2005-12-26 Anthony Green <green@redhat.com>
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob896a8fb7a9ee7e4b5e872bc1d2c51c6127af4feb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Util; use Exp_Util;
33 with Freeze; use Freeze;
34 with Lib.Xref; use Lib.Xref;
35 with Nlists; use Nlists;
36 with Nmake; use Nmake;
37 with Opt; use Opt;
38 with Sem; use Sem;
39 with Sem_Case; use Sem_Case;
40 with Sem_Ch3; use Sem_Ch3;
41 with Sem_Ch8; use Sem_Ch8;
42 with Sem_Disp; use Sem_Disp;
43 with Sem_Eval; use Sem_Eval;
44 with Sem_Res; use Sem_Res;
45 with Sem_Type; use Sem_Type;
46 with Sem_Util; use Sem_Util;
47 with Sem_Warn; use Sem_Warn;
48 with Stand; use Stand;
49 with Sinfo; use Sinfo;
50 with Targparm; use Targparm;
51 with Tbuild; use Tbuild;
52 with Uintp; use Uintp;
54 package body Sem_Ch5 is
56 Unblocked_Exit_Count : Nat := 0;
57 -- This variable is used when processing if statements, case statements,
58 -- and block statements. It counts the number of exit points that are
59 -- not blocked by unconditional transfer instructions (for IF and CASE,
60 -- these are the branches of the conditional, for a block, they are the
61 -- statement sequence of the block, and the statement sequences of any
62 -- exception handlers that are part of the block. When processing is
63 -- complete, if this count is zero, it means that control cannot fall
64 -- through the IF, CASE or block statement. This is used for the
65 -- generation of warning messages. This variable is recursively saved
66 -- on entry to processing the construct, and restored on exit.
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Analyze_Iteration_Scheme (N : Node_Id);
74 ------------------------
75 -- Analyze_Assignment --
76 ------------------------
78 procedure Analyze_Assignment (N : Node_Id) is
79 Lhs : constant Node_Id := Name (N);
80 Rhs : constant Node_Id := Expression (N);
81 T1 : Entity_Id;
82 T2 : Entity_Id;
83 Decl : Node_Id;
84 Ent : Entity_Id;
86 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
87 -- N is the node for the left hand side of an assignment, and it
88 -- is not a variable. This routine issues an appropriate diagnostic.
90 procedure Set_Assignment_Type
91 (Opnd : Node_Id;
92 Opnd_Type : in out Entity_Id);
93 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
94 -- is the nominal subtype. This procedure is used to deal with cases
95 -- where the nominal subtype must be replaced by the actual subtype.
97 -------------------------------
98 -- Diagnose_Non_Variable_Lhs --
99 -------------------------------
101 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
102 begin
103 -- Not worth posting another error if left hand side already
104 -- flagged as being illegal in some respect
106 if Error_Posted (N) then
107 return;
109 -- Some special bad cases of entity names
111 elsif Is_Entity_Name (N) then
112 if Ekind (Entity (N)) = E_In_Parameter then
113 Error_Msg_N
114 ("assignment to IN mode parameter not allowed", N);
116 -- Private declarations in a protected object are turned into
117 -- constants when compiling a protected function.
119 elsif Present (Scope (Entity (N)))
120 and then Is_Protected_Type (Scope (Entity (N)))
121 and then
122 (Ekind (Current_Scope) = E_Function
123 or else
124 Ekind (Enclosing_Dynamic_Scope (Current_Scope)) = E_Function)
125 then
126 Error_Msg_N
127 ("protected function cannot modify protected object", N);
129 elsif Ekind (Entity (N)) = E_Loop_Parameter then
130 Error_Msg_N
131 ("assignment to loop parameter not allowed", N);
133 else
134 Error_Msg_N
135 ("left hand side of assignment must be a variable", N);
136 end if;
138 -- For indexed components or selected components, test prefix
140 elsif Nkind (N) = N_Indexed_Component then
141 Diagnose_Non_Variable_Lhs (Prefix (N));
143 -- Another special case for assignment to discriminant
145 elsif Nkind (N) = N_Selected_Component then
146 if Present (Entity (Selector_Name (N)))
147 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
148 then
149 Error_Msg_N
150 ("assignment to discriminant not allowed", N);
151 else
152 Diagnose_Non_Variable_Lhs (Prefix (N));
153 end if;
155 else
156 -- If we fall through, we have no special message to issue!
158 Error_Msg_N ("left hand side of assignment must be a variable", N);
159 end if;
160 end Diagnose_Non_Variable_Lhs;
162 -------------------------
163 -- Set_Assignment_Type --
164 -------------------------
166 procedure Set_Assignment_Type
167 (Opnd : Node_Id;
168 Opnd_Type : in out Entity_Id)
170 begin
171 Require_Entity (Opnd);
173 -- If the assignment operand is an in-out or out parameter, then we
174 -- get the actual subtype (needed for the unconstrained case).
175 -- If the operand is the actual in an entry declaration, then within
176 -- the accept statement it is replaced with a local renaming, which
177 -- may also have an actual subtype.
179 if Is_Entity_Name (Opnd)
180 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
181 or else Ekind (Entity (Opnd)) =
182 E_In_Out_Parameter
183 or else Ekind (Entity (Opnd)) =
184 E_Generic_In_Out_Parameter
185 or else
186 (Ekind (Entity (Opnd)) = E_Variable
187 and then Nkind (Parent (Entity (Opnd))) =
188 N_Object_Renaming_Declaration
189 and then Nkind (Parent (Parent (Entity (Opnd)))) =
190 N_Accept_Statement))
191 then
192 Opnd_Type := Get_Actual_Subtype (Opnd);
194 -- If assignment operand is a component reference, then we get the
195 -- actual subtype of the component for the unconstrained case.
197 elsif
198 (Nkind (Opnd) = N_Selected_Component
199 or else Nkind (Opnd) = N_Explicit_Dereference)
200 and then not Is_Unchecked_Union (Opnd_Type)
201 then
202 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
204 if Present (Decl) then
205 Insert_Action (N, Decl);
206 Mark_Rewrite_Insertion (Decl);
207 Analyze (Decl);
208 Opnd_Type := Defining_Identifier (Decl);
209 Set_Etype (Opnd, Opnd_Type);
210 Freeze_Itype (Opnd_Type, N);
212 elsif Is_Constrained (Etype (Opnd)) then
213 Opnd_Type := Etype (Opnd);
214 end if;
216 -- For slice, use the constrained subtype created for the slice
218 elsif Nkind (Opnd) = N_Slice then
219 Opnd_Type := Etype (Opnd);
220 end if;
221 end Set_Assignment_Type;
223 -- Start of processing for Analyze_Assignment
225 begin
226 Analyze (Rhs);
227 Analyze (Lhs);
228 T1 := Etype (Lhs);
230 -- In the most general case, both Lhs and Rhs can be overloaded, and we
231 -- must compute the intersection of the possible types on each side.
233 if Is_Overloaded (Lhs) then
234 declare
235 I : Interp_Index;
236 It : Interp;
238 begin
239 T1 := Any_Type;
240 Get_First_Interp (Lhs, I, It);
242 while Present (It.Typ) loop
243 if Has_Compatible_Type (Rhs, It.Typ) then
244 if T1 /= Any_Type then
246 -- An explicit dereference is overloaded if the prefix
247 -- is. Try to remove the ambiguity on the prefix, the
248 -- error will be posted there if the ambiguity is real.
