common expansion processing for short-circuit boolean operators
142 procedure Expand_Compare_Minimize_Eliminate_Overflow
(N
: Node_Id
);
143 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
144 -- where we allow comparison of "out of range" values.
146 function Expand_Composite_Equality
151 Bodies
: List_Id
) return Node_Id
;
152 -- Local recursive function used to expand equality for nested composite
153 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
154 -- to attach bodies of local functions that are created in the process. It
155 -- is the responsibility of the caller to insert those bodies at the right
156 -- place. Nod provides the Sloc value for generated code. Lhs and Rhs are
157 -- the left and right sides for the comparison, and Typ is the type of the
158 -- objects to compare.
160 procedure Expand_Concatenate
(Cnode
: Node_Id
; Opnds
: List_Id
);
161 -- Routine to expand concatenation of a sequence of two or more operands
162 -- (in the list Operands) and replace node Cnode with the result of the
163 -- concatenation. The operands can be of any appropriate type, and can
164 -- include both arrays and singleton elements.
166 procedure Expand_Membership_Minimize_Eliminate_Overflow
(N
: Node_Id
);
167 -- N is an N_In membership test mode, with the overflow check mode set to
168 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
169 -- integer type. This is a case where top level processing is required to
170 -- handle overflow checks in subtrees.
172 procedure Fixup_Universal_Fixed_Operation
(N
: Node_Id
);
173 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
174 -- fixed. We do not have such a type at runtime, so the purpose of this
175 -- routine is to find the real type by looking up the tree. We also
176 -- determine if the operation must be rounded.
178 function Has_Inferable_Discriminants
(N
: Node_Id
) return Boolean;
179 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
180 -- discriminants if it has a constrained nominal type, unless the object
181 -- is a component of an enclosing Unchecked_Union object that is subject
182 -- to a per-object constraint and the enclosing object lacks inferable
185 -- An expression of an Unchecked_Union type has inferable discriminants
186 -- if it is either a name of an object with inferable discriminants or a
187 -- qualified expression whose subtype mark denotes a constrained subtype.
189 procedure Insert_Dereference_Action
(N
: Node_Id
);
190 -- N is an expression whose type is an access. When the type of the
191 -- associated storage pool is derived from Checked_Pool, generate a
192 -- call to the 'Dereference' primitive operation.
194 function Make_Array_Comparison_Op
196 Nod
: Node_Id
) return Node_Id
;
197 -- Comparisons between arrays are expanded in line. This function produces
198 -- the body of the implementation of (a > b), where a and b are one-
199 -- dimensional arrays of some discrete type. The original node is then
200 -- expanded into the appropriate call to this function. Nod provides the
201 -- Sloc value for the generated code.
203 function Make_Boolean_Array_Op
205 N
: Node_Id
) return Node_Id
;
206 -- Boolean operations on boolean arrays are expanded in line. This function
207 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
208 -- b). It is used only the normal case and not the packed case. The type
209 -- involved, Typ, is the Boolean array type, and the logical operations in
210 -- the body are simple boolean operations. Note that Typ is always a
211 -- constrained type (the caller has ensured this by using
212 -- Convert_To_Actual_Subtype if necessary).
214 function Minimized_Eliminated_Overflow_Check
(N
: Node_Id
) return Boolean;
215 -- For signed arithmetic operations when the current overflow mode is
216 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
217 -- as the first thing we do. We then return. We count on the recursive
218 -- apparatus for overflow checks to call us back with an equivalent
219 -- operation that is in CHECKED mode, avoiding a recursive entry into this
220 -- routine, and that is when we will proceed with the expansion of the
221 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
222 -- these optimizations without first making this check, since there may be
223 -- operands further down the tree that are relying on the recursive calls
224 -- triggered by the top level nodes to properly process overflow checking
225 -- and remaining expansion on these nodes. Note that this call back may be
226 -- skipped if the operation is done in Bignum mode but that's fine, since
227 -- the Bignum call takes care of everything.
229 procedure Optimize_Length_Comparison
(N
: Node_Id
);
230 -- Given an expression, if it is of the form X'Length op N (or the other
231 -- way round), where N is known at compile time to be 0 or 1, and X is a
232 -- simple entity, and op is a comparison operator, optimizes it into a
233 -- comparison of First and Last.
235 procedure Process_Transient_Object
238 -- Subsidiary routine to the expansion of expression_with_actions and if
239 -- expressions. Generate all the necessary code to finalize a transient
240 -- controlled object when the enclosing context is elaborated or evaluated.
241 -- Decl denotes the declaration of the transient controlled object which is
242 -- usually the result of a controlled function call. Rel_Node denotes the
243 -- context, either an expression_with_actions or an if expression.
245 procedure Rewrite_Comparison
(N
: Node_Id
);
246 -- If N is the node for a comparison whose outcome can be determined at
247 -- compile time, then the node N can be rewritten with True or False. If
248 -- the outcome cannot be determined at compile time, the call has no
249 -- effect. If N is a type conversion, then this processing is applied to
250 -- its expression. If N is neither comparison nor a type conversion, the
251 -- call has no effect.
253 procedure Tagged_Membership
255 SCIL_Node
: out Node_Id
;
256 Result
: out Node_Id
);
257 -- Construct the expression corresponding to the tagged membership test.
258 -- Deals with a second operand being (or not) a class-wide type.
260 function Safe_In_Place_Array_Op
263 Op2
: Node_Id
) return Boolean;
264 -- In the context of an assignment, where the right-hand side is a boolean
265 -- operation on arrays, check whether operation can be performed in place.
267 procedure Unary_Op_Validity_Checks
(N
: Node_Id
);
268 pragma Inline
(Unary_Op_Validity_Checks
);
269 -- Performs validity checks for a unary operator
271 -------------------------------
272 -- Binary_Op_Validity_Checks --
273 -------------------------------
275 procedure Binary_Op_Validity_Checks
(N
: Node_Id
) is
277 if Validity_Checks_On
and Validity_Check_Operands
then
278 Ensure_Valid
(Left_Opnd
(N
));
279 Ensure_Valid
(Right_Opnd
(N
));
281 end Binary_Op_Validity_Checks
;
283 ------------------------------------
284 -- Build_Boolean_Array_Proc_Call --
285 ------------------------------------
287 procedure Build_Boolean_Array_Proc_Call
292 Loc
: constant Source_Ptr
:= Sloc
(N
);
293 Kind
: constant Node_Kind
:= Nkind
(Expression
(N
));
294 Target
: constant Node_Id
:=
295 Make_Attribute_Reference
(Loc
,
297 Attribute_Name
=> Name_Address
);
299 Arg1
: Node_Id
:= Op1
;
300 Arg2
: Node_Id
:= Op2
;
302 Proc_Name
: Entity_Id
;
305 if Kind
= N_Op_Not
then
306 if Nkind
(Op1
) in N_Binary_Op
then
308 -- Use negated version of the binary operators
310 if Nkind
(Op1
) = N_Op_And
then
311 Proc_Name
:= RTE
(RE_Vector_Nand
);
313 elsif Nkind
(Op1
) = N_Op_Or
then
314 Proc_Name
:= RTE
(RE_Vector_Nor
);
316 else pragma Assert
(Nkind
(Op1
) = N_Op_Xor
);
317 Proc_Name
:= RTE
(RE_Vector_Xor
);
321 Make_Procedure_Call_Statement
(Loc
,
322 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
324 Parameter_Associations
=> New_List
(
326 Make_Attribute_Reference
(Loc
,
327 Prefix
=> Left_Opnd
(Op1
),
328 Attribute_Name
=> Name_Address
),
330 Make_Attribute_Reference
(Loc
,
331 Prefix
=> Right_Opnd
(Op1
),
332 Attribute_Name
=> Name_Address
),
334 Make_Attribute_Reference
(Loc
,
335 Prefix
=> Left_Opnd
(Op1
),
336 Attribute_Name
=> Name_Length
)));
339 Proc_Name
:= RTE
(RE_Vector_Not
);
342 Make_Procedure_Call_Statement
(Loc
,
343 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
344 Parameter_Associations
=> New_List
(
347 Make_Attribute_Reference
(Loc
,
349 Attribute_Name
=> Name_Address
),
351 Make_Attribute_Reference
(Loc
,
353 Attribute_Name
=> Name_Length
)));
357 -- We use the following equivalences:
359 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
360 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
361 -- (not X) xor (not Y) = X xor Y
362 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
364 if Nkind
(Op1
) = N_Op_Not
then
365 Arg1
:= Right_Opnd
(Op1
);
366 Arg2
:= Right_Opnd
(Op2
);
368 if Kind
= N_Op_And
then
369 Proc_Name
:= RTE
(RE_Vector_Nor
);
370 elsif Kind
= N_Op_Or
then
371 Proc_Name
:= RTE
(RE_Vector_Nand
);
373 Proc_Name
:= RTE
(RE_Vector_Xor
);
377 if Kind
= N_Op_And
then
378 Proc_Name
:= RTE
(RE_Vector_And
);
379 elsif Kind
= N_Op_Or
then
380 Proc_Name
:= RTE
(RE_Vector_Or
);
381 elsif Nkind
(Op2
) = N_Op_Not
then
382 Proc_Name
:= RTE
(RE_Vector_Nxor
);
383 Arg2
:= Right_Opnd
(Op2
);
385 Proc_Name
:= RTE
(RE_Vector_Xor
);
390 Make_Procedure_Call_Statement
(Loc
,
391 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
392 Parameter_Associations
=> New_List
(
394 Make_Attribute_Reference
(Loc
,
396 Attribute_Name
=> Name_Address
),
397 Make_Attribute_Reference
(Loc
,
399 Attribute_Name
=> Name_Address
),
400 Make_Attribute_Reference
(Loc
,
402 Attribute_Name
=> Name_Length
)));
405 Rewrite
(N
, Call_Node
);
409 when RE_Not_Available
=>
411 end Build_Boolean_Array_Proc_Call
;
413 ------------------------------
414 -- Current_Anonymous_Master --
415 ------------------------------
417 function Current_Anonymous_Master
return Entity_Id
is
425 Unit_Id
:= Cunit_Entity
(Current_Sem_Unit
);
427 -- Find the entity of the current unit
429 if Ekind
(Unit_Id
) = E_Subprogram_Body
then
431 -- When processing subprogram bodies, the proper scope is always that
434 Subp_Body
:= Unit_Id
;
435 while Present
(Subp_Body
)
436 and then Nkind
(Subp_Body
) /= N_Subprogram_Body
438 Subp_Body
:= Parent
(Subp_Body
);
441 Unit_Id
:= Corresponding_Spec
(Subp_Body
);
444 Loc
:= Sloc
(Unit_Id
);
445 Unit_Decl
:= Unit
(Cunit
(Current_Sem_Unit
));
447 -- Find the declarations list of the current unit
449 if Nkind
(Unit_Decl
) = N_Package_Declaration
then
450 Unit_Decl
:= Specification
(Unit_Decl
);
451 Decls
:= Visible_Declarations
(Unit_Decl
);
454 Decls
:= New_List
(Make_Null_Statement
(Loc
));
455 Set_Visible_Declarations
(Unit_Decl
, Decls
);
457 elsif Is_Empty_List
(Decls
) then
458 Append_To
(Decls
, Make_Null_Statement
(Loc
));
462 Decls
:= Declarations
(Unit_Decl
);
465 Decls
:= New_List
(Make_Null_Statement
(Loc
));
466 Set_Declarations
(Unit_Decl
, Decls
);
468 elsif Is_Empty_List
(Decls
) then
469 Append_To
(Decls
, Make_Null_Statement
(Loc
));
473 -- The current unit has an existing anonymous master, traverse its
474 -- declarations and locate the entity.
476 if Has_Anonymous_Master
(Unit_Id
) then
479 Fin_Mas_Id
: Entity_Id
;
482 Decl
:= First
(Decls
);
483 while Present
(Decl
) loop
485 -- Look for the first variable in the declarations whole type
486 -- is Finalization_Master.
488 if Nkind
(Decl
) = N_Object_Declaration
then
489 Fin_Mas_Id
:= Defining_Identifier
(Decl
);
491 if Ekind
(Fin_Mas_Id
) = E_Variable
492 and then Etype
(Fin_Mas_Id
) = RTE
(RE_Finalization_Master
)
501 -- The master was not found even though the unit was labeled as
507 -- Create a new anonymous master
511 First_Decl
: constant Node_Id
:= First
(Decls
);
513 Fin_Mas_Id
: Entity_Id
;
516 -- Since the master and its associated initialization is inserted
517 -- at top level, use the scope of the unit when analyzing.
519 Push_Scope
(Unit_Id
);
521 -- Create the finalization master
524 Make_Defining_Identifier
(Loc
,
525 Chars
=> New_External_Name
(Chars
(Unit_Id
), "AM"));
528 -- <Fin_Mas_Id> : Finalization_Master;
531 Make_Object_Declaration
(Loc
,
532 Defining_Identifier
=> Fin_Mas_Id
,
534 New_Occurrence_Of
(RTE
(RE_Finalization_Master
), Loc
));
536 Insert_Before_And_Analyze
(First_Decl
, Action
);
538 -- Mark the unit to prevent the generation of multiple masters
540 Set_Has_Anonymous_Master
(Unit_Id
);
542 -- Do not set the base pool and mode of operation on .NET/JVM
543 -- since those targets do not support pools and all VM masters
544 -- are heterogeneous by default.
546 if VM_Target
= No_VM
then
550 -- (<Fin_Mas_Id>, Global_Pool_Object'Unrestricted_Access);
553 Make_Procedure_Call_Statement
(Loc
,
555 New_Occurrence_Of
(RTE
(RE_Set_Base_Pool
), Loc
),
557 Parameter_Associations
=> New_List
(
558 New_Occurrence_Of
(Fin_Mas_Id
, Loc
),
559 Make_Attribute_Reference
(Loc
,
561 New_Occurrence_Of
(RTE
(RE_Global_Pool_Object
), Loc
),
562 Attribute_Name
=> Name_Unrestricted_Access
)));
564 Insert_Before_And_Analyze
(First_Decl
, Action
);
567 -- Set_Is_Heterogeneous (<Fin_Mas_Id>);
570 Make_Procedure_Call_Statement
(Loc
,
572 New_Occurrence_Of
(RTE
(RE_Set_Is_Heterogeneous
), Loc
),
573 Parameter_Associations
=> New_List
(
574 New_Occurrence_Of
(Fin_Mas_Id
, Loc
)));
576 Insert_Before_And_Analyze
(First_Decl
, Action
);
579 -- Restore the original state of the scope stack
586 end Current_Anonymous_Master
;
588 --------------------------------
589 -- Displace_Allocator_Pointer --
590 --------------------------------
592 procedure Displace_Allocator_Pointer
(N
: Node_Id
) is
593 Loc
: constant Source_Ptr
:= Sloc
(N
);
594 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
600 -- Do nothing in case of VM targets: the virtual machine will handle
601 -- interfaces directly.
603 if not Tagged_Type_Expansion
then
607 pragma Assert
(Nkind
(N
) = N_Identifier
608 and then Nkind
(Orig_Node
) = N_Allocator
);
610 PtrT
:= Etype
(Orig_Node
);
611 Dtyp
:= Available_View
(Designated_Type
(PtrT
));
612 Etyp
:= Etype
(Expression
(Orig_Node
));
614 if Is_Class_Wide_Type
(Dtyp
) and then Is_Interface
(Dtyp
) then
616 -- If the type of the allocator expression is not an interface type
617 -- we can generate code to reference the record component containing
618 -- the pointer to the secondary dispatch table.
620 if not Is_Interface
(Etyp
) then
622 Saved_Typ
: constant Entity_Id
:= Etype
(Orig_Node
);
625 -- 1) Get access to the allocated object
628 Make_Explicit_Dereference
(Loc
, Relocate_Node
(N
)));
632 -- 2) Add the conversion to displace the pointer to reference
633 -- the secondary dispatch table.
635 Rewrite
(N
, Convert_To
(Dtyp
, Relocate_Node
(N
)));
636 Analyze_And_Resolve
(N
, Dtyp
);
638 -- 3) The 'access to the secondary dispatch table will be used
639 -- as the value returned by the allocator.
642 Make_Attribute_Reference
(Loc
,
643 Prefix
=> Relocate_Node
(N
),
644 Attribute_Name
=> Name_Access
));
645 Set_Etype
(N
, Saved_Typ
);
649 -- If the type of the allocator expression is an interface type we
650 -- generate a run-time call to displace "this" to reference the
651 -- component containing the pointer to the secondary dispatch table
652 -- or else raise Constraint_Error if the actual object does not
653 -- implement the target interface. This case corresponds to the
654 -- following example:
656 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
658 -- return new Iface_2'Class'(Obj);
663 Unchecked_Convert_To
(PtrT
,
664 Make_Function_Call
(Loc
,
665 Name
=> New_Occurrence_Of
(RTE
(RE_Displace
), Loc
),
666 Parameter_Associations
=> New_List
(
667 Unchecked_Convert_To
(RTE
(RE_Address
),
673 (Access_Disp_Table
(Etype
(Base_Type
(Dtyp
))))),
675 Analyze_And_Resolve
(N
, PtrT
);
678 end Displace_Allocator_Pointer
;
680 ---------------------------------
681 -- Expand_Allocator_Expression --
682 ---------------------------------
684 procedure Expand_Allocator_Expression
(N
: Node_Id
) is
685 Loc
: constant Source_Ptr
:= Sloc
(N
);
686 Exp
: constant Node_Id
:= Expression
(Expression
(N
));
687 PtrT
: constant Entity_Id
:= Etype
(N
);
688 DesigT
: constant Entity_Id
:= Designated_Type
(PtrT
);
690 procedure Apply_Accessibility_Check
692 Built_In_Place
: Boolean := False);
693 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
694 -- type, generate an accessibility check to verify that the level of the
695 -- type of the created object is not deeper than the level of the access
696 -- type. If the type of the qualified expression is class-wide, then
697 -- always generate the check (except in the case where it is known to be
698 -- unnecessary, see comment below). Otherwise, only generate the check
699 -- if the level of the qualified expression type is statically deeper
700 -- than the access type.
702 -- Although the static accessibility will generally have been performed
703 -- as a legality check, it won't have been done in cases where the
704 -- allocator appears in generic body, so a run-time check is needed in
705 -- general. One special case is when the access type is declared in the
706 -- same scope as the class-wide allocator, in which case the check can
707 -- never fail, so it need not be generated.
709 -- As an open issue, there seem to be cases where the static level
710 -- associated with the class-wide object's underlying type is not
711 -- sufficient to perform the proper accessibility check, such as for
712 -- allocators in nested subprograms or accept statements initialized by
713 -- class-wide formals when the actual originates outside at a deeper
714 -- static level. The nested subprogram case might require passing
715 -- accessibility levels along with class-wide parameters, and the task
716 -- case seems to be an actual gap in the language rules that needs to
717 -- be fixed by the ARG. ???
719 -------------------------------
720 -- Apply_Accessibility_Check --
721 -------------------------------
723 procedure Apply_Accessibility_Check
725 Built_In_Place
: Boolean := False)
727 Pool_Id
: constant Entity_Id
:= Associated_Storage_Pool
(PtrT
);
735 if Ada_Version
>= Ada_2005
736 and then Is_Class_Wide_Type
(DesigT
)
737 and then (Tagged_Type_Expansion
or else VM_Target
/= No_VM
)
738 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
740 (Type_Access_Level
(Etype
(Exp
)) > Type_Access_Level
(PtrT
)
742 (Is_Class_Wide_Type
(Etype
(Exp
))
743 and then Scope
(PtrT
) /= Current_Scope
))
745 -- If the allocator was built in place, Ref is already a reference
746 -- to the access object initialized to the result of the allocator
747 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
748 -- Remove_Side_Effects for cases where the build-in-place call may
749 -- still be the prefix of the reference (to avoid generating
750 -- duplicate calls). Otherwise, it is the entity associated with
751 -- the object containing the address of the allocated object.
753 if Built_In_Place
then
754 Remove_Side_Effects
(Ref
);
755 Obj_Ref
:= New_Copy_Tree
(Ref
);
757 Obj_Ref
:= New_Occurrence_Of
(Ref
, Loc
);
760 -- For access to interface types we must generate code to displace
761 -- the pointer to the base of the object since the subsequent code
762 -- references components located in the TSD of the object (which
763 -- is associated with the primary dispatch table --see a-tags.ads)
764 -- and also generates code invoking Free, which requires also a
765 -- reference to the base of the unallocated object.
767 if Is_Interface
(DesigT
) and then Tagged_Type_Expansion
then
769 Unchecked_Convert_To
(Etype
(Obj_Ref
),
770 Make_Function_Call
(Loc
,
772 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
773 Parameter_Associations
=> New_List
(
774 Unchecked_Convert_To
(RTE
(RE_Address
),
775 New_Copy_Tree
(Obj_Ref
)))));
778 -- Step 1: Create the object clean up code
782 -- Deallocate the object if the accessibility check fails. This
783 -- is done only on targets or profiles that support deallocation.
787 if RTE_Available
(RE_Free
) then
788 Free_Stmt
:= Make_Free_Statement
(Loc
, New_Copy_Tree
(Obj_Ref
));
789 Set_Storage_Pool
(Free_Stmt
, Pool_Id
);
791 Append_To
(Stmts
, Free_Stmt
);
793 -- The target or profile cannot deallocate objects
799 -- Finalize the object if applicable. Generate:
801 -- [Deep_]Finalize (Obj_Ref.all);
803 if Needs_Finalization
(DesigT
) then
807 Make_Explicit_Dereference
(Loc
, New_Copy
(Obj_Ref
)),
810 -- When the target or profile supports deallocation, wrap the
811 -- finalization call in a block to ensure proper deallocation
812 -- even if finalization fails. Generate:
822 if Present
(Free_Stmt
) then
824 Make_Block_Statement
(Loc
,
825 Handled_Statement_Sequence
=>
826 Make_Handled_Sequence_Of_Statements
(Loc
,
827 Statements
=> New_List
(Fin_Call
),
829 Exception_Handlers
=> New_List
(
830 Make_Exception_Handler
(Loc
,
831 Exception_Choices
=> New_List
(
832 Make_Others_Choice
(Loc
)),
834 Statements
=> New_List
(
835 New_Copy_Tree
(Free_Stmt
),
836 Make_Raise_Statement
(Loc
))))));
839 Prepend_To
(Stmts
, Fin_Call
);
842 -- Signal the accessibility failure through a Program_Error
845 Make_Raise_Program_Error
(Loc
,
846 Condition
=> New_Occurrence_Of
(Standard_True
, Loc
),
847 Reason
=> PE_Accessibility_Check_Failed
));
849 -- Step 2: Create the accessibility comparison
855 Make_Attribute_Reference
(Loc
,
857 Attribute_Name
=> Name_Tag
);
859 -- For tagged types, determine the accessibility level by looking
860 -- at the type specific data of the dispatch table. Generate:
862 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
864 if Tagged_Type_Expansion
then
865 Cond
:= Build_Get_Access_Level
(Loc
, Obj_Ref
);
867 -- Use a runtime call to determine the accessibility level when
868 -- compiling on virtual machine targets. Generate:
870 -- Get_Access_Level (Ref'Tag)
874 Make_Function_Call
(Loc
,
876 New_Occurrence_Of
(RTE
(RE_Get_Access_Level
), Loc
),
877 Parameter_Associations
=> New_List
(Obj_Ref
));
884 Make_Integer_Literal
(Loc
, Type_Access_Level
(PtrT
)));
886 -- Due to the complexity and side effects of the check, utilize an
887 -- if statement instead of the regular Program_Error circuitry.
890 Make_Implicit_If_Statement
(N
,
892 Then_Statements
=> Stmts
));
894 end Apply_Accessibility_Check
;
898 Aggr_In_Place
: constant Boolean := Is_Delayed_Aggregate
(Exp
);
899 Indic
: constant Node_Id
:= Subtype_Mark
(Expression
(N
));
900 T
: constant Entity_Id
:= Entity
(Indic
);
902 Tag_Assign
: Node_Id
;
906 TagT
: Entity_Id
:= Empty
;
907 -- Type used as source for tag assignment
909 TagR
: Node_Id
:= Empty
;
910 -- Target reference for tag assignment
912 -- Start of processing for Expand_Allocator_Expression
915 -- Handle call to C++ constructor
917 if Is_CPP_Constructor_Call
(Exp
) then
918 Make_CPP_Constructor_Call_In_Allocator
920 Function_Call
=> Exp
);
924 -- In the case of an Ada 2012 allocator whose initial value comes from a
925 -- function call, pass "the accessibility level determined by the point
926 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
927 -- Expand_Call but it couldn't be done there (because the Etype of the
928 -- allocator wasn't set then) so we generate the parameter here. See
929 -- the Boolean variable Defer in (a block within) Expand_Call.
931 if Ada_Version
>= Ada_2012
and then Nkind
(Exp
) = N_Function_Call
then
936 if Nkind
(Name
(Exp
)) = N_Explicit_Dereference
then
937 Subp
:= Designated_Type
(Etype
(Prefix
(Name
(Exp
))));
939 Subp
:= Entity
(Name
(Exp
));
942 Subp
:= Ultimate_Alias
(Subp
);
944 if Present
(Extra_Accessibility_Of_Result
(Subp
)) then
945 Add_Extra_Actual_To_Call
946 (Subprogram_Call
=> Exp
,
947 Extra_Formal
=> Extra_Accessibility_Of_Result
(Subp
),
948 Extra_Actual
=> Dynamic_Accessibility_Level
(PtrT
));
953 -- Case of tagged type or type requiring finalization
955 if Is_Tagged_Type
(T
) or else Needs_Finalization
(T
) then
957 -- Ada 2005 (AI-318-02): If the initialization expression is a call
958 -- to a build-in-place function, then access to the allocated object
959 -- must be passed to the function. Currently we limit such functions
960 -- to those with constrained limited result subtypes, but eventually
961 -- we plan to expand the allowed forms of functions that are treated
962 -- as build-in-place.
964 if Ada_Version
>= Ada_2005
965 and then Is_Build_In_Place_Function_Call
(Exp
)
967 Make_Build_In_Place_Call_In_Allocator
(N
, Exp
);
968 Apply_Accessibility_Check
(N
, Built_In_Place
=> True);
972 -- Actions inserted before:
973 -- Temp : constant ptr_T := new T'(Expression);
974 -- Temp._tag = T'tag; -- when not class-wide
975 -- [Deep_]Adjust (Temp.all);
977 -- We analyze by hand the new internal allocator to avoid any
978 -- recursion and inappropriate call to Initialize.
980 -- We don't want to remove side effects when the expression must be
981 -- built in place. In the case of a build-in-place function call,
982 -- that could lead to a duplication of the call, which was already
983 -- substituted for the allocator.
985 if not Aggr_In_Place
then
986 Remove_Side_Effects
(Exp
);
989 Temp
:= Make_Temporary
(Loc
, 'P', N
);
991 -- For a class wide allocation generate the following code:
993 -- type Equiv_Record is record ... end record;
994 -- implicit subtype CW is <Class_Wide_Subytpe>;
995 -- temp : PtrT := new CW'(CW!(expr));
997 if Is_Class_Wide_Type
(T
) then
998 Expand_Subtype_From_Expr
(Empty
, T
, Indic
, Exp
);
1000 -- Ada 2005 (AI-251): If the expression is a class-wide interface
1001 -- object we generate code to move up "this" to reference the
1002 -- base of the object before allocating the new object.
1004 -- Note that Exp'Address is recursively expanded into a call
1005 -- to Base_Address (Exp.Tag)
1007 if Is_Class_Wide_Type
(Etype
(Exp
))
1008 and then Is_Interface
(Etype
(Exp
))
1009 and then Tagged_Type_Expansion
1013 Unchecked_Convert_To
(Entity
(Indic
),
1014 Make_Explicit_Dereference
(Loc
,
1015 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
1016 Make_Attribute_Reference
(Loc
,
1018 Attribute_Name
=> Name_Address
)))));
1022 Unchecked_Convert_To
(Entity
(Indic
), Exp
));
1025 Analyze_And_Resolve
(Expression
(N
), Entity
(Indic
));
1028 -- Processing for allocators returning non-interface types
1030 if not Is_Interface
(Directly_Designated_Type
(PtrT
)) then
1031 if Aggr_In_Place
then
1033 Make_Object_Declaration
(Loc
,
1034 Defining_Identifier
=> Temp
,
1035 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1037 Make_Allocator
(Loc
,
1039 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1041 -- Copy the Comes_From_Source flag for the allocator we just
1042 -- built, since logically this allocator is a replacement of
1043 -- the original allocator node. This is for proper handling of
1044 -- restriction No_Implicit_Heap_Allocations.
1046 Set_Comes_From_Source
1047 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1049 Set_No_Initialization
(Expression
(Temp_Decl
));
1050 Insert_Action
(N
, Temp_Decl
);
1052 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1053 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1055 -- Attach the object to the associated finalization master.
1056 -- This is done manually on .NET/JVM since those compilers do
1057 -- no support pools and can't benefit from internally generated
1058 -- Allocate / Deallocate procedures.
1060 if VM_Target
/= No_VM
1061 and then Is_Controlled
(DesigT
)
1062 and then Present
(Finalization_Master
(PtrT
))
1066 (Obj_Ref
=> New_Occurrence_Of
(Temp
, Loc
),
1071 Node
:= Relocate_Node
(N
);
1072 Set_Analyzed
(Node
);
1075 Make_Object_Declaration
(Loc
,
1076 Defining_Identifier
=> Temp
,
1077 Constant_Present
=> True,
1078 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1079 Expression
=> Node
);
1081 Insert_Action
(N
, Temp_Decl
);
1082 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1084 -- Attach the object to the associated finalization master.
1085 -- This is done manually on .NET/JVM since those compilers do
1086 -- no support pools and can't benefit from internally generated
1087 -- Allocate / Deallocate procedures.
1089 if VM_Target
/= No_VM
1090 and then Is_Controlled
(DesigT
)
1091 and then Present
(Finalization_Master
(PtrT
))
1095 (Obj_Ref
=> New_Occurrence_Of
(Temp
, Loc
),
1100 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
1101 -- interface type. In this case we use the type of the qualified
1102 -- expression to allocate the object.
1106 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
1111 Make_Full_Type_Declaration
(Loc
,
1112 Defining_Identifier
=> Def_Id
,
1114 Make_Access_To_Object_Definition
(Loc
,
1115 All_Present
=> True,
1116 Null_Exclusion_Present
=> False,
1118 Is_Access_Constant
(Etype
(N
)),
1119 Subtype_Indication
=>
1120 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1122 Insert_Action
(N
, New_Decl
);
1124 -- Inherit the allocation-related attributes from the original
1127 Set_Finalization_Master
1128 (Def_Id
, Finalization_Master
(PtrT
));
1130 Set_Associated_Storage_Pool
1131 (Def_Id
, Associated_Storage_Pool
(PtrT
));
1133 -- Declare the object using the previous type declaration
1135 if Aggr_In_Place
then
1137 Make_Object_Declaration
(Loc
,
1138 Defining_Identifier
=> Temp
,
1139 Object_Definition
=> New_Occurrence_Of
(Def_Id
, Loc
),
1141 Make_Allocator
(Loc
,
1142 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1144 -- Copy the Comes_From_Source flag for the allocator we just
1145 -- built, since logically this allocator is a replacement of
1146 -- the original allocator node. This is for proper handling
1147 -- of restriction No_Implicit_Heap_Allocations.
1149 Set_Comes_From_Source
1150 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1152 Set_No_Initialization
(Expression
(Temp_Decl
));
1153 Insert_Action
(N
, Temp_Decl
);
1155 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1156 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1159 Node
:= Relocate_Node
(N
);
1160 Set_Analyzed
(Node
);
1163 Make_Object_Declaration
(Loc
,
1164 Defining_Identifier
=> Temp
,
1165 Constant_Present
=> True,
1166 Object_Definition
=> New_Occurrence_Of
(Def_Id
, Loc
),
1167 Expression
=> Node
);
1169 Insert_Action
(N
, Temp_Decl
);
1170 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1173 -- Generate an additional object containing the address of the
1174 -- returned object. The type of this second object declaration
1175 -- is the correct type required for the common processing that
1176 -- is still performed by this subprogram. The displacement of
1177 -- this pointer to reference the component associated with the
1178 -- interface type will be done at the end of common processing.
1181 Make_Object_Declaration
(Loc
,
1182 Defining_Identifier
=> Make_Temporary
(Loc
, 'P'),
1183 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1185 Unchecked_Convert_To
(PtrT
,
1186 New_Occurrence_Of
(Temp
, Loc
)));
1188 Insert_Action
(N
, New_Decl
);
1190 Temp_Decl
:= New_Decl
;
1191 Temp
:= Defining_Identifier
(New_Decl
);
1195 Apply_Accessibility_Check
(Temp
);
1197 -- Generate the tag assignment
1199 -- Suppress the tag assignment when VM_Target because VM tags are
1200 -- represented implicitly in objects.
1202 if not Tagged_Type_Expansion
then
1205 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1206 -- interface objects because in this case the tag does not change.
1208 elsif Is_Interface
(Directly_Designated_Type
(Etype
(N
))) then
1209 pragma Assert
(Is_Class_Wide_Type
1210 (Directly_Designated_Type
(Etype
(N
))));
1213 elsif Is_Tagged_Type
(T
) and then not Is_Class_Wide_Type
(T
) then
1215 TagR
:= New_Occurrence_Of
(Temp
, Loc
);
1217 elsif Is_Private_Type
(T
)
1218 and then Is_Tagged_Type
(Underlying_Type
(T
))
1220 TagT
:= Underlying_Type
(T
);
1222 Unchecked_Convert_To
(Underlying_Type
(T
),
1223 Make_Explicit_Dereference
(Loc
,
1224 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)));
1227 if Present
(TagT
) then
1229 Full_T
: constant Entity_Id
:= Underlying_Type
(TagT
);
1233 Make_Assignment_Statement
(Loc
,
1235 Make_Selected_Component
(Loc
,
1239 (First_Tag_Component
(Full_T
), Loc
)),
1242 Unchecked_Convert_To
(RTE
(RE_Tag
),
1245 (First_Elmt
(Access_Disp_Table
(Full_T
))), Loc
)));
1248 -- The previous assignment has to be done in any case
1250 Set_Assignment_OK
(Name
(Tag_Assign
));
1251 Insert_Action
(N
, Tag_Assign
);
1254 if Needs_Finalization
(DesigT
) and then Needs_Finalization
(T
) then
1256 -- Generate an Adjust call if the object will be moved. In Ada
1257 -- 2005, the object may be inherently limited, in which case
1258 -- there is no Adjust procedure, and the object is built in
1259 -- place. In Ada 95, the object can be limited but not
1260 -- inherently limited if this allocator came from a return
1261 -- statement (we're allocating the result on the secondary
1262 -- stack). In that case, the object will be moved, so we _do_
1265 if not Aggr_In_Place
1266 and then not Is_Limited_View
(T
)
1270 -- An unchecked conversion is needed in the classwide case
1271 -- because the designated type can be an ancestor of the
1272 -- subtype mark of the allocator.
1276 Unchecked_Convert_To
(T
,
1277 Make_Explicit_Dereference
(Loc
,
1278 Prefix
=> New_Occurrence_Of
(Temp
, Loc
))),
1283 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
1284 Analyze_And_Resolve
(N
, PtrT
);
1286 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1287 -- component containing the secondary dispatch table of the interface
1290 if Is_Interface
(Directly_Designated_Type
(PtrT
)) then
1291 Displace_Allocator_Pointer
(N
);
1294 elsif Aggr_In_Place
then
1295 Temp
:= Make_Temporary
(Loc
, 'P', N
);
1297 Make_Object_Declaration
(Loc
,
1298 Defining_Identifier
=> Temp
,
1299 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1301 Make_Allocator
(Loc
,
1302 Expression
=> New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1304 -- Copy the Comes_From_Source flag for the allocator we just built,
1305 -- since logically this allocator is a replacement of the original
1306 -- allocator node. This is for proper handling of restriction
1307 -- No_Implicit_Heap_Allocations.
1309 Set_Comes_From_Source
1310 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1312 Set_No_Initialization
(Expression
(Temp_Decl
));
1313 Insert_Action
(N
, Temp_Decl
);
1315 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1316 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1318 -- Attach the object to the associated finalization master. Thisis
1319 -- done manually on .NET/JVM since those compilers do no support
1320 -- pools and cannot benefit from internally generated Allocate and
1321 -- Deallocate procedures.
1323 if VM_Target
/= No_VM
1324 and then Is_Controlled
(DesigT
)
1325 and then Present
(Finalization_Master
(PtrT
))
1329 (Obj_Ref
=> New_Occurrence_Of
(Temp
, Loc
),
1333 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
1334 Analyze_And_Resolve
(N
, PtrT
);
1336 elsif Is_Access_Type
(T
) and then Can_Never_Be_Null
(T
) then
1337 Install_Null_Excluding_Check
(Exp
);
1339 elsif Is_Access_Type
(DesigT
)
1340 and then Nkind
(Exp
) = N_Allocator
1341 and then Nkind
(Expression
(Exp
)) /= N_Qualified_Expression
1343 -- Apply constraint to designated subtype indication
1345 Apply_Constraint_Check
1346 (Expression
(Exp
), Designated_Type
(DesigT
), No_Sliding
=> True);
1348 if Nkind
(Expression
(Exp
)) = N_Raise_Constraint_Error
then
1350 -- Propagate constraint_error to enclosing allocator
1352 Rewrite
(Exp
, New_Copy
(Expression
(Exp
)));
1356 Build_Allocate_Deallocate_Proc
(N
, True);
1359 -- type A is access T1;
1360 -- X : A := new T2'(...);
1361 -- T1 and T2 can be different subtypes, and we might need to check
1362 -- both constraints. First check against the type of the qualified
1365 Apply_Constraint_Check
(Exp
, T
, No_Sliding
=> True);
1367 if Do_Range_Check
(Exp
) then
1368 Generate_Range_Check
(Exp
, DesigT
, CE_Range_Check_Failed
);
1371 -- A check is also needed in cases where the designated subtype is
1372 -- constrained and differs from the subtype given in the qualified
1373 -- expression. Note that the check on the qualified expression does
1374 -- not allow sliding, but this check does (a relaxation from Ada 83).
1376 if Is_Constrained
(DesigT
)
1377 and then not Subtypes_Statically_Match
(T
, DesigT
)
1379 Apply_Constraint_Check
1380 (Exp
, DesigT
, No_Sliding
=> False);
1382 if Do_Range_Check
(Exp
) then
1383 Generate_Range_Check
(Exp
, DesigT
, CE_Range_Check_Failed
);
1387 -- For an access to unconstrained packed array, GIGI needs to see an
1388 -- expression with a constrained subtype in order to compute the
1389 -- proper size for the allocator.
1391 if Is_Array_Type
(T
)
1392 and then not Is_Constrained
(T
)
1393 and then Is_Packed
(T
)
1396 ConstrT
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
1397 Internal_Exp
: constant Node_Id
:= Relocate_Node
(Exp
);
1400 Make_Subtype_Declaration
(Loc
,
1401 Defining_Identifier
=> ConstrT
,
1402 Subtype_Indication
=>
1403 Make_Subtype_From_Expr
(Internal_Exp
, T
)));
1404 Freeze_Itype
(ConstrT
, Exp
);
1405 Rewrite
(Exp
, OK_Convert_To
(ConstrT
, Internal_Exp
));
1409 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1410 -- to a build-in-place function, then access to the allocated object
1411 -- must be passed to the function. Currently we limit such functions
1412 -- to those with constrained limited result subtypes, but eventually
1413 -- we plan to expand the allowed forms of functions that are treated
1414 -- as build-in-place.
1416 if Ada_Version
>= Ada_2005
1417 and then Is_Build_In_Place_Function_Call
(Exp
)
1419 Make_Build_In_Place_Call_In_Allocator
(N
, Exp
);
1424 when RE_Not_Available
=>
1426 end Expand_Allocator_Expression
;
1428 -----------------------------
1429 -- Expand_Array_Comparison --
1430 -----------------------------
1432 -- Expansion is only required in the case of array types. For the unpacked
1433 -- case, an appropriate runtime routine is called. For packed cases, and
1434 -- also in some other cases where a runtime routine cannot be called, the
1435 -- form of the expansion is:
1437 -- [body for greater_nn; boolean_expression]
1439 -- The body is built by Make_Array_Comparison_Op, and the form of the
1440 -- Boolean expression depends on the operator involved.
1442 procedure Expand_Array_Comparison
(N
: Node_Id
) is
1443 Loc
: constant Source_Ptr
:= Sloc
(N
);
1444 Op1
: Node_Id
:= Left_Opnd
(N
);
1445 Op2
: Node_Id
:= Right_Opnd
(N
);
1446 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
1447 Ctyp
: constant Entity_Id
:= Component_Type
(Typ1
);
1450 Func_Body
: Node_Id
;
1451 Func_Name
: Entity_Id
;
1455 Byte_Addressable
: constant Boolean := System_Storage_Unit
= Byte
'Size;
1456 -- True for byte addressable target
1458 function Length_Less_Than_4
(Opnd
: Node_Id
) return Boolean;
1459 -- Returns True if the length of the given operand is known to be less
1460 -- than 4. Returns False if this length is known to be four or greater
1461 -- or is not known at compile time.
1463 ------------------------
1464 -- Length_Less_Than_4 --
1465 ------------------------
1467 function Length_Less_Than_4
(Opnd
: Node_Id
) return Boolean is
1468 Otyp
: constant Entity_Id
:= Etype
(Opnd
);
1471 if Ekind
(Otyp
) = E_String_Literal_Subtype
then
1472 return String_Literal_Length
(Otyp
) < 4;
1476 Ityp
: constant Entity_Id
:= Etype
(First_Index
(Otyp
));
1477 Lo
: constant Node_Id
:= Type_Low_Bound
(Ityp
);
1478 Hi
: constant Node_Id
:= Type_High_Bound
(Ityp
);
1483 if Compile_Time_Known_Value
(Lo
) then
1484 Lov
:= Expr_Value
(Lo
);
1489 if Compile_Time_Known_Value
(Hi
) then
1490 Hiv
:= Expr_Value
(Hi
);
1495 return Hiv
< Lov
+ 3;
1498 end Length_Less_Than_4
;
1500 -- Start of processing for Expand_Array_Comparison
1503 -- Deal first with unpacked case, where we can call a runtime routine
1504 -- except that we avoid this for targets for which are not addressable
1505 -- by bytes, and for the JVM/CIL, since they do not support direct
1506 -- addressing of array components.
1508 if not Is_Bit_Packed_Array
(Typ1
)
1509 and then Byte_Addressable
1510 and then VM_Target
= No_VM
1512 -- The call we generate is:
1514 -- Compare_Array_xn[_Unaligned]
1515 -- (left'address, right'address, left'length, right'length) <op> 0
1517 -- x = U for unsigned, S for signed
1518 -- n = 8,16,32,64 for component size
1519 -- Add _Unaligned if length < 4 and component size is 8.
1520 -- <op> is the standard comparison operator
1522 if Component_Size
(Typ1
) = 8 then
1523 if Length_Less_Than_4
(Op1
)
1525 Length_Less_Than_4
(Op2
)
1527 if Is_Unsigned_Type
(Ctyp
) then
1528 Comp
:= RE_Compare_Array_U8_Unaligned
;
1530 Comp
:= RE_Compare_Array_S8_Unaligned
;
1534 if Is_Unsigned_Type
(Ctyp
) then
1535 Comp
:= RE_Compare_Array_U8
;
1537 Comp
:= RE_Compare_Array_S8
;
1541 elsif Component_Size
(Typ1
) = 16 then
1542 if Is_Unsigned_Type
(Ctyp
) then
1543 Comp
:= RE_Compare_Array_U16
;
1545 Comp
:= RE_Compare_Array_S16
;
1548 elsif Component_Size
(Typ1
) = 32 then
1549 if Is_Unsigned_Type
(Ctyp
) then
1550 Comp
:= RE_Compare_Array_U32
;
1552 Comp
:= RE_Compare_Array_S32
;
1555 else pragma Assert
(Component_Size
(Typ1
) = 64);
1556 if Is_Unsigned_Type
(Ctyp
) then
1557 Comp
:= RE_Compare_Array_U64
;
1559 Comp
:= RE_Compare_Array_S64
;
1563 Remove_Side_Effects
(Op1
, Name_Req
=> True);
1564 Remove_Side_Effects
(Op2
, Name_Req
=> True);
1567 Make_Function_Call
(Sloc
(Op1
),
1568 Name
=> New_Occurrence_Of
(RTE
(Comp
), Loc
),
1570 Parameter_Associations
=> New_List
(
1571 Make_Attribute_Reference
(Loc
,
1572 Prefix
=> Relocate_Node
(Op1
),
1573 Attribute_Name
=> Name_Address
),
1575 Make_Attribute_Reference
(Loc
,
1576 Prefix
=> Relocate_Node
(Op2
),
1577 Attribute_Name
=> Name_Address
),
1579 Make_Attribute_Reference
(Loc
,
1580 Prefix
=> Relocate_Node
(Op1
),
1581 Attribute_Name
=> Name_Length
),
1583 Make_Attribute_Reference
(Loc
,
1584 Prefix
=> Relocate_Node
(Op2
),
1585 Attribute_Name
=> Name_Length
))));
1588 Make_Integer_Literal
(Sloc
(Op2
),
1591 Analyze_And_Resolve
(Op1
, Standard_Integer
);
1592 Analyze_And_Resolve
(Op2
, Standard_Integer
);
1596 -- Cases where we cannot make runtime call
1598 -- For (a <= b) we convert to not (a > b)
1600 if Chars
(N
) = Name_Op_Le
then
1606 Right_Opnd
=> Op2
)));
1607 Analyze_And_Resolve
(N
, Standard_Boolean
);
1610 -- For < the Boolean expression is
1611 -- greater__nn (op2, op1)
1613 elsif Chars
(N
) = Name_Op_Lt
then
1614 Func_Body
:= Make_Array_Comparison_Op
(Typ1
, N
);
1618 Op1
:= Right_Opnd
(N
);
1619 Op2
:= Left_Opnd
(N
);
1621 -- For (a >= b) we convert to not (a < b)
1623 elsif Chars
(N
) = Name_Op_Ge
then
1629 Right_Opnd
=> Op2
)));
1630 Analyze_And_Resolve
(N
, Standard_Boolean
);
1633 -- For > the Boolean expression is
1634 -- greater__nn (op1, op2)
1637 pragma Assert
(Chars
(N
) = Name_Op_Gt
);
1638 Func_Body
:= Make_Array_Comparison_Op
(Typ1
, N
);
1641 Func_Name
:= Defining_Unit_Name
(Specification
(Func_Body
));
1643 Make_Function_Call
(Loc
,
1644 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
1645 Parameter_Associations
=> New_List
(Op1
, Op2
));
1647 Insert_Action
(N
, Func_Body
);
1649 Analyze_And_Resolve
(N
, Standard_Boolean
);
1652 when RE_Not_Available
=>
1654 end Expand_Array_Comparison
;
1656 ---------------------------
1657 -- Expand_Array_Equality --
1658 ---------------------------
1660 -- Expand an equality function for multi-dimensional arrays. Here is an
1661 -- example of such a function for Nb_Dimension = 2
1663 -- function Enn (A : atyp; B : btyp) return boolean is
1665 -- if (A'length (1) = 0 or else A'length (2) = 0)
1667 -- (B'length (1) = 0 or else B'length (2) = 0)
1669 -- return True; -- RM 4.5.2(22)
1672 -- if A'length (1) /= B'length (1)
1674 -- A'length (2) /= B'length (2)
1676 -- return False; -- RM 4.5.2(23)
1680 -- A1 : Index_T1 := A'first (1);
1681 -- B1 : Index_T1 := B'first (1);
1685 -- A2 : Index_T2 := A'first (2);
1686 -- B2 : Index_T2 := B'first (2);
1689 -- if A (A1, A2) /= B (B1, B2) then
1693 -- exit when A2 = A'last (2);
1694 -- A2 := Index_T2'succ (A2);
1695 -- B2 := Index_T2'succ (B2);
1699 -- exit when A1 = A'last (1);
1700 -- A1 := Index_T1'succ (A1);
1701 -- B1 := Index_T1'succ (B1);
1708 -- Note on the formal types used (atyp and btyp). If either of the arrays
1709 -- is of a private type, we use the underlying type, and do an unchecked
1710 -- conversion of the actual. If either of the arrays has a bound depending
1711 -- on a discriminant, then we use the base type since otherwise we have an
1712 -- escaped discriminant in the function.
1714 -- If both arrays are constrained and have the same bounds, we can generate
1715 -- a loop with an explicit iteration scheme using a 'Range attribute over
1718 function Expand_Array_Equality
1723 Typ
: Entity_Id
) return Node_Id
1725 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
1726 Decls
: constant List_Id
:= New_List
;
1727 Index_List1
: constant List_Id
:= New_List
;
1728 Index_List2
: constant List_Id
:= New_List
;
1732 Func_Name
: Entity_Id
;
1733 Func_Body
: Node_Id
;
1735 A
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uA
);
1736 B
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uB
);
1740 -- The parameter types to be used for the formals
1745 Num
: Int
) return Node_Id
;
1746 -- This builds the attribute reference Arr'Nam (Expr)
1748 function Component_Equality
(Typ
: Entity_Id
) return Node_Id
;
1749 -- Create one statement to compare corresponding components, designated
1750 -- by a full set of indexes.
