1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Expander
; use Expander
;
32 with Exp_Util
; use Exp_Util
;
33 with Freeze
; use Freeze
;
34 with Lib
.Xref
; use Lib
.Xref
;
35 with Nlists
; use Nlists
;
36 with Nmake
; use Nmake
;
39 with Sem_Case
; use Sem_Case
;
40 with Sem_Ch3
; use Sem_Ch3
;
41 with Sem_Ch8
; use Sem_Ch8
;
42 with Sem_Disp
; use Sem_Disp
;
43 with Sem_Eval
; use Sem_Eval
;
44 with Sem_Res
; use Sem_Res
;
45 with Sem_Type
; use Sem_Type
;
46 with Sem_Util
; use Sem_Util
;
47 with Sem_Warn
; use Sem_Warn
;
48 with Stand
; use Stand
;
49 with Sinfo
; use Sinfo
;
50 with Targparm
; use Targparm
;
51 with Tbuild
; use Tbuild
;
52 with Uintp
; use Uintp
;
54 package body Sem_Ch5
is
56 Unblocked_Exit_Count
: Nat
:= 0;
57 -- This variable is used when processing if statements, case statements,
58 -- and block statements. It counts the number of exit points that are
59 -- not blocked by unconditional transfer instructions (for IF and CASE,
60 -- these are the branches of the conditional, for a block, they are the
61 -- statement sequence of the block, and the statement sequences of any
62 -- exception handlers that are part of the block. When processing is
63 -- complete, if this count is zero, it means that control cannot fall
64 -- through the IF, CASE or block statement. This is used for the
65 -- generation of warning messages. This variable is recursively saved
66 -- on entry to processing the construct, and restored on exit.
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Analyze_Iteration_Scheme
(N
: Node_Id
);
74 ------------------------
75 -- Analyze_Assignment --
76 ------------------------
78 procedure Analyze_Assignment
(N
: Node_Id
) is
79 Lhs
: constant Node_Id
:= Name
(N
);
80 Rhs
: constant Node_Id
:= Expression
(N
);
86 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
);
87 -- N is the node for the left hand side of an assignment, and it
88 -- is not a variable. This routine issues an appropriate diagnostic.
90 procedure Set_Assignment_Type
92 Opnd_Type
: in out Entity_Id
);
93 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
94 -- is the nominal subtype. This procedure is used to deal with cases
95 -- where the nominal subtype must be replaced by the actual subtype.
97 -------------------------------
98 -- Diagnose_Non_Variable_Lhs --
99 -------------------------------
101 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
) is
103 -- Not worth posting another error if left hand side already
104 -- flagged as being illegal in some respect
106 if Error_Posted
(N
) then
109 -- Some special bad cases of entity names
111 elsif Is_Entity_Name
(N
) then
112 if Ekind
(Entity
(N
)) = E_In_Parameter
then
114 ("assignment to IN mode parameter not allowed", N
);
116 -- Private declarations in a protected object are turned into
117 -- constants when compiling a protected function.
119 elsif Present
(Scope
(Entity
(N
)))
120 and then Is_Protected_Type
(Scope
(Entity
(N
)))
122 (Ekind
(Current_Scope
) = E_Function
124 Ekind
(Enclosing_Dynamic_Scope
(Current_Scope
)) = E_Function
)
127 ("protected function cannot modify protected object", N
);
129 elsif Ekind
(Entity
(N
)) = E_Loop_Parameter
then
131 ("assignment to loop parameter not allowed", N
);
135 ("left hand side of assignment must be a variable", N
);
138 -- For indexed components or selected components, test prefix
140 elsif Nkind
(N
) = N_Indexed_Component
then
141 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
143 -- Another special case for assignment to discriminant
145 elsif Nkind
(N
) = N_Selected_Component
then
146 if Present
(Entity
(Selector_Name
(N
)))
147 and then Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
150 ("assignment to discriminant not allowed", N
);
152 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
156 -- If we fall through, we have no special message to issue!
158 Error_Msg_N
("left hand side of assignment must be a variable", N
);
160 end Diagnose_Non_Variable_Lhs
;
162 -------------------------
163 -- Set_Assignment_Type --
164 -------------------------
166 procedure Set_Assignment_Type
168 Opnd_Type
: in out Entity_Id
)
171 Require_Entity
(Opnd
);
173 -- If the assignment operand is an in-out or out parameter, then we
174 -- get the actual subtype (needed for the unconstrained case).
175 -- If the operand is the actual in an entry declaration, then within
176 -- the accept statement it is replaced with a local renaming, which
177 -- may also have an actual subtype.
179 if Is_Entity_Name
(Opnd
)
180 and then (Ekind
(Entity
(Opnd
)) = E_Out_Parameter
181 or else Ekind
(Entity
(Opnd
)) =
183 or else Ekind
(Entity
(Opnd
)) =
184 E_Generic_In_Out_Parameter
186 (Ekind
(Entity
(Opnd
)) = E_Variable
187 and then Nkind
(Parent
(Entity
(Opnd
))) =
188 N_Object_Renaming_Declaration
189 and then Nkind
(Parent
(Parent
(Entity
(Opnd
)))) =
192 Opnd_Type
:= Get_Actual_Subtype
(Opnd
);
194 -- If assignment operand is a component reference, then we get the
195 -- actual subtype of the component for the unconstrained case.
198 (Nkind
(Opnd
) = N_Selected_Component
199 or else Nkind
(Opnd
) = N_Explicit_Dereference
)
200 and then not Is_Unchecked_Union
(Opnd_Type
)
202 Decl
:= Build_Actual_Subtype_Of_Component
(Opnd_Type
, Opnd
);
204 if Present
(Decl
) then
205 Insert_Action
(N
, Decl
);
206 Mark_Rewrite_Insertion
(Decl
);
208 Opnd_Type
:= Defining_Identifier
(Decl
);
209 Set_Etype
(Opnd
, Opnd_Type
);
210 Freeze_Itype
(Opnd_Type
, N
);
212 elsif Is_Constrained
(Etype
(Opnd
)) then
213 Opnd_Type
:= Etype
(Opnd
);
216 -- For slice, use the constrained subtype created for the slice
218 elsif Nkind
(Opnd
) = N_Slice
then
219 Opnd_Type
:= Etype
(Opnd
);
221 end Set_Assignment_Type
;
223 -- Start of processing for Analyze_Assignment
230 -- In the most general case, both Lhs and Rhs can be overloaded, and we
231 -- must compute the intersection of the possible types on each side.
233 if Is_Overloaded
(Lhs
) then
240 Get_First_Interp
(Lhs
, I
, It
);
242 while Present
(It
.Typ
) loop
243 if Has_Compatible_Type
(Rhs
, It
.Typ
) then
244 if T1
/= Any_Type
then
246 -- An explicit dereference is overloaded if the prefix
247 -- is. Try to remove the ambiguity on the prefix, the
248 -- error will be posted there if the ambiguity is real.