250 if Nkind (Lhs) = N_Explicit_Dereference then
251 declare
252 PI : Interp_Index;
253 PI1 : Interp_Index := 0;
254 PIt : Interp;
255 Found : Boolean;
257 begin
258 Found := False;
259 Get_First_Interp (Prefix (Lhs), PI, PIt);
261 while Present (PIt.Typ) loop
262 if Is_Access_Type (PIt.Typ)
263 and then Has_Compatible_Type
264 (Rhs, Designated_Type (PIt.Typ))
265 then
266 if Found then
267 PIt :=
268 Disambiguate (Prefix (Lhs),
269 PI1, PI, Any_Type);
271 if PIt = No_Interp then
272 Error_Msg_N
273 ("ambiguous left-hand side"
274 & " in assignment", Lhs);
275 exit;
276 else
277 Resolve (Prefix (Lhs), PIt.Typ);
278 end if;
280 exit;
281 else
282 Found := True;
283 PI1 := PI;
284 end if;
285 end if;
287 Get_Next_Interp (PI, PIt);
288 end loop;
289 end;
291 else
292 Error_Msg_N
293 ("ambiguous left-hand side in assignment", Lhs);
294 exit;
295 end if;
296 else
297 T1 := It.Typ;
298 end if;
299 end if;
301 Get_Next_Interp (I, It);
302 end loop;
303 end;
305 if T1 = Any_Type then
306 Error_Msg_N
307 ("no valid types for left-hand side for assignment", Lhs);
308 return;
309 end if;
310 end if;
312 Resolve (Lhs, T1);
314 if not Is_Variable (Lhs) then
315 Diagnose_Non_Variable_Lhs (Lhs);
316 return;
318 elsif Is_Limited_Type (T1)
319 and then not Assignment_OK (Lhs)
320 and then not Assignment_OK (Original_Node (Lhs))
321 then
322 Error_Msg_N
323 ("left hand of assignment must not be limited type", Lhs);
324 Explain_Limited_Type (T1, Lhs);
325 return;
326 end if;
328 -- Resolution may have updated the subtype, in case the left-hand
329 -- side is a private protected component. Use the correct subtype
330 -- to avoid scoping issues in the back-end.
332 T1 := Etype (Lhs);
334 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
335 -- type. For example:
337 -- limited with P;
338 -- package Pkg is
339 -- type Acc is access P.T;
340 -- end Pkg;
342 -- with Pkg; use Acc;
343 -- procedure Example is
344 -- A, B : Acc;
345 -- begin
346 -- A.all := B.all; -- ERROR
347 -- end Example;
349 if Nkind (Lhs) = N_Explicit_Dereference
350 and then Ekind (T1) = E_Incomplete_Type
351 then
352 Error_Msg_N ("invalid use of incomplete type", Lhs);
353 return;
354 end if;
356 Set_Assignment_Type (Lhs, T1);
358 Resolve (Rhs, T1);
359 Check_Unset_Reference (Rhs);
361 -- Remaining steps are skipped if Rhs was syntactically in error
363 if Rhs = Error then
364 return;
365 end if;
367 T2 := Etype (Rhs);
369 if not Covers (T1, T2) then
370 Wrong_Type (Rhs, Etype (Lhs));
371 return;
372 end if;
374 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
375 -- types, use the non-limited view if available
377 if Nkind (Rhs) = N_Explicit_Dereference
378 and then Ekind (T2) = E_Incomplete_Type
379 and then Is_Tagged_Type (T2)
380 and then Present (Non_Limited_View (T2))
381 then
382 T2 := Non_Limited_View (T2);
383 end if;
385 Set_Assignment_Type (Rhs, T2);
387 if Total_Errors_Detected /= 0 then
388 if No (T1) then
389 T1 := Any_Type;
390 end if;
392 if No (T2) then
393 T2 := Any_Type;
394 end if;
395 end if;
397 if T1 = Any_Type or else T2 = Any_Type then
398 return;
399 end if;
401 if (Is_Class_Wide_Type (T2) or else Is_Dynamically_Tagged (Rhs))
402 and then not Is_Class_Wide_Type (T1)
403 then
404 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
406 elsif Is_Class_Wide_Type (T1)
407 and then not Is_Class_Wide_Type (T2)
408 and then not Is_Tag_Indeterminate (Rhs)
409 and then not Is_Dynamically_Tagged (Rhs)
410 then
411 Error_Msg_N ("dynamically tagged expression required!", Rhs);
412 end if;
414 -- Tag propagation is done only in semantics mode only. If expansion
415 -- is on, the rhs tag indeterminate function call has been expanded
416 -- and tag propagation would have happened too late, so the
417 -- propagation take place in expand_call instead.
419 if not Expander_Active
420 and then Is_Class_Wide_Type (T1)
421 and then Is_Tag_Indeterminate (Rhs)
422 then
423 Propagate_Tag (Lhs, Rhs);
424 end if;
426 -- Ada 2005 (AI-230 and AI-385): When the lhs type is an anonymous
427 -- access type, apply an implicit conversion of the rhs to that type
428 -- to force appropriate static and run-time accessibility checks.
430 if Ada_Version >= Ada_05
431 and then Ekind (T1) = E_Anonymous_Access_Type
432 then
433 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
434 Analyze_And_Resolve (Rhs, T1);
435 end if;
437 -- Ada 2005 (AI-231)
439 if Ada_Version >= Ada_05
440 and then Can_Never_Be_Null (T1)
441 and then not Assignment_OK (Lhs)
442 then
443 if Nkind (Rhs) = N_Null then
444 Apply_Compile_Time_Constraint_Error
445 (N => Rhs,
446 Msg => "(Ada 2005) NULL not allowed in null-excluding objects?",
447 Reason => CE_Null_Not_Allowed);
448 return;
450 elsif not Can_Never_Be_Null (T2) then
451 Rewrite (Rhs,
452 Convert_To (T1, Relocate_Node (Rhs)));
453 Analyze_And_Resolve (Rhs, T1);
454 end if;
455 end if;
457 if Is_Scalar_Type (T1) then
458 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
460 elsif Is_Array_Type (T1)
461 and then
462 (Nkind (Rhs) /= N_Type_Conversion
463 or else Is_Constrained (Etype (Rhs)))
464 then
465 -- Assignment verifies that the length of the Lsh and Rhs are equal,
466 -- but of course the indices do not have to match. If the right-hand
467 -- side is a type conversion to an unconstrained type, a length check
468 -- is performed on the expression itself during expansion. In rare
469 -- cases, the redundant length check is computed on an index type
470 -- with a different representation, triggering incorrect code in
471 -- the back end.
473 Apply_Length_Check (Rhs, Etype (Lhs));
475 else
476 -- Discriminant checks are applied in the course of expansion
478 null;
479 end if;
481 -- Note: modifications of the Lhs may only be recorded after
482 -- checks have been applied.
484 Note_Possible_Modification (Lhs);
486 -- ??? a real accessibility check is needed when ???
488 -- Post warning for useless assignment
490 if Warn_On_Redundant_Constructs
492 -- We only warn for source constructs
494 and then Comes_From_Source (N)
496 -- Where the entity is the same on both sides
498 and then Is_Entity_Name (Lhs)
499 and then Is_Entity_Name (Original_Node (Rhs))
500 and then Entity (Lhs) = Entity (Original_Node (Rhs))
502 -- But exclude the case where the right side was an operation
503 -- that got rewritten (e.g. JUNK + K, where K was known to be
504 -- zero). We don't want to warn in such a case, since it is
505 -- reasonable to write such expressions especially when K is
506 -- defined symbolically in some other package.