1752 function Get_Arg_Type
(N
: Node_Id
) return Entity_Id
;
1753 -- Given one of the arguments, computes the appropriate type to be used
1754 -- for that argument in the corresponding function formal
1756 function Handle_One_Dimension
1758 Index
: Node_Id
) return Node_Id
;
1759 -- This procedure returns the following code
1762 -- Bn : Index_T := B'First (N);
1766 -- exit when An = A'Last (N);
1767 -- An := Index_T'Succ (An)
1768 -- Bn := Index_T'Succ (Bn)
1772 -- If both indexes are constrained and identical, the procedure
1773 -- returns a simpler loop:
1775 -- for An in A'Range (N) loop
1779 -- N is the dimension for which we are generating a loop. Index is the
1780 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1781 -- xxx statement is either the loop or declare for the next dimension
1782 -- or if this is the last dimension the comparison of corresponding
1783 -- components of the arrays.
1785 -- The actual way the code works is to return the comparison of
1786 -- corresponding components for the N+1 call. That's neater.
1788 function Test_Empty_Arrays
return Node_Id
;
1789 -- This function constructs the test for both arrays being empty
1790 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1792 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1794 function Test_Lengths_Correspond
return Node_Id
;
1795 -- This function constructs the test for arrays having different lengths
1796 -- in at least one index position, in which case the resulting code is:
1798 -- A'length (1) /= B'length (1)
1800 -- A'length (2) /= B'length (2)
1811 Num
: Int
) return Node_Id
1815 Make_Attribute_Reference
(Loc
,
1816 Attribute_Name
=> Nam
,
1817 Prefix
=> New_Occurrence_Of
(Arr
, Loc
),
1818 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, Num
)));
1821 ------------------------
1822 -- Component_Equality --
1823 ------------------------
1825 function Component_Equality
(Typ
: Entity_Id
) return Node_Id
is
1830 -- if a(i1...) /= b(j1...) then return false; end if;
1833 Make_Indexed_Component
(Loc
,
1834 Prefix
=> Make_Identifier
(Loc
, Chars
(A
)),
1835 Expressions
=> Index_List1
);
1838 Make_Indexed_Component
(Loc
,
1839 Prefix
=> Make_Identifier
(Loc
, Chars
(B
)),
1840 Expressions
=> Index_List2
);
1842 Test
:= Expand_Composite_Equality
1843 (Nod
, Component_Type
(Typ
), L
, R
, Decls
);
1845 -- If some (sub)component is an unchecked_union, the whole operation
1846 -- will raise program error.
1848 if Nkind
(Test
) = N_Raise_Program_Error
then
1850 -- This node is going to be inserted at a location where a
1851 -- statement is expected: clear its Etype so analysis will set
1852 -- it to the expected Standard_Void_Type.
1854 Set_Etype
(Test
, Empty
);
1859 Make_Implicit_If_Statement
(Nod
,
1860 Condition
=> Make_Op_Not
(Loc
, Right_Opnd
=> Test
),
1861 Then_Statements
=> New_List
(
1862 Make_Simple_Return_Statement
(Loc
,
1863 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
1865 end Component_Equality
;
1871 function Get_Arg_Type
(N
: Node_Id
) return Entity_Id
is
1882 T
:= Underlying_Type
(T
);
1884 X
:= First_Index
(T
);
1885 while Present
(X
) loop
1886 if Denotes_Discriminant
(Type_Low_Bound
(Etype
(X
)))
1888 Denotes_Discriminant
(Type_High_Bound
(Etype
(X
)))
1901 --------------------------
1902 -- Handle_One_Dimension --
1903 ---------------------------
1905 function Handle_One_Dimension
1907 Index
: Node_Id
) return Node_Id
1909 Need_Separate_Indexes
: constant Boolean :=
1910 Ltyp
/= Rtyp
or else not Is_Constrained
(Ltyp
);
1911 -- If the index types are identical, and we are working with
1912 -- constrained types, then we can use the same index for both
1915 An
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
1918 Index_T
: Entity_Id
;
1923 if N
> Number_Dimensions
(Ltyp
) then
1924 return Component_Equality
(Ltyp
);
1927 -- Case where we generate a loop
1929 Index_T
:= Base_Type
(Etype
(Index
));
1931 if Need_Separate_Indexes
then
1932 Bn
:= Make_Temporary
(Loc
, 'B');
1937 Append
(New_Occurrence_Of
(An
, Loc
), Index_List1
);
1938 Append
(New_Occurrence_Of
(Bn
, Loc
), Index_List2
);
1940 Stm_List
:= New_List
(
1941 Handle_One_Dimension
(N
+ 1, Next_Index
(Index
)));
1943 if Need_Separate_Indexes
then
1945 -- Generate guard for loop, followed by increments of indexes
1947 Append_To
(Stm_List
,
1948 Make_Exit_Statement
(Loc
,
1951 Left_Opnd
=> New_Occurrence_Of
(An
, Loc
),
1952 Right_Opnd
=> Arr_Attr
(A
, Name_Last
, N
))));
1954 Append_To
(Stm_List
,
1955 Make_Assignment_Statement
(Loc
,
1956 Name
=> New_Occurrence_Of
(An
, Loc
),
1958 Make_Attribute_Reference
(Loc
,
1959 Prefix
=> New_Occurrence_Of
(Index_T
, Loc
),
1960 Attribute_Name
=> Name_Succ
,
1961 Expressions
=> New_List
(
1962 New_Occurrence_Of
(An
, Loc
)))));
1964 Append_To
(Stm_List
,
1965 Make_Assignment_Statement
(Loc
,
1966 Name
=> New_Occurrence_Of
(Bn
, Loc
),
1968 Make_Attribute_Reference
(Loc
,
1969 Prefix
=> New_Occurrence_Of
(Index_T
, Loc
),
1970 Attribute_Name
=> Name_Succ
,
1971 Expressions
=> New_List
(
1972 New_Occurrence_Of
(Bn
, Loc
)))));
1975 -- If separate indexes, we need a declare block for An and Bn, and a
1976 -- loop without an iteration scheme.
1978 if Need_Separate_Indexes
then
1980 Make_Implicit_Loop_Statement
(Nod
, Statements
=> Stm_List
);
1983 Make_Block_Statement
(Loc
,
1984 Declarations
=> New_List
(
1985 Make_Object_Declaration
(Loc
,
1986 Defining_Identifier
=> An
,
1987 Object_Definition
=> New_Occurrence_Of
(Index_T
, Loc
),
1988 Expression
=> Arr_Attr
(A
, Name_First
, N
)),
1990 Make_Object_Declaration
(Loc
,
1991 Defining_Identifier
=> Bn
,
1992 Object_Definition
=> New_Occurrence_Of
(Index_T
, Loc
),
1993 Expression
=> Arr_Attr
(B
, Name_First
, N
))),
1995 Handled_Statement_Sequence
=>
1996 Make_Handled_Sequence_Of_Statements
(Loc
,
1997 Statements
=> New_List
(Loop_Stm
)));
1999 -- If no separate indexes, return loop statement with explicit
2000 -- iteration scheme on its own
2004 Make_Implicit_Loop_Statement
(Nod
,
2005 Statements
=> Stm_List
,
2007 Make_Iteration_Scheme
(Loc
,
2008 Loop_Parameter_Specification
=>
2009 Make_Loop_Parameter_Specification
(Loc
,
2010 Defining_Identifier
=> An
,
2011 Discrete_Subtype_Definition
=>
2012 Arr_Attr
(A
, Name_Range
, N
))));
2015 end Handle_One_Dimension
;
2017 -----------------------
2018 -- Test_Empty_Arrays --
2019 -----------------------
2021 function Test_Empty_Arrays
return Node_Id
is
2031 for J
in 1 .. Number_Dimensions
(Ltyp
) loop
2034 Left_Opnd
=> Arr_Attr
(A
, Name_Length
, J
),
2035 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
2039 Left_Opnd
=> Arr_Attr
(B
, Name_Length
, J
),
2040 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
2049 Left_Opnd
=> Relocate_Node
(Alist
),
2050 Right_Opnd
=> Atest
);
2054 Left_Opnd
=> Relocate_Node
(Blist
),
2055 Right_Opnd
=> Btest
);
2062 Right_Opnd
=> Blist
);
2063 end Test_Empty_Arrays
;
2065 -----------------------------
2066 -- Test_Lengths_Correspond --
2067 -----------------------------
2069 function Test_Lengths_Correspond
return Node_Id
is
2075 for J
in 1 .. Number_Dimensions
(Ltyp
) loop
2078 Left_Opnd
=> Arr_Attr
(A
, Name_Length
, J
),
2079 Right_Opnd
=> Arr_Attr
(B
, Name_Length
, J
));
2086 Left_Opnd
=> Relocate_Node
(Result
),
2087 Right_Opnd
=> Rtest
);
2092 end Test_Lengths_Correspond
;
2094 -- Start of processing for Expand_Array_Equality
2097 Ltyp
:= Get_Arg_Type
(Lhs
);
2098 Rtyp
:= Get_Arg_Type
(Rhs
);
2100 -- For now, if the argument types are not the same, go to the base type,
2101 -- since the code assumes that the formals have the same type. This is
2102 -- fixable in future ???
2104 if Ltyp
/= Rtyp
then
2105 Ltyp
:= Base_Type
(Ltyp
);
2106 Rtyp
:= Base_Type
(Rtyp
);
2107 pragma Assert
(Ltyp
= Rtyp
);
2110 -- Build list of formals for function
2112 Formals
:= New_List
(
2113 Make_Parameter_Specification
(Loc
,
2114 Defining_Identifier
=> A
,
2115 Parameter_Type
=> New_Occurrence_Of
(Ltyp
, Loc
)),
2117 Make_Parameter_Specification
(Loc
,
2118 Defining_Identifier
=> B
,
2119 Parameter_Type
=> New_Occurrence_Of
(Rtyp
, Loc
)));
2121 Func_Name
:= Make_Temporary
(Loc
, 'E');
2123 -- Build statement sequence for function
2126 Make_Subprogram_Body
(Loc
,
2128 Make_Function_Specification
(Loc
,
2129 Defining_Unit_Name
=> Func_Name
,
2130 Parameter_Specifications
=> Formals
,
2131 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
2133 Declarations
=> Decls
,
2135 Handled_Statement_Sequence
=>
2136 Make_Handled_Sequence_Of_Statements
(Loc
,
2137 Statements
=> New_List
(
2139 Make_Implicit_If_Statement
(Nod
,
2140 Condition
=> Test_Empty_Arrays
,
2141 Then_Statements
=> New_List
(
2142 Make_Simple_Return_Statement
(Loc
,
2144 New_Occurrence_Of
(Standard_True
, Loc
)))),
2146 Make_Implicit_If_Statement
(Nod
,
2147 Condition
=> Test_Lengths_Correspond
,
2148 Then_Statements
=> New_List
(
2149 Make_Simple_Return_Statement
(Loc
,
2150 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
)))),
2152 Handle_One_Dimension
(1, First_Index
(Ltyp
)),
2154 Make_Simple_Return_Statement
(Loc
,
2155 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)))));
2157 Set_Has_Completion
(Func_Name
, True);
2158 Set_Is_Inlined
(Func_Name
);
2160 -- If the array type is distinct from the type of the arguments, it
2161 -- is the full view of a private type. Apply an unchecked conversion
2162 -- to insure that analysis of the call succeeds.
2172 or else Base_Type
(Etype
(Lhs
)) /= Base_Type
(Ltyp
)
2174 L
:= OK_Convert_To
(Ltyp
, Lhs
);
2178 or else Base_Type
(Etype
(Rhs
)) /= Base_Type
(Rtyp
)
2180 R
:= OK_Convert_To
(Rtyp
, Rhs
);
2183 Actuals
:= New_List
(L
, R
);
2186 Append_To
(Bodies
, Func_Body
);
2189 Make_Function_Call
(Loc
,
2190 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
2191 Parameter_Associations
=> Actuals
);
2192 end Expand_Array_Equality
;
2194 -----------------------------
2195 -- Expand_Boolean_Operator --
2196 -----------------------------
2198 -- Note that we first get the actual subtypes of the operands, since we
2199 -- always want to deal with types that have bounds.
2201 procedure Expand_Boolean_Operator
(N
: Node_Id
) is
2202 Typ
: constant Entity_Id
:= Etype
(N
);
2205 -- Special case of bit packed array where both operands are known to be
2206 -- properly aligned. In this case we use an efficient run time routine
2207 -- to carry out the operation (see System.Bit_Ops).
2209 if Is_Bit_Packed_Array
(Typ
)
2210 and then not Is_Possibly_Unaligned_Object
(Left_Opnd
(N
))
2211 and then not Is_Possibly_Unaligned_Object
(Right_Opnd
(N
))
2213 Expand_Packed_Boolean_Operator
(N
);
2217 -- For the normal non-packed case, the general expansion is to build
2218 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2219 -- and then inserting it into the tree. The original operator node is
2220 -- then rewritten as a call to this function. We also use this in the
2221 -- packed case if either operand is a possibly unaligned object.
2224 Loc
: constant Source_Ptr
:= Sloc
(N
);
2225 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
2226 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2227 Func_Body
: Node_Id
;
2228 Func_Name
: Entity_Id
;
2231 Convert_To_Actual_Subtype
(L
);
2232 Convert_To_Actual_Subtype
(R
);
2233 Ensure_Defined
(Etype
(L
), N
);
2234 Ensure_Defined
(Etype
(R
), N
);
2235 Apply_Length_Check
(R
, Etype
(L
));
2237 if Nkind
(N
) = N_Op_Xor
then
2238 Silly_Boolean_Array_Xor_Test
(N
, Etype
(L
));
2241 if Nkind
(Parent
(N
)) = N_Assignment_Statement
2242 and then Safe_In_Place_Array_Op
(Name
(Parent
(N
)), L
, R
)
2244 Build_Boolean_Array_Proc_Call
(Parent
(N
), L
, R
);
2246 elsif Nkind
(Parent
(N
)) = N_Op_Not
2247 and then Nkind
(N
) = N_Op_And
2248 and then Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
2249 and then Safe_In_Place_Array_Op
(Name
(Parent
(Parent
(N
))), L
, R
)
2254 Func_Body
:= Make_Boolean_Array_Op
(Etype
(L
), N
);
2255 Func_Name
:= Defining_Unit_Name
(Specification
(Func_Body
));
2256 Insert_Action
(N
, Func_Body
);
2258 -- Now rewrite the expression with a call
2261 Make_Function_Call
(Loc
,
2262 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
2263 Parameter_Associations
=>
2266 Make_Type_Conversion
2267 (Loc
, New_Occurrence_Of
(Etype
(L
), Loc
), R
))));
2269 Analyze_And_Resolve
(N
, Typ
);
2272 end Expand_Boolean_Operator
;
2274 ------------------------------------------------
2275 -- Expand_Compare_Minimize_Eliminate_Overflow --
2276 ------------------------------------------------
2278 procedure Expand_Compare_Minimize_Eliminate_Overflow
(N
: Node_Id
) is
2279 Loc
: constant Source_Ptr
:= Sloc
(N
);
2281 Result_Type
: constant Entity_Id
:= Etype
(N
);
2282 -- Capture result type (could be a derived boolean type)
2287 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
2288 -- Entity for Long_Long_Integer'Base
2290 Check
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
2291 -- Current overflow checking mode
2294 procedure Set_False
;
2295 -- These procedures rewrite N with an occurrence of Standard_True or
2296 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2302 procedure Set_False
is
2304 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
2305 Warn_On_Known_Condition
(N
);
2312 procedure Set_True
is
2314 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
2315 Warn_On_Known_Condition
(N
);
2318 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2321 -- Nothing to do unless we have a comparison operator with operands
2322 -- that are signed integer types, and we are operating in either
2323 -- MINIMIZED or ELIMINATED overflow checking mode.
2325 if Nkind
(N
) not in N_Op_Compare
2326 or else Check
not in Minimized_Or_Eliminated
2327 or else not Is_Signed_Integer_Type
(Etype
(Left_Opnd
(N
)))
2332 -- OK, this is the case we are interested in. First step is to process
2333 -- our operands using the Minimize_Eliminate circuitry which applies
2334 -- this processing to the two operand subtrees.
2336 Minimize_Eliminate_Overflows
2337 (Left_Opnd
(N
), Llo
, Lhi
, Top_Level
=> False);
2338 Minimize_Eliminate_Overflows
2339 (Right_Opnd
(N
), Rlo
, Rhi
, Top_Level
=> False);
2341 -- See if the range information decides the result of the comparison.
2342 -- We can only do this if we in fact have full range information (which
2343 -- won't be the case if either operand is bignum at this stage).
2345 if Llo
/= No_Uint
and then Rlo
/= No_Uint
then
2346 case N_Op_Compare
(Nkind
(N
)) is
2348 if Llo
= Lhi
and then Rlo
= Rhi
and then Llo
= Rlo
then
2350 elsif Llo
> Rhi
or else Lhi
< Rlo
then
2357 elsif Lhi
< Rlo
then
2364 elsif Lhi
<= Rlo
then
2371 elsif Lhi
<= Rlo
then
2378 elsif Lhi
< Rlo
then
2383 if Llo
= Lhi
and then Rlo
= Rhi
and then Llo
= Rlo
then
2385 elsif Llo
> Rhi
or else Lhi
< Rlo
then
2390 -- All done if we did the rewrite
2392 if Nkind
(N
) not in N_Op_Compare
then
2397 -- Otherwise, time to do the comparison
2400 Ltype
: constant Entity_Id
:= Etype
(Left_Opnd
(N
));
2401 Rtype
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
2404 -- If the two operands have the same signed integer type we are
2405 -- all set, nothing more to do. This is the case where either
2406 -- both operands were unchanged, or we rewrote both of them to
2407 -- be Long_Long_Integer.
2409 -- Note: Entity for the comparison may be wrong, but it's not worth
2410 -- the effort to change it, since the back end does not use it.
2412 if Is_Signed_Integer_Type
(Ltype
)
2413 and then Base_Type
(Ltype
) = Base_Type
(Rtype
)
2417 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2419 elsif Is_RTE
(Ltype
, RE_Bignum
) or else Is_RTE
(Rtype
, RE_Bignum
) then
2421 Left
: Node_Id
:= Left_Opnd
(N
);
2422 Right
: Node_Id
:= Right_Opnd
(N
);
2423 -- Bignum references for left and right operands
2426 if not Is_RTE
(Ltype
, RE_Bignum
) then
2427 Left
:= Convert_To_Bignum
(Left
);
2428 elsif not Is_RTE
(Rtype
, RE_Bignum
) then
2429 Right
:= Convert_To_Bignum
(Right
);
2432 -- We rewrite our node with:
2435 -- Bnn : Result_Type;
2437 -- M : Mark_Id := SS_Mark;
2439 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2447 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
2448 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
2452 case N_Op_Compare
(Nkind
(N
)) is
2453 when N_Op_Eq
=> Ent
:= RE_Big_EQ
;
2454 when N_Op_Ge
=> Ent
:= RE_Big_GE
;
2455 when N_Op_Gt
=> Ent
:= RE_Big_GT
;
2456 when N_Op_Le
=> Ent
:= RE_Big_LE
;
2457 when N_Op_Lt
=> Ent
:= RE_Big_LT
;
2458 when N_Op_Ne
=> Ent
:= RE_Big_NE
;
2461 -- Insert assignment to Bnn into the bignum block
2464 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
2465 Make_Assignment_Statement
(Loc
,
2466 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
2468 Make_Function_Call
(Loc
,
2470 New_Occurrence_Of
(RTE
(Ent
), Loc
),
2471 Parameter_Associations
=> New_List
(Left
, Right
))));
2473 -- Now do the rewrite with expression actions
2476 Make_Expression_With_Actions
(Loc
,
2477 Actions
=> New_List
(
2478 Make_Object_Declaration
(Loc
,
2479 Defining_Identifier
=> Bnn
,
2480 Object_Definition
=>
2481 New_Occurrence_Of
(Result_Type
, Loc
)),
2483 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
2484 Analyze_And_Resolve
(N
, Result_Type
);
2488 -- No bignums involved, but types are different, so we must have
2489 -- rewritten one of the operands as a Long_Long_Integer but not
2492 -- If left operand is Long_Long_Integer, convert right operand
2493 -- and we are done (with a comparison of two Long_Long_Integers).
2495 elsif Ltype
= LLIB
then
2496 Convert_To_And_Rewrite
(LLIB
, Right_Opnd
(N
));
2497 Analyze_And_Resolve
(Right_Opnd
(N
), LLIB
, Suppress
=> All_Checks
);
2500 -- If right operand is Long_Long_Integer, convert left operand
2501 -- and we are done (with a comparison of two Long_Long_Integers).
2503 -- This is the only remaining possibility
2505 else pragma Assert
(Rtype
= LLIB
);
2506 Convert_To_And_Rewrite
(LLIB
, Left_Opnd
(N
));
2507 Analyze_And_Resolve
(Left_Opnd
(N
), LLIB
, Suppress
=> All_Checks
);
2511 end Expand_Compare_Minimize_Eliminate_Overflow
;
2513 -------------------------------
2514 -- Expand_Composite_Equality --
2515 -------------------------------
2517 -- This function is only called for comparing internal fields of composite
2518 -- types when these fields are themselves composites. This is a special
2519 -- case because it is not possible to respect normal Ada visibility rules.
2521 function Expand_Composite_Equality
2526 Bodies
: List_Id
) return Node_Id
2528 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
2529 Full_Type
: Entity_Id
;
2533 function Find_Primitive_Eq
return Node_Id
;
2534 -- AI05-0123: Locate primitive equality for type if it exists, and
2535 -- build the corresponding call. If operation is abstract, replace
2536 -- call with an explicit raise. Return Empty if there is no primitive.
2538 -----------------------
2539 -- Find_Primitive_Eq --
2540 -----------------------
2542 function Find_Primitive_Eq
return Node_Id
is
2547 Prim_E
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
2548 while Present
(Prim_E
) loop
2549 Prim
:= Node
(Prim_E
);
2551 -- Locate primitive equality with the right signature
2553 if Chars
(Prim
) = Name_Op_Eq
2554 and then Etype
(First_Formal
(Prim
)) =
2555 Etype
(Next_Formal
(First_Formal
(Prim
)))
2556 and then Etype
(Prim
) = Standard_Boolean
2558 if Is_Abstract_Subprogram
(Prim
) then
2560 Make_Raise_Program_Error
(Loc
,
2561 Reason
=> PE_Explicit_Raise
);
2565 Make_Function_Call
(Loc
,
2566 Name
=> New_Occurrence_Of
(Prim
, Loc
),
2567 Parameter_Associations
=> New_List
(Lhs
, Rhs
));
2574 -- If not found, predefined operation will be used
2577 end Find_Primitive_Eq
;
2579 -- Start of processing for Expand_Composite_Equality
2582 if Is_Private_Type
(Typ
) then
2583 Full_Type
:= Underlying_Type
(Typ
);
2588 -- If the private type has no completion the context may be the
2589 -- expansion of a composite equality for a composite type with some
2590 -- still incomplete components. The expression will not be analyzed
2591 -- until the enclosing type is completed, at which point this will be
2592 -- properly expanded, unless there is a bona fide completion error.
2594 if No
(Full_Type
) then
2595 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2598 Full_Type
:= Base_Type
(Full_Type
);
2600 -- When the base type itself is private, use the full view to expand
2601 -- the composite equality.
2603 if Is_Private_Type
(Full_Type
) then
2604 Full_Type
:= Underlying_Type
(Full_Type
);
2607 -- Case of array types
2609 if Is_Array_Type
(Full_Type
) then
2611 -- If the operand is an elementary type other than a floating-point
2612 -- type, then we can simply use the built-in block bitwise equality,
2613 -- since the predefined equality operators always apply and bitwise
2614 -- equality is fine for all these cases.
2616 if Is_Elementary_Type
(Component_Type
(Full_Type
))
2617 and then not Is_Floating_Point_Type
(Component_Type
(Full_Type
))
2619 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2621 -- For composite component types, and floating-point types, use the
2622 -- expansion. This deals with tagged component types (where we use
2623 -- the applicable equality routine) and floating-point, (where we
2624 -- need to worry about negative zeroes), and also the case of any
2625 -- composite type recursively containing such fields.
2628 return Expand_Array_Equality
(Nod
, Lhs
, Rhs
, Bodies
, Full_Type
);
2631 -- Case of tagged record types
2633 elsif Is_Tagged_Type
(Full_Type
) then
2635 -- Call the primitive operation "=" of this type
2637 if Is_Class_Wide_Type
(Full_Type
) then
2638 Full_Type
:= Root_Type
(Full_Type
);
2641 -- If this is derived from an untagged private type completed with a
2642 -- tagged type, it does not have a full view, so we use the primitive
2643 -- operations of the private type. This check should no longer be
2644 -- necessary when these types receive their full views ???
2646 if Is_Private_Type
(Typ
)
2647 and then not Is_Tagged_Type
(Typ
)
2648 and then not Is_Controlled
(Typ
)
2649 and then Is_Derived_Type
(Typ
)
2650 and then No
(Full_View
(Typ
))
2652 Prim
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
2654 Prim
:= First_Elmt
(Primitive_Operations
(Full_Type
));
2658 Eq_Op
:= Node
(Prim
);
2659 exit when Chars
(Eq_Op
) = Name_Op_Eq
2660 and then Etype
(First_Formal
(Eq_Op
)) =
2661 Etype
(Next_Formal
(First_Formal
(Eq_Op
)))
2662 and then Base_Type
(Etype
(Eq_Op
)) = Standard_Boolean
;
2664 pragma Assert
(Present
(Prim
));
2667 Eq_Op
:= Node
(Prim
);
2670 Make_Function_Call
(Loc
,
2671 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2672 Parameter_Associations
=>
2674 (Unchecked_Convert_To
(Etype
(First_Formal
(Eq_Op
)), Lhs
),
2675 Unchecked_Convert_To
(Etype
(First_Formal
(Eq_Op
)), Rhs
)));
2677 -- Case of untagged record types
2679 elsif Is_Record_Type
(Full_Type
) then
2680 Eq_Op
:= TSS
(Full_Type
, TSS_Composite_Equality
);
2682 if Present
(Eq_Op
) then
2683 if Etype
(First_Formal
(Eq_Op
)) /= Full_Type
then
2685 -- Inherited equality from parent type. Convert the actuals to
2686 -- match signature of operation.
2689 T
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
2693 Make_Function_Call
(Loc
,
2694 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2695 Parameter_Associations
=> New_List
(
2696 OK_Convert_To
(T
, Lhs
),
2697 OK_Convert_To
(T
, Rhs
)));
2701 -- Comparison between Unchecked_Union components
2703 if Is_Unchecked_Union
(Full_Type
) then
2705 Lhs_Type
: Node_Id
:= Full_Type
;
2706 Rhs_Type
: Node_Id
:= Full_Type
;
2707 Lhs_Discr_Val
: Node_Id
;
2708 Rhs_Discr_Val
: Node_Id
;
2713 if Nkind
(Lhs
) = N_Selected_Component
then
2714 Lhs_Type
:= Etype
(Entity
(Selector_Name
(Lhs
)));
2719 if Nkind
(Rhs
) = N_Selected_Component
then
2720 Rhs_Type
:= Etype
(Entity
(Selector_Name
(Rhs
)));
2723 -- Lhs of the composite equality
2725 if Is_Constrained
(Lhs_Type
) then
2727 -- Since the enclosing record type can never be an
2728 -- Unchecked_Union (this code is executed for records
2729 -- that do not have variants), we may reference its
2732 if Nkind
(Lhs
) = N_Selected_Component
2733 and then Has_Per_Object_Constraint
2734 (Entity
(Selector_Name
(Lhs
)))
2737 Make_Selected_Component
(Loc
,
2738 Prefix
=> Prefix
(Lhs
),
2741 (Get_Discriminant_Value
2742 (First_Discriminant
(Lhs_Type
),
2744 Stored_Constraint
(Lhs_Type
))));
2749 (Get_Discriminant_Value
2750 (First_Discriminant
(Lhs_Type
),
2752 Stored_Constraint
(Lhs_Type
)));
2756 -- It is not possible to infer the discriminant since
2757 -- the subtype is not constrained.
2760 Make_Raise_Program_Error
(Loc
,
2761 Reason
=> PE_Unchecked_Union_Restriction
);
2764 -- Rhs of the composite equality
2766 if Is_Constrained
(Rhs_Type
) then
2767 if Nkind
(Rhs
) = N_Selected_Component
2768 and then Has_Per_Object_Constraint
2769 (Entity
(Selector_Name
(Rhs
)))
2772 Make_Selected_Component
(Loc
,
2773 Prefix
=> Prefix
(Rhs
),
2776 (Get_Discriminant_Value
2777 (First_Discriminant
(Rhs_Type
),
2779 Stored_Constraint
(Rhs_Type
))));
2784 (Get_Discriminant_Value
2785 (First_Discriminant
(Rhs_Type
),
2787 Stored_Constraint
(Rhs_Type
)));
2792 Make_Raise_Program_Error
(Loc
,
2793 Reason
=> PE_Unchecked_Union_Restriction
);
2796 -- Call the TSS equality function with the inferred
2797 -- discriminant values.
2800 Make_Function_Call
(Loc
,
2801 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2802 Parameter_Associations
=> New_List
(
2809 -- All cases other than comparing Unchecked_Union types
2813 T
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
2816 Make_Function_Call
(Loc
,
2818 New_Occurrence_Of
(Eq_Op
, Loc
),
2819 Parameter_Associations
=> New_List
(
2820 OK_Convert_To
(T
, Lhs
),
2821 OK_Convert_To
(T
, Rhs
)));
2826 -- Equality composes in Ada 2012 for untagged record types. It also
2827 -- composes for bounded strings, because they are part of the
2828 -- predefined environment. We could make it compose for bounded
2829 -- strings by making them tagged, or by making sure all subcomponents
2830 -- are set to the same value, even when not used. Instead, we have
2831 -- this special case in the compiler, because it's more efficient.
2833 elsif Ada_Version
>= Ada_2012
or else Is_Bounded_String
(Typ
) then
2835 -- If no TSS has been created for the type, check whether there is
2836 -- a primitive equality declared for it.
2839 Op
: constant Node_Id
:= Find_Primitive_Eq
;
2842 -- Use user-defined primitive if it exists, otherwise use
2843 -- predefined equality.
2845 if Present
(Op
) then
2848 return Make_Op_Eq
(Loc
, Lhs
, Rhs
);
2853 return Expand_Record_Equality
(Nod
, Full_Type
, Lhs
, Rhs
, Bodies
);
2856 -- Non-composite types (always use predefined equality)
2859 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2861 end Expand_Composite_Equality
;
2863 ------------------------
2864 -- Expand_Concatenate --
2865 ------------------------
2867 procedure Expand_Concatenate
(Cnode
: Node_Id
; Opnds
: List_Id
) is
2868 Loc
: constant Source_Ptr
:= Sloc
(Cnode
);
2870 Atyp
: constant Entity_Id
:= Base_Type
(Etype
(Cnode
));
2871 -- Result type of concatenation
2873 Ctyp
: constant Entity_Id
:= Base_Type
(Component_Type
(Etype
(Cnode
)));
2874 -- Component type. Elements of this component type can appear as one
2875 -- of the operands of concatenation as well as arrays.
2877 Istyp
: constant Entity_Id
:= Etype
(First_Index
(Atyp
));
2880 Ityp
: constant Entity_Id
:= Base_Type
(Istyp
);
2881 -- Index type. This is the base type of the index subtype, and is used
2882 -- for all computed bounds (which may be out of range of Istyp in the
2883 -- case of null ranges).
2886 -- This is the type we use to do arithmetic to compute the bounds and
2887 -- lengths of operands. The choice of this type is a little subtle and
2888 -- is discussed in a separate section at the start of the body code.
2890 Concatenation_Error
: exception;
2891 -- Raised if concatenation is sure to raise a CE
2893 Result_May_Be_Null
: Boolean := True;
2894 -- Reset to False if at least one operand is encountered which is known
2895 -- at compile time to be non-null. Used for handling the special case
2896 -- of setting the high bound to the last operand high bound for a null
2897 -- result, thus ensuring a proper high bound in the super-flat case.
2899 N
: constant Nat
:= List_Length
(Opnds
);
2900 -- Number of concatenation operands including possibly null operands
2903 -- Number of operands excluding any known to be null, except that the
2904 -- last operand is always retained, in case it provides the bounds for
2908 -- Current operand being processed in the loop through operands. After
2909 -- this loop is complete, always contains the last operand (which is not
2910 -- the same as Operands (NN), since null operands are skipped).
2912 -- Arrays describing the operands, only the first NN entries of each
2913 -- array are set (NN < N when we exclude known null operands).
2915 Is_Fixed_Length
: array (1 .. N
) of Boolean;
2916 -- True if length of corresponding operand known at compile time
2918 Operands
: array (1 .. N
) of Node_Id
;
2919 -- Set to the corresponding entry in the Opnds list (but note that null
2920 -- operands are excluded, so not all entries in the list are stored).
2922 Fixed_Length
: array (1 .. N
) of Uint
;
2923 -- Set to length of operand. Entries in this array are set only if the
2924 -- corresponding entry in Is_Fixed_Length is True.
2926 Opnd_Low_Bound
: array (1 .. N
) of Node_Id
;
2927 -- Set to lower bound of operand. Either an integer literal in the case
2928 -- where the bound is known at compile time, else actual lower bound.
2929 -- The operand low bound is of type Ityp.
2931 Var_Length
: array (1 .. N
) of Entity_Id
;
2932 -- Set to an entity of type Natural that contains the length of an
2933 -- operand whose length is not known at compile time. Entries in this
2934 -- array are set only if the corresponding entry in Is_Fixed_Length
2935 -- is False. The entity is of type Artyp.
2937 Aggr_Length
: array (0 .. N
) of Node_Id
;
2938 -- The J'th entry in an expression node that represents the total length
2939 -- of operands 1 through J. It is either an integer literal node, or a
2940 -- reference to a constant entity with the right value, so it is fine
2941 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
2942 -- entry always is set to zero. The length is of type Artyp.
2944 Low_Bound
: Node_Id
;
2945 -- A tree node representing the low bound of the result (of type Ityp).
2946 -- This is either an integer literal node, or an identifier reference to
2947 -- a constant entity initialized to the appropriate value.
2949 Last_Opnd_Low_Bound
: Node_Id
;
2950 -- A tree node representing the low bound of the last operand. This
2951 -- need only be set if the result could be null. It is used for the
2952 -- special case of setting the right low bound for a null result.
2953 -- This is of type Ityp.
2955 Last_Opnd_High_Bound
: Node_Id
;
2956 -- A tree node representing the high bound of the last operand. This
2957 -- need only be set if the result could be null. It is used for the
2958 -- special case of setting the right high bound for a null result.
2959 -- This is of type Ityp.
2961 High_Bound
: Node_Id
;
2962 -- A tree node representing the high bound of the result (of type Ityp)
2965 -- Result of the concatenation (of type Ityp)
2967 Actions
: constant List_Id
:= New_List
;
2968 -- Collect actions to be inserted
2970 Known_Non_Null_Operand_Seen
: Boolean;
2971 -- Set True during generation of the assignments of operands into
2972 -- result once an operand known to be non-null has been seen.
2974 function Make_Artyp_Literal
(Val
: Nat
) return Node_Id
;
2975 -- This function makes an N_Integer_Literal node that is returned in
2976 -- analyzed form with the type set to Artyp. Importantly this literal
2977 -- is not flagged as static, so that if we do computations with it that
2978 -- result in statically detected out of range conditions, we will not
2979 -- generate error messages but instead warning messages.
2981 function To_Artyp
(X
: Node_Id
) return Node_Id
;
2982 -- Given a node of type Ityp, returns the corresponding value of type
2983 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2984 -- For enum types, the Pos of the value is returned.
2986 function To_Ityp
(X
: Node_Id
) return Node_Id
;
2987 -- The inverse function (uses Val in the case of enumeration types)
2989 ------------------------
2990 -- Make_Artyp_Literal --
2991 ------------------------
2993 function Make_Artyp_Literal
(Val
: Nat
) return Node_Id
is
2994 Result
: constant Node_Id
:= Make_Integer_Literal
(Loc
, Val
);
2996 Set_Etype
(Result
, Artyp
);
2997 Set_Analyzed
(Result
, True);
2998 Set_Is_Static_Expression
(Result
, False);
3000 end Make_Artyp_Literal
;
3006 function To_Artyp
(X
: Node_Id
) return Node_Id
is
3008 if Ityp
= Base_Type
(Artyp
) then
3011 elsif Is_Enumeration_Type
(Ityp
) then
3013 Make_Attribute_Reference
(Loc
,
3014 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
3015 Attribute_Name
=> Name_Pos
,
3016 Expressions
=> New_List
(X
));
3019 return Convert_To
(Artyp
, X
);
3027 function To_Ityp
(X
: Node_Id
) return Node_Id
is
3029 if Is_Enumeration_Type
(Ityp
) then
3031 Make_Attribute_Reference
(Loc
,
3032 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
3033 Attribute_Name
=> Name_Val
,
3034 Expressions
=> New_List
(X
));
3036 -- Case where we will do a type conversion
3039 if Ityp
= Base_Type
(Artyp
) then
3042 return Convert_To
(Ityp
, X
);
3047 -- Local Declarations
3049 Lib_Level_Target
: constant Boolean :=
3050 Nkind
(Parent
(Cnode
)) = N_Object_Declaration
3052 Is_Library_Level_Entity
(Defining_Identifier
(Parent
(Cnode
)));
3054 -- If the concatenation declares a library level entity, we call the
3055 -- built-in concatenation routines to prevent code bloat, regardless
3056 -- of optimization level. This is space-efficient, and prevent linking
3057 -- problems when units are compiled with different optimizations.
3059 Opnd_Typ
: Entity_Id
;
3066 -- Start of processing for Expand_Concatenate
3069 -- Choose an appropriate computational type
3071 -- We will be doing calculations of lengths and bounds in this routine
3072 -- and computing one from the other in some cases, e.g. getting the high
3073 -- bound by adding the length-1 to the low bound.
3075 -- We can't just use the index type, or even its base type for this
3076 -- purpose for two reasons. First it might be an enumeration type which
3077 -- is not suitable for computations of any kind, and second it may
3078 -- simply not have enough range. For example if the index type is
3079 -- -128..+127 then lengths can be up to 256, which is out of range of
3082 -- For enumeration types, we can simply use Standard_Integer, this is
3083 -- sufficient since the actual number of enumeration literals cannot
3084 -- possibly exceed the range of integer (remember we will be doing the
3085 -- arithmetic with POS values, not representation values).
3087 if Is_Enumeration_Type
(Ityp
) then
3088 Artyp
:= Standard_Integer
;
3090 -- If index type is Positive, we use the standard unsigned type, to give
3091 -- more room on the top of the range, obviating the need for an overflow
3092 -- check when creating the upper bound. This is needed to avoid junk
3093 -- overflow checks in the common case of String types.
3095 -- ??? Disabled for now
3097 -- elsif Istyp = Standard_Positive then
3098 -- Artyp := Standard_Unsigned;
3100 -- For modular types, we use a 32-bit modular type for types whose size
3101 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
3102 -- identity type, and for larger unsigned types we use 64-bits.
3104 elsif Is_Modular_Integer_Type
(Ityp
) then
3105 if RM_Size
(Ityp
) < RM_Size
(Standard_Unsigned
) then
3106 Artyp
:= Standard_Unsigned
;
3107 elsif RM_Size
(Ityp
) = RM_Size
(Standard_Unsigned
) then
3110 Artyp
:= RTE
(RE_Long_Long_Unsigned
);
3113 -- Similar treatment for signed types
3116 if RM_Size
(Ityp
) < RM_Size
(Standard_Integer
) then
3117 Artyp
:= Standard_Integer
;
3118 elsif RM_Size
(Ityp
) = RM_Size
(Standard_Integer
) then
3121 Artyp
:= Standard_Long_Long_Integer
;
3125 -- Supply dummy entry at start of length array
3127 Aggr_Length
(0) := Make_Artyp_Literal
(0);
3129 -- Go through operands setting up the above arrays
3133 Opnd
:= Remove_Head
(Opnds
);
3134 Opnd_Typ
:= Etype
(Opnd
);
3136 -- The parent got messed up when we put the operands in a list,
3137 -- so now put back the proper parent for the saved operand, that
3138 -- is to say the concatenation node, to make sure that each operand
3139 -- is seen as a subexpression, e.g. if actions must be inserted.
3141 Set_Parent
(Opnd
, Cnode
);
3143 -- Set will be True when we have setup one entry in the array
3147 -- Singleton element (or character literal) case
3149 if Base_Type
(Opnd_Typ
) = Ctyp
then
3151 Operands
(NN
) := Opnd
;
3152 Is_Fixed_Length
(NN
) := True;
3153 Fixed_Length
(NN
) := Uint_1
;
3154 Result_May_Be_Null
:= False;
3156 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
3157 -- since we know that the result cannot be null).
3159 Opnd_Low_Bound
(NN
) :=
3160 Make_Attribute_Reference
(Loc
,
3161 Prefix
=> New_Occurrence_Of
(Istyp
, Loc
),
3162 Attribute_Name
=> Name_First
);
3166 -- String literal case (can only occur for strings of course)
3168 elsif Nkind
(Opnd
) = N_String_Literal
then
3169 Len
:= String_Literal_Length
(Opnd_Typ
);
3172 Result_May_Be_Null
:= False;
3175 -- Capture last operand low and high bound if result could be null
3177 if J
= N
and then Result_May_Be_Null
then
3178 Last_Opnd_Low_Bound
:=
3179 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
));
3181 Last_Opnd_High_Bound
:=
3182 Make_Op_Subtract
(Loc
,
3184 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
)),
3185 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
3188 -- Skip null string literal
3190 if J
< N
and then Len
= 0 then
3195 Operands
(NN
) := Opnd
;
3196 Is_Fixed_Length
(NN
) := True;
3198 -- Set length and bounds
3200 Fixed_Length
(NN
) := Len
;
3202 Opnd_Low_Bound
(NN
) :=
3203 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
));
3210 -- Check constrained case with known bounds
3212 if Is_Constrained
(Opnd_Typ
) then
3214 Index
: constant Node_Id
:= First_Index
(Opnd_Typ
);
3215 Indx_Typ
: constant Entity_Id
:= Etype
(Index
);
3216 Lo
: constant Node_Id
:= Type_Low_Bound
(Indx_Typ
);
3217 Hi
: constant Node_Id
:= Type_High_Bound
(Indx_Typ
);
3220 -- Fixed length constrained array type with known at compile
3221 -- time bounds is last case of fixed length operand.
3223 if Compile_Time_Known_Value
(Lo
)
3225 Compile_Time_Known_Value
(Hi
)
3228 Loval
: constant Uint
:= Expr_Value
(Lo
);
3229 Hival
: constant Uint
:= Expr_Value
(Hi
);
3230 Len
: constant Uint
:=
3231 UI_Max
(Hival
- Loval
+ 1, Uint_0
);
3235 Result_May_Be_Null
:= False;
3238 -- Capture last operand bounds if result could be null
3240 if J
= N
and then Result_May_Be_Null
then
3241 Last_Opnd_Low_Bound
:=
3243 Make_Integer_Literal
(Loc
, Expr_Value
(Lo
)));
3245 Last_Opnd_High_Bound
:=
3247 Make_Integer_Literal
(Loc
, Expr_Value
(Hi
)));
3250 -- Exclude null length case unless last operand
3252 if J
< N
and then Len
= 0 then
3257 Operands
(NN
) := Opnd
;
3258 Is_Fixed_Length
(NN
) := True;
3259 Fixed_Length
(NN
) := Len
;
3261 Opnd_Low_Bound
(NN
) :=
3263 (Make_Integer_Literal
(Loc
, Expr_Value
(Lo
)));
3270 -- All cases where the length is not known at compile time, or the
3271 -- special case of an operand which is known to be null but has a
3272 -- lower bound other than 1 or is other than a string type.
3277 -- Capture operand bounds
3279 Opnd_Low_Bound
(NN
) :=
3280 Make_Attribute_Reference
(Loc
,
3282 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3283 Attribute_Name
=> Name_First
);
3285 -- Capture last operand bounds if result could be null
3287 if J
= N
and Result_May_Be_Null
then
3288 Last_Opnd_Low_Bound
:=
3290 Make_Attribute_Reference
(Loc
,
3292 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3293 Attribute_Name
=> Name_First
));
3295 Last_Opnd_High_Bound
:=
3297 Make_Attribute_Reference
(Loc
,
3299 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3300 Attribute_Name
=> Name_Last
));
3303 -- Capture length of operand in entity
3305 Operands
(NN
) := Opnd
;
3306 Is_Fixed_Length
(NN
) := False;
3308 Var_Length
(NN
) := Make_Temporary
(Loc
, 'L');
3311 Make_Object_Declaration
(Loc
,
3312 Defining_Identifier
=> Var_Length
(NN
),
3313 Constant_Present
=> True,
3314 Object_Definition
=> New_Occurrence_Of
(Artyp
, Loc
),
3316 Make_Attribute_Reference
(Loc
,
3318 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3319 Attribute_Name
=> Name_Length
)));
3323 -- Set next entry in aggregate length array
3325 -- For first entry, make either integer literal for fixed length
3326 -- or a reference to the saved length for variable length.
3329 if Is_Fixed_Length
(1) then
3330 Aggr_Length
(1) := Make_Integer_Literal
(Loc
, Fixed_Length
(1));
3332 Aggr_Length
(1) := New_Occurrence_Of
(Var_Length
(1), Loc
);
3335 -- If entry is fixed length and only fixed lengths so far, make
3336 -- appropriate new integer literal adding new length.
3338 elsif Is_Fixed_Length
(NN
)
3339 and then Nkind
(Aggr_Length
(NN
- 1)) = N_Integer_Literal
3342 Make_Integer_Literal
(Loc
,
3343 Intval
=> Fixed_Length
(NN
) + Intval
(Aggr_Length
(NN
- 1)));
3345 -- All other cases, construct an addition node for the length and
3346 -- create an entity initialized to this length.
3349 Ent
:= Make_Temporary
(Loc
, 'L');
3351 if Is_Fixed_Length
(NN
) then
3352 Clen
:= Make_Integer_Literal
(Loc
, Fixed_Length
(NN
));
3354 Clen
:= New_Occurrence_Of
(Var_Length
(NN
), Loc
);
3358 Make_Object_Declaration
(Loc
,
3359 Defining_Identifier
=> Ent
,
3360 Constant_Present
=> True,
3361 Object_Definition
=> New_Occurrence_Of
(Artyp
, Loc
),
3364 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
- 1)),
3365 Right_Opnd
=> Clen
)));
3367 Aggr_Length
(NN
) := Make_Identifier
(Loc
, Chars
=> Chars
(Ent
));
3374 -- If we have only skipped null operands, return the last operand
3381 -- If we have only one non-null operand, return it and we are done.
3382 -- There is one case in which this cannot be done, and that is when
3383 -- the sole operand is of the element type, in which case it must be
3384 -- converted to an array, and the easiest way of doing that is to go
3385 -- through the normal general circuit.
3387 if NN
= 1 and then Base_Type
(Etype
(Operands
(1))) /= Ctyp
then
3388 Result
:= Operands
(1);
3392 -- Cases where we have a real concatenation
3394 -- Next step is to find the low bound for the result array that we
3395 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3397 -- If the ultimate ancestor of the index subtype is a constrained array
3398 -- definition, then the lower bound is that of the index subtype as
3399 -- specified by (RM 4.5.3(6)).
3401 -- The right test here is to go to the root type, and then the ultimate
3402 -- ancestor is the first subtype of this root type.
3404 if Is_Constrained
(First_Subtype
(Root_Type
(Atyp
))) then
3406 Make_Attribute_Reference
(Loc
,
3408 New_Occurrence_Of
(First_Subtype
(Root_Type
(Atyp
)), Loc
),
3409 Attribute_Name
=> Name_First
);
3411 -- If the first operand in the list has known length we know that
3412 -- the lower bound of the result is the lower bound of this operand.
3414 elsif Is_Fixed_Length
(1) then
3415 Low_Bound
:= Opnd_Low_Bound
(1);
3417 -- OK, we don't know the lower bound, we have to build a horrible
3418 -- if expression node of the form
3420 -- if Cond1'Length /= 0 then
3423 -- if Opnd2'Length /= 0 then
3428 -- The nesting ends either when we hit an operand whose length is known
3429 -- at compile time, or on reaching the last operand, whose low bound we
3430 -- take unconditionally whether or not it is null. It's easiest to do
3431 -- this with a recursive procedure:
3435 function Get_Known_Bound
(J
: Nat
) return Node_Id
;
3436 -- Returns the lower bound determined by operands J .. NN
3438 ---------------------
3439 -- Get_Known_Bound --
3440 ---------------------
3442 function Get_Known_Bound
(J
: Nat
) return Node_Id
is
3444 if Is_Fixed_Length
(J
) or else J
= NN
then
3445 return New_Copy
(Opnd_Low_Bound
(J
));
3449 Make_If_Expression
(Loc
,
3450 Expressions
=> New_List
(
3454 New_Occurrence_Of
(Var_Length
(J
), Loc
),
3456 Make_Integer_Literal
(Loc
, 0)),
3458 New_Copy
(Opnd_Low_Bound
(J
)),
3459 Get_Known_Bound
(J
+ 1)));
3461 end Get_Known_Bound
;
3464 Ent
:= Make_Temporary
(Loc
, 'L');
3467 Make_Object_Declaration
(Loc
,
3468 Defining_Identifier
=> Ent
,
3469 Constant_Present
=> True,
3470 Object_Definition
=> New_Occurrence_Of
(Ityp
, Loc
),
3471 Expression
=> Get_Known_Bound
(1)));
3473 Low_Bound
:= New_Occurrence_Of
(Ent
, Loc
);
3477 -- Now we can safely compute the upper bound, normally
3478 -- Low_Bound + Length - 1.
