oops - omitted from previous delta fixing UNIQUE_SECTION
[official-gcc.git] / gcc / dwarfout.c
bloba0ac42d8c7054a362e29c3a0b6e1ca37b329f87b
1 /* Output Dwarf format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 95-99, 2000 Free Software Foundation, Inc.
3 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
24 #ifdef DWARF_DEBUGGING_INFO
25 #include "system.h"
26 #include "dwarf.h"
27 #include "tree.h"
28 #include "flags.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "reload.h"
33 #include "output.h"
34 #include "defaults.h"
35 #include "dwarfout.h"
36 #include "toplev.h"
37 #include "tm_p.h"
39 #if defined(DWARF_TIMESTAMPS)
40 #if !defined(POSIX)
41 extern time_t time PARAMS ((time_t *)); /* FIXME: use NEED_DECLARATION_TIME */
42 #endif /* !defined(POSIX) */
43 #endif /* defined(DWARF_TIMESTAMPS) */
45 /* We cannot use <assert.h> in GCC source, since that would include
46 GCC's assert.h, which may not be compatible with the host compiler. */
47 #undef assert
48 #ifdef NDEBUG
49 # define assert(e)
50 #else
51 # define assert(e) do { if (! (e)) abort (); } while (0)
52 #endif
54 /* IMPORTANT NOTE: Please see the file README.DWARF for important details
55 regarding the GNU implementation of Dwarf. */
57 /* NOTE: In the comments in this file, many references are made to
58 so called "Debugging Information Entries". For the sake of brevity,
59 this term is abbreviated to `DIE' throughout the remainder of this
60 file. */
62 /* Note that the implementation of C++ support herein is (as yet) unfinished.
63 If you want to try to complete it, more power to you. */
65 /* How to start an assembler comment. */
66 #ifndef ASM_COMMENT_START
67 #define ASM_COMMENT_START ";#"
68 #endif
70 /* How to print out a register name. */
71 #ifndef PRINT_REG
72 #define PRINT_REG(RTX, CODE, FILE) \
73 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
74 #endif
76 /* Define a macro which returns non-zero for any tagged type which is
77 used (directly or indirectly) in the specification of either some
78 function's return type or some formal parameter of some function.
79 We use this macro when we are operating in "terse" mode to help us
80 know what tagged types have to be represented in Dwarf (even in
81 terse mode) and which ones don't.
83 A flag bit with this meaning really should be a part of the normal
84 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
85 for these nodes. For now, we have to just fake it. It it safe for
86 us to simply return zero for all complete tagged types (which will
87 get forced out anyway if they were used in the specification of some
88 formal or return type) and non-zero for all incomplete tagged types.
91 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
93 /* Define a macro which returns non-zero for a TYPE_DECL which was
94 implicitly generated for a tagged type.
96 Note that unlike the gcc front end (which generates a NULL named
97 TYPE_DECL node for each complete tagged type, each array type, and
98 each function type node created) the g++ front end generates a
99 _named_ TYPE_DECL node for each tagged type node created.
100 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
101 generate a DW_TAG_typedef DIE for them. */
102 #define TYPE_DECL_IS_STUB(decl) \
103 (DECL_NAME (decl) == NULL \
104 || (DECL_ARTIFICIAL (decl) \
105 && is_tagged_type (TREE_TYPE (decl)) \
106 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
108 extern int flag_traditional;
109 extern char *version_string;
111 /* Maximum size (in bytes) of an artificially generated label. */
113 #define MAX_ARTIFICIAL_LABEL_BYTES 30
115 /* Make sure we know the sizes of the various types dwarf can describe.
116 These are only defaults. If the sizes are different for your target,
117 you should override these values by defining the appropriate symbols
118 in your tm.h file. */
120 #ifndef CHAR_TYPE_SIZE
121 #define CHAR_TYPE_SIZE BITS_PER_UNIT
122 #endif
124 #ifndef SHORT_TYPE_SIZE
125 #define SHORT_TYPE_SIZE (BITS_PER_UNIT * MIN ((UNITS_PER_WORD + 1) / 2, 2))
126 #endif
128 #ifndef INT_TYPE_SIZE
129 #define INT_TYPE_SIZE BITS_PER_WORD
130 #endif
132 #ifndef LONG_TYPE_SIZE
133 #define LONG_TYPE_SIZE BITS_PER_WORD
134 #endif
136 #ifndef LONG_LONG_TYPE_SIZE
137 #define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
138 #endif
140 #ifndef WCHAR_TYPE_SIZE
141 #define WCHAR_TYPE_SIZE INT_TYPE_SIZE
142 #endif
144 #ifndef WCHAR_UNSIGNED
145 #define WCHAR_UNSIGNED 0
146 #endif
148 #ifndef FLOAT_TYPE_SIZE
149 #define FLOAT_TYPE_SIZE BITS_PER_WORD
150 #endif
152 #ifndef DOUBLE_TYPE_SIZE
153 #define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
154 #endif
156 #ifndef LONG_DOUBLE_TYPE_SIZE
157 #define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
158 #endif
160 /* Structure to keep track of source filenames. */
162 struct filename_entry {
163 unsigned number;
164 char * name;
167 typedef struct filename_entry filename_entry;
169 /* Pointer to an array of elements, each one having the structure above. */
171 static filename_entry *filename_table;
173 /* Total number of entries in the table (i.e. array) pointed to by
174 `filename_table'. This is the *total* and includes both used and
175 unused slots. */
177 static unsigned ft_entries_allocated;
179 /* Number of entries in the filename_table which are actually in use. */
181 static unsigned ft_entries;
183 /* Size (in elements) of increments by which we may expand the filename
184 table. Actually, a single hunk of space of this size should be enough
185 for most typical programs. */
187 #define FT_ENTRIES_INCREMENT 64
189 /* Local pointer to the name of the main input file. Initialized in
190 dwarfout_init. */
192 static char *primary_filename;
194 /* Pointer to the most recent filename for which we produced some line info. */
196 static char *last_filename;
198 /* For Dwarf output, we must assign lexical-blocks id numbers
199 in the order in which their beginnings are encountered.
200 We output Dwarf debugging info that refers to the beginnings
201 and ends of the ranges of code for each lexical block with
202 assembler labels ..Bn and ..Bn.e, where n is the block number.
203 The labels themselves are generated in final.c, which assigns
204 numbers to the blocks in the same way. */
206 static unsigned next_block_number = 2;
208 /* Counter to generate unique names for DIEs. */
210 static unsigned next_unused_dienum = 1;
212 /* Number of the DIE which is currently being generated. */
214 static unsigned current_dienum;
216 /* Number to use for the special "pubname" label on the next DIE which
217 represents a function or data object defined in this compilation
218 unit which has "extern" linkage. */
220 static int next_pubname_number = 0;
222 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
224 /* Pointer to a dynamically allocated list of pre-reserved and still
225 pending sibling DIE numbers. Note that this list will grow as needed. */
227 static unsigned *pending_sibling_stack;
229 /* Counter to keep track of the number of pre-reserved and still pending
230 sibling DIE numbers. */
232 static unsigned pending_siblings;
234 /* The currently allocated size of the above list (expressed in number of
235 list elements). */
237 static unsigned pending_siblings_allocated;
239 /* Size (in elements) of increments by which we may expand the pending
240 sibling stack. Actually, a single hunk of space of this size should
241 be enough for most typical programs. */
243 #define PENDING_SIBLINGS_INCREMENT 64
245 /* Non-zero if we are performing our file-scope finalization pass and if
246 we should force out Dwarf descriptions of any and all file-scope
247 tagged types which are still incomplete types. */
249 static int finalizing = 0;
251 /* A pointer to the base of a list of pending types which we haven't
252 generated DIEs for yet, but which we will have to come back to
253 later on. */
255 static tree *pending_types_list;
257 /* Number of elements currently allocated for the pending_types_list. */
259 static unsigned pending_types_allocated;
261 /* Number of elements of pending_types_list currently in use. */
263 static unsigned pending_types;
265 /* Size (in elements) of increments by which we may expand the pending
266 types list. Actually, a single hunk of space of this size should
267 be enough for most typical programs. */
269 #define PENDING_TYPES_INCREMENT 64
271 /* A pointer to the base of a list of incomplete types which might be
272 completed at some later time. */
274 static tree *incomplete_types_list;
276 /* Number of elements currently allocated for the incomplete_types_list. */
277 static unsigned incomplete_types_allocated;
279 /* Number of elements of incomplete_types_list currently in use. */
280 static unsigned incomplete_types;
282 /* Size (in elements) of increments by which we may expand the incomplete
283 types list. Actually, a single hunk of space of this size should
284 be enough for most typical programs. */
285 #define INCOMPLETE_TYPES_INCREMENT 64
287 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
288 This is used in a hack to help us get the DIEs describing types of
289 formal parameters to come *after* all of the DIEs describing the formal
290 parameters themselves. That's necessary in order to be compatible
291 with what the brain-damaged svr4 SDB debugger requires. */
293 static tree fake_containing_scope;
295 /* The number of the current function definition that we are generating
296 debugging information for. These numbers range from 1 up to the maximum
297 number of function definitions contained within the current compilation
298 unit. These numbers are used to create unique labels for various things
299 contained within various function definitions. */
301 static unsigned current_funcdef_number = 1;
303 /* A pointer to the ..._DECL node which we have most recently been working
304 on. We keep this around just in case something about it looks screwy
305 and we want to tell the user what the source coordinates for the actual
306 declaration are. */
308 static tree dwarf_last_decl;
310 /* A flag indicating that we are emitting the member declarations of a
311 class, so member functions and variables should not be entirely emitted.
312 This is a kludge to avoid passing a second argument to output_*_die. */
314 static int in_class;
316 /* Forward declarations for functions defined in this file. */
318 static const char *dwarf_tag_name PARAMS ((unsigned));
319 static const char *dwarf_attr_name PARAMS ((unsigned));
320 static const char *dwarf_stack_op_name PARAMS ((unsigned));
321 static const char *dwarf_typemod_name PARAMS ((unsigned));
322 static const char *dwarf_fmt_byte_name PARAMS ((unsigned));
323 static const char *dwarf_fund_type_name PARAMS ((unsigned));
324 static tree decl_ultimate_origin PARAMS ((tree));
325 static tree block_ultimate_origin PARAMS ((tree));
326 static tree decl_class_context PARAMS ((tree));
327 #if 0
328 static void output_unsigned_leb128 PARAMS ((unsigned long));
329 static void output_signed_leb128 PARAMS ((long));
330 #endif
331 static inline int is_body_block PARAMS ((tree));
332 static int fundamental_type_code PARAMS ((tree));
333 static tree root_type_1 PARAMS ((tree, int));
334 static tree root_type PARAMS ((tree));
335 static void write_modifier_bytes_1 PARAMS ((tree, int, int, int));
336 static void write_modifier_bytes PARAMS ((tree, int, int));
337 static inline int type_is_fundamental PARAMS ((tree));
338 static void equate_decl_number_to_die_number PARAMS ((tree));
339 static inline void equate_type_number_to_die_number PARAMS ((tree));
340 static void output_reg_number PARAMS ((rtx));
341 static void output_mem_loc_descriptor PARAMS ((rtx));
342 static void output_loc_descriptor PARAMS ((rtx));
343 static void output_bound_representation PARAMS ((tree, unsigned, int));
344 static void output_enumeral_list PARAMS ((tree));
345 static inline unsigned ceiling PARAMS ((unsigned, unsigned));
346 static inline tree field_type PARAMS ((tree));
347 static inline unsigned simple_type_align_in_bits PARAMS ((tree));
348 static inline unsigned simple_type_size_in_bits PARAMS ((tree));
349 static unsigned field_byte_offset PARAMS ((tree));
350 static inline void sibling_attribute PARAMS ((void));
351 static void location_attribute PARAMS ((rtx));
352 static void data_member_location_attribute PARAMS ((tree));
353 static void const_value_attribute PARAMS ((rtx));
354 static void location_or_const_value_attribute PARAMS ((tree));
355 static inline void name_attribute PARAMS ((const char *));
356 static inline void fund_type_attribute PARAMS ((unsigned));
357 static void mod_fund_type_attribute PARAMS ((tree, int, int));
358 static inline void user_def_type_attribute PARAMS ((tree));
359 static void mod_u_d_type_attribute PARAMS ((tree, int, int));
360 #ifdef USE_ORDERING_ATTRIBUTE
361 static inline void ordering_attribute PARAMS ((unsigned));
362 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
363 static void subscript_data_attribute PARAMS ((tree));
364 static void byte_size_attribute PARAMS ((tree));
365 static inline void bit_offset_attribute PARAMS ((tree));
366 static inline void bit_size_attribute PARAMS ((tree));
367 static inline void element_list_attribute PARAMS ((tree));
368 static inline void stmt_list_attribute PARAMS ((const char *));
369 static inline void low_pc_attribute PARAMS ((const char *));
370 static inline void high_pc_attribute PARAMS ((const char *));
371 static inline void body_begin_attribute PARAMS ((const char *));
372 static inline void body_end_attribute PARAMS ((const char *));
373 static inline void language_attribute PARAMS ((unsigned));
374 static inline void member_attribute PARAMS ((tree));
375 #if 0
376 static inline void string_length_attribute PARAMS ((tree));
377 #endif
378 static inline void comp_dir_attribute PARAMS ((const char *));
379 static inline void sf_names_attribute PARAMS ((const char *));
380 static inline void src_info_attribute PARAMS ((const char *));
381 static inline void mac_info_attribute PARAMS ((const char *));
382 static inline void prototyped_attribute PARAMS ((tree));
383 static inline void producer_attribute PARAMS ((const char *));
384 static inline void inline_attribute PARAMS ((tree));
385 static inline void containing_type_attribute PARAMS ((tree));
386 static inline void abstract_origin_attribute PARAMS ((tree));
387 #ifdef DWARF_DECL_COORDINATES
388 static inline void src_coords_attribute PARAMS ((unsigned, unsigned));
389 #endif /* defined(DWARF_DECL_COORDINATES) */
390 static inline void pure_or_virtual_attribute PARAMS ((tree));
391 static void name_and_src_coords_attributes PARAMS ((tree));
392 static void type_attribute PARAMS ((tree, int, int));
393 static char *type_tag PARAMS ((tree));
394 static inline void dienum_push PARAMS ((void));
395 static inline void dienum_pop PARAMS ((void));
396 static inline tree member_declared_type PARAMS ((tree));
397 static char *function_start_label PARAMS ((tree));
398 static void output_array_type_die PARAMS ((void *));
399 static void output_set_type_die PARAMS ((void *));
400 #if 0
401 static void output_entry_point_die PARAMS ((void *));
402 #endif
403 static void output_inlined_enumeration_type_die PARAMS ((void *));
404 static void output_inlined_structure_type_die PARAMS ((void *));
405 static void output_inlined_union_type_die PARAMS ((void *));
406 static void output_enumeration_type_die PARAMS ((void *));
407 static void output_formal_parameter_die PARAMS ((void *));
408 static void output_global_subroutine_die PARAMS ((void *));
409 static void output_global_variable_die PARAMS ((void *));
410 static void output_label_die PARAMS ((void *));
411 static void output_lexical_block_die PARAMS ((void *));
412 static void output_inlined_subroutine_die PARAMS ((void *));
413 static void output_local_variable_die PARAMS ((void *));
414 static void output_member_die PARAMS ((void *));
415 #if 0
416 static void output_pointer_type_die PARAMS ((void *));
417 static void output_reference_type_die PARAMS ((void *));
418 #endif
419 static void output_ptr_to_mbr_type_die PARAMS ((void *));
420 static void output_compile_unit_die PARAMS ((void *));
421 static void output_string_type_die PARAMS ((void *));
422 static void output_inheritance_die PARAMS ((void *));
423 static void output_structure_type_die PARAMS ((void *));
424 static void output_local_subroutine_die PARAMS ((void *));
425 static void output_subroutine_type_die PARAMS ((void *));
426 static void output_typedef_die PARAMS ((void *));
427 static void output_union_type_die PARAMS ((void *));
428 static void output_unspecified_parameters_die PARAMS ((void *));
429 static void output_padded_null_die PARAMS ((void *));
430 static void output_die PARAMS ((void (*)(void *), void *));
431 static void end_sibling_chain PARAMS ((void));
432 static void output_formal_types PARAMS ((tree));
433 static void pend_type PARAMS ((tree));
434 static int type_ok_for_scope PARAMS ((tree, tree));
435 static void output_pending_types_for_scope PARAMS ((tree));
436 static void output_type PARAMS ((tree, tree));
437 static void output_tagged_type_instantiation PARAMS ((tree));
438 static void output_block PARAMS ((tree, int));
439 static void output_decls_for_scope PARAMS ((tree, int));
440 static void output_decl PARAMS ((tree, tree));
441 static void shuffle_filename_entry PARAMS ((filename_entry *));
442 static void generate_new_sfname_entry PARAMS ((void));
443 static unsigned lookup_filename PARAMS ((const char *));
444 static void generate_srcinfo_entry PARAMS ((unsigned, unsigned));
445 static void generate_macinfo_entry PARAMS ((const char *, const char *));
446 static int is_pseudo_reg PARAMS ((rtx));
447 static tree type_main_variant PARAMS ((tree));
448 static int is_tagged_type PARAMS ((tree));
449 static int is_redundant_typedef PARAMS ((tree));
450 static void add_incomplete_type PARAMS ((tree));
451 static void retry_incomplete_types PARAMS ((void));
453 /* Definitions of defaults for assembler-dependent names of various
454 pseudo-ops and section names.
456 Theses may be overridden in your tm.h file (if necessary) for your
457 particular assembler. The default values provided here correspond to
458 what is expected by "standard" AT&T System V.4 assemblers. */
460 #ifndef FILE_ASM_OP
461 #define FILE_ASM_OP ".file"
462 #endif
463 #ifndef VERSION_ASM_OP
464 #define VERSION_ASM_OP ".version"
465 #endif
466 #ifndef UNALIGNED_SHORT_ASM_OP
467 #define UNALIGNED_SHORT_ASM_OP ".2byte"
468 #endif
469 #ifndef UNALIGNED_INT_ASM_OP
470 #define UNALIGNED_INT_ASM_OP ".4byte"
471 #endif
472 #ifndef ASM_BYTE_OP
473 #define ASM_BYTE_OP ".byte"
474 #endif
475 #ifndef SET_ASM_OP
476 #define SET_ASM_OP ".set"
477 #endif
479 /* Pseudo-ops for pushing the current section onto the section stack (and
480 simultaneously changing to a new section) and for poping back to the
481 section we were in immediately before this one. Note that most svr4
482 assemblers only maintain a one level stack... you can push all the
483 sections you want, but you can only pop out one level. (The sparc
484 svr4 assembler is an exception to this general rule.) That's
485 OK because we only use at most one level of the section stack herein. */
487 #ifndef PUSHSECTION_ASM_OP
488 #define PUSHSECTION_ASM_OP ".section"
489 #endif
490 #ifndef POPSECTION_ASM_OP
491 #define POPSECTION_ASM_OP ".previous"
492 #endif
494 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
495 to print the PUSHSECTION_ASM_OP and the section name. The default here
496 works for almost all svr4 assemblers, except for the sparc, where the
497 section name must be enclosed in double quotes. (See sparcv4.h.) */
499 #ifndef PUSHSECTION_FORMAT
500 #define PUSHSECTION_FORMAT "\t%s\t%s\n"
501 #endif
503 #ifndef DEBUG_SECTION
504 #define DEBUG_SECTION ".debug"
505 #endif
506 #ifndef LINE_SECTION
507 #define LINE_SECTION ".line"
508 #endif
509 #ifndef SFNAMES_SECTION
510 #define SFNAMES_SECTION ".debug_sfnames"
511 #endif
512 #ifndef SRCINFO_SECTION
513 #define SRCINFO_SECTION ".debug_srcinfo"
514 #endif
515 #ifndef MACINFO_SECTION
516 #define MACINFO_SECTION ".debug_macinfo"
517 #endif
518 #ifndef PUBNAMES_SECTION
519 #define PUBNAMES_SECTION ".debug_pubnames"
520 #endif
521 #ifndef ARANGES_SECTION
522 #define ARANGES_SECTION ".debug_aranges"
523 #endif
524 #ifndef TEXT_SECTION
525 #define TEXT_SECTION ".text"
526 #endif
527 #ifndef DATA_SECTION
528 #define DATA_SECTION ".data"
529 #endif
530 #ifndef DATA1_SECTION
531 #define DATA1_SECTION ".data1"
532 #endif
533 #ifndef RODATA_SECTION
534 #define RODATA_SECTION ".rodata"
535 #endif
536 #ifndef RODATA1_SECTION
537 #define RODATA1_SECTION ".rodata1"
538 #endif
539 #ifndef BSS_SECTION
540 #define BSS_SECTION ".bss"
541 #endif
543 /* Definitions of defaults for formats and names of various special
544 (artificial) labels which may be generated within this file (when
545 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
547 If necessary, these may be overridden from within your tm.h file,
548 but typically, you should never need to override these.
