1 /* Induction variable optimizations.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass tries to find the optimal set of induction variables for the loop.
21 It optimizes just the basic linear induction variables (although adding
22 support for other types should not be too hard). It includes the
23 optimizations commonly known as strength reduction, induction variable
24 coalescing and induction variable elimination. It does it in the
27 1) The interesting uses of induction variables are found. This includes
29 -- uses of induction variables in non-linear expressions
30 -- addresses of arrays
31 -- comparisons of induction variables
33 Note the interesting uses are categorized and handled in group.
34 Generally, address type uses are grouped together if their iv bases
35 are different in constant offset.
37 2) Candidates for the induction variables are found. This includes
39 -- old induction variables
40 -- the variables defined by expressions derived from the "interesting
43 3) The optimal (w.r. to a cost function) set of variables is chosen. The
44 cost function assigns a cost to sets of induction variables and consists
47 -- The group/use costs. Each of the interesting groups/uses chooses
48 the best induction variable in the set and adds its cost to the sum.
49 The cost reflects the time spent on modifying the induction variables
50 value to be usable for the given purpose (adding base and offset for
52 -- The variable costs. Each of the variables has a cost assigned that
53 reflects the costs associated with incrementing the value of the
54 variable. The original variables are somewhat preferred.
55 -- The set cost. Depending on the size of the set, extra cost may be
56 added to reflect register pressure.
58 All the costs are defined in a machine-specific way, using the target
59 hooks and machine descriptions to determine them.
61 4) The trees are transformed to use the new variables, the dead code is
64 All of this is done loop by loop. Doing it globally is theoretically
65 possible, it might give a better performance and it might enable us
66 to decide costs more precisely, but getting all the interactions right
67 would be complicated. */
71 #include "coretypes.h"
77 #include "tree-pass.h"
82 #include "insn-config.h"
86 #include "gimple-pretty-print.h"
88 #include "fold-const.h"
89 #include "stor-layout.h"
92 #include "gimple-iterator.h"
93 #include "gimplify-me.h"
95 #include "tree-ssa-loop-ivopts.h"
96 #include "tree-ssa-loop-manip.h"
97 #include "tree-ssa-loop-niter.h"
98 #include "tree-ssa-loop.h"
101 #include "tree-dfa.h"
102 #include "tree-ssa.h"
104 #include "tree-scalar-evolution.h"
106 #include "tree-affine.h"
107 #include "tree-ssa-propagate.h"
108 #include "tree-ssa-address.h"
109 #include "builtins.h"
110 #include "tree-vectorizer.h"
112 /* FIXME: Expressions are expanded to RTL in this pass to determine the
113 cost of different addressing modes. This should be moved to a TBD
114 interface between the GIMPLE and RTL worlds. */
116 /* The infinite cost. */
117 #define INFTY 10000000
119 /* Returns the expected number of loop iterations for LOOP.
120 The average trip count is computed from profile data if it
123 static inline HOST_WIDE_INT
124 avg_loop_niter (struct loop
*loop
)
126 HOST_WIDE_INT niter
= estimated_stmt_executions_int (loop
);
129 niter
= likely_max_stmt_executions_int (loop
);
131 if (niter
== -1 || niter
> PARAM_VALUE (PARAM_AVG_LOOP_NITER
))
132 return PARAM_VALUE (PARAM_AVG_LOOP_NITER
);
140 /* Representation of the induction variable. */
143 tree base
; /* Initial value of the iv. */
144 tree base_object
; /* A memory object to that the induction variable points. */
145 tree step
; /* Step of the iv (constant only). */
146 tree ssa_name
; /* The ssa name with the value. */
147 struct iv_use
*nonlin_use
; /* The identifier in the use if it is the case. */
148 bool biv_p
; /* Is it a biv? */
149 bool no_overflow
; /* True if the iv doesn't overflow. */
150 bool have_address_use
;/* For biv, indicate if it's used in any address
154 /* Per-ssa version information (induction variable descriptions, etc.). */
157 tree name
; /* The ssa name. */
158 struct iv
*iv
; /* Induction variable description. */
159 bool has_nonlin_use
; /* For a loop-level invariant, whether it is used in
160 an expression that is not an induction variable. */
161 bool preserve_biv
; /* For the original biv, whether to preserve it. */
162 unsigned inv_id
; /* Id of an invariant. */
168 USE_NONLINEAR_EXPR
, /* Use in a nonlinear expression. */
169 USE_ADDRESS
, /* Use in an address. */
170 USE_COMPARE
/* Use is a compare. */
173 /* Cost of a computation. */
176 comp_cost (): cost (0), complexity (0), scratch (0)
179 comp_cost (int cost
, unsigned complexity
, int scratch
= 0)
180 : cost (cost
), complexity (complexity
), scratch (scratch
)
183 /* Returns true if COST is infinite. */
184 bool infinite_cost_p ();
186 /* Adds costs COST1 and COST2. */
187 friend comp_cost
operator+ (comp_cost cost1
, comp_cost cost2
);
189 /* Adds COST to the comp_cost. */
190 comp_cost
operator+= (comp_cost cost
);
192 /* Adds constant C to this comp_cost. */
193 comp_cost
operator+= (HOST_WIDE_INT c
);
195 /* Subtracts constant C to this comp_cost. */
196 comp_cost
operator-= (HOST_WIDE_INT c
);
198 /* Divide the comp_cost by constant C. */
199 comp_cost
operator/= (HOST_WIDE_INT c
);
201 /* Multiply the comp_cost by constant C. */
202 comp_cost
operator*= (HOST_WIDE_INT c
);
204 /* Subtracts costs COST1 and COST2. */
205 friend comp_cost
operator- (comp_cost cost1
, comp_cost cost2
);
207 /* Subtracts COST from this comp_cost. */
208 comp_cost
operator-= (comp_cost cost
);
210 /* Returns true if COST1 is smaller than COST2. */
211 friend bool operator< (comp_cost cost1
, comp_cost cost2
);
213 /* Returns true if COST1 and COST2 are equal. */
214 friend bool operator== (comp_cost cost1
, comp_cost cost2
);
216 /* Returns true if COST1 is smaller or equal than COST2. */
217 friend bool operator<= (comp_cost cost1
, comp_cost cost2
);
219 int cost
; /* The runtime cost. */
220 unsigned complexity
; /* The estimate of the complexity of the code for
221 the computation (in no concrete units --
222 complexity field should be larger for more
223 complex expressions and addressing modes). */
224 int scratch
; /* Scratch used during cost computation. */
227 static const comp_cost no_cost
;
228 static const comp_cost
infinite_cost (INFTY
, INFTY
, INFTY
);
231 comp_cost::infinite_cost_p ()
233 return cost
== INFTY
;
237 operator+ (comp_cost cost1
, comp_cost cost2
)
239 if (cost1
.infinite_cost_p () || cost2
.infinite_cost_p ())
240 return infinite_cost
;
242 cost1
.cost
+= cost2
.cost
;
243 cost1
.complexity
+= cost2
.complexity
;
249 operator- (comp_cost cost1
, comp_cost cost2
)
251 if (cost1
.infinite_cost_p ())
252 return infinite_cost
;
254 gcc_assert (!cost2
.infinite_cost_p ());
256 cost1
.cost
-= cost2
.cost
;
257 cost1
.complexity
-= cost2
.complexity
;
263 comp_cost::operator+= (comp_cost cost
)
265 *this = *this + cost
;
270 comp_cost::operator+= (HOST_WIDE_INT c
)
272 if (infinite_cost_p ())
281 comp_cost::operator-= (HOST_WIDE_INT c
)
283 if (infinite_cost_p ())
292 comp_cost::operator/= (HOST_WIDE_INT c
)
294 if (infinite_cost_p ())
303 comp_cost::operator*= (HOST_WIDE_INT c
)
305 if (infinite_cost_p ())
314 comp_cost::operator-= (comp_cost cost
)
316 *this = *this - cost
;
321 operator< (comp_cost cost1
, comp_cost cost2
)
323 if (cost1
.cost
== cost2
.cost
)
324 return cost1
.complexity
< cost2
.complexity
;
326 return cost1
.cost
< cost2
.cost
;
330 operator== (comp_cost cost1
, comp_cost cost2
)
332 return cost1
.cost
== cost2
.cost
333 && cost1
.complexity
== cost2
.complexity
;
337 operator<= (comp_cost cost1
, comp_cost cost2
)
339 return cost1
< cost2
|| cost1
== cost2
;
342 struct iv_inv_expr_ent
;
344 /* The candidate - cost pair. */
347 struct iv_cand
*cand
; /* The candidate. */
348 comp_cost cost
; /* The cost. */
349 bitmap depends_on
; /* The list of invariants that have to be
351 tree value
; /* For final value elimination, the expression for
352 the final value of the iv. For iv elimination,
353 the new bound to compare with. */
354 enum tree_code comp
; /* For iv elimination, the comparison. */
355 iv_inv_expr_ent
*inv_expr
; /* Loop invariant expression. */
361 unsigned id
; /* The id of the use. */
362 unsigned group_id
; /* The group id the use belongs to. */
363 enum use_type type
; /* Type of the use. */
364 struct iv
*iv
; /* The induction variable it is based on. */
365 gimple
*stmt
; /* Statement in that it occurs. */
366 tree
*op_p
; /* The place where it occurs. */
368 tree addr_base
; /* Base address with const offset stripped. */
369 unsigned HOST_WIDE_INT addr_offset
;
370 /* Const offset stripped from base address. */
376 /* The id of the group. */
378 /* Uses of the group are of the same type. */
380 /* The set of "related" IV candidates, plus the important ones. */
381 bitmap related_cands
;
382 /* Number of IV candidates in the cost_map. */
383 unsigned n_map_members
;
384 /* The costs wrto the iv candidates. */
385 struct cost_pair
*cost_map
;
386 /* The selected candidate for the group. */
387 struct iv_cand
*selected
;
388 /* Uses in the group. */
389 vec
<struct iv_use
*> vuses
;
392 /* The position where the iv is computed. */
395 IP_NORMAL
, /* At the end, just before the exit condition. */
396 IP_END
, /* At the end of the latch block. */
397 IP_BEFORE_USE
, /* Immediately before a specific use. */
398 IP_AFTER_USE
, /* Immediately after a specific use. */
399 IP_ORIGINAL
/* The original biv. */
402 /* The induction variable candidate. */
405 unsigned id
; /* The number of the candidate. */
406 bool important
; /* Whether this is an "important" candidate, i.e. such
407 that it should be considered by all uses. */
408 ENUM_BITFIELD(iv_position
) pos
: 8; /* Where it is computed. */
409 gimple
*incremented_at
;/* For original biv, the statement where it is
411 tree var_before
; /* The variable used for it before increment. */
412 tree var_after
; /* The variable used for it after increment. */
413 struct iv
*iv
; /* The value of the candidate. NULL for
414 "pseudocandidate" used to indicate the possibility
415 to replace the final value of an iv by direct
416 computation of the value. */
417 unsigned cost
; /* Cost of the candidate. */
418 unsigned cost_step
; /* Cost of the candidate's increment operation. */
419 struct iv_use
*ainc_use
; /* For IP_{BEFORE,AFTER}_USE candidates, the place
420 where it is incremented. */
421 bitmap depends_on