250 if Nkind
(Lhs
) = N_Explicit_Dereference
then
253 PI1
: Interp_Index
:= 0;
259 Get_First_Interp
(Prefix
(Lhs
), PI
, PIt
);
261 while Present
(PIt
.Typ
) loop
262 if Is_Access_Type
(PIt
.Typ
)
263 and then Has_Compatible_Type
264 (Rhs
, Designated_Type
(PIt
.Typ
))
268 Disambiguate
(Prefix
(Lhs
),
271 if PIt
= No_Interp
then
273 ("ambiguous left-hand side"
274 & " in assignment", Lhs
);
277 Resolve
(Prefix
(Lhs
), PIt
.Typ
);
287 Get_Next_Interp
(PI
, PIt
);
293 ("ambiguous left-hand side in assignment", Lhs
);
301 Get_Next_Interp
(I
, It
);
305 if T1
= Any_Type
then
307 ("no valid types for left-hand side for assignment", Lhs
);
314 if not Is_Variable
(Lhs
) then
315 Diagnose_Non_Variable_Lhs
(Lhs
);
318 elsif Is_Limited_Type
(T1
)
319 and then not Assignment_OK
(Lhs
)
320 and then not Assignment_OK
(Original_Node
(Lhs
))
323 ("left hand of assignment must not be limited type", Lhs
);
324 Explain_Limited_Type
(T1
, Lhs
);
328 -- Resolution may have updated the subtype, in case the left-hand
329 -- side is a private protected component. Use the correct subtype
330 -- to avoid scoping issues in the back-end.
334 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
335 -- type. For example:
339 -- type Acc is access P.T;
342 -- with Pkg; use Acc;
343 -- procedure Example is
346 -- A.all := B.all; -- ERROR
349 if Nkind
(Lhs
) = N_Explicit_Dereference
350 and then Ekind
(T1
) = E_Incomplete_Type
352 Error_Msg_N
("invalid use of incomplete type", Lhs
);
356 Set_Assignment_Type
(Lhs
, T1
);
359 Check_Unset_Reference
(Rhs
);
361 -- Remaining steps are skipped if Rhs was syntactically in error
369 if not Covers
(T1
, T2
) then
370 Wrong_Type
(Rhs
, Etype
(Lhs
));
374 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
375 -- types, use the non-limited view if available
377 if Nkind
(Rhs
) = N_Explicit_Dereference
378 and then Ekind
(T2
) = E_Incomplete_Type
379 and then Is_Tagged_Type
(T2
)
380 and then Present
(Non_Limited_View
(T2
))
382 T2
:= Non_Limited_View
(T2
);
385 Set_Assignment_Type
(Rhs
, T2
);
387 if Total_Errors_Detected
/= 0 then
397 if T1
= Any_Type
or else T2
= Any_Type
then
401 if (Is_Class_Wide_Type
(T2
) or else Is_Dynamically_Tagged
(Rhs
))
402 and then not Is_Class_Wide_Type
(T1
)
404 Error_Msg_N
("dynamically tagged expression not allowed!", Rhs
);
406 elsif Is_Class_Wide_Type
(T1
)
407 and then not Is_Class_Wide_Type
(T2
)
408 and then not Is_Tag_Indeterminate
(Rhs
)
409 and then not Is_Dynamically_Tagged
(Rhs
)
411 Error_Msg_N
("dynamically tagged expression required!", Rhs
);
414 -- Tag propagation is done only in semantics mode only. If expansion
415 -- is on, the rhs tag indeterminate function call has been expanded
416 -- and tag propagation would have happened too late, so the
417 -- propagation take place in expand_call instead.
419 if not Expander_Active
420 and then Is_Class_Wide_Type
(T1
)
421 and then Is_Tag_Indeterminate
(Rhs
)
423 Propagate_Tag
(Lhs
, Rhs
);
426 -- Ada 2005 (AI-230 and AI-385): When the lhs type is an anonymous
427 -- access type, apply an implicit conversion of the rhs to that type
428 -- to force appropriate static and run-time accessibility checks.
430 if Ada_Version
>= Ada_05
431 and then Ekind
(T1
) = E_Anonymous_Access_Type
433 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
434 Analyze_And_Resolve
(Rhs
, T1
);
439 if Ada_Version
>= Ada_05
440 and then Can_Never_Be_Null
(T1
)
441 and then not Assignment_OK
(Lhs
)
443 if Nkind
(Rhs
) = N_Null
then
444 Apply_Compile_Time_Constraint_Error
446 Msg
=> "(Ada 2005) NULL not allowed in null-excluding objects?",
447 Reason
=> CE_Null_Not_Allowed
);
450 elsif not Can_Never_Be_Null
(T2
) then
452 Convert_To
(T1
, Relocate_Node
(Rhs
)));
453 Analyze_And_Resolve
(Rhs
, T1
);
457 if Is_Scalar_Type
(T1
) then
458 Apply_Scalar_Range_Check
(Rhs
, Etype
(Lhs
));
460 elsif Is_Array_Type
(T1
)
462 (Nkind
(Rhs
) /= N_Type_Conversion
463 or else Is_Constrained
(Etype
(Rhs
)))
465 -- Assignment verifies that the length of the Lsh and Rhs are equal,
466 -- but of course the indices do not have to match. If the right-hand
467 -- side is a type conversion to an unconstrained type, a length check
468 -- is performed on the expression itself during expansion. In rare
469 -- cases, the redundant length check is computed on an index type
470 -- with a different representation, triggering incorrect code in
473 Apply_Length_Check
(Rhs
, Etype
(Lhs
));
476 -- Discriminant checks are applied in the course of expansion
481 -- Note: modifications of the Lhs may only be recorded after
482 -- checks have been applied.
484 Note_Possible_Modification
(Lhs
);
486 -- ??? a real accessibility check is needed when ???
488 -- Post warning for useless assignment
490 if Warn_On_Redundant_Constructs
492 -- We only warn for source constructs
494 and then Comes_From_Source
(N
)
496 -- Where the entity is the same on both sides
498 and then Is_Entity_Name
(Lhs
)
499 and then Is_Entity_Name
(Original_Node
(Rhs
))
500 and then Entity
(Lhs
) = Entity
(Original_Node
(Rhs
))
502 -- But exclude the case where the right side was an operation
503 -- that got rewritten (e.g. JUNK + K, where K was known to be
504 -- zero). We don't want to warn in such a case, since it is
505 -- reasonable to write such expressions especially when K is
506 -- defined symbolically in some other package.