550 These labels have been hacked (temporarily) so that they all begin with
551 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
552 stock m88k/svr4 assembler, both of which need to see .L at the start of
553 a label in order to prevent that label from going into the linker symbol
554 table). When I get time, I'll have to fix this the right way so that we
555 will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
556 but that will require a rather massive set of changes. For the moment,
557 the following definitions out to produce the right results for all svr4
558 and svr3 assemblers. -- rfg
561 #ifndef TEXT_BEGIN_LABEL
562 #define TEXT_BEGIN_LABEL "*.L_text_b"
563 #endif
564 #ifndef TEXT_END_LABEL
565 #define TEXT_END_LABEL "*.L_text_e"
566 #endif
568 #ifndef DATA_BEGIN_LABEL
569 #define DATA_BEGIN_LABEL "*.L_data_b"
570 #endif
571 #ifndef DATA_END_LABEL
572 #define DATA_END_LABEL "*.L_data_e"
573 #endif
575 #ifndef DATA1_BEGIN_LABEL
576 #define DATA1_BEGIN_LABEL "*.L_data1_b"
577 #endif
578 #ifndef DATA1_END_LABEL
579 #define DATA1_END_LABEL "*.L_data1_e"
580 #endif
582 #ifndef RODATA_BEGIN_LABEL
583 #define RODATA_BEGIN_LABEL "*.L_rodata_b"
584 #endif
585 #ifndef RODATA_END_LABEL
586 #define RODATA_END_LABEL "*.L_rodata_e"
587 #endif
589 #ifndef RODATA1_BEGIN_LABEL
590 #define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
591 #endif
592 #ifndef RODATA1_END_LABEL
593 #define RODATA1_END_LABEL "*.L_rodata1_e"
594 #endif
596 #ifndef BSS_BEGIN_LABEL
597 #define BSS_BEGIN_LABEL "*.L_bss_b"
598 #endif
599 #ifndef BSS_END_LABEL
600 #define BSS_END_LABEL "*.L_bss_e"
601 #endif
603 #ifndef LINE_BEGIN_LABEL
604 #define LINE_BEGIN_LABEL "*.L_line_b"
605 #endif
606 #ifndef LINE_LAST_ENTRY_LABEL
607 #define LINE_LAST_ENTRY_LABEL "*.L_line_last"
608 #endif
609 #ifndef LINE_END_LABEL
610 #define LINE_END_LABEL "*.L_line_e"
611 #endif
613 #ifndef DEBUG_BEGIN_LABEL
614 #define DEBUG_BEGIN_LABEL "*.L_debug_b"
615 #endif
616 #ifndef SFNAMES_BEGIN_LABEL
617 #define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
618 #endif
619 #ifndef SRCINFO_BEGIN_LABEL
620 #define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
621 #endif
622 #ifndef MACINFO_BEGIN_LABEL
623 #define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
624 #endif
626 #ifndef DIE_BEGIN_LABEL_FMT
627 #define DIE_BEGIN_LABEL_FMT "*.L_D%u"
628 #endif
629 #ifndef DIE_END_LABEL_FMT
630 #define DIE_END_LABEL_FMT "*.L_D%u_e"
631 #endif
632 #ifndef PUB_DIE_LABEL_FMT
633 #define PUB_DIE_LABEL_FMT "*.L_P%u"
634 #endif
635 #ifndef INSN_LABEL_FMT
636 #define INSN_LABEL_FMT "*.L_I%u_%u"
637 #endif
638 #ifndef BLOCK_BEGIN_LABEL_FMT
639 #define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
640 #endif
641 #ifndef BLOCK_END_LABEL_FMT
642 #define BLOCK_END_LABEL_FMT "*.L_B%u_e"
643 #endif
644 #ifndef SS_BEGIN_LABEL_FMT
645 #define SS_BEGIN_LABEL_FMT "*.L_s%u"
646 #endif
647 #ifndef SS_END_LABEL_FMT
648 #define SS_END_LABEL_FMT "*.L_s%u_e"
649 #endif
650 #ifndef EE_BEGIN_LABEL_FMT
651 #define EE_BEGIN_LABEL_FMT "*.L_e%u"
652 #endif
653 #ifndef EE_END_LABEL_FMT
654 #define EE_END_LABEL_FMT "*.L_e%u_e"
655 #endif
656 #ifndef MT_BEGIN_LABEL_FMT
657 #define MT_BEGIN_LABEL_FMT "*.L_t%u"
658 #endif
659 #ifndef MT_END_LABEL_FMT
660 #define MT_END_LABEL_FMT "*.L_t%u_e"
661 #endif
662 #ifndef LOC_BEGIN_LABEL_FMT
663 #define LOC_BEGIN_LABEL_FMT "*.L_l%u"
664 #endif
665 #ifndef LOC_END_LABEL_FMT
666 #define LOC_END_LABEL_FMT "*.L_l%u_e"
667 #endif
668 #ifndef BOUND_BEGIN_LABEL_FMT
669 #define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
670 #endif
671 #ifndef BOUND_END_LABEL_FMT
672 #define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
673 #endif
674 #ifndef DERIV_BEGIN_LABEL_FMT
675 #define DERIV_BEGIN_LABEL_FMT "*.L_d%u"
676 #endif
677 #ifndef DERIV_END_LABEL_FMT
678 #define DERIV_END_LABEL_FMT "*.L_d%u_e"
679 #endif
680 #ifndef SL_BEGIN_LABEL_FMT
681 #define SL_BEGIN_LABEL_FMT "*.L_sl%u"
682 #endif
683 #ifndef SL_END_LABEL_FMT
684 #define SL_END_LABEL_FMT "*.L_sl%u_e"
685 #endif
686 #ifndef BODY_BEGIN_LABEL_FMT
687 #define BODY_BEGIN_LABEL_FMT "*.L_b%u"
688 #endif
689 #ifndef BODY_END_LABEL_FMT
690 #define BODY_END_LABEL_FMT "*.L_b%u_e"
691 #endif
692 #ifndef FUNC_END_LABEL_FMT
693 #define FUNC_END_LABEL_FMT "*.L_f%u_e"
694 #endif
695 #ifndef TYPE_NAME_FMT
696 #define TYPE_NAME_FMT "*.L_T%u"
697 #endif
698 #ifndef DECL_NAME_FMT
699 #define DECL_NAME_FMT "*.L_E%u"
700 #endif
701 #ifndef LINE_CODE_LABEL_FMT
702 #define LINE_CODE_LABEL_FMT "*.L_LC%u"
703 #endif
704 #ifndef SFNAMES_ENTRY_LABEL_FMT
705 #define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
706 #endif
707 #ifndef LINE_ENTRY_LABEL_FMT
708 #define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
709 #endif
711 /* Definitions of defaults for various types of primitive assembly language
712 output operations.
714 If necessary, these may be overridden from within your tm.h file,
715 but typically, you shouldn't need to override these. */
717 #ifndef ASM_OUTPUT_PUSH_SECTION
718 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
719 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
720 #endif
722 #ifndef ASM_OUTPUT_POP_SECTION
723 #define ASM_OUTPUT_POP_SECTION(FILE) \
724 fprintf ((FILE), "\t%s\n", POPSECTION_ASM_OP)
725 #endif
727 #ifndef ASM_OUTPUT_DWARF_DELTA2
728 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
729 do { fprintf ((FILE), "\t%s\t", UNALIGNED_SHORT_ASM_OP); \
730 assemble_name (FILE, LABEL1); \
731 fprintf (FILE, "-"); \
732 assemble_name (FILE, LABEL2); \
733 fprintf (FILE, "\n"); \
734 } while (0)
735 #endif
737 #ifndef ASM_OUTPUT_DWARF_DELTA4
738 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
739 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
740 assemble_name (FILE, LABEL1); \
741 fprintf (FILE, "-"); \
742 assemble_name (FILE, LABEL2); \
743 fprintf (FILE, "\n"); \
744 } while (0)
745 #endif
747 #ifndef ASM_OUTPUT_DWARF_TAG
748 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
749 do { \
750 fprintf ((FILE), "\t%s\t0x%x", \
751 UNALIGNED_SHORT_ASM_OP, (unsigned) TAG); \
752 if (flag_debug_asm) \
753 fprintf ((FILE), "\t%s %s", \
754 ASM_COMMENT_START, dwarf_tag_name (TAG)); \
755 fputc ('\n', (FILE)); \
756 } while (0)
757 #endif
759 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
760 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
761 do { \
762 fprintf ((FILE), "\t%s\t0x%x", \
763 UNALIGNED_SHORT_ASM_OP, (unsigned) ATTR); \
764 if (flag_debug_asm) \
765 fprintf ((FILE), "\t%s %s", \
766 ASM_COMMENT_START, dwarf_attr_name (ATTR)); \
767 fputc ('\n', (FILE)); \
768 } while (0)
769 #endif
771 #ifndef ASM_OUTPUT_DWARF_STACK_OP
772 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
773 do { \
774 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) OP); \
775 if (flag_debug_asm) \
776 fprintf ((FILE), "\t%s %s", \
777 ASM_COMMENT_START, dwarf_stack_op_name (OP)); \
778 fputc ('\n', (FILE)); \
779 } while (0)
780 #endif
782 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
783 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
784 do { \
785 fprintf ((FILE), "\t%s\t0x%x", \
786 UNALIGNED_SHORT_ASM_OP, (unsigned) FT); \
787 if (flag_debug_asm) \
788 fprintf ((FILE), "\t%s %s", \
789 ASM_COMMENT_START, dwarf_fund_type_name (FT)); \
790 fputc ('\n', (FILE)); \
791 } while (0)
792 #endif
794 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
795 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
796 do { \
797 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) FMT); \
798 if (flag_debug_asm) \
799 fprintf ((FILE), "\t%s %s", \
800 ASM_COMMENT_START, dwarf_fmt_byte_name (FMT)); \
801 fputc ('\n', (FILE)); \
802 } while (0)
803 #endif
805 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
806 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
807 do { \
808 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) MOD); \
809 if (flag_debug_asm) \
810 fprintf ((FILE), "\t%s %s", \
811 ASM_COMMENT_START, dwarf_typemod_name (MOD)); \
812 fputc ('\n', (FILE)); \
813 } while (0)
814 #endif
816 #ifndef ASM_OUTPUT_DWARF_ADDR
817 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
818 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
819 assemble_name (FILE, LABEL); \
820 fprintf (FILE, "\n"); \
821 } while (0)
822 #endif
824 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
825 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
826 do { \
827 fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
828 output_addr_const ((FILE), (RTX)); \
829 fputc ('\n', (FILE)); \
830 } while (0)
831 #endif
833 #ifndef ASM_OUTPUT_DWARF_REF
834 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
835 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
836 assemble_name (FILE, LABEL); \
837 fprintf (FILE, "\n"); \
838 } while (0)
839 #endif
841 #ifndef ASM_OUTPUT_DWARF_DATA1
842 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
843 fprintf ((FILE), "\t%s\t0x%x\n", ASM_BYTE_OP, VALUE)
844 #endif
846 #ifndef ASM_OUTPUT_DWARF_DATA2
847 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
848 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_SHORT_ASM_OP, (unsigned) VALUE)
849 #endif
851 #ifndef ASM_OUTPUT_DWARF_DATA4
852 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
853 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, (unsigned) VALUE)
854 #endif
856 #ifndef ASM_OUTPUT_DWARF_DATA8
857 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
858 do { \
859 if (WORDS_BIG_ENDIAN) \
861 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
862 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
864 else \
866 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
867 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
869 } while (0)
870 #endif
872 /* ASM_OUTPUT_DWARF_STRING is defined to output an ascii string, but to
873 NOT issue a trailing newline. We define ASM_OUTPUT_DWARF_STRING_NEWLINE
874 based on whether ASM_OUTPUT_DWARF_STRING is defined or not. If it is
875 defined, we call it, then issue the line feed. If not, we supply a
876 default defintion of calling ASM_OUTPUT_ASCII */
878 #ifndef ASM_OUTPUT_DWARF_STRING
879 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
880 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
881 #else
882 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
883 ASM_OUTPUT_DWARF_STRING (FILE,P), ASM_OUTPUT_DWARF_STRING (FILE,"\n")
884 #endif
887 /************************ general utility functions **************************/
889 inline static int
890 is_pseudo_reg (rtl)
891 register rtx rtl;
893 return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
894 || ((GET_CODE (rtl) == SUBREG)
895 && (REGNO (XEXP (rtl, 0)) >= FIRST_PSEUDO_REGISTER)));
898 inline static tree
899 type_main_variant (type)
900 register tree type;
902 type = TYPE_MAIN_VARIANT (type);
904 /* There really should be only one main variant among any group of variants
905 of a given type (and all of the MAIN_VARIANT values for all members of
906 the group should point to that one type) but sometimes the C front-end
907 messes this up for array types, so we work around that bug here. */
909 if (TREE_CODE (type) == ARRAY_TYPE)
911 while (type != TYPE_MAIN_VARIANT (type))
912 type = TYPE_MAIN_VARIANT (type);
915 return type;
918 /* Return non-zero if the given type node represents a tagged type. */
920 inline static int
921 is_tagged_type (type)
922 register tree type;
924 register enum tree_code code = TREE_CODE (type);
926 return (code == RECORD_TYPE || code == UNION_TYPE
927 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
930 static const char *
931 dwarf_tag_name (tag)
932 register unsigned tag;
934 switch (tag)
936 case TAG_padding: return "TAG_padding";
937 case TAG_array_type: return "TAG_array_type";
938 case TAG_class_type: return "TAG_class_type";
939 case TAG_entry_point: return "TAG_entry_point";
940 case TAG_enumeration_type: return "TAG_enumeration_type";
941 case TAG_formal_parameter: return "TAG_formal_parameter";
942 case TAG_global_subroutine: return "TAG_global_subroutine";
943 case TAG_global_variable: return "TAG_global_variable";
944 case TAG_label: return "TAG_label";
945 case TAG_lexical_block: return "TAG_lexical_block";
946 case TAG_local_variable: return "TAG_local_variable";
947 case TAG_member: return "TAG_member";
948 case TAG_pointer_type: return "TAG_pointer_type";
949 case TAG_reference_type: return "TAG_reference_type";
950 case TAG_compile_unit: return "TAG_compile_unit";
951 case TAG_string_type: return "TAG_string_type";
952 case TAG_structure_type: return "TAG_structure_type";
953 case TAG_subroutine: return "TAG_subroutine";
954 case TAG_subroutine_type: return "TAG_subroutine_type";
955 case TAG_typedef: return "TAG_typedef";
956 case TAG_union_type: return "TAG_union_type";
957 case TAG_unspecified_parameters: return "TAG_unspecified_parameters";
958 case TAG_variant: return "TAG_variant";
959 case TAG_common_block: return "TAG_common_block";
960 case TAG_common_inclusion: return "TAG_common_inclusion";
961 case TAG_inheritance: return "TAG_inheritance";
962 case TAG_inlined_subroutine: return "TAG_inlined_subroutine";
963 case TAG_module: return "TAG_module";
964 case TAG_ptr_to_member_type: return "TAG_ptr_to_member_type";
965 case TAG_set_type: return "TAG_set_type";
966 case TAG_subrange_type: return "TAG_subrange_type";
967 case TAG_with_stmt: return "TAG_with_stmt";
969 /* GNU extensions. */
971 case TAG_format_label: return "TAG_format_label";
972 case TAG_namelist: return "TAG_namelist";
973 case TAG_function_template: return "TAG_function_template";
974 case TAG_class_template: return "TAG_class_template";
976 default: return "TAG_<unknown>";
980 static const char *
981 dwarf_attr_name (attr)
982 register unsigned attr;
984 switch (attr)
986 case AT_sibling: return "AT_sibling";
987 case AT_location: return "AT_location";
988 case AT_name: return "AT_name";
989 case AT_fund_type: return "AT_fund_type";
990 case AT_mod_fund_type: return "AT_mod_fund_type";
991 case AT_user_def_type: return "AT_user_def_type";
992 case AT_mod_u_d_type: return "AT_mod_u_d_type";
993 case AT_ordering: return "AT_ordering";
994 case AT_subscr_data: return "AT_subscr_data";
995 case AT_byte_size: return "AT_byte_size";
996 case AT_bit_offset: return "AT_bit_offset";
997 case AT_bit_size: return "AT_bit_size";
998 case AT_element_list: return "AT_element_list";
999 case AT_stmt_list: return "AT_stmt_list";
1000 case AT_low_pc: return "AT_low_pc";
1001 case AT_high_pc: return "AT_high_pc";
1002 case AT_language: return "AT_language";
1003 case AT_member: return "AT_member";
1004 case AT_discr: return "AT_discr";
1005 case AT_discr_value: return "AT_discr_value";
1006 case AT_string_length: return "AT_string_length";
1007 case AT_common_reference: return "AT_common_reference";
1008 case AT_comp_dir: return "AT_comp_dir";
1009 case AT_const_value_string: return "AT_const_value_string";
1010 case AT_const_value_data2: return "AT_const_value_data2";
1011 case AT_const_value_data4: return "AT_const_value_data4";
1012 case AT_const_value_data8: return "AT_const_value_data8";
1013 case AT_const_value_block2: return "AT_const_value_block2";
1014 case AT_const_value_block4: return "AT_const_value_block4";
1015 case AT_containing_type: return "AT_containing_type";
1016 case AT_default_value_addr: return "AT_default_value_addr";
1017 case AT_default_value_data2: return "AT_default_value_data2";
1018 case AT_default_value_data4: return "AT_default_value_data4";
1019 case AT_default_value_data8: return "AT_default_value_data8";
1020 case AT_default_value_string: return "AT_default_value_string";
1021 case AT_friends: return "AT_friends";
1022 case AT_inline: return "AT_inline";
1023 case AT_is_optional: return "AT_is_optional";
1024 case AT_lower_bound_ref: return "AT_lower_bound_ref";
1025 case AT_lower_bound_data2: return "AT_lower_bound_data2";
1026 case AT_lower_bound_data4: return "AT_lower_bound_data4";
1027 case AT_lower_bound_data8: return "AT_lower_bound_data8";
1028 case AT_private: return "AT_private";
1029 case AT_producer: return "AT_producer";
1030 case AT_program: return "AT_program";
1031 case AT_protected: return "AT_protected";
1032 case AT_prototyped: return "AT_prototyped";
1033 case AT_public: return "AT_public";
1034 case AT_pure_virtual: return "AT_pure_virtual";
1035 case AT_return_addr: return "AT_return_addr";
1036 case AT_abstract_origin: return "AT_abstract_origin";
1037 case AT_start_scope: return "AT_start_scope";
1038 case AT_stride_size: return "AT_stride_size";
1039 case AT_upper_bound_ref: return "AT_upper_bound_ref";
1040 case AT_upper_bound_data2: return "AT_upper_bound_data2";
1041 case AT_upper_bound_data4: return "AT_upper_bound_data4";
1042 case AT_upper_bound_data8: return "AT_upper_bound_data8";
1043 case AT_virtual: return "AT_virtual";
1045 /* GNU extensions */
1047 case AT_sf_names: return "AT_sf_names";
1048 case AT_src_info: return "AT_src_info";
1049 case AT_mac_info: return "AT_mac_info";
1050 case AT_src_coords: return "AT_src_coords";
1051 case AT_body_begin: return "AT_body_begin";
1052 case AT_body_end: return "AT_body_end";
1054 default: return "AT_<unknown>";
1058 static const char *
1059 dwarf_stack_op_name (op)
1060 register unsigned op;
1062 switch (op)
1064 case OP_REG: return "OP_REG";
1065 case OP_BASEREG: return "OP_BASEREG";
1066 case OP_ADDR: return "OP_ADDR";
1067 case OP_CONST: return "OP_CONST";
1068 case OP_DEREF2: return "OP_DEREF2";
1069 case OP_DEREF4: return "OP_DEREF4";
1070 case OP_ADD: return "OP_ADD";
1071 default: return "OP_<unknown>";
1075 static const char *
1076 dwarf_typemod_name (mod)
1077 register unsigned mod;
1079 switch (mod)
1081 case MOD_pointer_to: return "MOD_pointer_to";
1082 case MOD_reference_to: return "MOD_reference_to";
1083 case MOD_const: return "MOD_const";
1084 case MOD_volatile: return "MOD_volatile";
1085 default: return "MOD_<unknown>";
1089 static const char *
1090 dwarf_fmt_byte_name (fmt)
1091 register unsigned fmt;
1093 switch (fmt)
1095 case FMT_FT_C_C: return "FMT_FT_C_C";
1096 case FMT_FT_C_X: return "FMT_FT_C_X";
1097 case FMT_FT_X_C: return "FMT_FT_X_C";
1098 case FMT_FT_X_X: return "FMT_FT_X_X";
1099 case FMT_UT_C_C: return "FMT_UT_C_C";
1100 case FMT_UT_C_X: return "FMT_UT_C_X";
1101 case FMT_UT_X_C: return "FMT_UT_X_C";
1102 case FMT_UT_X_X: return "FMT_UT_X_X";
1103 case FMT_ET: return "FMT_ET";
1104 default: return "FMT_<unknown>";
1108 static const char *
1109 dwarf_fund_type_name (ft)
1110 register unsigned ft;
1112 switch (ft)
1114 case FT_char: return "FT_char";
1115 case FT_signed_char: return "FT_signed_char";
1116 case FT_unsigned_char: return "FT_unsigned_char";
1117 case FT_short: return "FT_short";
1118 case FT_signed_short: return "FT_signed_short";
1119 case FT_unsigned_short: return "FT_unsigned_short";
1120 case FT_integer: return "FT_integer";
1121 case FT_signed_integer: return "FT_signed_integer";
1122 case FT_unsigned_integer: return "FT_unsigned_integer";
1123 case FT_long: return "FT_long";
1124 case FT_signed_long: return "FT_signed_long";
1125 case FT_unsigned_long: return "FT_unsigned_long";
1126 case FT_pointer: return "FT_pointer";
1127 case FT_float: return "FT_float";
1128 case FT_dbl_prec_float: return "FT_dbl_prec_float";
1129 case FT_ext_prec_float: return "FT_ext_prec_float";
1130 case FT_complex: return "FT_complex";
1131 case FT_dbl_prec_complex: return "FT_dbl_prec_complex";
1132 case FT_void: return "FT_void";
1133 case FT_boolean: return "FT_boolean";
1134 case FT_ext_prec_complex: return "FT_ext_prec_complex";
1135 case FT_label: return "FT_label";
1137 /* GNU extensions. */
1139 case FT_long_long: return "FT_long_long";
1140 case FT_signed_long_long: return "FT_signed_long_long";
1141 case FT_unsigned_long_long: return "FT_unsigned_long_long";
1143 case FT_int8: return "FT_int8";
1144 case FT_signed_int8: return "FT_signed_int8";
1145 case FT_unsigned_int8: return "FT_unsigned_int8";
1146 case FT_int16: return "FT_int16";
1147 case FT_signed_int16: return "FT_signed_int16";
1148 case FT_unsigned_int16: return "FT_unsigned_int16";
1149 case FT_int32: return "FT_int32";
1150 case FT_signed_int32: return "FT_signed_int32";
1151 case FT_unsigned_int32: return "FT_unsigned_int32";
1152 case FT_int64: return "FT_int64";
1153 case FT_signed_int64: return "FT_signed_int64";
1154 case FT_unsigned_int64: return "FT_unsigned_int64";
1156 case FT_real32: return "FT_real32";
1157 case FT_real64: return "FT_real64";
1158 case FT_real96: return "FT_real96";
1159 case FT_real128: return "FT_real128";
1161 default: return "FT_<unknown>";
1165 /* Determine the "ultimate origin" of a decl. The decl may be an
1166 inlined instance of an inlined instance of a decl which is local
1167 to an inline function, so we have to trace all of the way back
1168 through the origin chain to find out what sort of node actually
1169 served as the original seed for the given block. */
1171 static tree
1172 decl_ultimate_origin (decl)
1173 register tree decl;
1175 #ifdef ENABLE_CHECKING
1176 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
1177 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
1178 most distant ancestor, this should never happen. */
1179 abort ();
1180 #endif
1182 return DECL_ABSTRACT_ORIGIN (decl);
1185 /* Determine the "ultimate origin" of a block. The block may be an
1186 inlined instance of an inlined instance of a block which is local
1187 to an inline function, so we have to trace all of the way back
1188 through the origin chain to find out what sort of node actually
1189 served as the original seed for the given block. */
1191 static tree
1192 block_ultimate_origin (block)
1193 register tree block;
1195 register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1197 if (immediate_origin == NULL)
1198 return NULL;
1199 else
1201 register tree ret_val;
1202 register tree lookahead = immediate_origin;
1206 ret_val = lookahead;
1207 lookahead = (TREE_CODE (ret_val) == BLOCK)
1208 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1209 : NULL;
1211 while (lookahead != NULL && lookahead != ret_val);
1212 return ret_val;
1216 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1217 of a virtual function may refer to a base class, so we check the 'this'
1218 parameter. */
1220 static tree
1221 decl_class_context (decl)
1222 tree decl;
1224 tree context = NULL_TREE;
1225 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
1226 context = DECL_CONTEXT (decl);
1227 else
1228 context = TYPE_MAIN_VARIANT
1229 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
1231 if (context && TREE_CODE_CLASS (TREE_CODE (context)) != 't')
1232 context = NULL_TREE;
1234 return context;
1237 #if 0
1238 static void
1239 output_unsigned_leb128 (value)
1240 register unsigned long value;
1242 register unsigned long orig_value = value;
1246 register unsigned byte = (value & 0x7f);
1248 value >>= 7;
1249 if (value != 0) /* more bytes to follow */
1250 byte |= 0x80;
1251 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1252 if (flag_debug_asm && value == 0)
1253 fprintf (asm_out_file, "\t%s ULEB128 number - value = %lu",
1254 ASM_COMMENT_START, orig_value);
1255 fputc ('\n', asm_out_file);
1257 while (value != 0);
1260 static void
1261 output_signed_leb128 (value)
1262 register long value;
1264 register long orig_value = value;
1265 register int negative = (value < 0);
1266 register int more;
1270 register unsigned byte = (value & 0x7f);
1272 value >>= 7;
1273 if (negative)
1274 value |= 0xfe000000; /* manually sign extend */
1275 if (((value == 0) && ((byte & 0x40) == 0))
1276 || ((value == -1) && ((byte & 0x40) == 1)))
1277 more = 0;
1278 else
1280 byte |= 0x80;
1281 more = 1;
1283 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1284 if (flag_debug_asm && more == 0)
1285 fprintf (asm_out_file, "\t%s SLEB128 number - value = %ld",
1286 ASM_COMMENT_START, orig_value);
1287 fputc ('\n', asm_out_file);
1289 while (more);
1291 #endif
1293 /**************** utility functions for attribute functions ******************/
1295 /* Given a pointer to a BLOCK node return non-zero if (and only if) the
1296 node in question represents the outermost pair of curly braces (i.e.