; /* The list of invariants that are used in step of the
423 struct iv
*orig_iv
; /* The original iv if this cand is added from biv with
427 /* Hashtable entry for common candidate derived from iv uses. */
428 struct iv_common_cand
432 /* IV uses from which this common candidate is derived. */
433 auto_vec
<struct iv_use
*> uses
;
437 /* Hashtable helpers. */
439 struct iv_common_cand_hasher
: delete_ptr_hash
<iv_common_cand
>
441 static inline hashval_t
hash (const iv_common_cand
*);
442 static inline bool equal (const iv_common_cand
*, const iv_common_cand
*);
445 /* Hash function for possible common candidates. */
448 iv_common_cand_hasher::hash (const iv_common_cand
*ccand
)
453 /* Hash table equality function for common candidates. */
456 iv_common_cand_hasher::equal (const iv_common_cand
*ccand1
,
457 const iv_common_cand
*ccand2
)
459 return (ccand1
->hash
== ccand2
->hash
460 && operand_equal_p (ccand1
->base
, ccand2
->base
, 0)
461 && operand_equal_p (ccand1
->step
, ccand2
->step
, 0)
462 && (TYPE_PRECISION (TREE_TYPE (ccand1
->base
))
463 == TYPE_PRECISION (TREE_TYPE (ccand2
->base
))));
466 /* Loop invariant expression hashtable entry. */
468 struct iv_inv_expr_ent
470 /* Tree expression of the entry. */
472 /* Unique indentifier. */
478 /* Sort iv_inv_expr_ent pair A and B by id field. */
481 sort_iv_inv_expr_ent (const void *a
, const void *b
)
483 const iv_inv_expr_ent
* const *e1
= (const iv_inv_expr_ent
* const *) (a
);
484 const iv_inv_expr_ent
* const *e2
= (const iv_inv_expr_ent
* const *) (b
);
486 unsigned id1
= (*e1
)->id
;
487 unsigned id2
= (*e2
)->id
;
497 /* Hashtable helpers. */
499 struct iv_inv_expr_hasher
: free_ptr_hash
<iv_inv_expr_ent
>
501 static inline hashval_t
hash (const iv_inv_expr_ent
*);
502 static inline bool equal (const iv_inv_expr_ent
*, const iv_inv_expr_ent
*);
505 /* Hash function for loop invariant expressions. */
508 iv_inv_expr_hasher::hash (const iv_inv_expr_ent
*expr
)
513 /* Hash table equality function for expressions. */
516 iv_inv_expr_hasher::equal (const iv_inv_expr_ent
*expr1
,
517 const iv_inv_expr_ent
*expr2
)
519 return expr1
->hash
== expr2
->hash
520 && operand_equal_p (expr1
->expr
, expr2
->expr
, 0);
525 /* The currently optimized loop. */
526 struct loop
*current_loop
;
527 source_location loop_loc
;
529 /* Numbers of iterations for all exits of the current loop. */
530 hash_map
<edge
, tree_niter_desc
*> *niters
;
532 /* Number of registers used in it. */
535 /* The size of version_info array allocated. */
536 unsigned version_info_size
;
538 /* The array of information for the ssa names. */
539 struct version_info
*version_info
;
541 /* The hashtable of loop invariant expressions created
543 hash_table
<iv_inv_expr_hasher
> *inv_expr_tab
;
545 /* Loop invariant expression id. */
548 /* The bitmap of indices in version_info whose value was changed. */
551 /* The uses of induction variables. */
552 vec
<iv_group
*> vgroups
;
554 /* The candidates. */
555 vec
<iv_cand
*> vcands
;
557 /* A bitmap of important candidates. */
558 bitmap important_candidates
;
560 /* Cache used by tree_to_aff_combination_expand. */
561 hash_map
<tree
, name_expansion
*> *name_expansion_cache
;
563 /* The hashtable of common candidates derived from iv uses. */
564 hash_table
<iv_common_cand_hasher
> *iv_common_cand_tab
;
566 /* The common candidates. */
567 vec
<iv_common_cand
*> iv_common_cands
;
569 /* The maximum invariant id. */
572 /* Number of no_overflow BIVs which are not used in memory address. */
573 unsigned bivs_not_used_in_addr
;
575 /* Obstack for iv structure. */
576 struct obstack iv_obstack
;
578 /* Whether to consider just related and important candidates when replacing a
580 bool consider_all_candidates
;
582 /* Are we optimizing for speed? */
585 /* Whether the loop body includes any function calls. */
586 bool body_includes_call
;
588 /* Whether the loop body can only be exited via single exit. */
589 bool loop_single_exit_p
;
592 /* An assignment of iv candidates to uses. */
596 /* The number of uses covered by the assignment. */
599 /* Number of uses that cannot be expressed by the candidates in the set. */
602 /* Candidate assigned to a use, together with the related costs. */
603 struct cost_pair
**cand_for_group
;
605 /* Number of times each candidate is used. */
606 unsigned *n_cand_uses
;
608 /* The candidates used. */
611 /* The number of candidates in the set. */
614 /* Total number of registers needed. */
617 /* Total cost of expressing uses. */
618 comp_cost cand_use_cost
;
620 /* Total cost of candidates. */
623 /* Number of times each invariant is used. */
624 unsigned *n_invariant_uses
;
626 /* Hash set with used invariant expression. */
627 hash_map
<iv_inv_expr_ent
*, unsigned> *used_inv_exprs
;
629 /* Total cost of the assignment. */
633 /* Difference of two iv candidate assignments. */
638 struct iv_group
*group
;
640 /* An old assignment (for rollback purposes). */
641 struct cost_pair
*old_cp
;
643 /* A new assignment. */
644 struct cost_pair
*new_cp
;
646 /* Next change in the list. */
647 struct iv_ca_delta
*next
;
650 /* Bound on number of candidates below that all candidates are considered. */
652 #define CONSIDER_ALL_CANDIDATES_BOUND \
653 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
655 /* If there are more iv occurrences, we just give up (it is quite unlikely that
656 optimizing such a loop would help, and it would take ages). */
658 #define MAX_CONSIDERED_GROUPS \
659 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
661 /* If there are at most this number of ivs in the set, try removing unnecessary
662 ivs from the set always. */
664 #define ALWAYS_PRUNE_CAND_SET_BOUND \
665 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
667 /* The list of trees for that the decl_rtl field must be reset is stored
670 static vec
<tree
> decl_rtl_to_reset
;
672 static comp_cost
force_expr_to_var_cost (tree
, bool);
674 /* The single loop exit if it dominates the latch, NULL otherwise. */
677 single_dom_exit (struct loop
*loop
)
679 edge exit
= single_exit (loop
);
684 if (!just_once_each_iteration_p (loop
, exit
->src
))
690 /* Dumps information about the induction variable IV to FILE. Don't dump
691 variable's name if DUMP_NAME is FALSE. The information is dumped with
692 preceding spaces indicated by INDENT_LEVEL. */
695 dump_iv (FILE *file
, struct iv
*iv
, bool dump_name
, unsigned indent_level
)
698 const char spaces
[9] = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\0'};
700 if (indent_level
> 4)
702 p
= spaces
+ 8 - (indent_level
<< 1);
704 fprintf (file
, "%sIV struct:\n", p
);
705 if (iv
->ssa_name
&& dump_name
)
707 fprintf (file
, "%s SSA_NAME:\t", p
);
708 print_generic_expr (file
, iv
->ssa_name
, TDF_SLIM
);
709 fprintf (file
, "\n");
712 fprintf (file
, "%s Type:\t", p
);
713 print_generic_expr (file
, TREE_TYPE (iv
->base
), TDF_SLIM
);
714 fprintf (file
, "\n");
716 fprintf (file
, "%s Base:\t", p
);
717 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
718 fprintf (file
, "\n");
720 fprintf (file
, "%s Step:\t", p
);
721 print_generic_expr (file
, iv
->step
, TDF_SLIM
);
722 fprintf (file
, "\n");
726 fprintf (file
, "%s Object:\t", p
);
727 print_generic_expr (file
, iv
->base_object
, TDF_SLIM
);
728 fprintf (file
, "\n");
731 fprintf (file
, "%s Biv:\t%c\n", p
, iv
->biv_p
? 'Y' : 'N');
733 fprintf (file
, "%s Overflowness wrto loop niter:\t%s\n",
734 p
, iv
->no_overflow
? "No-overflow" : "Overflow");
737 /* Dumps information about the USE to FILE. */
740 dump_use (FILE *file
, struct iv_use
*use
)
742 fprintf (file
, " Use %d.%d:\n", use
->group_id
, use
->id
);
743 fprintf (file
, " At stmt:\t");
744 print_gimple_stmt (file
, use
->stmt
, 0, 0);
745 fprintf (file
, " At pos:\t");
747 print_generic_expr (file
, *use
->op_p
, TDF_SLIM
);
748 fprintf (file
, "\n");
749 dump_iv (file
, use
->iv
, false, 2);
752 /* Dumps information about the uses to FILE. */
755 dump_groups (FILE *file
, struct ivopts_data
*data
)
758 struct iv_group
*group
;
760 for (i
= 0; i
< data
->vgroups
.length (); i
++)
762 group
= data
->vgroups
[i
];
763 fprintf (file
, "Group %d:\n", group
->id
);
764 if (group
->type
== USE_NONLINEAR_EXPR
)
765 fprintf (file
, " Type:\tGENERIC\n");
766 else if (group
->type
== USE_ADDRESS
)
767 fprintf (file
, " Type:\tADDRESS\n");
770 gcc_assert (group
->type
== USE_COMPARE
);
771 fprintf (file
, " Type:\tCOMPARE\n");
773 for (j
= 0; j
< group
->vuses
.length (); j
++)
774 dump_use (file
, group
->vuses
[j
]);
778 /* Dumps information about induction variable candidate CAND to FILE. */
781 dump_cand (FILE *file
, struct iv_cand
*cand
)
783 struct iv
*iv
= cand
->iv
;
785 fprintf (file
, "Candidate %d:\n", cand
->id
);
786 if (cand
->depends_on
)
788 fprintf (file
, " Depend on: ");
789 dump_bitmap (file
, cand
->depends_on
);
792 if (cand
->var_before
)
794 fprintf (file
, " Var befor: ");
795 print_generic_expr (file
, cand
->var_before
, TDF_SLIM
);
796 fprintf (file
, "\n");
800 fprintf (file
, " Var after: ");
801 print_generic_expr (file
, cand
->var_after
, TDF_SLIM
);
802 fprintf (file
, "\n");
808 fprintf (file
, " Incr POS: before exit test\n");
812 fprintf (file
, " Incr POS: before use %d\n", cand
->ainc_use
->id
);
816 fprintf (file
, " Incr POS: after use %d\n", cand
->ainc_use
->id
);
820 fprintf (file
, " Incr POS: at end\n");
824 fprintf (file
, " Incr POS: orig biv\n");
828 dump_iv (file
, iv
, false, 1);
831 /* Returns the info for ssa version VER. */
833 static inline struct version_info
*
834 ver_info (struct ivopts_data
*data
, unsigned ver
)
836 return data
->version_info
+ ver
;
839 /* Returns the info for ssa name NAME. */
841 static inline struct version_info
*
842 name_info (struct ivopts_data
*data
, tree name
)
844 return ver_info (data
, SSA_NAME_VERSION (name
));
847 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
851 stmt_after_ip_normal_pos (struct loop
*loop
, gimple
*stmt
)
853 basic_block bb
= ip_normal_pos (loop
), sbb
= gimple_bb (stmt
);
857 if (sbb
== loop
->latch
)
863 return stmt
== last_stmt (bb
);
866 /* Returns true if STMT if after the place where the original induction
867 variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
868 if the positions are identical. */
871 stmt_after_inc_pos (struct iv_cand
*cand
, gimple
*stmt
, bool true_if_equal
)
873 basic_block cand_bb
= gimple_bb (cand
->incremented_at
);
874 basic_block stmt_bb
= gimple_bb (stmt
);
876 if (!dominated_by_p (CDI_DOMINATORS
, stmt_bb
, cand_bb
))
879 if (stmt_bb
!= cand_bb
)
883 && gimple_uid (stmt
) == gimple_uid (cand
->incremented_at
))