508 and then Nkind
(Original_Node
(Rhs
)) not in N_Op
511 ("?useless assignment of & to itself", N
, Entity
(Lhs
));
514 -- Check for non-allowed composite assignment
516 if not Support_Composite_Assign_On_Target
517 and then (Is_Array_Type
(T1
) or else Is_Record_Type
(T1
))
518 and then (not Has_Size_Clause
(T1
) or else Esize
(T1
) > 64)
520 Error_Msg_CRT
("composite assignment", N
);
523 -- One more step. Let's see if we have a simple assignment of a
524 -- known at compile time value to a simple variable. If so, we
525 -- can record the value as the current value providing that:
527 -- We still have a simple assignment statement (no expansion
528 -- activity has modified it in some peculiar manner)
530 -- The type is a discrete type
532 -- The assignment is to a named entity
534 -- The value is known at compile time
536 if Nkind
(N
) /= N_Assignment_Statement
537 or else not Is_Discrete_Type
(T1
)
538 or else not Is_Entity_Name
(Lhs
)
539 or else not Compile_Time_Known_Value
(Rhs
)
546 -- Capture value if safe to do so
548 if Safe_To_Capture_Value
(N
, Ent
) then
549 Set_Current_Value
(Ent
, Rhs
);
551 end Analyze_Assignment
;
553 -----------------------------
554 -- Analyze_Block_Statement --
555 -----------------------------
557 procedure Analyze_Block_Statement
(N
: Node_Id
) is
558 Decls
: constant List_Id
:= Declarations
(N
);
559 Id
: constant Node_Id
:= Identifier
(N
);
560 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
563 -- If no handled statement sequence is present, things are really
564 -- messed up, and we just return immediately (this is a defence
565 -- against previous errors).
571 -- Normal processing with HSS present
574 EH
: constant List_Id
:= Exception_Handlers
(HSS
);
575 Ent
: Entity_Id
:= Empty
;
578 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
579 -- Recursively save value of this global, will be restored on exit
582 -- Initialize unblocked exit count for statements of begin block
583 -- plus one for each excption handler that is present.
585 Unblocked_Exit_Count
:= 1;
588 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ List_Length
(EH
);
591 -- If a label is present analyze it and mark it as referenced
597 -- An error defense. If we have an identifier, but no entity,
598 -- then something is wrong. If we have previous errors, then
599 -- just remove the identifier and continue, otherwise raise
603 if Total_Errors_Detected
/= 0 then
604 Set_Identifier
(N
, Empty
);
610 Set_Ekind
(Ent
, E_Block
);
611 Generate_Reference
(Ent
, N
, ' ');
612 Generate_Definition
(Ent
);
614 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
615 Set_Label_Construct
(Parent
(Ent
), N
);
620 -- If no entity set, create a label entity
623 Ent
:= New_Internal_Entity
(E_Block
, Current_Scope
, Sloc
(N
), 'B');
624 Set_Identifier
(N
, New_Occurrence_Of
(Ent
, Sloc
(N
)));
628 Set_Etype
(Ent
, Standard_Void_Type
);
629 Set_Block_Node
(Ent
, Identifier
(N
));
632 if Present
(Decls
) then
633 Analyze_Declarations
(Decls
);
638 Process_End_Label
(HSS
, 'e', Ent
);
640 -- If exception handlers are present, then we indicate that
641 -- enclosing scopes contain a block with handlers. We only
642 -- need to mark non-generic scopes.
647 Set_Has_Nested_Block_With_Handler
(S
);
648 exit when Is_Overloadable
(S
)
649 or else Ekind
(S
) = E_Package
650 or else Is_Generic_Unit
(S
);
655 Check_References
(Ent
);
658 if Unblocked_Exit_Count
= 0 then
659 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
660 Check_Unreachable_Code
(N
);
662 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
665 end Analyze_Block_Statement
;
667 ----------------------------
668 -- Analyze_Case_Statement --
669 ----------------------------
671 procedure Analyze_Case_Statement
(N
: Node_Id
) is
673 Exp_Type
: Entity_Id
;
674 Exp_Btype
: Entity_Id
;
677 Others_Present
: Boolean;
679 Statements_Analyzed
: Boolean := False;
680 -- Set True if at least some statement sequences get analyzed.
681 -- If False on exit, means we had a serious error that prevented
682 -- full analysis of the case statement, and as a result it is not
683 -- a good idea to output warning messages about unreachable code.
685 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
686 -- Recursively save value of this global, will be restored on exit
688 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
689 -- Error routine invoked by the generic instantiation below when
690 -- the case statment has a non static choice.
692 procedure Process_Statements
(Alternative
: Node_Id
);
693 -- Analyzes all the statements associated to a case alternative.
694 -- Needed by the generic instantiation below.
696 package Case_Choices_Processing
is new
697 Generic_Choices_Processing
698 (Get_Alternatives
=> Alternatives
,
699 Get_Choices
=> Discrete_Choices
,
700 Process_Empty_Choice
=> No_OP
,
701 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
702 Process_Associated_Node
=> Process_Statements
);
703 use Case_Choices_Processing
;
704 -- Instantiation of the generic choice processing package
706 -----------------------------
707 -- Non_Static_Choice_Error --
708 -----------------------------
710 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
713 ("choice given in case statement is not static!", Choice
);
714 end Non_Static_Choice_Error
;
716 ------------------------
717 -- Process_Statements --
718 ------------------------
720 procedure Process_Statements
(Alternative
: Node_Id
) is
721 Choices
: constant List_Id
:= Discrete_Choices
(Alternative
);
725 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
726 Statements_Analyzed
:= True;
728 -- An interesting optimization. If the case statement expression
729 -- is a simple entity, then we can set the current value within
730 -- an alternative if the alternative has one possible value.
734 -- when 2 | 3 => beta
735 -- when others => gamma
737 -- Here we know that N is initially 1 within alpha, but for beta
738 -- and gamma, we do not know anything more about the initial value.
740 if Is_Entity_Name
(Exp
) then
743 if Ekind
(Ent
) = E_Variable
745 Ekind
(Ent
) = E_In_Out_Parameter
747 Ekind
(Ent
) = E_Out_Parameter
749 if List_Length
(Choices
) = 1
750 and then Nkind
(First
(Choices
)) in N_Subexpr
751 and then Compile_Time_Known_Value
(First
(Choices
))
753 Set_Current_Value
(Entity
(Exp
), First
(Choices
));
756 Analyze_Statements
(Statements
(Alternative
));
758 -- After analyzing the case, set the current value to empty
759 -- since we won't know what it is for the next alternative
760 -- (unless reset by this same circuit), or after the case.
762 Set_Current_Value
(Entity
(Exp
), Empty
);
767 -- Case where expression is not an entity name of a variable
769 Analyze_Statements
(Statements
(Alternative
));
770 end Process_Statements
;
772 -- Table to record choices. Put after subprograms since we make
773 -- a call to Number_Of_Choices to get the right number of entries.