1297 the "body block") of a function or method.
1299 For any BLOCK node representing a "body block" of a function or method,
1300 the BLOCK_SUPERCONTEXT of the node will point to another BLOCK node
1301 which represents the outermost (function) scope for the function or
1302 method (i.e. the one which includes the formal parameters). The
1303 BLOCK_SUPERCONTEXT of *that* node in turn will point to the relevant
1304 FUNCTION_DECL node.
1307 static inline int
1308 is_body_block (stmt)
1309 register tree stmt;
1311 if (TREE_CODE (stmt) == BLOCK)
1313 register tree parent = BLOCK_SUPERCONTEXT (stmt);
1315 if (TREE_CODE (parent) == BLOCK)
1317 register tree grandparent = BLOCK_SUPERCONTEXT (parent);
1319 if (TREE_CODE (grandparent) == FUNCTION_DECL)
1320 return 1;
1323 return 0;
1326 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1327 type code for the given type.
1329 This routine must only be called for GCC type nodes that correspond to
1330 Dwarf fundamental types.
1332 The current Dwarf draft specification calls for Dwarf fundamental types
1333 to accurately reflect the fact that a given type was either a "plain"
1334 integral type or an explicitly "signed" integral type. Unfortunately,
1335 we can't always do this, because GCC may already have thrown away the
1336 information about the precise way in which the type was originally
1337 specified, as in:
1339 typedef signed int my_type;
1341 struct s { my_type f; };
1343 Since we may be stuck here without enought information to do exactly
1344 what is called for in the Dwarf draft specification, we do the best
1345 that we can under the circumstances and always use the "plain" integral
1346 fundamental type codes for int, short, and long types. That's probably
1347 good enough. The additional accuracy called for in the current DWARF
1348 draft specification is probably never even useful in practice. */
1350 static int
1351 fundamental_type_code (type)
1352 register tree type;
1354 if (TREE_CODE (type) == ERROR_MARK)
1355 return 0;
1357 switch (TREE_CODE (type))
1359 case ERROR_MARK:
1360 return FT_void;
1362 case VOID_TYPE:
1363 return FT_void;
1365 case INTEGER_TYPE:
1366 /* Carefully distinguish all the standard types of C,
1367 without messing up if the language is not C.
1368 Note that we check only for the names that contain spaces;
1369 other names might occur by coincidence in other languages. */
1370 if (TYPE_NAME (type) != 0
1371 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1372 && DECL_NAME (TYPE_NAME (type)) != 0
1373 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1375 const char *name =
1376 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1378 if (!strcmp (name, "unsigned char"))
1379 return FT_unsigned_char;
1380 if (!strcmp (name, "signed char"))
1381 return FT_signed_char;
1382 if (!strcmp (name, "unsigned int"))
1383 return FT_unsigned_integer;
1384 if (!strcmp (name, "short int"))
1385 return FT_short;
1386 if (!strcmp (name, "short unsigned int"))
1387 return FT_unsigned_short;
1388 if (!strcmp (name, "long int"))
1389 return FT_long;
1390 if (!strcmp (name, "long unsigned int"))
1391 return FT_unsigned_long;
1392 if (!strcmp (name, "long long int"))
1393 return FT_long_long; /* Not grok'ed by svr4 SDB */
1394 if (!strcmp (name, "long long unsigned int"))
1395 return FT_unsigned_long_long; /* Not grok'ed by svr4 SDB */
1398 /* Most integer types will be sorted out above, however, for the
1399 sake of special `array index' integer types, the following code
1400 is also provided. */
1402 if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1403 return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1405 if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1406 return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1408 if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1409 return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1411 if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1412 return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1414 if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1415 return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1417 /* In C++, __java_boolean is an INTEGER_TYPE with precision == 1 */
1418 if (TYPE_PRECISION (type) == 1)
1419 return FT_boolean;
1421 abort ();
1423 case REAL_TYPE:
1424 /* Carefully distinguish all the standard types of C,
1425 without messing up if the language is not C. */
1426 if (TYPE_NAME (type) != 0
1427 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1428 && DECL_NAME (TYPE_NAME (type)) != 0
1429 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1431 const char *name =
1432 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1434 /* Note that here we can run afowl of a serious bug in "classic"
1435 svr4 SDB debuggers. They don't seem to understand the
1436 FT_ext_prec_float type (even though they should). */
1438 if (!strcmp (name, "long double"))
1439 return FT_ext_prec_float;
1442 if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
1444 /* On the SH, when compiling with -m3e or -m4-single-only, both
1445 float and double are 32 bits. But since the debugger doesn't
1446 know about the subtarget, it always thinks double is 64 bits.
1447 So we have to tell the debugger that the type is float to
1448 make the output of the 'print' command etc. readable. */
1449 if (DOUBLE_TYPE_SIZE == FLOAT_TYPE_SIZE && FLOAT_TYPE_SIZE == 32)
1450 return FT_float;
1451 return FT_dbl_prec_float;
1453 if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1454 return FT_float;
1456 /* Note that here we can run afowl of a serious bug in "classic"
1457 svr4 SDB debuggers. They don't seem to understand the
1458 FT_ext_prec_float type (even though they should). */
1460 if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1461 return FT_ext_prec_float;
1462 abort ();
1464 case COMPLEX_TYPE:
1465 return FT_complex; /* GNU FORTRAN COMPLEX type. */
1467 case CHAR_TYPE:
1468 return FT_char; /* GNU Pascal CHAR type. Not used in C. */
1470 case BOOLEAN_TYPE:
1471 return FT_boolean; /* GNU FORTRAN BOOLEAN type. */
1473 default:
1474 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1476 return 0;
1479 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1480 the Dwarf "root" type for the given input type. The Dwarf "root" type
1481 of a given type is generally the same as the given type, except that if
1482 the given type is a pointer or reference type, then the root type of
1483 the given type is the root type of the "basis" type for the pointer or
1484 reference type. (This definition of the "root" type is recursive.)
1485 Also, the root type of a `const' qualified type or a `volatile'
1486 qualified type is the root type of the given type without the
1487 qualifiers. */
1489 static tree
1490 root_type_1 (type, count)
1491 register tree type;
1492 register int count;
1494 /* Give up after searching 1000 levels, in case this is a recursive
1495 pointer type. Such types are possible in Ada, but it is not possible
1496 to represent them in DWARF1 debug info. */
1497 if (count > 1000)
1498 return error_mark_node;
1500 switch (TREE_CODE (type))
1502 case ERROR_MARK:
1503 return error_mark_node;
1505 case POINTER_TYPE:
1506 case REFERENCE_TYPE:
1507 return root_type_1 (TREE_TYPE (type), count+1);
1509 default:
1510 return type;
1514 static tree
1515 root_type (type)
1516 register tree type;
1518 type = root_type_1 (type, 0);
1519 if (type != error_mark_node)
1520 type = type_main_variant (type);
1521 return type;
1524 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1525 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1527 static void
1528 write_modifier_bytes_1 (type, decl_const, decl_volatile, count)
1529 register tree type;
1530 register int decl_const;
1531 register int decl_volatile;
1532 register int count;
1534 if (TREE_CODE (type) == ERROR_MARK)
1535 return;
1537 /* Give up after searching 1000 levels, in case this is a recursive
1538 pointer type. Such types are possible in Ada, but it is not possible
1539 to represent them in DWARF1 debug info. */
1540 if (count > 1000)
1541 return;
1543 if (TYPE_READONLY (type) || decl_const)
1544 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1545 if (TYPE_VOLATILE (type) || decl_volatile)
1546 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1547 switch (TREE_CODE (type))
1549 case POINTER_TYPE:
1550 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
1551 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1552 return;
1554 case REFERENCE_TYPE:
1555 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
1556 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1557 return;
1559 case ERROR_MARK:
1560 default:
1561 return;
1565 static void
1566 write_modifier_bytes (type, decl_const, decl_volatile)
1567 register tree type;
1568 register int decl_const;
1569 register int decl_volatile;
1571 write_modifier_bytes_1 (type, decl_const, decl_volatile, 0);
1574 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
1575 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1577 static inline int
1578 type_is_fundamental (type)
1579 register tree type;
1581 switch (TREE_CODE (type))
1583 case ERROR_MARK:
1584 case VOID_TYPE:
1585 case INTEGER_TYPE:
1586 case REAL_TYPE:
1587 case COMPLEX_TYPE:
1588 case BOOLEAN_TYPE:
1589 case CHAR_TYPE:
1590 return 1;
1592 case SET_TYPE:
1593 case ARRAY_TYPE:
1594 case RECORD_TYPE:
1595 case UNION_TYPE:
1596 case QUAL_UNION_TYPE:
1597 case ENUMERAL_TYPE:
1598 case FUNCTION_TYPE:
1599 case METHOD_TYPE:
1600 case POINTER_TYPE:
1601 case REFERENCE_TYPE:
1602 case FILE_TYPE:
1603 case OFFSET_TYPE:
1604 case LANG_TYPE:
1605 return 0;
1607 default:
1608 abort ();
1610 return 0;
1613 /* Given a pointer to some ..._DECL tree node, generate an assembly language
1614 equate directive which will associate a symbolic name with the current DIE.
1616 The name used is an artificial label generated from the DECL_UID number
1617 associated with the given decl node. The name it gets equated to is the
1618 symbolic label that we (previously) output at the start of the DIE that
1619 we are currently generating.
1621 Calling this function while generating some "decl related" form of DIE
1622 makes it possible to later refer to the DIE which represents the given
1623 decl simply by re-generating the symbolic name from the ..._DECL node's
1624 UID number. */
1626 static void
1627 equate_decl_number_to_die_number (decl)
1628 register tree decl;
1630 /* In the case where we are generating a DIE for some ..._DECL node
1631 which represents either some inline function declaration or some
1632 entity declared within an inline function declaration/definition,
1633 setup a symbolic name for the current DIE so that we have a name
1634 for this DIE that we can easily refer to later on within
1635 AT_abstract_origin attributes. */
1637 char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
1638 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1640 sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
1641 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1642 ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
1645 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
1646 equate directive which will associate a symbolic name with the current DIE.
1648 The name used is an artificial label generated from the TYPE_UID number
1649 associated with the given type node. The name it gets equated to is the
1650 symbolic label that we (previously) output at the start of the DIE that
1651 we are currently generating.
1653 Calling this function while generating some "type related" form of DIE
1654 makes it easy to later refer to the DIE which represents the given type
1655 simply by re-generating the alternative name from the ..._TYPE node's
1656 UID number. */
1658 static inline void
1659 equate_type_number_to_die_number (type)
1660 register tree type;
1662 char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
1663 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1665 /* We are generating a DIE to represent the main variant of this type
1666 (i.e the type without any const or volatile qualifiers) so in order
1667 to get the equate to come out right, we need to get the main variant
1668 itself here. */
1670 type = type_main_variant (type);
1672 sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
1673 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1674 ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
1677 static void
1678 output_reg_number (rtl)
1679 register rtx rtl;
1681 register unsigned regno = REGNO (rtl);
1683 if (regno >= DWARF_FRAME_REGISTERS)
1685 warning_with_decl (dwarf_last_decl, "internal regno botch: regno = %d\n",
1686 regno);
1687 regno = 0;
1689 fprintf (asm_out_file, "\t%s\t0x%x",
1690 UNALIGNED_INT_ASM_OP, DBX_REGISTER_NUMBER (regno));
1691 if (flag_debug_asm)
1693 fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
1694 PRINT_REG (rtl, 0, asm_out_file);
1696 fputc ('\n', asm_out_file);
1699 /* The following routine is a nice and simple transducer. It converts the
1700 RTL for a variable or parameter (resident in memory) into an equivalent
1701 Dwarf representation of a mechanism for getting the address of that same
1702 variable onto the top of a hypothetical "address evaluation" stack.
1704 When creating memory location descriptors, we are effectively trans-
1705 forming the RTL for a memory-resident object into its Dwarf postfix
1706 expression equivalent. This routine just recursively descends an
1707 RTL tree, turning it into Dwarf postfix code as it goes. */
1709 static void
1710 output_mem_loc_descriptor (rtl)
1711 register rtx rtl;
1713 /* Note that for a dynamically sized array, the location we will
1714 generate a description of here will be the lowest numbered location
1715 which is actually within the array. That's *not* necessarily the
1716 same as the zeroth element of the array. */
1718 #ifdef ASM_SIMPLIFY_DWARF_ADDR
1719 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
1720 #endif
1722 switch (GET_CODE (rtl))
1724 case SUBREG:
1726 /* The case of a subreg may arise when we have a local (register)
1727 variable or a formal (register) parameter which doesn't quite
1728 fill up an entire register. For now, just assume that it is
1729 legitimate to make the Dwarf info refer to the whole register
1730 which contains the given subreg. */
1732 rtl = XEXP (rtl, 0);
1733 /* Drop thru. */
1735 case REG:
1737 /* Whenever a register number forms a part of the description of
1738 the method for calculating the (dynamic) address of a memory
1739 resident object, DWARF rules require the register number to
1740 be referred to as a "base register". This distinction is not
1741 based in any way upon what category of register the hardware
1742 believes the given register belongs to. This is strictly
1743 DWARF terminology we're dealing with here.
1745 Note that in cases where the location of a memory-resident data
1746 object could be expressed as:
1748 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
1750 the actual DWARF location descriptor that we generate may just
1751 be OP_BASEREG (basereg). This may look deceptively like the
1752 object in question was allocated to a register (rather than
1753 in memory) so DWARF consumers need to be aware of the subtle
1754 distinction between OP_REG and OP_BASEREG. */
1756 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
1757 output_reg_number (rtl);
1758 break;
1760 case MEM:
1761 output_mem_loc_descriptor (XEXP (rtl, 0));
1762 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
1763 break;
1765 case CONST:
1766 case SYMBOL_REF:
1767 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
1768 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
1769 break;
1771 case PLUS:
1772 output_mem_loc_descriptor (XEXP (rtl, 0));
1773 output_mem_loc_descriptor (XEXP (rtl, 1));
1774 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
1775 break;
1777 case CONST_INT:
1778 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
1779 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
1780 break;
1782 case MULT:
1783 /* If a pseudo-reg is optimized away, it is possible for it to
1784 be replaced with a MEM containing a multiply. Use a GNU extension
1785 to describe it. */
1786 output_mem_loc_descriptor (XEXP (rtl, 0));
1787 output_mem_loc_descriptor (XEXP (rtl, 1));
1788 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_MULT);
1789 break;
1791 default:
1792 abort ();
1796 /* Output a proper Dwarf location descriptor for a variable or parameter
1797 which is either allocated in a register or in a memory location. For
1798 a register, we just generate an OP_REG and the register number. For a
1799 memory location we provide a Dwarf postfix expression describing how to
1800 generate the (dynamic) address of the object onto the address stack. */
1802 static void
1803 output_loc_descriptor (rtl)
1804 register rtx rtl;
1806 switch (GET_CODE (rtl))
1808 case SUBREG:
1810 /* The case of a subreg may arise when we have a local (register)
1811 variable or a formal (register) parameter which doesn't quite
1812 fill up an entire register. For now, just assume that it is
1813 legitimate to make the Dwarf info refer to the whole register
1814 which contains the given subreg. */
1816 rtl = XEXP (rtl, 0);
1817 /* Drop thru. */
1819 case REG:
1820 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
1821 output_reg_number (rtl);
1822 break;
1824 case MEM:
1825 output_mem_loc_descriptor (XEXP (rtl, 0));
1826 break;
1828 default:
1829 abort (); /* Should never happen */
1833 /* Given a tree node describing an array bound (either lower or upper)
1834 output a representation for that bound. */
1836 static void
1837 output_bound_representation (bound, dim_num, u_or_l)
1838 register tree bound;
1839 register unsigned dim_num; /* For multi-dimensional arrays. */
1840 register char u_or_l; /* Designates upper or lower bound. */
1842 switch (TREE_CODE (bound))
1845 case ERROR_MARK:
1846 return;
1848 /* All fixed-bounds are represented by INTEGER_CST nodes. */
1850 case INTEGER_CST:
1851 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1852 (unsigned) TREE_INT_CST_LOW (bound));
1853 break;
1855 default:
1857 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
1858 SAVE_EXPR nodes, in which case we can do something, or as
1859 an expression, which we cannot represent. */
1861 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1862 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
1864 sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
1865 current_dienum, dim_num, u_or_l);
1867 sprintf (end_label, BOUND_END_LABEL_FMT,
1868 current_dienum, dim_num, u_or_l);
1870 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
1871 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
1873 /* If optimization is turned on, the SAVE_EXPRs that describe
1874 how to access the upper bound values are essentially bogus.
1875 They only describe (at best) how to get at these values at
1876 the points in the generated code right after they have just
1877 been computed. Worse yet, in the typical case, the upper
1878 bound values will not even *be* computed in the optimized
1879 code, so these SAVE_EXPRs are entirely bogus.
1881 In order to compensate for this fact, we check here to see
1882 if optimization is enabled, and if so, we effectively create
1883 an empty location description for the (unknown and unknowable)
1884 upper bound.
1886 This should not cause too much trouble for existing (stupid?)
1887 debuggers because they have to deal with empty upper bounds
1888 location descriptions anyway in order to be able to deal with
1889 incomplete array types.
1891 Of course an intelligent debugger (GDB?) should be able to
1892 comprehend that a missing upper bound specification in a
1893 array type used for a storage class `auto' local array variable
1894 indicates that the upper bound is both unknown (at compile-
1895 time) and unknowable (at run-time) due to optimization. */
1897 if (! optimize)
1899 while (TREE_CODE (bound) == NOP_EXPR
1900 || TREE_CODE (bound) == CONVERT_EXPR)
1901 bound = TREE_OPERAND (bound, 0);
1903 if (TREE_CODE (bound) == SAVE_EXPR)
1904 output_loc_descriptor
1905 (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
1908 ASM_OUTPUT_LABEL (asm_out_file, end_label);
1910 break;
1915 /* Recursive function to output a sequence of value/name pairs for
1916 enumeration constants in reversed order. This is called from
1917 enumeration_type_die. */
1919 static void
1920 output_enumeral_list (link)
1921 register tree link;
1923 if (link)
1925 output_enumeral_list (TREE_CHAIN (link));
1926 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1927 (unsigned) TREE_INT_CST_LOW (TREE_VALUE (link)));
1928 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
1929 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
1933 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
1934 which is not less than the value itself. */
1936 static inline unsigned
1937 ceiling (value, boundary)
1938 register unsigned value;
1939 register unsigned boundary;
1941 return (((value + boundary - 1) / boundary) * boundary);
1944 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
1945 pointer to the declared type for the relevant field variable, or return
1946 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
1948 static inline tree
1949 field_type (decl)
1950 register tree decl;
1952 register tree type;
1954 if (TREE_CODE (decl) == ERROR_MARK)
1955 return integer_type_node;
1957 type = DECL_BIT_FIELD_TYPE (decl);
1958 if (type == NULL)
1959 type = TREE_TYPE (decl);
1960 return type;
1963 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1964 node, return the alignment in bits for the type, or else return
1965 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
1967 static inline unsigned
1968 simple_type_align_in_bits (type)
1969 register tree type;
1971 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
1974 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1975 node, return the size in bits for the type if it is a constant, or
1976 else return the alignment for the type if the type's size is not
1977 constant, or else return BITS_PER_WORD if the type actually turns out
1978 to be an ERROR_MARK node. */
1980 static inline unsigned
1981 simple_type_size_in_bits (type)
1982 register tree type;
1984 if (TREE_CODE (type) == ERROR_MARK)
1985 return BITS_PER_WORD;
1986 else
1988 register tree type_size_tree = TYPE_SIZE (type);
1990 if (TREE_CODE (type_size_tree) != INTEGER_CST)
1991 return TYPE_ALIGN (type);
1993 return (unsigned) TREE_INT_CST_LOW (type_size_tree);
1997 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
1998 return the byte offset of the lowest addressed byte of the "containing
1999 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
2000 mine what that offset is, either because the argument turns out to be a
2001 pointer to an ERROR_MARK node, or because the offset is actually variable.
2002 (We can't handle the latter case just yet.) */
2004 static unsigned
2005 field_byte_offset (decl)
2006 register tree decl;
2008 register unsigned type_align_in_bytes;
2009 register unsigned type_align_in_bits;
2010 register unsigned type_size_in_bits;
2011 register unsigned object_offset_in_align_units;
2012 register unsigned object_offset_in_bits;
2013 register unsigned object_offset_in_bytes;
2014 register tree type;
2015 register tree bitpos_tree;
2016 register tree field_size_tree;
2017 register unsigned bitpos_int;
2018 register unsigned deepest_bitpos;
2019 register unsigned field_size_in_bits;
2021 if (TREE_CODE (decl) == ERROR_MARK)
2022 return 0;
2024 if (TREE_CODE (decl) != FIELD_DECL)
2025 abort ();
2027 type = field_type (decl);
2029 bitpos_tree = DECL_FIELD_BITPOS (decl);
2030 field_size_tree = DECL_SIZE (decl);
2032 /* If there was an error, the size could be zero. */
2033 if (! field_size_tree)
2035 if (errorcount)
2036 return 0;
2037 abort ();
2041 /* We cannot yet cope with fields whose positions or sizes are variable,
2042 so for now, when we see such things, we simply return 0. Someday,
2043 we may be able to handle such cases, but it will be damn difficult. */
2045 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
2046 return 0;
2047 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
2049 if (TREE_CODE (field_size_tree) != INTEGER_CST)
2050 return 0;
2051 field_size_in_bits = (unsigned) TREE_INT_CST_LOW (field_size_tree);
2053 type_size_in_bits = simple_type_size_in_bits (type);
2055 type_align_in_bits = simple_type_align_in_bits (type);
2056 type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
2058 /* Note that the GCC front-end doesn't make any attempt to keep track
2059 of the starting bit offset (relative to the start of the containing
2060 structure type) of the hypothetical "containing object" for a bit-
2061 field. Thus, when computing the byte offset value for the start of
2062 the "containing object" of a bit-field, we must deduce this infor-
2063 mation on our own.