3483 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3485 Make_Op_Subtract
(Loc
,
3486 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3487 Right_Opnd
=> Make_Artyp_Literal
(1))));
3489 -- Note that calculation of the high bound may cause overflow in some
3490 -- very weird cases, so in the general case we need an overflow check on
3491 -- the high bound. We can avoid this for the common case of string types
3492 -- and other types whose index is Positive, since we chose a wider range
3493 -- for the arithmetic type.
3495 if Istyp
/= Standard_Positive
then
3496 Activate_Overflow_Check
(High_Bound
);
3499 -- Handle the exceptional case where the result is null, in which case
3500 -- case the bounds come from the last operand (so that we get the proper
3501 -- bounds if the last operand is super-flat).
3503 if Result_May_Be_Null
then
3505 Make_If_Expression
(Loc
,
3506 Expressions
=> New_List
(
3508 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3509 Right_Opnd
=> Make_Artyp_Literal
(0)),
3510 Last_Opnd_Low_Bound
,
3514 Make_If_Expression
(Loc
,
3515 Expressions
=> New_List
(
3517 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3518 Right_Opnd
=> Make_Artyp_Literal
(0)),
3519 Last_Opnd_High_Bound
,
3523 -- Here is where we insert the saved up actions
3525 Insert_Actions
(Cnode
, Actions
, Suppress
=> All_Checks
);
3527 -- Now we construct an array object with appropriate bounds. We mark
3528 -- the target as internal to prevent useless initialization when
3529 -- Initialize_Scalars is enabled. Also since this is the actual result
3530 -- entity, we make sure we have debug information for the result.
3532 Ent
:= Make_Temporary
(Loc
, 'S');
3533 Set_Is_Internal
(Ent
);
3534 Set_Needs_Debug_Info
(Ent
);
3536 -- If the bound is statically known to be out of range, we do not want
3537 -- to abort, we want a warning and a runtime constraint error. Note that
3538 -- we have arranged that the result will not be treated as a static
3539 -- constant, so we won't get an illegality during this insertion.
3541 Insert_Action
(Cnode
,
3542 Make_Object_Declaration
(Loc
,
3543 Defining_Identifier
=> Ent
,
3544 Object_Definition
=>
3545 Make_Subtype_Indication
(Loc
,
3546 Subtype_Mark
=> New_Occurrence_Of
(Atyp
, Loc
),
3548 Make_Index_Or_Discriminant_Constraint
(Loc
,
3549 Constraints
=> New_List
(
3551 Low_Bound
=> Low_Bound
,
3552 High_Bound
=> High_Bound
))))),
3553 Suppress
=> All_Checks
);
3555 -- If the result of the concatenation appears as the initializing
3556 -- expression of an object declaration, we can just rename the
3557 -- result, rather than copying it.
3559 Set_OK_To_Rename
(Ent
);
3561 -- Catch the static out of range case now
3563 if Raises_Constraint_Error
(High_Bound
) then
3564 raise Concatenation_Error
;
3567 -- Now we will generate the assignments to do the actual concatenation
3569 -- There is one case in which we will not do this, namely when all the
3570 -- following conditions are met:
3572 -- The result type is Standard.String
3574 -- There are nine or fewer retained (non-null) operands
3576 -- The optimization level is -O0
3578 -- The corresponding System.Concat_n.Str_Concat_n routine is
3579 -- available in the run time.
3581 -- The debug flag gnatd.c is not set
3583 -- If all these conditions are met then we generate a call to the
3584 -- relevant concatenation routine. The purpose of this is to avoid
3585 -- undesirable code bloat at -O0.
3587 if Atyp
= Standard_String
3588 and then NN
in 2 .. 9
3589 and then (Lib_Level_Target
3590 or else ((Optimization_Level
= 0 or else Debug_Flag_Dot_CC
)
3591 and then not Debug_Flag_Dot_C
))
3594 RR
: constant array (Nat
range 2 .. 9) of RE_Id
:=
3605 if RTE_Available
(RR
(NN
)) then
3607 Opnds
: constant List_Id
:=
3608 New_List
(New_Occurrence_Of
(Ent
, Loc
));
3611 for J
in 1 .. NN
loop
3612 if Is_List_Member
(Operands
(J
)) then
3613 Remove
(Operands
(J
));
3616 if Base_Type
(Etype
(Operands
(J
))) = Ctyp
then
3618 Make_Aggregate
(Loc
,
3619 Component_Associations
=> New_List
(
3620 Make_Component_Association
(Loc
,
3621 Choices
=> New_List
(
3622 Make_Integer_Literal
(Loc
, 1)),
3623 Expression
=> Operands
(J
)))));
3626 Append_To
(Opnds
, Operands
(J
));
3630 Insert_Action
(Cnode
,
3631 Make_Procedure_Call_Statement
(Loc
,
3632 Name
=> New_Occurrence_Of
(RTE
(RR
(NN
)), Loc
),
3633 Parameter_Associations
=> Opnds
));
3635 Result
:= New_Occurrence_Of
(Ent
, Loc
);
3642 -- Not special case so generate the assignments
3644 Known_Non_Null_Operand_Seen
:= False;
3646 for J
in 1 .. NN
loop
3648 Lo
: constant Node_Id
:=
3650 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3651 Right_Opnd
=> Aggr_Length
(J
- 1));
3653 Hi
: constant Node_Id
:=
3655 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3657 Make_Op_Subtract
(Loc
,
3658 Left_Opnd
=> Aggr_Length
(J
),
3659 Right_Opnd
=> Make_Artyp_Literal
(1)));
3662 -- Singleton case, simple assignment
3664 if Base_Type
(Etype
(Operands
(J
))) = Ctyp
then
3665 Known_Non_Null_Operand_Seen
:= True;
3666 Insert_Action
(Cnode
,
3667 Make_Assignment_Statement
(Loc
,
3669 Make_Indexed_Component
(Loc
,
3670 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
3671 Expressions
=> New_List
(To_Ityp
(Lo
))),
3672 Expression
=> Operands
(J
)),
3673 Suppress
=> All_Checks
);
3675 -- Array case, slice assignment, skipped when argument is fixed
3676 -- length and known to be null.
3678 elsif (not Is_Fixed_Length
(J
)) or else (Fixed_Length
(J
) > 0) then
3681 Make_Assignment_Statement
(Loc
,
3685 New_Occurrence_Of
(Ent
, Loc
),
3688 Low_Bound
=> To_Ityp
(Lo
),
3689 High_Bound
=> To_Ityp
(Hi
))),
3690 Expression
=> Operands
(J
));
3692 if Is_Fixed_Length
(J
) then
3693 Known_Non_Null_Operand_Seen
:= True;
3695 elsif not Known_Non_Null_Operand_Seen
then
3697 -- Here if operand length is not statically known and no
3698 -- operand known to be non-null has been processed yet.
3699 -- If operand length is 0, we do not need to perform the
3700 -- assignment, and we must avoid the evaluation of the
3701 -- high bound of the slice, since it may underflow if the
3702 -- low bound is Ityp'First.
3705 Make_Implicit_If_Statement
(Cnode
,
3709 New_Occurrence_Of
(Var_Length
(J
), Loc
),
3710 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
3711 Then_Statements
=> New_List
(Assign
));
3714 Insert_Action
(Cnode
, Assign
, Suppress
=> All_Checks
);
3720 -- Finally we build the result, which is a reference to the array object
3722 Result
:= New_Occurrence_Of
(Ent
, Loc
);
3725 Rewrite
(Cnode
, Result
);
3726 Analyze_And_Resolve
(Cnode
, Atyp
);
3729 when Concatenation_Error
=>
3731 -- Kill warning generated for the declaration of the static out of
3732 -- range high bound, and instead generate a Constraint_Error with
3733 -- an appropriate specific message.
3735 Kill_Dead_Code
(Declaration_Node
(Entity
(High_Bound
)));
3736 Apply_Compile_Time_Constraint_Error
3738 Msg
=> "concatenation result upper bound out of range??",
3739 Reason
=> CE_Range_Check_Failed
);
3740 end Expand_Concatenate
;
3742 ---------------------------------------------------
3743 -- Expand_Membership_Minimize_Eliminate_Overflow --
3744 ---------------------------------------------------
3746 procedure Expand_Membership_Minimize_Eliminate_Overflow
(N
: Node_Id
) is
3747 pragma Assert
(Nkind
(N
) = N_In
);
3748 -- Despite the name, this routine applies only to N_In, not to
3749 -- N_Not_In. The latter is always rewritten as not (X in Y).
3751 Result_Type
: constant Entity_Id
:= Etype
(N
);
3752 -- Capture result type, may be a derived boolean type
3754 Loc
: constant Source_Ptr
:= Sloc
(N
);
3755 Lop
: constant Node_Id
:= Left_Opnd
(N
);
3756 Rop
: constant Node_Id
:= Right_Opnd
(N
);
3758 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3759 -- is thus tempting to capture these values, but due to the rewrites
3760 -- that occur as a result of overflow checking, these values change
3761 -- as we go along, and it is safe just to always use Etype explicitly.
3763 Restype
: constant Entity_Id
:= Etype
(N
);
3767 -- Bounds in Minimize calls, not used currently
3769 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
3770 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3773 Minimize_Eliminate_Overflows
(Lop
, Lo
, Hi
, Top_Level
=> False);
3775 -- If right operand is a subtype name, and the subtype name has no
3776 -- predicate, then we can just replace the right operand with an
3777 -- explicit range T'First .. T'Last, and use the explicit range code.
3779 if Nkind
(Rop
) /= N_Range
3780 and then No
(Predicate_Function
(Etype
(Rop
)))
3783 Rtyp
: constant Entity_Id
:= Etype
(Rop
);
3788 Make_Attribute_Reference
(Loc
,
3789 Attribute_Name
=> Name_First
,
3790 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
)),
3792 Make_Attribute_Reference
(Loc
,
3793 Attribute_Name
=> Name_Last
,
3794 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
))));
3795 Analyze_And_Resolve
(Rop
, Rtyp
, Suppress
=> All_Checks
);
3799 -- Here for the explicit range case. Note that the bounds of the range
3800 -- have not been processed for minimized or eliminated checks.
3802 if Nkind
(Rop
) = N_Range
then
3803 Minimize_Eliminate_Overflows
3804 (Low_Bound
(Rop
), Lo
, Hi
, Top_Level
=> False);
3805 Minimize_Eliminate_Overflows
3806 (High_Bound
(Rop
), Lo
, Hi
, Top_Level
=> False);
3808 -- We have A in B .. C, treated as A >= B and then A <= C
3812 if Is_RTE
(Etype
(Lop
), RE_Bignum
)
3813 or else Is_RTE
(Etype
(Low_Bound
(Rop
)), RE_Bignum
)
3814 or else Is_RTE
(Etype
(High_Bound
(Rop
)), RE_Bignum
)
3817 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
3818 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
3819 L
: constant Entity_Id
:=
3820 Make_Defining_Identifier
(Loc
, Name_uL
);
3821 Lopnd
: constant Node_Id
:= Convert_To_Bignum
(Lop
);
3822 Lbound
: constant Node_Id
:=
3823 Convert_To_Bignum
(Low_Bound
(Rop
));
3824 Hbound
: constant Node_Id
:=
3825 Convert_To_Bignum
(High_Bound
(Rop
));
3827 -- Now we rewrite the membership test node to look like
3830 -- Bnn : Result_Type;
3832 -- M : Mark_Id := SS_Mark;
3833 -- L : Bignum := Lopnd;
3835 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3843 -- Insert declaration of L into declarations of bignum block
3846 (Last
(Declarations
(Blk
)),
3847 Make_Object_Declaration
(Loc
,
3848 Defining_Identifier
=> L
,
3849 Object_Definition
=>
3850 New_Occurrence_Of
(RTE
(RE_Bignum
), Loc
),
3851 Expression
=> Lopnd
));
3853 -- Insert assignment to Bnn into expressions of bignum block
3856 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
3857 Make_Assignment_Statement
(Loc
,
3858 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
3862 Make_Function_Call
(Loc
,
3864 New_Occurrence_Of
(RTE
(RE_Big_GE
), Loc
),
3865 Parameter_Associations
=> New_List
(
3866 New_Occurrence_Of
(L
, Loc
),
3870 Make_Function_Call
(Loc
,
3872 New_Occurrence_Of
(RTE
(RE_Big_LE
), Loc
),
3873 Parameter_Associations
=> New_List
(
3874 New_Occurrence_Of
(L
, Loc
),
3877 -- Now rewrite the node
3880 Make_Expression_With_Actions
(Loc
,
3881 Actions
=> New_List
(
3882 Make_Object_Declaration
(Loc
,
3883 Defining_Identifier
=> Bnn
,
3884 Object_Definition
=>
3885 New_Occurrence_Of
(Result_Type
, Loc
)),
3887 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
3888 Analyze_And_Resolve
(N
, Result_Type
);
3892 -- Here if no bignums around
3895 -- Case where types are all the same
3897 if Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(Low_Bound
(Rop
)))
3899 Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(High_Bound
(Rop
)))
3903 -- If types are not all the same, it means that we have rewritten
3904 -- at least one of them to be of type Long_Long_Integer, and we
3905 -- will convert the other operands to Long_Long_Integer.
3908 Convert_To_And_Rewrite
(LLIB
, Lop
);
3909 Set_Analyzed
(Lop
, False);
3910 Analyze_And_Resolve
(Lop
, LLIB
);
3912 -- For the right operand, avoid unnecessary recursion into
3913 -- this routine, we know that overflow is not possible.
3915 Convert_To_And_Rewrite
(LLIB
, Low_Bound
(Rop
));
3916 Convert_To_And_Rewrite
(LLIB
, High_Bound
(Rop
));
3917 Set_Analyzed
(Rop
, False);
3918 Analyze_And_Resolve
(Rop
, LLIB
, Suppress
=> Overflow_Check
);
3921 -- Now the three operands are of the same signed integer type,
3922 -- so we can use the normal expansion routine for membership,
3923 -- setting the flag to prevent recursion into this procedure.
3925 Set_No_Minimize_Eliminate
(N
);
3929 -- Right operand is a subtype name and the subtype has a predicate. We
3930 -- have to make sure the predicate is checked, and for that we need to
3931 -- use the standard N_In circuitry with appropriate types.
3934 pragma Assert
(Present
(Predicate_Function
(Etype
(Rop
))));
3936 -- If types are "right", just call Expand_N_In preventing recursion
3938 if Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(Rop
)) then
3939 Set_No_Minimize_Eliminate
(N
);
3944 elsif Is_RTE
(Etype
(Lop
), RE_Bignum
) then
3946 -- For X in T, we want to rewrite our node as
3949 -- Bnn : Result_Type;
3952 -- M : Mark_Id := SS_Mark;
3953 -- Lnn : Long_Long_Integer'Base
3959 -- if not Bignum_In_LLI_Range (Nnn) then
3962 -- Lnn := From_Bignum (Nnn);
3964 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3965 -- and then T'Base (Lnn) in T;
3974 -- A bit gruesome, but there doesn't seem to be a simpler way
3977 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
3978 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
3979 Lnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L', N
);
3980 Nnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'N', N
);
3981 T
: constant Entity_Id
:= Etype
(Rop
);
3982 TB
: constant Entity_Id
:= Base_Type
(T
);
3986 -- Mark the last membership operation to prevent recursion
3990 Left_Opnd
=> Convert_To
(TB
, New_Occurrence_Of
(Lnn
, Loc
)),
3991 Right_Opnd
=> New_Occurrence_Of
(T
, Loc
));
3992 Set_No_Minimize_Eliminate
(Nin
);
3994 -- Now decorate the block
3997 (Last
(Declarations
(Blk
)),
3998 Make_Object_Declaration
(Loc
,
3999 Defining_Identifier
=> Lnn
,
4000 Object_Definition
=> New_Occurrence_Of
(LLIB
, Loc
)));
4003 (Last
(Declarations
(Blk
)),
4004 Make_Object_Declaration
(Loc
,
4005 Defining_Identifier
=> Nnn
,
4006 Object_Definition
=>
4007 New_Occurrence_Of
(RTE
(RE_Bignum
), Loc
)));
4010 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
4012 Make_Assignment_Statement
(Loc
,
4013 Name
=> New_Occurrence_Of
(Nnn
, Loc
),
4014 Expression
=> Relocate_Node
(Lop
)),
4016 Make_Implicit_If_Statement
(N
,
4020 Make_Function_Call
(Loc
,
4023 (RTE
(RE_Bignum_In_LLI_Range
), Loc
),
4024 Parameter_Associations
=> New_List
(
4025 New_Occurrence_Of
(Nnn
, Loc
)))),
4027 Then_Statements
=> New_List
(
4028 Make_Assignment_Statement
(Loc
,
4029 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
4031 New_Occurrence_Of
(Standard_False
, Loc
))),
4033 Else_Statements
=> New_List
(
4034 Make_Assignment_Statement
(Loc
,
4035 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
4037 Make_Function_Call
(Loc
,
4039 New_Occurrence_Of
(RTE
(RE_From_Bignum
), Loc
),
4040 Parameter_Associations
=> New_List
(
4041 New_Occurrence_Of
(Nnn
, Loc
)))),
4043 Make_Assignment_Statement
(Loc
,
4044 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
4049 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
4054 Make_Attribute_Reference
(Loc
,
4055 Attribute_Name
=> Name_First
,
4057 New_Occurrence_Of
(TB
, Loc
))),
4061 Make_Attribute_Reference
(Loc
,
4062 Attribute_Name
=> Name_Last
,
4064 New_Occurrence_Of
(TB
, Loc
))))),
4066 Right_Opnd
=> Nin
))))));
4068 -- Now we can do the rewrite
4071 Make_Expression_With_Actions
(Loc
,
4072 Actions
=> New_List
(
4073 Make_Object_Declaration
(Loc
,
4074 Defining_Identifier
=> Bnn
,
4075 Object_Definition
=>
4076 New_Occurrence_Of
(Result_Type
, Loc
)),
4078 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
4079 Analyze_And_Resolve
(N
, Result_Type
);
4083 -- Not bignum case, but types don't match (this means we rewrote the
4084 -- left operand to be Long_Long_Integer).
4087 pragma Assert
(Base_Type
(Etype
(Lop
)) = LLIB
);
4089 -- We rewrite the membership test as (where T is the type with
4090 -- the predicate, i.e. the type of the right operand)
4092 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
4093 -- and then T'Base (Lop) in T
4096 T
: constant Entity_Id
:= Etype
(Rop
);
4097 TB
: constant Entity_Id
:= Base_Type
(T
);
4101 -- The last membership test is marked to prevent recursion
4105 Left_Opnd
=> Convert_To
(TB
, Duplicate_Subexpr
(Lop
)),
4106 Right_Opnd
=> New_Occurrence_Of
(T
, Loc
));
4107 Set_No_Minimize_Eliminate
(Nin
);
4109 -- Now do the rewrite
4120 Make_Attribute_Reference
(Loc
,
4121 Attribute_Name
=> Name_First
,
4123 New_Occurrence_Of
(TB
, Loc
))),
4126 Make_Attribute_Reference
(Loc
,
4127 Attribute_Name
=> Name_Last
,
4129 New_Occurrence_Of
(TB
, Loc
))))),
4130 Right_Opnd
=> Nin
));
4131 Set_Analyzed
(N
, False);
4132 Analyze_And_Resolve
(N
, Restype
);
4136 end Expand_Membership_Minimize_Eliminate_Overflow
;
4138 ------------------------
4139 -- Expand_N_Allocator --
4140 ------------------------
4142 procedure Expand_N_Allocator
(N
: Node_Id
) is
4143 Etyp
: constant Entity_Id
:= Etype
(Expression
(N
));
4144 Loc
: constant Source_Ptr
:= Sloc
(N
);
4145 PtrT
: constant Entity_Id
:= Etype
(N
);
4147 procedure Rewrite_Coextension
(N
: Node_Id
);
4148 -- Static coextensions have the same lifetime as the entity they
4149 -- constrain. Such occurrences can be rewritten as aliased objects
4150 -- and their unrestricted access used instead of the coextension.
4152 function Size_In_Storage_Elements
(E
: Entity_Id
) return Node_Id
;
4153 -- Given a constrained array type E, returns a node representing the
4154 -- code to compute the size in storage elements for the given type.
4155 -- This is done without using the attribute (which malfunctions for
4158 -------------------------
4159 -- Rewrite_Coextension --
4160 -------------------------
4162 procedure Rewrite_Coextension
(N
: Node_Id
) is
4163 Temp_Id
: constant Node_Id
:= Make_Temporary
(Loc
, 'C');
4164 Temp_Decl
: Node_Id
;
4168 -- Cnn : aliased Etyp;
4171 Make_Object_Declaration
(Loc
,
4172 Defining_Identifier
=> Temp_Id
,
4173 Aliased_Present
=> True,
4174 Object_Definition
=> New_Occurrence_Of
(Etyp
, Loc
));
4176 if Nkind
(Expression
(N
)) = N_Qualified_Expression
then
4177 Set_Expression
(Temp_Decl
, Expression
(Expression
(N
)));
4180 Insert_Action
(N
, Temp_Decl
);
4182 Make_Attribute_Reference
(Loc
,
4183 Prefix
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4184 Attribute_Name
=> Name_Unrestricted_Access
));
4186 Analyze_And_Resolve
(N
, PtrT
);
4187 end Rewrite_Coextension
;
4189 ------------------------------
4190 -- Size_In_Storage_Elements --
4191 ------------------------------
4193 function Size_In_Storage_Elements
(E
: Entity_Id
) return Node_Id
is
4195 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4196 -- However, the reason for the existence of this function is
4197 -- to construct a test for sizes too large, which means near the
4198 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4199 -- is that we get overflows when sizes are greater than 2**31.
4201 -- So what we end up doing for array types is to use the expression:
4203 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4205 -- which avoids this problem. All this is a bit bogus, but it does
4206 -- mean we catch common cases of trying to allocate arrays that
4207 -- are too large, and which in the absence of a check results in
4208 -- undetected chaos ???
4210 -- Note in particular that this is a pessimistic estimate in the
4211 -- case of packed array types, where an array element might occupy
4212 -- just a fraction of a storage element???
4219 for J
in 1 .. Number_Dimensions
(E
) loop
4221 Make_Attribute_Reference
(Loc
,
4222 Prefix
=> New_Occurrence_Of
(E
, Loc
),
4223 Attribute_Name
=> Name_Length
,
4224 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, J
)));
4231 Make_Op_Multiply
(Loc
,
4238 Make_Op_Multiply
(Loc
,
4241 Make_Attribute_Reference
(Loc
,
4242 Prefix
=> New_Occurrence_Of
(Component_Type
(E
), Loc
),
4243 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
));
4245 end Size_In_Storage_Elements
;
4249 Dtyp
: constant Entity_Id
:= Available_View
(Designated_Type
(PtrT
));
4253 Rel_Typ
: Entity_Id
;
4256 -- Start of processing for Expand_N_Allocator
4259 -- RM E.2.3(22). We enforce that the expected type of an allocator
4260 -- shall not be a remote access-to-class-wide-limited-private type
4262 -- Why is this being done at expansion time, seems clearly wrong ???
4264 Validate_Remote_Access_To_Class_Wide_Type
(N
);
4266 -- Processing for anonymous access-to-controlled types. These access
4267 -- types receive a special finalization master which appears in the
4268 -- declarations of the enclosing semantic unit. This expansion is done
4269 -- now to ensure that any additional types generated by this routine or
4270 -- Expand_Allocator_Expression inherit the proper type attributes.
4272 if (Ekind
(PtrT
) = E_Anonymous_Access_Type
4273 or else (Is_Itype
(PtrT
) and then No
(Finalization_Master
(PtrT
))))
4274 and then Needs_Finalization
(Dtyp
)
4276 -- Detect the allocation of an anonymous controlled object where the
4277 -- type of the context is named. For example:
4279 -- procedure Proc (Ptr : Named_Access_Typ);
4280 -- Proc (new Designated_Typ);
4282 -- Regardless of the anonymous-to-named access type conversion, the
4283 -- lifetime of the object must be associated with the named access
4284 -- type. Use the finalization-related attributes of this type.
4286 if Nkind_In
(Parent
(N
), N_Type_Conversion
,
4287 N_Unchecked_Type_Conversion
)
4288 and then Ekind_In
(Etype
(Parent
(N
)), E_Access_Subtype
,
4290 E_General_Access_Type
)
4292 Rel_Typ
:= Etype
(Parent
(N
));
4297 -- Anonymous access-to-controlled types allocate on the global pool.
4298 -- Do not set this attribute on .NET/JVM since those targets do not
4299 -- support pools. Note that this is a "root type only" attribute.
4301 if No
(Associated_Storage_Pool
(PtrT
)) and then VM_Target
= No_VM
then
4302 if Present
(Rel_Typ
) then
4303 Set_Associated_Storage_Pool
4304 (Root_Type
(PtrT
), Associated_Storage_Pool
(Rel_Typ
));
4306 Set_Associated_Storage_Pool
4307 (Root_Type
(PtrT
), RTE
(RE_Global_Pool_Object
));
4311 -- The finalization master must be inserted and analyzed as part of
4312 -- the current semantic unit. Note that the master is updated when
4313 -- analysis changes current units. Note that this is a "root type
4316 if Present
(Rel_Typ
) then
4317 Set_Finalization_Master
4318 (Root_Type
(PtrT
), Finalization_Master
(Rel_Typ
));
4320 Set_Finalization_Master
4321 (Root_Type
(PtrT
), Current_Anonymous_Master
);
4325 -- Set the storage pool and find the appropriate version of Allocate to
4326 -- call. Do not overwrite the storage pool if it is already set, which
4327 -- can happen for build-in-place function returns (see
4328 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
4330 if No
(Storage_Pool
(N
)) then
4331 Pool
:= Associated_Storage_Pool
(Root_Type
(PtrT
));
4333 if Present
(Pool
) then
4334 Set_Storage_Pool
(N
, Pool
);
4336 if Is_RTE
(Pool
, RE_SS_Pool
) then
4337 if VM_Target
= No_VM
then
4338 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
4341 -- In the case of an allocator for a simple storage pool, locate
4342 -- and save a reference to the pool type's Allocate routine.
4344 elsif Present
(Get_Rep_Pragma
4345 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4348 Pool_Type
: constant Entity_Id
:= Base_Type
(Etype
(Pool
));
4349 Alloc_Op
: Entity_Id
;
4351 Alloc_Op
:= Get_Name_Entity_Id
(Name_Allocate
);
4352 while Present
(Alloc_Op
) loop
4353 if Scope
(Alloc_Op
) = Scope
(Pool_Type
)
4354 and then Present
(First_Formal
(Alloc_Op
))
4355 and then Etype
(First_Formal
(Alloc_Op
)) = Pool_Type
4357 Set_Procedure_To_Call
(N
, Alloc_Op
);
4360 Alloc_Op
:= Homonym
(Alloc_Op
);
4365 elsif Is_Class_Wide_Type
(Etype
(Pool
)) then
4366 Set_Procedure_To_Call
(N
, RTE
(RE_Allocate_Any
));
4369 Set_Procedure_To_Call
(N
,
4370 Find_Prim_Op
(Etype
(Pool
), Name_Allocate
));
4375 -- Under certain circumstances we can replace an allocator by an access
4376 -- to statically allocated storage. The conditions, as noted in AARM
4377 -- 3.10 (10c) are as follows:
4379 -- Size and initial value is known at compile time
4380 -- Access type is access-to-constant
4382 -- The allocator is not part of a constraint on a record component,
4383 -- because in that case the inserted actions are delayed until the
4384 -- record declaration is fully analyzed, which is too late for the
4385 -- analysis of the rewritten allocator.
4387 if Is_Access_Constant
(PtrT
)
4388 and then Nkind
(Expression
(N
)) = N_Qualified_Expression
4389 and then Compile_Time_Known_Value
(Expression
(Expression
(N
)))
4390 and then Size_Known_At_Compile_Time
4391 (Etype
(Expression
(Expression
(N
))))
4392 and then not Is_Record_Type
(Current_Scope
)
4394 -- Here we can do the optimization. For the allocator
4398 -- We insert an object declaration
4400 -- Tnn : aliased x := y;
4402 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4403 -- marked as requiring static allocation.
4405 Temp
:= Make_Temporary
(Loc
, 'T', Expression
(Expression
(N
)));
4406 Desig
:= Subtype_Mark
(Expression
(N
));
4408 -- If context is constrained, use constrained subtype directly,
4409 -- so that the constant is not labelled as having a nominally
4410 -- unconstrained subtype.
4412 if Entity
(Desig
) = Base_Type
(Dtyp
) then
4413 Desig
:= New_Occurrence_Of
(Dtyp
, Loc
);
4417 Make_Object_Declaration
(Loc
,
4418 Defining_Identifier
=> Temp
,
4419 Aliased_Present
=> True,
4420 Constant_Present
=> Is_Access_Constant
(PtrT
),
4421 Object_Definition
=> Desig
,
4422 Expression
=> Expression
(Expression
(N
))));
4425 Make_Attribute_Reference
(Loc
,
4426 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
4427 Attribute_Name
=> Name_Unrestricted_Access
));
4429 Analyze_And_Resolve
(N
, PtrT
);
4431 -- We set the variable as statically allocated, since we don't want
4432 -- it going on the stack of the current procedure.
4434 Set_Is_Statically_Allocated
(Temp
);
4438 -- Same if the allocator is an access discriminant for a local object:
4439 -- instead of an allocator we create a local value and constrain the
4440 -- enclosing object with the corresponding access attribute.
4442 if Is_Static_Coextension
(N
) then
4443 Rewrite_Coextension
(N
);
4447 -- Check for size too large, we do this because the back end misses
4448 -- proper checks here and can generate rubbish allocation calls when
4449 -- we are near the limit. We only do this for the 32-bit address case
4450 -- since that is from a practical point of view where we see a problem.
4452 if System_Address_Size
= 32
4453 and then not Storage_Checks_Suppressed
(PtrT
)
4454 and then not Storage_Checks_Suppressed
(Dtyp
)
4455 and then not Storage_Checks_Suppressed
(Etyp
)
4457 -- The check we want to generate should look like
4459 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4460 -- raise Storage_Error;
4463 -- where 3.5 gigabytes is a constant large enough to accommodate any
4464 -- reasonable request for. But we can't do it this way because at
4465 -- least at the moment we don't compute this attribute right, and
4466 -- can silently give wrong results when the result gets large. Since
4467 -- this is all about large results, that's bad, so instead we only
4468 -- apply the check for constrained arrays, and manually compute the
4469 -- value of the attribute ???
4471 if Is_Array_Type
(Etyp
) and then Is_Constrained
(Etyp
) then
4473 Make_Raise_Storage_Error
(Loc
,
4476 Left_Opnd
=> Size_In_Storage_Elements
(Etyp
),
4478 Make_Integer_Literal
(Loc
, Uint_7
* (Uint_2
** 29))),
4479 Reason
=> SE_Object_Too_Large
));
4483 -- If no storage pool has been specified and we have the restriction
4484 -- No_Standard_Allocators_After_Elaboration is present, then generate
4485 -- a call to Elaboration_Allocators.Check_Standard_Allocator.
4487 if Nkind
(N
) = N_Allocator
4488 and then No
(Storage_Pool
(N
))
4489 and then Restriction_Active
(No_Standard_Allocators_After_Elaboration
)
4492 Make_Procedure_Call_Statement
(Loc
,
4494 New_Occurrence_Of
(RTE
(RE_Check_Standard_Allocator
), Loc
)));
4497 -- Handle case of qualified expression (other than optimization above)
4498 -- First apply constraint checks, because the bounds or discriminants
4499 -- in the aggregate might not match the subtype mark in the allocator.
4501 if Nkind
(Expression
(N
)) = N_Qualified_Expression
then
4502 Apply_Constraint_Check
4503 (Expression
(Expression
(N
)), Etype
(Expression
(N
)));
4505 Expand_Allocator_Expression
(N
);
4509 -- If the allocator is for a type which requires initialization, and
4510 -- there is no initial value (i.e. operand is a subtype indication
4511 -- rather than a qualified expression), then we must generate a call to
4512 -- the initialization routine using an expressions action node:
4514 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
4516 -- Here ptr_T is the pointer type for the allocator, and T is the
4517 -- subtype of the allocator. A special case arises if the designated
4518 -- type of the access type is a task or contains tasks. In this case
4519 -- the call to Init (Temp.all ...) is replaced by code that ensures
4520 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
4521 -- for details). In addition, if the type T is a task type, then the
4522 -- first argument to Init must be converted to the task record type.
4525 T
: constant Entity_Id
:= Entity
(Expression
(N
));
4531 Init_Arg1
: Node_Id
;
4532 Temp_Decl
: Node_Id
;
4533 Temp_Type
: Entity_Id
;
4536 if No_Initialization
(N
) then
4538 -- Even though this might be a simple allocation, create a custom
4539 -- Allocate if the context requires it. Since .NET/JVM compilers
4540 -- do not support pools, this step is skipped.
4542 if VM_Target
= No_VM
4543 and then Present
(Finalization_Master
(PtrT
))
4545 Build_Allocate_Deallocate_Proc
4547 Is_Allocate
=> True);
4550 -- Case of no initialization procedure present
4552 elsif not Has_Non_Null_Base_Init_Proc
(T
) then
4554 -- Case of simple initialization required
4556 if Needs_Simple_Initialization
(T
) then
4557 Check_Restriction
(No_Default_Initialization
, N
);
4558 Rewrite
(Expression
(N
),
4559 Make_Qualified_Expression
(Loc
,
4560 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
4561 Expression
=> Get_Simple_Init_Val
(T
, N
)));
4563 Analyze_And_Resolve
(Expression
(Expression
(N
)), T
);
4564 Analyze_And_Resolve
(Expression
(N
), T
);
4565 Set_Paren_Count
(Expression
(Expression
(N
)), 1);
4566 Expand_N_Allocator
(N
);
4568 -- No initialization required
4574 -- Case of initialization procedure present, must be called
4577 Check_Restriction
(No_Default_Initialization
, N
);
4579 if not Restriction_Active
(No_Default_Initialization
) then
4580 Init
:= Base_Init_Proc
(T
);
4582 Temp
:= Make_Temporary
(Loc
, 'P');
4584 -- Construct argument list for the initialization routine call
4587 Make_Explicit_Dereference
(Loc
,
4589 New_Occurrence_Of
(Temp
, Loc
));
4591 Set_Assignment_OK
(Init_Arg1
);
4594 -- The initialization procedure expects a specific type. if the
4595 -- context is access to class wide, indicate that the object
4596 -- being allocated has the right specific type.
4598 if Is_Class_Wide_Type
(Dtyp
) then
4599 Init_Arg1
:= Unchecked_Convert_To
(T
, Init_Arg1
);
4602 -- If designated type is a concurrent type or if it is private
4603 -- type whose definition is a concurrent type, the first
4604 -- argument in the Init routine has to be unchecked conversion
4605 -- to the corresponding record type. If the designated type is
4606 -- a derived type, also convert the argument to its root type.
4608 if Is_Concurrent_Type
(T
) then
4610 Unchecked_Convert_To
(
4611 Corresponding_Record_Type
(T
), Init_Arg1
);
4613 elsif Is_Private_Type
(T
)
4614 and then Present
(Full_View
(T
))
4615 and then Is_Concurrent_Type
(Full_View
(T
))
4618 Unchecked_Convert_To
4619 (Corresponding_Record_Type
(Full_View
(T
)), Init_Arg1
);
4621 elsif Etype
(First_Formal
(Init
)) /= Base_Type
(T
) then
4623 Ftyp
: constant Entity_Id
:= Etype
(First_Formal
(Init
));
4626 Init_Arg1
:= OK_Convert_To
(Etype
(Ftyp
), Init_Arg1
);
4627 Set_Etype
(Init_Arg1
, Ftyp
);
4631 Args
:= New_List
(Init_Arg1
);
4633 -- For the task case, pass the Master_Id of the access type as
4634 -- the value of the _Master parameter, and _Chain as the value
4635 -- of the _Chain parameter (_Chain will be defined as part of
4636 -- the generated code for the allocator).
4638 -- In Ada 2005, the context may be a function that returns an
4639 -- anonymous access type. In that case the Master_Id has been
4640 -- created when expanding the function declaration.
4642 if Has_Task
(T
) then
4643 if No
(Master_Id
(Base_Type
(PtrT
))) then
4645 -- The designated type was an incomplete type, and the
4646 -- access type did not get expanded. Salvage it now.
4648 if not Restriction_Active
(No_Task_Hierarchy
) then
4649 if Present
(Parent
(Base_Type
(PtrT
))) then
4650 Expand_N_Full_Type_Declaration
4651 (Parent
(Base_Type
(PtrT
)));
4653 -- The only other possibility is an itype. For this
4654 -- case, the master must exist in the context. This is
4655 -- the case when the allocator initializes an access
4656 -- component in an init-proc.
4659 pragma Assert
(Is_Itype
(PtrT
));
4660 Build_Master_Renaming
(PtrT
, N
);
4665 -- If the context of the allocator is a declaration or an
4666 -- assignment, we can generate a meaningful image for it,
4667 -- even though subsequent assignments might remove the
4668 -- connection between task and entity. We build this image
4669 -- when the left-hand side is a simple variable, a simple
4670 -- indexed assignment or a simple selected component.
4672 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
4674 Nam
: constant Node_Id
:= Name
(Parent
(N
));
4677 if Is_Entity_Name
(Nam
) then
4679 Build_Task_Image_Decls
4682 (Entity
(Nam
), Sloc
(Nam
)), T
);
4684 elsif Nkind_In
(Nam
, N_Indexed_Component
,
4685 N_Selected_Component
)
4686 and then Is_Entity_Name
(Prefix
(Nam
))
4689 Build_Task_Image_Decls
4690 (Loc
, Nam
, Etype
(Prefix
(Nam
)));
4692 Decls
:= Build_Task_Image_Decls
(Loc
, T
, T
);
4696 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
then
4698 Build_Task_Image_Decls
4699 (Loc
, Defining_Identifier
(Parent
(N
)), T
);
4702 Decls
:= Build_Task_Image_Decls
(Loc
, T
, T
);
4705 if Restriction_Active
(No_Task_Hierarchy
) then
4707 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
4711 (Master_Id
(Base_Type
(Root_Type
(PtrT
))), Loc
));
4714 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
4716 Decl
:= Last
(Decls
);
4718 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
4720 -- Has_Task is false, Decls not used
4726 -- Add discriminants if discriminated type
4729 Dis
: Boolean := False;
4733 if Has_Discriminants
(T
) then
4737 elsif Is_Private_Type
(T
)
4738 and then Present
(Full_View
(T
))
4739 and then Has_Discriminants
(Full_View
(T
))
4742 Typ
:= Full_View
(T
);
4747 -- If the allocated object will be constrained by the
4748 -- default values for discriminants, then build a subtype
4749 -- with those defaults, and change the allocated subtype
4750 -- to that. Note that this happens in fewer cases in Ada
4753 if not Is_Constrained
(Typ
)
4754 and then Present
(Discriminant_Default_Value
4755 (First_Discriminant
(Typ
)))
4756 and then (Ada_Version
< Ada_2005
4758 Object_Type_Has_Constrained_Partial_View
4759 (Typ
, Current_Scope
))
4761 Typ
:= Build_Default_Subtype
(Typ
, N
);
4762 Set_Expression
(N
, New_Occurrence_Of
(Typ
, Loc
));
4765 Discr
:= First_Elmt
(Discriminant_Constraint
(Typ
));
4766 while Present
(Discr
) loop
4767 Nod
:= Node
(Discr
);
4768 Append
(New_Copy_Tree
(Node
(Discr
)), Args
);
4770 -- AI-416: when the discriminant constraint is an
4771 -- anonymous access type make sure an accessibility
4772 -- check is inserted if necessary (3.10.2(22.q/2))
4774 if Ada_Version
>= Ada_2005
4776 Ekind
(Etype
(Nod
)) = E_Anonymous_Access_Type
4778 Apply_Accessibility_Check
4779 (Nod
, Typ
, Insert_Node
=> Nod
);
4787 -- We set the allocator as analyzed so that when we analyze
4788 -- the if expression node, we do not get an unwanted recursive
4789 -- expansion of the allocator expression.
4791 Set_Analyzed
(N
, True);
4792 Nod
:= Relocate_Node
(N
);
4794 -- Here is the transformation:
4795 -- input: new Ctrl_Typ
4796 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
4797 -- Ctrl_TypIP (Temp.all, ...);
4798 -- [Deep_]Initialize (Temp.all);
4800 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
4801 -- is the subtype of the allocator.
4804 Make_Object_Declaration
(Loc
,
4805 Defining_Identifier
=> Temp
,
4806 Constant_Present
=> True,
4807 Object_Definition
=> New_Occurrence_Of
(Temp_Type
, Loc
),
4810 Set_Assignment_OK
(Temp_Decl
);
4811 Insert_Action
(N
, Temp_Decl
, Suppress
=> All_Checks
);
4813 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
4815 -- If the designated type is a task type or contains tasks,
4816 -- create block to activate created tasks, and insert
4817 -- declaration for Task_Image variable ahead of call.
4819 if Has_Task
(T
) then
4821 L
: constant List_Id
:= New_List
;
4824 Build_Task_Allocate_Block
(L
, Nod
, Args
);
4826 Insert_List_Before
(First
(Declarations
(Blk
)), Decls
);
4827 Insert_Actions
(N
, L
);
4832 Make_Procedure_Call_Statement
(Loc
,
4833 Name
=> New_Occurrence_Of
(Init
, Loc
),
4834 Parameter_Associations
=> Args
));
4837 if Needs_Finalization
(T
) then
4840 -- [Deep_]Initialize (Init_Arg1);
4844 (Obj_Ref
=> New_Copy_Tree
(Init_Arg1
),
4847 -- Special processing for .NET/JVM, the allocated object is
4848 -- attached to the finalization master. Generate:
4850 -- Attach (<PtrT>FM, Root_Controlled_Ptr (Init_Arg1));
4852 -- Types derived from [Limited_]Controlled are the only ones
4853 -- considered since they have fields Prev and Next.
4855 if VM_Target
/= No_VM
4856 and then Is_Controlled
(T
)
4857 and then Present
(Finalization_Master
(PtrT
))
4861 (Obj_Ref
=> New_Copy_Tree
(Init_Arg1
),
4866 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
4867 Analyze_And_Resolve
(N
, PtrT
);
4872 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
4873 -- object that has been rewritten as a reference, we displace "this"
4874 -- to reference properly its secondary dispatch table.
4876 if Nkind
(N
) = N_Identifier
and then Is_Interface
(Dtyp
) then
4877 Displace_Allocator_Pointer
(N
);
4881 when RE_Not_Available
=>
4883 end Expand_N_Allocator
;
4885 -----------------------
4886 -- Expand_N_And_Then --
4887 -----------------------
4889 procedure Expand_N_And_Then
(N
: Node_Id
)
4890 renames Expand_Short_Circuit_Operator
;
4892 ------------------------------
4893 -- Expand_N_Case_Expression --
4894 ------------------------------
4896 procedure Expand_N_Case_Expression
(N
: Node_Id
) is
4897 Loc
: constant Source_Ptr
:= Sloc
(N
);
4898 Typ
: constant Entity_Id
:= Etype
(N
);
4909 -- Check for MINIMIZED/ELIMINATED overflow mode
4911 if Minimized_Eliminated_Overflow_Check
(N
) then
4912 Apply_Arithmetic_Overflow_Check
(N
);
4916 -- If the case expression is a predicate specification, do not
4917 -- expand, because it will be converted to the proper predicate
4918 -- form when building the predicate function.
4920 if Ekind_In
(Current_Scope
, E_Function
, E_Procedure
)
4921 and then Is_Predicate_Function
(Current_Scope
)
4928 -- case X is when A => AX, when B => BX ...
4943 -- However, this expansion is wrong for limited types, and also
4944 -- wrong for unconstrained types (since the bounds may not be the
4945 -- same in all branches). Furthermore it involves an extra copy
4946 -- for large objects. So we take care of this by using the following
4947 -- modified expansion for non-elementary types:
4950 -- type Pnn is access all typ;
4954 -- T := AX'Unrestricted_Access;
4956 -- T := BX'Unrestricted_Access;
4962 Make_Case_Statement
(Loc
,
4963 Expression
=> Expression
(N
),
4964 Alternatives
=> New_List
);
4966 -- Preserve the original context for which the case statement is being
4967 -- generated. This is needed by the finalization machinery to prevent
4968 -- the premature finalization of controlled objects found within the
4971 Set_From_Conditional_Expression
(Cstmt
);
4973 Actions
:= New_List
;
4977 if Is_Elementary_Type
(Typ
) then
4981 Pnn
:= Make_Temporary
(Loc
, 'P');
4983 Make_Full_Type_Declaration
(Loc
,
4984 Defining_Identifier
=> Pnn
,
4986 Make_Access_To_Object_Definition
(Loc
,
4987 All_Present
=> True,
4988 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))));
4992 Tnn
:= Make_Temporary
(Loc
, 'T');
4994 -- Create declaration for target of expression, and indicate that it
4995 -- does not require initialization.
4998 Make_Object_Declaration
(Loc
,
4999 Defining_Identifier
=> Tnn
,
5000 Object_Definition
=> New_Occurrence_Of
(Ttyp
, Loc
));
5001 Set_No_Initialization
(Decl
);
5002 Append_To
(Actions
, Decl
);
5004 -- Now process the alternatives
5006 Alt
:= First
(Alternatives
(N
));
5007 while Present
(Alt
) loop
5009 Aexp
: Node_Id
:= Expression
(Alt
);
5010 Aloc
: constant Source_Ptr
:= Sloc
(Aexp
);
5014 -- As described above, take Unrestricted_Access for case of non-
5015 -- scalar types, to avoid big copies, and special cases.
5017 if not Is_Elementary_Type
(Typ
) then
5019 Make_Attribute_Reference
(Aloc
,
5020 Prefix
=> Relocate_Node
(Aexp
),
5021 Attribute_Name
=> Name_Unrestricted_Access
);
5025 Make_Assignment_Statement
(Aloc
,
5026 Name
=> New_Occurrence_Of
(Tnn
, Loc
),
5027 Expression
=> Aexp
));
5029 -- Propagate declarations inserted in the node by Insert_Actions
5030 -- (for example, temporaries generated to remove side effects).
5031 -- These actions must remain attached to the alternative, given
5032 -- that they are generated by the corresponding expression.
5034 if Present
(Sinfo
.Actions
(Alt
)) then
5035 Prepend_List
(Sinfo
.Actions
(Alt
), Stats
);
5039 (Alternatives
(Cstmt
),
5040 Make_Case_Statement_Alternative
(Sloc
(Alt
),
5041 Discrete_Choices
=> Discrete_Choices
(Alt
),
5042 Statements
=> Stats
));
5048 Append_To
(Actions
, Cstmt
);
5050 -- Construct and return final expression with actions
5052 if Is_Elementary_Type
(Typ
) then
5053 Fexp
:= New_Occurrence_Of
(Tnn
, Loc
);
5056 Make_Explicit_Dereference
(Loc
,
5057 Prefix
=> New_Occurrence_Of
(Tnn
, Loc
));
5061 Make_Expression_With_Actions
(Loc
,
5063 Actions
=> Actions
));
5065 Analyze_And_Resolve
(N
, Typ
);
5066 end Expand_N_Case_Expression
;
5068 -----------------------------------
5069 -- Expand_N_Explicit_Dereference --
5070 -----------------------------------
5072 procedure Expand_N_Explicit_Dereference
(N
: Node_Id
) is
5074 -- Insert explicit dereference call for the checked storage pool case
5076 Insert_Dereference_Action
(Prefix
(N
));
5078 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5079 -- we set the atomic sync flag.
5081 if Is_Atomic
(Etype
(N
))
5082 and then not Atomic_Synchronization_Disabled
(Etype
(N
))
5084 Activate_Atomic_Synchronization
(N
);
5086 end Expand_N_Explicit_Dereference
;
5088 --------------------------------------
5089 -- Expand_N_Expression_With_Actions --
5090 --------------------------------------
5092 procedure Expand_N_Expression_With_Actions
(N
: Node_Id
) is
5094 function Process_Action
(Act
: Node_Id
) return Traverse_Result
;
5095 -- Inspect and process a single action of an expression_with_actions for
5096 -- transient controlled objects. If such objects are found, the routine
5097 -- generates code to clean them up when the context of the expression is
5098 -- evaluated or elaborated.
5100 --------------------
5101 -- Process_Action --
5102 --------------------
5104 function Process_Action
(Act
: Node_Id
) return Traverse_Result
is
5106 if Nkind
(Act
) = N_Object_Declaration
5107 and then Is_Finalizable_Transient
(Act
, N
)
5109 Process_Transient_Object
(Act
, N
);
5112 -- Avoid processing temporary function results multiple times when
5113 -- dealing with nested expression_with_actions.