508 and then Nkind (Original_Node (Rhs)) not in N_Op
509 then
510 Error_Msg_NE
511 ("?useless assignment of & to itself", N, Entity (Lhs));
512 end if;
514 -- Check for non-allowed composite assignment
516 if not Support_Composite_Assign_On_Target
517 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
518 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
519 then
520 Error_Msg_CRT ("composite assignment", N);
521 end if;
523 -- One more step. Let's see if we have a simple assignment of a
524 -- known at compile time value to a simple variable. If so, we
525 -- can record the value as the current value providing that:
527 -- We still have a simple assignment statement (no expansion
528 -- activity has modified it in some peculiar manner)
530 -- The type is a discrete type
532 -- The assignment is to a named entity
534 -- The value is known at compile time
536 if Nkind (N) /= N_Assignment_Statement
537 or else not Is_Discrete_Type (T1)
538 or else not Is_Entity_Name (Lhs)
539 or else not Compile_Time_Known_Value (Rhs)
540 then
541 return;
542 end if;
544 Ent := Entity (Lhs);
546 -- Capture value if safe to do so
548 if Safe_To_Capture_Value (N, Ent) then
549 Set_Current_Value (Ent, Rhs);
550 end if;
551 end Analyze_Assignment;
553 -----------------------------
554 -- Analyze_Block_Statement --
555 -----------------------------
557 procedure Analyze_Block_Statement (N : Node_Id) is
558 Decls : constant List_Id := Declarations (N);
559 Id : constant Node_Id := Identifier (N);
560 HSS : constant Node_Id := Handled_Statement_Sequence (N);
562 begin
563 -- If no handled statement sequence is present, things are really
564 -- messed up, and we just return immediately (this is a defence
565 -- against previous errors).
567 if No (HSS) then
568 return;
569 end if;
571 -- Normal processing with HSS present
573 declare
574 EH : constant List_Id := Exception_Handlers (HSS);
575 Ent : Entity_Id := Empty;
576 S : Entity_Id;
578 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
579 -- Recursively save value of this global, will be restored on exit
581 begin
582 -- Initialize unblocked exit count for statements of begin block
583 -- plus one for each excption handler that is present.
585 Unblocked_Exit_Count := 1;
587 if Present (EH) then
588 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
589 end if;
591 -- If a label is present analyze it and mark it as referenced
593 if Present (Id) then
594 Analyze (Id);
595 Ent := Entity (Id);
597 -- An error defense. If we have an identifier, but no entity,
598 -- then something is wrong. If we have previous errors, then
599 -- just remove the identifier and continue, otherwise raise
600 -- an exception.
602 if No (Ent) then
603 if Total_Errors_Detected /= 0 then
604 Set_Identifier (N, Empty);
605 else
606 raise Program_Error;
607 end if;
609 else
610 Set_Ekind (Ent, E_Block);
611 Generate_Reference (Ent, N, ' ');
612 Generate_Definition (Ent);
614 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
615 Set_Label_Construct (Parent (Ent), N);
616 end if;
617 end if;
618 end if;
620 -- If no entity set, create a label entity
622 if No (Ent) then
623 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
624 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
625 Set_Parent (Ent, N);
626 end if;
628 Set_Etype (Ent, Standard_Void_Type);
629 Set_Block_Node (Ent, Identifier (N));
630 New_Scope (Ent);
632 if Present (Decls) then
633 Analyze_Declarations (Decls);
634 Check_Completion;
635 end if;
637 Analyze (HSS);
638 Process_End_Label (HSS, 'e', Ent);
640 -- If exception handlers are present, then we indicate that
641 -- enclosing scopes contain a block with handlers. We only
642 -- need to mark non-generic scopes.
644 if Present (EH) then
645 S := Scope (Ent);
646 loop
647 Set_Has_Nested_Block_With_Handler (S);
648 exit when Is_Overloadable (S)
649 or else Ekind (S) = E_Package
650 or else Is_Generic_Unit (S);
651 S := Scope (S);
652 end loop;
653 end if;
655 Check_References (Ent);
656 End_Scope;
658 if Unblocked_Exit_Count = 0 then
659 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
660 Check_Unreachable_Code (N);
661 else
662 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
663 end if;
664 end;
665 end Analyze_Block_Statement;
667 ----------------------------
668 -- Analyze_Case_Statement --
669 ----------------------------
671 procedure Analyze_Case_Statement (N : Node_Id) is
672 Exp : Node_Id;
673 Exp_Type : Entity_Id;
674 Exp_Btype : Entity_Id;
675 Last_Choice : Nat;
676 Dont_Care : Boolean;
677 Others_Present : Boolean;
679 Statements_Analyzed : Boolean := False;
680 -- Set True if at least some statement sequences get analyzed.
681 -- If False on exit, means we had a serious error that prevented
682 -- full analysis of the case statement, and as a result it is not
683 -- a good idea to output warning messages about unreachable code.
685 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
686 -- Recursively save value of this global, will be restored on exit
688 procedure Non_Static_Choice_Error (Choice : Node_Id);
689 -- Error routine invoked by the generic instantiation below when
690 -- the case statment has a non static choice.
692 procedure Process_Statements (Alternative : Node_Id);
693 -- Analyzes all the statements associated to a case alternative.
694 -- Needed by the generic instantiation below.
696 package Case_Choices_Processing is new
697 Generic_Choices_Processing
698 (Get_Alternatives => Alternatives,
699 Get_Choices => Discrete_Choices,
700 Process_Empty_Choice => No_OP,
701 Process_Non_Static_Choice => Non_Static_Choice_Error,
702 Process_Associated_Node => Process_Statements);
703 use Case_Choices_Processing;
704 -- Instantiation of the generic choice processing package
706 -----------------------------
707 -- Non_Static_Choice_Error --
708 -----------------------------
710 procedure Non_Static_Choice_Error (Choice : Node_Id) is
711 begin
712 Flag_Non_Static_Expr
713 ("choice given in case statement is not static!", Choice);
714 end Non_Static_Choice_Error;
716 ------------------------
717 -- Process_Statements --
718 ------------------------
720 procedure Process_Statements (Alternative : Node_Id) is
721 Choices : constant List_Id := Discrete_Choices (Alternative);
722 Ent : Entity_Id;
724 begin
725 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
726 Statements_Analyzed := True;
728 -- An interesting optimization. If the case statement expression
729 -- is a simple entity, then we can set the current value within
730 -- an alternative if the alternative has one possible value.
732 -- case N is
733 -- when 1 => alpha
734 -- when 2 | 3 => beta
735 -- when others => gamma
737 -- Here we know that N is initially 1 within alpha, but for beta
738 -- and gamma, we do not know anything more about the initial value.
740 if Is_Entity_Name (Exp) then
741 Ent := Entity (Exp);
743 if Ekind (Ent) = E_Variable
744 or else
745 Ekind (Ent) = E_In_Out_Parameter
746 or else
747 Ekind (Ent) = E_Out_Parameter
748 then
749 if List_Length (Choices) = 1
750 and then Nkind (First (Choices)) in N_Subexpr
751 and then Compile_Time_Known_Value (First (Choices))
752 then
753 Set_Current_Value (Entity (Exp), First (Choices));
754 end if;
756 Analyze_Statements (Statements (Alternative));
758 -- After analyzing the case, set the current value to empty
759 -- since we won't know what it is for the next alternative
760 -- (unless reset by this same circuit), or after the case.