2065 This can be rather tricky to do in some cases. For example, handling
2066 the following structure type definition when compiling for an i386/i486
2067 target (which only aligns long long's to 32-bit boundaries) can be very
2068 tricky:
2070 struct S {
2071 int field1;
2072 long long field2:31;
2075 Fortunately, there is a simple rule-of-thumb which can be used in such
2076 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
2077 the structure shown above. It decides to do this based upon one simple
2078 rule for bit-field allocation. Quite simply, GCC allocates each "con-
2079 taining object" for each bit-field at the first (i.e. lowest addressed)
2080 legitimate alignment boundary (based upon the required minimum alignment
2081 for the declared type of the field) which it can possibly use, subject
2082 to the condition that there is still enough available space remaining
2083 in the containing object (when allocated at the selected point) to
2084 fully accommodate all of the bits of the bit-field itself.
2086 This simple rule makes it obvious why GCC allocates 8 bytes for each
2087 object of the structure type shown above. When looking for a place to
2088 allocate the "containing object" for `field2', the compiler simply tries
2089 to allocate a 64-bit "containing object" at each successive 32-bit
2090 boundary (starting at zero) until it finds a place to allocate that 64-
2091 bit field such that at least 31 contiguous (and previously unallocated)
2092 bits remain within that selected 64 bit field. (As it turns out, for
2093 the example above, the compiler finds that it is OK to allocate the
2094 "containing object" 64-bit field at bit-offset zero within the
2095 structure type.)
2097 Here we attempt to work backwards from the limited set of facts we're
2098 given, and we try to deduce from those facts, where GCC must have
2099 believed that the containing object started (within the structure type).
2101 The value we deduce is then used (by the callers of this routine) to
2102 generate AT_location and AT_bit_offset attributes for fields (both
2103 bit-fields and, in the case of AT_location, regular fields as well).
2106 /* Figure out the bit-distance from the start of the structure to the
2107 "deepest" bit of the bit-field. */
2108 deepest_bitpos = bitpos_int + field_size_in_bits;
2110 /* This is the tricky part. Use some fancy footwork to deduce where the
2111 lowest addressed bit of the containing object must be. */
2112 object_offset_in_bits
2113 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2115 /* Compute the offset of the containing object in "alignment units". */
2116 object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
2118 /* Compute the offset of the containing object in bytes. */
2119 object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
2121 /* The above code assumes that the field does not cross an alignment
2122 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2123 or if the structure is packed. If this happens, then we get an object
2124 which starts after the bitfield, which means that the bit offset is
2125 negative. Gdb fails when given negative bit offsets. We avoid this
2126 by recomputing using the first bit of the bitfield. This will give
2127 us an object which does not completely contain the bitfield, but it
2128 will be aligned, and it will contain the first bit of the bitfield.
2130 However, only do this for a BYTES_BIG_ENDIAN target. For a
2131 ! BYTES_BIG_ENDIAN target, bitpos_int + field_size_in_bits is the first
2132 first bit of the bitfield. If we recompute using bitpos_int + 1 below,
2133 then we end up computing the object byte offset for the wrong word of the
2134 desired bitfield, which in turn causes the field offset to be negative
2135 in bit_offset_attribute. */
2136 if (BYTES_BIG_ENDIAN
2137 && object_offset_in_bits > bitpos_int)
2139 deepest_bitpos = bitpos_int + 1;
2140 object_offset_in_bits
2141 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2142 object_offset_in_align_units = (object_offset_in_bits
2143 / type_align_in_bits);
2144 object_offset_in_bytes = (object_offset_in_align_units
2145 * type_align_in_bytes);
2148 return object_offset_in_bytes;
2151 /****************************** attributes *********************************/
2153 /* The following routines are responsible for writing out the various types
2154 of Dwarf attributes (and any following data bytes associated with them).
2155 These routines are listed in order based on the numerical codes of their
2156 associated attributes. */
2158 /* Generate an AT_sibling attribute. */
2160 static inline void
2161 sibling_attribute ()
2163 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2165 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
2166 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
2167 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2170 /* Output the form of location attributes suitable for whole variables and
2171 whole parameters. Note that the location attributes for struct fields
2172 are generated by the routine `data_member_location_attribute' below. */
2174 static void
2175 location_attribute (rtl)
2176 register rtx rtl;
2178 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2179 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2181 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2182 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2183 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2184 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2185 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2187 /* Handle a special case. If we are about to output a location descriptor
2188 for a variable or parameter which has been optimized out of existence,
2189 don't do that. Instead we output a zero-length location descriptor
2190 value as part of the location attribute.
2192 A variable which has been optimized out of existence will have a
2193 DECL_RTL value which denotes a pseudo-reg.
2195 Currently, in some rare cases, variables can have DECL_RTL values
2196 which look like (MEM (REG pseudo-reg#)). These cases are due to
2197 bugs elsewhere in the compiler. We treat such cases
2198 as if the variable(s) in question had been optimized out of existence.
2200 Note that in all cases where we wish to express the fact that a
2201 variable has been optimized out of existence, we do not simply
2202 suppress the generation of the entire location attribute because
2203 the absence of a location attribute in certain kinds of DIEs is
2204 used to indicate something else entirely... i.e. that the DIE
2205 represents an object declaration, but not a definition. So saith
2206 the PLSIG.
2209 if (! is_pseudo_reg (rtl)
2210 && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
2211 output_loc_descriptor (rtl);
2213 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2216 /* Output the specialized form of location attribute used for data members
2217 of struct and union types.
2219 In the special case of a FIELD_DECL node which represents a bit-field,
2220 the "offset" part of this special location descriptor must indicate the
2221 distance in bytes from the lowest-addressed byte of the containing
2222 struct or union type to the lowest-addressed byte of the "containing
2223 object" for the bit-field. (See the `field_byte_offset' function above.)
2225 For any given bit-field, the "containing object" is a hypothetical
2226 object (of some integral or enum type) within which the given bit-field
2227 lives. The type of this hypothetical "containing object" is always the
2228 same as the declared type of the individual bit-field itself (for GCC
2229 anyway... the DWARF spec doesn't actually mandate this).
2231 Note that it is the size (in bytes) of the hypothetical "containing
2232 object" which will be given in the AT_byte_size attribute for this
2233 bit-field. (See the `byte_size_attribute' function below.) It is
2234 also used when calculating the value of the AT_bit_offset attribute.
2235 (See the `bit_offset_attribute' function below.) */
2237 static void
2238 data_member_location_attribute (t)
2239 register tree t;
2241 register unsigned object_offset_in_bytes;
2242 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2243 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2245 if (TREE_CODE (t) == TREE_VEC)
2246 object_offset_in_bytes = TREE_INT_CST_LOW (BINFO_OFFSET (t));
2247 else
2248 object_offset_in_bytes = field_byte_offset (t);
2250 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2251 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2252 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2253 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2254 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2255 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2256 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
2257 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2258 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2261 /* Output an AT_const_value attribute for a variable or a parameter which
2262 does not have a "location" either in memory or in a register. These
2263 things can arise in GNU C when a constant is passed as an actual
2264 parameter to an inlined function. They can also arise in C++ where
2265 declared constants do not necessarily get memory "homes". */
2267 static void
2268 const_value_attribute (rtl)
2269 register rtx rtl;
2271 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2272 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2274 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2275 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2276 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2277 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2278 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2280 switch (GET_CODE (rtl))
2282 case CONST_INT:
2283 /* Note that a CONST_INT rtx could represent either an integer or
2284 a floating-point constant. A CONST_INT is used whenever the
2285 constant will fit into a single word. In all such cases, the
2286 original mode of the constant value is wiped out, and the
2287 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2288 precise mode information for these constants, we always just
2289 output them using 4 bytes. */
2291 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2292 break;
2294 case CONST_DOUBLE:
2295 /* Note that a CONST_DOUBLE rtx could represent either an integer
2296 or a floating-point constant. A CONST_DOUBLE is used whenever
2297 the constant requires more than one word in order to be adequately
2298 represented. In all such cases, the original mode of the constant
2299 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2300 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2302 ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
2303 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (rtl),
2304 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (rtl));
2305 break;
2307 case CONST_STRING:
2308 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, XSTR (rtl, 0));
2309 break;
2311 case SYMBOL_REF:
2312 case LABEL_REF:
2313 case CONST:
2314 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2315 break;
2317 case PLUS:
2318 /* In cases where an inlined instance of an inline function is passed
2319 the address of an `auto' variable (which is local to the caller)
2320 we can get a situation where the DECL_RTL of the artificial
2321 local variable (for the inlining) which acts as a stand-in for
2322 the corresponding formal parameter (of the inline function)
2323 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2324 This is not exactly a compile-time constant expression, but it
2325 isn't the address of the (artificial) local variable either.
2326 Rather, it represents the *value* which the artificial local
2327 variable always has during its lifetime. We currently have no
2328 way to represent such quasi-constant values in Dwarf, so for now
2329 we just punt and generate an AT_const_value attribute with form
2330 FORM_BLOCK4 and a length of zero. */
2331 break;
2333 default:
2334 abort (); /* No other kinds of rtx should be possible here. */
2337 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2340 /* Generate *either* an AT_location attribute or else an AT_const_value
2341 data attribute for a variable or a parameter. We generate the
2342 AT_const_value attribute only in those cases where the given
2343 variable or parameter does not have a true "location" either in
2344 memory or in a register. This can happen (for example) when a
2345 constant is passed as an actual argument in a call to an inline
2346 function. (It's possible that these things can crop up in other
2347 ways also.) Note that one type of constant value which can be
2348 passed into an inlined function is a constant pointer. This can
2349 happen for example if an actual argument in an inlined function
2350 call evaluates to a compile-time constant address. */
2352 static void
2353 location_or_const_value_attribute (decl)
2354 register tree decl;
2356 register rtx rtl;
2358 if (TREE_CODE (decl) == ERROR_MARK)
2359 return;
2361 if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
2363 /* Should never happen. */
2364 abort ();
2365 return;
2368 /* Here we have to decide where we are going to say the parameter "lives"
2369 (as far as the debugger is concerned). We only have a couple of choices.
2370 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2371 normally indicates where the parameter lives during most of the activa-
2372 tion of the function. If optimization is enabled however, this could
2373 be either NULL or else a pseudo-reg. Both of those cases indicate that
2374 the parameter doesn't really live anywhere (as far as the code generation
2375 parts of GCC are concerned) during most of the function's activation.
2376 That will happen (for example) if the parameter is never referenced
2377 within the function.
2379 We could just generate a location descriptor here for all non-NULL
2380 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2381 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2382 cases where DECL_RTL is NULL or is a pseudo-reg.
2384 Note however that we can only get away with using DECL_INCOMING_RTL as
2385 a backup substitute for DECL_RTL in certain limited cases. In cases
2386 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2387 we can be sure that the parameter was passed using the same type as it
2388 is declared to have within the function, and that its DECL_INCOMING_RTL
2389 points us to a place where a value of that type is passed. In cases
2390 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2391 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2392 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2393 points us to a value of some type which is *different* from the type
2394 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2395 to generate a location attribute in such cases, the debugger would
2396 end up (for example) trying to fetch a `float' from a place which
2397 actually contains the first part of a `double'. That would lead to
2398 really incorrect and confusing output at debug-time, and we don't
2399 want that now do we?
2401 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2402 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2403 couple of cute exceptions however. On little-endian machines we can
2404 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2405 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2406 an integral type which is smaller than TREE_TYPE(decl). These cases
2407 arise when (on a little-endian machine) a non-prototyped function has
2408 a parameter declared to be of type `short' or `char'. In such cases,
2409 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2410 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2411 passed `int' value. If the debugger then uses that address to fetch a
2412 `short' or a `char' (on a little-endian machine) the result will be the
2413 correct data, so we allow for such exceptional cases below.
2415 Note that our goal here is to describe the place where the given formal
2416 parameter lives during most of the function's activation (i.e. between
2417 the end of the prologue and the start of the epilogue). We'll do that
2418 as best as we can. Note however that if the given formal parameter is
2419 modified sometime during the execution of the function, then a stack
2420 backtrace (at debug-time) will show the function as having been called
2421 with the *new* value rather than the value which was originally passed
2422 in. This happens rarely enough that it is not a major problem, but it
2423 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2424 may generate two additional attributes for any given TAG_formal_parameter
2425 DIE which will describe the "passed type" and the "passed location" for
2426 the given formal parameter in addition to the attributes we now generate
2427 to indicate the "declared type" and the "active location" for each
2428 parameter. This additional set of attributes could be used by debuggers
2429 for stack backtraces.
2431 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2432 can be NULL also. This happens (for example) for inlined-instances of
2433 inline function formal parameters which are never referenced. This really
2434 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2435 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2436 these values for inlined instances of inline function parameters, so
2437 when we see such cases, we are just out-of-luck for the time
2438 being (until integrate.c gets fixed).
2441 /* Use DECL_RTL as the "location" unless we find something better. */
2442 rtl = DECL_RTL (decl);
2444 if (TREE_CODE (decl) == PARM_DECL)
2445 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2447 /* This decl represents a formal parameter which was optimized out. */
2448 register tree declared_type = type_main_variant (TREE_TYPE (decl));
2449 register tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
2451 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2452 *all* cases where (rtl == NULL_RTX) just below. */
2454 if (declared_type == passed_type)
2455 rtl = DECL_INCOMING_RTL (decl);
2456 else if (! BYTES_BIG_ENDIAN)
2457 if (TREE_CODE (declared_type) == INTEGER_TYPE)
2458 if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2459 rtl = DECL_INCOMING_RTL (decl);
2462 if (rtl == NULL_RTX)
2463 return;
2465 rtl = eliminate_regs (rtl, 0, NULL_RTX);
2466 #ifdef LEAF_REG_REMAP
2467 if (current_function_uses_only_leaf_regs)
2468 leaf_renumber_regs_insn (rtl);
2469 #endif
2471 switch (GET_CODE (rtl))
2473 case ADDRESSOF:
2474 /* The address of a variable that was optimized away; don't emit
2475 anything. */
2476 break;
2478 case CONST_INT:
2479 case CONST_DOUBLE:
2480 case CONST_STRING:
2481 case SYMBOL_REF:
2482 case LABEL_REF:
2483 case CONST:
2484 case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2485 const_value_attribute (rtl);
2486 break;
2488 case MEM:
2489 case REG:
2490 case SUBREG:
2491 location_attribute (rtl);
2492 break;
2494 case CONCAT:
2495 /* ??? CONCAT is used for complex variables, which may have the real
2496 part stored in one place and the imag part stored somewhere else.
2497 DWARF1 has no way to describe a variable that lives in two different
2498 places, so we just describe where the first part lives, and hope that
2499 the second part is stored after it. */
2500 location_attribute (XEXP (rtl, 0));
2501 break;
2503 default:
2504 abort (); /* Should never happen. */
2508 /* Generate an AT_name attribute given some string value to be included as
2509 the value of the attribute. */
2511 static inline void
2512 name_attribute (name_string)
2513 register const char *name_string;
2515 if (name_string && *name_string)
2517 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
2518 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, name_string);
2522 static inline void
2523 fund_type_attribute (ft_code)
2524 register unsigned ft_code;
2526 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2527 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2530 static void
2531 mod_fund_type_attribute (type, decl_const, decl_volatile)
2532 register tree type;
2533 register int decl_const;
2534 register int decl_volatile;
2536 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2537 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2539 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2540 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2541 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2542 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2543 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2544 write_modifier_bytes (type, decl_const, decl_volatile);
2545 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2546 fundamental_type_code (root_type (type)));
2547 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2550 static inline void
2551 user_def_type_attribute (type)
2552 register tree type;
2554 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2556 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2557 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2558 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2561 static void
2562 mod_u_d_type_attribute (type, decl_const, decl_volatile)
2563 register tree type;
2564 register int decl_const;
2565 register int decl_volatile;
2567 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2568 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2569 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2571 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2572 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2573 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2574 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2575 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2576 write_modifier_bytes (type, decl_const, decl_volatile);
2577 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2578 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2579 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2582 #ifdef USE_ORDERING_ATTRIBUTE
2583 static inline void
2584 ordering_attribute (ordering)
2585 register unsigned ordering;
2587 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2588 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2590 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2592 /* Note that the block of subscript information for an array type also
2593 includes information about the element type of type given array type. */
2595 static void
2596 subscript_data_attribute (type)
2597 register tree type;
2599 register unsigned dimension_number;
2600 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2601 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2603 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2604 sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2605 sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2606 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2607 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2609 /* The GNU compilers represent multidimensional array types as sequences
2610 of one dimensional array types whose element types are themselves array
2611 types. Here we squish that down, so that each multidimensional array
2612 type gets only one array_type DIE in the Dwarf debugging info. The
2613 draft Dwarf specification say that we are allowed to do this kind
2614 of compression in C (because there is no difference between an
2615 array or arrays and a multidimensional array in C) but for other
2616 source languages (e.g. Ada) we probably shouldn't do this. */
2618 for (dimension_number = 0;
2619 TREE_CODE (type) == ARRAY_TYPE;
2620 type = TREE_TYPE (type), dimension_number++)
2622 register tree domain = TYPE_DOMAIN (type);
2624 /* Arrays come in three flavors. Unspecified bounds, fixed
2625 bounds, and (in GNU C only) variable bounds. Handle all
2626 three forms here. */
2628 if (domain)
2630 /* We have an array type with specified bounds. */
2632 register tree lower = TYPE_MIN_VALUE (domain);
2633 register tree upper = TYPE_MAX_VALUE (domain);
2635 /* Handle only fundamental types as index types for now. */
2637 if (! type_is_fundamental (domain))
2638 abort ();
2640 /* Output the representation format byte for this dimension. */
2642 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
2643 FMT_CODE (1, TREE_CODE (lower) == INTEGER_CST,
2644 (upper && TREE_CODE (upper) == INTEGER_CST)));
2646 /* Output the index type for this dimension. */
2648 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2649 fundamental_type_code (domain));
2651 /* Output the representation for the lower bound. */
2653 output_bound_representation (lower, dimension_number, 'l');
2655 /* Output the representation for the upper bound. */
2657 output_bound_representation (upper, dimension_number, 'u');
2659 else
2661 /* We have an array type with an unspecified length. For C and
2662 C++ we can assume that this really means that (a) the index
2663 type is an integral type, and (b) the lower bound is zero.
2664 Note that Dwarf defines the representation of an unspecified
2665 (upper) bound as being a zero-length location description. */
2667 /* Output the array-bounds format byte. */
2669 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
2671 /* Output the (assumed) index type. */
2673 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
2675 /* Output the (assumed) lower bound (constant) value. */
2677 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
2679 /* Output the (empty) location description for the upper bound. */
2681 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
2685 /* Output the prefix byte that says that the element type is coming up. */
2687 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
2689 /* Output a representation of the type of the elements of this array type. */
2691 type_attribute (type, 0, 0);
2693 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2696 static void
2697 byte_size_attribute (tree_node)
2698 register tree tree_node;
2700 register unsigned size;
2702 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
2703 switch (TREE_CODE (tree_node))
2705 case ERROR_MARK:
2706 size = 0;
2707 break;
2709 case ENUMERAL_TYPE:
2710 case RECORD_TYPE:
2711 case UNION_TYPE:
2712 case QUAL_UNION_TYPE:
2713 case ARRAY_TYPE:
2714 size = int_size_in_bytes (tree_node);
2715 break;
2717 case FIELD_DECL:
2718 /* For a data member of a struct or union, the AT_byte_size is
2719 generally given as the number of bytes normally allocated for
2720 an object of the *declared* type of the member itself. This
2721 is true even for bit-fields. */
2722 size = simple_type_size_in_bits (field_type (tree_node))
2723 / BITS_PER_UNIT;
2724 break;
2726 default:
2727 abort ();
2730 /* Note that `size' might be -1 when we get to this point. If it
2731 is, that indicates that the byte size of the entity in question
2732 is variable. We have no good way of expressing this fact in Dwarf
2733 at the present time, so just let the -1 pass on through. */
2735 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
2738 /* For a FIELD_DECL node which represents a bit-field, output an attribute
2739 which specifies the distance in bits from the highest order bit of the
2740 "containing object" for the bit-field to the highest order bit of the
2741 bit-field itself.
2743 For any given bit-field, the "containing object" is a hypothetical
2744 object (of some integral or enum type) within which the given bit-field
2745 lives. The type of this hypothetical "containing object" is always the
2746 same as the declared type of the individual bit-field itself.
2748 The determination of the exact location of the "containing object" for
2749 a bit-field is rather complicated. It's handled by the `field_byte_offset'
2750 function (above).