5115 elsif Nkind
(Act
) = N_Expression_With_Actions
then
5118 -- Do not process temporary function results in loops. This is done
5119 -- by Expand_N_Loop_Statement and Build_Finalizer.
5121 elsif Nkind
(Act
) = N_Loop_Statement
then
5128 procedure Process_Single_Action
is new Traverse_Proc
(Process_Action
);
5134 -- Start of processing for Expand_N_Expression_With_Actions
5137 -- Process the actions as described above
5139 Act
:= First
(Actions
(N
));
5140 while Present
(Act
) loop
5141 Process_Single_Action
(Act
);
5145 -- Deal with case where there are no actions. In this case we simply
5146 -- rewrite the node with its expression since we don't need the actions
5147 -- and the specification of this node does not allow a null action list.
5149 -- Note: we use Rewrite instead of Replace, because Codepeer is using
5150 -- the expanded tree and relying on being able to retrieve the original
5151 -- tree in cases like this. This raises a whole lot of issues of whether
5152 -- we have problems elsewhere, which will be addressed in the future???
5154 if Is_Empty_List
(Actions
(N
)) then
5155 Rewrite
(N
, Relocate_Node
(Expression
(N
)));
5157 end Expand_N_Expression_With_Actions
;
5159 ----------------------------
5160 -- Expand_N_If_Expression --
5161 ----------------------------
5163 -- Deal with limited types and condition actions
5165 procedure Expand_N_If_Expression
(N
: Node_Id
) is
5166 procedure Process_Actions
(Actions
: List_Id
);
5167 -- Inspect and process a single action list of an if expression for
5168 -- transient controlled objects. If such objects are found, the routine
5169 -- generates code to clean them up when the context of the expression is
5170 -- evaluated or elaborated.
5172 ---------------------
5173 -- Process_Actions --
5174 ---------------------
5176 procedure Process_Actions
(Actions
: List_Id
) is
5180 Act
:= First
(Actions
);
5181 while Present
(Act
) loop
5182 if Nkind
(Act
) = N_Object_Declaration
5183 and then Is_Finalizable_Transient
(Act
, N
)
5185 Process_Transient_Object
(Act
, N
);
5190 end Process_Actions
;
5194 Loc
: constant Source_Ptr
:= Sloc
(N
);
5195 Cond
: constant Node_Id
:= First
(Expressions
(N
));
5196 Thenx
: constant Node_Id
:= Next
(Cond
);
5197 Elsex
: constant Node_Id
:= Next
(Thenx
);
5198 Typ
: constant Entity_Id
:= Etype
(N
);
5206 Ptr_Typ
: Entity_Id
;
5208 -- Start of processing for Expand_N_If_Expression
5211 -- Check for MINIMIZED/ELIMINATED overflow mode
5213 if Minimized_Eliminated_Overflow_Check
(N
) then
5214 Apply_Arithmetic_Overflow_Check
(N
);
5218 -- Fold at compile time if condition known. We have already folded
5219 -- static if expressions, but it is possible to fold any case in which
5220 -- the condition is known at compile time, even though the result is
5223 -- Note that we don't do the fold of such cases in Sem_Elab because
5224 -- it can cause infinite loops with the expander adding a conditional
5225 -- expression, and Sem_Elab circuitry removing it repeatedly.
5227 if Compile_Time_Known_Value
(Cond
) then
5228 if Is_True
(Expr_Value
(Cond
)) then
5230 Actions
:= Then_Actions
(N
);
5233 Actions
:= Else_Actions
(N
);
5238 if Present
(Actions
) then
5240 Make_Expression_With_Actions
(Loc
,
5241 Expression
=> Relocate_Node
(Expr
),
5242 Actions
=> Actions
));
5243 Analyze_And_Resolve
(N
, Typ
);
5245 Rewrite
(N
, Relocate_Node
(Expr
));
5248 -- Note that the result is never static (legitimate cases of static
5249 -- if expressions were folded in Sem_Eval).
5251 Set_Is_Static_Expression
(N
, False);
5255 -- If the type is limited, and the back end does not handle limited
5256 -- types, then we expand as follows to avoid the possibility of
5257 -- improper copying.
5259 -- type Ptr is access all Typ;
5263 -- Cnn := then-expr'Unrestricted_Access;
5266 -- Cnn := else-expr'Unrestricted_Access;
5269 -- and replace the if expression by a reference to Cnn.all.
5271 -- This special case can be skipped if the back end handles limited
5272 -- types properly and ensures that no incorrect copies are made.
5274 if Is_By_Reference_Type
(Typ
)
5275 and then not Back_End_Handles_Limited_Types
5277 -- When the "then" or "else" expressions involve controlled function
5278 -- calls, generated temporaries are chained on the corresponding list
5279 -- of actions. These temporaries need to be finalized after the if
5280 -- expression is evaluated.
5282 Process_Actions
(Then_Actions
(N
));
5283 Process_Actions
(Else_Actions
(N
));
5286 -- type Ann is access all Typ;
5288 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
5291 Make_Full_Type_Declaration
(Loc
,
5292 Defining_Identifier
=> Ptr_Typ
,
5294 Make_Access_To_Object_Definition
(Loc
,
5295 All_Present
=> True,
5296 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))));
5301 Cnn
:= Make_Temporary
(Loc
, 'C', N
);
5304 Make_Object_Declaration
(Loc
,
5305 Defining_Identifier
=> Cnn
,
5306 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
));
5310 -- Cnn := <Thenx>'Unrestricted_Access;
5312 -- Cnn := <Elsex>'Unrestricted_Access;
5316 Make_Implicit_If_Statement
(N
,
5317 Condition
=> Relocate_Node
(Cond
),
5318 Then_Statements
=> New_List
(
5319 Make_Assignment_Statement
(Sloc
(Thenx
),
5320 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Thenx
)),
5322 Make_Attribute_Reference
(Loc
,
5323 Prefix
=> Relocate_Node
(Thenx
),
5324 Attribute_Name
=> Name_Unrestricted_Access
))),
5326 Else_Statements
=> New_List
(
5327 Make_Assignment_Statement
(Sloc
(Elsex
),
5328 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Elsex
)),
5330 Make_Attribute_Reference
(Loc
,
5331 Prefix
=> Relocate_Node
(Elsex
),
5332 Attribute_Name
=> Name_Unrestricted_Access
))));
5334 -- Preserve the original context for which the if statement is being
5335 -- generated. This is needed by the finalization machinery to prevent
5336 -- the premature finalization of controlled objects found within the
5339 Set_From_Conditional_Expression
(New_If
);
5342 Make_Explicit_Dereference
(Loc
,
5343 Prefix
=> New_Occurrence_Of
(Cnn
, Loc
));
5345 -- If the result is an unconstrained array and the if expression is in a
5346 -- context other than the initializing expression of the declaration of
5347 -- an object, then we pull out the if expression as follows:
5349 -- Cnn : constant typ := if-expression
5351 -- and then replace the if expression with an occurrence of Cnn. This
5352 -- avoids the need in the back end to create on-the-fly variable length
5353 -- temporaries (which it cannot do!)
5355 -- Note that the test for being in an object declaration avoids doing an
5356 -- unnecessary expansion, and also avoids infinite recursion.
5358 elsif Is_Array_Type
(Typ
) and then not Is_Constrained
(Typ
)
5359 and then (Nkind
(Parent
(N
)) /= N_Object_Declaration
5360 or else Expression
(Parent
(N
)) /= N
)
5363 Cnn
: constant Node_Id
:= Make_Temporary
(Loc
, 'C', N
);
5366 Make_Object_Declaration
(Loc
,
5367 Defining_Identifier
=> Cnn
,
5368 Constant_Present
=> True,
5369 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
5370 Expression
=> Relocate_Node
(N
),
5371 Has_Init_Expression
=> True));
5373 Rewrite
(N
, New_Occurrence_Of
(Cnn
, Loc
));
5377 -- For other types, we only need to expand if there are other actions
5378 -- associated with either branch.
5380 elsif Present
(Then_Actions
(N
)) or else Present
(Else_Actions
(N
)) then
5382 -- We now wrap the actions into the appropriate expression
5384 if Present
(Then_Actions
(N
)) then
5386 Make_Expression_With_Actions
(Sloc
(Thenx
),
5387 Actions
=> Then_Actions
(N
),
5388 Expression
=> Relocate_Node
(Thenx
)));
5390 Set_Then_Actions
(N
, No_List
);
5391 Analyze_And_Resolve
(Thenx
, Typ
);
5394 if Present
(Else_Actions
(N
)) then
5396 Make_Expression_With_Actions
(Sloc
(Elsex
),
5397 Actions
=> Else_Actions
(N
),
5398 Expression
=> Relocate_Node
(Elsex
)));
5400 Set_Else_Actions
(N
, No_List
);
5401 Analyze_And_Resolve
(Elsex
, Typ
);
5406 -- If no actions then no expansion needed, gigi will handle it using the
5407 -- same approach as a C conditional expression.
5413 -- Fall through here for either the limited expansion, or the case of
5414 -- inserting actions for non-limited types. In both these cases, we must
5415 -- move the SLOC of the parent If statement to the newly created one and
5416 -- change it to the SLOC of the expression which, after expansion, will
5417 -- correspond to what is being evaluated.
5419 if Present
(Parent
(N
)) and then Nkind
(Parent
(N
)) = N_If_Statement
then
5420 Set_Sloc
(New_If
, Sloc
(Parent
(N
)));
5421 Set_Sloc
(Parent
(N
), Loc
);
5424 -- Make sure Then_Actions and Else_Actions are appropriately moved
5425 -- to the new if statement.
5427 if Present
(Then_Actions
(N
)) then
5429 (First
(Then_Statements
(New_If
)), Then_Actions
(N
));
5432 if Present
(Else_Actions
(N
)) then
5434 (First
(Else_Statements
(New_If
)), Else_Actions
(N
));
5437 Insert_Action
(N
, Decl
);
5438 Insert_Action
(N
, New_If
);
5440 Analyze_And_Resolve
(N
, Typ
);
5441 end Expand_N_If_Expression
;
5447 procedure Expand_N_In
(N
: Node_Id
) is
5448 Loc
: constant Source_Ptr
:= Sloc
(N
);
5449 Restyp
: constant Entity_Id
:= Etype
(N
);
5450 Lop
: constant Node_Id
:= Left_Opnd
(N
);
5451 Rop
: constant Node_Id
:= Right_Opnd
(N
);
5452 Static
: constant Boolean := Is_OK_Static_Expression
(N
);
5457 procedure Substitute_Valid_Check
;
5458 -- Replaces node N by Lop'Valid. This is done when we have an explicit
5459 -- test for the left operand being in range of its subtype.
5461 ----------------------------
5462 -- Substitute_Valid_Check --
5463 ----------------------------
5465 procedure Substitute_Valid_Check
is
5468 Make_Attribute_Reference
(Loc
,
5469 Prefix
=> Relocate_Node
(Lop
),
5470 Attribute_Name
=> Name_Valid
));
5472 Analyze_And_Resolve
(N
, Restyp
);
5474 -- Give warning unless overflow checking is MINIMIZED or ELIMINATED,
5475 -- in which case, this usage makes sense, and in any case, we have
5476 -- actually eliminated the danger of optimization above.
5478 if Overflow_Check_Mode
not in Minimized_Or_Eliminated
then
5480 ("??explicit membership test may be optimized away", N
);
5481 Error_Msg_N
-- CODEFIX
5482 ("\??use ''Valid attribute instead", N
);
5486 end Substitute_Valid_Check
;
5488 -- Start of processing for Expand_N_In
5491 -- If set membership case, expand with separate procedure
5493 if Present
(Alternatives
(N
)) then
5494 Expand_Set_Membership
(N
);
5498 -- Not set membership, proceed with expansion
5500 Ltyp
:= Etype
(Left_Opnd
(N
));
5501 Rtyp
:= Etype
(Right_Opnd
(N
));
5503 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
5504 -- type, then expand with a separate procedure. Note the use of the
5505 -- flag No_Minimize_Eliminate to prevent infinite recursion.
5507 if Overflow_Check_Mode
in Minimized_Or_Eliminated
5508 and then Is_Signed_Integer_Type
(Ltyp
)
5509 and then not No_Minimize_Eliminate
(N
)
5511 Expand_Membership_Minimize_Eliminate_Overflow
(N
);
5515 -- Check case of explicit test for an expression in range of its
5516 -- subtype. This is suspicious usage and we replace it with a 'Valid
5517 -- test and give a warning for scalar types.
5519 if Is_Scalar_Type
(Ltyp
)
5521 -- Only relevant for source comparisons
5523 and then Comes_From_Source
(N
)
5525 -- In floating-point this is a standard way to check for finite values
5526 -- and using 'Valid would typically be a pessimization.
5528 and then not Is_Floating_Point_Type
(Ltyp
)
5530 -- Don't give the message unless right operand is a type entity and
5531 -- the type of the left operand matches this type. Note that this
5532 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
5533 -- checks have changed the type of the left operand.
5535 and then Nkind
(Rop
) in N_Has_Entity
5536 and then Ltyp
= Entity
(Rop
)
5538 -- Skip in VM mode, where we have no sense of invalid values. The
5539 -- warning still seems relevant, but not important enough to worry.
5541 and then VM_Target
= No_VM
5543 -- Skip this for predicated types, where such expressions are a
5544 -- reasonable way of testing if something meets the predicate.
5546 and then not Present
(Predicate_Function
(Ltyp
))
5548 Substitute_Valid_Check
;
5552 -- Do validity check on operands
5554 if Validity_Checks_On
and Validity_Check_Operands
then
5555 Ensure_Valid
(Left_Opnd
(N
));
5556 Validity_Check_Range
(Right_Opnd
(N
));
5559 -- Case of explicit range
5561 if Nkind
(Rop
) = N_Range
then
5563 Lo
: constant Node_Id
:= Low_Bound
(Rop
);
5564 Hi
: constant Node_Id
:= High_Bound
(Rop
);
5566 Lo_Orig
: constant Node_Id
:= Original_Node
(Lo
);
5567 Hi_Orig
: constant Node_Id
:= Original_Node
(Hi
);
5569 Lcheck
: Compare_Result
;
5570 Ucheck
: Compare_Result
;
5572 Warn1
: constant Boolean :=
5573 Constant_Condition_Warnings
5574 and then Comes_From_Source
(N
)
5575 and then not In_Instance
;
5576 -- This must be true for any of the optimization warnings, we
5577 -- clearly want to give them only for source with the flag on. We
5578 -- also skip these warnings in an instance since it may be the
5579 -- case that different instantiations have different ranges.
5581 Warn2
: constant Boolean :=
5583 and then Nkind
(Original_Node
(Rop
)) = N_Range
5584 and then Is_Integer_Type
(Etype
(Lo
));
5585 -- For the case where only one bound warning is elided, we also
5586 -- insist on an explicit range and an integer type. The reason is
5587 -- that the use of enumeration ranges including an end point is
5588 -- common, as is the use of a subtype name, one of whose bounds is
5589 -- the same as the type of the expression.
5592 -- If test is explicit x'First .. x'Last, replace by valid check
5594 -- Could use some individual comments for this complex test ???
5596 if Is_Scalar_Type
(Ltyp
)
5598 -- And left operand is X'First where X matches left operand
5599 -- type (this eliminates cases of type mismatch, including
5600 -- the cases where ELIMINATED/MINIMIZED mode has changed the
5601 -- type of the left operand.
5603 and then Nkind
(Lo_Orig
) = N_Attribute_Reference
5604 and then Attribute_Name
(Lo_Orig
) = Name_First
5605 and then Nkind
(Prefix
(Lo_Orig
)) in N_Has_Entity
5606 and then Entity
(Prefix
(Lo_Orig
)) = Ltyp
5608 -- Same tests for right operand
5610 and then Nkind
(Hi_Orig
) = N_Attribute_Reference
5611 and then Attribute_Name
(Hi_Orig
) = Name_Last
5612 and then Nkind
(Prefix
(Hi_Orig
)) in N_Has_Entity
5613 and then Entity
(Prefix
(Hi_Orig
)) = Ltyp
5615 -- Relevant only for source cases
5617 and then Comes_From_Source
(N
)
5619 -- Omit for VM cases, where we don't have invalid values
5621 and then VM_Target
= No_VM
5623 Substitute_Valid_Check
;
5627 -- If bounds of type are known at compile time, and the end points
5628 -- are known at compile time and identical, this is another case
5629 -- for substituting a valid test. We only do this for discrete
5630 -- types, since it won't arise in practice for float types.
5632 if Comes_From_Source
(N
)
5633 and then Is_Discrete_Type
(Ltyp
)
5634 and then Compile_Time_Known_Value
(Type_High_Bound
(Ltyp
))
5635 and then Compile_Time_Known_Value
(Type_Low_Bound
(Ltyp
))
5636 and then Compile_Time_Known_Value
(Lo
)
5637 and then Compile_Time_Known_Value
(Hi
)
5638 and then Expr_Value
(Type_High_Bound
(Ltyp
)) = Expr_Value
(Hi
)
5639 and then Expr_Value
(Type_Low_Bound
(Ltyp
)) = Expr_Value
(Lo
)
5641 -- Kill warnings in instances, since they may be cases where we
5642 -- have a test in the generic that makes sense with some types
5643 -- and not with other types.
5645 and then not In_Instance
5647 Substitute_Valid_Check
;
5651 -- If we have an explicit range, do a bit of optimization based on
5652 -- range analysis (we may be able to kill one or both checks).
5654 Lcheck
:= Compile_Time_Compare
(Lop
, Lo
, Assume_Valid
=> False);
5655 Ucheck
:= Compile_Time_Compare
(Lop
, Hi
, Assume_Valid
=> False);
5657 -- If either check is known to fail, replace result by False since
5658 -- the other check does not matter. Preserve the static flag for
5659 -- legality checks, because we are constant-folding beyond RM 4.9.
5661 if Lcheck
= LT
or else Ucheck
= GT
then
5663 Error_Msg_N
("?c?range test optimized away", N
);
5664 Error_Msg_N
("\?c?value is known to be out of range", N
);
5667 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
5668 Analyze_And_Resolve
(N
, Restyp
);
5669 Set_Is_Static_Expression
(N
, Static
);
5672 -- If both checks are known to succeed, replace result by True,
5673 -- since we know we are in range.
5675 elsif Lcheck
in Compare_GE
and then Ucheck
in Compare_LE
then
5677 Error_Msg_N
("?c?range test optimized away", N
);
5678 Error_Msg_N
("\?c?value is known to be in range", N
);
5681 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
5682 Analyze_And_Resolve
(N
, Restyp
);
5683 Set_Is_Static_Expression
(N
, Static
);
5686 -- If lower bound check succeeds and upper bound check is not
5687 -- known to succeed or fail, then replace the range check with
5688 -- a comparison against the upper bound.
5690 elsif Lcheck
in Compare_GE
then
5691 if Warn2
and then not In_Instance
then
5692 Error_Msg_N
("??lower bound test optimized away", Lo
);
5693 Error_Msg_N
("\??value is known to be in range", Lo
);
5699 Right_Opnd
=> High_Bound
(Rop
)));
5700 Analyze_And_Resolve
(N
, Restyp
);
5703 -- If upper bound check succeeds and lower bound check is not
5704 -- known to succeed or fail, then replace the range check with
5705 -- a comparison against the lower bound.
5707 elsif Ucheck
in Compare_LE
then
5708 if Warn2
and then not In_Instance
then
5709 Error_Msg_N
("??upper bound test optimized away", Hi
);
5710 Error_Msg_N
("\??value is known to be in range", Hi
);
5716 Right_Opnd
=> Low_Bound
(Rop
)));
5717 Analyze_And_Resolve
(N
, Restyp
);
5721 -- We couldn't optimize away the range check, but there is one
5722 -- more issue. If we are checking constant conditionals, then we
5723 -- see if we can determine the outcome assuming everything is
5724 -- valid, and if so give an appropriate warning.
5726 if Warn1
and then not Assume_No_Invalid_Values
then
5727 Lcheck
:= Compile_Time_Compare
(Lop
, Lo
, Assume_Valid
=> True);
5728 Ucheck
:= Compile_Time_Compare
(Lop
, Hi
, Assume_Valid
=> True);
5730 -- Result is out of range for valid value
5732 if Lcheck
= LT
or else Ucheck
= GT
then
5734 ("?c?value can only be in range if it is invalid", N
);
5736 -- Result is in range for valid value
5738 elsif Lcheck
in Compare_GE
and then Ucheck
in Compare_LE
then
5740 ("?c?value can only be out of range if it is invalid", N
);
5742 -- Lower bound check succeeds if value is valid
5744 elsif Warn2
and then Lcheck
in Compare_GE
then
5746 ("?c?lower bound check only fails if it is invalid", Lo
);
5748 -- Upper bound check succeeds if value is valid
5750 elsif Warn2
and then Ucheck
in Compare_LE
then
5752 ("?c?upper bound check only fails for invalid values", Hi
);
5757 -- For all other cases of an explicit range, nothing to be done
5761 -- Here right operand is a subtype mark
5765 Typ
: Entity_Id
:= Etype
(Rop
);
5766 Is_Acc
: constant Boolean := Is_Access_Type
(Typ
);
5767 Cond
: Node_Id
:= Empty
;
5769 Obj
: Node_Id
:= Lop
;
5770 SCIL_Node
: Node_Id
;
5773 Remove_Side_Effects
(Obj
);
5775 -- For tagged type, do tagged membership operation
5777 if Is_Tagged_Type
(Typ
) then
5779 -- No expansion will be performed when VM_Target, as the VM
5780 -- back-ends will handle the membership tests directly (tags
5781 -- are not explicitly represented in Java objects, so the
5782 -- normal tagged membership expansion is not what we want).
5784 if Tagged_Type_Expansion
then
5785 Tagged_Membership
(N
, SCIL_Node
, New_N
);
5787 Analyze_And_Resolve
(N
, Restyp
);
5789 -- Update decoration of relocated node referenced by the
5792 if Generate_SCIL
and then Present
(SCIL_Node
) then
5793 Set_SCIL_Node
(N
, SCIL_Node
);
5799 -- If type is scalar type, rewrite as x in t'First .. t'Last.
5800 -- This reason we do this is that the bounds may have the wrong
5801 -- type if they come from the original type definition. Also this
5802 -- way we get all the processing above for an explicit range.
5804 -- Don't do this for predicated types, since in this case we
5805 -- want to check the predicate.
5807 elsif Is_Scalar_Type
(Typ
) then
5808 if No
(Predicate_Function
(Typ
)) then
5812 Make_Attribute_Reference
(Loc
,
5813 Attribute_Name
=> Name_First
,
5814 Prefix
=> New_Occurrence_Of
(Typ
, Loc
)),
5817 Make_Attribute_Reference
(Loc
,
5818 Attribute_Name
=> Name_Last
,
5819 Prefix
=> New_Occurrence_Of
(Typ
, Loc
))));
5820 Analyze_And_Resolve
(N
, Restyp
);
5825 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
5826 -- a membership test if the subtype mark denotes a constrained
5827 -- Unchecked_Union subtype and the expression lacks inferable
5830 elsif Is_Unchecked_Union
(Base_Type
(Typ
))
5831 and then Is_Constrained
(Typ
)
5832 and then not Has_Inferable_Discriminants
(Lop
)
5835 Make_Raise_Program_Error
(Loc
,
5836 Reason
=> PE_Unchecked_Union_Restriction
));
5838 -- Prevent Gigi from generating incorrect code by rewriting the
5839 -- test as False. What is this undocumented thing about ???
5841 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
5845 -- Here we have a non-scalar type
5848 Typ
:= Designated_Type
(Typ
);
5851 if not Is_Constrained
(Typ
) then
5852 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
5853 Analyze_And_Resolve
(N
, Restyp
);
5855 -- For the constrained array case, we have to check the subscripts
5856 -- for an exact match if the lengths are non-zero (the lengths
5857 -- must match in any case).
5859 elsif Is_Array_Type
(Typ
) then
5860 Check_Subscripts
: declare
5861 function Build_Attribute_Reference
5864 Dim
: Nat
) return Node_Id
;
5865 -- Build attribute reference E'Nam (Dim)
5867 -------------------------------
5868 -- Build_Attribute_Reference --
5869 -------------------------------
5871 function Build_Attribute_Reference
5874 Dim
: Nat
) return Node_Id
5878 Make_Attribute_Reference
(Loc
,
5880 Attribute_Name
=> Nam
,
5881 Expressions
=> New_List
(
5882 Make_Integer_Literal
(Loc
, Dim
)));
5883 end Build_Attribute_Reference
;
5885 -- Start of processing for Check_Subscripts
5888 for J
in 1 .. Number_Dimensions
(Typ
) loop
5889 Evolve_And_Then
(Cond
,
5892 Build_Attribute_Reference
5893 (Duplicate_Subexpr_No_Checks
(Obj
),
5896 Build_Attribute_Reference
5897 (New_Occurrence_Of
(Typ
, Loc
), Name_First
, J
)));
5899 Evolve_And_Then
(Cond
,
5902 Build_Attribute_Reference
5903 (Duplicate_Subexpr_No_Checks
(Obj
),
5906 Build_Attribute_Reference
5907 (New_Occurrence_Of
(Typ
, Loc
), Name_Last
, J
)));
5916 Right_Opnd
=> Make_Null
(Loc
)),
5917 Right_Opnd
=> Cond
);
5921 Analyze_And_Resolve
(N
, Restyp
);
5922 end Check_Subscripts
;
5924 -- These are the cases where constraint checks may be required,
5925 -- e.g. records with possible discriminants
5928 -- Expand the test into a series of discriminant comparisons.
5929 -- The expression that is built is the negation of the one that
5930 -- is used for checking discriminant constraints.
5932 Obj
:= Relocate_Node
(Left_Opnd
(N
));
5934 if Has_Discriminants
(Typ
) then
5935 Cond
:= Make_Op_Not
(Loc
,
5936 Right_Opnd
=> Build_Discriminant_Checks
(Obj
, Typ
));
5939 Cond
:= Make_Or_Else
(Loc
,
5943 Right_Opnd
=> Make_Null
(Loc
)),
5944 Right_Opnd
=> Cond
);
5948 Cond
:= New_Occurrence_Of
(Standard_True
, Loc
);
5952 Analyze_And_Resolve
(N
, Restyp
);
5955 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
5956 -- expression of an anonymous access type. This can involve an
5957 -- accessibility test and a tagged type membership test in the
5958 -- case of tagged designated types.
5960 if Ada_Version
>= Ada_2012
5962 and then Ekind
(Ltyp
) = E_Anonymous_Access_Type
5965 Expr_Entity
: Entity_Id
:= Empty
;
5967 Param_Level
: Node_Id
;
5968 Type_Level
: Node_Id
;
5971 if Is_Entity_Name
(Lop
) then
5972 Expr_Entity
:= Param_Entity
(Lop
);
5974 if not Present
(Expr_Entity
) then
5975 Expr_Entity
:= Entity
(Lop
);
5979 -- If a conversion of the anonymous access value to the
5980 -- tested type would be illegal, then the result is False.
5982 if not Valid_Conversion
5983 (Lop
, Rtyp
, Lop
, Report_Errs
=> False)
5985 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
5986 Analyze_And_Resolve
(N
, Restyp
);
5988 -- Apply an accessibility check if the access object has an
5989 -- associated access level and when the level of the type is
5990 -- less deep than the level of the access parameter. This
5991 -- only occur for access parameters and stand-alone objects
5992 -- of an anonymous access type.
5995 if Present
(Expr_Entity
)
5998 (Effective_Extra_Accessibility
(Expr_Entity
))
5999 and then UI_Gt
(Object_Access_Level
(Lop
),
6000 Type_Access_Level
(Rtyp
))
6004 (Effective_Extra_Accessibility
(Expr_Entity
), Loc
);
6007 Make_Integer_Literal
(Loc
, Type_Access_Level
(Rtyp
));
6009 -- Return True only if the accessibility level of the
6010 -- expression entity is not deeper than the level of
6011 -- the tested access type.
6015 Left_Opnd
=> Relocate_Node
(N
),
6016 Right_Opnd
=> Make_Op_Le
(Loc
,
6017 Left_Opnd
=> Param_Level
,
6018 Right_Opnd
=> Type_Level
)));
6020 Analyze_And_Resolve
(N
);
6023 -- If the designated type is tagged, do tagged membership
6026 -- *** NOTE: we have to check not null before doing the
6027 -- tagged membership test (but maybe that can be done
6028 -- inside Tagged_Membership?).
6030 if Is_Tagged_Type
(Typ
) then
6033 Left_Opnd
=> Relocate_Node
(N
),
6037 Right_Opnd
=> Make_Null
(Loc
))));
6039 -- No expansion will be performed when VM_Target, as
6040 -- the VM back-ends will handle the membership tests
6041 -- directly (tags are not explicitly represented in
6042 -- Java objects, so the normal tagged membership
6043 -- expansion is not what we want).
6045 if Tagged_Type_Expansion
then
6047 -- Note that we have to pass Original_Node, because
6048 -- the membership test might already have been
6049 -- rewritten by earlier parts of membership test.
6052 (Original_Node
(N
), SCIL_Node
, New_N
);
6054 -- Update decoration of relocated node referenced
6055 -- by the SCIL node.
6057 if Generate_SCIL
and then Present
(SCIL_Node
) then
6058 Set_SCIL_Node
(New_N
, SCIL_Node
);
6063 Left_Opnd
=> Relocate_Node
(N
),
6064 Right_Opnd
=> New_N
));
6066 Analyze_And_Resolve
(N
, Restyp
);
6075 -- At this point, we have done the processing required for the basic
6076 -- membership test, but not yet dealt with the predicate.
6080 -- If a predicate is present, then we do the predicate test, but we
6081 -- most certainly want to omit this if we are within the predicate
6082 -- function itself, since otherwise we have an infinite recursion.
6083 -- The check should also not be emitted when testing against a range
6084 -- (the check is only done when the right operand is a subtype; see
6085 -- RM12-4.5.2 (28.1/3-30/3)).
6088 PFunc
: constant Entity_Id
:= Predicate_Function
(Rtyp
);
6092 and then Current_Scope
/= PFunc
6093 and then Nkind
(Rop
) /= N_Range
6097 Left_Opnd
=> Relocate_Node
(N
),
6098 Right_Opnd
=> Make_Predicate_Call
(Rtyp
, Lop
, Mem
=> True)));
6100 -- Analyze new expression, mark left operand as analyzed to
6101 -- avoid infinite recursion adding predicate calls. Similarly,
6102 -- suppress further range checks on the call.
6104 Set_Analyzed
(Left_Opnd
(N
));
6105 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
6107 -- All done, skip attempt at compile time determination of result
6114 --------------------------------
6115 -- Expand_N_Indexed_Component --
6116 --------------------------------
6118 procedure Expand_N_Indexed_Component
(N
: Node_Id
) is
6119 Loc
: constant Source_Ptr
:= Sloc
(N
);
6120 Typ
: constant Entity_Id
:= Etype
(N
);
6121 P
: constant Node_Id
:= Prefix
(N
);
6122 T
: constant Entity_Id
:= Etype
(P
);
6126 -- A special optimization, if we have an indexed component that is
6127 -- selecting from a slice, then we can eliminate the slice, since, for
6128 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6129 -- the range check required by the slice. The range check for the slice
6130 -- itself has already been generated. The range check for the
6131 -- subscripting operation is ensured by converting the subject to
6132 -- the subtype of the slice.
6134 -- This optimization not only generates better code, avoiding slice
6135 -- messing especially in the packed case, but more importantly bypasses
6136 -- some problems in handling this peculiar case, for example, the issue
6137 -- of dealing specially with object renamings.
6139 if Nkind
(P
) = N_Slice
6141 -- This optimization is disabled for CodePeer because it can transform
6142 -- an index-check constraint_error into a range-check constraint_error
6143 -- and CodePeer cares about that distinction.
6145 and then not CodePeer_Mode
6148 Make_Indexed_Component
(Loc
,
6149 Prefix
=> Prefix
(P
),
6150 Expressions
=> New_List
(
6152 (Etype
(First_Index
(Etype
(P
))),
6153 First
(Expressions
(N
))))));
6154 Analyze_And_Resolve
(N
, Typ
);
6158 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6159 -- function, then additional actuals must be passed.
6161 if Ada_Version
>= Ada_2005
6162 and then Is_Build_In_Place_Function_Call
(P
)
6164 Make_Build_In_Place_Call_In_Anonymous_Context
(P
);
6167 -- If the prefix is an access type, then we unconditionally rewrite if
6168 -- as an explicit dereference. This simplifies processing for several
6169 -- cases, including packed array cases and certain cases in which checks
6170 -- must be generated. We used to try to do this only when it was
6171 -- necessary, but it cleans up the code to do it all the time.
6173 if Is_Access_Type
(T
) then
6174 Insert_Explicit_Dereference
(P
);
6175 Analyze_And_Resolve
(P
, Designated_Type
(T
));
6176 Atp
:= Designated_Type
(T
);
6181 -- Generate index and validity checks
6183 Generate_Index_Checks
(N
);
6185 if Validity_Checks_On
and then Validity_Check_Subscripts
then
6186 Apply_Subscript_Validity_Checks
(N
);
6189 -- If selecting from an array with atomic components, and atomic sync
6190 -- is not suppressed for this array type, set atomic sync flag.
6192 if (Has_Atomic_Components
(Atp
)
6193 and then not Atomic_Synchronization_Disabled
(Atp
))
6194 or else (Is_Atomic
(Typ
)
6195 and then not Atomic_Synchronization_Disabled
(Typ
))
6197 Activate_Atomic_Synchronization
(N
);
6200 -- All done for the non-packed case
6202 if not Is_Packed
(Etype
(Prefix
(N
))) then
6206 -- For packed arrays that are not bit-packed (i.e. the case of an array
6207 -- with one or more index types with a non-contiguous enumeration type),
6208 -- we can always use the normal packed element get circuit.
6210 if not Is_Bit_Packed_Array
(Etype
(Prefix
(N
))) then
6211 Expand_Packed_Element_Reference
(N
);
6215 -- For a reference to a component of a bit packed array, we convert it
6216 -- to a reference to the corresponding Packed_Array_Impl_Type. We only
6217 -- want to do this for simple references, and not for:
6219 -- Left side of assignment, or prefix of left side of assignment, or
6220 -- prefix of the prefix, to handle packed arrays of packed arrays,
6221 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6223 -- Renaming objects in renaming associations
6224 -- This case is handled when a use of the renamed variable occurs
6226 -- Actual parameters for a procedure call
6227 -- This case is handled in Exp_Ch6.Expand_Actuals
6229 -- The second expression in a 'Read attribute reference
6231 -- The prefix of an address or bit or size attribute reference
6233 -- The following circuit detects these exceptions
6236 Child
: Node_Id
:= N
;
6237 Parnt
: Node_Id
:= Parent
(N
);
6241 if Nkind
(Parnt
) = N_Unchecked_Expression
then
6244 elsif Nkind_In
(Parnt
, N_Object_Renaming_Declaration
,
6245 N_Procedure_Call_Statement
)
6246 or else (Nkind
(Parnt
) = N_Parameter_Association
6248 Nkind
(Parent
(Parnt
)) = N_Procedure_Call_Statement
)
6252 elsif Nkind
(Parnt
) = N_Attribute_Reference
6253 and then Nam_In
(Attribute_Name
(Parnt
), Name_Address
,
6256 and then Prefix
(Parnt
) = Child
6260 elsif Nkind
(Parnt
) = N_Assignment_Statement
6261 and then Name
(Parnt
) = Child
6265 -- If the expression is an index of an indexed component, it must
6266 -- be expanded regardless of context.
6268 elsif Nkind
(Parnt
) = N_Indexed_Component
6269 and then Child
/= Prefix
(Parnt
)
6271 Expand_Packed_Element_Reference
(N
);
6274 elsif Nkind
(Parent
(Parnt
)) = N_Assignment_Statement
6275 and then Name
(Parent
(Parnt
)) = Parnt
6279 elsif Nkind
(Parnt
) = N_Attribute_Reference
6280 and then Attribute_Name
(Parnt
) = Name_Read
6281 and then Next
(First
(Expressions
(Parnt
))) = Child
6285 elsif Nkind_In
(Parnt
, N_Indexed_Component
, N_Selected_Component
)
6286 and then Prefix
(Parnt
) = Child
6291 Expand_Packed_Element_Reference
(N
);
6295 -- Keep looking up tree for unchecked expression, or if we are the
6296 -- prefix of a possible assignment left side.
6299 Parnt
:= Parent
(Child
);
6302 end Expand_N_Indexed_Component
;
6304 ---------------------
6305 -- Expand_N_Not_In --
6306 ---------------------
6308 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
6309 -- can be done. This avoids needing to duplicate this expansion code.
6311 procedure Expand_N_Not_In
(N
: Node_Id
) is
6312 Loc
: constant Source_Ptr
:= Sloc
(N
);
6313 Typ
: constant Entity_Id
:= Etype
(N
);
6314 Cfs
: constant Boolean := Comes_From_Source
(N
);
6321 Left_Opnd
=> Left_Opnd
(N
),
6322 Right_Opnd
=> Right_Opnd
(N
))));
6324 -- If this is a set membership, preserve list of alternatives
6326 Set_Alternatives
(Right_Opnd
(N
), Alternatives
(Original_Node
(N
)));
6328 -- We want this to appear as coming from source if original does (see
6329 -- transformations in Expand_N_In).
6331 Set_Comes_From_Source
(N
, Cfs
);
6332 Set_Comes_From_Source
(Right_Opnd
(N
), Cfs
);
6334 -- Now analyze transformed node
6336 Analyze_And_Resolve
(N
, Typ
);
6337 end Expand_N_Not_In
;
6343 -- The only replacement required is for the case of a null of a type that
6344 -- is an access to protected subprogram, or a subtype thereof. We represent
6345 -- such access values as a record, and so we must replace the occurrence of
6346 -- null by the equivalent record (with a null address and a null pointer in
6347 -- it), so that the backend creates the proper value.
6349 procedure Expand_N_Null
(N
: Node_Id
) is
6350 Loc
: constant Source_Ptr
:= Sloc
(N
);
6351 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
6355 if Is_Access_Protected_Subprogram_Type
(Typ
) then
6357 Make_Aggregate
(Loc
,
6358 Expressions
=> New_List
(
6359 New_Occurrence_Of
(RTE
(RE_Null_Address
), Loc
),
6363 Analyze_And_Resolve
(N
, Equivalent_Type
(Typ
));
6365 -- For subsequent semantic analysis, the node must retain its type.
6366 -- Gigi in any case replaces this type by the corresponding record
6367 -- type before processing the node.
6373 when RE_Not_Available
=>
6377 ---------------------
6378 -- Expand_N_Op_Abs --
6379 ---------------------
6381 procedure Expand_N_Op_Abs
(N
: Node_Id
) is
6382 Loc
: constant Source_Ptr
:= Sloc
(N
);
6383 Expr
: constant Node_Id
:= Right_Opnd
(N
);
6386 Unary_Op_Validity_Checks
(N
);
6388 -- Check for MINIMIZED/ELIMINATED overflow mode
6390 if Minimized_Eliminated_Overflow_Check
(N
) then
6391 Apply_Arithmetic_Overflow_Check
(N
);
6395 -- Deal with software overflow checking
6397 if not Backend_Overflow_Checks_On_Target
6398 and then Is_Signed_Integer_Type
(Etype
(N
))
6399 and then Do_Overflow_Check
(N
)
6401 -- The only case to worry about is when the argument is equal to the
6402 -- largest negative number, so what we do is to insert the check:
6404 -- [constraint_error when Expr = typ'Base'First]
6406 -- with the usual Duplicate_Subexpr use coding for expr
6409 Make_Raise_Constraint_Error
(Loc
,
6412 Left_Opnd
=> Duplicate_Subexpr
(Expr
),
6414 Make_Attribute_Reference
(Loc
,
6416 New_Occurrence_Of
(Base_Type
(Etype
(Expr
)), Loc
),
6417 Attribute_Name
=> Name_First
)),
6418 Reason
=> CE_Overflow_Check_Failed
));
6420 end Expand_N_Op_Abs
;
6422 ---------------------
6423 -- Expand_N_Op_Add --
6424 ---------------------
6426 procedure Expand_N_Op_Add
(N
: Node_Id
) is
6427 Typ
: constant Entity_Id
:= Etype
(N
);
6430 Binary_Op_Validity_Checks
(N
);
6432 -- Check for MINIMIZED/ELIMINATED overflow mode
6434 if Minimized_Eliminated_Overflow_Check
(N
) then
6435 Apply_Arithmetic_Overflow_Check
(N
);
6439 -- N + 0 = 0 + N = N for integer types
6441 if Is_Integer_Type
(Typ
) then
6442 if Compile_Time_Known_Value
(Right_Opnd
(N
))
6443 and then Expr_Value
(Right_Opnd
(N
)) = Uint_0
6445 Rewrite
(N
, Left_Opnd
(N
));
6448 elsif Compile_Time_Known_Value
(Left_Opnd
(N
))
6449 and then Expr_Value
(Left_Opnd
(N
)) = Uint_0
6451 Rewrite
(N
, Right_Opnd
(N
));
6456 -- Arithmetic overflow checks for signed integer/fixed point types
6458 if Is_Signed_Integer_Type
(Typ
) or else Is_Fixed_Point_Type
(Typ
) then
6459 Apply_Arithmetic_Overflow_Check
(N
);
6463 -- Overflow checks for floating-point if -gnateF mode active
6465 Check_Float_Op_Overflow
(N
);
6466 end Expand_N_Op_Add
;
6468 ---------------------
6469 -- Expand_N_Op_And --
6470 ---------------------
6472 procedure Expand_N_Op_And
(N
: Node_Id
) is
6473 Typ
: constant Entity_Id
:= Etype
(N
);
6476 Binary_Op_Validity_Checks
(N
);
6478 if Is_Array_Type
(Etype
(N
)) then
6479 Expand_Boolean_Operator
(N
);
6481 elsif Is_Boolean_Type
(Etype
(N
)) then
6482 Adjust_Condition
(Left_Opnd
(N
));
6483 Adjust_Condition
(Right_Opnd
(N
));
6484 Set_Etype
(N
, Standard_Boolean
);
6485 Adjust_Result_Type
(N
, Typ
);
6487 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
6488 Expand_Intrinsic_Call
(N
, Entity
(N
));
6491 end Expand_N_Op_And
;
6493 ------------------------
6494 -- Expand_N_Op_Concat --
6495 ------------------------
6497 procedure Expand_N_Op_Concat
(N
: Node_Id
) is
6499 -- List of operands to be concatenated
6502 -- Node which is to be replaced by the result of concatenating the nodes
6503 -- in the list Opnds.
6506 -- Ensure validity of both operands
6508 Binary_Op_Validity_Checks
(N
);
6510 -- If we are the left operand of a concatenation higher up the tree,
6511 -- then do nothing for now, since we want to deal with a series of
6512 -- concatenations as a unit.
6514 if Nkind
(Parent
(N
)) = N_Op_Concat
6515 and then N
= Left_Opnd
(Parent
(N
))
6520 -- We get here with a concatenation whose left operand may be a
6521 -- concatenation itself with a consistent type. We need to process
6522 -- these concatenation operands from left to right, which means
6523 -- from the deepest node in the tree to the highest node.
6526 while Nkind
(Left_Opnd
(Cnode
)) = N_Op_Concat
loop
6527 Cnode
:= Left_Opnd
(Cnode
);
6530 -- Now Cnode is the deepest concatenation, and its parents are the
6531 -- concatenation nodes above, so now we process bottom up, doing the
6534 -- The outer loop runs more than once if more than one concatenation
6535 -- type is involved.
6538 Opnds
:= New_List
(Left_Opnd
(Cnode
), Right_Opnd
(Cnode
));
6539 Set_Parent
(Opnds
, N
);
6541 -- The inner loop gathers concatenation operands
6543 Inner
: while Cnode
/= N
6544 and then Base_Type
(Etype
(Cnode
)) =
6545 Base_Type
(Etype
(Parent
(Cnode
)))
6547 Cnode
:= Parent
(Cnode
);
6548 Append
(Right_Opnd
(Cnode
), Opnds
);
6551 -- Note: The following code is a temporary workaround for N731-034
6552 -- and N829-028 and will be kept until the general issue of internal
6553 -- symbol serialization is addressed. The workaround is kept under a
6554 -- debug switch to avoid permiating into the general case.
6556 -- Wrap the node to concatenate into an expression actions node to
6557 -- keep it nicely packaged. This is useful in the case of an assert
6558 -- pragma with a concatenation where we want to be able to delete
6559 -- the concatenation and all its expansion stuff.
6561 if Debug_Flag_Dot_H
then
6563 Cnod
: constant Node_Id
:= Relocate_Node
(Cnode
);
6564 Typ
: constant Entity_Id
:= Base_Type
(Etype
(Cnode
));
6567 -- Note: use Rewrite rather than Replace here, so that for
6568 -- example Why_Not_Static can find the original concatenation
6572 Make_Expression_With_Actions
(Sloc
(Cnode
),
6573 Actions
=> New_List
(Make_Null_Statement
(Sloc
(Cnode
))),
6574 Expression
=> Cnod
));
6576 Expand_Concatenate
(Cnod
, Opnds
);
6577 Analyze_And_Resolve
(Cnode
, Typ
);
6583 Expand_Concatenate
(Cnode
, Opnds
);
6586 exit Outer
when Cnode
= N
;
6587 Cnode
:= Parent
(Cnode
);
6589 end Expand_N_Op_Concat
;
6591 ------------------------
6592 -- Expand_N_Op_Divide --
6593 ------------------------
6595 procedure Expand_N_Op_Divide
(N
: Node_Id
) is
6596 Loc
: constant Source_Ptr
:= Sloc
(N
);
6597 Lopnd
: constant Node_Id
:= Left_Opnd
(N
);
6598 Ropnd
: constant Node_Id
:= Right_Opnd
(N
);
6599 Ltyp
: constant Entity_Id
:= Etype
(Lopnd
);
6600 Rtyp
: constant Entity_Id
:= Etype
(Ropnd
);
6601 Typ
: Entity_Id
:= Etype
(N
);
6602 Rknow
: constant Boolean := Is_Integer_Type
(Typ
)
6604 Compile_Time_Known_Value
(Ropnd
);
6608 Binary_Op_Validity_Checks
(N
);
6610 -- Check for MINIMIZED/ELIMINATED overflow mode
6612 if Minimized_Eliminated_Overflow_Check
(N
) then
6613 Apply_Arithmetic_Overflow_Check
(N
);
6617 -- Otherwise proceed with expansion of division
6620 Rval
:= Expr_Value
(Ropnd
);
6623 -- N / 1 = N for integer types
6625 if Rknow
and then Rval
= Uint_1
then
6630 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
6631 -- Is_Power_Of_2_For_Shift is set means that we know that our left
6632 -- operand is an unsigned integer, as required for this to work.
6634 if Nkind
(Ropnd
) = N_Op_Expon
6635 and then Is_Power_Of_2_For_Shift
(Ropnd
)
6637 -- We cannot do this transformation in configurable run time mode if we
6638 -- have 64-bit integers and long shifts are not available.
6640 and then (Esize
(Ltyp
) <= 32 or else Support_Long_Shifts_On_Target
)
6643 Make_Op_Shift_Right
(Loc
,
6646 Convert_To
(Standard_Natural
, Right_Opnd
(Ropnd
))));
6647 Analyze_And_Resolve
(N
, Typ
);
6651 -- Do required fixup of universal fixed operation
6653 if Typ
= Universal_Fixed
then
6654 Fixup_Universal_Fixed_Operation
(N
);
6658 -- Divisions with fixed-point results
6660 if Is_Fixed_Point_Type
(Typ
) then
6662 -- Deal with divide-by-zero check if back end cannot handle them
6663 -- and the flag is set indicating that we need such a check. Note
6664 -- that we don't need to bother here with the case of mixed-mode
6665 -- (Right operand an integer type), since these will be rewritten
6666 -- with conversions to a divide with a fixed-point right operand.
6668 if Do_Division_Check
(N
)
6669 and then not Backend_Divide_Checks_On_Target
6670 and then not Is_Integer_Type
(Rtyp
)
6672 Set_Do_Division_Check
(N
, False);
6674 Make_Raise_Constraint_Error
(Loc
,
6677 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Ropnd
),
6678 Right_Opnd
=> Make_Real_Literal
(Loc
, Ureal_0
)),
6679 Reason
=> CE_Divide_By_Zero
));
6682 -- No special processing if Treat_Fixed_As_Integer is set, since
6683 -- from a semantic point of view such operations are simply integer
6684 -- operations and will be treated that way.
6686 if not Treat_Fixed_As_Integer
(N
) then
6687 if Is_Integer_Type
(Rtyp
) then
6688 Expand_Divide_Fixed_By_Integer_Giving_Fixed
(N
);
6690 Expand_Divide_Fixed_By_Fixed_Giving_Fixed
(N
);
6694 -- Other cases of division of fixed-point operands. Again we exclude the
6695 -- case where Treat_Fixed_As_Integer is set.
6697 elsif (Is_Fixed_Point_Type
(Ltyp
) or else Is_Fixed_Point_Type
(Rtyp
))
6698 and then not Treat_Fixed_As_Integer
(N
)
6700 if Is_Integer_Type
(Typ
) then
6701 Expand_Divide_Fixed_By_Fixed_Giving_Integer
(N
);
6703 pragma Assert
(Is_Floating_Point_Type
(Typ
));
6704 Expand_Divide_Fixed_By_Fixed_Giving_Float
(N
);
6707 -- Mixed-mode operations can appear in a non-static universal context,
6708 -- in which case the integer argument must be converted explicitly.