885 return gimple_uid (stmt
) > gimple_uid (cand
->incremented_at
);
888 /* Returns true if STMT if after the place where the induction variable
889 CAND is incremented in LOOP. */
892 stmt_after_increment (struct loop
*loop
, struct iv_cand
*cand
, gimple
*stmt
)
900 return stmt_after_ip_normal_pos (loop
, stmt
);
904 return stmt_after_inc_pos (cand
, stmt
, false);
907 return stmt_after_inc_pos (cand
, stmt
, true);
914 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
917 abnormal_ssa_name_p (tree exp
)
922 if (TREE_CODE (exp
) != SSA_NAME
)
925 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp
) != 0;
928 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
929 abnormal phi node. Callback for for_each_index. */
932 idx_contains_abnormal_ssa_name_p (tree base
, tree
*index
,
933 void *data ATTRIBUTE_UNUSED
)
935 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
937 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 2)))
939 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 3)))
943 return !abnormal_ssa_name_p (*index
);
946 /* Returns true if EXPR contains a ssa name that occurs in an
947 abnormal phi node. */
950 contains_abnormal_ssa_name_p (tree expr
)
953 enum tree_code_class codeclass
;
958 code
= TREE_CODE (expr
);
959 codeclass
= TREE_CODE_CLASS (code
);
961 if (code
== SSA_NAME
)
962 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr
) != 0;
964 if (code
== INTEGER_CST
965 || is_gimple_min_invariant (expr
))
968 if (code
== ADDR_EXPR
)
969 return !for_each_index (&TREE_OPERAND (expr
, 0),
970 idx_contains_abnormal_ssa_name_p
,
973 if (code
== COND_EXPR
)
974 return contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0))
975 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1))
976 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 2));
982 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1)))
987 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0)))
999 /* Returns the structure describing number of iterations determined from
1000 EXIT of DATA->current_loop, or NULL if something goes wrong. */
1002 static struct tree_niter_desc
*
1003 niter_for_exit (struct ivopts_data
*data
, edge exit
)
1005 struct tree_niter_desc
*desc
;
1006 tree_niter_desc
**slot
;
1010 data
->niters
= new hash_map
<edge
, tree_niter_desc
*>;
1014 slot
= data
->niters
->get (exit
);
1018 /* Try to determine number of iterations. We cannot safely work with ssa
1019 names that appear in phi nodes on abnormal edges, so that we do not
1020 create overlapping life ranges for them (PR 27283). */
1021 desc
= XNEW (struct tree_niter_desc
);
1022 if (!number_of_iterations_exit (data
->current_loop
,
1024 || contains_abnormal_ssa_name_p (desc
->niter
))
1029 data
->niters
->put (exit
, desc
);
1037 /* Returns the structure describing number of iterations determined from
1038 single dominating exit of DATA->current_loop, or NULL if something
1041 static struct tree_niter_desc
*
1042 niter_for_single_dom_exit (struct ivopts_data
*data
)
1044 edge exit
= single_dom_exit (data
->current_loop
);
1049 return niter_for_exit (data
, exit
);
1052 /* Initializes data structures used by the iv optimization pass, stored
1056 tree_ssa_iv_optimize_init (struct ivopts_data
*data
)
1058 data
->version_info_size
= 2 * num_ssa_names
;
1059 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
1060 data
->relevant
= BITMAP_ALLOC (NULL
);
1061 data
->important_candidates
= BITMAP_ALLOC (NULL
);
1062 data
->max_inv_id
= 0;
1063 data
->niters
= NULL
;
1064 data
->vgroups
.create (20);
1065 data
->vcands
.create (20);
1066 data
->inv_expr_tab
= new hash_table
<iv_inv_expr_hasher
> (10);
1067 data
->max_inv_expr_id
= 0;
1068 data
->name_expansion_cache
= NULL
;
1069 data
->iv_common_cand_tab
= new hash_table
<iv_common_cand_hasher
> (10);
1070 data
->iv_common_cands
.create (20);
1071 decl_rtl_to_reset
.create (20);
1072 gcc_obstack_init (&data
->iv_obstack
);
1075 /* Returns a memory object to that EXPR points. In case we are able to
1076 determine that it does not point to any such object, NULL is returned. */
1079 determine_base_object (tree expr
)
1081 enum tree_code code
= TREE_CODE (expr
);
1084 /* If this is a pointer casted to any type, we need to determine
1085 the base object for the pointer; so handle conversions before
1086 throwing away non-pointer expressions. */
1087 if (CONVERT_EXPR_P (expr
))
1088 return determine_base_object (TREE_OPERAND (expr
, 0));
1090 if (!POINTER_TYPE_P (TREE_TYPE (expr
)))
1099 obj
= TREE_OPERAND (expr
, 0);
1100 base
= get_base_address (obj
);
1105 if (TREE_CODE (base
) == MEM_REF
)
1106 return determine_base_object (TREE_OPERAND (base
, 0));
1108 return fold_convert (ptr_type_node
,
1109 build_fold_addr_expr (base
));
1111 case POINTER_PLUS_EXPR
:
1112 return determine_base_object (TREE_OPERAND (expr
, 0));
1116 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
1120 return fold_convert (ptr_type_node
, expr
);
1124 /* Return true if address expression with non-DECL_P operand appears
1128 contain_complex_addr_expr (tree expr
)
1133 switch (TREE_CODE (expr
))
1135 case POINTER_PLUS_EXPR
:
1138 res
|= contain_complex_addr_expr (TREE_OPERAND (expr
, 0));
1139 res
|= contain_complex_addr_expr (TREE_OPERAND (expr
, 1));
1143 return (!DECL_P (TREE_OPERAND (expr
, 0)));
1152 /* Allocates an induction variable with given initial value BASE and step STEP
1153 for loop LOOP. NO_OVERFLOW implies the iv doesn't overflow. */
1156 alloc_iv (struct ivopts_data
*data
, tree base
, tree step
,
1157 bool no_overflow
= false)
1160 struct iv
*iv
= (struct iv
*) obstack_alloc (&data
->iv_obstack
,
1161 sizeof (struct iv
));
1162 gcc_assert (step
!= NULL_TREE
);
1164 /* Lower address expression in base except ones with DECL_P as operand.
1166 1) More accurate cost can be computed for address expressions;
1167 2) Duplicate candidates won't be created for bases in different
1168 forms, like &a[0] and &a. */
1170 if ((TREE_CODE (expr
) == ADDR_EXPR
&& !DECL_P (TREE_OPERAND (expr
, 0)))
1171 || contain_complex_addr_expr (expr
))
1174 tree_to_aff_combination (expr
, TREE_TYPE (base
), &comb
);
1175 base
= fold_convert (TREE_TYPE (base
), aff_combination_to_tree (&comb
));
1179 iv
->base_object
= determine_base_object (base
);
1182 iv
->nonlin_use
= NULL
;
1183 iv
->ssa_name
= NULL_TREE
;
1185 && !iv_can_overflow_p (data
->current_loop
, TREE_TYPE (base
),
1188 iv
->no_overflow
= no_overflow
;
1189 iv
->have_address_use
= false;
1194 /* Sets STEP and BASE for induction variable IV. NO_OVERFLOW implies the IV
1195 doesn't overflow. */
1198 set_iv (struct ivopts_data
*data
, tree iv
, tree base
, tree step
,
1201 struct version_info
*info
= name_info (data
, iv
);
1203 gcc_assert (!info
->iv
);
1205 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (iv
));
1206 info
->iv
= alloc_iv (data
, base
, step
, no_overflow
);
1207 info
->iv
->ssa_name
= iv
;
1210 /* Finds induction variable declaration for VAR. */
1213 get_iv (struct ivopts_data
*data
, tree var
)
1216 tree type
= TREE_TYPE (var
);
1218 if (!POINTER_TYPE_P (type
)
1219 && !INTEGRAL_TYPE_P (type
))
1222 if (!name_info (data
, var
)->iv
)
1224 bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1227 || !flow_bb_inside_loop_p (data
->current_loop
, bb
))
1228 set_iv (data
, var
, var
, build_int_cst (type
, 0), true);
1231 return name_info (data
, var
)->iv
;
1234 /* Return the first non-invariant ssa var found in EXPR. */
1237 extract_single_var_from_expr (tree expr
)
1241 enum tree_code code
;
1243 if (!expr
|| is_gimple_min_invariant (expr
))
1246 code
= TREE_CODE (expr
);
1247 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
1249 n
= TREE_OPERAND_LENGTH (expr
);
1250 for (i
= 0; i
< n
; i
++)
1252 tmp
= extract_single_var_from_expr (TREE_OPERAND (expr
, i
));
1258 return (TREE_CODE (expr
) == SSA_NAME
) ? expr
: NULL
;
1261 /* Finds basic ivs. */
1264 find_bivs (struct ivopts_data
*data
)
1268 tree step
, type
, base
, stop
;
1270 struct loop
*loop
= data
->current_loop
;
1273 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1277 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi
)))
1280 if (virtual_operand_p (PHI_RESULT (phi
)))
1283 if (!simple_iv (loop
, loop
, PHI_RESULT (phi
), &iv
, true))
1286 if (integer_zerop (iv
.step
))
1290 base
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1291 /* Stop expanding iv base at the first ssa var referred by iv step.
1292 Ideally we should stop at any ssa var, because that's expensive
1293 and unusual to happen, we just do it on the first one.
1295 See PR64705 for the rationale. */
1296 stop
= extract_single_var_from_expr (step
);
1297 base
= expand_simple_operations (base
, stop
);
1298 if (contains_abnormal_ssa_name_p (base
)
1299 || contains_abnormal_ssa_name_p (step
))
1302 type
= TREE_TYPE (PHI_RESULT (phi
));
1303 base
= fold_convert (type
, base
);
1306 if (POINTER_TYPE_P (type
))
1307 step
= convert_to_ptrofftype (step
);
1309 step
= fold_convert (type
, step
);
1312 set_iv (data
, PHI_RESULT (phi
), base
, step
, iv
.no_overflow
);
1319 /* Marks basic ivs. */
1322 mark_bivs (struct ivopts_data
*data
)
1327 struct iv
*iv
, *incr_iv
;
1328 struct loop
*loop
= data
->current_loop
;
1329 basic_block incr_bb
;
1332 data
->bivs_not_used_in_addr
= 0;
1333 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1337 iv
= get_iv (data
, PHI_RESULT (phi
));
1341 var
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
1342 def
= SSA_NAME_DEF_STMT (var
);
1343 /* Don't mark iv peeled from other one as biv. */
1345 && gimple_code (def
) == GIMPLE_PHI
1346 && gimple_bb (def
) == loop
->header
)
1349 incr_iv
= get_iv (data
, var
);
1353 /* If the increment is in the subloop, ignore it. */
1354 incr_bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1355 if (incr_bb
->loop_father
!= data
->current_loop
1356 || (incr_bb
->flags
& BB_IRREDUCIBLE_LOOP
))
1360 incr_iv
->biv_p
= true;
1361 if (iv
->no_overflow
)
1362 data
->bivs_not_used_in_addr
++;
1363 if (incr_iv
->no_overflow
)
1364 data
->bivs_not_used_in_addr
++;
1368 /* Checks whether STMT defines a linear induction variable and stores its
1369 parameters to IV. */
1372 find_givs_in_stmt_scev (struct ivopts_data
*data
, gimple
*stmt
, affine_iv
*iv
)
1375 struct loop
*loop
= data
->current_loop
;
1377 iv
->base
= NULL_TREE
;
1378 iv
->step
= NULL_TREE
;
1380 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1383 lhs
= gimple_assign_lhs (stmt
);
1384 if (TREE_CODE (lhs
) != SSA_NAME
)
1387 if (!simple_iv (loop
, loop_containing_stmt (stmt
), lhs
, iv
, true))
1390 /* Stop expanding iv base at the first ssa var referred by iv step.