762 Set_Current_Value (Entity (Exp), Empty);
763 return;
764 end if;
765 end if;
767 -- Case where expression is not an entity name of a variable
769 Analyze_Statements (Statements (Alternative));
770 end Process_Statements;
772 -- Table to record choices. Put after subprograms since we make
773 -- a call to Number_Of_Choices to get the right number of entries.
775 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
777 -- Start of processing for Analyze_Case_Statement
779 begin
780 Unblocked_Exit_Count := 0;
781 Exp := Expression (N);
782 Analyze (Exp);
784 -- The expression must be of any discrete type. In rare cases, the
785 -- expander constructs a case statement whose expression has a private
786 -- type whose full view is discrete. This can happen when generating
787 -- a stream operation for a variant type after the type is frozen,
788 -- when the partial of view of the type of the discriminant is private.
789 -- In that case, use the full view to analyze case alternatives.
791 if not Is_Overloaded (Exp)
792 and then not Comes_From_Source (N)
793 and then Is_Private_Type (Etype (Exp))
794 and then Present (Full_View (Etype (Exp)))
795 and then Is_Discrete_Type (Full_View (Etype (Exp)))
796 then
797 Resolve (Exp, Etype (Exp));
798 Exp_Type := Full_View (Etype (Exp));
800 else
801 Analyze_And_Resolve (Exp, Any_Discrete);
802 Exp_Type := Etype (Exp);
803 end if;
805 Check_Unset_Reference (Exp);
806 Exp_Btype := Base_Type (Exp_Type);
808 -- The expression must be of a discrete type which must be determinable
809 -- independently of the context in which the expression occurs, but
810 -- using the fact that the expression must be of a discrete type.
811 -- Moreover, the type this expression must not be a character literal
812 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
814 -- If error already reported by Resolve, nothing more to do
816 if Exp_Btype = Any_Discrete
817 or else Exp_Btype = Any_Type
818 then
819 return;
821 elsif Exp_Btype = Any_Character then
822 Error_Msg_N
823 ("character literal as case expression is ambiguous", Exp);
824 return;
826 elsif Ada_Version = Ada_83
827 and then (Is_Generic_Type (Exp_Btype)
828 or else Is_Generic_Type (Root_Type (Exp_Btype)))
829 then
830 Error_Msg_N
831 ("(Ada 83) case expression cannot be of a generic type", Exp);
832 return;
833 end if;
835 -- If the case expression is a formal object of mode in out, then
836 -- treat it as having a nonstatic subtype by forcing use of the base
837 -- type (which has to get passed to Check_Case_Choices below). Also
838 -- use base type when the case expression is parenthesized.
840 if Paren_Count (Exp) > 0
841 or else (Is_Entity_Name (Exp)
842 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
843 then
844 Exp_Type := Exp_Btype;
845 end if;
847 -- Call instantiated Analyze_Choices which does the rest of the work
849 Analyze_Choices
850 (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
852 if Exp_Type = Universal_Integer and then not Others_Present then
853 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
854 end if;
856 -- If all our exits were blocked by unconditional transfers of control,
857 -- then the entire CASE statement acts as an unconditional transfer of
858 -- control, so treat it like one, and check unreachable code. Skip this
859 -- test if we had serious errors preventing any statement analysis.
861 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
862 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
863 Check_Unreachable_Code (N);
864 else
865 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
866 end if;
868 if not Expander_Active
869 and then Compile_Time_Known_Value (Expression (N))
870 and then Serious_Errors_Detected = 0
871 then
872 declare
873 Chosen : constant Node_Id := Find_Static_Alternative (N);
874 Alt : Node_Id;
876 begin
877 Alt := First (Alternatives (N));
879 while Present (Alt) loop
880 if Alt /= Chosen then
881 Remove_Warning_Messages (Statements (Alt));
882 end if;
884 Next (Alt);
885 end loop;
886 end;
887 end if;
888 end Analyze_Case_Statement;
890 ----------------------------
891 -- Analyze_Exit_Statement --
892 ----------------------------
894 -- If the exit includes a name, it must be the name of a currently open
895 -- loop. Otherwise there must be an innermost open loop on the stack,
896 -- to which the statement implicitly refers.
898 procedure Analyze_Exit_Statement (N : Node_Id) is
899 Target : constant Node_Id := Name (N);
900 Cond : constant Node_Id := Condition (N);
901 Scope_Id : Entity_Id;
902 U_Name : Entity_Id;
903 Kind : Entity_Kind;
905 begin
906 if No (Cond) then
907 Check_Unreachable_Code (N);
908 end if;
910 if Present (Target) then
911 Analyze (Target);
912 U_Name := Entity (Target);
914 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
915 Error_Msg_N ("invalid loop name in exit statement", N);
916 return;
917 else
918 Set_Has_Exit (U_Name);
919 end if;
921 else
922 U_Name := Empty;
923 end if;
925 for J in reverse 0 .. Scope_Stack.Last loop
926 Scope_Id := Scope_Stack.Table (J).Entity;
927 Kind := Ekind (Scope_Id);
929 if Kind = E_Loop
930 and then (No (Target) or else Scope_Id = U_Name) then
931 Set_Has_Exit (Scope_Id);
932 exit;
934 elsif Kind = E_Block or else Kind = E_Loop then
935 null;
937 else
938 Error_Msg_N
939 ("cannot exit from program unit or accept statement", N);
940 exit;
941 end if;
942 end loop;
944 -- Verify that if present the condition is a Boolean expression
946 if Present (Cond) then
947 Analyze_And_Resolve (Cond, Any_Boolean);
948 Check_Unset_Reference (Cond);
949 end if;
950 end Analyze_Exit_Statement;
952 ----------------------------
953 -- Analyze_Goto_Statement --
954 ----------------------------
956 procedure Analyze_Goto_Statement (N : Node_Id) is
957 Label : constant Node_Id := Name (N);
958 Scope_Id : Entity_Id;
959 Label_Scope : Entity_Id;
961 begin
962 Check_Unreachable_Code (N);
964 Analyze (Label);
966 if Entity (Label) = Any_Id then
967 return;
969 elsif Ekind (Entity (Label)) /= E_Label then
970 Error_Msg_N ("target of goto statement must be a label", Label);
971 return;
973 elsif not Reachable (Entity (Label)) then
974 Error_Msg_N ("target of goto statement is not reachable", Label);
975 return;
976 end if;
978 Label_Scope := Enclosing_Scope (Entity (Label));
980 for J in reverse 0 .. Scope_Stack.Last loop
981 Scope_Id := Scope_Stack.Table (J).Entity;
983 if Label_Scope = Scope_Id
984 or else (Ekind (Scope_Id) /= E_Block
985 and then Ekind (Scope_Id) /= E_Loop)
986 then
987 if Scope_Id /= Label_Scope then
988 Error_Msg_N
989 ("cannot exit from program unit or accept statement", N);
990 end if;
992 return;
993 end if;
994 end loop;
996 raise Program_Error;
997 end Analyze_Goto_Statement;
999 --------------------------
1000 -- Analyze_If_Statement --
1001 --------------------------
1003 -- A special complication arises in the analysis of if statements
1005 -- The expander has circuitry to completely delete code that it
1006 -- can tell will not be executed (as a result of compile time known
1007 -- conditions). In the analyzer, we ensure that code that will be
1008 -- deleted in this manner is analyzed but not expanded. This is
1009 -- obviously more efficient, but more significantly, difficulties
1010 -- arise if code is expanded and then eliminated (e.g. exception
1011 -- table entries disappear). Similarly, itypes generated in deleted
1012 -- code must be frozen from start, because the nodes on which they
1013 -- depend will not be available at the freeze point.