6710 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Rtyp
) then
6712 Convert_To
(Universal_Real
, Relocate_Node
(Ropnd
)));
6714 Analyze_And_Resolve
(Ropnd
, Universal_Real
);
6716 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Ltyp
) then
6718 Convert_To
(Universal_Real
, Relocate_Node
(Lopnd
)));
6720 Analyze_And_Resolve
(Lopnd
, Universal_Real
);
6722 -- Non-fixed point cases, do integer zero divide and overflow checks
6724 elsif Is_Integer_Type
(Typ
) then
6725 Apply_Divide_Checks
(N
);
6728 -- Overflow checks for floating-point if -gnateF mode active
6730 Check_Float_Op_Overflow
(N
);
6731 end Expand_N_Op_Divide
;
6733 --------------------
6734 -- Expand_N_Op_Eq --
6735 --------------------
6737 procedure Expand_N_Op_Eq
(N
: Node_Id
) is
6738 Loc
: constant Source_Ptr
:= Sloc
(N
);
6739 Typ
: constant Entity_Id
:= Etype
(N
);
6740 Lhs
: constant Node_Id
:= Left_Opnd
(N
);
6741 Rhs
: constant Node_Id
:= Right_Opnd
(N
);
6742 Bodies
: constant List_Id
:= New_List
;
6743 A_Typ
: constant Entity_Id
:= Etype
(Lhs
);
6745 Typl
: Entity_Id
:= A_Typ
;
6746 Op_Name
: Entity_Id
;
6749 procedure Build_Equality_Call
(Eq
: Entity_Id
);
6750 -- If a constructed equality exists for the type or for its parent,
6751 -- build and analyze call, adding conversions if the operation is
6754 function Has_Unconstrained_UU_Component
(Typ
: Node_Id
) return Boolean;
6755 -- Determines whether a type has a subcomponent of an unconstrained
6756 -- Unchecked_Union subtype. Typ is a record type.
6758 -------------------------
6759 -- Build_Equality_Call --
6760 -------------------------
6762 procedure Build_Equality_Call
(Eq
: Entity_Id
) is
6763 Op_Type
: constant Entity_Id
:= Etype
(First_Formal
(Eq
));
6764 L_Exp
: Node_Id
:= Relocate_Node
(Lhs
);
6765 R_Exp
: Node_Id
:= Relocate_Node
(Rhs
);
6768 -- Adjust operands if necessary to comparison type
6770 if Base_Type
(Op_Type
) /= Base_Type
(A_Typ
)
6771 and then not Is_Class_Wide_Type
(A_Typ
)
6773 L_Exp
:= OK_Convert_To
(Op_Type
, L_Exp
);
6774 R_Exp
:= OK_Convert_To
(Op_Type
, R_Exp
);
6777 -- If we have an Unchecked_Union, we need to add the inferred
6778 -- discriminant values as actuals in the function call. At this
6779 -- point, the expansion has determined that both operands have
6780 -- inferable discriminants.
6782 if Is_Unchecked_Union
(Op_Type
) then
6784 Lhs_Type
: constant Node_Id
:= Etype
(L_Exp
);
6785 Rhs_Type
: constant Node_Id
:= Etype
(R_Exp
);
6787 Lhs_Discr_Vals
: Elist_Id
;
6788 -- List of inferred discriminant values for left operand.
6790 Rhs_Discr_Vals
: Elist_Id
;
6791 -- List of inferred discriminant values for right operand.
6796 Lhs_Discr_Vals
:= New_Elmt_List
;
6797 Rhs_Discr_Vals
:= New_Elmt_List
;
6799 -- Per-object constrained selected components require special
6800 -- attention. If the enclosing scope of the component is an
6801 -- Unchecked_Union, we cannot reference its discriminants
6802 -- directly. This is why we use the extra parameters of the
6803 -- equality function of the enclosing Unchecked_Union.
6805 -- type UU_Type (Discr : Integer := 0) is
6808 -- pragma Unchecked_Union (UU_Type);
6810 -- 1. Unchecked_Union enclosing record:
6812 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
6814 -- Comp : UU_Type (Discr);
6816 -- end Enclosing_UU_Type;
6817 -- pragma Unchecked_Union (Enclosing_UU_Type);
6819 -- Obj1 : Enclosing_UU_Type;
6820 -- Obj2 : Enclosing_UU_Type (1);
6822 -- [. . .] Obj1 = Obj2 [. . .]
6826 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
6828 -- A and B are the formal parameters of the equality function
6829 -- of Enclosing_UU_Type. The function always has two extra
6830 -- formals to capture the inferred discriminant values for
6831 -- each discriminant of the type.
6833 -- 2. Non-Unchecked_Union enclosing record:
6836 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
6839 -- Comp : UU_Type (Discr);
6841 -- end Enclosing_Non_UU_Type;
6843 -- Obj1 : Enclosing_Non_UU_Type;
6844 -- Obj2 : Enclosing_Non_UU_Type (1);
6846 -- ... Obj1 = Obj2 ...
6850 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
6851 -- obj1.discr, obj2.discr)) then
6853 -- In this case we can directly reference the discriminants of
6854 -- the enclosing record.
6856 -- Process left operand of equality
6858 if Nkind
(Lhs
) = N_Selected_Component
6860 Has_Per_Object_Constraint
(Entity
(Selector_Name
(Lhs
)))
6862 -- If enclosing record is an Unchecked_Union, use formals
6863 -- corresponding to each discriminant. The name of the
6864 -- formal is that of the discriminant, with added suffix,
6865 -- see Exp_Ch3.Build_Record_Equality for details.
6867 if Is_Unchecked_Union
(Scope
(Entity
(Selector_Name
(Lhs
))))
6871 (Scope
(Entity
(Selector_Name
(Lhs
))));
6872 while Present
(Discr
) loop
6874 (Make_Identifier
(Loc
,
6875 Chars
=> New_External_Name
(Chars
(Discr
), 'A')),
6876 To
=> Lhs_Discr_Vals
);
6877 Next_Discriminant
(Discr
);
6880 -- If enclosing record is of a non-Unchecked_Union type, it
6881 -- is possible to reference its discriminants directly.
6884 Discr
:= First_Discriminant
(Lhs_Type
);
6885 while Present
(Discr
) loop
6887 (Make_Selected_Component
(Loc
,
6888 Prefix
=> Prefix
(Lhs
),
6891 (Get_Discriminant_Value
(Discr
,
6893 Stored_Constraint
(Lhs_Type
)))),
6894 To
=> Lhs_Discr_Vals
);
6895 Next_Discriminant
(Discr
);
6899 -- Otherwise operand is on object with a constrained type.
6900 -- Infer the discriminant values from the constraint.
6904 Discr
:= First_Discriminant
(Lhs_Type
);
6905 while Present
(Discr
) loop
6908 (Get_Discriminant_Value
(Discr
,
6910 Stored_Constraint
(Lhs_Type
))),
6911 To
=> Lhs_Discr_Vals
);
6912 Next_Discriminant
(Discr
);
6916 -- Similar processing for right operand of equality
6918 if Nkind
(Rhs
) = N_Selected_Component
6920 Has_Per_Object_Constraint
(Entity
(Selector_Name
(Rhs
)))
6922 if Is_Unchecked_Union
6923 (Scope
(Entity
(Selector_Name
(Rhs
))))
6927 (Scope
(Entity
(Selector_Name
(Rhs
))));
6928 while Present
(Discr
) loop
6930 (Make_Identifier
(Loc
,
6931 Chars
=> New_External_Name
(Chars
(Discr
), 'B')),
6932 To
=> Rhs_Discr_Vals
);
6933 Next_Discriminant
(Discr
);
6937 Discr
:= First_Discriminant
(Rhs_Type
);
6938 while Present
(Discr
) loop
6940 (Make_Selected_Component
(Loc
,
6941 Prefix
=> Prefix
(Rhs
),
6943 New_Copy
(Get_Discriminant_Value
6946 Stored_Constraint
(Rhs_Type
)))),
6947 To
=> Rhs_Discr_Vals
);
6948 Next_Discriminant
(Discr
);
6953 Discr
:= First_Discriminant
(Rhs_Type
);
6954 while Present
(Discr
) loop
6956 (New_Copy
(Get_Discriminant_Value
6959 Stored_Constraint
(Rhs_Type
))),
6960 To
=> Rhs_Discr_Vals
);
6961 Next_Discriminant
(Discr
);
6965 -- Now merge the list of discriminant values so that values
6966 -- of corresponding discriminants are adjacent.
6974 Params
:= New_List
(L_Exp
, R_Exp
);
6975 L_Elmt
:= First_Elmt
(Lhs_Discr_Vals
);
6976 R_Elmt
:= First_Elmt
(Rhs_Discr_Vals
);
6977 while Present
(L_Elmt
) loop
6978 Append_To
(Params
, Node
(L_Elmt
));
6979 Append_To
(Params
, Node
(R_Elmt
));
6985 Make_Function_Call
(Loc
,
6986 Name
=> New_Occurrence_Of
(Eq
, Loc
),
6987 Parameter_Associations
=> Params
));
6991 -- Normal case, not an unchecked union
6995 Make_Function_Call
(Loc
,
6996 Name
=> New_Occurrence_Of
(Eq
, Loc
),
6997 Parameter_Associations
=> New_List
(L_Exp
, R_Exp
)));
7000 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7001 end Build_Equality_Call
;
7003 ------------------------------------
7004 -- Has_Unconstrained_UU_Component --
7005 ------------------------------------
7007 function Has_Unconstrained_UU_Component
7008 (Typ
: Node_Id
) return Boolean
7010 Tdef
: constant Node_Id
:=
7011 Type_Definition
(Declaration_Node
(Base_Type
(Typ
)));
7015 function Component_Is_Unconstrained_UU
7016 (Comp
: Node_Id
) return Boolean;
7017 -- Determines whether the subtype of the component is an
7018 -- unconstrained Unchecked_Union.
7020 function Variant_Is_Unconstrained_UU
7021 (Variant
: Node_Id
) return Boolean;
7022 -- Determines whether a component of the variant has an unconstrained
7023 -- Unchecked_Union subtype.
7025 -----------------------------------
7026 -- Component_Is_Unconstrained_UU --
7027 -----------------------------------
7029 function Component_Is_Unconstrained_UU
7030 (Comp
: Node_Id
) return Boolean
7033 if Nkind
(Comp
) /= N_Component_Declaration
then
7038 Sindic
: constant Node_Id
:=
7039 Subtype_Indication
(Component_Definition
(Comp
));
7042 -- Unconstrained nominal type. In the case of a constraint
7043 -- present, the node kind would have been N_Subtype_Indication.
7045 if Nkind
(Sindic
) = N_Identifier
then
7046 return Is_Unchecked_Union
(Base_Type
(Etype
(Sindic
)));
7051 end Component_Is_Unconstrained_UU
;
7053 ---------------------------------
7054 -- Variant_Is_Unconstrained_UU --
7055 ---------------------------------
7057 function Variant_Is_Unconstrained_UU
7058 (Variant
: Node_Id
) return Boolean
7060 Clist
: constant Node_Id
:= Component_List
(Variant
);
7063 if Is_Empty_List
(Component_Items
(Clist
)) then
7067 -- We only need to test one component
7070 Comp
: Node_Id
:= First
(Component_Items
(Clist
));
7073 while Present
(Comp
) loop
7074 if Component_Is_Unconstrained_UU
(Comp
) then
7082 -- None of the components withing the variant were of
7083 -- unconstrained Unchecked_Union type.
7086 end Variant_Is_Unconstrained_UU
;
7088 -- Start of processing for Has_Unconstrained_UU_Component
7091 if Null_Present
(Tdef
) then
7095 Clist
:= Component_List
(Tdef
);
7096 Vpart
:= Variant_Part
(Clist
);
7098 -- Inspect available components
7100 if Present
(Component_Items
(Clist
)) then
7102 Comp
: Node_Id
:= First
(Component_Items
(Clist
));
7105 while Present
(Comp
) loop
7107 -- One component is sufficient
7109 if Component_Is_Unconstrained_UU
(Comp
) then
7118 -- Inspect available components withing variants
7120 if Present
(Vpart
) then
7122 Variant
: Node_Id
:= First
(Variants
(Vpart
));
7125 while Present
(Variant
) loop
7127 -- One component within a variant is sufficient
7129 if Variant_Is_Unconstrained_UU
(Variant
) then
7138 -- Neither the available components, nor the components inside the
7139 -- variant parts were of an unconstrained Unchecked_Union subtype.
7142 end Has_Unconstrained_UU_Component
;
7144 -- Start of processing for Expand_N_Op_Eq
7147 Binary_Op_Validity_Checks
(N
);
7149 -- Deal with private types
7151 if Ekind
(Typl
) = E_Private_Type
then
7152 Typl
:= Underlying_Type
(Typl
);
7153 elsif Ekind
(Typl
) = E_Private_Subtype
then
7154 Typl
:= Underlying_Type
(Base_Type
(Typl
));
7159 -- It may happen in error situations that the underlying type is not
7160 -- set. The error will be detected later, here we just defend the
7167 -- Now get the implementation base type (note that plain Base_Type here
7168 -- might lead us back to the private type, which is not what we want!)
7170 Typl
:= Implementation_Base_Type
(Typl
);
7172 -- Equality between variant records results in a call to a routine
7173 -- that has conditional tests of the discriminant value(s), and hence
7174 -- violates the No_Implicit_Conditionals restriction.
7176 if Has_Variant_Part
(Typl
) then
7181 Check_Restriction
(Msg
, No_Implicit_Conditionals
, N
);
7185 ("\comparison of variant records tests discriminants", N
);
7191 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7192 -- means we no longer have a comparison operation, we are all done.
7194 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7196 if Nkind
(N
) /= N_Op_Eq
then
7200 -- Boolean types (requiring handling of non-standard case)
7202 if Is_Boolean_Type
(Typl
) then
7203 Adjust_Condition
(Left_Opnd
(N
));
7204 Adjust_Condition
(Right_Opnd
(N
));
7205 Set_Etype
(N
, Standard_Boolean
);
7206 Adjust_Result_Type
(N
, Typ
);
7210 elsif Is_Array_Type
(Typl
) then
7212 -- If we are doing full validity checking, and it is possible for the
7213 -- array elements to be invalid then expand out array comparisons to
7214 -- make sure that we check the array elements.
7216 if Validity_Check_Operands
7217 and then not Is_Known_Valid
(Component_Type
(Typl
))
7220 Save_Force_Validity_Checks
: constant Boolean :=
7221 Force_Validity_Checks
;
7223 Force_Validity_Checks
:= True;
7225 Expand_Array_Equality
7227 Relocate_Node
(Lhs
),
7228 Relocate_Node
(Rhs
),
7231 Insert_Actions
(N
, Bodies
);
7232 Analyze_And_Resolve
(N
, Standard_Boolean
);
7233 Force_Validity_Checks
:= Save_Force_Validity_Checks
;
7236 -- Packed case where both operands are known aligned
7238 elsif Is_Bit_Packed_Array
(Typl
)
7239 and then not Is_Possibly_Unaligned_Object
(Lhs
)
7240 and then not Is_Possibly_Unaligned_Object
(Rhs
)
7242 Expand_Packed_Eq
(N
);
7244 -- Where the component type is elementary we can use a block bit
7245 -- comparison (if supported on the target) exception in the case
7246 -- of floating-point (negative zero issues require element by
7247 -- element comparison), and atomic types (where we must be sure
7248 -- to load elements independently) and possibly unaligned arrays.
7250 elsif Is_Elementary_Type
(Component_Type
(Typl
))
7251 and then not Is_Floating_Point_Type
(Component_Type
(Typl
))
7252 and then not Is_Atomic
(Component_Type
(Typl
))
7253 and then not Is_Possibly_Unaligned_Object
(Lhs
)
7254 and then not Is_Possibly_Unaligned_Object
(Rhs
)
7255 and then Support_Composite_Compare_On_Target
7259 -- For composite and floating-point cases, expand equality loop to
7260 -- make sure of using proper comparisons for tagged types, and
7261 -- correctly handling the floating-point case.
7265 Expand_Array_Equality
7267 Relocate_Node
(Lhs
),
7268 Relocate_Node
(Rhs
),
7271 Insert_Actions
(N
, Bodies
, Suppress
=> All_Checks
);
7272 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7277 elsif Is_Record_Type
(Typl
) then
7279 -- For tagged types, use the primitive "="
7281 if Is_Tagged_Type
(Typl
) then
7283 -- No need to do anything else compiling under restriction
7284 -- No_Dispatching_Calls. During the semantic analysis we
7285 -- already notified such violation.
7287 if Restriction_Active
(No_Dispatching_Calls
) then
7291 -- If this is derived from an untagged private type completed with
7292 -- a tagged type, it does not have a full view, so we use the
7293 -- primitive operations of the private type. This check should no
7294 -- longer be necessary when these types get their full views???
7296 if Is_Private_Type
(A_Typ
)
7297 and then not Is_Tagged_Type
(A_Typ
)
7298 and then Is_Derived_Type
(A_Typ
)
7299 and then No
(Full_View
(A_Typ
))
7301 -- Search for equality operation, checking that the operands
7302 -- have the same type. Note that we must find a matching entry,
7303 -- or something is very wrong.
7305 Prim
:= First_Elmt
(Collect_Primitive_Operations
(A_Typ
));
7307 while Present
(Prim
) loop
7308 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7309 and then Etype
(First_Formal
(Node
(Prim
))) =
7310 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7312 Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7317 pragma Assert
(Present
(Prim
));
7318 Op_Name
:= Node
(Prim
);
7320 -- Find the type's predefined equality or an overriding
7321 -- user-defined equality. The reason for not simply calling
7322 -- Find_Prim_Op here is that there may be a user-defined
7323 -- overloaded equality op that precedes the equality that we
7324 -- want, so we have to explicitly search (e.g., there could be
7325 -- an equality with two different parameter types).
7328 if Is_Class_Wide_Type
(Typl
) then
7329 Typl
:= Find_Specific_Type
(Typl
);
7332 Prim
:= First_Elmt
(Primitive_Operations
(Typl
));
7333 while Present
(Prim
) loop
7334 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7335 and then Etype
(First_Formal
(Node
(Prim
))) =
7336 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7338 Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7343 pragma Assert
(Present
(Prim
));
7344 Op_Name
:= Node
(Prim
);
7347 Build_Equality_Call
(Op_Name
);
7349 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
7350 -- predefined equality operator for a type which has a subcomponent
7351 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
7353 elsif Has_Unconstrained_UU_Component
(Typl
) then
7355 Make_Raise_Program_Error
(Loc
,
7356 Reason
=> PE_Unchecked_Union_Restriction
));
7358 -- Prevent Gigi from generating incorrect code by rewriting the
7359 -- equality as a standard False. (is this documented somewhere???)
7362 New_Occurrence_Of
(Standard_False
, Loc
));
7364 elsif Is_Unchecked_Union
(Typl
) then
7366 -- If we can infer the discriminants of the operands, we make a
7367 -- call to the TSS equality function.
7369 if Has_Inferable_Discriminants
(Lhs
)
7371 Has_Inferable_Discriminants
(Rhs
)
7374 (TSS
(Root_Type
(Typl
), TSS_Composite_Equality
));
7377 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
7378 -- the predefined equality operator for an Unchecked_Union type
7379 -- if either of the operands lack inferable discriminants.
7382 Make_Raise_Program_Error
(Loc
,
7383 Reason
=> PE_Unchecked_Union_Restriction
));
7385 -- Emit a warning on source equalities only, otherwise the
7386 -- message may appear out of place due to internal use. The
7387 -- warning is unconditional because it is required by the
7390 if Comes_From_Source
(N
) then
7392 ("Unchecked_Union discriminants cannot be determined??",
7395 ("\Program_Error will be raised for equality operation??",
7399 -- Prevent Gigi from generating incorrect code by rewriting
7400 -- the equality as a standard False (documented where???).
7403 New_Occurrence_Of
(Standard_False
, Loc
));
7406 -- If a type support function is present (for complex cases), use it
7408 elsif Present
(TSS
(Root_Type
(Typl
), TSS_Composite_Equality
)) then
7410 (TSS
(Root_Type
(Typl
), TSS_Composite_Equality
));
7412 -- When comparing two Bounded_Strings, use the primitive equality of
7413 -- the root Super_String type.
7415 elsif Is_Bounded_String
(Typl
) then
7417 First_Elmt
(Collect_Primitive_Operations
(Root_Type
(Typl
)));
7419 while Present
(Prim
) loop
7420 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7421 and then Etype
(First_Formal
(Node
(Prim
))) =
7422 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7423 and then Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7428 -- A Super_String type should always have a primitive equality
7430 pragma Assert
(Present
(Prim
));
7431 Build_Equality_Call
(Node
(Prim
));
7433 -- Otherwise expand the component by component equality. Note that
7434 -- we never use block-bit comparisons for records, because of the
7435 -- problems with gaps. The backend will often be able to recombine
7436 -- the separate comparisons that we generate here.
7439 Remove_Side_Effects
(Lhs
);
7440 Remove_Side_Effects
(Rhs
);
7442 Expand_Record_Equality
(N
, Typl
, Lhs
, Rhs
, Bodies
));
7444 Insert_Actions
(N
, Bodies
, Suppress
=> All_Checks
);
7445 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7449 -- Test if result is known at compile time
7451 Rewrite_Comparison
(N
);
7453 Optimize_Length_Comparison
(N
);
7456 -----------------------
7457 -- Expand_N_Op_Expon --
7458 -----------------------
7460 procedure Expand_N_Op_Expon
(N
: Node_Id
) is
7461 Loc
: constant Source_Ptr
:= Sloc
(N
);
7462 Typ
: constant Entity_Id
:= Etype
(N
);
7463 Rtyp
: constant Entity_Id
:= Root_Type
(Typ
);
7464 Base
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
7465 Bastyp
: constant Node_Id
:= Etype
(Base
);
7466 Exp
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
7467 Exptyp
: constant Entity_Id
:= Etype
(Exp
);
7468 Ovflo
: constant Boolean := Do_Overflow_Check
(N
);
7477 Binary_Op_Validity_Checks
(N
);
7479 -- CodePeer wants to see the unexpanded N_Op_Expon node
7481 if CodePeer_Mode
then
7485 -- If either operand is of a private type, then we have the use of an
7486 -- intrinsic operator, and we get rid of the privateness, by using root
7487 -- types of underlying types for the actual operation. Otherwise the
7488 -- private types will cause trouble if we expand multiplications or
7489 -- shifts etc. We also do this transformation if the result type is
7490 -- different from the base type.
7492 if Is_Private_Type
(Etype
(Base
))
7493 or else Is_Private_Type
(Typ
)
7494 or else Is_Private_Type
(Exptyp
)
7495 or else Rtyp
/= Root_Type
(Bastyp
)
7498 Bt
: constant Entity_Id
:= Root_Type
(Underlying_Type
(Bastyp
));
7499 Et
: constant Entity_Id
:= Root_Type
(Underlying_Type
(Exptyp
));
7502 Unchecked_Convert_To
(Typ
,
7504 Left_Opnd
=> Unchecked_Convert_To
(Bt
, Base
),
7505 Right_Opnd
=> Unchecked_Convert_To
(Et
, Exp
))));
7506 Analyze_And_Resolve
(N
, Typ
);
7511 -- Check for MINIMIZED/ELIMINATED overflow mode
7513 if Minimized_Eliminated_Overflow_Check
(N
) then
7514 Apply_Arithmetic_Overflow_Check
(N
);
7518 -- Test for case of known right argument where we can replace the
7519 -- exponentiation by an equivalent expression using multiplication.
7521 -- Note: use CRT_Safe version of Compile_Time_Known_Value because in
7522 -- configurable run-time mode, we may not have the exponentiation
7523 -- routine available, and we don't want the legality of the program
7524 -- to depend on how clever the compiler is in knowing values.
7526 if CRT_Safe_Compile_Time_Known_Value
(Exp
) then
7527 Expv
:= Expr_Value
(Exp
);
7529 -- We only fold small non-negative exponents. You might think we
7530 -- could fold small negative exponents for the real case, but we
7531 -- can't because we are required to raise Constraint_Error for
7532 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
7533 -- See ACVC test C4A012B.
7535 if Expv
>= 0 and then Expv
<= 4 then
7537 -- X ** 0 = 1 (or 1.0)
7541 -- Call Remove_Side_Effects to ensure that any side effects
7542 -- in the ignored left operand (in particular function calls
7543 -- to user defined functions) are properly executed.
7545 Remove_Side_Effects
(Base
);
7547 if Ekind
(Typ
) in Integer_Kind
then
7548 Xnode
:= Make_Integer_Literal
(Loc
, Intval
=> 1);
7550 Xnode
:= Make_Real_Literal
(Loc
, Ureal_1
);
7562 Make_Op_Multiply
(Loc
,
7563 Left_Opnd
=> Duplicate_Subexpr
(Base
),
7564 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
));
7566 -- X ** 3 = X * X * X
7570 Make_Op_Multiply
(Loc
,
7572 Make_Op_Multiply
(Loc
,
7573 Left_Opnd
=> Duplicate_Subexpr
(Base
),
7574 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
)),
7575 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
));
7580 -- En : constant base'type := base * base;
7585 pragma Assert
(Expv
= 4);
7586 Temp
:= Make_Temporary
(Loc
, 'E', Base
);
7589 Make_Expression_With_Actions
(Loc
,
7590 Actions
=> New_List
(
7591 Make_Object_Declaration
(Loc
,
7592 Defining_Identifier
=> Temp
,
7593 Constant_Present
=> True,
7594 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
7596 Make_Op_Multiply
(Loc
,
7598 Duplicate_Subexpr
(Base
),
7600 Duplicate_Subexpr_No_Checks
(Base
)))),
7603 Make_Op_Multiply
(Loc
,
7604 Left_Opnd
=> New_Occurrence_Of
(Temp
, Loc
),
7605 Right_Opnd
=> New_Occurrence_Of
(Temp
, Loc
)));
7609 Analyze_And_Resolve
(N
, Typ
);
7614 -- Case of (2 ** expression) appearing as an argument of an integer
7615 -- multiplication, or as the right argument of a division of a non-
7616 -- negative integer. In such cases we leave the node untouched, setting
7617 -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
7618 -- of the higher level node converts it into a shift.
7620 -- Another case is 2 ** N in any other context. We simply convert
7621 -- this to 1 * 2 ** N, and then the above transformation applies.
7623 -- Note: this transformation is not applicable for a modular type with
7624 -- a non-binary modulus in the multiplication case, since we get a wrong
7625 -- result if the shift causes an overflow before the modular reduction.
7627 -- Note: we used to check that Exptyp was an unsigned type. But that is
7628 -- an unnecessary check, since if Exp is negative, we have a run-time
7629 -- error that is either caught (so we get the right result) or we have
7630 -- suppressed the check, in which case the code is erroneous anyway.
7632 if Nkind
(Base
) = N_Integer_Literal
7633 and then CRT_Safe_Compile_Time_Known_Value
(Base
)
7634 and then Expr_Value
(Base
) = Uint_2
7635 and then Is_Integer_Type
(Root_Type
(Exptyp
))
7636 and then Esize
(Root_Type
(Exptyp
)) <= Esize
(Standard_Integer
)
7639 -- First the multiply and divide cases
7641 if Nkind_In
(Parent
(N
), N_Op_Divide
, N_Op_Multiply
) then
7643 P
: constant Node_Id
:= Parent
(N
);
7644 L
: constant Node_Id
:= Left_Opnd
(P
);
7645 R
: constant Node_Id
:= Right_Opnd
(P
);
7648 if (Nkind
(P
) = N_Op_Multiply
7649 and then not Non_Binary_Modulus
(Typ
)
7651 ((Is_Integer_Type
(Etype
(L
)) and then R
= N
)
7653 (Is_Integer_Type
(Etype
(R
)) and then L
= N
))
7654 and then not Do_Overflow_Check
(P
))
7656 (Nkind
(P
) = N_Op_Divide
7657 and then Is_Integer_Type
(Etype
(L
))
7658 and then Is_Unsigned_Type
(Etype
(L
))
7660 and then not Do_Overflow_Check
(P
))
7662 Set_Is_Power_Of_2_For_Shift
(N
);
7667 -- Now the other cases
7669 elsif not Non_Binary_Modulus
(Typ
) then
7671 Make_Op_Multiply
(Loc
,
7672 Left_Opnd
=> Make_Integer_Literal
(Loc
, 1),
7673 Right_Opnd
=> Relocate_Node
(N
)));
7674 Analyze_And_Resolve
(N
, Typ
);
7679 -- Fall through if exponentiation must be done using a runtime routine
7681 -- First deal with modular case
7683 if Is_Modular_Integer_Type
(Rtyp
) then
7685 -- Non-binary case, we call the special exponentiation routine for
7686 -- the non-binary case, converting the argument to Long_Long_Integer
7687 -- and passing the modulus value. Then the result is converted back
7688 -- to the base type.
7690 if Non_Binary_Modulus
(Rtyp
) then
7693 Make_Function_Call
(Loc
,
7695 New_Occurrence_Of
(RTE
(RE_Exp_Modular
), Loc
),
7696 Parameter_Associations
=> New_List
(
7697 Convert_To
(RTE
(RE_Unsigned
), Base
),
7698 Make_Integer_Literal
(Loc
, Modulus
(Rtyp
)),
7701 -- Binary case, in this case, we call one of two routines, either the
7702 -- unsigned integer case, or the unsigned long long integer case,
7703 -- with a final "and" operation to do the required mod.
7706 if UI_To_Int
(Esize
(Rtyp
)) <= Standard_Integer_Size
then
7707 Ent
:= RTE
(RE_Exp_Unsigned
);
7709 Ent
:= RTE
(RE_Exp_Long_Long_Unsigned
);
7716 Make_Function_Call
(Loc
,
7717 Name
=> New_Occurrence_Of
(Ent
, Loc
),
7718 Parameter_Associations
=> New_List
(
7719 Convert_To
(Etype
(First_Formal
(Ent
)), Base
),
7722 Make_Integer_Literal
(Loc
, Modulus
(Rtyp
) - 1))));
7726 -- Common exit point for modular type case
7728 Analyze_And_Resolve
(N
, Typ
);
7731 -- Signed integer cases, done using either Integer or Long_Long_Integer.
7732 -- It is not worth having routines for Short_[Short_]Integer, since for
7733 -- most machines it would not help, and it would generate more code that
7734 -- might need certification when a certified run time is required.
7736 -- In the integer cases, we have two routines, one for when overflow
7737 -- checks are required, and one when they are not required, since there
7738 -- is a real gain in omitting checks on many machines.
7740 elsif Rtyp
= Base_Type
(Standard_Long_Long_Integer
)
7741 or else (Rtyp
= Base_Type
(Standard_Long_Integer
)
7743 Esize
(Standard_Long_Integer
) > Esize
(Standard_Integer
))
7744 or else Rtyp
= Universal_Integer
7746 Etyp
:= Standard_Long_Long_Integer
;
7748 -- Overflow checking is the only choice on the AAMP target, where
7749 -- arithmetic instructions check overflow automatically, so only
7750 -- one version of the exponentiation unit is needed.
7752 if Ovflo
or AAMP_On_Target
then
7753 Rent
:= RE_Exp_Long_Long_Integer
;
7755 Rent
:= RE_Exn_Long_Long_Integer
;
7758 elsif Is_Signed_Integer_Type
(Rtyp
) then
7759 Etyp
:= Standard_Integer
;
7761 -- Overflow checking is the only choice on the AAMP target, where
7762 -- arithmetic instructions check overflow automatically, so only
7763 -- one version of the exponentiation unit is needed.
7765 if Ovflo
or AAMP_On_Target
then
7766 Rent
:= RE_Exp_Integer
;
7768 Rent
:= RE_Exn_Integer
;
7771 -- Floating-point cases, always done using Long_Long_Float. We do not
7772 -- need separate routines for the overflow case here, since in the case
7773 -- of floating-point, we generate infinities anyway as a rule (either
7774 -- that or we automatically trap overflow), and if there is an infinity
7775 -- generated and a range check is required, the check will fail anyway.
7778 pragma Assert
(Is_Floating_Point_Type
(Rtyp
));
7779 Etyp
:= Standard_Long_Long_Float
;
7780 Rent
:= RE_Exn_Long_Long_Float
;
7783 -- Common processing for integer cases and floating-point cases.
7784 -- If we are in the right type, we can call runtime routine directly
7787 and then Rtyp
/= Universal_Integer
7788 and then Rtyp
/= Universal_Real
7791 Make_Function_Call
(Loc
,
7792 Name
=> New_Occurrence_Of
(RTE
(Rent
), Loc
),
7793 Parameter_Associations
=> New_List
(Base
, Exp
)));
7795 -- Otherwise we have to introduce conversions (conversions are also
7796 -- required in the universal cases, since the runtime routine is
7797 -- typed using one of the standard types).
7802 Make_Function_Call
(Loc
,
7803 Name
=> New_Occurrence_Of
(RTE
(Rent
), Loc
),
7804 Parameter_Associations
=> New_List
(
7805 Convert_To
(Etyp
, Base
),
7809 Analyze_And_Resolve
(N
, Typ
);
7813 when RE_Not_Available
=>
7815 end Expand_N_Op_Expon
;
7817 --------------------
7818 -- Expand_N_Op_Ge --
7819 --------------------
7821 procedure Expand_N_Op_Ge
(N
: Node_Id
) is
7822 Typ
: constant Entity_Id
:= Etype
(N
);
7823 Op1
: constant Node_Id
:= Left_Opnd
(N
);
7824 Op2
: constant Node_Id
:= Right_Opnd
(N
);
7825 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
7828 Binary_Op_Validity_Checks
(N
);
7830 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7831 -- means we no longer have a comparison operation, we are all done.
7833 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7835 if Nkind
(N
) /= N_Op_Ge
then
7841 if Is_Array_Type
(Typ1
) then
7842 Expand_Array_Comparison
(N
);
7846 -- Deal with boolean operands
7848 if Is_Boolean_Type
(Typ1
) then
7849 Adjust_Condition
(Op1
);
7850 Adjust_Condition
(Op2
);
7851 Set_Etype
(N
, Standard_Boolean
);
7852 Adjust_Result_Type
(N
, Typ
);
7855 Rewrite_Comparison
(N
);
7857 Optimize_Length_Comparison
(N
);
7860 --------------------
7861 -- Expand_N_Op_Gt --
7862 --------------------
7864 procedure Expand_N_Op_Gt
(N
: Node_Id
) is
7865 Typ
: constant Entity_Id
:= Etype
(N
);
7866 Op1
: constant Node_Id
:= Left_Opnd
(N
);
7867 Op2
: constant Node_Id
:= Right_Opnd
(N
);
7868 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
7871 Binary_Op_Validity_Checks
(N
);
7873 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7874 -- means we no longer have a comparison operation, we are all done.
7876 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7878 if Nkind
(N
) /= N_Op_Gt
then
7882 -- Deal with array type operands
7884 if Is_Array_Type
(Typ1
) then
7885 Expand_Array_Comparison
(N
);
7889 -- Deal with boolean type operands
7891 if Is_Boolean_Type
(Typ1
) then
7892 Adjust_Condition
(Op1
);
7893 Adjust_Condition
(Op2
);
7894 Set_Etype
(N
, Standard_Boolean
);
7895 Adjust_Result_Type
(N
, Typ
);
7898 Rewrite_Comparison
(N
);
7900 Optimize_Length_Comparison
(N
);
7903 --------------------
7904 -- Expand_N_Op_Le --
7905 --------------------
7907 procedure Expand_N_Op_Le
(N
: Node_Id
) is
7908 Typ
: constant Entity_Id
:= Etype
(N
);
7909 Op1
: constant Node_Id
:= Left_Opnd
(N
);
7910 Op2
: constant Node_Id
:= Right_Opnd
(N
);
7911 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
7914 Binary_Op_Validity_Checks
(N
);
7916 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7917 -- means we no longer have a comparison operation, we are all done.
7919 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7921 if Nkind
(N
) /= N_Op_Le
then
7925 -- Deal with array type operands
7927 if Is_Array_Type
(Typ1
) then
7928 Expand_Array_Comparison
(N
);
7932 -- Deal with Boolean type operands
7934 if Is_Boolean_Type
(Typ1
) then
7935 Adjust_Condition
(Op1
);
7936 Adjust_Condition
(Op2
);
7937 Set_Etype
(N
, Standard_Boolean
);
7938 Adjust_Result_Type
(N
, Typ
);
7941 Rewrite_Comparison
(N
);
7943 Optimize_Length_Comparison
(N
);
7946 --------------------
7947 -- Expand_N_Op_Lt --
7948 --------------------
7950 procedure Expand_N_Op_Lt
(N
: Node_Id
) is
7951 Typ
: constant Entity_Id
:= Etype
(N
);
7952 Op1
: constant Node_Id
:= Left_Opnd
(N
);
7953 Op2
: constant Node_Id
:= Right_Opnd
(N
);
7954 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
7957 Binary_Op_Validity_Checks
(N
);
7959 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7960 -- means we no longer have a comparison operation, we are all done.
7962 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7964 if Nkind
(N
) /= N_Op_Lt
then
7968 -- Deal with array type operands
7970 if Is_Array_Type
(Typ1
) then
7971 Expand_Array_Comparison
(N
);
7975 -- Deal with Boolean type operands
7977 if Is_Boolean_Type
(Typ1
) then
7978 Adjust_Condition
(Op1
);
7979 Adjust_Condition
(Op2
);
7980 Set_Etype
(N
, Standard_Boolean
);
7981 Adjust_Result_Type
(N
, Typ
);
7984 Rewrite_Comparison
(N
);
7986 Optimize_Length_Comparison
(N
);
7989 -----------------------
7990 -- Expand_N_Op_Minus --
7991 -----------------------
7993 procedure Expand_N_Op_Minus
(N
: Node_Id
) is
7994 Loc
: constant Source_Ptr
:= Sloc
(N
);
7995 Typ
: constant Entity_Id
:= Etype
(N
);
7998 Unary_Op_Validity_Checks
(N
);
8000 -- Check for MINIMIZED/ELIMINATED overflow mode
8002 if Minimized_Eliminated_Overflow_Check
(N
) then
8003 Apply_Arithmetic_Overflow_Check
(N
);
8007 if not Backend_Overflow_Checks_On_Target
8008 and then Is_Signed_Integer_Type
(Etype
(N
))
8009 and then Do_Overflow_Check
(N
)
8011 -- Software overflow checking expands -expr into (0 - expr)
8014 Make_Op_Subtract
(Loc
,
8015 Left_Opnd
=> Make_Integer_Literal
(Loc
, 0),
8016 Right_Opnd
=> Right_Opnd
(N
)));
8018 Analyze_And_Resolve
(N
, Typ
);
8020 end Expand_N_Op_Minus
;
8022 ---------------------
8023 -- Expand_N_Op_Mod --
8024 ---------------------
8026 procedure Expand_N_Op_Mod
(N
: Node_Id
) is
8027 Loc
: constant Source_Ptr
:= Sloc
(N
);
8028 Typ
: constant Entity_Id
:= Etype
(N
);
8029 DDC
: constant Boolean := Do_Division_Check
(N
);
8042 pragma Warnings
(Off
, Lhi
);
8045 Binary_Op_Validity_Checks
(N
);
8047 -- Check for MINIMIZED/ELIMINATED overflow mode
8049 if Minimized_Eliminated_Overflow_Check
(N
) then
8050 Apply_Arithmetic_Overflow_Check
(N
);
8054 if Is_Integer_Type
(Etype
(N
)) then
8055 Apply_Divide_Checks
(N
);
8057 -- All done if we don't have a MOD any more, which can happen as a
8058 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8060 if Nkind
(N
) /= N_Op_Mod
then
8065 -- Proceed with expansion of mod operator
8067 Left
:= Left_Opnd
(N
);
8068 Right
:= Right_Opnd
(N
);
8070 Determine_Range
(Right
, ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
8071 Determine_Range
(Left
, LOK
, Llo
, Lhi
, Assume_Valid
=> True);
8073 -- Convert mod to rem if operands are both known to be non-negative, or
8074 -- both known to be non-positive (these are the cases in which rem and
8075 -- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
8076 -- likely that this will improve the quality of code, (the operation now
8077 -- corresponds to the hardware remainder), and it does not seem likely
8078 -- that it could be harmful. It also avoids some cases of the elaborate
8079 -- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
8082 and then ((Llo
>= 0 and then Rlo
>= 0)
8084 (Lhi
<= 0 and then Rhi
<= 0))
8087 Make_Op_Rem
(Sloc
(N
),
8088 Left_Opnd
=> Left_Opnd
(N
),
8089 Right_Opnd
=> Right_Opnd
(N
)));
8091 -- Instead of reanalyzing the node we do the analysis manually. This
8092 -- avoids anomalies when the replacement is done in an instance and
8093 -- is epsilon more efficient.
8095 Set_Entity
(N
, Standard_Entity
(S_Op_Rem
));
8097 Set_Do_Division_Check
(N
, DDC
);
8098 Expand_N_Op_Rem
(N
);
8102 -- Otherwise, normal mod processing
8105 -- Apply optimization x mod 1 = 0. We don't really need that with
8106 -- gcc, but it is useful with other back ends (e.g. AAMP), and is
8107 -- certainly harmless.
8109 if Is_Integer_Type
(Etype
(N
))
8110 and then Compile_Time_Known_Value
(Right
)
8111 and then Expr_Value
(Right
) = Uint_1
8113 -- Call Remove_Side_Effects to ensure that any side effects in
8114 -- the ignored left operand (in particular function calls to
8115 -- user defined functions) are properly executed.
8117 Remove_Side_Effects
(Left
);
8119 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
8120 Analyze_And_Resolve
(N
, Typ
);
8124 -- If we still have a mod operator and we are in Modify_Tree_For_C
8125 -- mode, and we have a signed integer type, then here is where we do
8126 -- the rewrite in terms of Rem. Note this rewrite bypasses the need
8127 -- for the special handling of the annoying case of largest negative
8128 -- number mod minus one.
8130 if Nkind
(N
) = N_Op_Mod
8131 and then Is_Signed_Integer_Type
(Typ
)
8132 and then Modify_Tree_For_C
8134 -- In the general case, we expand A mod B as
8136 -- Tnn : constant typ := A rem B;
8138 -- (if (A >= 0) = (B >= 0) then Tnn
8139 -- elsif Tnn = 0 then 0
8142 -- The comparison can be written simply as A >= 0 if we know that
8143 -- B >= 0 which is a very common case.
8145 -- An important optimization is when B is known at compile time
8146 -- to be 2**K for some constant. In this case we can simply AND
8147 -- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
8148 -- and that works for both the positive and negative cases.
8151 P2
: constant Nat
:= Power_Of_Two
(Right
);
8156 Unchecked_Convert_To
(Typ
,
8159 Unchecked_Convert_To
8160 (Corresponding_Unsigned_Type
(Typ
), Left
),
8162 Make_Integer_Literal
(Loc
, 2 ** P2
- 1))));
8163 Analyze_And_Resolve
(N
, Typ
);
8168 -- Here for the full rewrite
8171 Tnn
: constant Entity_Id
:= Make_Temporary
(Sloc
(N
), 'T', N
);
8177 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left
),
8178 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
8180 if not LOK
or else Rlo
< 0 then
8186 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Right
),
8187 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)));
8191 Make_Object_Declaration
(Loc
,
8192 Defining_Identifier
=> Tnn
,
8193 Constant_Present
=> True,
8194 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
8198 Right_Opnd
=> Right
)));
8201 Make_If_Expression
(Loc
,
8202 Expressions
=> New_List
(
8204 New_Occurrence_Of
(Tnn
, Loc
),
8205 Make_If_Expression
(Loc
,
8207 Expressions
=> New_List
(
8209 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
8210 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
8211 Make_Integer_Literal
(Loc
, 0),
8213 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
8215 Duplicate_Subexpr_No_Checks
(Right
)))))));
8217 Analyze_And_Resolve
(N
, Typ
);
8222 -- Deal with annoying case of largest negative number mod minus one.
8223 -- Gigi may not handle this case correctly, because on some targets,
8224 -- the mod value is computed using a divide instruction which gives
8225 -- an overflow trap for this case.
8227 -- It would be a bit more efficient to figure out which targets
8228 -- this is really needed for, but in practice it is reasonable
8229 -- to do the following special check in all cases, since it means
8230 -- we get a clearer message, and also the overhead is minimal given
8231 -- that division is expensive in any case.
8233 -- In fact the check is quite easy, if the right operand is -1, then
8234 -- the mod value is always 0, and we can just ignore the left operand
8235 -- completely in this case.
8237 -- This only applies if we still have a mod operator. Skip if we
8238 -- have already rewritten this (e.g. in the case of eliminated
8239 -- overflow checks which have driven us into bignum mode).
8241 if Nkind
(N
) = N_Op_Mod
then
8243 -- The operand type may be private (e.g. in the expansion of an
8244 -- intrinsic operation) so we must use the underlying type to get
8245 -- the bounds, and convert the literals explicitly.
8249 (Type_Low_Bound
(Base_Type
(Underlying_Type
(Etype
(Left
)))));
8251 if ((not ROK
) or else (Rlo
<= (-1) and then (-1) <= Rhi
))
8252 and then ((not LOK
) or else (Llo
= LLB
))
8255 Make_If_Expression
(Loc
,
8256 Expressions
=> New_List
(
8258 Left_Opnd
=> Duplicate_Subexpr
(Right
),
8260 Unchecked_Convert_To
(Typ
,
8261 Make_Integer_Literal
(Loc
, -1))),
8262 Unchecked_Convert_To
(Typ
,
8263 Make_Integer_Literal
(Loc
, Uint_0
)),
8264 Relocate_Node
(N
))));
8266 Set_Analyzed
(Next
(Next
(First
(Expressions
(N
)))));
8267 Analyze_And_Resolve
(N
, Typ
);
8271 end Expand_N_Op_Mod
;
8273 --------------------------
8274 -- Expand_N_Op_Multiply --
8275 --------------------------
8277 procedure Expand_N_Op_Multiply
(N
: Node_Id
) is
8278 Loc
: constant Source_Ptr
:= Sloc
(N
);
8279 Lop
: constant Node_Id
:= Left_Opnd
(N
);
8280 Rop
: constant Node_Id
:= Right_Opnd
(N
);
8282 Lp2
: constant Boolean :=
8283 Nkind
(Lop
) = N_Op_Expon
and then Is_Power_Of_2_For_Shift
(Lop
);
8284 Rp2
: constant Boolean :=
8285 Nkind
(Rop
) = N_Op_Expon
and then Is_Power_Of_2_For_Shift
(Rop
);
8287 Ltyp
: constant Entity_Id
:= Etype
(Lop
);
8288 Rtyp
: constant Entity_Id
:= Etype
(Rop
);
8289 Typ
: Entity_Id
:= Etype
(N
);
8292 Binary_Op_Validity_Checks
(N
);
8294 -- Check for MINIMIZED/ELIMINATED overflow mode
8296 if Minimized_Eliminated_Overflow_Check
(N
) then
8297 Apply_Arithmetic_Overflow_Check
(N
);
8301 -- Special optimizations for integer types
8303 if Is_Integer_Type
(Typ
) then
8305 -- N * 0 = 0 for integer types
8307 if Compile_Time_Known_Value
(Rop
)
8308 and then Expr_Value
(Rop
) = Uint_0
8310 -- Call Remove_Side_Effects to ensure that any side effects in
8311 -- the ignored left operand (in particular function calls to
8312 -- user defined functions) are properly executed.
8314 Remove_Side_Effects
(Lop
);
8316 Rewrite
(N
, Make_Integer_Literal
(Loc
, Uint_0
));
8317 Analyze_And_Resolve
(N
, Typ
);
8321 -- Similar handling for 0 * N = 0
8323 if Compile_Time_Known_Value
(Lop
)
8324 and then Expr_Value
(Lop
) = Uint_0
8326 Remove_Side_Effects
(Rop
);
8327 Rewrite
(N
, Make_Integer_Literal
(Loc
, Uint_0
));
8328 Analyze_And_Resolve
(N
, Typ
);
8332 -- N * 1 = 1 * N = N for integer types
8334 -- This optimisation is not done if we are going to
8335 -- rewrite the product 1 * 2 ** N to a shift.
8337 if Compile_Time_Known_Value
(Rop
)
8338 and then Expr_Value
(Rop
) = Uint_1
8344 elsif Compile_Time_Known_Value
(Lop
)
8345 and then Expr_Value
(Lop
) = Uint_1
8353 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
8354 -- Is_Power_Of_2_For_Shift is set means that we know that our left
8355 -- operand is an integer, as required for this to work.