2752 Note that it is the size (in bytes) of the hypothetical "containing
2753 object" which will be given in the AT_byte_size attribute for this
2754 bit-field. (See `byte_size_attribute' above.) */
2756 static inline void
2757 bit_offset_attribute (decl)
2758 register tree decl;
2760 register unsigned object_offset_in_bytes = field_byte_offset (decl);
2761 register tree type = DECL_BIT_FIELD_TYPE (decl);
2762 register tree bitpos_tree = DECL_FIELD_BITPOS (decl);
2763 register unsigned bitpos_int;
2764 register unsigned highest_order_object_bit_offset;
2765 register unsigned highest_order_field_bit_offset;
2766 register unsigned bit_offset;
2768 /* Must be a bit field. */
2769 if (!type
2770 || TREE_CODE (decl) != FIELD_DECL)
2771 abort ();
2773 /* We can't yet handle bit-fields whose offsets are variable, so if we
2774 encounter such things, just return without generating any attribute
2775 whatsoever. */
2777 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
2778 return;
2779 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
2781 /* Note that the bit offset is always the distance (in bits) from the
2782 highest-order bit of the "containing object" to the highest-order
2783 bit of the bit-field itself. Since the "high-order end" of any
2784 object or field is different on big-endian and little-endian machines,
2785 the computation below must take account of these differences. */
2787 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
2788 highest_order_field_bit_offset = bitpos_int;
2790 if (! BYTES_BIG_ENDIAN)
2792 highest_order_field_bit_offset
2793 += (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl));
2795 highest_order_object_bit_offset += simple_type_size_in_bits (type);
2798 bit_offset =
2799 (! BYTES_BIG_ENDIAN
2800 ? highest_order_object_bit_offset - highest_order_field_bit_offset
2801 : highest_order_field_bit_offset - highest_order_object_bit_offset);
2803 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
2804 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
2807 /* For a FIELD_DECL node which represents a bit field, output an attribute
2808 which specifies the length in bits of the given field. */
2810 static inline void
2811 bit_size_attribute (decl)
2812 register tree decl;
2814 /* Must be a field and a bit field. */
2815 if (TREE_CODE (decl) != FIELD_DECL
2816 || ! DECL_BIT_FIELD_TYPE (decl))
2817 abort ();
2819 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
2820 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2821 (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl)));
2824 /* The following routine outputs the `element_list' attribute for enumeration
2825 type DIEs. The element_lits attribute includes the names and values of
2826 all of the enumeration constants associated with the given enumeration
2827 type. */
2829 static inline void
2830 element_list_attribute (element)
2831 register tree element;
2833 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2834 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2836 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
2837 sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
2838 sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
2839 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2840 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2842 /* Here we output a list of value/name pairs for each enumeration constant
2843 defined for this enumeration type (as required), but we do it in REVERSE
2844 order. The order is the one required by the draft #5 Dwarf specification
2845 published by the UI/PLSIG. */
2847 output_enumeral_list (element); /* Recursively output the whole list. */
2849 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2852 /* Generate an AT_stmt_list attribute. These are normally present only in
2853 DIEs with a TAG_compile_unit tag. */
2855 static inline void
2856 stmt_list_attribute (label)
2857 register const char *label;
2859 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
2860 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2861 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
2864 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
2865 for a subroutine DIE. */
2867 static inline void
2868 low_pc_attribute (asm_low_label)
2869 register const char *asm_low_label;
2871 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
2872 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
2875 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
2876 subroutine DIE. */
2878 static inline void
2879 high_pc_attribute (asm_high_label)
2880 register const char *asm_high_label;
2882 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
2883 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
2886 /* Generate an AT_body_begin attribute for a subroutine DIE. */
2888 static inline void
2889 body_begin_attribute (asm_begin_label)
2890 register const char *asm_begin_label;
2892 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
2893 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
2896 /* Generate an AT_body_end attribute for a subroutine DIE. */
2898 static inline void
2899 body_end_attribute (asm_end_label)
2900 register const char *asm_end_label;
2902 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
2903 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
2906 /* Generate an AT_language attribute given a LANG value. These attributes
2907 are used only within TAG_compile_unit DIEs. */
2909 static inline void
2910 language_attribute (language_code)
2911 register unsigned language_code;
2913 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
2914 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
2917 static inline void
2918 member_attribute (context)
2919 register tree context;
2921 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2923 /* Generate this attribute only for members in C++. */
2925 if (context != NULL && is_tagged_type (context))
2927 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
2928 sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
2929 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2933 #if 0
2934 static inline void
2935 string_length_attribute (upper_bound)
2936 register tree upper_bound;
2938 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2939 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2941 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
2942 sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
2943 sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
2944 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2945 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2946 output_bound_representation (upper_bound, 0, 'u');
2947 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2949 #endif
2951 static inline void
2952 comp_dir_attribute (dirname)
2953 register const char *dirname;
2955 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
2956 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
2959 static inline void
2960 sf_names_attribute (sf_names_start_label)
2961 register const char *sf_names_start_label;
2963 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
2964 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2965 ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
2968 static inline void
2969 src_info_attribute (src_info_start_label)
2970 register const char *src_info_start_label;
2972 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
2973 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2974 ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
2977 static inline void
2978 mac_info_attribute (mac_info_start_label)
2979 register const char *mac_info_start_label;
2981 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
2982 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2983 ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
2986 static inline void
2987 prototyped_attribute (func_type)
2988 register tree func_type;
2990 if ((strcmp (language_string, "GNU C") == 0)
2991 && (TYPE_ARG_TYPES (func_type) != NULL))
2993 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
2994 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
2998 static inline void
2999 producer_attribute (producer)
3000 register const char *producer;
3002 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
3003 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, producer);
3006 static inline void
3007 inline_attribute (decl)
3008 register tree decl;
3010 if (DECL_INLINE (decl))
3012 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
3013 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3017 static inline void
3018 containing_type_attribute (containing_type)
3019 register tree containing_type;
3021 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3023 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
3024 sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
3025 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3028 static inline void
3029 abstract_origin_attribute (origin)
3030 register tree origin;
3032 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3034 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
3035 switch (TREE_CODE_CLASS (TREE_CODE (origin)))
3037 case 'd':
3038 sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
3039 break;
3041 case 't':
3042 sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
3043 break;
3045 default:
3046 abort (); /* Should never happen. */
3049 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3052 #ifdef DWARF_DECL_COORDINATES
3053 static inline void
3054 src_coords_attribute (src_fileno, src_lineno)
3055 register unsigned src_fileno;
3056 register unsigned src_lineno;
3058 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
3059 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
3060 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
3062 #endif /* defined(DWARF_DECL_COORDINATES) */
3064 static inline void
3065 pure_or_virtual_attribute (func_decl)
3066 register tree func_decl;
3068 if (DECL_VIRTUAL_P (func_decl))
3070 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
3071 if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
3072 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
3073 else
3074 #endif
3075 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3076 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3080 /************************* end of attributes *****************************/
3082 /********************* utility routines for DIEs *************************/
3084 /* Output an AT_name attribute and an AT_src_coords attribute for the
3085 given decl, but only if it actually has a name. */
3087 static void
3088 name_and_src_coords_attributes (decl)
3089 register tree decl;
3091 register tree decl_name = DECL_NAME (decl);
3093 if (decl_name && IDENTIFIER_POINTER (decl_name))
3095 name_attribute (IDENTIFIER_POINTER (decl_name));
3096 #ifdef DWARF_DECL_COORDINATES
3098 register unsigned file_index;
3100 /* This is annoying, but we have to pop out of the .debug section
3101 for a moment while we call `lookup_filename' because calling it
3102 may cause a temporary switch into the .debug_sfnames section and
3103 most svr4 assemblers are not smart enough to be able to nest
3104 section switches to any depth greater than one. Note that we
3105 also can't skirt this issue by delaying all output to the
3106 .debug_sfnames section unit the end of compilation because that
3107 would cause us to have inter-section forward references and
3108 Fred Fish sez that m68k/svr4 assemblers botch those. */
3110 ASM_OUTPUT_POP_SECTION (asm_out_file);
3111 file_index = lookup_filename (DECL_SOURCE_FILE (decl));
3112 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
3114 src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
3116 #endif /* defined(DWARF_DECL_COORDINATES) */
3120 /* Many forms of DIEs contain a "type description" part. The following
3121 routine writes out these "type descriptor" parts. */
3123 static void
3124 type_attribute (type, decl_const, decl_volatile)
3125 register tree type;
3126 register int decl_const;
3127 register int decl_volatile;
3129 register enum tree_code code = TREE_CODE (type);
3130 register int root_type_modified;
3132 if (code == ERROR_MARK)
3133 return;
3135 /* Handle a special case. For functions whose return type is void,
3136 we generate *no* type attribute. (Note that no object may have
3137 type `void', so this only applies to function return types. */
3139 if (code == VOID_TYPE)
3140 return;
3142 /* If this is a subtype, find the underlying type. Eventually,
3143 this should write out the appropriate subtype info. */
3144 while ((code == INTEGER_TYPE || code == REAL_TYPE)
3145 && TREE_TYPE (type) != 0)
3146 type = TREE_TYPE (type), code = TREE_CODE (type);
3148 root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
3149 || decl_const || decl_volatile
3150 || TYPE_READONLY (type) || TYPE_VOLATILE (type));
3152 if (type_is_fundamental (root_type (type)))
3154 if (root_type_modified)
3155 mod_fund_type_attribute (type, decl_const, decl_volatile);
3156 else
3157 fund_type_attribute (fundamental_type_code (type));
3159 else
3161 if (root_type_modified)
3162 mod_u_d_type_attribute (type, decl_const, decl_volatile);
3163 else
3164 /* We have to get the type_main_variant here (and pass that to the
3165 `user_def_type_attribute' routine) because the ..._TYPE node we
3166 have might simply be a *copy* of some original type node (where
3167 the copy was created to help us keep track of typedef names)
3168 and that copy might have a different TYPE_UID from the original
3169 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3170 is labeling a given type DIE for future reference, it always and
3171 only creates labels for DIEs representing *main variants*, and it
3172 never even knows about non-main-variants.) */
3173 user_def_type_attribute (type_main_variant (type));
3177 /* Given a tree pointer to a struct, class, union, or enum type node, return
3178 a pointer to the (string) tag name for the given type, or zero if the
3179 type was declared without a tag. */
3181 static char *
3182 type_tag (type)
3183 register tree type;
3185 register char *name = 0;
3187 if (TYPE_NAME (type) != 0)
3189 register tree t = 0;
3191 /* Find the IDENTIFIER_NODE for the type name. */
3192 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3193 t = TYPE_NAME (type);
3195 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3196 a TYPE_DECL node, regardless of whether or not a `typedef' was
3197 involved. */
3198 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
3199 && ! DECL_IGNORED_P (TYPE_NAME (type)))
3200 t = DECL_NAME (TYPE_NAME (type));
3202 /* Now get the name as a string, or invent one. */
3203 if (t != 0)
3204 name = IDENTIFIER_POINTER (t);
3207 return (name == 0 || *name == '\0') ? 0 : name;
3210 static inline void
3211 dienum_push ()
3213 /* Start by checking if the pending_sibling_stack needs to be expanded.
3214 If necessary, expand it. */
3216 if (pending_siblings == pending_siblings_allocated)
3218 pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
3219 pending_sibling_stack
3220 = (unsigned *) xrealloc (pending_sibling_stack,
3221 pending_siblings_allocated * sizeof(unsigned));
3224 pending_siblings++;
3225 NEXT_DIE_NUM = next_unused_dienum++;
3228 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3229 NEXT_DIE_NUM. */
3231 static inline void
3232 dienum_pop ()
3234 pending_siblings--;
3237 static inline tree
3238 member_declared_type (member)
3239 register tree member;
3241 return (DECL_BIT_FIELD_TYPE (member))
3242 ? DECL_BIT_FIELD_TYPE (member)
3243 : TREE_TYPE (member);
3246 /* Get the function's label, as described by its RTL.
3247 This may be different from the DECL_NAME name used
3248 in the source file. */
3250 static char *
3251 function_start_label (decl)
3252 register tree decl;
3254 rtx x;
3255 char *fnname;
3257 x = DECL_RTL (decl);
3258 if (GET_CODE (x) != MEM)
3259 abort ();
3260 x = XEXP (x, 0);
3261 if (GET_CODE (x) != SYMBOL_REF)
3262 abort ();
3263 fnname = XSTR (x, 0);
3264 return fnname;
3268 /******************************* DIEs ************************************/
3270 /* Output routines for individual types of DIEs. */
3272 /* Note that every type of DIE (except a null DIE) gets a sibling. */
3274 static void
3275 output_array_type_die (arg)
3276 register void *arg;
3278 register tree type = arg;
3280 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3281 sibling_attribute ();
3282 equate_type_number_to_die_number (type);
3283 member_attribute (TYPE_CONTEXT (type));
3285 /* I believe that we can default the array ordering. SDB will probably
3286 do the right things even if AT_ordering is not present. It's not
3287 even an issue until we start to get into multidimensional arrays
3288 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3289 dimensional arrays, then we'll have to put the AT_ordering attribute
3290 back in. (But if and when we find out that we need to put these in,
3291 we will only do so for multidimensional arrays. After all, we don't
3292 want to waste space in the .debug section now do we?) */
3294 #ifdef USE_ORDERING_ATTRIBUTE
3295 ordering_attribute (ORD_row_major);
3296 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3298 subscript_data_attribute (type);
3301 static void
3302 output_set_type_die (arg)
3303 register void *arg;
3305 register tree type = arg;
3307 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3308 sibling_attribute ();
3309 equate_type_number_to_die_number (type);
3310 member_attribute (TYPE_CONTEXT (type));
3311 type_attribute (TREE_TYPE (type), 0, 0);
3314 #if 0
3315 /* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3317 static void
3318 output_entry_point_die (arg)
3319 register void *arg;
3321 register tree decl = arg;
3322 register tree origin = decl_ultimate_origin (decl);
3324 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3325 sibling_attribute ();
3326 dienum_push ();
3327 if (origin != NULL)
3328 abstract_origin_attribute (origin);
3329 else
3331 name_and_src_coords_attributes (decl);
3332 member_attribute (DECL_CONTEXT (decl));
3333 type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3335 if (DECL_ABSTRACT (decl))
3336 equate_decl_number_to_die_number (decl);
3337 else
3338 low_pc_attribute (function_start_label (decl));
3340 #endif
3342 /* Output a DIE to represent an inlined instance of an enumeration type. */
3344 static void
3345 output_inlined_enumeration_type_die (arg)
3346 register void *arg;
3348 register tree type = arg;
3350 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3351 sibling_attribute ();
3352 if (!TREE_ASM_WRITTEN (type))
3353 abort ();
3354 abstract_origin_attribute (type);
3357 /* Output a DIE to represent an inlined instance of a structure type. */
3359 static void
3360 output_inlined_structure_type_die (arg)
3361 register void *arg;
3363 register tree type = arg;
3365 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3366 sibling_attribute ();
3367 if (!TREE_ASM_WRITTEN (type))
3368 abort ();
3369 abstract_origin_attribute (type);
3372 /* Output a DIE to represent an inlined instance of a union type. */
3374 static void
3375 output_inlined_union_type_die (arg)
3376 register void *arg;
3378 register tree type = arg;
3380 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3381 sibling_attribute ();
3382 if (!TREE_ASM_WRITTEN (type))
3383 abort ();
3384 abstract_origin_attribute (type);
3387 /* Output a DIE to represent an enumeration type. Note that these DIEs
3388 include all of the information about the enumeration values also.
3389 This information is encoded into the element_list attribute. */
3391 static void
3392 output_enumeration_type_die (arg)
3393 register void *arg;
3395 register tree type = arg;
3397 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3398 sibling_attribute ();
3399 equate_type_number_to_die_number (type);
3400 name_attribute (type_tag (type));
3401 member_attribute (TYPE_CONTEXT (type));
3403 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3404 given enum type is incomplete, do not generate the AT_byte_size
3405 attribute or the AT_element_list attribute. */
3407 if (TYPE_SIZE (type))
3409 byte_size_attribute (type);
3410 element_list_attribute (TYPE_FIELDS (type));
3414 /* Output a DIE to represent either a real live formal parameter decl or
3415 to represent just the type of some formal parameter position in some
3416 function type.
3418 Note that this routine is a bit unusual because its argument may be
3419 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3420 represents an inlining of some PARM_DECL) or else some sort of a
3421 ..._TYPE node. If it's the former then this function is being called
3422 to output a DIE to represent a formal parameter object (or some inlining
3423 thereof). If it's the latter, then this function is only being called
3424 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3425 formal argument type of some subprogram type. */
3427 static void
3428 output_formal_parameter_die (arg)
3429 register void *arg;
3431 register tree node = arg;
3433 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3434 sibling_attribute ();
3436 switch (TREE_CODE_CLASS (TREE_CODE (node)))
3438 case 'd': /* We were called with some kind of a ..._DECL node. */
3440 register tree origin = decl_ultimate_origin (node);
3442 if (origin != NULL)
3443 abstract_origin_attribute (origin);
3444 else
3446 name_and_src_coords_attributes (node);
3447 type_attribute (TREE_TYPE (node),
3448 TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3450 if (DECL_ABSTRACT (node))
3451 equate_decl_number_to_die_number (node);
3452 else
3453 location_or_const_value_attribute (node);
3455 break;
3457 case 't': /* We were called with some kind of a ..._TYPE node. */
3458 type_attribute (node, 0, 0);
3459 break;
3461 default:
3462 abort (); /* Should never happen. */
3466 /* Output a DIE to represent a declared function (either file-scope
3467 or block-local) which has "external linkage" (according to ANSI-C). */
3469 static void
3470 output_global_subroutine_die (arg)
3471 register void *arg;
3473 register tree decl = arg;
3474 register tree origin = decl_ultimate_origin (decl);
3476 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3477 sibling_attribute ();
3478 dienum_push ();
3479 if (origin != NULL)
3480 abstract_origin_attribute (origin);
3481 else
3483 register tree type = TREE_TYPE (decl);
3485 name_and_src_coords_attributes (decl);
3486 inline_attribute (decl);
3487 prototyped_attribute (type);
3488 member_attribute (DECL_CONTEXT (decl));
3489 type_attribute (TREE_TYPE (type), 0, 0);
3490 pure_or_virtual_attribute (decl);
3492 if (DECL_ABSTRACT (decl))
3493 equate_decl_number_to_die_number (decl);
3494 else
3496 if (! DECL_EXTERNAL (decl) && ! in_class
3497 && decl == current_function_decl)
3499 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3501 low_pc_attribute (function_start_label (decl));
3502 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3503 high_pc_attribute (label);
3504 if (use_gnu_debug_info_extensions)
3506 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3507 body_begin_attribute (label);
3508 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3509 body_end_attribute (label);
3515 /* Output a DIE to represent a declared data object (either file-scope
3516 or block-local) which has "external linkage" (according to ANSI-C). */
3518 static void
3519 output_global_variable_die (arg)
3520 register void *arg;
3522 register tree decl = arg;
3523 register tree origin = decl_ultimate_origin (decl);
3525 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3526 sibling_attribute ();
3527 if (origin != NULL)
3528 abstract_origin_attribute (origin);
3529 else
3531 name_and_src_coords_attributes (decl);
3532 member_attribute (DECL_CONTEXT (decl));
3533 type_attribute (TREE_TYPE (decl),
3534 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3536 if (DECL_ABSTRACT (decl))
3537 equate_decl_number_to_die_number (decl);
3538 else
3540 if (! DECL_EXTERNAL (decl) && ! in_class
3541 && current_function_decl == decl_function_context (decl))
3542 location_or_const_value_attribute (decl);
3546 static void
3547 output_label_die (arg)
3548 register void *arg;
3550 register tree decl = arg;
3551 register tree origin = decl_ultimate_origin (decl);
3553 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3554 sibling_attribute ();
3555 if (origin != NULL)
3556 abstract_origin_attribute (origin);
3557 else
3558 name_and_src_coords_attributes (decl);
3559 if (DECL_ABSTRACT (decl))
3560 equate_decl_number_to_die_number (decl);
3561 else
3563 register rtx insn = DECL_RTL (decl);
3565 /* Deleted labels are programmer specified labels which have been
3566 eliminated because of various optimisations. We still emit them
3567 here so that it is possible to put breakpoints on them. */
3568 if (GET_CODE (insn) == CODE_LABEL
3569 || ((GET_CODE (insn) == NOTE
3570 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
3572 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3574 /* When optimization is enabled (via -O) some parts of the compiler
3575 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3576 represent source-level labels which were explicitly declared by
3577 the user. This really shouldn't be happening though, so catch
3578 it if it ever does happen. */
3580 if (INSN_DELETED_P (insn))
3581 abort (); /* Should never happen. */
3583 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
3584 (unsigned) INSN_UID (insn));
3585 low_pc_attribute (label);
3590 static void
3591 output_lexical_block_die (arg)
3592 register void *arg;
3594 register tree stmt = arg;
3596 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3597 sibling_attribute ();
3598 dienum_push ();
3599 if (! BLOCK_ABSTRACT (stmt))
3601 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3602 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3604 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3605 low_pc_attribute (begin_label);
3606 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3607 high_pc_attribute (end_label);
3611 static void
3612 output_inlined_subroutine_die (arg)
3613 register void *arg;
3615 register tree stmt = arg;
3617 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
3618 sibling_attribute ();
3619 dienum_push ();
3620 abstract_origin_attribute (block_ultimate_origin (stmt));
3621 if (! BLOCK_ABSTRACT (stmt))
3623 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3624 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3626 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3627 low_pc_attribute (begin_label);
3628 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3629 high_pc_attribute (end_label);
3633 /* Output a DIE to represent a declared data object (either file-scope
3634 or block-local) which has "internal linkage" (according to ANSI-C). */
3636 static void
3637 output_local_variable_die (arg)
3638 register void *arg;
3640 register tree decl = arg;
3641 register tree origin = decl_ultimate_origin (decl);
3643 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
3644 sibling_attribute ();
3645 if (origin != NULL)
3646 abstract_origin_attribute (origin);
3647 else
3649 name_and_src_coords_attributes (decl);
3650 member_attribute (DECL_CONTEXT (decl));
3651 type_attribute (TREE_TYPE (decl),
3652 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3654 if (DECL_ABSTRACT (decl))
3655 equate_decl_number_to_die_number (decl);
3656 else
3657 location_or_const_value_attribute (decl);
3660 static void
3661 output_member_die (arg)
3662 register void *arg;
3664 register tree decl = arg;
3666 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
3667 sibling_attribute ();
3668 name_and_src_coords_attributes (decl);
3669 member_attribute (DECL_CONTEXT (decl));
3670 type_attribute (member_declared_type (decl),
3671 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3672 if (DECL_BIT_FIELD_TYPE (decl)) /* If this is a bit field... */
3674 byte_size_attribute (decl);
3675 bit_size_attribute (decl);
3676 bit_offset_attribute (decl);
3678 data_member_location_attribute (decl);
3681 #if 0
3682 /* Don't generate either pointer_type DIEs or reference_type DIEs. Use
3683 modified types instead.