1015 procedure Analyze_If_Statement (N : Node_Id) is
1016 E : Node_Id;
1018 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1019 -- Recursively save value of this global, will be restored on exit
1021 Save_In_Deleted_Code : Boolean;
1023 Del : Boolean := False;
1024 -- This flag gets set True if a True condition has been found,
1025 -- which means that remaining ELSE/ELSIF parts are deleted.
1027 procedure Analyze_Cond_Then (Cnode : Node_Id);
1028 -- This is applied to either the N_If_Statement node itself or
1029 -- to an N_Elsif_Part node. It deals with analyzing the condition
1030 -- and the THEN statements associated with it.
1032 -----------------------
1033 -- Analyze_Cond_Then --
1034 -----------------------
1036 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1037 Cond : constant Node_Id := Condition (Cnode);
1038 Tstm : constant List_Id := Then_Statements (Cnode);
1040 begin
1041 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1042 Analyze_And_Resolve (Cond, Any_Boolean);
1043 Check_Unset_Reference (Cond);
1044 Check_Possible_Current_Value_Condition (Cnode);
1046 -- If already deleting, then just analyze then statements
1048 if Del then
1049 Analyze_Statements (Tstm);
1051 -- Compile time known value, not deleting yet
1053 elsif Compile_Time_Known_Value (Cond) then
1054 Save_In_Deleted_Code := In_Deleted_Code;
1056 -- If condition is True, then analyze the THEN statements
1057 -- and set no expansion for ELSE and ELSIF parts.
1059 if Is_True (Expr_Value (Cond)) then
1060 Analyze_Statements (Tstm);
1061 Del := True;
1062 Expander_Mode_Save_And_Set (False);
1063 In_Deleted_Code := True;
1065 -- If condition is False, analyze THEN with expansion off
1067 else -- Is_False (Expr_Value (Cond))
1068 Expander_Mode_Save_And_Set (False);
1069 In_Deleted_Code := True;
1070 Analyze_Statements (Tstm);
1071 Expander_Mode_Restore;
1072 In_Deleted_Code := Save_In_Deleted_Code;
1073 end if;
1075 -- Not known at compile time, not deleting, normal analysis
1077 else
1078 Analyze_Statements (Tstm);
1079 end if;
1080 end Analyze_Cond_Then;
1082 -- Start of Analyze_If_Statement
1084 begin
1085 -- Initialize exit count for else statements. If there is no else
1086 -- part, this count will stay non-zero reflecting the fact that the
1087 -- uncovered else case is an unblocked exit.
1089 Unblocked_Exit_Count := 1;
1090 Analyze_Cond_Then (N);
1092 -- Now to analyze the elsif parts if any are present
1094 if Present (Elsif_Parts (N)) then
1095 E := First (Elsif_Parts (N));
1096 while Present (E) loop
1097 Analyze_Cond_Then (E);
1098 Next (E);
1099 end loop;
1100 end if;
1102 if Present (Else_Statements (N)) then
1103 Analyze_Statements (Else_Statements (N));
1104 end if;
1106 -- If all our exits were blocked by unconditional transfers of control,
1107 -- then the entire IF statement acts as an unconditional transfer of
1108 -- control, so treat it like one, and check unreachable code.
1110 if Unblocked_Exit_Count = 0 then
1111 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1112 Check_Unreachable_Code (N);
1113 else
1114 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1115 end if;
1117 if Del then
1118 Expander_Mode_Restore;
1119 In_Deleted_Code := Save_In_Deleted_Code;
1120 end if;
1122 if not Expander_Active
1123 and then Compile_Time_Known_Value (Condition (N))
1124 and then Serious_Errors_Detected = 0
1125 then
1126 if Is_True (Expr_Value (Condition (N))) then
1127 Remove_Warning_Messages (Else_Statements (N));
1129 if Present (Elsif_Parts (N)) then
1130 E := First (Elsif_Parts (N));
1132 while Present (E) loop
1133 Remove_Warning_Messages (Then_Statements (E));
1134 Next (E);
1135 end loop;
1136 end if;
1138 else
1139 Remove_Warning_Messages (Then_Statements (N));
1140 end if;
1141 end if;
1142 end Analyze_If_Statement;
1144 ----------------------------------------
1145 -- Analyze_Implicit_Label_Declaration --
1146 ----------------------------------------
1148 -- An implicit label declaration is generated in the innermost
1149 -- enclosing declarative part. This is done for labels as well as
1150 -- block and loop names.
1152 -- Note: any changes in this routine may need to be reflected in
1153 -- Analyze_Label_Entity.
1155 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1156 Id : constant Node_Id := Defining_Identifier (N);
1157 begin
1158 Enter_Name (Id);
1159 Set_Ekind (Id, E_Label);
1160 Set_Etype (Id, Standard_Void_Type);
1161 Set_Enclosing_Scope (Id, Current_Scope);
1162 end Analyze_Implicit_Label_Declaration;
1164 ------------------------------
1165 -- Analyze_Iteration_Scheme --
1166 ------------------------------
1168 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1170 procedure Process_Bounds (R : Node_Id);
1171 -- If the iteration is given by a range, create temporaries and
1172 -- assignment statements block to capture the bounds and perform
1173 -- required finalization actions in case a bound includes a function
1174 -- call that uses the temporary stack. We first pre-analyze a copy of
1175 -- the range in order to determine the expected type, and analyze and
1176 -- resolve the original bounds.
1178 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1179 -- If the bounds are given by a 'Range reference on a function call
1180 -- that returns a controlled array, introduce an explicit declaration
1181 -- to capture the bounds, so that the function result can be finalized
1182 -- in timely fashion.
1184 --------------------
1185 -- Process_Bounds --
1186 --------------------
1188 procedure Process_Bounds (R : Node_Id) is
1189 Loc : constant Source_Ptr := Sloc (N);
1190 R_Copy : constant Node_Id := New_Copy_Tree (R);
1191 Lo : constant Node_Id := Low_Bound (R);
1192 Hi : constant Node_Id := High_Bound (R);
1193 New_Lo_Bound : Node_Id := Empty;
1194 New_Hi_Bound : Node_Id := Empty;
1195 Typ : Entity_Id;
1197 function One_Bound
1198 (Original_Bound : Node_Id;
1199 Analyzed_Bound : Node_Id) return Node_Id;
1200 -- Create one declaration followed by one assignment statement
1201 -- to capture the value of bound. We create a separate assignment
1202 -- in order to force the creation of a block in case the bound
1203 -- contains a call that uses the secondary stack.