775 Case_Table
: Choice_Table_Type
(1 .. Number_Of_Choices
(N
));
777 -- Start of processing for Analyze_Case_Statement
780 Unblocked_Exit_Count
:= 0;
781 Exp
:= Expression
(N
);
784 -- The expression must be of any discrete type. In rare cases, the
785 -- expander constructs a case statement whose expression has a private
786 -- type whose full view is discrete. This can happen when generating
787 -- a stream operation for a variant type after the type is frozen,
788 -- when the partial of view of the type of the discriminant is private.
789 -- In that case, use the full view to analyze case alternatives.
791 if not Is_Overloaded
(Exp
)
792 and then not Comes_From_Source
(N
)
793 and then Is_Private_Type
(Etype
(Exp
))
794 and then Present
(Full_View
(Etype
(Exp
)))
795 and then Is_Discrete_Type
(Full_View
(Etype
(Exp
)))
797 Resolve
(Exp
, Etype
(Exp
));
798 Exp_Type
:= Full_View
(Etype
(Exp
));
801 Analyze_And_Resolve
(Exp
, Any_Discrete
);
802 Exp_Type
:= Etype
(Exp
);
805 Check_Unset_Reference
(Exp
);
806 Exp_Btype
:= Base_Type
(Exp_Type
);
808 -- The expression must be of a discrete type which must be determinable
809 -- independently of the context in which the expression occurs, but
810 -- using the fact that the expression must be of a discrete type.
811 -- Moreover, the type this expression must not be a character literal
812 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
814 -- If error already reported by Resolve, nothing more to do
816 if Exp_Btype
= Any_Discrete
817 or else Exp_Btype
= Any_Type
821 elsif Exp_Btype
= Any_Character
then
823 ("character literal as case expression is ambiguous", Exp
);
826 elsif Ada_Version
= Ada_83
827 and then (Is_Generic_Type
(Exp_Btype
)
828 or else Is_Generic_Type
(Root_Type
(Exp_Btype
)))
831 ("(Ada 83) case expression cannot be of a generic type", Exp
);
835 -- If the case expression is a formal object of mode in out, then
836 -- treat it as having a nonstatic subtype by forcing use of the base
837 -- type (which has to get passed to Check_Case_Choices below). Also
838 -- use base type when the case expression is parenthesized.
840 if Paren_Count
(Exp
) > 0
841 or else (Is_Entity_Name
(Exp
)
842 and then Ekind
(Entity
(Exp
)) = E_Generic_In_Out_Parameter
)
844 Exp_Type
:= Exp_Btype
;
847 -- Call instantiated Analyze_Choices which does the rest of the work
850 (N
, Exp_Type
, Case_Table
, Last_Choice
, Dont_Care
, Others_Present
);
852 if Exp_Type
= Universal_Integer
and then not Others_Present
then
853 Error_Msg_N
("case on universal integer requires OTHERS choice", Exp
);
856 -- If all our exits were blocked by unconditional transfers of control,
857 -- then the entire CASE statement acts as an unconditional transfer of
858 -- control, so treat it like one, and check unreachable code. Skip this
859 -- test if we had serious errors preventing any statement analysis.
861 if Unblocked_Exit_Count
= 0 and then Statements_Analyzed
then
862 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
863 Check_Unreachable_Code
(N
);
865 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
868 if not Expander_Active
869 and then Compile_Time_Known_Value
(Expression
(N
))
870 and then Serious_Errors_Detected
= 0
873 Chosen
: constant Node_Id
:= Find_Static_Alternative
(N
);
877 Alt
:= First
(Alternatives
(N
));
879 while Present
(Alt
) loop
880 if Alt
/= Chosen
then
881 Remove_Warning_Messages
(Statements
(Alt
));
888 end Analyze_Case_Statement
;
890 ----------------------------
891 -- Analyze_Exit_Statement --
892 ----------------------------
894 -- If the exit includes a name, it must be the name of a currently open
895 -- loop. Otherwise there must be an innermost open loop on the stack,
896 -- to which the statement implicitly refers.
898 procedure Analyze_Exit_Statement
(N
: Node_Id
) is
899 Target
: constant Node_Id
:= Name
(N
);
900 Cond
: constant Node_Id
:= Condition
(N
);
901 Scope_Id
: Entity_Id
;
907 Check_Unreachable_Code
(N
);
910 if Present
(Target
) then
912 U_Name
:= Entity
(Target
);
914 if not In_Open_Scopes
(U_Name
) or else Ekind
(U_Name
) /= E_Loop
then
915 Error_Msg_N
("invalid loop name in exit statement", N
);
918 Set_Has_Exit
(U_Name
);
925 for J
in reverse 0 .. Scope_Stack
.Last
loop
926 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
927 Kind
:= Ekind
(Scope_Id
);
930 and then (No
(Target
) or else Scope_Id
= U_Name
) then
931 Set_Has_Exit
(Scope_Id
);
934 elsif Kind
= E_Block
or else Kind
= E_Loop
then
939 ("cannot exit from program unit or accept statement", N
);
944 -- Verify that if present the condition is a Boolean expression
946 if Present
(Cond
) then
947 Analyze_And_Resolve
(Cond
, Any_Boolean
);
948 Check_Unset_Reference
(Cond
);
950 end Analyze_Exit_Statement
;
952 ----------------------------
953 -- Analyze_Goto_Statement --
954 ----------------------------
956 procedure Analyze_Goto_Statement
(N
: Node_Id
) is
957 Label
: constant Node_Id
:= Name
(N
);
958 Scope_Id
: Entity_Id
;
959 Label_Scope
: Entity_Id
;
962 Check_Unreachable_Code
(N
);
966 if Entity
(Label
) = Any_Id
then
969 elsif Ekind
(Entity
(Label
)) /= E_Label
then
970 Error_Msg_N
("target of goto statement must be a label", Label
);
973 elsif not Reachable
(Entity
(Label
)) then
974 Error_Msg_N
("target of goto statement is not reachable", Label
);
978 Label_Scope
:= Enclosing_Scope
(Entity
(Label
));
980 for J
in reverse 0 .. Scope_Stack
.Last
loop
981 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
983 if Label_Scope
= Scope_Id
984 or else (Ekind
(Scope_Id
) /= E_Block
985 and then Ekind
(Scope_Id
) /= E_Loop
)
987 if Scope_Id
/= Label_Scope
then
989 ("cannot exit from program unit or accept statement", N
);
997 end Analyze_Goto_Statement
;
999 --------------------------
1000 -- Analyze_If_Statement --
1001 --------------------------
1003 -- A special complication arises in the analysis of if statements
1005 -- The expander has circuitry to completely delete code that it
1006 -- can tell will not be executed (as a result of compile time known
1007 -- conditions). In the analyzer, we ensure that code that will be
1008 -- deleted in this manner is analyzed but not expanded. This is
1009 -- obviously more efficient, but more significantly, difficulties
1010 -- arise if code is expanded and then eliminated (e.g. exception
1011 -- table entries disappear). Similarly, itypes generated in deleted
1012 -- code must be frozen from start, because the nodes on which they
1013 -- depend will not be available at the freeze point.