8360 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
8364 Left_Opnd
=> Make_Integer_Literal
(Loc
, 2),
8367 Left_Opnd
=> Right_Opnd
(Lop
),
8368 Right_Opnd
=> Right_Opnd
(Rop
))));
8369 Analyze_And_Resolve
(N
, Typ
);
8373 -- If the result is modular, perform the reduction of the result
8376 if Is_Modular_Integer_Type
(Typ
)
8377 and then not Non_Binary_Modulus
(Typ
)
8382 Make_Op_Shift_Left
(Loc
,
8385 Convert_To
(Standard_Natural
, Right_Opnd
(Rop
))),
8387 Make_Integer_Literal
(Loc
, Modulus
(Typ
) - 1)));
8391 Make_Op_Shift_Left
(Loc
,
8394 Convert_To
(Standard_Natural
, Right_Opnd
(Rop
))));
8397 Analyze_And_Resolve
(N
, Typ
);
8401 -- Same processing for the operands the other way round
8404 if Is_Modular_Integer_Type
(Typ
)
8405 and then not Non_Binary_Modulus
(Typ
)
8410 Make_Op_Shift_Left
(Loc
,
8413 Convert_To
(Standard_Natural
, Right_Opnd
(Lop
))),
8415 Make_Integer_Literal
(Loc
, Modulus
(Typ
) - 1)));
8419 Make_Op_Shift_Left
(Loc
,
8422 Convert_To
(Standard_Natural
, Right_Opnd
(Lop
))));
8425 Analyze_And_Resolve
(N
, Typ
);
8429 -- Do required fixup of universal fixed operation
8431 if Typ
= Universal_Fixed
then
8432 Fixup_Universal_Fixed_Operation
(N
);
8436 -- Multiplications with fixed-point results
8438 if Is_Fixed_Point_Type
(Typ
) then
8440 -- No special processing if Treat_Fixed_As_Integer is set, since from
8441 -- a semantic point of view such operations are simply integer
8442 -- operations and will be treated that way.
8444 if not Treat_Fixed_As_Integer
(N
) then
8446 -- Case of fixed * integer => fixed
8448 if Is_Integer_Type
(Rtyp
) then
8449 Expand_Multiply_Fixed_By_Integer_Giving_Fixed
(N
);
8451 -- Case of integer * fixed => fixed
8453 elsif Is_Integer_Type
(Ltyp
) then
8454 Expand_Multiply_Integer_By_Fixed_Giving_Fixed
(N
);
8456 -- Case of fixed * fixed => fixed
8459 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
(N
);
8463 -- Other cases of multiplication of fixed-point operands. Again we
8464 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
8466 elsif (Is_Fixed_Point_Type
(Ltyp
) or else Is_Fixed_Point_Type
(Rtyp
))
8467 and then not Treat_Fixed_As_Integer
(N
)
8469 if Is_Integer_Type
(Typ
) then
8470 Expand_Multiply_Fixed_By_Fixed_Giving_Integer
(N
);
8472 pragma Assert
(Is_Floating_Point_Type
(Typ
));
8473 Expand_Multiply_Fixed_By_Fixed_Giving_Float
(N
);
8476 -- Mixed-mode operations can appear in a non-static universal context,
8477 -- in which case the integer argument must be converted explicitly.
8479 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Rtyp
) then
8480 Rewrite
(Rop
, Convert_To
(Universal_Real
, Relocate_Node
(Rop
)));
8481 Analyze_And_Resolve
(Rop
, Universal_Real
);
8483 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Ltyp
) then
8484 Rewrite
(Lop
, Convert_To
(Universal_Real
, Relocate_Node
(Lop
)));
8485 Analyze_And_Resolve
(Lop
, Universal_Real
);
8487 -- Non-fixed point cases, check software overflow checking required
8489 elsif Is_Signed_Integer_Type
(Etype
(N
)) then
8490 Apply_Arithmetic_Overflow_Check
(N
);
8493 -- Overflow checks for floating-point if -gnateF mode active
8495 Check_Float_Op_Overflow
(N
);
8496 end Expand_N_Op_Multiply
;
8498 --------------------
8499 -- Expand_N_Op_Ne --
8500 --------------------
8502 procedure Expand_N_Op_Ne
(N
: Node_Id
) is
8503 Typ
: constant Entity_Id
:= Etype
(Left_Opnd
(N
));
8506 -- Case of elementary type with standard operator
8508 if Is_Elementary_Type
(Typ
)
8509 and then Sloc
(Entity
(N
)) = Standard_Location
8511 Binary_Op_Validity_Checks
(N
);
8513 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
8514 -- means we no longer have a /= operation, we are all done.
8516 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8518 if Nkind
(N
) /= N_Op_Ne
then
8522 -- Boolean types (requiring handling of non-standard case)
8524 if Is_Boolean_Type
(Typ
) then
8525 Adjust_Condition
(Left_Opnd
(N
));
8526 Adjust_Condition
(Right_Opnd
(N
));
8527 Set_Etype
(N
, Standard_Boolean
);
8528 Adjust_Result_Type
(N
, Typ
);
8531 Rewrite_Comparison
(N
);
8533 -- For all cases other than elementary types, we rewrite node as the
8534 -- negation of an equality operation, and reanalyze. The equality to be
8535 -- used is defined in the same scope and has the same signature. This
8536 -- signature must be set explicitly since in an instance it may not have
8537 -- the same visibility as in the generic unit. This avoids duplicating
8538 -- or factoring the complex code for record/array equality tests etc.
8542 Loc
: constant Source_Ptr
:= Sloc
(N
);
8544 Ne
: constant Entity_Id
:= Entity
(N
);
8547 Binary_Op_Validity_Checks
(N
);
8553 Left_Opnd
=> Left_Opnd
(N
),
8554 Right_Opnd
=> Right_Opnd
(N
)));
8555 Set_Paren_Count
(Right_Opnd
(Neg
), 1);
8557 if Scope
(Ne
) /= Standard_Standard
then
8558 Set_Entity
(Right_Opnd
(Neg
), Corresponding_Equality
(Ne
));
8561 -- For navigation purposes, we want to treat the inequality as an
8562 -- implicit reference to the corresponding equality. Preserve the
8563 -- Comes_From_ source flag to generate proper Xref entries.
8565 Preserve_Comes_From_Source
(Neg
, N
);
8566 Preserve_Comes_From_Source
(Right_Opnd
(Neg
), N
);
8568 Analyze_And_Resolve
(N
, Standard_Boolean
);
8572 Optimize_Length_Comparison
(N
);
8575 ---------------------
8576 -- Expand_N_Op_Not --
8577 ---------------------
8579 -- If the argument is other than a Boolean array type, there is no special
8580 -- expansion required, except for dealing with validity checks, and non-
8581 -- standard boolean representations.
8583 -- For the packed array case, we call the special routine in Exp_Pakd,
8584 -- except that if the component size is greater than one, we use the
8585 -- standard routine generating a gruesome loop (it is so peculiar to have
8586 -- packed arrays with non-standard Boolean representations anyway, so it
8587 -- does not matter that we do not handle this case efficiently).
8589 -- For the unpacked array case (and for the special packed case where we
8590 -- have non standard Booleans, as discussed above), we generate and insert
8591 -- into the tree the following function definition:
8593 -- function Nnnn (A : arr) is
8596 -- for J in a'range loop
8597 -- B (J) := not A (J);
8602 -- Here arr is the actual subtype of the parameter (and hence always
8603 -- constrained). Then we replace the not with a call to this function.
8605 procedure Expand_N_Op_Not
(N
: Node_Id
) is
8606 Loc
: constant Source_Ptr
:= Sloc
(N
);
8607 Typ
: constant Entity_Id
:= Etype
(N
);
8616 Func_Name
: Entity_Id
;
8617 Loop_Statement
: Node_Id
;
8620 Unary_Op_Validity_Checks
(N
);
8622 -- For boolean operand, deal with non-standard booleans
8624 if Is_Boolean_Type
(Typ
) then
8625 Adjust_Condition
(Right_Opnd
(N
));
8626 Set_Etype
(N
, Standard_Boolean
);
8627 Adjust_Result_Type
(N
, Typ
);
8631 -- Only array types need any other processing
8633 if not Is_Array_Type
(Typ
) then
8637 -- Case of array operand. If bit packed with a component size of 1,
8638 -- handle it in Exp_Pakd if the operand is known to be aligned.
8640 if Is_Bit_Packed_Array
(Typ
)
8641 and then Component_Size
(Typ
) = 1
8642 and then not Is_Possibly_Unaligned_Object
(Right_Opnd
(N
))
8644 Expand_Packed_Not
(N
);
8648 -- Case of array operand which is not bit-packed. If the context is
8649 -- a safe assignment, call in-place operation, If context is a larger
8650 -- boolean expression in the context of a safe assignment, expansion is
8651 -- done by enclosing operation.
8653 Opnd
:= Relocate_Node
(Right_Opnd
(N
));
8654 Convert_To_Actual_Subtype
(Opnd
);
8655 Arr
:= Etype
(Opnd
);
8656 Ensure_Defined
(Arr
, N
);
8657 Silly_Boolean_Array_Not_Test
(N
, Arr
);
8659 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
8660 if Safe_In_Place_Array_Op
(Name
(Parent
(N
)), N
, Empty
) then
8661 Build_Boolean_Array_Proc_Call
(Parent
(N
), Opnd
, Empty
);
8664 -- Special case the negation of a binary operation
8666 elsif Nkind_In
(Opnd
, N_Op_And
, N_Op_Or
, N_Op_Xor
)
8667 and then Safe_In_Place_Array_Op
8668 (Name
(Parent
(N
)), Left_Opnd
(Opnd
), Right_Opnd
(Opnd
))
8670 Build_Boolean_Array_Proc_Call
(Parent
(N
), Opnd
, Empty
);
8674 elsif Nkind
(Parent
(N
)) in N_Binary_Op
8675 and then Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
8678 Op1
: constant Node_Id
:= Left_Opnd
(Parent
(N
));
8679 Op2
: constant Node_Id
:= Right_Opnd
(Parent
(N
));
8680 Lhs
: constant Node_Id
:= Name
(Parent
(Parent
(N
)));
8683 if Safe_In_Place_Array_Op
(Lhs
, Op1
, Op2
) then
8685 -- (not A) op (not B) can be reduced to a single call
8687 if N
= Op1
and then Nkind
(Op2
) = N_Op_Not
then
8690 elsif N
= Op2
and then Nkind
(Op1
) = N_Op_Not
then
8693 -- A xor (not B) can also be special-cased
8695 elsif N
= Op2
and then Nkind
(Parent
(N
)) = N_Op_Xor
then
8702 A
:= Make_Defining_Identifier
(Loc
, Name_uA
);
8703 B
:= Make_Defining_Identifier
(Loc
, Name_uB
);
8704 J
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
8707 Make_Indexed_Component
(Loc
,
8708 Prefix
=> New_Occurrence_Of
(A
, Loc
),
8709 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
8712 Make_Indexed_Component
(Loc
,
8713 Prefix
=> New_Occurrence_Of
(B
, Loc
),
8714 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
8717 Make_Implicit_Loop_Statement
(N
,
8718 Identifier
=> Empty
,
8721 Make_Iteration_Scheme
(Loc
,
8722 Loop_Parameter_Specification
=>
8723 Make_Loop_Parameter_Specification
(Loc
,
8724 Defining_Identifier
=> J
,
8725 Discrete_Subtype_Definition
=>
8726 Make_Attribute_Reference
(Loc
,
8727 Prefix
=> Make_Identifier
(Loc
, Chars
(A
)),
8728 Attribute_Name
=> Name_Range
))),
8730 Statements
=> New_List
(
8731 Make_Assignment_Statement
(Loc
,
8733 Expression
=> Make_Op_Not
(Loc
, A_J
))));
8735 Func_Name
:= Make_Temporary
(Loc
, 'N');
8736 Set_Is_Inlined
(Func_Name
);
8739 Make_Subprogram_Body
(Loc
,
8741 Make_Function_Specification
(Loc
,
8742 Defining_Unit_Name
=> Func_Name
,
8743 Parameter_Specifications
=> New_List
(
8744 Make_Parameter_Specification
(Loc
,
8745 Defining_Identifier
=> A
,
8746 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8747 Result_Definition
=> New_Occurrence_Of
(Typ
, Loc
)),
8749 Declarations
=> New_List
(
8750 Make_Object_Declaration
(Loc
,
8751 Defining_Identifier
=> B
,
8752 Object_Definition
=> New_Occurrence_Of
(Arr
, Loc
))),
8754 Handled_Statement_Sequence
=>
8755 Make_Handled_Sequence_Of_Statements
(Loc
,
8756 Statements
=> New_List
(
8758 Make_Simple_Return_Statement
(Loc
,
8759 Expression
=> Make_Identifier
(Loc
, Chars
(B
)))))));
8762 Make_Function_Call
(Loc
,
8763 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
8764 Parameter_Associations
=> New_List
(Opnd
)));
8766 Analyze_And_Resolve
(N
, Typ
);
8767 end Expand_N_Op_Not
;
8769 --------------------
8770 -- Expand_N_Op_Or --
8771 --------------------
8773 procedure Expand_N_Op_Or
(N
: Node_Id
) is
8774 Typ
: constant Entity_Id
:= Etype
(N
);
8777 Binary_Op_Validity_Checks
(N
);
8779 if Is_Array_Type
(Etype
(N
)) then
8780 Expand_Boolean_Operator
(N
);
8782 elsif Is_Boolean_Type
(Etype
(N
)) then
8783 Adjust_Condition
(Left_Opnd
(N
));
8784 Adjust_Condition
(Right_Opnd
(N
));
8785 Set_Etype
(N
, Standard_Boolean
);
8786 Adjust_Result_Type
(N
, Typ
);
8788 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
8789 Expand_Intrinsic_Call
(N
, Entity
(N
));
8794 ----------------------
8795 -- Expand_N_Op_Plus --
8796 ----------------------
8798 procedure Expand_N_Op_Plus
(N
: Node_Id
) is
8800 Unary_Op_Validity_Checks
(N
);
8802 -- Check for MINIMIZED/ELIMINATED overflow mode
8804 if Minimized_Eliminated_Overflow_Check
(N
) then
8805 Apply_Arithmetic_Overflow_Check
(N
);
8808 end Expand_N_Op_Plus
;
8810 ---------------------
8811 -- Expand_N_Op_Rem --
8812 ---------------------
8814 procedure Expand_N_Op_Rem
(N
: Node_Id
) is
8815 Loc
: constant Source_Ptr
:= Sloc
(N
);
8816 Typ
: constant Entity_Id
:= Etype
(N
);
8827 -- Set if corresponding operand can be negative
8829 pragma Unreferenced
(Hi
);
8832 Binary_Op_Validity_Checks
(N
);
8834 -- Check for MINIMIZED/ELIMINATED overflow mode
8836 if Minimized_Eliminated_Overflow_Check
(N
) then
8837 Apply_Arithmetic_Overflow_Check
(N
);
8841 if Is_Integer_Type
(Etype
(N
)) then
8842 Apply_Divide_Checks
(N
);
8844 -- All done if we don't have a REM any more, which can happen as a
8845 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8847 if Nkind
(N
) /= N_Op_Rem
then
8852 -- Proceed with expansion of REM
8854 Left
:= Left_Opnd
(N
);
8855 Right
:= Right_Opnd
(N
);
8857 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
8858 -- but it is useful with other back ends (e.g. AAMP), and is certainly
8861 if Is_Integer_Type
(Etype
(N
))
8862 and then Compile_Time_Known_Value
(Right
)
8863 and then Expr_Value
(Right
) = Uint_1
8865 -- Call Remove_Side_Effects to ensure that any side effects in the
8866 -- ignored left operand (in particular function calls to user defined
8867 -- functions) are properly executed.
8869 Remove_Side_Effects
(Left
);
8871 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
8872 Analyze_And_Resolve
(N
, Typ
);
8876 -- Deal with annoying case of largest negative number remainder minus
8877 -- one. Gigi may not handle this case correctly, because on some
8878 -- targets, the mod value is computed using a divide instruction
8879 -- which gives an overflow trap for this case.
8881 -- It would be a bit more efficient to figure out which targets this
8882 -- is really needed for, but in practice it is reasonable to do the
8883 -- following special check in all cases, since it means we get a clearer
8884 -- message, and also the overhead is minimal given that division is
8885 -- expensive in any case.
8887 -- In fact the check is quite easy, if the right operand is -1, then
8888 -- the remainder is always 0, and we can just ignore the left operand
8889 -- completely in this case.
8891 Determine_Range
(Right
, OK
, Lo
, Hi
, Assume_Valid
=> True);
8892 Lneg
:= (not OK
) or else Lo
< 0;
8894 Determine_Range
(Left
, OK
, Lo
, Hi
, Assume_Valid
=> True);
8895 Rneg
:= (not OK
) or else Lo
< 0;
8897 -- We won't mess with trying to find out if the left operand can really
8898 -- be the largest negative number (that's a pain in the case of private
8899 -- types and this is really marginal). We will just assume that we need
8900 -- the test if the left operand can be negative at all.
8902 if Lneg
and Rneg
then
8904 Make_If_Expression
(Loc
,
8905 Expressions
=> New_List
(
8907 Left_Opnd
=> Duplicate_Subexpr
(Right
),
8909 Unchecked_Convert_To
(Typ
, Make_Integer_Literal
(Loc
, -1))),
8911 Unchecked_Convert_To
(Typ
,
8912 Make_Integer_Literal
(Loc
, Uint_0
)),
8914 Relocate_Node
(N
))));
8916 Set_Analyzed
(Next
(Next
(First
(Expressions
(N
)))));
8917 Analyze_And_Resolve
(N
, Typ
);
8919 end Expand_N_Op_Rem
;
8921 -----------------------------
8922 -- Expand_N_Op_Rotate_Left --
8923 -----------------------------
8925 procedure Expand_N_Op_Rotate_Left
(N
: Node_Id
) is
8927 Binary_Op_Validity_Checks
(N
);
8929 -- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
8930 -- so we rewrite in terms of logical shifts
8932 -- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
8934 -- where Bits is the shift count mod Esize (the mod operation here
8935 -- deals with ludicrous large shift counts, which are apparently OK).
8937 -- What about non-binary modulus ???
8940 Loc
: constant Source_Ptr
:= Sloc
(N
);
8941 Rtp
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
8942 Typ
: constant Entity_Id
:= Etype
(N
);
8945 if Modify_Tree_For_C
then
8946 Rewrite
(Right_Opnd
(N
),
8948 Left_Opnd
=> Relocate_Node
(Right_Opnd
(N
)),
8949 Right_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
))));
8951 Analyze_And_Resolve
(Right_Opnd
(N
), Rtp
);
8956 Make_Op_Shift_Left
(Loc
,
8957 Left_Opnd
=> Left_Opnd
(N
),
8958 Right_Opnd
=> Right_Opnd
(N
)),
8961 Make_Op_Shift_Right
(Loc
,
8962 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left_Opnd
(N
)),
8964 Make_Op_Subtract
(Loc
,
8965 Left_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
)),
8967 Duplicate_Subexpr_No_Checks
(Right_Opnd
(N
))))));
8969 Analyze_And_Resolve
(N
, Typ
);
8972 end Expand_N_Op_Rotate_Left
;
8974 ------------------------------
8975 -- Expand_N_Op_Rotate_Right --
8976 ------------------------------
8978 procedure Expand_N_Op_Rotate_Right
(N
: Node_Id
) is
8980 Binary_Op_Validity_Checks
(N
);
8982 -- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
8983 -- so we rewrite in terms of logical shifts
8985 -- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
8987 -- where Bits is the shift count mod Esize (the mod operation here
8988 -- deals with ludicrous large shift counts, which are apparently OK).
8990 -- What about non-binary modulus ???
8993 Loc
: constant Source_Ptr
:= Sloc
(N
);
8994 Rtp
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
8995 Typ
: constant Entity_Id
:= Etype
(N
);
8998 Rewrite
(Right_Opnd
(N
),
9000 Left_Opnd
=> Relocate_Node
(Right_Opnd
(N
)),
9001 Right_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
))));
9003 Analyze_And_Resolve
(Right_Opnd
(N
), Rtp
);
9005 if Modify_Tree_For_C
then
9009 Make_Op_Shift_Right
(Loc
,
9010 Left_Opnd
=> Left_Opnd
(N
),
9011 Right_Opnd
=> Right_Opnd
(N
)),
9014 Make_Op_Shift_Left
(Loc
,
9015 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left_Opnd
(N
)),
9017 Make_Op_Subtract
(Loc
,
9018 Left_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
)),
9020 Duplicate_Subexpr_No_Checks
(Right_Opnd
(N
))))));
9022 Analyze_And_Resolve
(N
, Typ
);
9025 end Expand_N_Op_Rotate_Right
;
9027 ----------------------------
9028 -- Expand_N_Op_Shift_Left --
9029 ----------------------------
9031 -- Note: nothing in this routine depends on left as opposed to right shifts
9032 -- so we share the routine for expanding shift right operations.
9034 procedure Expand_N_Op_Shift_Left
(N
: Node_Id
) is
9036 Binary_Op_Validity_Checks
(N
);
9038 -- If we are in Modify_Tree_For_C mode, then ensure that the right
9039 -- operand is not greater than the word size (since that would not
9040 -- be defined properly by the corresponding C shift operator).
9042 if Modify_Tree_For_C
then
9044 Right
: constant Node_Id
:= Right_Opnd
(N
);
9045 Loc
: constant Source_Ptr
:= Sloc
(Right
);
9046 Typ
: constant Entity_Id
:= Etype
(N
);
9047 Siz
: constant Uint
:= Esize
(Typ
);
9054 if Compile_Time_Known_Value
(Right
) then
9055 if Expr_Value
(Right
) >= Siz
then
9056 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
9057 Analyze_And_Resolve
(N
, Typ
);
9060 -- Not compile time known, find range
9063 Determine_Range
(Right
, OK
, Lo
, Hi
, Assume_Valid
=> True);
9065 -- Nothing to do if known to be OK range, otherwise expand
9067 if not OK
or else Hi
>= Siz
then
9069 -- Prevent recursion on copy of shift node
9071 Orig
:= Relocate_Node
(N
);
9072 Set_Analyzed
(Orig
);
9074 -- Now do the rewrite
9077 Make_If_Expression
(Loc
,
9078 Expressions
=> New_List
(
9080 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Right
),
9081 Right_Opnd
=> Make_Integer_Literal
(Loc
, Siz
)),
9082 Make_Integer_Literal
(Loc
, 0),
9084 Analyze_And_Resolve
(N
, Typ
);
9089 end Expand_N_Op_Shift_Left
;
9091 -----------------------------
9092 -- Expand_N_Op_Shift_Right --
9093 -----------------------------
9095 procedure Expand_N_Op_Shift_Right
(N
: Node_Id
) is
9097 -- Share shift left circuit
9099 Expand_N_Op_Shift_Left
(N
);
9100 end Expand_N_Op_Shift_Right
;
9102 ----------------------------------------
9103 -- Expand_N_Op_Shift_Right_Arithmetic --
9104 ----------------------------------------
9106 procedure Expand_N_Op_Shift_Right_Arithmetic
(N
: Node_Id
) is
9108 Binary_Op_Validity_Checks
(N
);
9110 -- If we are in Modify_Tree_For_C mode, there is no shift right
9111 -- arithmetic in C, so we rewrite in terms of logical shifts.
9113 -- Shift_Right (Num, Bits) or
9115 -- then not (Shift_Right (Mask, bits))
9118 -- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
9120 -- Note: in almost all C compilers it would work to just shift a
9121 -- signed integer right, but it's undefined and we cannot rely on it.
9123 -- Note: the above works fine for shift counts greater than or equal
9124 -- to the word size, since in this case (not (Shift_Right (Mask, bits)))
9125 -- generates all 1'bits.
9127 -- What about non-binary modulus ???
9130 Loc
: constant Source_Ptr
:= Sloc
(N
);
9131 Typ
: constant Entity_Id
:= Etype
(N
);
9132 Sign
: constant Uint
:= 2 ** (Esize
(Typ
) - 1);
9133 Mask
: constant Uint
:= (2 ** Esize
(Typ
)) - 1;
9134 Left
: constant Node_Id
:= Left_Opnd
(N
);
9135 Right
: constant Node_Id
:= Right_Opnd
(N
);
9139 if Modify_Tree_For_C
then
9141 -- Here if not (Shift_Right (Mask, bits)) can be computed at
9142 -- compile time as a single constant.
9144 if Compile_Time_Known_Value
(Right
) then
9146 Val
: constant Uint
:= Expr_Value
(Right
);
9149 if Val
>= Esize
(Typ
) then
9150 Maskx
:= Make_Integer_Literal
(Loc
, Mask
);
9154 Make_Integer_Literal
(Loc
,
9155 Intval
=> Mask
- (Mask
/ (2 ** Expr_Value
(Right
))));
9163 Make_Op_Shift_Right
(Loc
,
9164 Left_Opnd
=> Make_Integer_Literal
(Loc
, Mask
),
9165 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Right
)));
9168 -- Now do the rewrite
9173 Make_Op_Shift_Right
(Loc
,
9175 Right_Opnd
=> Right
),
9177 Make_If_Expression
(Loc
,
9178 Expressions
=> New_List
(
9180 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left
),
9181 Right_Opnd
=> Make_Integer_Literal
(Loc
, Sign
)),
9183 Make_Integer_Literal
(Loc
, 0)))));
9184 Analyze_And_Resolve
(N
, Typ
);
9187 end Expand_N_Op_Shift_Right_Arithmetic
;
9189 --------------------------
9190 -- Expand_N_Op_Subtract --
9191 --------------------------
9193 procedure Expand_N_Op_Subtract
(N
: Node_Id
) is
9194 Typ
: constant Entity_Id
:= Etype
(N
);
9197 Binary_Op_Validity_Checks
(N
);
9199 -- Check for MINIMIZED/ELIMINATED overflow mode
9201 if Minimized_Eliminated_Overflow_Check
(N
) then
9202 Apply_Arithmetic_Overflow_Check
(N
);
9206 -- N - 0 = N for integer types
9208 if Is_Integer_Type
(Typ
)
9209 and then Compile_Time_Known_Value
(Right_Opnd
(N
))
9210 and then Expr_Value
(Right_Opnd
(N
)) = 0
9212 Rewrite
(N
, Left_Opnd
(N
));
9216 -- Arithmetic overflow checks for signed integer/fixed point types
9218 if Is_Signed_Integer_Type
(Typ
) or else Is_Fixed_Point_Type
(Typ
) then
9219 Apply_Arithmetic_Overflow_Check
(N
);
9222 -- Overflow checks for floating-point if -gnateF mode active
9224 Check_Float_Op_Overflow
(N
);
9225 end Expand_N_Op_Subtract
;
9227 ---------------------
9228 -- Expand_N_Op_Xor --
9229 ---------------------
9231 procedure Expand_N_Op_Xor
(N
: Node_Id
) is
9232 Typ
: constant Entity_Id
:= Etype
(N
);
9235 Binary_Op_Validity_Checks
(N
);
9237 if Is_Array_Type
(Etype
(N
)) then
9238 Expand_Boolean_Operator
(N
);
9240 elsif Is_Boolean_Type
(Etype
(N
)) then
9241 Adjust_Condition
(Left_Opnd
(N
));
9242 Adjust_Condition
(Right_Opnd
(N
));
9243 Set_Etype
(N
, Standard_Boolean
);
9244 Adjust_Result_Type
(N
, Typ
);
9246 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
9247 Expand_Intrinsic_Call
(N
, Entity
(N
));
9250 end Expand_N_Op_Xor
;
9252 ----------------------
9253 -- Expand_N_Or_Else --
9254 ----------------------
9256 procedure Expand_N_Or_Else
(N
: Node_Id
)
9257 renames Expand_Short_Circuit_Operator
;
9259 -----------------------------------
9260 -- Expand_N_Qualified_Expression --
9261 -----------------------------------
9263 procedure Expand_N_Qualified_Expression
(N
: Node_Id
) is
9264 Operand
: constant Node_Id
:= Expression
(N
);
9265 Target_Type
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
9268 -- Do validity check if validity checking operands
9270 if Validity_Checks_On
and Validity_Check_Operands
then
9271 Ensure_Valid
(Operand
);
9274 -- Apply possible constraint check
9276 Apply_Constraint_Check
(Operand
, Target_Type
, No_Sliding
=> True);
9278 if Do_Range_Check
(Operand
) then
9279 Set_Do_Range_Check
(Operand
, False);
9280 Generate_Range_Check
(Operand
, Target_Type
, CE_Range_Check_Failed
);
9282 end Expand_N_Qualified_Expression
;
9284 ------------------------------------
9285 -- Expand_N_Quantified_Expression --
9286 ------------------------------------
9290 -- for all X in range => Cond
9295 -- for X in range loop
9302 -- Similarly, an existentially quantified expression:
9304 -- for some X in range => Cond
9309 -- for X in range loop
9316 -- In both cases, the iteration may be over a container in which case it is
9317 -- given by an iterator specification, not a loop parameter specification.
9319 procedure Expand_N_Quantified_Expression
(N
: Node_Id
) is
9320 Actions
: constant List_Id
:= New_List
;
9321 For_All
: constant Boolean := All_Present
(N
);
9322 Iter_Spec
: constant Node_Id
:= Iterator_Specification
(N
);
9323 Loc
: constant Source_Ptr
:= Sloc
(N
);
9324 Loop_Spec
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
9331 -- Create the declaration of the flag which tracks the status of the
9332 -- quantified expression. Generate:
9334 -- Flag : Boolean := (True | False);
9336 Flag
:= Make_Temporary
(Loc
, 'T', N
);
9339 Make_Object_Declaration
(Loc
,
9340 Defining_Identifier
=> Flag
,
9341 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
9343 New_Occurrence_Of
(Boolean_Literals
(For_All
), Loc
)));
9345 -- Construct the circuitry which tracks the status of the quantified
9346 -- expression. Generate:
9348 -- if [not] Cond then
9349 -- Flag := (False | True);
9353 Cond
:= Relocate_Node
(Condition
(N
));
9356 Cond
:= Make_Op_Not
(Loc
, Cond
);
9360 Make_Implicit_If_Statement
(N
,
9362 Then_Statements
=> New_List
(
9363 Make_Assignment_Statement
(Loc
,
9364 Name
=> New_Occurrence_Of
(Flag
, Loc
),
9366 New_Occurrence_Of
(Boolean_Literals
(not For_All
), Loc
)),
9367 Make_Exit_Statement
(Loc
))));
9369 -- Build the loop equivalent of the quantified expression
9371 if Present
(Iter_Spec
) then
9373 Make_Iteration_Scheme
(Loc
,
9374 Iterator_Specification
=> Iter_Spec
);
9377 Make_Iteration_Scheme
(Loc
,
9378 Loop_Parameter_Specification
=> Loop_Spec
);
9382 Make_Loop_Statement
(Loc
,
9383 Iteration_Scheme
=> Scheme
,
9384 Statements
=> Stmts
,
9385 End_Label
=> Empty
));
9387 -- Transform the quantified expression
9390 Make_Expression_With_Actions
(Loc
,
9391 Expression
=> New_Occurrence_Of
(Flag
, Loc
),
9392 Actions
=> Actions
));
9393 Analyze_And_Resolve
(N
, Standard_Boolean
);
9394 end Expand_N_Quantified_Expression
;
9396 ---------------------------------
9397 -- Expand_N_Selected_Component --
9398 ---------------------------------
9400 procedure Expand_N_Selected_Component
(N
: Node_Id
) is
9401 Loc
: constant Source_Ptr
:= Sloc
(N
);
9402 Par
: constant Node_Id
:= Parent
(N
);
9403 P
: constant Node_Id
:= Prefix
(N
);
9404 S
: constant Node_Id
:= Selector_Name
(N
);
9405 Ptyp
: Entity_Id
:= Underlying_Type
(Etype
(P
));
9411 function In_Left_Hand_Side
(Comp
: Node_Id
) return Boolean;
9412 -- Gigi needs a temporary for prefixes that depend on a discriminant,
9413 -- unless the context of an assignment can provide size information.
9414 -- Don't we have a general routine that does this???
9416 function Is_Subtype_Declaration
return Boolean;
9417 -- The replacement of a discriminant reference by its value is required
9418 -- if this is part of the initialization of an temporary generated by a
9419 -- change of representation. This shows up as the construction of a
9420 -- discriminant constraint for a subtype declared at the same point as
9421 -- the entity in the prefix of the selected component. We recognize this
9422 -- case when the context of the reference is:
9423 -- subtype ST is T(Obj.D);
9424 -- where the entity for Obj comes from source, and ST has the same sloc.
9426 -----------------------
9427 -- In_Left_Hand_Side --
9428 -----------------------
9430 function In_Left_Hand_Side
(Comp
: Node_Id
) return Boolean is
9432 return (Nkind
(Parent
(Comp
)) = N_Assignment_Statement
9433 and then Comp
= Name
(Parent
(Comp
)))
9434 or else (Present
(Parent
(Comp
))
9435 and then Nkind
(Parent
(Comp
)) in N_Subexpr
9436 and then In_Left_Hand_Side
(Parent
(Comp
)));
9437 end In_Left_Hand_Side
;
9439 -----------------------------
9440 -- Is_Subtype_Declaration --
9441 -----------------------------
9443 function Is_Subtype_Declaration
return Boolean is
9444 Par
: constant Node_Id
:= Parent
(N
);
9447 Nkind
(Par
) = N_Index_Or_Discriminant_Constraint
9448 and then Nkind
(Parent
(Parent
(Par
))) = N_Subtype_Declaration
9449 and then Comes_From_Source
(Entity
(Prefix
(N
)))
9450 and then Sloc
(Par
) = Sloc
(Entity
(Prefix
(N
)));
9451 end Is_Subtype_Declaration
;
9453 -- Start of processing for Expand_N_Selected_Component
9456 -- Insert explicit dereference if required
9458 if Is_Access_Type
(Ptyp
) then
9460 -- First set prefix type to proper access type, in case it currently
9461 -- has a private (non-access) view of this type.
9463 Set_Etype
(P
, Ptyp
);
9465 Insert_Explicit_Dereference
(P
);
9466 Analyze_And_Resolve
(P
, Designated_Type
(Ptyp
));
9468 if Ekind
(Etype
(P
)) = E_Private_Subtype
9469 and then Is_For_Access_Subtype
(Etype
(P
))
9471 Set_Etype
(P
, Base_Type
(Etype
(P
)));
9477 -- Deal with discriminant check required
9479 if Do_Discriminant_Check
(N
) then
9480 if Present
(Discriminant_Checking_Func
9481 (Original_Record_Component
(Entity
(S
))))
9483 -- Present the discriminant checking function to the backend, so
9484 -- that it can inline the call to the function.
9487 (Discriminant_Checking_Func
9488 (Original_Record_Component
(Entity
(S
))),
9491 -- Now reset the flag and generate the call
9493 Set_Do_Discriminant_Check
(N
, False);
9494 Generate_Discriminant_Check
(N
);
9496 -- In the case of Unchecked_Union, no discriminant checking is
9497 -- actually performed.
9500 Set_Do_Discriminant_Check
(N
, False);
9504 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9505 -- function, then additional actuals must be passed.
9507 if Ada_Version
>= Ada_2005
9508 and then Is_Build_In_Place_Function_Call
(P
)
9510 Make_Build_In_Place_Call_In_Anonymous_Context
(P
);
9513 -- Gigi cannot handle unchecked conversions that are the prefix of a
9514 -- selected component with discriminants. This must be checked during
9515 -- expansion, because during analysis the type of the selector is not
9516 -- known at the point the prefix is analyzed. If the conversion is the
9517 -- target of an assignment, then we cannot force the evaluation.
9519 if Nkind
(Prefix
(N
)) = N_Unchecked_Type_Conversion
9520 and then Has_Discriminants
(Etype
(N
))
9521 and then not In_Left_Hand_Side
(N
)
9523 Force_Evaluation
(Prefix
(N
));
9526 -- Remaining processing applies only if selector is a discriminant
9528 if Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
then
9530 -- If the selector is a discriminant of a constrained record type,
9531 -- we may be able to rewrite the expression with the actual value
9532 -- of the discriminant, a useful optimization in some cases.
9534 if Is_Record_Type
(Ptyp
)
9535 and then Has_Discriminants
(Ptyp
)
9536 and then Is_Constrained
(Ptyp
)
9538 -- Do this optimization for discrete types only, and not for
9539 -- access types (access discriminants get us into trouble).
9541 if not Is_Discrete_Type
(Etype
(N
)) then
9544 -- Don't do this on the left hand of an assignment statement.
9545 -- Normally one would think that references like this would not
9546 -- occur, but they do in generated code, and mean that we really
9547 -- do want to assign the discriminant.
9549 elsif Nkind
(Par
) = N_Assignment_Statement
9550 and then Name
(Par
) = N
9554 -- Don't do this optimization for the prefix of an attribute or
9555 -- the name of an object renaming declaration since these are
9556 -- contexts where we do not want the value anyway.
9558 elsif (Nkind
(Par
) = N_Attribute_Reference
9559 and then Prefix
(Par
) = N
)
9560 or else Is_Renamed_Object
(N
)
9564 -- Don't do this optimization if we are within the code for a
9565 -- discriminant check, since the whole point of such a check may
9566 -- be to verify the condition on which the code below depends.
9568 elsif Is_In_Discriminant_Check
(N
) then
9571 -- Green light to see if we can do the optimization. There is
9572 -- still one condition that inhibits the optimization below but
9573 -- now is the time to check the particular discriminant.
9576 -- Loop through discriminants to find the matching discriminant
9577 -- constraint to see if we can copy it.
9579 Disc
:= First_Discriminant
(Ptyp
);
9580 Dcon
:= First_Elmt
(Discriminant_Constraint
(Ptyp
));
9581 Discr_Loop
: while Present
(Dcon
) loop
9582 Dval
:= Node
(Dcon
);
9584 -- Check if this is the matching discriminant and if the
9585 -- discriminant value is simple enough to make sense to
9586 -- copy. We don't want to copy complex expressions, and
9587 -- indeed to do so can cause trouble (before we put in
9588 -- this guard, a discriminant expression containing an
9589 -- AND THEN was copied, causing problems for coverage
9592 -- However, if the reference is part of the initialization
9593 -- code generated for an object declaration, we must use
9594 -- the discriminant value from the subtype constraint,
9595 -- because the selected component may be a reference to the
9596 -- object being initialized, whose discriminant is not yet
9597 -- set. This only happens in complex cases involving changes
9598 -- or representation.
9600 if Disc
= Entity
(Selector_Name
(N
))
9601 and then (Is_Entity_Name
(Dval
)
9602 or else Compile_Time_Known_Value
(Dval
)
9603 or else Is_Subtype_Declaration
)
9605 -- Here we have the matching discriminant. Check for
9606 -- the case of a discriminant of a component that is
9607 -- constrained by an outer discriminant, which cannot
9608 -- be optimized away.
9610 if Denotes_Discriminant
9611 (Dval
, Check_Concurrent
=> True)
9615 elsif Nkind
(Original_Node
(Dval
)) = N_Selected_Component
9617 Denotes_Discriminant
9618 (Selector_Name
(Original_Node
(Dval
)), True)
9622 -- Do not retrieve value if constraint is not static. It
9623 -- is generally not useful, and the constraint may be a
9624 -- rewritten outer discriminant in which case it is in
9627 elsif Is_Entity_Name
(Dval
)
9629 Nkind
(Parent
(Entity
(Dval
))) = N_Object_Declaration
9630 and then Present
(Expression
(Parent
(Entity
(Dval
))))
9632 Is_OK_Static_Expression
9633 (Expression
(Parent
(Entity
(Dval
))))
9637 -- In the context of a case statement, the expression may
9638 -- have the base type of the discriminant, and we need to
9639 -- preserve the constraint to avoid spurious errors on
9642 elsif Nkind
(Parent
(N
)) = N_Case_Statement
9643 and then Etype
(Dval
) /= Etype
(Disc
)
9646 Make_Qualified_Expression
(Loc
,
9648 New_Occurrence_Of
(Etype
(Disc
), Loc
),
9650 New_Copy_Tree
(Dval
)));
9651 Analyze_And_Resolve
(N
, Etype
(Disc
));
9653 -- In case that comes out as a static expression,
9654 -- reset it (a selected component is never static).
9656 Set_Is_Static_Expression
(N
, False);
9659 -- Otherwise we can just copy the constraint, but the
9660 -- result is certainly not static. In some cases the
9661 -- discriminant constraint has been analyzed in the
9662 -- context of the original subtype indication, but for
9663 -- itypes the constraint might not have been analyzed
9664 -- yet, and this must be done now.
9667 Rewrite
(N
, New_Copy_Tree
(Dval
));
9668 Analyze_And_Resolve
(N
);
9669 Set_Is_Static_Expression
(N
, False);
9675 Next_Discriminant
(Disc
);
9676 end loop Discr_Loop
;
9678 -- Note: the above loop should always find a matching
9679 -- discriminant, but if it does not, we just missed an
9680 -- optimization due to some glitch (perhaps a previous
9681 -- error), so ignore.
9686 -- The only remaining processing is in the case of a discriminant of
9687 -- a concurrent object, where we rewrite the prefix to denote the
9688 -- corresponding record type. If the type is derived and has renamed
9689 -- discriminants, use corresponding discriminant, which is the one
9690 -- that appears in the corresponding record.
9692 if not Is_Concurrent_Type
(Ptyp
) then
9696 Disc
:= Entity
(Selector_Name
(N
));
9698 if Is_Derived_Type
(Ptyp
)
9699 and then Present
(Corresponding_Discriminant
(Disc
))
9701 Disc
:= Corresponding_Discriminant
(Disc
);
9705 Make_Selected_Component
(Loc
,
9707 Unchecked_Convert_To
(Corresponding_Record_Type
(Ptyp
),
9709 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Disc
)));
9715 -- Set Atomic_Sync_Required if necessary for atomic component
9717 if Nkind
(N
) = N_Selected_Component
then
9719 E
: constant Entity_Id
:= Entity
(Selector_Name
(N
));
9723 -- If component is atomic, but type is not, setting depends on
9724 -- disable/enable state for the component.
9726 if Is_Atomic
(E
) and then not Is_Atomic
(Etype
(E
)) then
9727 Set
:= not Atomic_Synchronization_Disabled
(E
);
9729 -- If component is not atomic, but its type is atomic, setting
9730 -- depends on disable/enable state for the type.
9732 elsif not Is_Atomic
(E
) and then Is_Atomic
(Etype
(E
)) then
9733 Set
:= not Atomic_Synchronization_Disabled
(Etype
(E
));
9735 -- If both component and type are atomic, we disable if either
9736 -- component or its type have sync disabled.
9738 elsif Is_Atomic
(E
) and then Is_Atomic
(Etype
(E
)) then
9739 Set
:= (not Atomic_Synchronization_Disabled
(E
))
9741 (not Atomic_Synchronization_Disabled
(Etype
(E
)));
9747 -- Set flag if required
9750 Activate_Atomic_Synchronization
(N
);
9754 end Expand_N_Selected_Component
;
9756 --------------------
9757 -- Expand_N_Slice --
9758 --------------------
9760 procedure Expand_N_Slice
(N
: Node_Id
) is
9761 Loc
: constant Source_Ptr
:= Sloc
(N
);
9762 Typ
: constant Entity_Id
:= Etype
(N
);
9764 function Is_Procedure_Actual
(N
: Node_Id
) return Boolean;
9765 -- Check whether the argument is an actual for a procedure call, in
9766 -- which case the expansion of a bit-packed slice is deferred until the
9767 -- call itself is expanded. The reason this is required is that we might
9768 -- have an IN OUT or OUT parameter, and the copy out is essential, and
9769 -- that copy out would be missed if we created a temporary here in
9770 -- Expand_N_Slice. Note that we don't bother to test specifically for an
9771 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
9772 -- is harmless to defer expansion in the IN case, since the call
9773 -- processing will still generate the appropriate copy in operation,
9774 -- which will take care of the slice.
9776 procedure Make_Temporary_For_Slice
;
9777 -- Create a named variable for the value of the slice, in cases where
9778 -- the back-end cannot handle it properly, e.g. when packed types or
9779 -- unaligned slices are involved.
9781 -------------------------
9782 -- Is_Procedure_Actual --
9783 -------------------------
9785 function Is_Procedure_Actual
(N
: Node_Id
) return Boolean is
9786 Par
: Node_Id
:= Parent
(N
);
9790 -- If our parent is a procedure call we can return
9792 if Nkind
(Par
) = N_Procedure_Call_Statement
then
9795 -- If our parent is a type conversion, keep climbing the tree,
9796 -- since a type conversion can be a procedure actual. Also keep
9797 -- climbing if parameter association or a qualified expression,
9798 -- since these are additional cases that do can appear on
9799 -- procedure actuals.
9801 elsif Nkind_In
(Par
, N_Type_Conversion
,
9802 N_Parameter_Association
,
9803 N_Qualified_Expression
)
9805 Par
:= Parent
(Par
);
9807 -- Any other case is not what we are looking for
9813 end Is_Procedure_Actual
;
9815 ------------------------------
9816 -- Make_Temporary_For_Slice --
9817 ------------------------------
9819 procedure Make_Temporary_For_Slice
is
9820 Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
9825 Make_Object_Declaration
(Loc
,
9826 Defining_Identifier
=> Ent
,
9827 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
9829 Set_No_Initialization
(Decl
);
9831 Insert_Actions
(N
, New_List
(
9833 Make_Assignment_Statement
(Loc
,
9834 Name
=> New_Occurrence_Of
(Ent
, Loc
),
9835 Expression
=> Relocate_Node
(N
))));
9837 Rewrite
(N
, New_Occurrence_Of
(Ent
, Loc
));
9838 Analyze_And_Resolve
(N
, Typ
);
9839 end Make_Temporary_For_Slice
;
9843 Pref
: constant Node_Id
:= Prefix
(N
);
9844 Pref_Typ
: Entity_Id
:= Etype
(Pref
);
9846 -- Start of processing for Expand_N_Slice
9849 -- Special handling for access types
9851 if Is_Access_Type
(Pref_Typ
) then
9852 Pref_Typ
:= Designated_Type
(Pref_Typ
);
9855 Make_Explicit_Dereference
(Sloc
(N
),
9856 Prefix
=> Relocate_Node
(Pref
)));
9858 Analyze_And_Resolve
(Pref
, Pref_Typ
);
9861 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9862 -- function, then additional actuals must be passed.
9864 if Ada_Version
>= Ada_2005
9865 and then Is_Build_In_Place_Function_Call
(Pref
)
9867 Make_Build_In_Place_Call_In_Anonymous_Context
(Pref
);
9870 -- The remaining case to be handled is packed slices. We can leave
9871 -- packed slices as they are in the following situations:
9873 -- 1. Right or left side of an assignment (we can handle this
9874 -- situation correctly in the assignment statement expansion).
9876 -- 2. Prefix of indexed component (the slide is optimized away in this
9877 -- case, see the start of Expand_N_Slice.)
9879 -- 3. Object renaming declaration, since we want the name of the
9880 -- slice, not the value.
9882 -- 4. Argument to procedure call, since copy-in/copy-out handling may
9883 -- be required, and this is handled in the expansion of call
9886 -- 5. Prefix of an address attribute (this is an error which is caught
9887 -- elsewhere, and the expansion would interfere with generating the
9890 if not Is_Packed
(Typ
) then
9892 -- Apply transformation for actuals of a function call, where
9893 -- Expand_Actuals is not used.
9895 if Nkind
(Parent
(N
)) = N_Function_Call
9896 and then Is_Possibly_Unaligned_Slice
(N
)
9898 Make_Temporary_For_Slice
;
9901 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
9902 or else (Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
9903 and then Parent
(N
) = Name
(Parent
(Parent
(N
))))
9907 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
9908 or else Is_Renamed_Object
(N
)
9909 or else Is_Procedure_Actual
(N
)
9913 elsif Nkind
(Parent
(N
)) = N_Attribute_Reference
9914 and then Attribute_Name
(Parent
(N
)) = Name_Address
9919 Make_Temporary_For_Slice
;
9923 ------------------------------
9924 -- Expand_N_Type_Conversion --
9925 ------------------------------
9927 procedure Expand_N_Type_Conversion
(N
: Node_Id
) is
9928 Loc
: constant Source_Ptr
:= Sloc
(N
);
9929 Operand
: constant Node_Id
:= Expression
(N
);
9930 Target_Type
: constant Entity_Id
:= Etype
(N
);
9931 Operand_Type
: Entity_Id
:= Etype
(Operand
);
9933 procedure Handle_Changed_Representation
;
9934 -- This is called in the case of record and array type conversions to
9935 -- see if there is a change of representation to be handled. Change of
9936 -- representation is actually handled at the assignment statement level,
9937 -- and what this procedure does is rewrite node N conversion as an
9938 -- assignment to temporary. If there is no change of representation,
9939 -- then the conversion node is unchanged.
9941 procedure Raise_Accessibility_Error
;
9942 -- Called when we know that an accessibility check will fail. Rewrites
9943 -- node N to an appropriate raise statement and outputs warning msgs.
9944 -- The Etype of the raise node is set to Target_Type. Note that in this
9945 -- case the rest of the processing should be skipped (i.e. the call to
9946 -- this procedure will be followed by "goto Done").
9948 procedure Real_Range_Check
;
9949 -- Handles generation of range check for real target value
9951 function Has_Extra_Accessibility
(Id
: Entity_Id
) return Boolean;
9952 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
9953 -- evaluates to True.
9955 -----------------------------------
9956 -- Handle_Changed_Representation --
9957 -----------------------------------
9959 procedure Handle_Changed_Representation
is
9968 -- Nothing else to do if no change of representation
9970 if Same_Representation
(Operand_Type
, Target_Type
) then
9973 -- The real change of representation work is done by the assignment
9974 -- statement processing. So if this type conversion is appearing as
9975 -- the expression of an assignment statement, nothing needs to be
9976 -- done to the conversion.