3685 We keep this code here just in case these types of DIEs may be
3686 needed to represent certain things in other languages (e.g. Pascal)
3687 someday. */
3689 static void
3690 output_pointer_type_die (arg)
3691 register void *arg;
3693 register tree type = arg;
3695 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
3696 sibling_attribute ();
3697 equate_type_number_to_die_number (type);
3698 member_attribute (TYPE_CONTEXT (type));
3699 type_attribute (TREE_TYPE (type), 0, 0);
3702 static void
3703 output_reference_type_die (arg)
3704 register void *arg;
3706 register tree type = arg;
3708 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
3709 sibling_attribute ();
3710 equate_type_number_to_die_number (type);
3711 member_attribute (TYPE_CONTEXT (type));
3712 type_attribute (TREE_TYPE (type), 0, 0);
3714 #endif
3716 static void
3717 output_ptr_to_mbr_type_die (arg)
3718 register void *arg;
3720 register tree type = arg;
3722 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
3723 sibling_attribute ();
3724 equate_type_number_to_die_number (type);
3725 member_attribute (TYPE_CONTEXT (type));
3726 containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
3727 type_attribute (TREE_TYPE (type), 0, 0);
3730 static void
3731 output_compile_unit_die (arg)
3732 register void *arg;
3734 register char *main_input_filename = arg;
3736 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
3737 sibling_attribute ();
3738 dienum_push ();
3739 name_attribute (main_input_filename);
3742 char producer[250];
3744 sprintf (producer, "%s %s", language_string, version_string);
3745 producer_attribute (producer);
3748 if (strcmp (language_string, "GNU C++") == 0)
3749 language_attribute (LANG_C_PLUS_PLUS);
3750 else if (strcmp (language_string, "GNU Ada") == 0)
3751 language_attribute (LANG_ADA83);
3752 else if (strcmp (language_string, "GNU F77") == 0)
3753 language_attribute (LANG_FORTRAN77);
3754 else if (strcmp (language_string, "GNU Pascal") == 0)
3755 language_attribute (LANG_PASCAL83);
3756 else if (flag_traditional)
3757 language_attribute (LANG_C);
3758 else
3759 language_attribute (LANG_C89);
3760 low_pc_attribute (TEXT_BEGIN_LABEL);
3761 high_pc_attribute (TEXT_END_LABEL);
3762 if (debug_info_level >= DINFO_LEVEL_NORMAL)
3763 stmt_list_attribute (LINE_BEGIN_LABEL);
3764 last_filename = xstrdup (main_input_filename);
3767 char *wd = getpwd ();
3768 if (wd)
3769 comp_dir_attribute (wd);
3772 if (debug_info_level >= DINFO_LEVEL_NORMAL && use_gnu_debug_info_extensions)
3774 sf_names_attribute (SFNAMES_BEGIN_LABEL);
3775 src_info_attribute (SRCINFO_BEGIN_LABEL);
3776 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
3777 mac_info_attribute (MACINFO_BEGIN_LABEL);
3781 static void
3782 output_string_type_die (arg)
3783 register void *arg;
3785 register tree type = arg;
3787 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
3788 sibling_attribute ();
3789 equate_type_number_to_die_number (type);
3790 member_attribute (TYPE_CONTEXT (type));
3791 /* this is a fixed length string */
3792 byte_size_attribute (type);
3795 static void
3796 output_inheritance_die (arg)
3797 register void *arg;
3799 register tree binfo = arg;
3801 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inheritance);
3802 sibling_attribute ();
3803 type_attribute (BINFO_TYPE (binfo), 0, 0);
3804 data_member_location_attribute (binfo);
3805 if (TREE_VIA_VIRTUAL (binfo))
3807 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3808 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3810 if (TREE_VIA_PUBLIC (binfo))
3812 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_public);
3813 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3815 else if (TREE_VIA_PROTECTED (binfo))
3817 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_protected);
3818 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3822 static void
3823 output_structure_type_die (arg)
3824 register void *arg;
3826 register tree type = arg;
3828 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3829 sibling_attribute ();
3830 equate_type_number_to_die_number (type);
3831 name_attribute (type_tag (type));
3832 member_attribute (TYPE_CONTEXT (type));
3834 /* If this type has been completed, then give it a byte_size attribute
3835 and prepare to give a list of members. Otherwise, don't do either of
3836 these things. In the latter case, we will not be generating a list
3837 of members (since we don't have any idea what they might be for an
3838 incomplete type). */
3840 if (TYPE_SIZE (type))
3842 dienum_push ();
3843 byte_size_attribute (type);
3847 /* Output a DIE to represent a declared function (either file-scope
3848 or block-local) which has "internal linkage" (according to ANSI-C). */
3850 static void
3851 output_local_subroutine_die (arg)
3852 register void *arg;
3854 register tree decl = arg;
3855 register tree origin = decl_ultimate_origin (decl);
3857 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
3858 sibling_attribute ();
3859 dienum_push ();
3860 if (origin != NULL)
3861 abstract_origin_attribute (origin);
3862 else
3864 register tree type = TREE_TYPE (decl);
3866 name_and_src_coords_attributes (decl);
3867 inline_attribute (decl);
3868 prototyped_attribute (type);
3869 member_attribute (DECL_CONTEXT (decl));
3870 type_attribute (TREE_TYPE (type), 0, 0);
3871 pure_or_virtual_attribute (decl);
3873 if (DECL_ABSTRACT (decl))
3874 equate_decl_number_to_die_number (decl);
3875 else
3877 /* Avoid getting screwed up in cases where a function was declared
3878 static but where no definition was ever given for it. */
3880 if (TREE_ASM_WRITTEN (decl))
3882 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3883 low_pc_attribute (function_start_label (decl));
3884 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3885 high_pc_attribute (label);
3886 if (use_gnu_debug_info_extensions)
3888 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3889 body_begin_attribute (label);
3890 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3891 body_end_attribute (label);
3897 static void
3898 output_subroutine_type_die (arg)
3899 register void *arg;
3901 register tree type = arg;
3902 register tree return_type = TREE_TYPE (type);
3904 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
3905 sibling_attribute ();
3906 dienum_push ();
3907 equate_type_number_to_die_number (type);
3908 prototyped_attribute (type);
3909 member_attribute (TYPE_CONTEXT (type));
3910 type_attribute (return_type, 0, 0);
3913 static void
3914 output_typedef_die (arg)
3915 register void *arg;
3917 register tree decl = arg;
3918 register tree origin = decl_ultimate_origin (decl);
3920 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
3921 sibling_attribute ();
3922 if (origin != NULL)
3923 abstract_origin_attribute (origin);
3924 else
3926 name_and_src_coords_attributes (decl);
3927 member_attribute (DECL_CONTEXT (decl));
3928 type_attribute (TREE_TYPE (decl),
3929 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3931 if (DECL_ABSTRACT (decl))
3932 equate_decl_number_to_die_number (decl);
3935 static void
3936 output_union_type_die (arg)
3937 register void *arg;
3939 register tree type = arg;
3941 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3942 sibling_attribute ();
3943 equate_type_number_to_die_number (type);
3944 name_attribute (type_tag (type));
3945 member_attribute (TYPE_CONTEXT (type));
3947 /* If this type has been completed, then give it a byte_size attribute
3948 and prepare to give a list of members. Otherwise, don't do either of
3949 these things. In the latter case, we will not be generating a list
3950 of members (since we don't have any idea what they might be for an
3951 incomplete type). */
3953 if (TYPE_SIZE (type))
3955 dienum_push ();
3956 byte_size_attribute (type);
3960 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
3961 at the end of an (ANSI prototyped) formal parameters list. */
3963 static void
3964 output_unspecified_parameters_die (arg)
3965 register void *arg;
3967 register tree decl_or_type = arg;
3969 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
3970 sibling_attribute ();
3972 /* This kludge is here only for the sake of being compatible with what
3973 the USL CI5 C compiler does. The specification of Dwarf Version 1
3974 doesn't say that TAG_unspecified_parameters DIEs should contain any
3975 attributes other than the AT_sibling attribute, but they are certainly
3976 allowed to contain additional attributes, and the CI5 compiler
3977 generates AT_name, AT_fund_type, and AT_location attributes within
3978 TAG_unspecified_parameters DIEs which appear in the child lists for
3979 DIEs representing function definitions, so we do likewise here. */
3981 if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
3983 name_attribute ("...");
3984 fund_type_attribute (FT_pointer);
3985 /* location_attribute (?); */
3989 static void
3990 output_padded_null_die (arg)
3991 register void *arg ATTRIBUTE_UNUSED;
3993 ASM_OUTPUT_ALIGN (asm_out_file, 2); /* 2**2 == 4 */
3996 /*************************** end of DIEs *********************************/
3998 /* Generate some type of DIE. This routine generates the generic outer
3999 wrapper stuff which goes around all types of DIE's (regardless of their
4000 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
4001 DIE-length word, followed by the guts of the DIE itself. After the guts
4002 of the DIE, there must always be a terminator label for the DIE. */
4004 static void
4005 output_die (die_specific_output_function, param)
4006 register void (*die_specific_output_function) PARAMS ((void *));
4007 register void *param;
4009 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4010 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4012 current_dienum = NEXT_DIE_NUM;
4013 NEXT_DIE_NUM = next_unused_dienum;
4015 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4016 sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
4018 /* Write a label which will act as the name for the start of this DIE. */
4020 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4022 /* Write the DIE-length word. */
4024 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
4026 /* Fill in the guts of the DIE. */
4028 next_unused_dienum++;
4029 die_specific_output_function (param);
4031 /* Write a label which will act as the name for the end of this DIE. */
4033 ASM_OUTPUT_LABEL (asm_out_file, end_label);
4036 static void
4037 end_sibling_chain ()
4039 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4041 current_dienum = NEXT_DIE_NUM;
4042 NEXT_DIE_NUM = next_unused_dienum;
4044 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4046 /* Write a label which will act as the name for the start of this DIE. */
4048 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4050 /* Write the DIE-length word. */
4052 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
4054 dienum_pop ();
4057 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
4058 TAG_unspecified_parameters DIE) to represent the types of the formal
4059 parameters as specified in some function type specification (except
4060 for those which appear as part of a function *definition*).
4062 Note that we must be careful here to output all of the parameter
4063 DIEs *before* we output any DIEs needed to represent the types of
4064 the formal parameters. This keeps svr4 SDB happy because it
4065 (incorrectly) thinks that the first non-parameter DIE it sees ends
4066 the formal parameter list. */
4068 static void
4069 output_formal_types (function_or_method_type)
4070 register tree function_or_method_type;
4072 register tree link;
4073 register tree formal_type = NULL;
4074 register tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
4076 /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4077 get bogus recursion when outputting tagged types local to a
4078 function declaration. */
4079 int save_asm_written = TREE_ASM_WRITTEN (function_or_method_type);
4080 TREE_ASM_WRITTEN (function_or_method_type) = 1;
4082 /* In the case where we are generating a formal types list for a C++
4083 non-static member function type, skip over the first thing on the
4084 TYPE_ARG_TYPES list because it only represents the type of the
4085 hidden `this pointer'. The debugger should be able to figure
4086 out (without being explicitly told) that this non-static member
4087 function type takes a `this pointer' and should be able to figure
4088 what the type of that hidden parameter is from the AT_member
4089 attribute of the parent TAG_subroutine_type DIE. */
4091 if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
4092 first_parm_type = TREE_CHAIN (first_parm_type);
4094 /* Make our first pass over the list of formal parameter types and output
4095 a TAG_formal_parameter DIE for each one. */
4097 for (link = first_parm_type; link; link = TREE_CHAIN (link))
4099 formal_type = TREE_VALUE (link);
4100 if (formal_type == void_type_node)
4101 break;
4103 /* Output a (nameless) DIE to represent the formal parameter itself. */
4105 output_die (output_formal_parameter_die, formal_type);
4108 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4109 DIE to the end of the parameter list. */
4111 if (formal_type != void_type_node)
4112 output_die (output_unspecified_parameters_die, function_or_method_type);
4114 /* Make our second (and final) pass over the list of formal parameter types
4115 and output DIEs to represent those types (as necessary). */
4117 for (link = TYPE_ARG_TYPES (function_or_method_type);
4118 link;
4119 link = TREE_CHAIN (link))
4121 formal_type = TREE_VALUE (link);
4122 if (formal_type == void_type_node)
4123 break;
4125 output_type (formal_type, function_or_method_type);
4128 TREE_ASM_WRITTEN (function_or_method_type) = save_asm_written;
4131 /* Remember a type in the pending_types_list. */
4133 static void
4134 pend_type (type)
4135 register tree type;
4137 if (pending_types == pending_types_allocated)
4139 pending_types_allocated += PENDING_TYPES_INCREMENT;
4140 pending_types_list
4141 = (tree *) xrealloc (pending_types_list,
4142 sizeof (tree) * pending_types_allocated);
4144 pending_types_list[pending_types++] = type;
4146 /* Mark the pending type as having been output already (even though
4147 it hasn't been). This prevents the type from being added to the
4148 pending_types_list more than once. */
4150 TREE_ASM_WRITTEN (type) = 1;
4153 /* Return non-zero if it is legitimate to output DIEs to represent a
4154 given type while we are generating the list of child DIEs for some
4155 DIE (e.g. a function or lexical block DIE) associated with a given scope.
4157 See the comments within the function for a description of when it is
4158 considered legitimate to output DIEs for various kinds of types.
4160 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4161 or it may point to a BLOCK node (for types local to a block), or to a
4162 FUNCTION_DECL node (for types local to the heading of some function
4163 definition), or to a FUNCTION_TYPE node (for types local to the
4164 prototyped parameter list of a function type specification), or to a
4165 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4166 (in the case of C++ nested types).
4168 The `scope' parameter should likewise be NULL or should point to a
4169 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4170 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4172 This function is used only for deciding when to "pend" and when to
4173 "un-pend" types to/from the pending_types_list.
4175 Note that we sometimes make use of this "type pending" feature in a
4176 rather twisted way to temporarily delay the production of DIEs for the
4177 types of formal parameters. (We do this just to make svr4 SDB happy.)
4178 It order to delay the production of DIEs representing types of formal
4179 parameters, callers of this function supply `fake_containing_scope' as
4180 the `scope' parameter to this function. Given that fake_containing_scope
4181 is a tagged type which is *not* the containing scope for *any* other type,
4182 the desired effect is achieved, i.e. output of DIEs representing types
4183 is temporarily suspended, and any type DIEs which would have otherwise
4184 been output are instead placed onto the pending_types_list. Later on,
4185 we force these (temporarily pended) types to be output simply by calling
4186 `output_pending_types_for_scope' with an actual argument equal to the
4187 true scope of the types we temporarily pended. */
4189 static inline int
4190 type_ok_for_scope (type, scope)
4191 register tree type;
4192 register tree scope;
4194 /* Tagged types (i.e. struct, union, and enum types) must always be
4195 output only in the scopes where they actually belong (or else the
4196 scoping of their own tag names and the scoping of their member
4197 names will be incorrect). Non-tagged-types on the other hand can
4198 generally be output anywhere, except that svr4 SDB really doesn't
4199 want to see them nested within struct or union types, so here we
4200 say it is always OK to immediately output any such a (non-tagged)
4201 type, so long as we are not within such a context. Note that the
4202 only kinds of non-tagged types which we will be dealing with here
4203 (for C and C++ anyway) will be array types and function types. */
4205 return is_tagged_type (type)
4206 ? (TYPE_CONTEXT (type) == scope
4207 /* Ignore namespaces for the moment. */
4208 || (scope == NULL_TREE
4209 && TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4210 || (scope == NULL_TREE && is_tagged_type (TYPE_CONTEXT (type))
4211 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type))))
4212 : (scope == NULL_TREE || ! is_tagged_type (scope));
4215 /* Output any pending types (from the pending_types list) which we can output
4216 now (taking into account the scope that we are working on now).
4218 For each type output, remove the given type from the pending_types_list
4219 *before* we try to output it.
4221 Note that we have to process the list in beginning-to-end order,
4222 because the call made here to output_type may cause yet more types
4223 to be added to the end of the list, and we may have to output some
4224 of them too. */
4226 static void
4227 output_pending_types_for_scope (containing_scope)
4228 register tree containing_scope;
4230 register unsigned i;
4232 for (i = 0; i < pending_types; )
4234 register tree type = pending_types_list[i];
4236 if (type_ok_for_scope (type, containing_scope))
4238 register tree *mover;
4239 register tree *limit;
4241 pending_types--;
4242 limit = &pending_types_list[pending_types];
4243 for (mover = &pending_types_list[i]; mover < limit; mover++)
4244 *mover = *(mover+1);
4246 /* Un-mark the type as having been output already (because it
4247 hasn't been, really). Then call output_type to generate a
4248 Dwarf representation of it. */
4250 TREE_ASM_WRITTEN (type) = 0;
4251 output_type (type, containing_scope);
4253 /* Don't increment the loop counter in this case because we
4254 have shifted all of the subsequent pending types down one
4255 element in the pending_types_list array. */
4257 else
4258 i++;
4262 /* Remember a type in the incomplete_types_list. */
4264 static void
4265 add_incomplete_type (type)
4266 tree type;
4268 if (incomplete_types == incomplete_types_allocated)
4270 incomplete_types_allocated += INCOMPLETE_TYPES_INCREMENT;
4271 incomplete_types_list
4272 = (tree *) xrealloc (incomplete_types_list,
4273 sizeof (tree) * incomplete_types_allocated);
4276 incomplete_types_list[incomplete_types++] = type;
4279 /* Walk through the list of incomplete types again, trying once more to
4280 emit full debugging info for them. */
4282 static void
4283 retry_incomplete_types ()
4285 register tree type;
4287 finalizing = 1;
4288 while (incomplete_types)
4290 --incomplete_types;
4291 type = incomplete_types_list[incomplete_types];
4292 output_type (type, NULL_TREE);
4296 static void
4297 output_type (type, containing_scope)
4298 register tree type;
4299 register tree containing_scope;
4301 if (type == 0 || type == error_mark_node)
4302 return;
4304 /* We are going to output a DIE to represent the unqualified version of
4305 this type (i.e. without any const or volatile qualifiers) so get
4306 the main variant (i.e. the unqualified version) of this type now. */
4308 type = type_main_variant (type);
4310 if (TREE_ASM_WRITTEN (type))
4312 if (finalizing && AGGREGATE_TYPE_P (type))
4314 register tree member;
4316 /* Some of our nested types might not have been defined when we
4317 were written out before; force them out now. */
4319 for (member = TYPE_FIELDS (type); member;
4320 member = TREE_CHAIN (member))
4321 if (TREE_CODE (member) == TYPE_DECL
4322 && ! TREE_ASM_WRITTEN (TREE_TYPE (member)))
4323 output_type (TREE_TYPE (member), containing_scope);
4325 return;
4328 /* If this is a nested type whose containing class hasn't been
4329 written out yet, writing it out will cover this one, too. */
4331 if (TYPE_CONTEXT (type)
4332 && TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
4333 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
4335 output_type (TYPE_CONTEXT (type), containing_scope);
4336 return;
4339 /* Don't generate any DIEs for this type now unless it is OK to do so
4340 (based upon what `type_ok_for_scope' tells us). */
4342 if (! type_ok_for_scope (type, containing_scope))
4344 pend_type (type);
4345 return;
4348 switch (TREE_CODE (type))
4350 case ERROR_MARK:
4351 break;
4353 case POINTER_TYPE:
4354 case REFERENCE_TYPE:
4355 /* Prevent infinite recursion in cases where this is a recursive
4356 type. Recursive types are possible in Ada. */
4357 TREE_ASM_WRITTEN (type) = 1;
4358 /* For these types, all that is required is that we output a DIE
4359 (or a set of DIEs) to represent the "basis" type. */
4360 output_type (TREE_TYPE (type), containing_scope);
4361 break;
4363 case OFFSET_TYPE:
4364 /* This code is used for C++ pointer-to-data-member types. */
4365 /* Output a description of the relevant class type. */
4366 output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
4367 /* Output a description of the type of the object pointed to. */
4368 output_type (TREE_TYPE (type), containing_scope);
4369 /* Now output a DIE to represent this pointer-to-data-member type
4370 itself. */
4371 output_die (output_ptr_to_mbr_type_die, type);
4372 break;
4374 case SET_TYPE:
4375 output_type (TYPE_DOMAIN (type), containing_scope);
4376 output_die (output_set_type_die, type);
4377 break;
4379 case FILE_TYPE:
4380 output_type (TREE_TYPE (type), containing_scope);
4381 abort (); /* No way to represent these in Dwarf yet! */
4382 break;
4384 case FUNCTION_TYPE:
4385 /* Force out return type (in case it wasn't forced out already). */
4386 output_type (TREE_TYPE (type), containing_scope);
4387 output_die (output_subroutine_type_die, type);
4388 output_formal_types (type);
4389 end_sibling_chain ();
4390 break;
4392 case METHOD_TYPE:
4393 /* Force out return type (in case it wasn't forced out already). */
4394 output_type (TREE_TYPE (type), containing_scope);
4395 output_die (output_subroutine_type_die, type);
4396 output_formal_types (type);
4397 end_sibling_chain ();
4398 break;
4400 case ARRAY_TYPE:
4401 if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4403 output_type (TREE_TYPE (type), containing_scope);
4404 output_die (output_string_type_die, type);
4406 else
4408 register tree element_type;
4410 element_type = TREE_TYPE (type);
4411 while (TREE_CODE (element_type) == ARRAY_TYPE)
4412 element_type = TREE_TYPE (element_type);
4414 output_type (element_type, containing_scope);
4415 output_die (output_array_type_die, type);
4417 break;
4419 case ENUMERAL_TYPE:
4420 case RECORD_TYPE:
4421 case UNION_TYPE:
4422 case QUAL_UNION_TYPE:
4424 /* For a non-file-scope tagged type, we can always go ahead and
4425 output a Dwarf description of this type right now, even if
4426 the type in question is still incomplete, because if this
4427 local type *was* ever completed anywhere within its scope,
4428 that complete definition would already have been attached to
4429 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4430 node by the time we reach this point. That's true because of the
4431 way the front-end does its processing of file-scope declarations (of
4432 functions and class types) within which other types might be
4433 nested. The C and C++ front-ends always gobble up such "local
4434 scope" things en-mass before they try to output *any* debugging
4435 information for any of the stuff contained inside them and thus,
4436 we get the benefit here of what is (in effect) a pre-resolution
4437 of forward references to tagged types in local scopes.
4439 Note however that for file-scope tagged types we cannot assume
4440 that such pre-resolution of forward references has taken place.
4441 A given file-scope tagged type may appear to be incomplete when
4442 we reach this point, but it may yet be given a full definition
4443 (at file-scope) later on during compilation. In order to avoid
4444 generating a premature (and possibly incorrect) set of Dwarf
4445 DIEs for such (as yet incomplete) file-scope tagged types, we
4446 generate nothing at all for as-yet incomplete file-scope tagged
4447 types here unless we are making our special "finalization" pass
4448 for file-scope things at the very end of compilation. At that
4449 time, we will certainly know as much about each file-scope tagged
4450 type as we are ever going to know, so at that point in time, we
4451 can safely generate correct Dwarf descriptions for these file-
4452 scope tagged types. */
4454 if (TYPE_SIZE (type) == 0
4455 && (TYPE_CONTEXT (type) == NULL
4456 || AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
4457 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4458 && !finalizing)
4460 /* We can't do this for function-local types, and we don't need
4461 to. */
4462 if (TREE_PERMANENT (type))
4463 add_incomplete_type (type);
4464 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4467 /* Prevent infinite recursion in cases where the type of some
4468 member of this type is expressed in terms of this type itself. */
4470 TREE_ASM_WRITTEN (type) = 1;
4472 /* Output a DIE to represent the tagged type itself. */
4474 switch (TREE_CODE (type))
4476 case ENUMERAL_TYPE:
4477 output_die (output_enumeration_type_die, type);
4478 return; /* a special case -- nothing left to do so just return */
4480 case RECORD_TYPE:
4481 output_die (output_structure_type_die, type);
4482 break;
4484 case UNION_TYPE:
4485 case QUAL_UNION_TYPE:
4486 output_die (output_union_type_die, type);
4487 break;
4489 default:
4490 abort (); /* Should never happen. */
4493 /* If this is not an incomplete type, output descriptions of
4494 each of its members.
4496 Note that as we output the DIEs necessary to represent the
4497 members of this record or union type, we will also be trying
4498 to output DIEs to represent the *types* of those members.
4499 However the `output_type' function (above) will specifically
4500 avoid generating type DIEs for member types *within* the list
4501 of member DIEs for this (containing) type execpt for those
4502 types (of members) which are explicitly marked as also being
4503 members of this (containing) type themselves. The g++ front-
4504 end can force any given type to be treated as a member of some
4505 other (containing) type by setting the TYPE_CONTEXT of the
4506 given (member) type to point to the TREE node representing the
4507 appropriate (containing) type.