1015 procedure Analyze_If_Statement
(N
: Node_Id
) is
1018 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
1019 -- Recursively save value of this global, will be restored on exit
1021 Save_In_Deleted_Code
: Boolean;
1023 Del
: Boolean := False;
1024 -- This flag gets set True if a True condition has been found,
1025 -- which means that remaining ELSE/ELSIF parts are deleted.
1027 procedure Analyze_Cond_Then
(Cnode
: Node_Id
);
1028 -- This is applied to either the N_If_Statement node itself or
1029 -- to an N_Elsif_Part node. It deals with analyzing the condition
1030 -- and the THEN statements associated with it.
1032 -----------------------
1033 -- Analyze_Cond_Then --
1034 -----------------------
1036 procedure Analyze_Cond_Then
(Cnode
: Node_Id
) is
1037 Cond
: constant Node_Id
:= Condition
(Cnode
);
1038 Tstm
: constant List_Id
:= Then_Statements
(Cnode
);
1041 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
1042 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1043 Check_Unset_Reference
(Cond
);
1044 Check_Possible_Current_Value_Condition
(Cnode
);
1046 -- If already deleting, then just analyze then statements
1049 Analyze_Statements
(Tstm
);
1051 -- Compile time known value, not deleting yet
1053 elsif Compile_Time_Known_Value
(Cond
) then
1054 Save_In_Deleted_Code
:= In_Deleted_Code
;
1056 -- If condition is True, then analyze the THEN statements
1057 -- and set no expansion for ELSE and ELSIF parts.
1059 if Is_True
(Expr_Value
(Cond
)) then
1060 Analyze_Statements
(Tstm
);
1062 Expander_Mode_Save_And_Set
(False);
1063 In_Deleted_Code
:= True;
1065 -- If condition is False, analyze THEN with expansion off
1067 else -- Is_False (Expr_Value (Cond))
1068 Expander_Mode_Save_And_Set
(False);
1069 In_Deleted_Code
:= True;
1070 Analyze_Statements
(Tstm
);
1071 Expander_Mode_Restore
;
1072 In_Deleted_Code
:= Save_In_Deleted_Code
;
1075 -- Not known at compile time, not deleting, normal analysis
1078 Analyze_Statements
(Tstm
);
1080 end Analyze_Cond_Then
;
1082 -- Start of Analyze_If_Statement
1085 -- Initialize exit count for else statements. If there is no else
1086 -- part, this count will stay non-zero reflecting the fact that the
1087 -- uncovered else case is an unblocked exit.
1089 Unblocked_Exit_Count
:= 1;
1090 Analyze_Cond_Then
(N
);
1092 -- Now to analyze the elsif parts if any are present
1094 if Present
(Elsif_Parts
(N
)) then
1095 E
:= First
(Elsif_Parts
(N
));
1096 while Present
(E
) loop
1097 Analyze_Cond_Then
(E
);
1102 if Present
(Else_Statements
(N
)) then
1103 Analyze_Statements
(Else_Statements
(N
));
1106 -- If all our exits were blocked by unconditional transfers of control,
1107 -- then the entire IF statement acts as an unconditional transfer of
1108 -- control, so treat it like one, and check unreachable code.
1110 if Unblocked_Exit_Count
= 0 then
1111 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1112 Check_Unreachable_Code
(N
);
1114 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1118 Expander_Mode_Restore
;
1119 In_Deleted_Code
:= Save_In_Deleted_Code
;
1122 if not Expander_Active
1123 and then Compile_Time_Known_Value
(Condition
(N
))
1124 and then Serious_Errors_Detected
= 0
1126 if Is_True
(Expr_Value
(Condition
(N
))) then
1127 Remove_Warning_Messages
(Else_Statements
(N
));
1129 if Present
(Elsif_Parts
(N
)) then
1130 E
:= First
(Elsif_Parts
(N
));
1132 while Present
(E
) loop
1133 Remove_Warning_Messages
(Then_Statements
(E
));
1139 Remove_Warning_Messages
(Then_Statements
(N
));
1142 end Analyze_If_Statement
;
1144 ----------------------------------------
1145 -- Analyze_Implicit_Label_Declaration --
1146 ----------------------------------------
1148 -- An implicit label declaration is generated in the innermost
1149 -- enclosing declarative part. This is done for labels as well as
1150 -- block and loop names.
1152 -- Note: any changes in this routine may need to be reflected in
1153 -- Analyze_Label_Entity.
1155 procedure Analyze_Implicit_Label_Declaration
(N
: Node_Id
) is
1156 Id
: constant Node_Id
:= Defining_Identifier
(N
);
1159 Set_Ekind
(Id
, E_Label
);
1160 Set_Etype
(Id
, Standard_Void_Type
);
1161 Set_Enclosing_Scope
(Id
, Current_Scope
);
1162 end Analyze_Implicit_Label_Declaration
;
1164 ------------------------------
1165 -- Analyze_Iteration_Scheme --
1166 ------------------------------
1168 procedure Analyze_Iteration_Scheme
(N
: Node_Id
) is
1170 procedure Process_Bounds
(R
: Node_Id
);
1171 -- If the iteration is given by a range, create temporaries and
1172 -- assignment statements block to capture the bounds and perform
1173 -- required finalization actions in case a bound includes a function
1174 -- call that uses the temporary stack. We first pre-analyze a copy of
1175 -- the range in order to determine the expected type, and analyze and
1176 -- resolve the original bounds.
1178 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
);
1179 -- If the bounds are given by a 'Range reference on a function call
1180 -- that returns a controlled array, introduce an explicit declaration
1181 -- to capture the bounds, so that the function result can be finalized
1182 -- in timely fashion.
1184 --------------------
1185 -- Process_Bounds --
1186 --------------------
1188 procedure Process_Bounds
(R
: Node_Id
) is
1189 Loc
: constant Source_Ptr
:= Sloc
(N
);
1190 R_Copy
: constant Node_Id
:= New_Copy_Tree
(R
);
1191 Lo
: constant Node_Id
:= Low_Bound
(R
);
1192 Hi
: constant Node_Id
:= High_Bound
(R
);
1193 New_Lo_Bound
: Node_Id
:= Empty
;
1194 New_Hi_Bound
: Node_Id
:= Empty
;
1198 (Original_Bound
: Node_Id
;
1199 Analyzed_Bound
: Node_Id
) return Node_Id
;
1200 -- Create one declaration followed by one assignment statement
1201 -- to capture the value of bound. We create a separate assignment
1202 -- in order to force the creation of a block in case the bound
1203 -- contains a call that uses the secondary stack.