1205 ---------------
1206 -- One_Bound --
1207 ---------------
1209 function One_Bound
1210 (Original_Bound : Node_Id;
1211 Analyzed_Bound : Node_Id) return Node_Id
1213 Assign : Node_Id;
1214 Id : Entity_Id;
1215 Decl : Node_Id;
1217 begin
1218 -- If the bound is a constant or an object, no need for a separate
1219 -- declaration. If the bound is the result of previous expansion
1220 -- it is already analyzed and should not be modified. Note that
1221 -- the Bound will be resolved later, if needed, as part of the
1222 -- call to Make_Index (literal bounds may need to be resolved to
1223 -- type Integer).
1225 if Analyzed (Original_Bound) then
1226 return Original_Bound;
1228 elsif Nkind (Analyzed_Bound) = N_Integer_Literal
1229 or else Is_Entity_Name (Analyzed_Bound)
1230 then
1231 Analyze_And_Resolve (Original_Bound, Typ);
1232 return Original_Bound;
1234 else
1235 Analyze_And_Resolve (Original_Bound, Typ);
1236 end if;
1238 Id :=
1239 Make_Defining_Identifier (Loc,
1240 Chars => New_Internal_Name ('S'));
1242 Decl :=
1243 Make_Object_Declaration (Loc,
1244 Defining_Identifier => Id,
1245 Object_Definition => New_Occurrence_Of (Typ, Loc));
1247 Insert_Before (Parent (N), Decl);
1248 Analyze (Decl);
1250 Assign :=
1251 Make_Assignment_Statement (Loc,
1252 Name => New_Occurrence_Of (Id, Loc),
1253 Expression => Relocate_Node (Original_Bound));
1255 Insert_Before (Parent (N), Assign);
1256 Analyze (Assign);
1258 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1260 if Nkind (Assign) = N_Assignment_Statement then
1261 return Expression (Assign);
1262 else
1263 return Original_Bound;
1264 end if;
1265 end One_Bound;
1267 -- Start of processing for Process_Bounds
1269 begin
1270 -- Determine expected type of range by analyzing separate copy
1272 Set_Parent (R_Copy, Parent (R));
1273 Pre_Analyze_And_Resolve (R_Copy);
1274 Typ := Etype (R_Copy);
1276 -- If the type of the discrete range is Universal_Integer, then
1277 -- the bound's type must be resolved to Integer, and any object
1278 -- used to hold the bound must also have type Integer.
1280 if Typ = Universal_Integer then
1281 Typ := Standard_Integer;
1282 end if;
1284 Set_Etype (R, Typ);
1286 New_Lo_Bound := One_Bound (Lo, Low_Bound (R_Copy));
1287 New_Hi_Bound := One_Bound (Hi, High_Bound (R_Copy));
1289 -- Propagate staticness to loop range itself, in case the
1290 -- corresponding subtype is static.
1292 if New_Lo_Bound /= Lo
1293 and then Is_Static_Expression (New_Lo_Bound)
1294 then
1295 Rewrite (Low_Bound (R), New_Copy (New_Lo_Bound));
1296 end if;
1298 if New_Hi_Bound /= Hi
1299 and then Is_Static_Expression (New_Hi_Bound)
1300 then
1301 Rewrite (High_Bound (R), New_Copy (New_Hi_Bound));
1302 end if;
1303 end Process_Bounds;
1305 --------------------------------------
1306 -- Check_Controlled_Array_Attribute --
1307 --------------------------------------
1309 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1310 begin
1311 if Nkind (DS) = N_Attribute_Reference
1312 and then Is_Entity_Name (Prefix (DS))
1313 and then Ekind (Entity (Prefix (DS))) = E_Function
1314 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1315 and then
1316 Is_Controlled (
1317 Component_Type (Etype (Entity (Prefix (DS)))))
1318 and then Expander_Active
1319 then
1320 declare
1321 Loc : constant Source_Ptr := Sloc (N);
1322 Arr : constant Entity_Id :=
1323 Etype (Entity (Prefix (DS)));
1324 Indx : constant Entity_Id :=
1325 Base_Type (Etype (First_Index (Arr)));
1326 Subt : constant Entity_Id :=
1327 Make_Defining_Identifier
1328 (Loc, New_Internal_Name ('S'));
1329 Decl : Node_Id;
1331 begin
1332 Decl :=
1333 Make_Subtype_Declaration (Loc,
1334 Defining_Identifier => Subt,
1335 Subtype_Indication =>
1336 Make_Subtype_Indication (Loc,
1337 Subtype_Mark => New_Reference_To (Indx, Loc),
1338 Constraint =>
1339 Make_Range_Constraint (Loc,
1340 Relocate_Node (DS))));
1341 Insert_Before (Parent (N), Decl);
1342 Analyze (Decl);
1344 Rewrite (DS,
1345 Make_Attribute_Reference (Loc,
1346 Prefix => New_Reference_To (Subt, Loc),
1347 Attribute_Name => Attribute_Name (DS)));
1348 Analyze (DS);
1349 end;
1350 end if;
1351 end Check_Controlled_Array_Attribute;
1353 -- Start of processing for Analyze_Iteration_Scheme
1355 begin
1356 -- For an infinite loop, there is no iteration scheme
1358 if No (N) then
1359 return;
1361 else
1362 declare
1363 Cond : constant Node_Id := Condition (N);
1365 begin
1366 -- For WHILE loop, verify that the condition is a Boolean
1367 -- expression and resolve and check it.
1369 if Present (Cond) then
1370 Analyze_And_Resolve (Cond, Any_Boolean);
1371 Check_Unset_Reference (Cond);
1373 -- Else we have a FOR loop
1375 else
1376 declare
1377 LP : constant Node_Id := Loop_Parameter_Specification (N);
1378 Id : constant Entity_Id := Defining_Identifier (LP);
1379 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
1381 begin
1382 Enter_Name (Id);
1384 -- We always consider the loop variable to be referenced,
1385 -- since the loop may be used just for counting purposes.
1387 Generate_Reference (Id, N, ' ');
1389 -- Check for case of loop variable hiding a local
1390 -- variable (used later on to give a nice warning
1391 -- if the hidden variable is never assigned).
1393 declare
1394 H : constant Entity_Id := Homonym (Id);
1395 begin
1396 if Present (H)
1397 and then Enclosing_Dynamic_Scope (H) =
1398 Enclosing_Dynamic_Scope (Id)
1399 and then Ekind (H) = E_Variable
1400 and then Is_Discrete_Type (Etype (H))
1401 then
1402 Set_Hiding_Loop_Variable (H, Id);
1403 end if;
1404 end;
1406 -- Now analyze the subtype definition. If it is
1407 -- a range, create temporaries for bounds.
1409 if Nkind (DS) = N_Range
1410 and then Expander_Active
1411 then
1412 Process_Bounds (DS);
1413 else
1414 Analyze (DS);
1415 end if;
1417 if DS = Error then
1418 return;
1419 end if;
1421 -- The subtype indication may denote the completion
1422 -- of an incomplete type declaration.
1424 if Is_Entity_Name (DS)
1425 and then Present (Entity (DS))
1426 and then Is_Type (Entity (DS))
1427 and then Ekind (Entity (DS)) = E_Incomplete_Type
1428 then
1429 Set_Entity (DS, Get_Full_View (Entity (DS)));
1430 Set_Etype (DS, Entity (DS));
1431 end if;
1433 if not Is_Discrete_Type (Etype (DS)) then
1434 Wrong_Type (DS, Any_Discrete);
1435 Set_Etype (DS, Any_Type);
1436 end if;
1438 Check_Controlled_Array_Attribute (DS);
1440 Make_Index (DS, LP);
1442 Set_Ekind (Id, E_Loop_Parameter);
1443 Set_Etype (Id, Etype (DS));
1444 Set_Is_Known_Valid (Id, True);
1446 -- The loop is not a declarative part, so the only entity
1447 -- declared "within" must be frozen explicitly.