9978 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
then
9981 -- Otherwise we need to generate a temporary variable, and do the
9982 -- change of representation assignment into that temporary variable.
9983 -- The conversion is then replaced by a reference to this variable.
9988 -- If type is unconstrained we have to add a constraint, copied
9989 -- from the actual value of the left hand side.
9991 if not Is_Constrained
(Target_Type
) then
9992 if Has_Discriminants
(Operand_Type
) then
9993 Disc
:= First_Discriminant
(Operand_Type
);
9995 if Disc
/= First_Stored_Discriminant
(Operand_Type
) then
9996 Disc
:= First_Stored_Discriminant
(Operand_Type
);
10000 while Present
(Disc
) loop
10002 Make_Selected_Component
(Loc
,
10004 Duplicate_Subexpr_Move_Checks
(Operand
),
10006 Make_Identifier
(Loc
, Chars
(Disc
))));
10007 Next_Discriminant
(Disc
);
10010 elsif Is_Array_Type
(Operand_Type
) then
10011 N_Ix
:= First_Index
(Target_Type
);
10014 for J
in 1 .. Number_Dimensions
(Operand_Type
) loop
10016 -- We convert the bounds explicitly. We use an unchecked
10017 -- conversion because bounds checks are done elsewhere.
10022 Unchecked_Convert_To
(Etype
(N_Ix
),
10023 Make_Attribute_Reference
(Loc
,
10025 Duplicate_Subexpr_No_Checks
10026 (Operand
, Name_Req
=> True),
10027 Attribute_Name
=> Name_First
,
10028 Expressions
=> New_List
(
10029 Make_Integer_Literal
(Loc
, J
)))),
10032 Unchecked_Convert_To
(Etype
(N_Ix
),
10033 Make_Attribute_Reference
(Loc
,
10035 Duplicate_Subexpr_No_Checks
10036 (Operand
, Name_Req
=> True),
10037 Attribute_Name
=> Name_Last
,
10038 Expressions
=> New_List
(
10039 Make_Integer_Literal
(Loc
, J
))))));
10046 Odef
:= New_Occurrence_Of
(Target_Type
, Loc
);
10048 if Present
(Cons
) then
10050 Make_Subtype_Indication
(Loc
,
10051 Subtype_Mark
=> Odef
,
10053 Make_Index_Or_Discriminant_Constraint
(Loc
,
10054 Constraints
=> Cons
));
10057 Temp
:= Make_Temporary
(Loc
, 'C');
10059 Make_Object_Declaration
(Loc
,
10060 Defining_Identifier
=> Temp
,
10061 Object_Definition
=> Odef
);
10063 Set_No_Initialization
(Decl
, True);
10065 -- Insert required actions. It is essential to suppress checks
10066 -- since we have suppressed default initialization, which means
10067 -- that the variable we create may have no discriminants.
10072 Make_Assignment_Statement
(Loc
,
10073 Name
=> New_Occurrence_Of
(Temp
, Loc
),
10074 Expression
=> Relocate_Node
(N
))),
10075 Suppress
=> All_Checks
);
10077 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
10080 end Handle_Changed_Representation
;
10082 -------------------------------
10083 -- Raise_Accessibility_Error --
10084 -------------------------------
10086 procedure Raise_Accessibility_Error
is
10088 Error_Msg_Warn
:= SPARK_Mode
/= On
;
10090 Make_Raise_Program_Error
(Sloc
(N
),
10091 Reason
=> PE_Accessibility_Check_Failed
));
10092 Set_Etype
(N
, Target_Type
);
10094 Error_Msg_N
("<<accessibility check failure", N
);
10095 Error_Msg_NE
("\<<& [", N
, Standard_Program_Error
);
10096 end Raise_Accessibility_Error
;
10098 ----------------------
10099 -- Real_Range_Check --
10100 ----------------------
10102 -- Case of conversions to floating-point or fixed-point. If range checks
10103 -- are enabled and the target type has a range constraint, we convert:
10109 -- Tnn : typ'Base := typ'Base (x);
10110 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
10113 -- This is necessary when there is a conversion of integer to float or
10114 -- to fixed-point to ensure that the correct checks are made. It is not
10115 -- necessary for float to float where it is enough to simply set the
10116 -- Do_Range_Check flag.
10118 procedure Real_Range_Check
is
10119 Btyp
: constant Entity_Id
:= Base_Type
(Target_Type
);
10120 Lo
: constant Node_Id
:= Type_Low_Bound
(Target_Type
);
10121 Hi
: constant Node_Id
:= Type_High_Bound
(Target_Type
);
10122 Xtyp
: constant Entity_Id
:= Etype
(Operand
);
10127 -- Nothing to do if conversion was rewritten
10129 if Nkind
(N
) /= N_Type_Conversion
then
10133 -- Nothing to do if range checks suppressed, or target has the same
10134 -- range as the base type (or is the base type).
10136 if Range_Checks_Suppressed
(Target_Type
)
10137 or else (Lo
= Type_Low_Bound
(Btyp
)
10139 Hi
= Type_High_Bound
(Btyp
))
10144 -- Nothing to do if expression is an entity on which checks have been
10147 if Is_Entity_Name
(Operand
)
10148 and then Range_Checks_Suppressed
(Entity
(Operand
))
10153 -- Nothing to do if bounds are all static and we can tell that the
10154 -- expression is within the bounds of the target. Note that if the
10155 -- operand is of an unconstrained floating-point type, then we do
10156 -- not trust it to be in range (might be infinite)
10159 S_Lo
: constant Node_Id
:= Type_Low_Bound
(Xtyp
);
10160 S_Hi
: constant Node_Id
:= Type_High_Bound
(Xtyp
);
10163 if (not Is_Floating_Point_Type
(Xtyp
)
10164 or else Is_Constrained
(Xtyp
))
10165 and then Compile_Time_Known_Value
(S_Lo
)
10166 and then Compile_Time_Known_Value
(S_Hi
)
10167 and then Compile_Time_Known_Value
(Hi
)
10168 and then Compile_Time_Known_Value
(Lo
)
10171 D_Lov
: constant Ureal
:= Expr_Value_R
(Lo
);
10172 D_Hiv
: constant Ureal
:= Expr_Value_R
(Hi
);
10177 if Is_Real_Type
(Xtyp
) then
10178 S_Lov
:= Expr_Value_R
(S_Lo
);
10179 S_Hiv
:= Expr_Value_R
(S_Hi
);
10181 S_Lov
:= UR_From_Uint
(Expr_Value
(S_Lo
));
10182 S_Hiv
:= UR_From_Uint
(Expr_Value
(S_Hi
));
10186 and then S_Lov
>= D_Lov
10187 and then S_Hiv
<= D_Hiv
10189 -- Unset the range check flag on the current value of
10190 -- Expression (N), since the captured Operand may have
10191 -- been rewritten (such as for the case of a conversion
10192 -- to a fixed-point type).
10194 Set_Do_Range_Check
(Expression
(N
), False);
10202 -- For float to float conversions, we are done
10204 if Is_Floating_Point_Type
(Xtyp
)
10206 Is_Floating_Point_Type
(Btyp
)
10211 -- Otherwise rewrite the conversion as described above
10213 Conv
:= Relocate_Node
(N
);
10214 Rewrite
(Subtype_Mark
(Conv
), New_Occurrence_Of
(Btyp
, Loc
));
10215 Set_Etype
(Conv
, Btyp
);
10217 -- Enable overflow except for case of integer to float conversions,
10218 -- where it is never required, since we can never have overflow in
10221 if not Is_Integer_Type
(Etype
(Operand
)) then
10222 Enable_Overflow_Check
(Conv
);
10225 Tnn
:= Make_Temporary
(Loc
, 'T', Conv
);
10227 Insert_Actions
(N
, New_List
(
10228 Make_Object_Declaration
(Loc
,
10229 Defining_Identifier
=> Tnn
,
10230 Object_Definition
=> New_Occurrence_Of
(Btyp
, Loc
),
10231 Constant_Present
=> True,
10232 Expression
=> Conv
),
10234 Make_Raise_Constraint_Error
(Loc
,
10239 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
10241 Make_Attribute_Reference
(Loc
,
10242 Attribute_Name
=> Name_First
,
10244 New_Occurrence_Of
(Target_Type
, Loc
))),
10248 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
10250 Make_Attribute_Reference
(Loc
,
10251 Attribute_Name
=> Name_Last
,
10253 New_Occurrence_Of
(Target_Type
, Loc
)))),
10254 Reason
=> CE_Range_Check_Failed
)));
10256 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
10257 Analyze_And_Resolve
(N
, Btyp
);
10258 end Real_Range_Check
;
10260 -----------------------------
10261 -- Has_Extra_Accessibility --
10262 -----------------------------
10264 -- Returns true for a formal of an anonymous access type or for
10265 -- an Ada 2012-style stand-alone object of an anonymous access type.
10267 function Has_Extra_Accessibility
(Id
: Entity_Id
) return Boolean is
10269 if Is_Formal
(Id
) or else Ekind_In
(Id
, E_Constant
, E_Variable
) then
10270 return Present
(Effective_Extra_Accessibility
(Id
));
10274 end Has_Extra_Accessibility
;
10276 -- Start of processing for Expand_N_Type_Conversion
10279 -- First remove check marks put by the semantic analysis on the type
10280 -- conversion between array types. We need these checks, and they will
10281 -- be generated by this expansion routine, but we do not depend on these
10282 -- flags being set, and since we do intend to expand the checks in the
10283 -- front end, we don't want them on the tree passed to the back end.
10285 if Is_Array_Type
(Target_Type
) then
10286 if Is_Constrained
(Target_Type
) then
10287 Set_Do_Length_Check
(N
, False);
10289 Set_Do_Range_Check
(Operand
, False);
10293 -- Nothing at all to do if conversion is to the identical type so remove
10294 -- the conversion completely, it is useless, except that it may carry
10295 -- an Assignment_OK attribute, which must be propagated to the operand.
10297 if Operand_Type
= Target_Type
then
10298 if Assignment_OK
(N
) then
10299 Set_Assignment_OK
(Operand
);
10302 Rewrite
(N
, Relocate_Node
(Operand
));
10306 -- Nothing to do if this is the second argument of read. This is a
10307 -- "backwards" conversion that will be handled by the specialized code
10308 -- in attribute processing.
10310 if Nkind
(Parent
(N
)) = N_Attribute_Reference
10311 and then Attribute_Name
(Parent
(N
)) = Name_Read
10312 and then Next
(First
(Expressions
(Parent
(N
)))) = N
10317 -- Check for case of converting to a type that has an invariant
10318 -- associated with it. This required an invariant check. We convert
10324 -- do invariant_check (typ (expr)) in typ (expr);
10326 -- using Duplicate_Subexpr to avoid multiple side effects
10328 -- Note: the Comes_From_Source check, and then the resetting of this
10329 -- flag prevents what would otherwise be an infinite recursion.
10331 if Has_Invariants
(Target_Type
)
10332 and then Present
(Invariant_Procedure
(Target_Type
))
10333 and then Comes_From_Source
(N
)
10335 Set_Comes_From_Source
(N
, False);
10337 Make_Expression_With_Actions
(Loc
,
10338 Actions
=> New_List
(
10339 Make_Invariant_Call
(Duplicate_Subexpr
(N
))),
10340 Expression
=> Duplicate_Subexpr_No_Checks
(N
)));
10341 Analyze_And_Resolve
(N
, Target_Type
);
10345 -- Here if we may need to expand conversion
10347 -- If the operand of the type conversion is an arithmetic operation on
10348 -- signed integers, and the based type of the signed integer type in
10349 -- question is smaller than Standard.Integer, we promote both of the
10350 -- operands to type Integer.
10352 -- For example, if we have
10354 -- target-type (opnd1 + opnd2)
10356 -- and opnd1 and opnd2 are of type short integer, then we rewrite
10359 -- target-type (integer(opnd1) + integer(opnd2))
10361 -- We do this because we are always allowed to compute in a larger type
10362 -- if we do the right thing with the result, and in this case we are
10363 -- going to do a conversion which will do an appropriate check to make
10364 -- sure that things are in range of the target type in any case. This
10365 -- avoids some unnecessary intermediate overflows.
10367 -- We might consider a similar transformation in the case where the
10368 -- target is a real type or a 64-bit integer type, and the operand
10369 -- is an arithmetic operation using a 32-bit integer type. However,
10370 -- we do not bother with this case, because it could cause significant
10371 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
10372 -- much cheaper, but we don't want different behavior on 32-bit and
10373 -- 64-bit machines. Note that the exclusion of the 64-bit case also
10374 -- handles the configurable run-time cases where 64-bit arithmetic
10375 -- may simply be unavailable.
10377 -- Note: this circuit is partially redundant with respect to the circuit
10378 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
10379 -- the processing here. Also we still need the Checks circuit, since we
10380 -- have to be sure not to generate junk overflow checks in the first
10381 -- place, since it would be trick to remove them here.
10383 if Integer_Promotion_Possible
(N
) then
10385 -- All conditions met, go ahead with transformation
10393 Make_Type_Conversion
(Loc
,
10394 Subtype_Mark
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
10395 Expression
=> Relocate_Node
(Right_Opnd
(Operand
)));
10397 Opnd
:= New_Op_Node
(Nkind
(Operand
), Loc
);
10398 Set_Right_Opnd
(Opnd
, R
);
10400 if Nkind
(Operand
) in N_Binary_Op
then
10402 Make_Type_Conversion
(Loc
,
10403 Subtype_Mark
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
10404 Expression
=> Relocate_Node
(Left_Opnd
(Operand
)));
10406 Set_Left_Opnd
(Opnd
, L
);
10410 Make_Type_Conversion
(Loc
,
10411 Subtype_Mark
=> Relocate_Node
(Subtype_Mark
(N
)),
10412 Expression
=> Opnd
));
10414 Analyze_And_Resolve
(N
, Target_Type
);
10419 -- Do validity check if validity checking operands
10421 if Validity_Checks_On
and Validity_Check_Operands
then
10422 Ensure_Valid
(Operand
);
10425 -- Special case of converting from non-standard boolean type
10427 if Is_Boolean_Type
(Operand_Type
)
10428 and then (Nonzero_Is_True
(Operand_Type
))
10430 Adjust_Condition
(Operand
);
10431 Set_Etype
(Operand
, Standard_Boolean
);
10432 Operand_Type
:= Standard_Boolean
;
10435 -- Case of converting to an access type
10437 if Is_Access_Type
(Target_Type
) then
10439 -- Apply an accessibility check when the conversion operand is an
10440 -- access parameter (or a renaming thereof), unless conversion was
10441 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
10442 -- Note that other checks may still need to be applied below (such
10443 -- as tagged type checks).
10445 if Is_Entity_Name
(Operand
)
10446 and then Has_Extra_Accessibility
(Entity
(Operand
))
10447 and then Ekind
(Etype
(Operand
)) = E_Anonymous_Access_Type
10448 and then (Nkind
(Original_Node
(N
)) /= N_Attribute_Reference
10449 or else Attribute_Name
(Original_Node
(N
)) = Name_Access
)
10451 Apply_Accessibility_Check
10452 (Operand
, Target_Type
, Insert_Node
=> Operand
);
10454 -- If the level of the operand type is statically deeper than the
10455 -- level of the target type, then force Program_Error. Note that this
10456 -- can only occur for cases where the attribute is within the body of
10457 -- an instantiation, otherwise the conversion will already have been
10458 -- rejected as illegal.
10460 -- Note: warnings are issued by the analyzer for the instance cases
10462 elsif In_Instance_Body
10464 -- The case where the target type is an anonymous access type of
10465 -- a discriminant is excluded, because the level of such a type
10466 -- depends on the context and currently the level returned for such
10467 -- types is zero, resulting in warnings about about check failures
10468 -- in certain legal cases involving class-wide interfaces as the
10469 -- designated type (some cases, such as return statements, are
10470 -- checked at run time, but not clear if these are handled right
10471 -- in general, see 3.10.2(12/2-12.5/3) ???).
10474 not (Ekind
(Target_Type
) = E_Anonymous_Access_Type
10475 and then Present
(Associated_Node_For_Itype
(Target_Type
))
10476 and then Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
10477 N_Discriminant_Specification
)
10479 Type_Access_Level
(Operand_Type
) > Type_Access_Level
(Target_Type
)
10481 Raise_Accessibility_Error
;
10484 -- When the operand is a selected access discriminant the check needs
10485 -- to be made against the level of the object denoted by the prefix
10486 -- of the selected name. Force Program_Error for this case as well
10487 -- (this accessibility violation can only happen if within the body
10488 -- of an instantiation).
10490 elsif In_Instance_Body
10491 and then Ekind
(Operand_Type
) = E_Anonymous_Access_Type
10492 and then Nkind
(Operand
) = N_Selected_Component
10493 and then Object_Access_Level
(Operand
) >
10494 Type_Access_Level
(Target_Type
)
10496 Raise_Accessibility_Error
;
10501 -- Case of conversions of tagged types and access to tagged types
10503 -- When needed, that is to say when the expression is class-wide, Add
10504 -- runtime a tag check for (strict) downward conversion by using the
10505 -- membership test, generating:
10507 -- [constraint_error when Operand not in Target_Type'Class]
10509 -- or in the access type case
10511 -- [constraint_error
10512 -- when Operand /= null
10513 -- and then Operand.all not in
10514 -- Designated_Type (Target_Type)'Class]
10516 if (Is_Access_Type
(Target_Type
)
10517 and then Is_Tagged_Type
(Designated_Type
(Target_Type
)))
10518 or else Is_Tagged_Type
(Target_Type
)
10520 -- Do not do any expansion in the access type case if the parent is a
10521 -- renaming, since this is an error situation which will be caught by
10522 -- Sem_Ch8, and the expansion can interfere with this error check.
10524 if Is_Access_Type
(Target_Type
) and then Is_Renamed_Object
(N
) then
10528 -- Otherwise, proceed with processing tagged conversion
10530 Tagged_Conversion
: declare
10531 Actual_Op_Typ
: Entity_Id
;
10532 Actual_Targ_Typ
: Entity_Id
;
10533 Make_Conversion
: Boolean := False;
10534 Root_Op_Typ
: Entity_Id
;
10536 procedure Make_Tag_Check
(Targ_Typ
: Entity_Id
);
10537 -- Create a membership check to test whether Operand is a member
10538 -- of Targ_Typ. If the original Target_Type is an access, include
10539 -- a test for null value. The check is inserted at N.
10541 --------------------
10542 -- Make_Tag_Check --
10543 --------------------
10545 procedure Make_Tag_Check
(Targ_Typ
: Entity_Id
) is
10550 -- [Constraint_Error
10551 -- when Operand /= null
10552 -- and then Operand.all not in Targ_Typ]
10554 if Is_Access_Type
(Target_Type
) then
10556 Make_And_Then
(Loc
,
10559 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Operand
),
10560 Right_Opnd
=> Make_Null
(Loc
)),
10565 Make_Explicit_Dereference
(Loc
,
10566 Prefix
=> Duplicate_Subexpr_No_Checks
(Operand
)),
10567 Right_Opnd
=> New_Occurrence_Of
(Targ_Typ
, Loc
)));
10570 -- [Constraint_Error when Operand not in Targ_Typ]
10575 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Operand
),
10576 Right_Opnd
=> New_Occurrence_Of
(Targ_Typ
, Loc
));
10580 Make_Raise_Constraint_Error
(Loc
,
10582 Reason
=> CE_Tag_Check_Failed
));
10583 end Make_Tag_Check
;
10585 -- Start of processing for Tagged_Conversion
10588 -- Handle entities from the limited view
10590 if Is_Access_Type
(Operand_Type
) then
10592 Available_View
(Designated_Type
(Operand_Type
));
10594 Actual_Op_Typ
:= Operand_Type
;
10597 if Is_Access_Type
(Target_Type
) then
10599 Available_View
(Designated_Type
(Target_Type
));
10601 Actual_Targ_Typ
:= Target_Type
;
10604 Root_Op_Typ
:= Root_Type
(Actual_Op_Typ
);
10606 -- Ada 2005 (AI-251): Handle interface type conversion
10608 if Is_Interface
(Actual_Op_Typ
)
10610 Is_Interface
(Actual_Targ_Typ
)
10612 Expand_Interface_Conversion
(N
);
10616 if not Tag_Checks_Suppressed
(Actual_Targ_Typ
) then
10618 -- Create a runtime tag check for a downward class-wide type
10621 if Is_Class_Wide_Type
(Actual_Op_Typ
)
10622 and then Actual_Op_Typ
/= Actual_Targ_Typ
10623 and then Root_Op_Typ
/= Actual_Targ_Typ
10624 and then Is_Ancestor
(Root_Op_Typ
, Actual_Targ_Typ
,
10625 Use_Full_View
=> True)
10627 Make_Tag_Check
(Class_Wide_Type
(Actual_Targ_Typ
));
10628 Make_Conversion
:= True;
10631 -- AI05-0073: If the result subtype of the function is defined
10632 -- by an access_definition designating a specific tagged type
10633 -- T, a check is made that the result value is null or the tag
10634 -- of the object designated by the result value identifies T.
10635 -- Constraint_Error is raised if this check fails.
10637 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
10640 Func_Typ
: Entity_Id
;
10643 -- Climb scope stack looking for the enclosing function
10645 Func
:= Current_Scope
;
10646 while Present
(Func
)
10647 and then Ekind
(Func
) /= E_Function
10649 Func
:= Scope
(Func
);
10652 -- The function's return subtype must be defined using
10653 -- an access definition.
10655 if Nkind
(Result_Definition
(Parent
(Func
))) =
10656 N_Access_Definition
10658 Func_Typ
:= Directly_Designated_Type
(Etype
(Func
));
10660 -- The return subtype denotes a specific tagged type,
10661 -- in other words, a non class-wide type.
10663 if Is_Tagged_Type
(Func_Typ
)
10664 and then not Is_Class_Wide_Type
(Func_Typ
)
10666 Make_Tag_Check
(Actual_Targ_Typ
);
10667 Make_Conversion
:= True;
10673 -- We have generated a tag check for either a class-wide type
10674 -- conversion or for AI05-0073.
10676 if Make_Conversion
then
10681 Make_Unchecked_Type_Conversion
(Loc
,
10682 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
10683 Expression
=> Relocate_Node
(Expression
(N
)));
10685 Analyze_And_Resolve
(N
, Target_Type
);
10689 end Tagged_Conversion
;
10691 -- Case of other access type conversions
10693 elsif Is_Access_Type
(Target_Type
) then
10694 Apply_Constraint_Check
(Operand
, Target_Type
);
10696 -- Case of conversions from a fixed-point type
10698 -- These conversions require special expansion and processing, found in
10699 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
10700 -- since from a semantic point of view, these are simple integer
10701 -- conversions, which do not need further processing.
10703 elsif Is_Fixed_Point_Type
(Operand_Type
)
10704 and then not Conversion_OK
(N
)
10706 -- We should never see universal fixed at this case, since the
10707 -- expansion of the constituent divide or multiply should have
10708 -- eliminated the explicit mention of universal fixed.
10710 pragma Assert
(Operand_Type
/= Universal_Fixed
);
10712 -- Check for special case of the conversion to universal real that
10713 -- occurs as a result of the use of a round attribute. In this case,
10714 -- the real type for the conversion is taken from the target type of
10715 -- the Round attribute and the result must be marked as rounded.
10717 if Target_Type
= Universal_Real
10718 and then Nkind
(Parent
(N
)) = N_Attribute_Reference
10719 and then Attribute_Name
(Parent
(N
)) = Name_Round
10721 Set_Rounded_Result
(N
);
10722 Set_Etype
(N
, Etype
(Parent
(N
)));
10725 -- Otherwise do correct fixed-conversion, but skip these if the
10726 -- Conversion_OK flag is set, because from a semantic point of view
10727 -- these are simple integer conversions needing no further processing
10728 -- (the backend will simply treat them as integers).
10730 if not Conversion_OK
(N
) then
10731 if Is_Fixed_Point_Type
(Etype
(N
)) then
10732 Expand_Convert_Fixed_To_Fixed
(N
);
10735 elsif Is_Integer_Type
(Etype
(N
)) then
10736 Expand_Convert_Fixed_To_Integer
(N
);
10739 pragma Assert
(Is_Floating_Point_Type
(Etype
(N
)));
10740 Expand_Convert_Fixed_To_Float
(N
);
10745 -- Case of conversions to a fixed-point type
10747 -- These conversions require special expansion and processing, found in
10748 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
10749 -- since from a semantic point of view, these are simple integer
10750 -- conversions, which do not need further processing.
10752 elsif Is_Fixed_Point_Type
(Target_Type
)
10753 and then not Conversion_OK
(N
)
10755 if Is_Integer_Type
(Operand_Type
) then
10756 Expand_Convert_Integer_To_Fixed
(N
);
10759 pragma Assert
(Is_Floating_Point_Type
(Operand_Type
));
10760 Expand_Convert_Float_To_Fixed
(N
);
10764 -- Case of float-to-integer conversions
10766 -- We also handle float-to-fixed conversions with Conversion_OK set
10767 -- since semantically the fixed-point target is treated as though it
10768 -- were an integer in such cases.
10770 elsif Is_Floating_Point_Type
(Operand_Type
)
10772 (Is_Integer_Type
(Target_Type
)
10774 (Is_Fixed_Point_Type
(Target_Type
) and then Conversion_OK
(N
)))
10776 -- One more check here, gcc is still not able to do conversions of
10777 -- this type with proper overflow checking, and so gigi is doing an
10778 -- approximation of what is required by doing floating-point compares
10779 -- with the end-point. But that can lose precision in some cases, and
10780 -- give a wrong result. Converting the operand to Universal_Real is
10781 -- helpful, but still does not catch all cases with 64-bit integers
10782 -- on targets with only 64-bit floats.
10784 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
10785 -- Can this code be removed ???
10787 if Do_Range_Check
(Operand
) then
10789 Make_Type_Conversion
(Loc
,
10791 New_Occurrence_Of
(Universal_Real
, Loc
),
10793 Relocate_Node
(Operand
)));
10795 Set_Etype
(Operand
, Universal_Real
);
10796 Enable_Range_Check
(Operand
);
10797 Set_Do_Range_Check
(Expression
(Operand
), False);
10800 -- Case of array conversions
10802 -- Expansion of array conversions, add required length/range checks but
10803 -- only do this if there is no change of representation. For handling of
10804 -- this case, see Handle_Changed_Representation.
10806 elsif Is_Array_Type
(Target_Type
) then
10807 if Is_Constrained
(Target_Type
) then
10808 Apply_Length_Check
(Operand
, Target_Type
);
10810 Apply_Range_Check
(Operand
, Target_Type
);
10813 Handle_Changed_Representation
;
10815 -- Case of conversions of discriminated types
10817 -- Add required discriminant checks if target is constrained. Again this
10818 -- change is skipped if we have a change of representation.
10820 elsif Has_Discriminants
(Target_Type
)
10821 and then Is_Constrained
(Target_Type
)
10823 Apply_Discriminant_Check
(Operand
, Target_Type
);
10824 Handle_Changed_Representation
;
10826 -- Case of all other record conversions. The only processing required
10827 -- is to check for a change of representation requiring the special
10828 -- assignment processing.
10830 elsif Is_Record_Type
(Target_Type
) then
10832 -- Ada 2005 (AI-216): Program_Error is raised when converting from
10833 -- a derived Unchecked_Union type to an unconstrained type that is
10834 -- not Unchecked_Union if the operand lacks inferable discriminants.
10836 if Is_Derived_Type
(Operand_Type
)
10837 and then Is_Unchecked_Union
(Base_Type
(Operand_Type
))
10838 and then not Is_Constrained
(Target_Type
)
10839 and then not Is_Unchecked_Union
(Base_Type
(Target_Type
))
10840 and then not Has_Inferable_Discriminants
(Operand
)
10842 -- To prevent Gigi from generating illegal code, we generate a
10843 -- Program_Error node, but we give it the target type of the
10844 -- conversion (is this requirement documented somewhere ???)
10847 PE
: constant Node_Id
:= Make_Raise_Program_Error
(Loc
,
10848 Reason
=> PE_Unchecked_Union_Restriction
);
10851 Set_Etype
(PE
, Target_Type
);
10856 Handle_Changed_Representation
;
10859 -- Case of conversions of enumeration types
10861 elsif Is_Enumeration_Type
(Target_Type
) then
10863 -- Special processing is required if there is a change of
10864 -- representation (from enumeration representation clauses).
10866 if not Same_Representation
(Target_Type
, Operand_Type
) then
10868 -- Convert: x(y) to x'val (ytyp'val (y))
10871 Make_Attribute_Reference
(Loc
,
10872 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
10873 Attribute_Name
=> Name_Val
,
10874 Expressions
=> New_List
(
10875 Make_Attribute_Reference
(Loc
,
10876 Prefix
=> New_Occurrence_Of
(Operand_Type
, Loc
),
10877 Attribute_Name
=> Name_Pos
,
10878 Expressions
=> New_List
(Operand
)))));
10880 Analyze_And_Resolve
(N
, Target_Type
);
10883 -- Case of conversions to floating-point
10885 elsif Is_Floating_Point_Type
(Target_Type
) then
10889 -- At this stage, either the conversion node has been transformed into
10890 -- some other equivalent expression, or left as a conversion that can be
10891 -- handled by Gigi, in the following cases:
10893 -- Conversions with no change of representation or type
10895 -- Numeric conversions involving integer, floating- and fixed-point
10896 -- values. Fixed-point values are allowed only if Conversion_OK is
10897 -- set, i.e. if the fixed-point values are to be treated as integers.
10899 -- No other conversions should be passed to Gigi
10901 -- Check: are these rules stated in sinfo??? if so, why restate here???
10903 -- The only remaining step is to generate a range check if we still have
10904 -- a type conversion at this stage and Do_Range_Check is set. For now we
10905 -- do this only for conversions of discrete types and for float-to-float
10908 if Nkind
(N
) = N_Type_Conversion
then
10910 -- For now we only support floating-point cases where both source
10911 -- and target are floating-point types. Conversions where the source
10912 -- and target involve integer or fixed-point types are still TBD,
10913 -- though not clear whether those can even happen at this point, due
10914 -- to transformations above. ???
10916 if Is_Floating_Point_Type
(Etype
(N
))
10917 and then Is_Floating_Point_Type
(Etype
(Expression
(N
)))
10919 if Do_Range_Check
(Expression
(N
))
10920 and then Is_Floating_Point_Type
(Target_Type
)
10922 Generate_Range_Check
10923 (Expression
(N
), Target_Type
, CE_Range_Check_Failed
);
10926 -- Discrete-to-discrete conversions
10928 elsif Is_Discrete_Type
(Etype
(N
)) then
10930 Expr
: constant Node_Id
:= Expression
(N
);
10935 if Do_Range_Check
(Expr
)
10936 and then Is_Discrete_Type
(Etype
(Expr
))
10938 Set_Do_Range_Check
(Expr
, False);
10940 -- Before we do a range check, we have to deal with treating
10941 -- a fixed-point operand as an integer. The way we do this
10942 -- is simply to do an unchecked conversion to an appropriate
10943 -- integer type large enough to hold the result.
10945 -- This code is not active yet, because we are only dealing
10946 -- with discrete types so far ???
10948 if Nkind
(Expr
) in N_Has_Treat_Fixed_As_Integer
10949 and then Treat_Fixed_As_Integer
(Expr
)
10951 Ftyp
:= Base_Type
(Etype
(Expr
));
10953 if Esize
(Ftyp
) >= Esize
(Standard_Integer
) then
10954 Ityp
:= Standard_Long_Long_Integer
;
10956 Ityp
:= Standard_Integer
;
10959 Rewrite
(Expr
, Unchecked_Convert_To
(Ityp
, Expr
));
10962 -- Reset overflow flag, since the range check will include
10963 -- dealing with possible overflow, and generate the check.
10964 -- If Address is either a source type or target type,
10965 -- suppress range check to avoid typing anomalies when
10966 -- it is a visible integer type.
10968 Set_Do_Overflow_Check
(N
, False);
10970 if not Is_Descendent_Of_Address
(Etype
(Expr
))
10971 and then not Is_Descendent_Of_Address
(Target_Type
)
10973 Generate_Range_Check
10974 (Expr
, Target_Type
, CE_Range_Check_Failed
);
10981 -- Here at end of processing
10984 -- Apply predicate check if required. Note that we can't just call
10985 -- Apply_Predicate_Check here, because the type looks right after
10986 -- the conversion and it would omit the check. The Comes_From_Source
10987 -- guard is necessary to prevent infinite recursions when we generate
10988 -- internal conversions for the purpose of checking predicates.
10990 if Present
(Predicate_Function
(Target_Type
))
10991 and then Target_Type
/= Operand_Type
10992 and then Comes_From_Source
(N
)
10995 New_Expr
: constant Node_Id
:= Duplicate_Subexpr
(N
);
10998 -- Avoid infinite recursion on the subsequent expansion of
10999 -- of the copy of the original type conversion.
11001 Set_Comes_From_Source
(New_Expr
, False);
11002 Insert_Action
(N
, Make_Predicate_Check
(Target_Type
, New_Expr
));
11005 end Expand_N_Type_Conversion
;
11007 -----------------------------------
11008 -- Expand_N_Unchecked_Expression --
11009 -----------------------------------
11011 -- Remove the unchecked expression node from the tree. Its job was simply
11012 -- to make sure that its constituent expression was handled with checks
11013 -- off, and now that that is done, we can remove it from the tree, and
11014 -- indeed must, since Gigi does not expect to see these nodes.
11016 procedure Expand_N_Unchecked_Expression
(N
: Node_Id
) is
11017 Exp
: constant Node_Id
:= Expression
(N
);
11019 Set_Assignment_OK
(Exp
, Assignment_OK
(N
) or else Assignment_OK
(Exp
));
11021 end Expand_N_Unchecked_Expression
;
11023 ----------------------------------------
11024 -- Expand_N_Unchecked_Type_Conversion --
11025 ----------------------------------------
11027 -- If this cannot be handled by Gigi and we haven't already made a
11028 -- temporary for it, do it now.
11030 procedure Expand_N_Unchecked_Type_Conversion
(N
: Node_Id
) is
11031 Target_Type
: constant Entity_Id
:= Etype
(N
);
11032 Operand
: constant Node_Id
:= Expression
(N
);
11033 Operand_Type
: constant Entity_Id
:= Etype
(Operand
);
11036 -- Nothing at all to do if conversion is to the identical type so remove
11037 -- the conversion completely, it is useless, except that it may carry
11038 -- an Assignment_OK indication which must be propagated to the operand.
11040 if Operand_Type
= Target_Type
then
11042 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
11044 if Assignment_OK
(N
) then
11045 Set_Assignment_OK
(Operand
);
11048 Rewrite
(N
, Relocate_Node
(Operand
));
11052 -- If we have a conversion of a compile time known value to a target
11053 -- type and the value is in range of the target type, then we can simply
11054 -- replace the construct by an integer literal of the correct type. We
11055 -- only apply this to integer types being converted. Possibly it may
11056 -- apply in other cases, but it is too much trouble to worry about.
11058 -- Note that we do not do this transformation if the Kill_Range_Check
11059 -- flag is set, since then the value may be outside the expected range.
11060 -- This happens in the Normalize_Scalars case.
11062 -- We also skip this if either the target or operand type is biased
11063 -- because in this case, the unchecked conversion is supposed to
11064 -- preserve the bit pattern, not the integer value.
11066 if Is_Integer_Type
(Target_Type
)
11067 and then not Has_Biased_Representation
(Target_Type
)
11068 and then Is_Integer_Type
(Operand_Type
)
11069 and then not Has_Biased_Representation
(Operand_Type
)
11070 and then Compile_Time_Known_Value
(Operand
)
11071 and then not Kill_Range_Check
(N
)
11074 Val
: constant Uint
:= Expr_Value
(Operand
);
11077 if Compile_Time_Known_Value
(Type_Low_Bound
(Target_Type
))
11079 Compile_Time_Known_Value
(Type_High_Bound
(Target_Type
))
11081 Val
>= Expr_Value
(Type_Low_Bound
(Target_Type
))
11083 Val
<= Expr_Value
(Type_High_Bound
(Target_Type
))
11085 Rewrite
(N
, Make_Integer_Literal
(Sloc
(N
), Val
));
11087 -- If Address is the target type, just set the type to avoid a
11088 -- spurious type error on the literal when Address is a visible
11091 if Is_Descendent_Of_Address
(Target_Type
) then
11092 Set_Etype
(N
, Target_Type
);
11094 Analyze_And_Resolve
(N
, Target_Type
);
11102 -- Nothing to do if conversion is safe
11104 if Safe_Unchecked_Type_Conversion
(N
) then
11108 -- Otherwise force evaluation unless Assignment_OK flag is set (this
11109 -- flag indicates ??? More comments needed here)
11111 if Assignment_OK
(N
) then
11114 Force_Evaluation
(N
);
11116 end Expand_N_Unchecked_Type_Conversion
;
11118 ----------------------------
11119 -- Expand_Record_Equality --
11120 ----------------------------
11122 -- For non-variant records, Equality is expanded when needed into:
11124 -- and then Lhs.Discr1 = Rhs.Discr1
11126 -- and then Lhs.Discrn = Rhs.Discrn
11127 -- and then Lhs.Cmp1 = Rhs.Cmp1
11129 -- and then Lhs.Cmpn = Rhs.Cmpn
11131 -- The expression is folded by the back-end for adjacent fields. This
11132 -- function is called for tagged record in only one occasion: for imple-
11133 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
11134 -- otherwise the primitive "=" is used directly.
11136 function Expand_Record_Equality
11141 Bodies
: List_Id
) return Node_Id
11143 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
11148 First_Time
: Boolean := True;
11150 function Element_To_Compare
(C
: Entity_Id
) return Entity_Id
;
11151 -- Return the next discriminant or component to compare, starting with
11152 -- C, skipping inherited components.
11154 ------------------------
11155 -- Element_To_Compare --
11156 ------------------------
11158 function Element_To_Compare
(C
: Entity_Id
) return Entity_Id
is
11164 -- Exit loop when the next element to be compared is found, or
11165 -- there is no more such element.
11167 exit when No
(Comp
);
11169 exit when Ekind_In
(Comp
, E_Discriminant
, E_Component
)
11172 -- Skip inherited components
11174 -- Note: for a tagged type, we always generate the "=" primitive
11175 -- for the base type (not on the first subtype), so the test for
11176 -- Comp /= Original_Record_Component (Comp) is True for
11177 -- inherited components only.
11179 (Is_Tagged_Type
(Typ
)
11180 and then Comp
/= Original_Record_Component
(Comp
))
11184 or else Chars
(Comp
) = Name_uTag
11186 -- The .NET/JVM version of type Root_Controlled contains two
11187 -- fields which should not be considered part of the object. To
11188 -- achieve proper equiality between two controlled objects on
11189 -- .NET/JVM, skip _Parent whenever it has type Root_Controlled.
11191 or else (Chars
(Comp
) = Name_uParent
11192 and then VM_Target
/= No_VM
11193 and then Etype
(Comp
) = RTE
(RE_Root_Controlled
))
11195 -- Skip interface elements (secondary tags???)
11197 or else Is_Interface
(Etype
(Comp
)));
11199 Next_Entity
(Comp
);
11203 end Element_To_Compare
;
11205 -- Start of processing for Expand_Record_Equality
11208 -- Generates the following code: (assuming that Typ has one Discr and
11209 -- component C2 is also a record)
11212 -- and then Lhs.Discr1 = Rhs.Discr1
11213 -- and then Lhs.C1 = Rhs.C1
11214 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
11216 -- and then Lhs.Cmpn = Rhs.Cmpn
11218 Result
:= New_Occurrence_Of
(Standard_True
, Loc
);
11219 C
:= Element_To_Compare
(First_Entity
(Typ
));
11220 while Present
(C
) loop
11228 First_Time
:= False;
11232 New_Lhs
:= New_Copy_Tree
(Lhs
);
11233 New_Rhs
:= New_Copy_Tree
(Rhs
);
11237 Expand_Composite_Equality
(Nod
, Etype
(C
),
11239 Make_Selected_Component
(Loc
,
11241 Selector_Name
=> New_Occurrence_Of
(C
, Loc
)),
11243 Make_Selected_Component
(Loc
,
11245 Selector_Name
=> New_Occurrence_Of
(C
, Loc
)),
11248 -- If some (sub)component is an unchecked_union, the whole
11249 -- operation will raise program error.
11251 if Nkind
(Check
) = N_Raise_Program_Error
then
11253 Set_Etype
(Result
, Standard_Boolean
);
11257 Make_And_Then
(Loc
,
11258 Left_Opnd
=> Result
,
11259 Right_Opnd
=> Check
);
11263 C
:= Element_To_Compare
(Next_Entity
(C
));
11267 end Expand_Record_Equality
;
11269 ---------------------------
11270 -- Expand_Set_Membership --
11271 ---------------------------
11273 procedure Expand_Set_Membership
(N
: Node_Id
) is
11274 Lop
: constant Node_Id
:= Left_Opnd
(N
);
11278 function Make_Cond
(Alt
: Node_Id
) return Node_Id
;
11279 -- If the alternative is a subtype mark, create a simple membership
11280 -- test. Otherwise create an equality test for it.
11286 function Make_Cond
(Alt
: Node_Id
) return Node_Id
is
11288 L
: constant Node_Id
:= New_Copy
(Lop
);
11289 R
: constant Node_Id
:= Relocate_Node
(Alt
);
11292 if (Is_Entity_Name
(Alt
) and then Is_Type
(Entity
(Alt
)))
11293 or else Nkind
(Alt
) = N_Range
11296 Make_In
(Sloc
(Alt
),
11301 Make_Op_Eq
(Sloc
(Alt
),
11309 -- Start of processing for Expand_Set_Membership
11312 Remove_Side_Effects
(Lop
);
11314 Alt
:= Last
(Alternatives
(N
));
11315 Res
:= Make_Cond
(Alt
);
11318 while Present
(Alt
) loop
11320 Make_Or_Else
(Sloc
(Alt
),
11321 Left_Opnd
=> Make_Cond
(Alt
),
11322 Right_Opnd
=> Res
);
11327 Analyze_And_Resolve
(N
, Standard_Boolean
);
11328 end Expand_Set_Membership
;
11330 -----------------------------------
11331 -- Expand_Short_Circuit_Operator --
11332 -----------------------------------
11334 -- Deal with special expansion if actions are present for the right operand
11335 -- and deal with optimizing case of arguments being True or False. We also
11336 -- deal with the special case of non-standard boolean values.
11338 procedure Expand_Short_Circuit_Operator
(N
: Node_Id
) is
11339 Loc
: constant Source_Ptr
:= Sloc
(N
);
11340 Typ
: constant Entity_Id
:= Etype
(N
);
11341 Left
: constant Node_Id
:= Left_Opnd
(N
);
11342 Right
: constant Node_Id
:= Right_Opnd
(N
);
11343 LocR
: constant Source_Ptr
:= Sloc
(Right
);
11346 Shortcut_Value
: constant Boolean := Nkind
(N
) = N_Or_Else
;
11347 Shortcut_Ent
: constant Entity_Id
:= Boolean_Literals
(Shortcut_Value
);
11348 -- If Left = Shortcut_Value then Right need not be evaluated
11351 -- Deal with non-standard booleans
11353 if Is_Boolean_Type
(Typ
) then
11354 Adjust_Condition
(Left
);
11355 Adjust_Condition
(Right
);
11356 Set_Etype
(N
, Standard_Boolean
);
11359 -- Check for cases where left argument is known to be True or False
11361 if Compile_Time_Known_Value
(Left
) then
11363 -- Mark SCO for left condition as compile time known
11365 if Generate_SCO
and then Comes_From_Source
(Left
) then
11366 Set_SCO_Condition
(Left
, Expr_Value_E
(Left
) = Standard_True
);
11369 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
11370 -- Any actions associated with Right will be executed unconditionally
11371 -- and can thus be inserted into the tree unconditionally.
11373 if Expr_Value_E
(Left
) /= Shortcut_Ent
then
11374 if Present
(Actions
(N
)) then
11375 Insert_Actions
(N
, Actions
(N
));
11378 Rewrite
(N
, Right
);
11380 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
11381 -- In this case we can forget the actions associated with Right,
11382 -- since they will never be executed.
11385 Kill_Dead_Code
(Right
);
11386 Kill_Dead_Code
(Actions
(N
));
11387 Rewrite
(N
, New_Occurrence_Of
(Shortcut_Ent
, Loc
));
11390 Adjust_Result_Type
(N
, Typ
);
11394 -- If Actions are present for the right operand, we have to do some
11395 -- special processing. We can't just let these actions filter back into
11396 -- code preceding the short circuit (which is what would have happened
11397 -- if we had not trapped them in the short-circuit form), since they
11398 -- must only be executed if the right operand of the short circuit is
11399 -- executed and not otherwise.
11401 if Present
(Actions
(N
)) then
11402 Actlist
:= Actions
(N
);
11404 -- We now use an Expression_With_Actions node for the right operand
11405 -- of the short-circuit form. Note that this solves the traceability
11406 -- problems for coverage analysis.
11409 Make_Expression_With_Actions
(LocR
,
11410 Expression
=> Relocate_Node
(Right
),
11411 Actions
=> Actlist
));
11412 Set_Actions
(N
, No_List
);
11413 Analyze_And_Resolve
(Right
, Standard_Boolean
);
11415 Adjust_Result_Type
(N
, Typ
);
11419 -- No actions present, check for cases of right argument True/False
11421 if Compile_Time_Known_Value
(Right
) then
11423 -- Mark SCO for left condition as compile time known
11425 if Generate_SCO
and then Comes_From_Source
(Right
) then
11426 Set_SCO_Condition
(Right
, Expr_Value_E
(Right
) = Standard_True
);
11429 -- Change (Left and then True), (Left or else False) to Left.
11430 -- Note that we know there are no actions associated with the right
11431 -- operand, since we just checked for this case above.
11433 if Expr_Value_E
(Right
) /= Shortcut_Ent
then
11436 -- Change (Left and then False), (Left or else True) to Right,
11437 -- making sure to preserve any side effects associated with the Left
11441 Remove_Side_Effects
(Left
);
11442 Rewrite
(N
, New_Occurrence_Of
(Shortcut_Ent
, Loc
));
11446 Adjust_Result_Type
(N
, Typ
);
11447 end Expand_Short_Circuit_Operator
;
11449 -------------------------------------
11450 -- Fixup_Universal_Fixed_Operation --
11451 -------------------------------------
11453 procedure Fixup_Universal_Fixed_Operation
(N
: Node_Id
) is
11454 Conv
: constant Node_Id
:= Parent
(N
);
11457 -- We must have a type conversion immediately above us
11459 pragma Assert
(Nkind
(Conv
) = N_Type_Conversion
);
11461 -- Normally the type conversion gives our target type. The exception
11462 -- occurs in the case of the Round attribute, where the conversion
11463 -- will be to universal real, and our real type comes from the Round
11464 -- attribute (as well as an indication that we must round the result)
11466 if Nkind
(Parent
(Conv
)) = N_Attribute_Reference
11467 and then Attribute_Name
(Parent
(Conv
)) = Name_Round
11469 Set_Etype
(N
, Etype
(Parent
(Conv
)));
11470 Set_Rounded_Result
(N
);
11472 -- Normal case where type comes from conversion above us
11475 Set_Etype
(N
, Etype
(Conv
));
11477 end Fixup_Universal_Fixed_Operation
;
11479 ---------------------------------
11480 -- Has_Inferable_Discriminants --
11481 ---------------------------------
11483 function Has_Inferable_Discriminants
(N
: Node_Id
) return Boolean is
11485 function Prefix_Is_Formal_Parameter
(N
: Node_Id
) return Boolean;
11486 -- Determines whether the left-most prefix of a selected component is a
11487 -- formal parameter in a subprogram. Assumes N is a selected component.
11489 --------------------------------
11490 -- Prefix_Is_Formal_Parameter --
11491 --------------------------------
11493 function Prefix_Is_Formal_Parameter
(N
: Node_Id
) return Boolean is
11494 Sel_Comp
: Node_Id
;
11497 -- Move to the left-most prefix by climbing up the tree
11500 while Present
(Parent
(Sel_Comp
))
11501 and then Nkind
(Parent
(Sel_Comp
)) = N_Selected_Component
11503 Sel_Comp
:= Parent
(Sel_Comp
);
11506 return Ekind
(Entity
(Prefix
(Sel_Comp
))) in Formal_Kind
;
11507 end Prefix_Is_Formal_Parameter
;
11509 -- Start of processing for Has_Inferable_Discriminants
11512 -- For selected components, the subtype of the selector must be a
11513 -- constrained Unchecked_Union. If the component is subject to a
11514 -- per-object constraint, then the enclosing object must have inferable
11517 if Nkind
(N
) = N_Selected_Component
then
11518 if Has_Per_Object_Constraint
(Entity
(Selector_Name
(N
))) then
11520 -- A small hack. If we have a per-object constrained selected
11521 -- component of a formal parameter, return True since we do not
11522 -- know the actual parameter association yet.
11524 if Prefix_Is_Formal_Parameter
(N
) then
11527 -- Otherwise, check the enclosing object and the selector
11530 return Has_Inferable_Discriminants
(Prefix
(N
))
11531 and then Has_Inferable_Discriminants
(Selector_Name
(N
));
11534 -- The call to Has_Inferable_Discriminants will determine whether
11535 -- the selector has a constrained Unchecked_Union nominal type.