1210 (Original_Bound
: Node_Id
;
1211 Analyzed_Bound
: Node_Id
) return Node_Id
1218 -- If the bound is a constant or an object, no need for a separate
1219 -- declaration. If the bound is the result of previous expansion
1220 -- it is already analyzed and should not be modified. Note that
1221 -- the Bound will be resolved later, if needed, as part of the
1222 -- call to Make_Index (literal bounds may need to be resolved to
1225 if Analyzed
(Original_Bound
) then
1226 return Original_Bound
;
1228 elsif Nkind
(Analyzed_Bound
) = N_Integer_Literal
1229 or else Is_Entity_Name
(Analyzed_Bound
)
1231 Analyze_And_Resolve
(Original_Bound
, Typ
);
1232 return Original_Bound
;
1235 Analyze_And_Resolve
(Original_Bound
, Typ
);
1239 Make_Defining_Identifier
(Loc
,
1240 Chars
=> New_Internal_Name
('S'));
1243 Make_Object_Declaration
(Loc
,
1244 Defining_Identifier
=> Id
,
1245 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
1247 Insert_Before
(Parent
(N
), Decl
);
1251 Make_Assignment_Statement
(Loc
,
1252 Name
=> New_Occurrence_Of
(Id
, Loc
),
1253 Expression
=> Relocate_Node
(Original_Bound
));
1255 Insert_Before
(Parent
(N
), Assign
);
1258 Rewrite
(Original_Bound
, New_Occurrence_Of
(Id
, Loc
));
1260 if Nkind
(Assign
) = N_Assignment_Statement
then
1261 return Expression
(Assign
);
1263 return Original_Bound
;
1267 -- Start of processing for Process_Bounds
1270 -- Determine expected type of range by analyzing separate copy
1272 Set_Parent
(R_Copy
, Parent
(R
));
1273 Pre_Analyze_And_Resolve
(R_Copy
);
1274 Typ
:= Etype
(R_Copy
);
1276 -- If the type of the discrete range is Universal_Integer, then
1277 -- the bound's type must be resolved to Integer, and any object
1278 -- used to hold the bound must also have type Integer.
1280 if Typ
= Universal_Integer
then
1281 Typ
:= Standard_Integer
;
1286 New_Lo_Bound
:= One_Bound
(Lo
, Low_Bound
(R_Copy
));
1287 New_Hi_Bound
:= One_Bound
(Hi
, High_Bound
(R_Copy
));
1289 -- Propagate staticness to loop range itself, in case the
1290 -- corresponding subtype is static.
1292 if New_Lo_Bound
/= Lo
1293 and then Is_Static_Expression
(New_Lo_Bound
)
1295 Rewrite
(Low_Bound
(R
), New_Copy
(New_Lo_Bound
));
1298 if New_Hi_Bound
/= Hi
1299 and then Is_Static_Expression
(New_Hi_Bound
)
1301 Rewrite
(High_Bound
(R
), New_Copy
(New_Hi_Bound
));
1305 --------------------------------------
1306 -- Check_Controlled_Array_Attribute --
1307 --------------------------------------
1309 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
) is
1311 if Nkind
(DS
) = N_Attribute_Reference
1312 and then Is_Entity_Name
(Prefix
(DS
))
1313 and then Ekind
(Entity
(Prefix
(DS
))) = E_Function
1314 and then Is_Array_Type
(Etype
(Entity
(Prefix
(DS
))))
1317 Component_Type
(Etype
(Entity
(Prefix
(DS
)))))
1318 and then Expander_Active
1321 Loc
: constant Source_Ptr
:= Sloc
(N
);
1322 Arr
: constant Entity_Id
:=
1323 Etype
(Entity
(Prefix
(DS
)));
1324 Indx
: constant Entity_Id
:=
1325 Base_Type
(Etype
(First_Index
(Arr
)));
1326 Subt
: constant Entity_Id
:=
1327 Make_Defining_Identifier
1328 (Loc
, New_Internal_Name
('S'));
1333 Make_Subtype_Declaration
(Loc
,
1334 Defining_Identifier
=> Subt
,
1335 Subtype_Indication
=>
1336 Make_Subtype_Indication
(Loc
,
1337 Subtype_Mark
=> New_Reference_To
(Indx
, Loc
),
1339 Make_Range_Constraint
(Loc
,
1340 Relocate_Node
(DS
))));
1341 Insert_Before
(Parent
(N
), Decl
);
1345 Make_Attribute_Reference
(Loc
,
1346 Prefix
=> New_Reference_To
(Subt
, Loc
),
1347 Attribute_Name
=> Attribute_Name
(DS
)));
1351 end Check_Controlled_Array_Attribute
;
1353 -- Start of processing for Analyze_Iteration_Scheme
1356 -- For an infinite loop, there is no iteration scheme
1363 Cond
: constant Node_Id
:= Condition
(N
);
1366 -- For WHILE loop, verify that the condition is a Boolean
1367 -- expression and resolve and check it.
1369 if Present
(Cond
) then
1370 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1371 Check_Unset_Reference
(Cond
);
1373 -- Else we have a FOR loop
1377 LP
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
1378 Id
: constant Entity_Id
:= Defining_Identifier
(LP
);
1379 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(LP
);
1384 -- We always consider the loop variable to be referenced,
1385 -- since the loop may be used just for counting purposes.
1387 Generate_Reference
(Id
, N
, ' ');
1389 -- Check for case of loop variable hiding a local
1390 -- variable (used later on to give a nice warning
1391 -- if the hidden variable is never assigned).
1394 H
: constant Entity_Id
:= Homonym
(Id
);
1397 and then Enclosing_Dynamic_Scope
(H
) =
1398 Enclosing_Dynamic_Scope
(Id
)
1399 and then Ekind
(H
) = E_Variable
1400 and then Is_Discrete_Type
(Etype
(H
))
1402 Set_Hiding_Loop_Variable
(H
, Id
);
1406 -- Now analyze the subtype definition. If it is
1407 -- a range, create temporaries for bounds.
1409 if Nkind
(DS
) = N_Range
1410 and then Expander_Active
1412 Process_Bounds
(DS
);
1421 -- The subtype indication may denote the completion
1422 -- of an incomplete type declaration.
1424 if Is_Entity_Name
(DS
)
1425 and then Present
(Entity
(DS
))
1426 and then Is_Type
(Entity
(DS
))
1427 and then Ekind
(Entity
(DS
)) = E_Incomplete_Type
1429 Set_Entity
(DS
, Get_Full_View
(Entity
(DS
)));
1430 Set_Etype
(DS
, Entity
(DS
));
1433 if not Is_Discrete_Type
(Etype
(DS
)) then
1434 Wrong_Type
(DS
, Any_Discrete
);
1435 Set_Etype
(DS
, Any_Type
);
1438 Check_Controlled_Array_Attribute
(DS
);
1440 Make_Index
(DS
, LP
);
1442 Set_Ekind
(Id
, E_Loop_Parameter
);
1443 Set_Etype
(Id
, Etype
(DS
));
1444 Set_Is_Known_Valid
(Id
, True);
1446 -- The loop is not a declarative part, so the only entity
1447 -- declared "within" must be frozen explicitly.