1449 declare
1450 Flist : constant List_Id := Freeze_Entity (Id, Sloc (N));
1451 begin
1452 if Is_Non_Empty_List (Flist) then
1453 Insert_Actions (N, Flist);
1454 end if;
1455 end;
1457 -- Check for null or possibly null range and issue warning.
1458 -- We suppress such messages in generic templates and
1459 -- instances, because in practice they tend to be dubious
1460 -- in these cases.
1462 if Nkind (DS) = N_Range
1463 and then Comes_From_Source (N)
1464 then
1465 declare
1466 L : constant Node_Id := Low_Bound (DS);
1467 H : constant Node_Id := High_Bound (DS);
1469 Llo : Uint;
1470 Lhi : Uint;
1471 LOK : Boolean;
1472 Hlo : Uint;
1473 Hhi : Uint;
1474 HOK : Boolean;
1476 begin
1477 Determine_Range (L, LOK, Llo, Lhi);
1478 Determine_Range (H, HOK, Hlo, Hhi);
1480 -- If range of loop is null, issue warning
1482 if (LOK and HOK) and then Llo > Hhi then
1484 -- Suppress the warning if inside a generic
1485 -- template or instance, since in practice
1486 -- they tend to be dubious in these cases since
1487 -- they can result from intended parametrization.
1489 if not Inside_A_Generic
1490 and then not In_Instance
1491 then
1492 Error_Msg_N
1493 ("?loop range is null, loop will not execute",
1494 DS);
1495 end if;
1497 -- Since we know the range of the loop is null,
1498 -- set the appropriate flag to suppress any
1499 -- warnings that would otherwise be issued in
1500 -- the body of the loop that will not execute.
1501 -- We do this even in the generic case, since
1502 -- if it is dubious to warn on the null loop
1503 -- itself, it is certainly dubious to warn for
1504 -- conditions that occur inside it!
1506 Set_Is_Null_Loop (Parent (N));
1508 -- The other case for a warning is a reverse loop
1509 -- where the upper bound is the integer literal
1510 -- zero or one, and the lower bound can be positive.
1512 -- For example, we have
1514 -- for J in reverse N .. 1 loop
1516 -- In practice, this is very likely to be a case
1517 -- of reversing the bounds incorrectly in the range.
1519 elsif Reverse_Present (LP)
1520 and then Nkind (Original_Node (H)) =
1521 N_Integer_Literal
1522 and then (Intval (H) = Uint_0
1523 or else
1524 Intval (H) = Uint_1)
1525 and then Lhi > Hhi
1526 then
1527 Error_Msg_N ("?loop range may be null", DS);
1528 Error_Msg_N ("\?bounds may be wrong way round", DS);
1529 end if;
1530 end;
1531 end if;
1532 end;
1533 end if;
1534 end;
1535 end if;
1536 end Analyze_Iteration_Scheme;
1538 -------------------
1539 -- Analyze_Label --
1540 -------------------
1542 -- Note: the semantic work required for analyzing labels (setting them as
1543 -- reachable) was done in a prepass through the statements in the block,
1544 -- so that forward gotos would be properly handled. See Analyze_Statements
1545 -- for further details. The only processing required here is to deal with
1546 -- optimizations that depend on an assumption of sequential control flow,
1547 -- since of course the occurrence of a label breaks this assumption.
1549 procedure Analyze_Label (N : Node_Id) is
1550 pragma Warnings (Off, N);
1551 begin
1552 Kill_Current_Values;
1553 end Analyze_Label;
1555 --------------------------
1556 -- Analyze_Label_Entity --
1557 --------------------------
1559 procedure Analyze_Label_Entity (E : Entity_Id) is
1560 begin
1561 Set_Ekind (E, E_Label);
1562 Set_Etype (E, Standard_Void_Type);
1563 Set_Enclosing_Scope (E, Current_Scope);
1564 Set_Reachable (E, True);
1565 end Analyze_Label_Entity;
1567 ----------------------------
1568 -- Analyze_Loop_Statement --
1569 ----------------------------
1571 procedure Analyze_Loop_Statement (N : Node_Id) is
1572 Id : constant Node_Id := Identifier (N);
1573 Ent : Entity_Id;
1575 begin
1576 if Present (Id) then
1578 -- Make name visible, e.g. for use in exit statements. Loop
1579 -- labels are always considered to be referenced.
1581 Analyze (Id);
1582 Ent := Entity (Id);
1583 Generate_Reference (Ent, N, ' ');
1584 Generate_Definition (Ent);
1586 -- If we found a label, mark its type. If not, ignore it, since it
1587 -- means we have a conflicting declaration, which would already have
1588 -- been diagnosed at declaration time. Set Label_Construct of the
1589 -- implicit label declaration, which is not created by the parser
1590 -- for generic units.
1592 if Ekind (Ent) = E_Label then
1593 Set_Ekind (Ent, E_Loop);
1595 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
1596 Set_Label_Construct (Parent (Ent), N);
1597 end if;
1598 end if;
1600 -- Case of no identifier present
1602 else
1603 Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
1604 Set_Etype (Ent, Standard_Void_Type);
1605 Set_Parent (Ent, N);
1606 end if;
1608 -- Kill current values on entry to loop, since statements in body
1609 -- of loop may have been executed before the loop is entered.
1610 -- Similarly we kill values after the loop, since we do not know
1611 -- that the body of the loop was executed.
1613 Kill_Current_Values;
1614 New_Scope (Ent);
1615 Analyze_Iteration_Scheme (Iteration_Scheme (N));
1616 Analyze_Statements (Statements (N));
1617 Process_End_Label (N, 'e', Ent);
1618 End_Scope;
1619 Kill_Current_Values;
1620 end Analyze_Loop_Statement;
1622 ----------------------------
1623 -- Analyze_Null_Statement --
1624 ----------------------------
1626 -- Note: the semantics of the null statement is implemented by a single
1627 -- null statement, too bad everything isn't as simple as this!
1629 procedure Analyze_Null_Statement (N : Node_Id) is
1630 pragma Warnings (Off, N);
1631 begin
1632 null;
1633 end Analyze_Null_Statement;
1635 ------------------------
1636 -- Analyze_Statements --
1637 ------------------------
1639 procedure Analyze_Statements (L : List_Id) is
1640 S : Node_Id;
1641 Lab : Entity_Id;
1643 begin
1644 -- The labels declared in the statement list are reachable from
1645 -- statements in the list. We do this as a prepass so that any
1646 -- goto statement will be properly flagged if its target is not
1647 -- reachable. This is not required, but is nice behavior!
1649 S := First (L);
1650 while Present (S) loop
1651 if Nkind (S) = N_Label then
1652 Analyze (Identifier (S));
1653 Lab := Entity (Identifier (S));
1655 -- If we found a label mark it as reachable
1657 if Ekind (Lab) = E_Label then
1658 Generate_Definition (Lab);
1659 Set_Reachable (Lab);
1661 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
1662 Set_Label_Construct (Parent (Lab), S);
1663 end if;
1665 -- If we failed to find a label, it means the implicit declaration
1666 -- of the label was hidden. A for-loop parameter can do this to
1667 -- a label with the same name inside the loop, since the implicit
1668 -- label declaration is in the innermost enclosing body or block
1669 -- statement.