11538 return Has_Inferable_Discriminants
(Selector_Name
(N
));
11541 -- A qualified expression has inferable discriminants if its subtype
11542 -- mark is a constrained Unchecked_Union subtype.
11544 elsif Nkind
(N
) = N_Qualified_Expression
then
11545 return Is_Unchecked_Union
(Etype
(Subtype_Mark
(N
)))
11546 and then Is_Constrained
(Etype
(Subtype_Mark
(N
)));
11548 -- For all other names, it is sufficient to have a constrained
11549 -- Unchecked_Union nominal subtype.
11552 return Is_Unchecked_Union
(Base_Type
(Etype
(N
)))
11553 and then Is_Constrained
(Etype
(N
));
11555 end Has_Inferable_Discriminants
;
11557 -------------------------------
11558 -- Insert_Dereference_Action --
11559 -------------------------------
11561 procedure Insert_Dereference_Action
(N
: Node_Id
) is
11563 function Is_Checked_Storage_Pool
(P
: Entity_Id
) return Boolean;
11564 -- Return true if type of P is derived from Checked_Pool;
11566 -----------------------------
11567 -- Is_Checked_Storage_Pool --
11568 -----------------------------
11570 function Is_Checked_Storage_Pool
(P
: Entity_Id
) return Boolean is
11579 while T
/= Etype
(T
) loop
11580 if Is_RTE
(T
, RE_Checked_Pool
) then
11588 end Is_Checked_Storage_Pool
;
11592 Typ
: constant Entity_Id
:= Etype
(N
);
11593 Desig
: constant Entity_Id
:= Available_View
(Designated_Type
(Typ
));
11594 Loc
: constant Source_Ptr
:= Sloc
(N
);
11595 Pool
: constant Entity_Id
:= Associated_Storage_Pool
(Typ
);
11596 Pnod
: constant Node_Id
:= Parent
(N
);
11602 Size_Bits
: Node_Id
;
11605 -- Start of processing for Insert_Dereference_Action
11608 pragma Assert
(Nkind
(Pnod
) = N_Explicit_Dereference
);
11610 -- Do not re-expand a dereference which has already been processed by
11613 if Has_Dereference_Action
(Pnod
) then
11616 -- Do not perform this type of expansion for internally-generated
11619 elsif not Comes_From_Source
(Original_Node
(Pnod
)) then
11622 -- A dereference action is only applicable to objects which have been
11623 -- allocated on a checked pool.
11625 elsif not Is_Checked_Storage_Pool
(Pool
) then
11629 -- Extract the address of the dereferenced object. Generate:
11631 -- Addr : System.Address := <N>'Pool_Address;
11633 Addr
:= Make_Temporary
(Loc
, 'P');
11636 Make_Object_Declaration
(Loc
,
11637 Defining_Identifier
=> Addr
,
11638 Object_Definition
=>
11639 New_Occurrence_Of
(RTE
(RE_Address
), Loc
),
11641 Make_Attribute_Reference
(Loc
,
11642 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
),
11643 Attribute_Name
=> Name_Pool_Address
)));
11645 -- Calculate the size of the dereferenced object. Generate:
11647 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
11650 Make_Explicit_Dereference
(Loc
,
11651 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
11652 Set_Has_Dereference_Action
(Deref
);
11655 Make_Attribute_Reference
(Loc
,
11657 Attribute_Name
=> Name_Size
);
11659 -- Special case of an unconstrained array: need to add descriptor size
11661 if Is_Array_Type
(Desig
)
11662 and then not Is_Constrained
(First_Subtype
(Desig
))
11667 Make_Attribute_Reference
(Loc
,
11669 New_Occurrence_Of
(First_Subtype
(Desig
), Loc
),
11670 Attribute_Name
=> Name_Descriptor_Size
),
11671 Right_Opnd
=> Size_Bits
);
11674 Size
:= Make_Temporary
(Loc
, 'S');
11676 Make_Object_Declaration
(Loc
,
11677 Defining_Identifier
=> Size
,
11678 Object_Definition
=>
11679 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
),
11681 Make_Op_Divide
(Loc
,
11682 Left_Opnd
=> Size_Bits
,
11683 Right_Opnd
=> Make_Integer_Literal
(Loc
, System_Storage_Unit
))));
11685 -- Calculate the alignment of the dereferenced object. Generate:
11686 -- Alig : constant Storage_Count := <N>.all'Alignment;
11689 Make_Explicit_Dereference
(Loc
,
11690 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
11691 Set_Has_Dereference_Action
(Deref
);
11693 Alig
:= Make_Temporary
(Loc
, 'A');
11695 Make_Object_Declaration
(Loc
,
11696 Defining_Identifier
=> Alig
,
11697 Object_Definition
=>
11698 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
),
11700 Make_Attribute_Reference
(Loc
,
11702 Attribute_Name
=> Name_Alignment
)));
11704 -- A dereference of a controlled object requires special processing. The
11705 -- finalization machinery requests additional space from the underlying
11706 -- pool to allocate and hide two pointers. As a result, a checked pool
11707 -- may mark the wrong memory as valid. Since checked pools do not have
11708 -- knowledge of hidden pointers, we have to bring the two pointers back
11709 -- in view in order to restore the original state of the object.
11711 if Needs_Finalization
(Desig
) then
11713 -- Adjust the address and size of the dereferenced object. Generate:
11714 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
11717 Make_Procedure_Call_Statement
(Loc
,
11719 New_Occurrence_Of
(RTE
(RE_Adjust_Controlled_Dereference
), Loc
),
11720 Parameter_Associations
=> New_List
(
11721 New_Occurrence_Of
(Addr
, Loc
),
11722 New_Occurrence_Of
(Size
, Loc
),
11723 New_Occurrence_Of
(Alig
, Loc
)));
11725 -- Class-wide types complicate things because we cannot determine
11726 -- statically whether the actual object is truly controlled. We must
11727 -- generate a runtime check to detect this property. Generate:
11729 -- if Needs_Finalization (<N>.all'Tag) then
11733 if Is_Class_Wide_Type
(Desig
) then
11735 Make_Explicit_Dereference
(Loc
,
11736 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
11737 Set_Has_Dereference_Action
(Deref
);
11740 Make_Implicit_If_Statement
(N
,
11742 Make_Function_Call
(Loc
,
11744 New_Occurrence_Of
(RTE
(RE_Needs_Finalization
), Loc
),
11745 Parameter_Associations
=> New_List
(
11746 Make_Attribute_Reference
(Loc
,
11748 Attribute_Name
=> Name_Tag
))),
11749 Then_Statements
=> New_List
(Stmt
));
11752 Insert_Action
(N
, Stmt
);
11756 -- Dereference (Pool, Addr, Size, Alig);
11759 Make_Procedure_Call_Statement
(Loc
,
11762 (Find_Prim_Op
(Etype
(Pool
), Name_Dereference
), Loc
),
11763 Parameter_Associations
=> New_List
(
11764 New_Occurrence_Of
(Pool
, Loc
),
11765 New_Occurrence_Of
(Addr
, Loc
),
11766 New_Occurrence_Of
(Size
, Loc
),
11767 New_Occurrence_Of
(Alig
, Loc
))));
11769 -- Mark the explicit dereference as processed to avoid potential
11770 -- infinite expansion.
11772 Set_Has_Dereference_Action
(Pnod
);
11775 when RE_Not_Available
=>
11777 end Insert_Dereference_Action
;
11779 --------------------------------
11780 -- Integer_Promotion_Possible --
11781 --------------------------------
11783 function Integer_Promotion_Possible
(N
: Node_Id
) return Boolean is
11784 Operand
: constant Node_Id
:= Expression
(N
);
11785 Operand_Type
: constant Entity_Id
:= Etype
(Operand
);
11786 Root_Operand_Type
: constant Entity_Id
:= Root_Type
(Operand_Type
);
11789 pragma Assert
(Nkind
(N
) = N_Type_Conversion
);
11793 -- We only do the transformation for source constructs. We assume
11794 -- that the expander knows what it is doing when it generates code.
11796 Comes_From_Source
(N
)
11798 -- If the operand type is Short_Integer or Short_Short_Integer,
11799 -- then we will promote to Integer, which is available on all
11800 -- targets, and is sufficient to ensure no intermediate overflow.
11801 -- Furthermore it is likely to be as efficient or more efficient
11802 -- than using the smaller type for the computation so we do this
11803 -- unconditionally.
11806 (Root_Operand_Type
= Base_Type
(Standard_Short_Integer
)
11808 Root_Operand_Type
= Base_Type
(Standard_Short_Short_Integer
))
11810 -- Test for interesting operation, which includes addition,
11811 -- division, exponentiation, multiplication, subtraction, absolute
11812 -- value and unary negation. Unary "+" is omitted since it is a
11813 -- no-op and thus can't overflow.
11815 and then Nkind_In
(Operand
, N_Op_Abs
,
11822 end Integer_Promotion_Possible
;
11824 ------------------------------
11825 -- Make_Array_Comparison_Op --
11826 ------------------------------
11828 -- This is a hand-coded expansion of the following generic function:
11831 -- type elem is (<>);
11832 -- type index is (<>);
11833 -- type a is array (index range <>) of elem;
11835 -- function Gnnn (X : a; Y: a) return boolean is
11836 -- J : index := Y'first;
11839 -- if X'length = 0 then
11842 -- elsif Y'length = 0 then
11846 -- for I in X'range loop
11847 -- if X (I) = Y (J) then
11848 -- if J = Y'last then
11851 -- J := index'succ (J);
11855 -- return X (I) > Y (J);
11859 -- return X'length > Y'length;
11863 -- Note that since we are essentially doing this expansion by hand, we
11864 -- do not need to generate an actual or formal generic part, just the
11865 -- instantiated function itself.
11867 -- Perhaps we could have the actual generic available in the run-time,
11868 -- obtained by rtsfind, and actually expand a real instantiation ???
11870 function Make_Array_Comparison_Op
11872 Nod
: Node_Id
) return Node_Id
11874 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
11876 X
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uX
);
11877 Y
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uY
);
11878 I
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uI
);
11879 J
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
11881 Index
: constant Entity_Id
:= Base_Type
(Etype
(First_Index
(Typ
)));
11883 Loop_Statement
: Node_Id
;
11884 Loop_Body
: Node_Id
;
11886 Inner_If
: Node_Id
;
11887 Final_Expr
: Node_Id
;
11888 Func_Body
: Node_Id
;
11889 Func_Name
: Entity_Id
;
11895 -- if J = Y'last then
11898 -- J := index'succ (J);
11902 Make_Implicit_If_Statement
(Nod
,
11905 Left_Opnd
=> New_Occurrence_Of
(J
, Loc
),
11907 Make_Attribute_Reference
(Loc
,
11908 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
11909 Attribute_Name
=> Name_Last
)),
11911 Then_Statements
=> New_List
(
11912 Make_Exit_Statement
(Loc
)),
11916 Make_Assignment_Statement
(Loc
,
11917 Name
=> New_Occurrence_Of
(J
, Loc
),
11919 Make_Attribute_Reference
(Loc
,
11920 Prefix
=> New_Occurrence_Of
(Index
, Loc
),
11921 Attribute_Name
=> Name_Succ
,
11922 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
))))));
11924 -- if X (I) = Y (J) then
11927 -- return X (I) > Y (J);
11931 Make_Implicit_If_Statement
(Nod
,
11935 Make_Indexed_Component
(Loc
,
11936 Prefix
=> New_Occurrence_Of
(X
, Loc
),
11937 Expressions
=> New_List
(New_Occurrence_Of
(I
, Loc
))),
11940 Make_Indexed_Component
(Loc
,
11941 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
11942 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)))),
11944 Then_Statements
=> New_List
(Inner_If
),
11946 Else_Statements
=> New_List
(
11947 Make_Simple_Return_Statement
(Loc
,
11951 Make_Indexed_Component
(Loc
,
11952 Prefix
=> New_Occurrence_Of
(X
, Loc
),
11953 Expressions
=> New_List
(New_Occurrence_Of
(I
, Loc
))),
11956 Make_Indexed_Component
(Loc
,
11957 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
11958 Expressions
=> New_List
(
11959 New_Occurrence_Of
(J
, Loc
)))))));
11961 -- for I in X'range loop
11966 Make_Implicit_Loop_Statement
(Nod
,
11967 Identifier
=> Empty
,
11969 Iteration_Scheme
=>
11970 Make_Iteration_Scheme
(Loc
,
11971 Loop_Parameter_Specification
=>
11972 Make_Loop_Parameter_Specification
(Loc
,
11973 Defining_Identifier
=> I
,
11974 Discrete_Subtype_Definition
=>
11975 Make_Attribute_Reference
(Loc
,
11976 Prefix
=> New_Occurrence_Of
(X
, Loc
),
11977 Attribute_Name
=> Name_Range
))),
11979 Statements
=> New_List
(Loop_Body
));
11981 -- if X'length = 0 then
11983 -- elsif Y'length = 0 then
11986 -- for ... loop ... end loop;
11987 -- return X'length > Y'length;
11991 Make_Attribute_Reference
(Loc
,
11992 Prefix
=> New_Occurrence_Of
(X
, Loc
),
11993 Attribute_Name
=> Name_Length
);
11996 Make_Attribute_Reference
(Loc
,
11997 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
11998 Attribute_Name
=> Name_Length
);
12002 Left_Opnd
=> Length1
,
12003 Right_Opnd
=> Length2
);
12006 Make_Implicit_If_Statement
(Nod
,
12010 Make_Attribute_Reference
(Loc
,
12011 Prefix
=> New_Occurrence_Of
(X
, Loc
),
12012 Attribute_Name
=> Name_Length
),
12014 Make_Integer_Literal
(Loc
, 0)),
12018 Make_Simple_Return_Statement
(Loc
,
12019 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))),
12021 Elsif_Parts
=> New_List
(
12022 Make_Elsif_Part
(Loc
,
12026 Make_Attribute_Reference
(Loc
,
12027 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12028 Attribute_Name
=> Name_Length
),
12030 Make_Integer_Literal
(Loc
, 0)),
12034 Make_Simple_Return_Statement
(Loc
,
12035 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
))))),
12037 Else_Statements
=> New_List
(
12039 Make_Simple_Return_Statement
(Loc
,
12040 Expression
=> Final_Expr
)));
12044 Formals
:= New_List
(
12045 Make_Parameter_Specification
(Loc
,
12046 Defining_Identifier
=> X
,
12047 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
12049 Make_Parameter_Specification
(Loc
,
12050 Defining_Identifier
=> Y
,
12051 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
12053 -- function Gnnn (...) return boolean is
12054 -- J : index := Y'first;
12059 Func_Name
:= Make_Temporary
(Loc
, 'G');
12062 Make_Subprogram_Body
(Loc
,
12064 Make_Function_Specification
(Loc
,
12065 Defining_Unit_Name
=> Func_Name
,
12066 Parameter_Specifications
=> Formals
,
12067 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
12069 Declarations
=> New_List
(
12070 Make_Object_Declaration
(Loc
,
12071 Defining_Identifier
=> J
,
12072 Object_Definition
=> New_Occurrence_Of
(Index
, Loc
),
12074 Make_Attribute_Reference
(Loc
,
12075 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12076 Attribute_Name
=> Name_First
))),
12078 Handled_Statement_Sequence
=>
12079 Make_Handled_Sequence_Of_Statements
(Loc
,
12080 Statements
=> New_List
(If_Stat
)));
12083 end Make_Array_Comparison_Op
;
12085 ---------------------------
12086 -- Make_Boolean_Array_Op --
12087 ---------------------------
12089 -- For logical operations on boolean arrays, expand in line the following,
12090 -- replacing 'and' with 'or' or 'xor' where needed:
12092 -- function Annn (A : typ; B: typ) return typ is
12095 -- for J in A'range loop
12096 -- C (J) := A (J) op B (J);
12101 -- Here typ is the boolean array type
12103 function Make_Boolean_Array_Op
12105 N
: Node_Id
) return Node_Id
12107 Loc
: constant Source_Ptr
:= Sloc
(N
);
12109 A
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uA
);
12110 B
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uB
);
12111 C
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uC
);
12112 J
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
12120 Func_Name
: Entity_Id
;
12121 Func_Body
: Node_Id
;
12122 Loop_Statement
: Node_Id
;
12126 Make_Indexed_Component
(Loc
,
12127 Prefix
=> New_Occurrence_Of
(A
, Loc
),
12128 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
12131 Make_Indexed_Component
(Loc
,
12132 Prefix
=> New_Occurrence_Of
(B
, Loc
),
12133 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
12136 Make_Indexed_Component
(Loc
,
12137 Prefix
=> New_Occurrence_Of
(C
, Loc
),
12138 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
12140 if Nkind
(N
) = N_Op_And
then
12144 Right_Opnd
=> B_J
);
12146 elsif Nkind
(N
) = N_Op_Or
then
12150 Right_Opnd
=> B_J
);
12156 Right_Opnd
=> B_J
);
12160 Make_Implicit_Loop_Statement
(N
,
12161 Identifier
=> Empty
,
12163 Iteration_Scheme
=>
12164 Make_Iteration_Scheme
(Loc
,
12165 Loop_Parameter_Specification
=>
12166 Make_Loop_Parameter_Specification
(Loc
,
12167 Defining_Identifier
=> J
,
12168 Discrete_Subtype_Definition
=>
12169 Make_Attribute_Reference
(Loc
,
12170 Prefix
=> New_Occurrence_Of
(A
, Loc
),
12171 Attribute_Name
=> Name_Range
))),
12173 Statements
=> New_List
(
12174 Make_Assignment_Statement
(Loc
,
12176 Expression
=> Op
)));
12178 Formals
:= New_List
(
12179 Make_Parameter_Specification
(Loc
,
12180 Defining_Identifier
=> A
,
12181 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
12183 Make_Parameter_Specification
(Loc
,
12184 Defining_Identifier
=> B
,
12185 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
12187 Func_Name
:= Make_Temporary
(Loc
, 'A');
12188 Set_Is_Inlined
(Func_Name
);
12191 Make_Subprogram_Body
(Loc
,
12193 Make_Function_Specification
(Loc
,
12194 Defining_Unit_Name
=> Func_Name
,
12195 Parameter_Specifications
=> Formals
,
12196 Result_Definition
=> New_Occurrence_Of
(Typ
, Loc
)),
12198 Declarations
=> New_List
(
12199 Make_Object_Declaration
(Loc
,
12200 Defining_Identifier
=> C
,
12201 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
))),
12203 Handled_Statement_Sequence
=>
12204 Make_Handled_Sequence_Of_Statements
(Loc
,
12205 Statements
=> New_List
(
12207 Make_Simple_Return_Statement
(Loc
,
12208 Expression
=> New_Occurrence_Of
(C
, Loc
)))));
12211 end Make_Boolean_Array_Op
;
12213 -----------------------------------------
12214 -- Minimized_Eliminated_Overflow_Check --
12215 -----------------------------------------
12217 function Minimized_Eliminated_Overflow_Check
(N
: Node_Id
) return Boolean is
12220 Is_Signed_Integer_Type
(Etype
(N
))
12221 and then Overflow_Check_Mode
in Minimized_Or_Eliminated
;
12222 end Minimized_Eliminated_Overflow_Check
;
12224 --------------------------------
12225 -- Optimize_Length_Comparison --
12226 --------------------------------
12228 procedure Optimize_Length_Comparison
(N
: Node_Id
) is
12229 Loc
: constant Source_Ptr
:= Sloc
(N
);
12230 Typ
: constant Entity_Id
:= Etype
(N
);
12235 -- First and Last attribute reference nodes, which end up as left and
12236 -- right operands of the optimized result.
12239 -- True for comparison operand of zero
12242 -- Comparison operand, set only if Is_Zero is false
12245 -- Entity whose length is being compared
12248 -- Integer_Literal node for length attribute expression, or Empty
12249 -- if there is no such expression present.
12252 -- Type of array index to which 'Length is applied
12254 Op
: Node_Kind
:= Nkind
(N
);
12255 -- Kind of comparison operator, gets flipped if operands backwards
12257 function Is_Optimizable
(N
: Node_Id
) return Boolean;
12258 -- Tests N to see if it is an optimizable comparison value (defined as
12259 -- constant zero or one, or something else where the value is known to
12260 -- be positive and in the range of 32-bits, and where the corresponding
12261 -- Length value is also known to be 32-bits. If result is true, sets
12262 -- Is_Zero, Ityp, and Comp accordingly.
12264 function Is_Entity_Length
(N
: Node_Id
) return Boolean;
12265 -- Tests if N is a length attribute applied to a simple entity. If so,
12266 -- returns True, and sets Ent to the entity, and Index to the integer
12267 -- literal provided as an attribute expression, or to Empty if none.
12268 -- Also returns True if the expression is a generated type conversion
12269 -- whose expression is of the desired form. This latter case arises
12270 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
12271 -- to check for being in range, which is not needed in this context.
12272 -- Returns False if neither condition holds.
12274 function Prepare_64
(N
: Node_Id
) return Node_Id
;
12275 -- Given a discrete expression, returns a Long_Long_Integer typed
12276 -- expression representing the underlying value of the expression.
12277 -- This is done with an unchecked conversion to the result type. We
12278 -- use unchecked conversion to handle the enumeration type case.
12280 ----------------------
12281 -- Is_Entity_Length --
12282 ----------------------
12284 function Is_Entity_Length
(N
: Node_Id
) return Boolean is
12286 if Nkind
(N
) = N_Attribute_Reference
12287 and then Attribute_Name
(N
) = Name_Length
12288 and then Is_Entity_Name
(Prefix
(N
))
12290 Ent
:= Entity
(Prefix
(N
));
12292 if Present
(Expressions
(N
)) then
12293 Index
:= First
(Expressions
(N
));
12300 elsif Nkind
(N
) = N_Type_Conversion
12301 and then not Comes_From_Source
(N
)
12303 return Is_Entity_Length
(Expression
(N
));
12308 end Is_Entity_Length
;
12310 --------------------
12311 -- Is_Optimizable --
12312 --------------------
12314 function Is_Optimizable
(N
: Node_Id
) return Boolean is
12322 if Compile_Time_Known_Value
(N
) then
12323 Val
:= Expr_Value
(N
);
12325 if Val
= Uint_0
then
12330 elsif Val
= Uint_1
then
12337 -- Here we have to make sure of being within 32-bits
12339 Determine_Range
(N
, OK
, Lo
, Hi
, Assume_Valid
=> True);
12342 or else Lo
< Uint_1
12343 or else Hi
> UI_From_Int
(Int
'Last)
12348 -- Comparison value was within range, so now we must check the index
12349 -- value to make sure it is also within 32-bits.
12351 Indx
:= First_Index
(Etype
(Ent
));
12353 if Present
(Index
) then
12354 for J
in 2 .. UI_To_Int
(Intval
(Index
)) loop
12359 Ityp
:= Etype
(Indx
);
12361 if Esize
(Ityp
) > 32 then
12368 end Is_Optimizable
;
12374 function Prepare_64
(N
: Node_Id
) return Node_Id
is
12376 return Unchecked_Convert_To
(Standard_Long_Long_Integer
, N
);
12379 -- Start of processing for Optimize_Length_Comparison
12382 -- Nothing to do if not a comparison
12384 if Op
not in N_Op_Compare
then
12388 -- Nothing to do if special -gnatd.P debug flag set
12390 if Debug_Flag_Dot_PP
then
12394 -- Ent'Length op 0/1
12396 if Is_Entity_Length
(Left_Opnd
(N
))
12397 and then Is_Optimizable
(Right_Opnd
(N
))
12401 -- 0/1 op Ent'Length
12403 elsif Is_Entity_Length
(Right_Opnd
(N
))
12404 and then Is_Optimizable
(Left_Opnd
(N
))
12406 -- Flip comparison to opposite sense
12409 when N_Op_Lt
=> Op
:= N_Op_Gt
;
12410 when N_Op_Le
=> Op
:= N_Op_Ge
;
12411 when N_Op_Gt
=> Op
:= N_Op_Lt
;
12412 when N_Op_Ge
=> Op
:= N_Op_Le
;
12413 when others => null;
12416 -- Else optimization not possible
12422 -- Fall through if we will do the optimization
12424 -- Cases to handle:
12426 -- X'Length = 0 => X'First > X'Last
12427 -- X'Length = 1 => X'First = X'Last
12428 -- X'Length = n => X'First + (n - 1) = X'Last
12430 -- X'Length /= 0 => X'First <= X'Last
12431 -- X'Length /= 1 => X'First /= X'Last
12432 -- X'Length /= n => X'First + (n - 1) /= X'Last
12434 -- X'Length >= 0 => always true, warn
12435 -- X'Length >= 1 => X'First <= X'Last
12436 -- X'Length >= n => X'First + (n - 1) <= X'Last
12438 -- X'Length > 0 => X'First <= X'Last
12439 -- X'Length > 1 => X'First < X'Last
12440 -- X'Length > n => X'First + (n - 1) < X'Last
12442 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
12443 -- X'Length <= 1 => X'First >= X'Last
12444 -- X'Length <= n => X'First + (n - 1) >= X'Last
12446 -- X'Length < 0 => always false (warn)
12447 -- X'Length < 1 => X'First > X'Last
12448 -- X'Length < n => X'First + (n - 1) > X'Last
12450 -- Note: for the cases of n (not constant 0,1), we require that the
12451 -- corresponding index type be integer or shorter (i.e. not 64-bit),
12452 -- and the same for the comparison value. Then we do the comparison
12453 -- using 64-bit arithmetic (actually long long integer), so that we
12454 -- cannot have overflow intefering with the result.
12456 -- First deal with warning cases
12465 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Loc
)));
12466 Analyze_And_Resolve
(N
, Typ
);
12467 Warn_On_Known_Condition
(N
);
12474 Convert_To
(Typ
, New_Occurrence_Of
(Standard_False
, Loc
)));
12475 Analyze_And_Resolve
(N
, Typ
);
12476 Warn_On_Known_Condition
(N
);
12480 if Constant_Condition_Warnings
12481 and then Comes_From_Source
(Original_Node
(N
))
12483 Error_Msg_N
("could replace by ""'=""?c?", N
);
12493 -- Build the First reference we will use
12496 Make_Attribute_Reference
(Loc
,
12497 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
12498 Attribute_Name
=> Name_First
);
12500 if Present
(Index
) then
12501 Set_Expressions
(Left
, New_List
(New_Copy
(Index
)));
12504 -- If general value case, then do the addition of (n - 1), and
12505 -- also add the needed conversions to type Long_Long_Integer.
12507 if Present
(Comp
) then
12510 Left_Opnd
=> Prepare_64
(Left
),
12512 Make_Op_Subtract
(Loc
,
12513 Left_Opnd
=> Prepare_64
(Comp
),
12514 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)));
12517 -- Build the Last reference we will use
12520 Make_Attribute_Reference
(Loc
,
12521 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
12522 Attribute_Name
=> Name_Last
);
12524 if Present
(Index
) then
12525 Set_Expressions
(Right
, New_List
(New_Copy
(Index
)));
12528 -- If general operand, convert Last reference to Long_Long_Integer
12530 if Present
(Comp
) then
12531 Right
:= Prepare_64
(Right
);
12534 -- Check for cases to optimize
12536 -- X'Length = 0 => X'First > X'Last
12537 -- X'Length < 1 => X'First > X'Last
12538 -- X'Length < n => X'First + (n - 1) > X'Last
12540 if (Is_Zero
and then Op
= N_Op_Eq
)
12541 or else (not Is_Zero
and then Op
= N_Op_Lt
)
12546 Right_Opnd
=> Right
);
12548 -- X'Length = 1 => X'First = X'Last
12549 -- X'Length = n => X'First + (n - 1) = X'Last
12551 elsif not Is_Zero
and then Op
= N_Op_Eq
then
12555 Right_Opnd
=> Right
);
12557 -- X'Length /= 0 => X'First <= X'Last
12558 -- X'Length > 0 => X'First <= X'Last
12560 elsif Is_Zero
and (Op
= N_Op_Ne
or else Op
= N_Op_Gt
) then
12564 Right_Opnd
=> Right
);
12566 -- X'Length /= 1 => X'First /= X'Last
12567 -- X'Length /= n => X'First + (n - 1) /= X'Last
12569 elsif not Is_Zero
and then Op
= N_Op_Ne
then
12573 Right_Opnd
=> Right
);
12575 -- X'Length >= 1 => X'First <= X'Last
12576 -- X'Length >= n => X'First + (n - 1) <= X'Last
12578 elsif not Is_Zero
and then Op
= N_Op_Ge
then
12582 Right_Opnd
=> Right
);
12584 -- X'Length > 1 => X'First < X'Last
12585 -- X'Length > n => X'First + (n = 1) < X'Last
12587 elsif not Is_Zero
and then Op
= N_Op_Gt
then
12591 Right_Opnd
=> Right
);
12593 -- X'Length <= 1 => X'First >= X'Last
12594 -- X'Length <= n => X'First + (n - 1) >= X'Last
12596 elsif not Is_Zero
and then Op
= N_Op_Le
then
12600 Right_Opnd
=> Right
);
12602 -- Should not happen at this stage
12605 raise Program_Error
;
12608 -- Rewrite and finish up
12610 Rewrite
(N
, Result
);
12611 Analyze_And_Resolve
(N
, Typ
);
12613 end Optimize_Length_Comparison
;
12615 ------------------------------
12616 -- Process_Transient_Object --
12617 ------------------------------
12619 procedure Process_Transient_Object
12621 Rel_Node
: Node_Id
)
12623 Loc
: constant Source_Ptr
:= Sloc
(Decl
);
12624 Obj_Id
: constant Entity_Id
:= Defining_Identifier
(Decl
);
12625 Obj_Typ
: constant Node_Id
:= Etype
(Obj_Id
);
12626 Desig_Typ
: Entity_Id
;
12628 Fin_Stmts
: List_Id
;
12629 Ptr_Id
: Entity_Id
;
12630 Temp_Id
: Entity_Id
;
12631 Temp_Ins
: Node_Id
;
12633 Hook_Context
: constant Node_Id
:= Find_Hook_Context
(Rel_Node
);
12634 -- Node on which to insert the hook pointer (as an action): the
12635 -- innermost enclosing non-transient scope.
12637 Finalization_Context
: Node_Id
;
12638 -- Node after which to insert finalization actions
12640 Finalize_Always
: Boolean;
12641 -- If False, call to finalizer includes a test of whether the hook
12642 -- pointer is null.
12645 -- Step 0: determine where to attach finalization actions in the tree
12647 -- Special case for Boolean EWAs: capture expression in a temporary,
12648 -- whose declaration will serve as the context around which to insert
12649 -- finalization code. The finalization thus remains local to the
12650 -- specific condition being evaluated.
12652 if Is_Boolean_Type
(Etype
(Rel_Node
)) then
12654 -- In this case, the finalization context is chosen so that we know
12655 -- at finalization point that the hook pointer is never null, so no
12656 -- need for a test, we can call the finalizer unconditionally, except
12657 -- in the case where the object is created in a specific branch of a
12658 -- conditional expression.
12661 not Within_Case_Or_If_Expression
(Rel_Node
)
12662 and then not Nkind_In
12663 (Original_Node
(Rel_Node
), N_Case_Expression
,
12667 Loc
: constant Source_Ptr
:= Sloc
(Rel_Node
);
12668 Temp
: constant Entity_Id
:= Make_Temporary
(Loc
, 'E', Rel_Node
);
12671 Append_To
(Actions
(Rel_Node
),
12672 Make_Object_Declaration
(Loc
,
12673 Defining_Identifier
=> Temp
,
12674 Constant_Present
=> True,
12675 Object_Definition
=>
12676 New_Occurrence_Of
(Etype
(Rel_Node
), Loc
),
12677 Expression
=> Expression
(Rel_Node
)));
12678 Finalization_Context
:= Last
(Actions
(Rel_Node
));
12680 Analyze
(Last
(Actions
(Rel_Node
)));
12682 Set_Expression
(Rel_Node
, New_Occurrence_Of
(Temp
, Loc
));
12683 Analyze
(Expression
(Rel_Node
));
12687 Finalize_Always
:= False;
12688 Finalization_Context
:= Hook_Context
;
12691 -- Step 1: Create the access type which provides a reference to the
12692 -- transient controlled object.
12694 if Is_Access_Type
(Obj_Typ
) then
12695 Desig_Typ
:= Directly_Designated_Type
(Obj_Typ
);
12697 Desig_Typ
:= Obj_Typ
;
12700 Desig_Typ
:= Base_Type
(Desig_Typ
);
12703 -- Ann : access [all] <Desig_Typ>;
12705 Ptr_Id
:= Make_Temporary
(Loc
, 'A');
12707 Insert_Action
(Hook_Context
,
12708 Make_Full_Type_Declaration
(Loc
,
12709 Defining_Identifier
=> Ptr_Id
,
12711 Make_Access_To_Object_Definition
(Loc
,
12712 All_Present
=> Ekind
(Obj_Typ
) = E_General_Access_Type
,
12713 Subtype_Indication
=> New_Occurrence_Of
(Desig_Typ
, Loc
))));
12715 -- Step 2: Create a temporary which acts as a hook to the transient
12716 -- controlled object. Generate:
12718 -- Temp : Ptr_Id := null;
12720 Temp_Id
:= Make_Temporary
(Loc
, 'T');
12722 Insert_Action
(Hook_Context
,
12723 Make_Object_Declaration
(Loc
,
12724 Defining_Identifier
=> Temp_Id
,
12725 Object_Definition
=> New_Occurrence_Of
(Ptr_Id
, Loc
)));
12727 -- Mark the temporary as created for the purposes of exporting the
12728 -- transient controlled object out of the expression_with_action or if
12729 -- expression. This signals the machinery in Build_Finalizer to treat
12730 -- this case specially.
12732 Set_Status_Flag_Or_Transient_Decl
(Temp_Id
, Decl
);
12734 -- Step 3: Hook the transient object to the temporary
12736 -- This must be inserted right after the object declaration, so that
12737 -- the assignment is executed if, and only if, the object is actually
12738 -- created (whereas the declaration of the hook pointer, and the
12739 -- finalization call, may be inserted at an outer level, and may
12740 -- remain unused for some executions, if the actual creation of
12741 -- the object is conditional).
12743 -- The use of unchecked conversion / unrestricted access is needed to
12744 -- avoid an accessibility violation. Note that the finalization code is
12745 -- structured in such a way that the "hook" is processed only when it
12746 -- points to an existing object.
12748 if Is_Access_Type
(Obj_Typ
) then
12750 Unchecked_Convert_To
(Ptr_Id
, New_Occurrence_Of
(Obj_Id
, Loc
));
12753 Make_Attribute_Reference
(Loc
,
12754 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
12755 Attribute_Name
=> Name_Unrestricted_Access
);
12759 -- Temp := Ptr_Id (Obj_Id);
12761 -- Temp := Obj_Id'Unrestricted_Access;
12763 -- When the transient object is initialized by an aggregate, the hook
12764 -- must capture the object after the last component assignment takes
12765 -- place. Only then is the object fully initialized.
12767 if Ekind
(Obj_Id
) = E_Variable
12768 and then Present
(Last_Aggregate_Assignment
(Obj_Id
))
12770 Temp_Ins
:= Last_Aggregate_Assignment
(Obj_Id
);
12772 -- Otherwise the hook seizes the related object immediately
12778 Insert_After_And_Analyze
(Temp_Ins
,
12779 Make_Assignment_Statement
(Loc
,
12780 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
12781 Expression
=> Expr
));
12783 -- Step 4: Finalize the transient controlled object after the context
12784 -- has been evaluated/elaborated. Generate:
12786 -- if Temp /= null then
12787 -- [Deep_]Finalize (Temp.all);
12791 -- When the node is part of a return statement, there is no need to
12792 -- insert a finalization call, as the general finalization mechanism
12793 -- (see Build_Finalizer) would take care of the transient controlled
12794 -- object on subprogram exit. Note that it would also be impossible to
12795 -- insert the finalization code after the return statement as this will
12796 -- render it unreachable.
12798 if Nkind
(Finalization_Context
) /= N_Simple_Return_Statement
then
12799 Fin_Stmts
:= New_List
(
12802 Make_Explicit_Dereference
(Loc
,
12803 Prefix
=> New_Occurrence_Of
(Temp_Id
, Loc
)),
12806 Make_Assignment_Statement
(Loc
,
12807 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
12808 Expression
=> Make_Null
(Loc
)));
12810 if not Finalize_Always
then
12811 Fin_Stmts
:= New_List
(
12812 Make_Implicit_If_Statement
(Decl
,
12815 Left_Opnd
=> New_Occurrence_Of
(Temp_Id
, Loc
),
12816 Right_Opnd
=> Make_Null
(Loc
)),
12817 Then_Statements
=> Fin_Stmts
));
12820 Insert_Actions_After
(Finalization_Context
, Fin_Stmts
);
12822 end Process_Transient_Object
;
12824 ------------------------
12825 -- Rewrite_Comparison --
12826 ------------------------
12828 procedure Rewrite_Comparison
(N
: Node_Id
) is
12829 Warning_Generated
: Boolean := False;
12830 -- Set to True if first pass with Assume_Valid generates a warning in
12831 -- which case we skip the second pass to avoid warning overloaded.
12834 -- Set to Standard_True or Standard_False
12837 if Nkind
(N
) = N_Type_Conversion
then
12838 Rewrite_Comparison
(Expression
(N
));
12841 elsif Nkind
(N
) not in N_Op_Compare
then
12845 -- Now start looking at the comparison in detail. We potentially go
12846 -- through this loop twice. The first time, Assume_Valid is set False
12847 -- in the call to Compile_Time_Compare. If this call results in a
12848 -- clear result of always True or Always False, that's decisive and
12849 -- we are done. Otherwise we repeat the processing with Assume_Valid
12850 -- set to True to generate additional warnings. We can skip that step
12851 -- if Constant_Condition_Warnings is False.
12853 for AV
in False .. True loop
12855 Typ
: constant Entity_Id
:= Etype
(N
);
12856 Op1
: constant Node_Id
:= Left_Opnd
(N
);
12857 Op2
: constant Node_Id
:= Right_Opnd
(N
);
12859 Res
: constant Compare_Result
:=
12860 Compile_Time_Compare
(Op1
, Op2
, Assume_Valid
=> AV
);
12861 -- Res indicates if compare outcome can be compile time determined
12863 True_Result
: Boolean;
12864 False_Result
: Boolean;
12867 case N_Op_Compare
(Nkind
(N
)) is
12869 True_Result
:= Res
= EQ
;
12870 False_Result
:= Res
= LT
or else Res
= GT
or else Res
= NE
;
12873 True_Result
:= Res
in Compare_GE
;
12874 False_Result
:= Res
= LT
;
12877 and then Constant_Condition_Warnings
12878 and then Comes_From_Source
(Original_Node
(N
))
12879 and then Nkind
(Original_Node
(N
)) = N_Op_Ge
12880 and then not In_Instance
12881 and then Is_Integer_Type
(Etype
(Left_Opnd
(N
)))
12882 and then not Has_Warnings_Off
(Etype
(Left_Opnd
(N
)))
12885 ("can never be greater than, could replace by ""'=""?c?",
12887 Warning_Generated
:= True;
12891 True_Result
:= Res
= GT
;
12892 False_Result
:= Res
in Compare_LE
;
12895 True_Result
:= Res
= LT
;
12896 False_Result
:= Res
in Compare_GE
;
12899 True_Result
:= Res
in Compare_LE
;
12900 False_Result
:= Res
= GT
;
12903 and then Constant_Condition_Warnings
12904 and then Comes_From_Source
(Original_Node
(N
))
12905 and then Nkind
(Original_Node
(N
)) = N_Op_Le
12906 and then not In_Instance
12907 and then Is_Integer_Type
(Etype
(Left_Opnd
(N
)))
12908 and then not Has_Warnings_Off
(Etype
(Left_Opnd
(N
)))
12911 ("can never be less than, could replace by ""'=""?c?", N
);
12912 Warning_Generated
:= True;
12916 True_Result
:= Res
= NE
or else Res
= GT
or else Res
= LT
;
12917 False_Result
:= Res
= EQ
;
12920 -- If this is the first iteration, then we actually convert the
12921 -- comparison into True or False, if the result is certain.
12924 if True_Result
or False_Result
then
12925 Result
:= Boolean_Literals
(True_Result
);
12928 New_Occurrence_Of
(Result
, Sloc
(N
))));
12929 Analyze_And_Resolve
(N
, Typ
);
12930 Warn_On_Known_Condition
(N
);
12934 -- If this is the second iteration (AV = True), and the original
12935 -- node comes from source and we are not in an instance, then give
12936 -- a warning if we know result would be True or False. Note: we
12937 -- know Constant_Condition_Warnings is set if we get here.
12939 elsif Comes_From_Source
(Original_Node
(N
))
12940 and then not In_Instance
12942 if True_Result
then
12944 ("condition can only be False if invalid values present??",
12946 elsif False_Result
then
12948 ("condition can only be True if invalid values present??",
12954 -- Skip second iteration if not warning on constant conditions or
12955 -- if the first iteration already generated a warning of some kind or
12956 -- if we are in any case assuming all values are valid (so that the
12957 -- first iteration took care of the valid case).
12959 exit when not Constant_Condition_Warnings
;
12960 exit when Warning_Generated
;
12961 exit when Assume_No_Invalid_Values
;
12963 end Rewrite_Comparison
;
12965 ----------------------------
12966 -- Safe_In_Place_Array_Op --
12967 ----------------------------
12969 function Safe_In_Place_Array_Op
12972 Op2
: Node_Id
) return Boolean
12974 Target
: Entity_Id
;
12976 function Is_Safe_Operand
(Op
: Node_Id
) return Boolean;
12977 -- Operand is safe if it cannot overlap part of the target of the
12978 -- operation. If the operand and the target are identical, the operand
12979 -- is safe. The operand can be empty in the case of negation.
12981 function Is_Unaliased
(N
: Node_Id
) return Boolean;
12982 -- Check that N is a stand-alone entity
12988 function Is_Unaliased
(N
: Node_Id
) return Boolean is
12992 and then No
(Address_Clause
(Entity
(N
)))
12993 and then No
(Renamed_Object
(Entity
(N
)));
12996 ---------------------
12997 -- Is_Safe_Operand --
12998 ---------------------
13000 function Is_Safe_Operand
(Op
: Node_Id
) return Boolean is
13005 elsif Is_Entity_Name
(Op
) then
13006 return Is_Unaliased
(Op
);
13008 elsif Nkind_In
(Op
, N_Indexed_Component
, N_Selected_Component
) then
13009 return Is_Unaliased
(Prefix
(Op
));
13011 elsif Nkind
(Op
) = N_Slice
then
13013 Is_Unaliased
(Prefix
(Op
))
13014 and then Entity
(Prefix
(Op
)) /= Target
;
13016 elsif Nkind
(Op
) = N_Op_Not
then
13017 return Is_Safe_Operand
(Right_Opnd
(Op
));
13022 end Is_Safe_Operand
;
13024 -- Start of processing for Safe_In_Place_Array_Op
13027 -- Skip this processing if the component size is different from system
13028 -- storage unit (since at least for NOT this would cause problems).
13030 if Component_Size
(Etype
(Lhs
)) /= System_Storage_Unit
then
13033 -- Cannot do in place stuff on VM_Target since cannot pass addresses
13035 elsif VM_Target
/= No_VM
then
13038 -- Cannot do in place stuff if non-standard Boolean representation
13040 elsif Has_Non_Standard_Rep
(Component_Type
(Etype
(Lhs
))) then
13043 elsif not Is_Unaliased
(Lhs
) then
13047 Target
:= Entity
(Lhs
);
13048 return Is_Safe_Operand
(Op1
) and then Is_Safe_Operand
(Op2
);
13050 end Safe_In_Place_Array_Op
;
13052 -----------------------
13053 -- Tagged_Membership --
13054 -----------------------
13056 -- There are two different cases to consider depending on whether the right
13057 -- operand is a class-wide type or not. If not we just compare the actual
13058 -- tag of the left expr to the target type tag:
13060 -- Left_Expr.Tag = Right_Type'Tag;
13062 -- If it is a class-wide type we use the RT function CW_Membership which is
13063 -- usually implemented by looking in the ancestor tables contained in the
13064 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
13066 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
13067 -- function IW_Membership which is usually implemented by looking in the
13068 -- table of abstract interface types plus the ancestor table contained in
13069 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
13071 procedure Tagged_Membership
13073 SCIL_Node
: out Node_Id
;
13074 Result
: out Node_Id
)
13076 Left
: constant Node_Id
:= Left_Opnd
(N
);
13077 Right
: constant Node_Id
:= Right_Opnd
(N
);
13078 Loc
: constant Source_Ptr
:= Sloc
(N
);
13080 Full_R_Typ
: Entity_Id
;
13081 Left_Type
: Entity_Id
;
13082 New_Node
: Node_Id
;
13083 Right_Type
: Entity_Id
;
13087 SCIL_Node
:= Empty
;
13089 -- Handle entities from the limited view
13091 Left_Type
:= Available_View
(Etype
(Left
));
13092 Right_Type
:= Available_View
(Etype
(Right
));
13094 -- In the case where the type is an access type, the test is applied
13095 -- using the designated types (needed in Ada 2012 for implicit anonymous
13096 -- access conversions, for AI05-0149).
13098 if Is_Access_Type
(Right_Type
) then
13099 Left_Type
:= Designated_Type
(Left_Type
);
13100 Right_Type
:= Designated_Type
(Right_Type
);
13103 if Is_Class_Wide_Type
(Left_Type
) then
13104 Left_Type
:= Root_Type
(Left_Type
);
13107 if Is_Class_Wide_Type
(Right_Type
) then
13108 Full_R_Typ
:= Underlying_Type
(Root_Type
(Right_Type
));
13110 Full_R_Typ
:= Underlying_Type
(Right_Type
);
13114 Make_Selected_Component
(Loc
,
13115 Prefix
=> Relocate_Node
(Left
),
13117 New_Occurrence_Of
(First_Tag_Component
(Left_Type
), Loc
));
13119 if Is_Class_Wide_Type
(Right_Type
) then
13121 -- No need to issue a run-time check if we statically know that the
13122 -- result of this membership test is always true. For example,
13123 -- considering the following declarations:
13125 -- type Iface is interface;
13126 -- type T is tagged null record;
13127 -- type DT is new T and Iface with null record;
13132 -- These membership tests are always true:
13135 -- Obj2 in T'Class;
13136 -- Obj2 in Iface'Class;
13138 -- We do not need to handle cases where the membership is illegal.
13141 -- Obj1 in DT'Class; -- Compile time error
13142 -- Obj1 in Iface'Class; -- Compile time error
13144 if not Is_Class_Wide_Type
(Left_Type
)
13145 and then (Is_Ancestor
(Etype
(Right_Type
), Left_Type
,
13146 Use_Full_View
=> True)
13147 or else (Is_Interface
(Etype
(Right_Type
))
13148 and then Interface_Present_In_Ancestor
13150 Iface
=> Etype
(Right_Type
))))
13152 Result
:= New_Occurrence_Of
(Standard_True
, Loc
);
13156 -- Ada 2005 (AI-251): Class-wide applied to interfaces
13158 if Is_Interface
(Etype
(Class_Wide_Type
(Right_Type
)))
13160 -- Support to: "Iface_CW_Typ in Typ'Class"
13162 or else Is_Interface
(Left_Type
)
13164 -- Issue error if IW_Membership operation not available in a
13165 -- configurable run time setting.
13167 if not RTE_Available
(RE_IW_Membership
) then
13169 ("dynamic membership test on interface types", N
);
13175 Make_Function_Call
(Loc
,
13176 Name
=> New_Occurrence_Of
(RTE
(RE_IW_Membership
), Loc
),
13177 Parameter_Associations
=> New_List
(
13178 Make_Attribute_Reference
(Loc
,
13180 Attribute_Name
=> Name_Address
),
13181 New_Occurrence_Of
(
13182 Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))),
13185 -- Ada 95: Normal case
13188 Build_CW_Membership
(Loc
,
13189 Obj_Tag_Node
=> Obj_Tag
,
13191 New_Occurrence_Of
(
13192 Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))), Loc
),
13194 New_Node
=> New_Node
);
13196 -- Generate the SCIL node for this class-wide membership test.
13197 -- Done here because the previous call to Build_CW_Membership
13198 -- relocates Obj_Tag.
13200 if Generate_SCIL
then
13201 SCIL_Node
:= Make_SCIL_Membership_Test
(Sloc
(N
));
13202 Set_SCIL_Entity
(SCIL_Node
, Etype
(Right_Type
));
13203 Set_SCIL_Tag_Value
(SCIL_Node
, Obj_Tag
);
13206 Result
:= New_Node
;
13209 -- Right_Type is not a class-wide type
13212 -- No need to check the tag of the object if Right_Typ is abstract
13214 if Is_Abstract_Type
(Right_Type
) then
13215 Result
:= New_Occurrence_Of
(Standard_False
, Loc
);
13220 Left_Opnd
=> Obj_Tag
,
13223 (Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))), Loc
));
13226 end Tagged_Membership
;
13228 ------------------------------
13229 -- Unary_Op_Validity_Checks --
13230 ------------------------------
13232 procedure Unary_Op_Validity_Checks
(N
: Node_Id
) is
13234 if Validity_Checks_On
and Validity_Check_Operands
then
13235 Ensure_Valid
(Right_Opnd
(N
));
13237 end Unary_Op_Validity_Checks
;