1450 Flist
: constant List_Id
:= Freeze_Entity
(Id
, Sloc
(N
));
1452 if Is_Non_Empty_List
(Flist
) then
1453 Insert_Actions
(N
, Flist
);
1457 -- Check for null or possibly null range and issue warning.
1458 -- We suppress such messages in generic templates and
1459 -- instances, because in practice they tend to be dubious
1462 if Nkind
(DS
) = N_Range
1463 and then Comes_From_Source
(N
)
1466 L
: constant Node_Id
:= Low_Bound
(DS
);
1467 H
: constant Node_Id
:= High_Bound
(DS
);
1477 Determine_Range
(L
, LOK
, Llo
, Lhi
);
1478 Determine_Range
(H
, HOK
, Hlo
, Hhi
);
1480 -- If range of loop is null, issue warning
1482 if (LOK
and HOK
) and then Llo
> Hhi
then
1484 -- Suppress the warning if inside a generic
1485 -- template or instance, since in practice
1486 -- they tend to be dubious in these cases since
1487 -- they can result from intended parametrization.
1489 if not Inside_A_Generic
1490 and then not In_Instance
1493 ("?loop range is null, loop will not execute",
1497 -- Since we know the range of the loop is null,
1498 -- set the appropriate flag to suppress any
1499 -- warnings that would otherwise be issued in
1500 -- the body of the loop that will not execute.
1501 -- We do this even in the generic case, since
1502 -- if it is dubious to warn on the null loop
1503 -- itself, it is certainly dubious to warn for
1504 -- conditions that occur inside it!
1506 Set_Is_Null_Loop
(Parent
(N
));
1508 -- The other case for a warning is a reverse loop
1509 -- where the upper bound is the integer literal
1510 -- zero or one, and the lower bound can be positive.
1512 -- For example, we have
1514 -- for J in reverse N .. 1 loop
1516 -- In practice, this is very likely to be a case
1517 -- of reversing the bounds incorrectly in the range.
1519 elsif Reverse_Present
(LP
)
1520 and then Nkind
(Original_Node
(H
)) =
1522 and then (Intval
(H
) = Uint_0
1524 Intval
(H
) = Uint_1
)
1527 Error_Msg_N
("?loop range may be null", DS
);
1528 Error_Msg_N
("\?bounds may be wrong way round", DS
);
1536 end Analyze_Iteration_Scheme
;
1542 -- Note: the semantic work required for analyzing labels (setting them as
1543 -- reachable) was done in a prepass through the statements in the block,
1544 -- so that forward gotos would be properly handled. See Analyze_Statements
1545 -- for further details. The only processing required here is to deal with
1546 -- optimizations that depend on an assumption of sequential control flow,
1547 -- since of course the occurrence of a label breaks this assumption.
1549 procedure Analyze_Label
(N
: Node_Id
) is
1550 pragma Warnings
(Off
, N
);
1552 Kill_Current_Values
;
1555 --------------------------
1556 -- Analyze_Label_Entity --
1557 --------------------------
1559 procedure Analyze_Label_Entity
(E
: Entity_Id
) is
1561 Set_Ekind
(E
, E_Label
);
1562 Set_Etype
(E
, Standard_Void_Type
);
1563 Set_Enclosing_Scope
(E
, Current_Scope
);
1564 Set_Reachable
(E
, True);
1565 end Analyze_Label_Entity
;
1567 ----------------------------
1568 -- Analyze_Loop_Statement --
1569 ----------------------------
1571 procedure Analyze_Loop_Statement
(N
: Node_Id
) is
1572 Id
: constant Node_Id
:= Identifier
(N
);
1576 if Present
(Id
) then
1578 -- Make name visible, e.g. for use in exit statements. Loop
1579 -- labels are always considered to be referenced.
1583 Generate_Reference
(Ent
, N
, ' ');
1584 Generate_Definition
(Ent
);
1586 -- If we found a label, mark its type. If not, ignore it, since it
1587 -- means we have a conflicting declaration, which would already have
1588 -- been diagnosed at declaration time. Set Label_Construct of the
1589 -- implicit label declaration, which is not created by the parser
1590 -- for generic units.
1592 if Ekind
(Ent
) = E_Label
then
1593 Set_Ekind
(Ent
, E_Loop
);
1595 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
1596 Set_Label_Construct
(Parent
(Ent
), N
);
1600 -- Case of no identifier present
1603 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Sloc
(N
), 'L');
1604 Set_Etype
(Ent
, Standard_Void_Type
);
1605 Set_Parent
(Ent
, N
);
1608 -- Kill current values on entry to loop, since statements in body
1609 -- of loop may have been executed before the loop is entered.
1610 -- Similarly we kill values after the loop, since we do not know
1611 -- that the body of the loop was executed.
1613 Kill_Current_Values
;
1615 Analyze_Iteration_Scheme
(Iteration_Scheme
(N
));
1616 Analyze_Statements
(Statements
(N
));
1617 Process_End_Label
(N
, 'e', Ent
);
1619 Kill_Current_Values
;
1620 end Analyze_Loop_Statement
;
1622 ----------------------------
1623 -- Analyze_Null_Statement --
1624 ----------------------------
1626 -- Note: the semantics of the null statement is implemented by a single
1627 -- null statement, too bad everything isn't as simple as this!
1629 procedure Analyze_Null_Statement
(N
: Node_Id
) is
1630 pragma Warnings
(Off
, N
);
1633 end Analyze_Null_Statement
;
1635 ------------------------
1636 -- Analyze_Statements --
1637 ------------------------
1639 procedure Analyze_Statements
(L
: List_Id
) is
1644 -- The labels declared in the statement list are reachable from
1645 -- statements in the list. We do this as a prepass so that any
1646 -- goto statement will be properly flagged if its target is not
1647 -- reachable. This is not required, but is nice behavior!