4510 if (TYPE_SIZE (type))
4512 /* First output info about the base classes. */
4513 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
4515 register tree bases = TYPE_BINFO_BASETYPES (type);
4516 register int n_bases = TREE_VEC_LENGTH (bases);
4517 register int i;
4519 for (i = 0; i < n_bases; i++)
4521 tree binfo = TREE_VEC_ELT (bases, i);
4522 output_type (BINFO_TYPE (binfo), containing_scope);
4523 output_die (output_inheritance_die, binfo);
4527 ++in_class;
4530 register tree normal_member;
4532 /* Now output info about the data members and type members. */
4534 for (normal_member = TYPE_FIELDS (type);
4535 normal_member;
4536 normal_member = TREE_CHAIN (normal_member))
4537 output_decl (normal_member, type);
4541 register tree func_member;
4543 /* Now output info about the function members (if any). */
4545 for (func_member = TYPE_METHODS (type);
4546 func_member;
4547 func_member = TREE_CHAIN (func_member))
4548 output_decl (func_member, type);
4551 --in_class;
4553 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4554 scopes (at least in C++) so we must now output any nested
4555 pending types which are local just to this type. */
4557 output_pending_types_for_scope (type);
4559 end_sibling_chain (); /* Terminate member chain. */
4562 break;
4564 case VOID_TYPE:
4565 case INTEGER_TYPE:
4566 case REAL_TYPE:
4567 case COMPLEX_TYPE:
4568 case BOOLEAN_TYPE:
4569 case CHAR_TYPE:
4570 break; /* No DIEs needed for fundamental types. */
4572 case LANG_TYPE: /* No Dwarf representation currently defined. */
4573 break;
4575 default:
4576 abort ();
4579 TREE_ASM_WRITTEN (type) = 1;
4582 static void
4583 output_tagged_type_instantiation (type)
4584 register tree type;
4586 if (type == 0 || type == error_mark_node)
4587 return;
4589 /* We are going to output a DIE to represent the unqualified version of
4590 this type (i.e. without any const or volatile qualifiers) so make
4591 sure that we have the main variant (i.e. the unqualified version) of
4592 this type now. */
4594 if (type != type_main_variant (type))
4595 abort ();
4597 if (!TREE_ASM_WRITTEN (type))
4598 abort ();
4600 switch (TREE_CODE (type))
4602 case ERROR_MARK:
4603 break;
4605 case ENUMERAL_TYPE:
4606 output_die (output_inlined_enumeration_type_die, type);
4607 break;
4609 case RECORD_TYPE:
4610 output_die (output_inlined_structure_type_die, type);
4611 break;
4613 case UNION_TYPE:
4614 case QUAL_UNION_TYPE:
4615 output_die (output_inlined_union_type_die, type);
4616 break;
4618 default:
4619 abort (); /* Should never happen. */
4623 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
4624 the things which are local to the given block. */
4626 static void
4627 output_block (stmt, depth)
4628 register tree stmt;
4629 int depth;
4631 register int must_output_die = 0;
4632 register tree origin;
4633 register enum tree_code origin_code;
4635 /* Ignore blocks never really used to make RTL. */
4637 if (! stmt || ! TREE_USED (stmt))
4638 return;
4640 /* Determine the "ultimate origin" of this block. This block may be an
4641 inlined instance of an inlined instance of inline function, so we
4642 have to trace all of the way back through the origin chain to find
4643 out what sort of node actually served as the original seed for the
4644 creation of the current block. */
4646 origin = block_ultimate_origin (stmt);
4647 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
4649 /* Determine if we need to output any Dwarf DIEs at all to represent this
4650 block. */
4652 if (origin_code == FUNCTION_DECL)
4653 /* The outer scopes for inlinings *must* always be represented. We
4654 generate TAG_inlined_subroutine DIEs for them. (See below.) */
4655 must_output_die = 1;
4656 else
4658 /* In the case where the current block represents an inlining of the
4659 "body block" of an inline function, we must *NOT* output any DIE
4660 for this block because we have already output a DIE to represent
4661 the whole inlined function scope and the "body block" of any
4662 function doesn't really represent a different scope according to
4663 ANSI C rules. So we check here to make sure that this block does
4664 not represent a "body block inlining" before trying to set the
4665 `must_output_die' flag. */
4667 if (! is_body_block (origin ? origin : stmt))
4669 /* Determine if this block directly contains any "significant"
4670 local declarations which we will need to output DIEs for. */
4672 if (debug_info_level > DINFO_LEVEL_TERSE)
4673 /* We are not in terse mode so *any* local declaration counts
4674 as being a "significant" one. */
4675 must_output_die = (BLOCK_VARS (stmt) != NULL);
4676 else
4678 register tree decl;
4680 /* We are in terse mode, so only local (nested) function
4681 definitions count as "significant" local declarations. */
4683 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4684 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
4686 must_output_die = 1;
4687 break;
4693 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
4694 DIE for any block which contains no significant local declarations
4695 at all. Rather, in such cases we just call `output_decls_for_scope'
4696 so that any needed Dwarf info for any sub-blocks will get properly
4697 generated. Note that in terse mode, our definition of what constitutes
4698 a "significant" local declaration gets restricted to include only
4699 inlined function instances and local (nested) function definitions. */
4701 if (origin_code == FUNCTION_DECL && BLOCK_ABSTRACT (stmt))
4702 /* We don't care about an abstract inlined subroutine. */;
4703 else if (must_output_die)
4705 output_die ((origin_code == FUNCTION_DECL)
4706 ? output_inlined_subroutine_die
4707 : output_lexical_block_die,
4708 stmt);
4709 output_decls_for_scope (stmt, depth);
4710 end_sibling_chain ();
4712 else
4713 output_decls_for_scope (stmt, depth);
4716 /* Output all of the decls declared within a given scope (also called
4717 a `binding contour') and (recursively) all of it's sub-blocks. */
4719 static void
4720 output_decls_for_scope (stmt, depth)
4721 register tree stmt;
4722 int depth;
4724 /* Ignore blocks never really used to make RTL. */
4726 if (! stmt || ! TREE_USED (stmt))
4727 return;
4729 if (! BLOCK_ABSTRACT (stmt) && depth > 0)
4730 next_block_number++;
4732 /* Output the DIEs to represent all of the data objects, functions,
4733 typedefs, and tagged types declared directly within this block
4734 but not within any nested sub-blocks. */
4737 register tree decl;
4739 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4740 output_decl (decl, stmt);
4743 output_pending_types_for_scope (stmt);
4745 /* Output the DIEs to represent all sub-blocks (and the items declared
4746 therein) of this block. */
4749 register tree subblocks;
4751 for (subblocks = BLOCK_SUBBLOCKS (stmt);
4752 subblocks;
4753 subblocks = BLOCK_CHAIN (subblocks))
4754 output_block (subblocks, depth + 1);
4758 /* Is this a typedef we can avoid emitting? */
4760 inline static int
4761 is_redundant_typedef (decl)
4762 register tree decl;
4764 if (TYPE_DECL_IS_STUB (decl))
4765 return 1;
4766 if (DECL_ARTIFICIAL (decl)
4767 && DECL_CONTEXT (decl)
4768 && is_tagged_type (DECL_CONTEXT (decl))
4769 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
4770 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
4771 /* Also ignore the artificial member typedef for the class name. */
4772 return 1;
4773 return 0;
4776 /* Output Dwarf .debug information for a decl described by DECL. */
4778 static void
4779 output_decl (decl, containing_scope)
4780 register tree decl;
4781 register tree containing_scope;
4783 /* Make a note of the decl node we are going to be working on. We may
4784 need to give the user the source coordinates of where it appeared in
4785 case we notice (later on) that something about it looks screwy. */
4787 dwarf_last_decl = decl;
4789 if (TREE_CODE (decl) == ERROR_MARK)
4790 return;
4792 /* If a structure is declared within an initialization, e.g. as the
4793 operand of a sizeof, then it will not have a name. We don't want
4794 to output a DIE for it, as the tree nodes are in the temporary obstack */
4796 if ((TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4797 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
4798 && ((DECL_NAME (decl) == 0 && TYPE_NAME (TREE_TYPE (decl)) == 0)
4799 || (TYPE_FIELDS (TREE_TYPE (decl))
4800 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl))) == ERROR_MARK))))
4801 return;
4803 /* If this ..._DECL node is marked to be ignored, then ignore it.
4804 But don't ignore a function definition, since that would screw
4805 up our count of blocks, and that it turn will completely screw up the
4806 labels we will reference in subsequent AT_low_pc and AT_high_pc
4807 attributes (for subsequent blocks). */
4809 if (DECL_IGNORED_P (decl) && TREE_CODE (decl) != FUNCTION_DECL)
4810 return;
4812 switch (TREE_CODE (decl))
4814 case CONST_DECL:
4815 /* The individual enumerators of an enum type get output when we
4816 output the Dwarf representation of the relevant enum type itself. */
4817 break;
4819 case FUNCTION_DECL:
4820 /* If we are in terse mode, don't output any DIEs to represent
4821 mere function declarations. Also, if we are conforming
4822 to the DWARF version 1 specification, don't output DIEs for
4823 mere function declarations. */
4825 if (DECL_INITIAL (decl) == NULL_TREE)
4826 #if (DWARF_VERSION > 1)
4827 if (debug_info_level <= DINFO_LEVEL_TERSE)
4828 #endif
4829 break;
4831 /* Before we describe the FUNCTION_DECL itself, make sure that we
4832 have described its return type. */
4834 output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
4837 /* And its containing type. */
4838 register tree origin = decl_class_context (decl);
4839 if (origin)
4840 output_type (origin, containing_scope);
4843 /* If the following DIE will represent a function definition for a
4844 function with "extern" linkage, output a special "pubnames" DIE
4845 label just ahead of the actual DIE. A reference to this label
4846 was already generated in the .debug_pubnames section sub-entry
4847 for this function definition. */
4849 if (TREE_PUBLIC (decl))
4851 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4853 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4854 ASM_OUTPUT_LABEL (asm_out_file, label);
4857 /* Now output a DIE to represent the function itself. */
4859 output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
4860 ? output_global_subroutine_die
4861 : output_local_subroutine_die,
4862 decl);
4864 /* Now output descriptions of the arguments for this function.
4865 This gets (unnecessarily?) complex because of the fact that
4866 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
4867 cases where there was a trailing `...' at the end of the formal
4868 parameter list. In order to find out if there was a trailing
4869 ellipsis or not, we must instead look at the type associated
4870 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
4871 If the chain of type nodes hanging off of this FUNCTION_TYPE node
4872 ends with a void_type_node then there should *not* be an ellipsis
4873 at the end. */
4875 /* In the case where we are describing a mere function declaration, all
4876 we need to do here (and all we *can* do here) is to describe
4877 the *types* of its formal parameters. */
4879 if (decl != current_function_decl || in_class)
4880 output_formal_types (TREE_TYPE (decl));
4881 else
4883 /* Generate DIEs to represent all known formal parameters */
4885 register tree arg_decls = DECL_ARGUMENTS (decl);
4886 register tree parm;
4888 /* WARNING! Kludge zone ahead! Here we have a special
4889 hack for svr4 SDB compatibility. Instead of passing the
4890 current FUNCTION_DECL node as the second parameter (i.e.
4891 the `containing_scope' parameter) to `output_decl' (as
4892 we ought to) we instead pass a pointer to our own private
4893 fake_containing_scope node. That node is a RECORD_TYPE
4894 node which NO OTHER TYPE may ever actually be a member of.
4896 This pointer will ultimately get passed into `output_type'
4897 as its `containing_scope' parameter. `Output_type' will
4898 then perform its part in the hack... i.e. it will pend
4899 the type of the formal parameter onto the pending_types
4900 list. Later on, when we are done generating the whole
4901 sequence of formal parameter DIEs for this function
4902 definition, we will un-pend all previously pended types
4903 of formal parameters for this function definition.
4905 This whole kludge prevents any type DIEs from being
4906 mixed in with the formal parameter DIEs. That's good
4907 because svr4 SDB believes that the list of formal
4908 parameter DIEs for a function ends wherever the first
4909 non-formal-parameter DIE appears. Thus, we have to
4910 keep the formal parameter DIEs segregated. They must
4911 all appear (consecutively) at the start of the list of
4912 children for the DIE representing the function definition.
4913 Then (and only then) may we output any additional DIEs
4914 needed to represent the types of these formal parameters.
4918 When generating DIEs, generate the unspecified_parameters
4919 DIE instead if we come across the arg "__builtin_va_alist"
4922 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
4923 if (TREE_CODE (parm) == PARM_DECL)
4925 if (DECL_NAME(parm) &&
4926 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
4927 "__builtin_va_alist") )
4928 output_die (output_unspecified_parameters_die, decl);
4929 else
4930 output_decl (parm, fake_containing_scope);
4934 Now that we have finished generating all of the DIEs to
4935 represent the formal parameters themselves, force out
4936 any DIEs needed to represent their types. We do this
4937 simply by un-pending all previously pended types which
4938 can legitimately go into the chain of children DIEs for
4939 the current FUNCTION_DECL.
4942 output_pending_types_for_scope (decl);
4945 Decide whether we need a unspecified_parameters DIE at the end.
4946 There are 2 more cases to do this for:
4947 1) the ansi ... declaration - this is detectable when the end
4948 of the arg list is not a void_type_node
4949 2) an unprototyped function declaration (not a definition). This
4950 just means that we have no info about the parameters at all.
4954 register tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
4956 if (fn_arg_types)
4958 /* this is the prototyped case, check for ... */
4959 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
4960 output_die (output_unspecified_parameters_die, decl);
4962 else
4964 /* this is unprototyped, check for undefined (just declaration) */
4965 if (!DECL_INITIAL (decl))
4966 output_die (output_unspecified_parameters_die, decl);
4970 /* Output Dwarf info for all of the stuff within the body of the
4971 function (if it has one - it may be just a declaration). */
4974 register tree outer_scope = DECL_INITIAL (decl);
4976 if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
4978 /* Note that here, `outer_scope' is a pointer to the outermost
4979 BLOCK node created to represent a function.
4980 This outermost BLOCK actually represents the outermost
4981 binding contour for the function, i.e. the contour in which
4982 the function's formal parameters and labels get declared.
4984 Curiously, it appears that the front end doesn't actually
4985 put the PARM_DECL nodes for the current function onto the
4986 BLOCK_VARS list for this outer scope. (They are strung
4987 off of the DECL_ARGUMENTS list for the function instead.)
4988 The BLOCK_VARS list for the `outer_scope' does provide us
4989 with a list of the LABEL_DECL nodes for the function however,
4990 and we output DWARF info for those here.
4992 Just within the `outer_scope' there will be a BLOCK node
4993 representing the function's outermost pair of curly braces,
4994 and any blocks used for the base and member initializers of
4995 a C++ constructor function. */
4997 output_decls_for_scope (outer_scope, 0);
4999 /* Finally, force out any pending types which are local to the
5000 outermost block of this function definition. These will
5001 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
5002 node itself. */
5004 output_pending_types_for_scope (decl);
5009 /* Generate a terminator for the list of stuff `owned' by this
5010 function. */
5012 end_sibling_chain ();
5014 break;
5016 case TYPE_DECL:
5017 /* If we are in terse mode, don't generate any DIEs to represent
5018 any actual typedefs. Note that even when we are in terse mode,
5019 we must still output DIEs to represent those tagged types which
5020 are used (directly or indirectly) in the specification of either
5021 a return type or a formal parameter type of some function. */
5023 if (debug_info_level <= DINFO_LEVEL_TERSE)
5024 if (! TYPE_DECL_IS_STUB (decl)
5025 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)) && ! in_class))
5026 return;
5028 /* In the special case of a TYPE_DECL node representing
5029 the declaration of some type tag, if the given TYPE_DECL is
5030 marked as having been instantiated from some other (original)
5031 TYPE_DECL node (e.g. one which was generated within the original
5032 definition of an inline function) we have to generate a special
5033 (abbreviated) TAG_structure_type, TAG_union_type, or
5034 TAG_enumeration-type DIE here. */
5036 if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl))
5038 output_tagged_type_instantiation (TREE_TYPE (decl));
5039 return;
5042 output_type (TREE_TYPE (decl), containing_scope);
5044 if (! is_redundant_typedef (decl))
5045 /* Output a DIE to represent the typedef itself. */
5046 output_die (output_typedef_die, decl);
5047 break;
5049 case LABEL_DECL:
5050 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5051 output_die (output_label_die, decl);
5052 break;
5054 case VAR_DECL:
5055 /* If we are conforming to the DWARF version 1 specification, don't
5056 generated any DIEs to represent mere external object declarations. */
5058 #if (DWARF_VERSION <= 1)
5059 if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
5060 break;
5061 #endif
5063 /* If we are in terse mode, don't generate any DIEs to represent
5064 any variable declarations or definitions. */
5066 if (debug_info_level <= DINFO_LEVEL_TERSE)
5067 break;
5069 /* Output any DIEs that are needed to specify the type of this data
5070 object. */
5072 output_type (TREE_TYPE (decl), containing_scope);
5075 /* And its containing type. */
5076 register tree origin = decl_class_context (decl);
5077 if (origin)
5078 output_type (origin, containing_scope);
5081 /* If the following DIE will represent a data object definition for a
5082 data object with "extern" linkage, output a special "pubnames" DIE
5083 label just ahead of the actual DIE. A reference to this label
5084 was already generated in the .debug_pubnames section sub-entry
5085 for this data object definition. */
5087 if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
5089 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5091 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5092 ASM_OUTPUT_LABEL (asm_out_file, label);
5095 /* Now output the DIE to represent the data object itself. This gets
5096 complicated because of the possibility that the VAR_DECL really
5097 represents an inlined instance of a formal parameter for an inline
5098 function. */
5101 register void (*func) PARAMS ((void *));
5102 register tree origin = decl_ultimate_origin (decl);
5104 if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
5105 func = output_formal_parameter_die;
5106 else
5108 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
5109 func = output_global_variable_die;
5110 else
5111 func = output_local_variable_die;
5113 output_die (func, decl);
5115 break;
5117 case FIELD_DECL:
5118 /* Ignore the nameless fields that are used to skip bits. */
5119 if (DECL_NAME (decl) != 0)
5121 output_type (member_declared_type (decl), containing_scope);
5122 output_die (output_member_die, decl);
5124 break;
5126 case PARM_DECL:
5127 /* Force out the type of this formal, if it was not forced out yet.
5128 Note that here we can run afowl of a bug in "classic" svr4 SDB.
5129 It should be able to grok the presence of type DIEs within a list
5130 of TAG_formal_parameter DIEs, but it doesn't. */
5132 output_type (TREE_TYPE (decl), containing_scope);
5133 output_die (output_formal_parameter_die, decl);
5134 break;
5136 default:
5137 abort ();
5141 void
5142 dwarfout_file_scope_decl (decl, set_finalizing)
5143 register tree decl;
5144 register int set_finalizing;
5146 if (TREE_CODE (decl) == ERROR_MARK)
5147 return;
5149 /* If this ..._DECL node is marked to be ignored, then ignore it. We
5150 gotta hope that the node in question doesn't represent a function
5151 definition. If it does, then totally ignoring it is bound to screw
5152 up our count of blocks, and that it turn will completely screw up the
5153 labels we will reference in subsequent AT_low_pc and AT_high_pc
5154 attributes (for subsequent blocks). (It's too bad that BLOCK nodes
5155 don't carry their own sequence numbers with them!) */
5157 if (DECL_IGNORED_P (decl))
5159 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5160 abort ();
5161 return;
5164 switch (TREE_CODE (decl))
5166 case FUNCTION_DECL:
5168 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5169 a builtin function. Explicit programmer-supplied declarations of
5170 these same functions should NOT be ignored however. */
5172 if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
5173 return;
5175 /* What we would really like to do here is to filter out all mere
5176 file-scope declarations of file-scope functions which are never
5177 referenced later within this translation unit (and keep all of
5178 ones that *are* referenced later on) but we aren't clairvoyant,
5179 so we have no idea which functions will be referenced in the
5180 future (i.e. later on within the current translation unit).
5181 So here we just ignore all file-scope function declarations
5182 which are not also definitions. If and when the debugger needs
5183 to know something about these functions, it wil have to hunt
5184 around and find the DWARF information associated with the
5185 *definition* of the function.
5187 Note that we can't just check `DECL_EXTERNAL' to find out which
5188 FUNCTION_DECL nodes represent definitions and which ones represent
5189 mere declarations. We have to check `DECL_INITIAL' instead. That's
5190 because the C front-end supports some weird semantics for "extern
5191 inline" function definitions. These can get inlined within the
5192 current translation unit (an thus, we need to generate DWARF info
5193 for their abstract instances so that the DWARF info for the
5194 concrete inlined instances can have something to refer to) but
5195 the compiler never generates any out-of-lines instances of such
5196 things (despite the fact that they *are* definitions). The
5197 important point is that the C front-end marks these "extern inline"
5198 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5199 anyway.
5201 Note that the C++ front-end also plays some similar games for inline
5202 function definitions appearing within include files which also
5203 contain `#pragma interface' pragmas. */
5205 if (DECL_INITIAL (decl) == NULL_TREE)
5206 return;
5208 if (TREE_PUBLIC (decl)
5209 && ! DECL_EXTERNAL (decl)
5210 && ! DECL_ABSTRACT (decl))
5212 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5214 /* Output a .debug_pubnames entry for a public function
5215 defined in this compilation unit. */
5217 fputc ('\n', asm_out_file);
5218 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5219 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5220 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5221 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5222 IDENTIFIER_POINTER (DECL_NAME (decl)));
5223 ASM_OUTPUT_POP_SECTION (asm_out_file);
5226 break;
5228 case VAR_DECL:
5230 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5231 object declaration and if the declaration was never even
5232 referenced from within this entire compilation unit. We
5233 suppress these DIEs in order to save space in the .debug section
5234 (by eliminating entries which are probably useless). Note that
5235 we must not suppress block-local extern declarations (whether
5236 used or not) because that would screw-up the debugger's name
5237 lookup mechanism and cause it to miss things which really ought
5238 to be in scope at a given point. */
5240 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
5241 return;
5243 if (TREE_PUBLIC (decl)
5244 && ! DECL_EXTERNAL (decl)
5245 && GET_CODE (DECL_RTL (decl)) == MEM
5246 && ! DECL_ABSTRACT (decl))
5248 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5250 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5252 /* Output a .debug_pubnames entry for a public variable
5253 defined in this compilation unit. */
5255 fputc ('\n', asm_out_file);
5256 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5257 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5258 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5259 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5260 IDENTIFIER_POINTER (DECL_NAME (decl)));
5261 ASM_OUTPUT_POP_SECTION (asm_out_file);
5264 if (DECL_INITIAL (decl) == NULL)
5266 /* Output a .debug_aranges entry for a public variable
5267 which is tentatively defined in this compilation unit. */
5269 fputc ('\n', asm_out_file);
5270 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5271 ASM_OUTPUT_DWARF_ADDR (asm_out_file,
5272 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
5273 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
5274 (unsigned) int_size_in_bytes (TREE_TYPE (decl)));
5275 ASM_OUTPUT_POP_SECTION (asm_out_file);
5279 /* If we are in terse mode, don't generate any DIEs to represent
5280 any variable declarations or definitions. */
5282 if (debug_info_level <= DINFO_LEVEL_TERSE)
5283 return;
5285 break;
5287 case TYPE_DECL:
5288 /* Don't bother trying to generate any DIEs to represent any of the
5289 normal built-in types for the language we are compiling, except
5290 in cases where the types in question are *not* DWARF fundamental
5291 types. We make an exception in the case of non-fundamental types
5292 for the sake of objective C (and perhaps C++) because the GNU
5293 front-ends for these languages may in fact create certain "built-in"
5294 types which are (for example) RECORD_TYPEs. In such cases, we
5295 really need to output these (non-fundamental) types because other
5296 DIEs may contain references to them. */
5298 /* Also ignore language dependent types here, because they are probably
5299 also built-in types. If we didn't ignore them, then we would get
5300 references to undefined labels because output_type doesn't support
5301 them. So, for now, we need to ignore them to avoid assembler
5302 errors. */
5304 /* ??? This code is different than the equivalent code in dwarf2out.c.