1391 Ideally we should stop at any ssa var, because that's expensive
1392 and unusual to happen, we just do it on the first one.
1394 See PR64705 for the rationale. */
1395 stop
= extract_single_var_from_expr (iv
->step
);
1396 iv
->base
= expand_simple_operations (iv
->base
, stop
);
1397 if (contains_abnormal_ssa_name_p (iv
->base
)
1398 || contains_abnormal_ssa_name_p (iv
->step
))
1401 /* If STMT could throw, then do not consider STMT as defining a GIV.
1402 While this will suppress optimizations, we can not safely delete this
1403 GIV and associated statements, even if it appears it is not used. */
1404 if (stmt_could_throw_p (stmt
))
1410 /* Finds general ivs in statement STMT. */
1413 find_givs_in_stmt (struct ivopts_data
*data
, gimple
*stmt
)
1417 if (!find_givs_in_stmt_scev (data
, stmt
, &iv
))
1420 set_iv (data
, gimple_assign_lhs (stmt
), iv
.base
, iv
.step
, iv
.no_overflow
);
1423 /* Finds general ivs in basic block BB. */
1426 find_givs_in_bb (struct ivopts_data
*data
, basic_block bb
)
1428 gimple_stmt_iterator bsi
;
1430 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1431 find_givs_in_stmt (data
, gsi_stmt (bsi
));
1434 /* Finds general ivs. */
1437 find_givs (struct ivopts_data
*data
)
1439 struct loop
*loop
= data
->current_loop
;
1440 basic_block
*body
= get_loop_body_in_dom_order (loop
);
1443 for (i
= 0; i
< loop
->num_nodes
; i
++)
1444 find_givs_in_bb (data
, body
[i
]);
1448 /* For each ssa name defined in LOOP determines whether it is an induction
1449 variable and if so, its initial value and step. */
1452 find_induction_variables (struct ivopts_data
*data
)
1457 if (!find_bivs (data
))
1463 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1465 struct tree_niter_desc
*niter
= niter_for_single_dom_exit (data
);
1469 fprintf (dump_file
, " number of iterations ");
1470 print_generic_expr (dump_file
, niter
->niter
, TDF_SLIM
);
1471 if (!integer_zerop (niter
->may_be_zero
))
1473 fprintf (dump_file
, "; zero if ");
1474 print_generic_expr (dump_file
, niter
->may_be_zero
, TDF_SLIM
);
1476 fprintf (dump_file
, "\n");
1479 fprintf (dump_file
, "\n<Induction Vars>:\n");
1480 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
1482 struct version_info
*info
= ver_info (data
, i
);
1483 if (info
->iv
&& info
->iv
->step
&& !integer_zerop (info
->iv
->step
))
1484 dump_iv (dump_file
, ver_info (data
, i
)->iv
, true, 0);
1491 /* Records a use of TYPE at *USE_P in STMT whose value is IV in GROUP.
1492 For address type use, ADDR_BASE is the stripped IV base, ADDR_OFFSET
1493 is the const offset stripped from IV base; for other types use, both
1494 are zero by default. */
1496 static struct iv_use
*
1497 record_use (struct iv_group
*group
, tree
*use_p
, struct iv
*iv
,
1498 gimple
*stmt
, enum use_type type
, tree addr_base
,
1499 unsigned HOST_WIDE_INT addr_offset
)
1501 struct iv_use
*use
= XCNEW (struct iv_use
);
1503 use
->id
= group
->vuses
.length ();
1504 use
->group_id
= group
->id
;
1509 use
->addr_base
= addr_base
;
1510 use
->addr_offset
= addr_offset
;
1512 group
->vuses
.safe_push (use
);
1516 /* Checks whether OP is a loop-level invariant and if so, records it.
1517 NONLINEAR_USE is true if the invariant is used in a way we do not
1518 handle specially. */
1521 record_invariant (struct ivopts_data
*data
, tree op
, bool nonlinear_use
)
1524 struct version_info
*info
;
1526 if (TREE_CODE (op
) != SSA_NAME
1527 || virtual_operand_p (op
))
1530 bb
= gimple_bb (SSA_NAME_DEF_STMT (op
));
1532 && flow_bb_inside_loop_p (data
->current_loop
, bb
))
1535 info
= name_info (data
, op
);
1537 info
->has_nonlin_use
|= nonlinear_use
;
1539 info
->inv_id
= ++data
->max_inv_id
;
1540 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (op
));
1544 strip_offset (tree expr
, unsigned HOST_WIDE_INT
*offset
);
1546 /* Record a group of TYPE. */
1548 static struct iv_group
*
1549 record_group (struct ivopts_data
*data
, enum use_type type
)
1551 struct iv_group
*group
= XCNEW (struct iv_group
);
1553 group
->id
= data
->vgroups
.length ();
1555 group
->related_cands
= BITMAP_ALLOC (NULL
);
1556 group
->vuses
.create (1);
1558 data
->vgroups
.safe_push (group
);
1562 /* Record a use of TYPE at *USE_P in STMT whose value is IV in a group.
1563 New group will be created if there is no existing group for the use. */
1565 static struct iv_use
*
1566 record_group_use (struct ivopts_data
*data
, tree
*use_p
,
1567 struct iv
*iv
, gimple
*stmt
, enum use_type type
)
1569 tree addr_base
= NULL
;
1570 struct iv_group
*group
= NULL
;
1571 unsigned HOST_WIDE_INT addr_offset
= 0;
1573 /* Record non address type use in a new group. */
1574 if (type
== USE_ADDRESS
&& iv
->base_object
)
1578 addr_base
= strip_offset (iv
->base
, &addr_offset
);
1579 for (i
= 0; i
< data
->vgroups
.length (); i
++)
1583 group
= data
->vgroups
[i
];
1584 use
= group
->vuses
[0];
1585 if (use
->type
!= USE_ADDRESS
|| !use
->iv
->base_object
)
1588 /* Check if it has the same stripped base and step. */
1589 if (operand_equal_p (iv
->base_object
, use
->iv
->base_object
, 0)
1590 && operand_equal_p (iv
->step
, use
->iv
->step
, 0)
1591 && operand_equal_p (addr_base
, use
->addr_base
, 0))
1594 if (i
== data
->vgroups
.length ())
1599 group
= record_group (data
, type
);
1601 return record_use (group
, use_p
, iv
, stmt
, type
, addr_base
, addr_offset
);
1604 /* Checks whether the use OP is interesting and if so, records it. */
1606 static struct iv_use
*
1607 find_interesting_uses_op (struct ivopts_data
*data
, tree op
)
1613 if (TREE_CODE (op
) != SSA_NAME
)
1616 iv
= get_iv (data
, op
);
1622 gcc_assert (iv
->nonlin_use
->type
== USE_NONLINEAR_EXPR
);
1623 return iv
->nonlin_use
;
1626 if (integer_zerop (iv
->step
))
1628 record_invariant (data
, op
, true);
1632 stmt
= SSA_NAME_DEF_STMT (op
);
1633 gcc_assert (gimple_code (stmt
) == GIMPLE_PHI
|| is_gimple_assign (stmt
));
1635 use
= record_group_use (data
, NULL
, iv
, stmt
, USE_NONLINEAR_EXPR
);
1636 iv
->nonlin_use
= use
;
1640 /* Given a condition in statement STMT, checks whether it is a compare
1641 of an induction variable and an invariant. If this is the case,
1642 CONTROL_VAR is set to location of the iv, BOUND to the location of
1643 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1644 induction variable descriptions, and true is returned. If this is not
1645 the case, CONTROL_VAR and BOUND are set to the arguments of the
1646 condition and false is returned. */
1649 extract_cond_operands (struct ivopts_data
*data
, gimple
*stmt
,
1650 tree
**control_var
, tree
**bound
,
1651 struct iv
**iv_var
, struct iv
**iv_bound
)
1653 /* The objects returned when COND has constant operands. */
1654 static struct iv const_iv
;
1656 tree
*op0
= &zero
, *op1
= &zero
;
1657 struct iv
*iv0
= &const_iv
, *iv1
= &const_iv
;
1660 if (gimple_code (stmt
) == GIMPLE_COND
)
1662 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1663 op0
= gimple_cond_lhs_ptr (cond_stmt
);
1664 op1
= gimple_cond_rhs_ptr (cond_stmt
);
1668 op0
= gimple_assign_rhs1_ptr (stmt
);
1669 op1
= gimple_assign_rhs2_ptr (stmt
);
1672 zero
= integer_zero_node
;
1673 const_iv
.step
= integer_zero_node
;
1675 if (TREE_CODE (*op0
) == SSA_NAME
)
1676 iv0
= get_iv (data
, *op0
);
1677 if (TREE_CODE (*op1
) == SSA_NAME
)
1678 iv1
= get_iv (data
, *op1
);
1680 /* Exactly one of the compared values must be an iv, and the other one must
1685 if (integer_zerop (iv0
->step
))
1687 /* Control variable may be on the other side. */
1688 std::swap (op0
, op1
);
1689 std::swap (iv0
, iv1
);
1691 ret
= !integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
);
1706 /* Checks whether the condition in STMT is interesting and if so,
1710 find_interesting_uses_cond (struct ivopts_data
*data
, gimple
*stmt
)
1712 tree
*var_p
, *bound_p
;
1715 if (!extract_cond_operands (data
, stmt
, &var_p
, &bound_p
, &var_iv
, NULL
))
1717 find_interesting_uses_op (data
, *var_p
);
1718 find_interesting_uses_op (data
, *bound_p
);
1722 record_group_use (data
, NULL
, var_iv
, stmt
, USE_COMPARE
);
1725 /* Returns the outermost loop EXPR is obviously invariant in
1726 relative to the loop LOOP, i.e. if all its operands are defined
1727 outside of the returned loop. Returns NULL if EXPR is not
1728 even obviously invariant in LOOP. */
1731 outermost_invariant_loop_for_expr (struct loop
*loop
, tree expr
)
1736 if (is_gimple_min_invariant (expr
))
1737 return current_loops
->tree_root
;
1739 if (TREE_CODE (expr
) == SSA_NAME
)
1741 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1744 if (flow_bb_inside_loop_p (loop
, def_bb
))
1746 return superloop_at_depth (loop
,
1747 loop_depth (def_bb
->loop_father
) + 1);
1750 return current_loops
->tree_root
;
1756 unsigned maxdepth
= 0;
1757 len
= TREE_OPERAND_LENGTH (expr
);
1758 for (i
= 0; i
< len
; i
++)
1760 struct loop
*ivloop
;
1761 if (!TREE_OPERAND (expr