1650 while Present
(S
) loop
1651 if Nkind
(S
) = N_Label
then
1652 Analyze
(Identifier
(S
));
1653 Lab
:= Entity
(Identifier
(S
));
1655 -- If we found a label mark it as reachable
1657 if Ekind
(Lab
) = E_Label
then
1658 Generate_Definition
(Lab
);
1659 Set_Reachable
(Lab
);
1661 if Nkind
(Parent
(Lab
)) = N_Implicit_Label_Declaration
then
1662 Set_Label_Construct
(Parent
(Lab
), S
);
1665 -- If we failed to find a label, it means the implicit declaration
1666 -- of the label was hidden. A for-loop parameter can do this to
1667 -- a label with the same name inside the loop, since the implicit
1668 -- label declaration is in the innermost enclosing body or block
1672 Error_Msg_Sloc
:= Sloc
(Lab
);
1674 ("implicit label declaration for & is hidden#",
1682 -- Perform semantic analysis on all statements
1684 Conditional_Statements_Begin
;
1687 while Present
(S
) loop
1692 Conditional_Statements_End
;
1694 -- Make labels unreachable. Visibility is not sufficient, because
1695 -- labels in one if-branch for example are not reachable from the
1696 -- other branch, even though their declarations are in the enclosing
1697 -- declarative part.
1700 while Present
(S
) loop
1701 if Nkind
(S
) = N_Label
then
1702 Set_Reachable
(Entity
(Identifier
(S
)), False);
1707 end Analyze_Statements
;
1709 --------------------------------------------
1710 -- Check_Possible_Current_Value_Condition --
1711 --------------------------------------------
1713 procedure Check_Possible_Current_Value_Condition
(Cnode
: Node_Id
) is
1717 -- Loop to deal with (ignore for now) any NOT operators present
1719 Cond
:= Condition
(Cnode
);
1720 while Nkind
(Cond
) = N_Op_Not
loop
1721 Cond
:= Right_Opnd
(Cond
);
1724 -- Check possible relational operator
1726 if Nkind
(Cond
) = N_Op_Eq
1728 Nkind
(Cond
) = N_Op_Ne
1730 Nkind
(Cond
) = N_Op_Ge
1732 Nkind
(Cond
) = N_Op_Le
1734 Nkind
(Cond
) = N_Op_Gt
1736 Nkind
(Cond
) = N_Op_Lt
1738 if Compile_Time_Known_Value
(Right_Opnd
(Cond
))
1739 and then Nkind
(Left_Opnd
(Cond
)) = N_Identifier
1742 Ent
: constant Entity_Id
:= Entity
(Left_Opnd
(Cond
));
1745 if Ekind
(Ent
) = E_Variable
1747 Ekind
(Ent
) = E_Constant
1751 Ekind
(Ent
) = E_Loop_Parameter
1753 -- Here we have a case where the Current_Value field
1754 -- may need to be set. We set it if it is not already
1755 -- set to a compile time expression value.
1757 -- Note that this represents a decision that one
1758 -- condition blots out another previous one. That's
1759 -- certainly right if they occur at the same level.
1760 -- If the second one is nested, then the decision is
1761 -- neither right nor wrong (it would be equally OK
1762 -- to leave the outer one in place, or take the new
1763 -- inner one. Really we should record both, but our
1764 -- data structures are not that elaborate.
1766 if Nkind
(Current_Value
(Ent
)) not in N_Subexpr
then
1767 Set_Current_Value
(Ent
, Cnode
);
1773 end Check_Possible_Current_Value_Condition
;
1775 ----------------------------
1776 -- Check_Unreachable_Code --
1777 ----------------------------
1779 procedure Check_Unreachable_Code
(N
: Node_Id
) is
1780 Error_Loc
: Source_Ptr
;
1784 if Is_List_Member
(N
)
1785 and then Comes_From_Source
(N
)
1791 Nxt
:= Original_Node
(Next
(N
));
1793 -- If a label follows us, then we never have dead code, since
1794 -- someone could branch to the label, so we just ignore it.
1796 if Nkind
(Nxt
) = N_Label
then
1799 -- Otherwise see if we have a real statement following us
1802 and then Comes_From_Source
(Nxt
)
1803 and then Is_Statement
(Nxt
)
1805 -- Special very annoying exception. If we have a return that
1806 -- follows a raise, then we allow it without a warning, since
1807 -- the Ada RM annoyingly requires a useless return here!
1809 if Nkind
(Original_Node
(N
)) /= N_Raise_Statement
1810 or else Nkind
(Nxt
) /= N_Return_Statement
1812 -- The rather strange shenanigans with the warning message
1813 -- here reflects the fact that Kill_Dead_Code is very good
1814 -- at removing warnings in deleted code, and this is one
1815 -- warning we would prefer NOT to have removed :-)
1817 Error_Loc
:= Sloc
(Nxt
);
1819 -- If we have unreachable code, analyze and remove the
1820 -- unreachable code, since it is useless and we don't
1821 -- want to generate junk warnings.
1823 -- We skip this step if we are not in code generation mode.
1824 -- This is the one case where we remove dead code in the
1825 -- semantics as opposed to the expander, and we do not want
1826 -- to remove code if we are not in code generation mode,
1827 -- since this messes up the ASIS trees.
1829 -- Note that one might react by moving the whole circuit to
1830 -- exp_ch5, but then we lose the warning in -gnatc mode.
1832 if Operating_Mode
= Generate_Code
then
1836 -- Quit deleting when we have nothing more to delete
1837 -- or if we hit a label (since someone could transfer
1838 -- control to a label, so we should not delete it).
1840 exit when No
(Nxt
) or else Nkind
(Nxt
) = N_Label
;
1842 -- Statement/declaration is to be deleted
1846 Kill_Dead_Code
(Nxt
);
1850 -- Now issue the warning
1852 Error_Msg
("?unreachable code", Error_Loc
);
1855 -- If the unconditional transfer of control instruction is
1856 -- the last statement of a sequence, then see if our parent
1857 -- is one of the constructs for which we count unblocked exits,
1858 -- and if so, adjust the count.
1863 -- Statements in THEN part or ELSE part of IF statement
1865 if Nkind
(P
) = N_If_Statement
then
1868 -- Statements in ELSIF part of an IF statement
1870 elsif Nkind
(P
) = N_Elsif_Part
then
1872 pragma Assert
(Nkind
(P
) = N_If_Statement
);
1874 -- Statements in CASE statement alternative
1876 elsif Nkind
(P
) = N_Case_Statement_Alternative
then
1878 pragma Assert
(Nkind
(P
) = N_Case_Statement
);
1880 -- Statements in body of block
1882 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
1883 and then Nkind
(Parent
(P
)) = N_Block_Statement
1887 -- Statements in exception handler in a block
1889 elsif Nkind
(P
) = N_Exception_Handler
1890 and then Nkind
(Parent
(P
)) = N_Handled_Sequence_Of_Statements
1891 and then Nkind
(Parent
(Parent
(P
))) = N_Block_Statement
1895 -- None of these cases, so return
1901 -- This was one of the cases we are looking for (i.e. the
1902 -- parent construct was IF, CASE or block) so decrement count.
1904 Unblocked_Exit_Count
:= Unblocked_Exit_Count
- 1;
1908 end Check_Unreachable_Code
;