1671 else
1672 Error_Msg_Sloc := Sloc (Lab);
1673 Error_Msg_N
1674 ("implicit label declaration for & is hidden#",
1675 Identifier (S));
1676 end if;
1677 end if;
1679 Next (S);
1680 end loop;
1682 -- Perform semantic analysis on all statements
1684 Conditional_Statements_Begin;
1686 S := First (L);
1687 while Present (S) loop
1688 Analyze (S);
1689 Next (S);
1690 end loop;
1692 Conditional_Statements_End;
1694 -- Make labels unreachable. Visibility is not sufficient, because
1695 -- labels in one if-branch for example are not reachable from the
1696 -- other branch, even though their declarations are in the enclosing
1697 -- declarative part.
1699 S := First (L);
1700 while Present (S) loop
1701 if Nkind (S) = N_Label then
1702 Set_Reachable (Entity (Identifier (S)), False);
1703 end if;
1705 Next (S);
1706 end loop;
1707 end Analyze_Statements;
1709 --------------------------------------------
1710 -- Check_Possible_Current_Value_Condition --
1711 --------------------------------------------
1713 procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id) is
1714 Cond : Node_Id;
1716 begin
1717 -- Loop to deal with (ignore for now) any NOT operators present
1719 Cond := Condition (Cnode);
1720 while Nkind (Cond) = N_Op_Not loop
1721 Cond := Right_Opnd (Cond);
1722 end loop;
1724 -- Check possible relational operator
1726 if Nkind (Cond) = N_Op_Eq
1727 or else
1728 Nkind (Cond) = N_Op_Ne
1729 or else
1730 Nkind (Cond) = N_Op_Ge
1731 or else
1732 Nkind (Cond) = N_Op_Le
1733 or else
1734 Nkind (Cond) = N_Op_Gt
1735 or else
1736 Nkind (Cond) = N_Op_Lt
1737 then
1738 if Compile_Time_Known_Value (Right_Opnd (Cond))
1739 and then Nkind (Left_Opnd (Cond)) = N_Identifier
1740 then
1741 declare
1742 Ent : constant Entity_Id := Entity (Left_Opnd (Cond));
1744 begin
1745 if Ekind (Ent) = E_Variable
1746 or else
1747 Ekind (Ent) = E_Constant
1748 or else
1749 Is_Formal (Ent)
1750 or else
1751 Ekind (Ent) = E_Loop_Parameter
1752 then
1753 -- Here we have a case where the Current_Value field
1754 -- may need to be set. We set it if it is not already
1755 -- set to a compile time expression value.
1757 -- Note that this represents a decision that one
1758 -- condition blots out another previous one. That's
1759 -- certainly right if they occur at the same level.
1760 -- If the second one is nested, then the decision is
1761 -- neither right nor wrong (it would be equally OK
1762 -- to leave the outer one in place, or take the new
1763 -- inner one. Really we should record both, but our
1764 -- data structures are not that elaborate.
1766 if Nkind (Current_Value (Ent)) not in N_Subexpr then
1767 Set_Current_Value (Ent, Cnode);
1768 end if;
1769 end if;
1770 end;
1771 end if;
1772 end if;
1773 end Check_Possible_Current_Value_Condition;
1775 ----------------------------
1776 -- Check_Unreachable_Code --
1777 ----------------------------
1779 procedure Check_Unreachable_Code (N : Node_Id) is
1780 Error_Loc : Source_Ptr;
1781 P : Node_Id;
1783 begin
1784 if Is_List_Member (N)
1785 and then Comes_From_Source (N)
1786 then
1787 declare
1788 Nxt : Node_Id;
1790 begin
1791 Nxt := Original_Node (Next (N));
1793 -- If a label follows us, then we never have dead code, since
1794 -- someone could branch to the label, so we just ignore it.
1796 if Nkind (Nxt) = N_Label then
1797 return;
1799 -- Otherwise see if we have a real statement following us
1801 elsif Present (Nxt)
1802 and then Comes_From_Source (Nxt)
1803 and then Is_Statement (Nxt)
1804 then
1805 -- Special very annoying exception. If we have a return that
1806 -- follows a raise, then we allow it without a warning, since
1807 -- the Ada RM annoyingly requires a useless return here!
1809 if Nkind (Original_Node (N)) /= N_Raise_Statement
1810 or else Nkind (Nxt) /= N_Return_Statement
1811 then
1812 -- The rather strange shenanigans with the warning message
1813 -- here reflects the fact that Kill_Dead_Code is very good
1814 -- at removing warnings in deleted code, and this is one
1815 -- warning we would prefer NOT to have removed :-)
1817 Error_Loc := Sloc (Nxt);
1819 -- If we have unreachable code, analyze and remove the
1820 -- unreachable code, since it is useless and we don't
1821 -- want to generate junk warnings.
1823 -- We skip this step if we are not in code generation mode.
1824 -- This is the one case where we remove dead code in the
1825 -- semantics as opposed to the expander, and we do not want
1826 -- to remove code if we are not in code generation mode,
1827 -- since this messes up the ASIS trees.
1829 -- Note that one might react by moving the whole circuit to
1830 -- exp_ch5, but then we lose the warning in -gnatc mode.
1832 if Operating_Mode = Generate_Code then
1833 loop
1834 Nxt := Next (N);
1836 -- Quit deleting when we have nothing more to delete
1837 -- or if we hit a label (since someone could transfer
1838 -- control to a label, so we should not delete it).
1840 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
1842 -- Statement/declaration is to be deleted
1844 Analyze (Nxt);
1845 Remove (Nxt);
1846 Kill_Dead_Code (Nxt);
1847 end loop;
1848 end if;
1850 -- Now issue the warning
1852 Error_Msg ("?unreachable code", Error_Loc);
1853 end if;
1855 -- If the unconditional transfer of control instruction is
1856 -- the last statement of a sequence, then see if our parent
1857 -- is one of the constructs for which we count unblocked exits,
1858 -- and if so, adjust the count.
1860 else
1861 P := Parent (N);
1863 -- Statements in THEN part or ELSE part of IF statement
1865 if Nkind (P) = N_If_Statement then
1866 null;
1868 -- Statements in ELSIF part of an IF statement
1870 elsif Nkind (P) = N_Elsif_Part then
1871 P := Parent (P);
1872 pragma Assert (Nkind (P) = N_If_Statement);
1874 -- Statements in CASE statement alternative
1876 elsif Nkind (P) = N_Case_Statement_Alternative then
1877 P := Parent (P);
1878 pragma Assert (Nkind (P) = N_Case_Statement);
1880 -- Statements in body of block
1882 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
1883 and then Nkind (Parent (P)) = N_Block_Statement
1884 then
1885 null;
1887 -- Statements in exception handler in a block
1889 elsif Nkind (P) = N_Exception_Handler
1890 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
1891 and then Nkind (Parent (Parent (P))) = N_Block_Statement
1892 then
1893 null;
1895 -- None of these cases, so return
1897 else
1898 return;
1899 end if;
1901 -- This was one of the cases we are looking for (i.e. the
1902 -- parent construct was IF, CASE or block) so decrement count.
1904 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
1905 end if;
1906 end;
1907 end if;
1908 end Check_Unreachable_Code;
1910 end Sem_Ch5;