, i
))
1764 ivloop
= outermost_invariant_loop_for_expr (loop
, TREE_OPERAND (expr
, i
));
1767 maxdepth
= MAX (maxdepth
, loop_depth (ivloop
));
1770 return superloop_at_depth (loop
, maxdepth
);
1773 /* Returns true if expression EXPR is obviously invariant in LOOP,
1774 i.e. if all its operands are defined outside of the LOOP. LOOP
1775 should not be the function body. */
1778 expr_invariant_in_loop_p (struct loop
*loop
, tree expr
)
1783 gcc_assert (loop_depth (loop
) > 0);
1785 if (is_gimple_min_invariant (expr
))
1788 if (TREE_CODE (expr
) == SSA_NAME
)
1790 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1792 && flow_bb_inside_loop_p (loop
, def_bb
))
1801 len
= TREE_OPERAND_LENGTH (expr
);
1802 for (i
= 0; i
< len
; i
++)
1803 if (TREE_OPERAND (expr
, i
)
1804 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (expr
, i
)))
1810 /* Given expression EXPR which computes inductive values with respect
1811 to loop recorded in DATA, this function returns biv from which EXPR
1812 is derived by tracing definition chains of ssa variables in EXPR. */
1815 find_deriving_biv_for_expr (struct ivopts_data
*data
, tree expr
)
1820 enum tree_code code
;
1823 if (expr
== NULL_TREE
)
1826 if (is_gimple_min_invariant (expr
))
1829 code
= TREE_CODE (expr
);
1830 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
1832 n
= TREE_OPERAND_LENGTH (expr
);
1833 for (i
= 0; i
< n
; i
++)
1835 iv
= find_deriving_biv_for_expr (data
, TREE_OPERAND (expr
, i
));
1841 /* Stop if it's not ssa name. */
1842 if (code
!= SSA_NAME
)
1845 iv
= get_iv (data
, expr
);
1846 if (!iv
|| integer_zerop (iv
->step
))
1851 stmt
= SSA_NAME_DEF_STMT (expr
);
1852 if (gphi
*phi
= dyn_cast
<gphi
*> (stmt
))
1855 use_operand_p use_p
;
1856 basic_block phi_bb
= gimple_bb (phi
);
1858 /* Skip loop header PHI that doesn't define biv. */
1859 if (phi_bb
->loop_father
== data
->current_loop
)
1862 if (virtual_operand_p (gimple_phi_result (phi
)))
1865 FOR_EACH_PHI_ARG (use_p
, phi
, iter
, SSA_OP_USE
)
1867 tree use
= USE_FROM_PTR (use_p
);
1868 iv
= find_deriving_biv_for_expr (data
, use
);
1874 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1877 e1
= gimple_assign_rhs1 (stmt
);
1878 code
= gimple_assign_rhs_code (stmt
);
1879 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1880 return find_deriving_biv_for_expr (data
, e1
);
1887 case POINTER_PLUS_EXPR
:
1888 /* Increments, decrements and multiplications by a constant
1890 e2
= gimple_assign_rhs2 (stmt
);
1891 iv
= find_deriving_biv_for_expr (data
, e2
);
1897 /* Casts are simple. */
1898 return find_deriving_biv_for_expr (data
, e1
);
1907 /* Record BIV, its predecessor and successor that they are used in
1908 address type uses. */
1911 record_biv_for_address_use (struct ivopts_data
*data
, struct iv
*biv
)
1914 tree type
, base_1
, base_2
;
1917 if (!biv
|| !biv
->biv_p
|| integer_zerop (biv
->step
)
1918 || biv
->have_address_use
|| !biv
->no_overflow
)
1921 type
= TREE_TYPE (biv
->base
);
1922 if (!INTEGRAL_TYPE_P (type
))
1925 biv
->have_address_use
= true;
1926 data
->bivs_not_used_in_addr
--;
1927 base_1
= fold_build2 (PLUS_EXPR
, type
, biv
->base
, biv
->step
);
1928 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
1930 struct iv
*iv
= ver_info (data
, i
)->iv
;
1932 if (!iv
|| !iv
->biv_p
|| integer_zerop (iv
->step
)
1933 || iv
->have_address_use
|| !iv
->no_overflow
)
1936 if (type
!= TREE_TYPE (iv
->base
)
1937 || !INTEGRAL_TYPE_P (TREE_TYPE (iv
->base
)))
1940 if (!operand_equal_p (biv
->step
, iv
->step
, 0))
1943 base_2
= fold_build2 (PLUS_EXPR
, type
, iv
->base
, iv
->step
);
1944 if (operand_equal_p (base_1
, iv
->base
, 0)
1945 || operand_equal_p (base_2
, biv
->base
, 0))
1947 iv
->have_address_use
= true;
1948 data
->bivs_not_used_in_addr
--;
1953 /* Cumulates the steps of indices into DATA and replaces their values with the
1954 initial ones. Returns false when the value of the index cannot be determined.
1955 Callback for for_each_index. */
1957 struct ifs_ivopts_data
1959 struct ivopts_data
*ivopts_data
;
1965 idx_find_step (tree base
, tree
*idx
, void *data
)
1967 struct ifs_ivopts_data
*dta
= (struct ifs_ivopts_data
*) data
;
1969 bool use_overflow_semantics
= false;
1970 tree step
, iv_base
, iv_step
, lbound
, off
;
1971 struct loop
*loop
= dta
->ivopts_data
->current_loop
;
1973 /* If base is a component ref, require that the offset of the reference
1975 if (TREE_CODE (base
) == COMPONENT_REF
)
1977 off
= component_ref_field_offset (base
);
1978 return expr_invariant_in_loop_p (loop
, off
);
1981 /* If base is array, first check whether we will be able to move the
1982 reference out of the loop (in order to take its address in strength
1983 reduction). In order for this to work we need both lower bound
1984 and step to be loop invariants. */
1985 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1987 /* Moreover, for a range, the size needs to be invariant as well. */
1988 if (TREE_CODE (base
) == ARRAY_RANGE_REF
1989 && !expr_invariant_in_loop_p (loop
, TYPE_SIZE (TREE_TYPE (base
))))
1992 step
= array_ref_element_size (base
);
1993 lbound
= array_ref_low_bound (base
);
1995 if (!expr_invariant_in_loop_p (loop
, step
)
1996 || !expr_invariant_in_loop_p (loop
, lbound
))
2000 if (TREE_CODE (*idx
) != SSA_NAME
)
2003 iv
= get_iv (dta
->ivopts_data
, *idx
);
2007 /* XXX We produce for a base of *D42 with iv->base being &x[0]
2008 *&x[0], which is not folded and does not trigger the
2009 ARRAY_REF path below. */
2012 if (integer_zerop (iv
->step
))
2015 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
2017 step
= array_ref_element_size (base
);
2019 /* We only handle addresses whose step is an integer constant. */
2020 if (TREE_CODE (step
) != INTEGER_CST
)
2024 /* The step for pointer arithmetics already is 1 byte. */
2025 step
= size_one_node
;
2029 if (iv
->no_overflow
&& nowrap_type_p (TREE_TYPE (iv_step
)))
2030 use_overflow_semantics
= true;
2032 if (!convert_affine_scev (dta
->ivopts_data
->current_loop
,
2033 sizetype
, &iv_base
, &iv_step
, dta
->stmt
,
2034 use_overflow_semantics
))
2036 /* The index might wrap. */
2040 step
= fold_build2 (MULT_EXPR
, sizetype
, step
, iv_step
);
2041 dta
->step
= fold_build2 (PLUS_EXPR
, sizetype
, dta
->step
, step
);
2043 if (dta
->ivopts_data
->bivs_not_used_in_addr
)
2046 iv
= find_deriving_biv_for_expr (dta
->ivopts_data
, iv
->ssa_name
);
2048 record_biv_for_address_use (dta
->ivopts_data
, iv
);
2053 /* Records use in index IDX. Callback for for_each_index. Ivopts data
2054 object is passed to it in DATA. */
2057 idx_record_use (tree base
, tree
*idx
,
2060 struct ivopts_data
*data
= (struct ivopts_data
*) vdata
;
2061 find_interesting_uses_op (data
, *idx
);
2062 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
2064 find_interesting_uses_op (data
, array_ref_element_size (base
));
2065 find_interesting_uses_op (data
, array_ref_low_bound (base
));
2070 /* If we can prove that TOP = cst * BOT for some constant cst,
2071 store cst to MUL and return true. Otherwise return false.
2072 The returned value is always sign-extended, regardless of the
2073 signedness of TOP and BOT. */
2076 constant_multiple_of (tree top
, tree bot
, widest_int
*mul
)
2079 enum tree_code code
;
2080 unsigned precision
= TYPE_PRECISION (TREE_TYPE (top
));
2081 widest_int res
, p0
, p1
;
2086 if (operand_equal_p (top
, bot
, 0))
2092 code
= TREE_CODE (top
);
2096 mby
= TREE_OPERAND (top
, 1);
2097 if (TREE_CODE (mby
) != INTEGER_CST
)
2100 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &res
))
2103 *mul
= wi::sext (res
* wi::to_widest (mby
), precision
);
2108 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &p0
)
2109 || !constant_multiple_of (TREE_OPERAND (top
, 1), bot
, &p1
))
2112 if (code
== MINUS_EXPR
)
2114 *mul
= wi::sext (p0
+ p1
, precision
);
2118 if (TREE_CODE (bot
) != INTEGER_CST
)
2121 p0
= widest_int::from (top
, SIGNED
);
2122 p1
= widest_int::from (bot
, SIGNED
);
2125 *mul
= wi::sext (wi::divmod_trunc (p0
, p1
, SIGNED
, &res
), precision
);
2133 /* Return true if memory reference REF with step STEP may be unaligned. */
2136 may_be_unaligned_p (tree ref
, tree step
)
2138 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
2139 thus they are not misaligned. */
2140 if (TREE_CODE (ref
) == TARGET_MEM_REF
)
2143 unsigned int align
= TYPE_ALIGN (TREE_TYPE (ref
));
2144 if (GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref
))) > align
)
2145 align
= GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref
)));
2147 unsigned HOST_WIDE_INT bitpos
;
2148 unsigned int ref_align
;
2149 get_object_alignment_1 (ref
, &ref_align
, &bitpos
);
2150 if (ref_align
< align
2151 || (bitpos
% align
) != 0
2152 || (bitpos
% BITS_PER_UNIT
) != 0)
2155 unsigned int trailing_zeros
= tree_ctz (step
);
2156 if (trailing_zeros
< HOST_BITS_PER_INT
2157 && (1U << trailing_zeros