5305 The dwarf2out.c code is probably more correct. */
5307 if (DECL_SOURCE_LINE (decl) == 0
5308 && (type_is_fundamental (TREE_TYPE (decl))
5309 || TREE_CODE (TREE_TYPE (decl)) == LANG_TYPE))
5310 return;
5312 /* If we are in terse mode, don't generate any DIEs to represent
5313 any actual typedefs. Note that even when we are in terse mode,
5314 we must still output DIEs to represent those tagged types which
5315 are used (directly or indirectly) in the specification of either
5316 a return type or a formal parameter type of some function. */
5318 if (debug_info_level <= DINFO_LEVEL_TERSE)
5319 if (! TYPE_DECL_IS_STUB (decl)
5320 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
5321 return;
5323 break;
5325 default:
5326 return;
5329 fputc ('\n', asm_out_file);
5330 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5331 finalizing = set_finalizing;
5332 output_decl (decl, NULL_TREE);
5334 /* NOTE: The call above to `output_decl' may have caused one or more
5335 file-scope named types (i.e. tagged types) to be placed onto the
5336 pending_types_list. We have to get those types off of that list
5337 at some point, and this is the perfect time to do it. If we didn't
5338 take them off now, they might still be on the list when cc1 finally
5339 exits. That might be OK if it weren't for the fact that when we put
5340 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5341 for these types, and that causes them never to be output unless
5342 `output_pending_types_for_scope' takes them off of the list and un-sets
5343 their TREE_ASM_WRITTEN flags. */
5345 output_pending_types_for_scope (NULL_TREE);
5347 /* The above call should have totally emptied the pending_types_list
5348 if this is not a nested function or class. If this is a nested type,
5349 then the remaining pending_types will be emitted when the containing type
5350 is handled. */
5352 if (! DECL_CONTEXT (decl))
5354 if (pending_types != 0)
5355 abort ();
5358 ASM_OUTPUT_POP_SECTION (asm_out_file);
5360 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5361 current_funcdef_number++;
5364 /* Output a marker (i.e. a label) for the beginning of the generated code
5365 for a lexical block. */
5367 void
5368 dwarfout_begin_block (blocknum)
5369 register unsigned blocknum;
5371 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5373 function_section (current_function_decl);
5374 sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
5375 ASM_OUTPUT_LABEL (asm_out_file, label);
5378 /* Output a marker (i.e. a label) for the end of the generated code
5379 for a lexical block. */
5381 void
5382 dwarfout_end_block (blocknum)
5383 register unsigned blocknum;
5385 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5387 function_section (current_function_decl);
5388 sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
5389 ASM_OUTPUT_LABEL (asm_out_file, label);
5392 /* Output a marker (i.e. a label) at a point in the assembly code which
5393 corresponds to a given source level label. */
5395 void
5396 dwarfout_label (insn)
5397 register rtx insn;
5399 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5401 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5403 function_section (current_function_decl);
5404 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
5405 (unsigned) INSN_UID (insn));
5406 ASM_OUTPUT_LABEL (asm_out_file, label);
5410 /* Output a marker (i.e. a label) for the point in the generated code where
5411 the real body of the function begins (after parameters have been moved
5412 to their home locations). */
5414 void
5415 dwarfout_begin_function ()
5417 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5419 if (! use_gnu_debug_info_extensions)
5420 return;
5421 function_section (current_function_decl);
5422 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
5423 ASM_OUTPUT_LABEL (asm_out_file, label);
5426 /* Output a marker (i.e. a label) for the point in the generated code where
5427 the real body of the function ends (just before the epilogue code). */
5429 void
5430 dwarfout_end_function ()
5432 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5434 if (! use_gnu_debug_info_extensions)
5435 return;
5436 function_section (current_function_decl);
5437 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
5438 ASM_OUTPUT_LABEL (asm_out_file, label);
5441 /* Output a marker (i.e. a label) for the absolute end of the generated code
5442 for a function definition. This gets called *after* the epilogue code
5443 has been generated. */
5445 void
5446 dwarfout_end_epilogue ()
5448 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5450 /* Output a label to mark the endpoint of the code generated for this
5451 function. */
5453 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
5454 ASM_OUTPUT_LABEL (asm_out_file, label);
5457 static void
5458 shuffle_filename_entry (new_zeroth)
5459 register filename_entry *new_zeroth;
5461 filename_entry temp_entry;
5462 register filename_entry *limit_p;
5463 register filename_entry *move_p;
5465 if (new_zeroth == &filename_table[0])
5466 return;
5468 temp_entry = *new_zeroth;
5470 /* Shift entries up in the table to make room at [0]. */
5472 limit_p = &filename_table[0];
5473 for (move_p = new_zeroth; move_p > limit_p; move_p--)
5474 *move_p = *(move_p-1);
5476 /* Install the found entry at [0]. */
5478 filename_table[0] = temp_entry;
5481 /* Create a new (string) entry for the .debug_sfnames section. */
5483 static void
5484 generate_new_sfname_entry ()
5486 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5488 fputc ('\n', asm_out_file);
5489 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5490 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5491 ASM_OUTPUT_LABEL (asm_out_file, label);
5492 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5493 filename_table[0].name
5494 ? filename_table[0].name
5495 : "");
5496 ASM_OUTPUT_POP_SECTION (asm_out_file);
5499 /* Lookup a filename (in the list of filenames that we know about here in
5500 dwarfout.c) and return its "index". The index of each (known) filename
5501 is just a unique number which is associated with only that one filename.
5502 We need such numbers for the sake of generating labels (in the
5503 .debug_sfnames section) and references to those unique labels (in the
5504 .debug_srcinfo and .debug_macinfo sections).
5506 If the filename given as an argument is not found in our current list,
5507 add it to the list and assign it the next available unique index number.
5509 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5510 one), we shuffle the filename found (or added) up to the zeroth entry of
5511 our list of filenames (which is always searched linearly). We do this so
5512 as to optimize the most common case for these filename lookups within
5513 dwarfout.c. The most common case by far is the case where we call
5514 lookup_filename to lookup the very same filename that we did a lookup
5515 on the last time we called lookup_filename. We make sure that this
5516 common case is fast because such cases will constitute 99.9% of the
5517 lookups we ever do (in practice).
5519 If we add a new filename entry to our table, we go ahead and generate
5520 the corresponding entry in the .debug_sfnames section right away.
5521 Doing so allows us to avoid tickling an assembler bug (present in some
5522 m68k assemblers) which yields assembly-time errors in cases where the
5523 difference of two label addresses is taken and where the two labels
5524 are in a section *other* than the one where the difference is being
5525 calculated, and where at least one of the two symbol references is a
5526 forward reference. (This bug could be tickled by our .debug_srcinfo
5527 entries if we don't output their corresponding .debug_sfnames entries
5528 before them.) */
5530 static unsigned
5531 lookup_filename (file_name)
5532 const char *file_name;
5534 register filename_entry *search_p;
5535 register filename_entry *limit_p = &filename_table[ft_entries];
5537 for (search_p = filename_table; search_p < limit_p; search_p++)
5538 if (!strcmp (file_name, search_p->name))
5540 /* When we get here, we have found the filename that we were
5541 looking for in the filename_table. Now we want to make sure
5542 that it gets moved to the zero'th entry in the table (if it
5543 is not already there) so that subsequent attempts to find the
5544 same filename will find it as quickly as possible. */
5546 shuffle_filename_entry (search_p);
5547 return filename_table[0].number;
5550 /* We come here whenever we have a new filename which is not registered
5551 in the current table. Here we add it to the table. */
5553 /* Prepare to add a new table entry by making sure there is enough space
5554 in the table to do so. If not, expand the current table. */
5556 if (ft_entries == ft_entries_allocated)
5558 ft_entries_allocated += FT_ENTRIES_INCREMENT;
5559 filename_table
5560 = (filename_entry *)
5561 xrealloc (filename_table,
5562 ft_entries_allocated * sizeof (filename_entry));
5565 /* Initially, add the new entry at the end of the filename table. */
5567 filename_table[ft_entries].number = ft_entries;
5568 filename_table[ft_entries].name = xstrdup (file_name);
5570 /* Shuffle the new entry into filename_table[0]. */
5572 shuffle_filename_entry (&filename_table[ft_entries]);
5574 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5575 generate_new_sfname_entry ();
5577 ft_entries++;
5578 return filename_table[0].number;
5581 static void
5582 generate_srcinfo_entry (line_entry_num, files_entry_num)
5583 unsigned line_entry_num;
5584 unsigned files_entry_num;
5586 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5588 fputc ('\n', asm_out_file);
5589 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5590 sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
5591 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
5592 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
5593 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
5594 ASM_OUTPUT_POP_SECTION (asm_out_file);
5597 void
5598 dwarfout_line (filename, line)
5599 register const char *filename;
5600 register unsigned line;
5602 if (debug_info_level >= DINFO_LEVEL_NORMAL
5603 /* We can't emit line number info for functions in separate sections,
5604 because the assembler can't subtract labels in different sections. */
5605 && DECL_SECTION_NAME (current_function_decl) == NULL_TREE)
5607 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5608 static unsigned last_line_entry_num = 0;
5609 static unsigned prev_file_entry_num = (unsigned) -1;
5610 register unsigned this_file_entry_num;
5612 function_section (current_function_decl);
5613 sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
5614 ASM_OUTPUT_LABEL (asm_out_file, label);
5616 fputc ('\n', asm_out_file);
5618 if (use_gnu_debug_info_extensions)
5619 this_file_entry_num = lookup_filename (filename);
5620 else
5621 this_file_entry_num = (unsigned) -1;
5623 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5624 if (this_file_entry_num != prev_file_entry_num)
5626 char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
5628 sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
5629 ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
5633 register const char *tail = rindex (filename, '/');
5635 if (tail != NULL)
5636 filename = tail;
5639 fprintf (asm_out_file, "\t%s\t%u\t%s %s:%u\n",
5640 UNALIGNED_INT_ASM_OP, line, ASM_COMMENT_START,
5641 filename, line);
5642 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5643 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
5644 ASM_OUTPUT_POP_SECTION (asm_out_file);
5646 if (this_file_entry_num != prev_file_entry_num)
5647 generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
5648 prev_file_entry_num = this_file_entry_num;
5652 /* Generate an entry in the .debug_macinfo section. */
5654 static void
5655 generate_macinfo_entry (type_and_offset, string)
5656 register const char *type_and_offset;
5657 register const char *string;
5659 if (! use_gnu_debug_info_extensions)
5660 return;
5662 fputc ('\n', asm_out_file);
5663 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5664 fprintf (asm_out_file, "\t%s\t%s\n", UNALIGNED_INT_ASM_OP, type_and_offset);
5665 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, string);
5666 ASM_OUTPUT_POP_SECTION (asm_out_file);
5669 void
5670 dwarfout_start_new_source_file (filename)
5671 register const char *filename;
5673 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5674 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*3];
5676 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
5677 sprintf (type_and_offset, "0x%08x+%s-%s",
5678 ((unsigned) MACINFO_start << 24),
5679 /* Hack: skip leading '*' . */
5680 (*label == '*') + label,
5681 (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL);
5682 generate_macinfo_entry (type_and_offset, "");
5685 void
5686 dwarfout_resume_previous_source_file (lineno)
5687 register unsigned lineno;
5689 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5691 sprintf (type_and_offset, "0x%08x+%u",
5692 ((unsigned) MACINFO_resume << 24), lineno);
5693 generate_macinfo_entry (type_and_offset, "");
5696 /* Called from check_newline in c-parse.y. The `buffer' parameter
5697 contains the tail part of the directive line, i.e. the part which
5698 is past the initial whitespace, #, whitespace, directive-name,
5699 whitespace part. */
5701 void
5702 dwarfout_define (lineno, buffer)
5703 register unsigned lineno;
5704 register const char *buffer;
5706 static int initialized = 0;
5707 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5709 if (!initialized)
5711 dwarfout_start_new_source_file (primary_filename);
5712 initialized = 1;
5714 sprintf (type_and_offset, "0x%08x+%u",
5715 ((unsigned) MACINFO_define << 24), lineno);
5716 generate_macinfo_entry (type_and_offset, buffer);
5719 /* Called from check_newline in c-parse.y. The `buffer' parameter
5720 contains the tail part of the directive line, i.e. the part which
5721 is past the initial whitespace, #, whitespace, directive-name,
5722 whitespace part. */
5724 void
5725 dwarfout_undef (lineno, buffer)
5726 register unsigned lineno;
5727 register const char *buffer;
5729 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5731 sprintf (type_and_offset, "0x%08x+%u",
5732 ((unsigned) MACINFO_undef << 24), lineno);
5733 generate_macinfo_entry (type_and_offset, buffer);
5736 /* Set up for Dwarf output at the start of compilation. */
5738 void
5739 dwarfout_init (asm_out_file, main_input_filename)
5740 register FILE *asm_out_file;
5741 register char *main_input_filename;
5743 /* Remember the name of the primary input file. */
5745 primary_filename = main_input_filename;
5747 /* Allocate the initial hunk of the pending_sibling_stack. */
5749 pending_sibling_stack
5750 = (unsigned *)
5751 xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
5752 pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
5753 pending_siblings = 1;
5755 /* Allocate the initial hunk of the filename_table. */
5757 filename_table
5758 = (filename_entry *)
5759 xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
5760 ft_entries_allocated = FT_ENTRIES_INCREMENT;
5761 ft_entries = 0;
5763 /* Allocate the initial hunk of the pending_types_list. */
5765 pending_types_list
5766 = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
5767 pending_types_allocated = PENDING_TYPES_INCREMENT;
5768 pending_types = 0;
5770 /* Create an artificial RECORD_TYPE node which we can use in our hack
5771 to get the DIEs representing types of formal parameters to come out
5772 only *after* the DIEs for the formal parameters themselves. */
5774 fake_containing_scope = make_node (RECORD_TYPE);
5776 /* Output a starting label for the .text section. */
5778 fputc ('\n', asm_out_file);
5779 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5780 ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
5781 ASM_OUTPUT_POP_SECTION (asm_out_file);
5783 /* Output a starting label for the .data section. */
5785 fputc ('\n', asm_out_file);
5786 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5787 ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
5788 ASM_OUTPUT_POP_SECTION (asm_out_file);
5790 #if 0 /* GNU C doesn't currently use .data1. */
5791 /* Output a starting label for the .data1 section. */
5793 fputc ('\n', asm_out_file);
5794 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5795 ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
5796 ASM_OUTPUT_POP_SECTION (asm_out_file);
5797 #endif
5799 /* Output a starting label for the .rodata section. */
5801 fputc ('\n', asm_out_file);
5802 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5803 ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
5804 ASM_OUTPUT_POP_SECTION (asm_out_file);
5806 #if 0 /* GNU C doesn't currently use .rodata1. */
5807 /* Output a starting label for the .rodata1 section. */
5809 fputc ('\n', asm_out_file);
5810 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5811 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
5812 ASM_OUTPUT_POP_SECTION (asm_out_file);
5813 #endif
5815 /* Output a starting label for the .bss section. */
5817 fputc ('\n', asm_out_file);
5818 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5819 ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
5820 ASM_OUTPUT_POP_SECTION (asm_out_file);
5822 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5824 if (use_gnu_debug_info_extensions)
5826 /* Output a starting label and an initial (compilation directory)
5827 entry for the .debug_sfnames section. The starting label will be
5828 referenced by the initial entry in the .debug_srcinfo section. */
5830 fputc ('\n', asm_out_file);
5831 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5832 ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
5834 register char *pwd = getpwd ();
5835 register char *dirname;
5837 if (!pwd)
5838 pfatal_with_name ("getpwd");
5839 dirname = concat (pwd, "/", NULL);
5840 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
5841 free (dirname);
5843 ASM_OUTPUT_POP_SECTION (asm_out_file);
5846 if (debug_info_level >= DINFO_LEVEL_VERBOSE
5847 && use_gnu_debug_info_extensions)
5849 /* Output a starting label for the .debug_macinfo section. This
5850 label will be referenced by the AT_mac_info attribute in the
5851 TAG_compile_unit DIE. */
5853 fputc ('\n', asm_out_file);
5854 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5855 ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
5856 ASM_OUTPUT_POP_SECTION (asm_out_file);
5859 /* Generate the initial entry for the .line section. */
5861 fputc ('\n', asm_out_file);
5862 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5863 ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
5864 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
5865 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5866 ASM_OUTPUT_POP_SECTION (asm_out_file);
5868 if (use_gnu_debug_info_extensions)
5870 /* Generate the initial entry for the .debug_srcinfo section. */
5872 fputc ('\n', asm_out_file);
5873 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5874 ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
5875 ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
5876 ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
5877 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5878 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
5879 #ifdef DWARF_TIMESTAMPS
5880 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
5881 #else
5882 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5883 #endif
5884 ASM_OUTPUT_POP_SECTION (asm_out_file);
5887 /* Generate the initial entry for the .debug_pubnames section. */
5889 fputc ('\n', asm_out_file);
5890 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5891 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5892 ASM_OUTPUT_POP_SECTION (asm_out_file);
5894 /* Generate the initial entry for the .debug_aranges section. */
5896 fputc ('\n', asm_out_file);
5897 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5898 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5899 ASM_OUTPUT_POP_SECTION (asm_out_file);
5902 /* Setup first DIE number == 1. */
5903 NEXT_DIE_NUM = next_unused_dienum++;
5905 /* Generate the initial DIE for the .debug section. Note that the
5906 (string) value given in the AT_name attribute of the TAG_compile_unit
5907 DIE will (typically) be a relative pathname and that this pathname
5908 should be taken as being relative to the directory from which the
5909 compiler was invoked when the given (base) source file was compiled. */
5911 fputc ('\n', asm_out_file);
5912 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5913 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
5914 output_die (output_compile_unit_die, main_input_filename);
5915 ASM_OUTPUT_POP_SECTION (asm_out_file);
5917 fputc ('\n', asm_out_file);
5920 /* Output stuff that dwarf requires at the end of every file. */
5922 void
5923 dwarfout_finish ()
5925 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5927 retry_incomplete_types ();
5929 fputc ('\n', asm_out_file);
5930 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5932 /* Mark the end of the chain of siblings which represent all file-scope
5933 declarations in this compilation unit. */
5935 /* The (null) DIE which represents the terminator for the (sibling linked)
5936 list of file-scope items is *special*. Normally, we would just call
5937 end_sibling_chain at this point in order to output a word with the
5938 value `4' and that word would act as the terminator for the list of
5939 DIEs describing file-scope items. Unfortunately, if we were to simply
5940 do that, the label that would follow this DIE in the .debug section
5941 (i.e. `..D2') would *not* be properly aligned (as it must be on some
5942 machines) to a 4 byte boundary.
5944 In order to force the label `..D2' to get aligned to a 4 byte boundary,
5945 the trick used is to insert extra (otherwise useless) padding bytes
5946 into the (null) DIE that we know must precede the ..D2 label in the
5947 .debug section. The amount of padding required can be anywhere between
5948 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
5949 with the padding) would normally contain the value 4, but now it will
5950 also have to include the padding bytes, so it will instead have some
5951 value in the range 4..7.
5953 Fortunately, the rules of Dwarf say that any DIE whose length word
5954 contains *any* value less than 8 should be treated as a null DIE, so
5955 this trick works out nicely. Clever, eh? Don't give me any credit
5956 (or blame). I didn't think of this scheme. I just conformed to it.
5959 output_die (output_padded_null_die, (void *) 0);
5960 dienum_pop ();
5962 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
5963 ASM_OUTPUT_LABEL (asm_out_file, label); /* should be ..D2 */
5964 ASM_OUTPUT_POP_SECTION (asm_out_file);
5966 /* Output a terminator label for the .text section. */
5968 fputc ('\n', asm_out_file);
5969 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5970 ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
5971 ASM_OUTPUT_POP_SECTION (asm_out_file);
5973 /* Output a terminator label for the .data section. */
5975 fputc ('\n', asm_out_file);
5976 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5977 ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
5978 ASM_OUTPUT_POP_SECTION (asm_out_file);
5980 #if 0 /* GNU C doesn't currently use .data1. */
5981 /* Output a terminator label for the .data1 section. */
5983 fputc ('\n', asm_out_file);
5984 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5985 ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
5986 ASM_OUTPUT_POP_SECTION (asm_out_file);
5987 #endif
5989 /* Output a terminator label for the .rodata section. */
5991 fputc ('\n', asm_out_file);
5992 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5993 ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
5994 ASM_OUTPUT_POP_SECTION (asm_out_file);
5996 #if 0 /* GNU C doesn't currently use .rodata1. */
5997 /* Output a terminator label for the .rodata1 section. */
5999 fputc ('\n', asm_out_file);
6000 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
6001 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
6002 ASM_OUTPUT_POP_SECTION (asm_out_file);
6003 #endif
6005 /* Output a terminator label for the .bss section. */
6007 fputc ('\n', asm_out_file);
6008 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
6009 ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
6010 ASM_OUTPUT_POP_SECTION (asm_out_file);
6012 if (debug_info_level >= DINFO_LEVEL_NORMAL)
6014 /* Output a terminating entry for the .line section. */
6016 fputc ('\n', asm_out_file);
6017 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6018 ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
6019 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6020 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
6021 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6022 ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
6023 ASM_OUTPUT_POP_SECTION (asm_out_file);
6025 if (use_gnu_debug_info_extensions)
6027 /* Output a terminating entry for the .debug_srcinfo section. */
6029 fputc ('\n', asm_out_file);
6030 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
6031 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6032 LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
6033 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6034 ASM_OUTPUT_POP_SECTION (asm_out_file);
6037 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
6039 /* Output terminating entries for the .debug_macinfo section. */
6041 dwarfout_resume_previous_source_file (0);
6043 fputc ('\n', asm_out_file);
6044 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
6045 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6046 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6047 ASM_OUTPUT_POP_SECTION (asm_out_file);
6050 /* Generate the terminating entry for the .debug_pubnames section. */
6052 fputc ('\n', asm_out_file);
6053 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
6054 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6055 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6056 ASM_OUTPUT_POP_SECTION (asm_out_file);
6058 /* Generate the terminating entries for the .debug_aranges section.
6060 Note that we want to do this only *after* we have output the end
6061 labels (for the various program sections) which we are going to
6062 refer to here. This allows us to work around a bug in the m68k
6063 svr4 assembler. That assembler gives bogus assembly-time errors
6064 if (within any given section) you try to take the difference of
6065 two relocatable symbols, both of which are located within some
6066 other section, and if one (or both?) of the symbols involved is
6067 being forward-referenced. By generating the .debug_aranges
6068 entries at this late point in the assembly output, we skirt the
6069 issue simply by avoiding forward-references.
6072 fputc ('\n', asm_out_file);
6073 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
6075 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6076 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6078 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
6079 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
6081 #if 0 /* GNU C doesn't currently use .data1. */
6082 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
6083 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
6084 DATA1_BEGIN_LABEL);
6085 #endif
6087 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
6088 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
6089 RODATA_BEGIN_LABEL);
6091 #if 0 /* GNU C doesn't currently use .rodata1. */
6092 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
6093 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
6094 RODATA1_BEGIN_LABEL);
6095 #endif
6097 ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
6098 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
6100 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6101 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6103 ASM_OUTPUT_POP_SECTION (asm_out_file);
6106 /* There should not be any pending types left at the end. We need
6107 this now because it may not have been checked on the last call to
6108 dwarfout_file_scope_decl. */
6109 if (pending_types != 0)
6110 abort ();
6113 #endif /* DWARF_DEBUGGING_INFO */