) * BITS_PER_UNIT
< align
)
2163 /* Return true if EXPR may be non-addressable. */
2166 may_be_nonaddressable_p (tree expr
)
2168 switch (TREE_CODE (expr
))
2170 case TARGET_MEM_REF
:
2171 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
2172 target, thus they are always addressable. */
2176 /* Likewise for MEM_REFs, modulo the storage order. */
2177 return REF_REVERSE_STORAGE_ORDER (expr
);
2180 if (REF_REVERSE_STORAGE_ORDER (expr
))
2182 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
2185 if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr
, 0))))
2187 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr
, 1))
2188 || may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
2191 case ARRAY_RANGE_REF
:
2192 if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr
, 0))))
2194 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
2196 case VIEW_CONVERT_EXPR
:
2197 /* This kind of view-conversions may wrap non-addressable objects
2198 and make them look addressable. After some processing the
2199 non-addressability may be uncovered again, causing ADDR_EXPRs
2200 of inappropriate objects to be built. */
2201 if (is_gimple_reg (TREE_OPERAND (expr
, 0))
2202 || !is_gimple_addressable (TREE_OPERAND (expr
, 0)))
2204 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
2216 /* Finds addresses in *OP_P inside STMT. */
2219 find_interesting_uses_address (struct ivopts_data
*data
, gimple
*stmt
,
2222 tree base
= *op_p
, step
= size_zero_node
;
2224 struct ifs_ivopts_data ifs_ivopts_data
;
2226 /* Do not play with volatile memory references. A bit too conservative,
2227 perhaps, but safe. */
2228 if (gimple_has_volatile_ops (stmt
))
2231 /* Ignore bitfields for now. Not really something terribly complicated
2233 if (TREE_CODE (base
) == BIT_FIELD_REF
)
2236 base
= unshare_expr (base
);
2238 if (TREE_CODE (base
) == TARGET_MEM_REF
)
2240 tree type
= build_pointer_type (TREE_TYPE (base
));
2244 && TREE_CODE (TMR_BASE (base
)) == SSA_NAME
)
2246 civ
= get_iv (data
, TMR_BASE (base
));
2250 TMR_BASE (base
) = civ
->base
;
2253 if (TMR_INDEX2 (base
)
2254 && TREE_CODE (TMR_INDEX2 (base
)) == SSA_NAME
)
2256 civ
= get_iv (data
, TMR_INDEX2 (base
));
2260 TMR_INDEX2 (base
) = civ
->base
;
2263 if (TMR_INDEX (base
)
2264 && TREE_CODE (TMR_INDEX (base
)) == SSA_NAME
)
2266 civ
= get_iv (data
, TMR_INDEX (base
));
2270 TMR_INDEX (base
) = civ
->base
;
2275 if (TMR_STEP (base
))
2276 astep
= fold_build2 (MULT_EXPR
, type
, TMR_STEP (base
), astep
);
2278 step
= fold_build2 (PLUS_EXPR
, type
, step
, astep
);
2282 if (integer_zerop (step
))
2284 base
= tree_mem_ref_addr (type
, base
);
2288 ifs_ivopts_data
.ivopts_data
= data
;
2289 ifs_ivopts_data
.stmt
= stmt
;
2290 ifs_ivopts_data
.step
= size_zero_node
;
2291 if (!for_each_index (&base
, idx_find_step
, &ifs_ivopts_data
)
2292 || integer_zerop (ifs_ivopts_data
.step
))
2294 step
= ifs_ivopts_data
.step
;
2296 /* Check that the base expression is addressable. This needs
2297 to be done after substituting bases of IVs into it. */
2298 if (may_be_nonaddressable_p (base
))
2301 /* Moreover, on strict alignment platforms, check that it is
2302 sufficiently aligned. */
2303 if (STRICT_ALIGNMENT
&& may_be_unaligned_p (base
, step
))
2306 base
= build_fold_addr_expr (base
);
2308 /* Substituting bases of IVs into the base expression might
2309 have caused folding opportunities. */
2310 if (TREE_CODE (base
) == ADDR_EXPR
)
2312 tree
*ref
= &TREE_OPERAND (base
, 0);
2313 while (handled_component_p (*ref
))
2314 ref
= &TREE_OPERAND (*ref
, 0);
2315 if (TREE_CODE (*ref
) == MEM_REF
)
2317 tree tem
= fold_binary (MEM_REF
, TREE_TYPE (*ref
),
2318 TREE_OPERAND (*ref
, 0),
2319 TREE_OPERAND (*ref
, 1));
2326 civ
= alloc_iv (data
, base
, step
);
2327 record_group_use (data
, op_p
, civ
, stmt
, USE_ADDRESS
);
2331 for_each_index (op_p
, idx_record_use
, data
);
2334 /* Finds and records invariants used in STMT. */
2337 find_invariants_stmt (struct ivopts_data
*data
, gimple
*stmt
)
2340 use_operand_p use_p
;
2343 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
2345 op
= USE_FROM_PTR (use_p
);
2346 record_invariant (data
, op
, false);
2350 /* Finds interesting uses of induction variables in the statement STMT. */
2353 find_interesting_uses_stmt (struct ivopts_data
*data
, gimple
*stmt
)
2356 tree op
, *lhs
, *rhs
;
2358 use_operand_p use_p
;
2359 enum tree_code code
;
2361 find_invariants_stmt (data
, stmt
);
2363 if (gimple_code (stmt
) == GIMPLE_COND
)
2365 find_interesting_uses_cond (data
, stmt
);
2369 if (is_gimple_assign (stmt
))
2371 lhs
= gimple_assign_lhs_ptr (stmt
);
2372 rhs
= gimple_assign_rhs1_ptr (stmt
);
2374 if (TREE_CODE (*lhs
) == SSA_NAME
)
2376 /* If the statement defines an induction variable, the uses are not
2377 interesting by themselves. */
2379 iv
= get_iv (data
, *lhs
);
2381 if (iv
&& !integer_zerop (iv
->step
))
2385 code
= gimple_assign_rhs_code (stmt
);
2386 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
2387 && (REFERENCE_CLASS_P (*rhs
)
2388 || is_gimple_val (*rhs
)))
2390 if (REFERENCE_CLASS_P (*rhs
))
2391 find_interesting_uses_address (data
, stmt
, rhs
);
2393 find_interesting_uses_op (data
, *rhs
);
2395 if (REFERENCE_CLASS_P (*lhs
))
2396 find_interesting_uses_address (data
, stmt
, lhs
);
2399 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
2401 find_interesting_uses_cond (data
, stmt
);
2405 /* TODO -- we should also handle address uses of type
2407 memory = call (whatever);
2414 if (gimple_code (stmt
) == GIMPLE_PHI
2415 && gimple_bb (stmt
) == data
->current_loop
->header
)
2417 iv
= get_iv (data
, PHI_RESULT (stmt
));
2419 if (iv
&& !integer_zerop (iv
->step
))
2423 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
2425 op
= USE_FROM_PTR (use_p
);
2427 if (TREE_CODE (op
) != SSA_NAME
)
2430 iv
= get_iv (data
, op
);
2434 find_interesting_uses_op (data
, op
);
2438 /* Finds interesting uses of induction variables outside of loops
2439 on loop exit edge EXIT. */
2442 find_interesting_uses_outside (struct ivopts_data
*data
, edge exit
)
2448 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); gsi_next (&psi
))
2451 def
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
2452 if (!virtual_operand_p (def
))
2453 find_interesting_uses_op (data
, def
);
2457 /* Compute maximum offset of [base + offset] addressing mode
2458 for memory reference represented by USE. */
2460 static HOST_WIDE_INT
2461 compute_max_addr_offset (struct iv_use
*use
)
2465 HOST_WIDE_INT i
, off
;
2466 unsigned list_index
, num
;
2468 machine_mode mem_mode
, addr_mode
;
2469 static vec
<HOST_WIDE_INT
> max_offset_list
;
2471 as
= TYPE_ADDR_SPACE (TREE_TYPE (use
->iv
->base
));
2472 mem_mode
= TYPE_MODE (TREE_TYPE (*use
->op_p
));
2474 num
= max_offset_list
.length ();
2475 list_index
= (unsigned) as
* MAX_MACHINE_MODE
+ (unsigned) mem_mode
;
2476 if (list_index
>= num
)
2478 max_offset_list
.safe_grow (list_index
+ MAX_MACHINE_MODE
);
2479 for (; num
< max_offset_list
.length (); num
++)
2480 max_offset_list
[num
] = -1;
2483 off
= max_offset_list
[list_index
];
2487 addr_mode
= targetm
.addr_space
.address_mode (as
);
2488 reg
= gen_raw_REG (addr_mode
, LAST_VIRTUAL_REGISTER
+ 1);
2489 addr
= gen_rtx_fmt_ee (PLUS
, addr_mode
, reg
, NULL_RTX
);
2491 width
= GET_MODE_BITSIZE (addr_mode
) - 1;
2492 if (width
> (HOST_BITS_PER_WIDE_INT
- 1))
2493 width
= HOST_BITS_PER_WIDE_INT
- 1;
2495 for (i
= width
; i
> 0; i
--)
2497 off
= (HOST_WIDE_INT_1U
<< i
) - 1;
2498 XEXP (addr
, 1) = gen_int_mode (off
, addr_mode
);
2499 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
2502 /* For some strict-alignment targets, the offset must be naturally
2503 aligned. Try an aligned offset if mem_mode is not QImode. */
2504 off
= (HOST_WIDE_INT_1U
<< i
);
2505 if (off
> GET_MODE_SIZE (mem_mode
) && mem_mode
!= QImode
)
2507 off
-= GET_MODE_SIZE (mem_mode
);
2508 XEXP (addr
, 1) = gen_int_mode (off
, addr_mode
);
2509 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
2516 max_offset_list
[list_index
] = off
;
2520 /* Comparison function to sort group in ascending order of addr_offset. */
2523 group_compare_offset (const void *a
, const void *b
)
2525 const struct iv_use
*const *u1
= (const struct iv_use
*const *) a
;
2526 const struct iv_use
*const *u2
= (const struct iv_use
*const *) b
;
2528 if ((*u1
)->addr_offset
!= (*u2
)->addr_offset
)
2529 return (*u1
)->addr_offset
< (*u2
)->addr_offset
? -1 : 1;
2534 /* Check if small groups should be split. Return true if no group
2535 contains more than two uses with distinct addr_offsets. Return
2536 false otherwise. We want to split such groups because:
2538 1) Small groups don't have much benefit and may interfer with
2539 general candidate selection.
2540 2) Size for problem with only small groups is usually small and
2541 general algorithm can handle it well.
2543 TODO -- Above claim may not hold when we want to merge memory
2544 accesses with conseuctive addresses. */
2547 split_small_address_groups_p (struct ivopts_data
*data
)
2549 unsigned int i
, j
, distinct
= 1;
2551 struct iv_group
*group
;
2553 for (i
= 0; i
< data
->vgroups
.length (); i
++)
2555 group
= data
->vgroups
[i
];
2556 if (group
->vuses
.length () == 1)
2559 gcc_assert (group
->type
== USE_ADDRESS
);
2560 if (group
->vuses
.length () == 2)
2562 if (group
->vuses
[0]->addr_offset
> group
->vuses
[1]->addr_offset
)
2563 std::swap (group
->vuses
[0], group
->vuses
[1]);
2566 group
->vuses
.qsort (group_compare_offset
);
2572 for (pre
= group
->vuses
[0], j
= 1; j
< group
->vuses
.length (); j
++)
2574 if (group
->vuses
[j
]->addr_offset
!= pre
->addr_offset
)
2576 pre
= group
->vuses
[j
];
2585 return (distinct
<= 2);
2588 /* For each group of address type uses, this function further groups
2589 these uses according to the maximum offset supported by target's
2590 [base + offset] addressing mode. */
2593 split_address_groups (struct ivopts_data
*data
)
2596 HOST_WIDE_INT max_offset
= -1;
2598 /* Reset max offset to split all small groups. */
2599 if (split_small_address_groups_p (data
))
2602 for (i
= 0; i
< data
->vgroups
.length (); i
++)
2604 struct iv_group
*group
= data
->vgroups
[i
];
2605 struct iv_use
*use
= group
->vuses
[0];
2608 use
->group_id
= group
->id
;
2609 if (group
->vuses
.length () == 1)
2612 if (max_offset
!= 0)
2613 max_offset
= compute_max_addr_offset (use
);
2615 for (j
= 1; j
< group
->vuses
.length (); j
++)
2617 struct iv_use
*next
= group
->vuses
[j
];
2619 /* Only uses with offset that can fit in offset part against
2620 the first use can be grouped together. */
2621 if (next
->addr_offset
- use
->addr_offset
2622 > (unsigned HOST_WIDE_INT
) max_offset
)
2626 next
->group_id
= group
->id
;
2629 if (j
< group
->vuses
.length ())
2631 struct iv_group
*new_group
= record_group (data
, group
->type
);
2632 new_group
->vuses
.safe_splice (group
->vuses
);
2633 new_group
->vuses
.block_remove (0, j
);
2634 group
->vuses
.truncate (j
);
2639 /* Finds uses of the induction variables that are interesting. */
2642 find_interesting_uses (struct ivopts_data
*data
)
2645 gimple_stmt_iterator bsi
;
2646 basic_block
*body
= get_loop_body (data
->current_loop
);
2650 for (i
= 0; i
< data
->current_loop
->num_nodes
; i
++)
2655 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2656 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2657 && !flow_bb_inside_loop_p (data
->current_loop
, e
->dest
))
2658 find_interesting_uses_outside (data
, e
);
2660 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2661 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2662 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2663 if (!is_gimple_debug (gsi_stmt (bsi
)))
2664 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2667 split_address_groups (data
);
2669 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2673 fprintf (dump_file
, "\n<Invariant Vars>:\n");
2674 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
2676 struct version_info
*info
= ver_info (data
, i
);
2679 fprintf (dump_file
, "Inv %d:\t", info
->inv_id
);
2680 print_generic_expr (dump_file
, info
->name
, TDF_SLIM
);
2681 fprintf (dump_file
, "%s\n",
2682 info
->has_nonlin_use
? "" : "\t(eliminable)");
2686 fprintf (dump_file
, "\n<IV Groups>:\n");
2687 dump_groups (dump_file
, data
);
2688 fprintf (dump_file
, "\n");
2694 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
2695 is true, assume we are inside an address. If TOP_COMPREF is true, assume
2696 we are at the top-level of the processed address. */
2699 strip_offset_1 (tree expr
, bool inside_addr
, bool top_compref
,
2700 HOST_WIDE_INT
*offset
)
2702 tree op0
= NULL_TREE
, op1
= NULL_TREE
, tmp
, step
;
2703 enum tree_code code
;
2704 tree type
, orig_type
= TREE_TYPE (expr
);
2705 HOST_WIDE_INT off0
, off1
, st
;
2706 tree orig_expr
= expr
;
2710 type
= TREE_TYPE (expr
);
2711 code
= TREE_CODE (expr
);
2717 if (!cst_and_fits_in_hwi (expr
)
2718 || integer_zerop (expr
))
2721 *offset
= int_cst_value (expr
);
2722 return build_int_cst (orig_type
, 0);
2724 case POINTER_PLUS_EXPR
:
2727 op0
= TREE_OPERAND (expr
, 0);
2728 op1
= TREE_OPERAND (expr
, 1);
2730 op0
= strip_offset_1 (op0
, false, false, &off0
);
2731 op1
= strip_offset_1 (op1
, false, false, &off1
);
2733 *offset
= (code
== MINUS_EXPR
? off0
- off1
: off0
+ off1
);
2734 if (op0
== TREE_OPERAND (expr
, 0)
2735 && op1
== TREE_OPERAND (expr
, 1))
2738 if (integer_zerop (op1
))
2740 else if (integer_zerop (op0
))
2742 if (code
== MINUS_EXPR
)
2743 expr
= fold_build1 (NEGATE_EXPR
, type
, op1
);
2748 expr
= fold_build2 (code
, type
, op0
, op1
);
2750 return fold_convert (orig_type
, expr
);
2753 op1
= TREE_OPERAND (expr
, 1);
2754 if (!cst_and_fits_in_hwi (op1
))
2757 op0
= TREE_OPERAND (expr
, 0);
2758 op0
= strip_offset_1 (op0
, false, false, &off0
);
2759 if (op0
== TREE_OPERAND (expr
, 0))
2762 *offset
= off0
* int_cst_value (op1
);
2763 if (integer_zerop (op0
))
2766 expr
= fold_build2 (MULT_EXPR
, type
, op0
, op1
);
2768 return fold_convert (orig_type
, expr
);
2771 case ARRAY_RANGE_REF
:
2775 step
= array_ref_element_size (expr
);
2776 if (!cst_and_fits_in_hwi (step
))
2779 st
= int_cst_value (step
);
2780 op1
= TREE_OPERAND (expr
, 1);
2781 op1
= strip_offset_1 (op1
, false, false, &off1
);
2782 *offset
= off1
* st
;
2785 && integer_zerop (op1
))
2787 /* Strip the component reference completely. */
2788 op0
= TREE_OPERAND (expr
, 0);
2789 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2802 tmp
= component_ref_field_offset (expr
);
2803 field
= TREE_OPERAND (expr
, 1);
2805 && cst_and_fits_in_hwi (tmp
)
2806 && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field
)))
2808 HOST_WIDE_INT boffset
, abs_off
;
2810 /* Strip the component reference completely. */
2811 op0
= TREE_OPERAND (expr
, 0);
2812 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2813 boffset
= int_cst_value (DECL_FIELD_BIT_OFFSET (field
));
2814 abs_off
= abs_hwi (boffset
) / BITS_PER_UNIT
;
2818 *offset
= off0
+ int_cst_value (tmp
) + abs_off
;
2825 op0
= TREE_OPERAND (expr
, 0);
2826 op0
= strip_offset_1 (op0
, true, true, &off0
);
2829 if (op0
== TREE_OPERAND (expr
, 0))
2832 expr
= build_fold_addr_expr (op0
);
2833 return fold_convert (orig_type
, expr
);
2836 /* ??? Offset operand? */
2837 inside_addr
= false;
2844 /* Default handling of expressions for that we want to recurse into
2845 the first operand. */
2846 op0
= TREE_OPERAND (expr
, 0);
2847 op0
= strip_offset_1 (op0
, inside_addr
, false, &off0
);
2850 if (op0
== TREE_OPERAND (expr
, 0)
2851 && (!op1
|| op1
== TREE_OPERAND (expr
, 1)))
2854 expr
= copy_node (expr
);
2855 TREE_OPERAND (expr
, 0) = op0
;
2857 TREE_OPERAND (expr
, 1) = op1
;
2859 /* Inside address, we might strip the top level component references,
2860 thus changing type of the expression. Handling of ADDR_EXPR
2862 expr
= fold_convert (orig_type
, expr
);
2867 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2870 strip_offset (tree expr
, unsigned HOST_WIDE_INT
*offset
)
2873 tree core
= strip_offset_1 (expr
, false, false, &off
);
2878 /* Returns variant of TYPE that can be used as base for different uses.
2879 We return unsigned type with the same precision, which avoids problems
2883 generic_type_for (tree type
)
2885 if (POINTER_TYPE_P (type
))
2886 return unsigned_type_for (type
);
2888 if (TYPE_UNSIGNED (type
))
2891 return unsigned_type_for (type
);
2894 /* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
2895 the bitmap to that we should store it. */
2897 static struct ivopts_data
*fd_ivopts_data
;
2899 find_depends (tree
*expr_p
, int *ws ATTRIBUTE_UNUSED
, void *data
)
2901 bitmap
*depends_on
= (bitmap
*) data
;
2902 struct version_info
*info
;
2904 if (TREE_CODE (*expr_p
) != SSA_NAME
)
2906 info
= name_info (fd_ivopts_data
, *expr_p
);
2908 if (!info
->inv_id
|| info
->has_nonlin_use
)
2912 *depends_on
= BITMAP_ALLOC (NULL
);
2913 bitmap_set_bit (*depends_on
, info
->inv_id
);
2918 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2919 position to POS. If USE is not NULL, the candidate is set as related to
2920 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
2921 replacement of the final value of the iv by a direct computation. */
2923 static struct iv_cand
*
2924 add_candidate_1 (struct ivopts_data
*data
,
2925 tree base
, tree step
, bool important
, enum iv_position pos
,
2926 struct iv_use
*use
, gimple
*incremented_at
,
2927 struct iv
*orig_iv
= NULL
)
2930 struct iv_cand
*cand
= NULL
;
2931 tree type
, orig_type
;
2933 gcc_assert (base
&& step
);
2935 /* -fkeep-gc-roots-live means that we have to keep a real pointer
2936 live, but the ivopts code may replace a real pointer with one
2937 pointing before or after the memory block that is then adjusted
2938 into the memory block during the loop. FIXME: It would likely be
2939 better to actually force the pointer live and still use ivopts;
2940 for example, it would be enough to write the pointer into memory
2941 and keep it there until after the loop. */
2942 if (flag_keep_gc_roots_live
&& POINTER_TYPE_P (TREE_TYPE (base
)))
2945 /* For non-original variables, make sure their values are computed in a type
2946 that does not invoke undefined behavior on overflows (since in general,
2947 we cannot prove that these induction variables are non-wrapping). */
2948 if (pos
!= IP_ORIGINAL
)
2950 orig_type
= TREE_TYPE (base
);
2951 type
= generic_type_for (orig_type
);
2952 if (type
!= orig_type
)
2954 base
= fold_convert (type
, base
);
2955 step
= fold_convert (type
, step
);
2959 for (i
= 0; i
< data
->vcands
.length (); i
++)
2961 cand
= data
->vcands
[i
];
2963 if (cand
->pos
!= pos
)
2966 if (cand
->incremented_at
!= incremented_at
2967 || ((pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
2968 && cand
->ainc_use
!= use
))
2971 if (operand_equal_p (base
, cand
->iv
->base
, 0)
2972 && operand_equal_p (step
, cand
->iv
->step
, 0)
2973 && (TYPE_PRECISION (TREE_TYPE (base
))
2974 == TYPE_PRECISION (TREE_TYPE (cand
->iv
->base
))))
2978 if (i
== data
->vcands
.length ())
2980 cand
= XCNEW (struct iv_cand
);
2982 cand
->iv
= alloc_iv (data
, base
, step
);
2984 if (pos
!= IP_ORIGINAL
)
2986 cand
->var_before
= create_tmp_var_raw (TREE_TYPE (base
), "ivtmp");
2987 cand
->var_after
= cand
->var_before
;
2989 cand
->important
= important
;
2990 cand
->incremented_at
= incremented_at
;
2991 data
->vcands
.safe_push (cand
);
2993 if (TREE_CODE (step
) != INTEGER_CST
)
2995 fd_ivopts_data
= data
;
2996 walk_tree (&step
, find_depends
, &cand
->depends_on
, NULL
);
2999 if (pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
3000 cand
->ainc_use
= use
;
3002 cand
->ainc_use
= NULL
;
3004 cand
->orig_iv
= orig_iv
;
3005 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3006 dump_cand (dump_file
, cand
);
3009 cand
->important
|= important
;
3011 /* Relate candidate to the group for which it is added. */
3013 bitmap_set_bit (data
->vgroups
[use
->group_id
]->related_cands
, i
);
3018 /* Returns true if incrementing the induction variable at the end of the LOOP
3021 The purpose is to avoid splitting latch edge with a biv increment, thus
3022 creating a jump, possibly confusing other optimization passes and leaving
3023 less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
3024 is not available (so we do not have a better alternative), or if the latch
3025 edge is already nonempty. */
3028 allow_ip_end_pos_p (struct loop
*loop
)
3030 if (!ip_normal_pos (loop
))
3033 if (!empty_block_p (ip_end_pos (loop
)))
3039 /* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
3040 Important field is set to IMPORTANT. */
3043 add_autoinc_candidates (struct ivopts_data
*data
, tree base
, tree step
,
3044 bool important
, struct iv_use
*use
)
3046 basic_block use_bb
= gimple_bb (use
->stmt
);
3047 machine_mode mem_mode
;
3048 unsigned HOST_WIDE_INT cstepi
;
3050 /* If we insert the increment in any position other than the standard
3051 ones, we must ensure that it is incremented once per iteration.
3052 It must not be in an inner nested loop, or one side of an if
3054 if (use_bb
->loop_father
!= data
->current_loop
3055 || !dominated_by_p (CDI_DOMINATORS
, data
->current_loop
->latch
, use_bb
)
3056 || stmt_could_throw_p (use
->stmt
)
3057 || !cst_and_fits_in_hwi (step
))
3060 cstepi
= int_cst_value (step
);
3062 mem_mode
= TYPE_MODE (TREE_TYPE (*use
->op_p
));
3063 if (((USE_LOAD_PRE_INCREMENT (mem_mode
)
3064 || USE_STORE_PRE_INCREMENT (mem_mode
))
3065 && GET_MODE_SIZE (mem_mode
) == cstepi
)
3066 || ((USE_LOAD_PRE_DECREMENT (mem_mode
)
3067 || USE_STORE_PRE_DECREMENT (mem_mode
))
3068 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
3070 enum tree_code code
= MINUS_EXPR
;
3072 tree new_step
= step
;
3074 if (POINTER_TYPE_P (TREE_TYPE (base
)))
3076 new_step
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (step
), step
);
3077 code
= POINTER_PLUS_EXPR
;
3080 new_step
= fold_convert (TREE_TYPE (base
), new_step
);
3081 new_base
= fold_build2 (code
, TREE_TYPE (base
), base
, new_step
);
3082 add_candidate_1 (data
, new_base
, step
, important
, IP_BEFORE_USE
, use
,
3085 if (((USE_LOAD_POST_INCREMENT (mem_mode
)
3086 || USE_STORE_POST_INCREMENT (mem_mode
))
3087 && GET_MODE_SIZE (mem_mode
) == cstepi
)
3088 || ((USE_LOAD_POST_DECREMENT (mem_mode
)
3089 || USE_STORE_POST_DECREMENT (mem_mode
))
3090 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
3092 add_candidate_1 (data
, base
, step
, important
, IP_AFTER_USE
, use
,
3097 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
3098 position to POS. If USE is not NULL, the candidate is set as related to
3099 it. The candidate computation is scheduled before exit condition and at
3103 add_candidate (struct ivopts_data
*data
,
3104 tree base
, tree step
, bool important
, struct iv_use
*use
,
3105 struct iv
*orig_iv
= NULL
)
3107 if (ip_normal_pos (data
->current_loop
))
3108 add_candidate_1 (data
, base
, step
, important
,
3109 IP_NORMAL
, use
, NULL
, orig_iv
);
3110 if (ip_end_pos (data
->current_loop
)
3111 && allow_ip_end_pos_p (data
->current_loop
))
3112 add_candidate_1 (data
, base
, step
, important
, IP_END
, use
, NULL
, orig_iv
);
3115 /* Adds standard iv candidates. */
3118 add_standard_iv_candidates (struct ivopts_data
*data
)
3120 add_candidate (data
, integer_zero_node
, integer_one_node
, true, NULL
);
3122 /* The same for a double-integer type if it is still fast enough. */
3124 (long_integer_type_node
) > TYPE_PRECISION (integer_type_node
)
3125 && TYPE_PRECISION (long_integer_type_node
) <= BITS_PER_WORD
)
3126 add_candidate (data
, build_int_cst (long_integer_type_node
, 0),
3127 build_int_cst (long_integer_type_node
, 1), true, NULL
);
3129 /* The same for a double-integer type if it is still fast enough. */
3131 (long_long_integer_type_node
) > TYPE_PRECISION (long_integer_type_node
)
3132 && TYPE_PRECISION (long_long_integer_type_node
) <= BITS_PER_WORD
)
3133 add_candidate (data
, build_int_cst (long_long_integer_type_node
, 0),
3134 build_int_cst (long_long_integer_type_node
, 1), true, NULL
);
3138 /* Adds candidates bases on the old induction variable IV. */
3141 add_iv_candidate_for_biv (struct ivopts_data
*data
, struct iv
*iv
)
3145 struct iv_cand
*cand
;
3147 /* Check if this biv is used in address type use. */
3148 if (iv
->no_overflow
&& iv
->have_address_use
3149 && INTEGRAL_TYPE_P (TREE_TYPE (iv
->base
))
3150 && TYPE_PRECISION (TREE_TYPE (iv
->base
)) < TYPE_PRECISION (sizetype
))
3152 tree base
= fold_convert (sizetype
, iv
->base
);
3153 tree step
= fold_convert (sizetype
, iv
->step
);
3155 /* Add iv cand of same precision as index part in TARGET_MEM_REF. */
3156 add_candidate (data
, base
, step
, true, NULL
, iv
);
3157 /* Add iv cand of the original type only if it has nonlinear use. */
3159 add_candidate (data
, iv
->base
, iv
->step
, true, NULL
);
3162 add_candidate (data
, iv
->base
, iv
->step
, true, NULL
);
3164 /* The same, but with initial value zero. */
3165 if (POINTER_TYPE_P (TREE_TYPE (iv
->base
)))
3166 add_candidate (data
, size_int (0), iv
->step
, true, NULL
);
3168 add_candidate (data
, build_int_cst (TREE_TYPE (iv
->base
), 0),
3169 iv
->step
, true, NULL
);
3171 phi
= SSA_NAME_DEF_STMT (iv
->ssa_name
);
3172 if (gimple_code (phi
) == GIMPLE_PHI
)
3174 /* Additionally record the possibility of leaving the original iv
3176 def
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (data
->current_loop
));
3177 /* Don't add candidate if it's from another PHI node because
3178 it's an affine iv appearing in the form of PEELED_CHREC. */
3179 phi
= SSA_NAME_DEF_STMT (def
);
3180 if (gimple_code (phi
) != GIMPLE_PHI
)
3182 cand
= add_candidate_1 (data
,
3183 iv
->base
, iv
->step
, true, IP_ORIGINAL
, NULL
,
3184 SSA_NAME_DEF_STMT (def
));
3187 cand
->var_before
= iv
->ssa_name
;
3188 cand
->var_after
= def
;
3192 gcc_assert (gimple_bb (phi
) == data
->current_loop
->header
);
3196 /* Adds candidates based on the old induction variables. */
3199 add_iv_candidate_for_bivs (struct ivopts_data
*data
)
3205 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
3207 iv
= ver_info (data
, i
)->iv
;
3208 if (iv
&& iv
->biv_p
&& !integer_zerop (iv
->step
))
3209 add_iv_candidate_for_biv (data
, iv
);
3213 /* Record common candidate {BASE, STEP} derived from USE in hashtable. */
3216 record_common_cand (struct ivopts_data
*data
, tree base
,
3217 tree step
, struct iv_use
*use
)
3219 struct iv_common_cand ent
;
3220 struct iv_common_cand
**slot
;
3224 ent
.hash
= iterative_hash_expr (base
, 0);
3225 ent
.hash
= iterative_hash_expr (step
, ent
.hash
);
3227 slot
= data
->iv_common_cand_tab
->find_slot (&ent
, INSERT
);
3230 *slot
= new iv_common_cand ();
3231 (*slot
)->base
= base
;
3232 (*slot
)->step
= step
;
3233 (*slot
)->uses
.create (8);
3234 (*slot
)->hash
= ent
.hash
;
3235 data
->iv_common_cands
.safe_push ((*slot
));
3238 gcc_assert (use
!= NULL
);
3239 (*slot
)->uses
.safe_push (use
);
3243 /* Comparison function used to sort common candidates. */
3246 common_cand_cmp (const void *p1
, const void *p2
)
3249 const struct iv_common_cand
*const *const ccand1
3250 = (const struct iv_common_cand
*const *)p1
;
3251 const struct iv_common_cand
*const *const ccand2
3252 = (const struct iv_common_cand
*const *)p2
;
3254 n1
= (*ccand1
)->uses
.length ();
3255 n2
= (*ccand2
)->uses
.length ();
3259 /* Adds IV candidates based on common candidated recorded. */
3262 add_iv_candidate_derived_from_uses (struct ivopts_data
*data
)
3265 struct iv_cand
*cand_1
, *cand_2
;
3267 data
->iv_common_cands
.qsort (common_cand_cmp
);
3268 for (i
= 0; i
< data
->iv_common_cands
.length (); i
++)
3270 struct iv_common_cand
*ptr
= data
->iv_common_cands
[i
];
3272 /* Only add IV candidate if it's derived from multiple uses. */
3273 if (ptr
->uses
.length () <= 1)
3278 if (ip_normal_pos (data
->current_loop
))
3279 cand_1
= add_candidate_1 (data
, ptr
->base
, ptr
->step
,
3280 false, IP_NORMAL
, NULL
, NULL
);
3282 if (ip_end_pos (data
->current_loop
)
3283 && allow_ip_end_pos_p (data
->current_loop
))
3284 cand_2
= add_candidate_1 (data
, ptr
->base
, ptr
->step
,
3285 false, IP_END
, NULL
, NULL
);
3287 /* Bind deriving uses and the new candidates. */
3288 for (j
= 0; j
< ptr
->uses
.length (); j
++)
3290 struct iv_group
*group
= data
->vgroups
[ptr
->uses
[j
]->group_id
];
3292 bitmap_set_bit (group
->related_cands
, cand_1
->id
);
3294 bitmap_set_bit (group
->related_cands
, cand_2
->id
);
3298 /* Release data since it is useless from this point. */
3299 data
->iv_common_cand_tab
->empty ();
3300 data
->iv_common_cands
.truncate (0);
3303 /* Adds candidates based on the value of USE's iv. */
3306 add_iv_candidate_for_use (struct ivopts_data
*data
, struct iv_use
*use
)
3308 unsigned HOST_WIDE_INT offset
;
3311 struct iv
*iv
= use
->iv
;
3313 add_candidate (data
, iv
->base
, iv
->step
, false, use
);
3315 /* Record common candidate for use in case it can be shared by others. */
3316 record_common_cand (data
, iv
->base
, iv
->step
, use
);
3318 /* Record common candidate with initial value zero. */
3319 basetype
= TREE_TYPE (iv
->base
);
3320 if (POINTER_TYPE_P (basetype
))
3321 basetype
= sizetype
;
3322 record_common_cand (data
, build_int_cst (basetype
, 0), iv
->step
, use
);
3324 /* Record common candidate with constant offset stripped in base.
3325 Like the use itself, we also add candidate directly for it. */
3326 base
= strip_offset (iv
->base
, &offset
);
3327 if (offset
|| base
!= iv
->base
)
3329 record_common_cand (data
, base
, iv
->step
, use
);
3330 add_candidate (data
, base
, iv
->step
, false, use
);
3333 /* Record common candidate with base_object removed in base. */
3334 if (iv
->base_object
!= NULL
)
3338 tree step
, base_object
= iv
->base_object
;
3344 STRIP_NOPS (base_object
);
3345 tree_to_aff_combination (base
, TREE_TYPE (base
), &aff_base
);
3346 for (i
= 0; i
< aff_base
.n
; i
++)
3348 if (aff_base
.elts
[i
].coef
!= 1)
3351 if (operand_equal_p (aff_base
.elts
[i
].val
, base_object
, 0))
3356 aff_combination_remove_elt (&aff_base
, i
);
3357 base
= aff_combination_to_tree (&aff_base
);
3358 basetype
= TREE_TYPE (base
);
3359 if (POINTER_TYPE_P (basetype
))
3360 basetype
= sizetype
;
3362 step
= fold_convert (basetype
, step
);
3363 record_common_cand (data
, base
, step
, use
);
3364 /* Also record common candidate with offset stripped. */
3365 base
= strip_offset (base
, &offset
);
3367 record_common_cand (data
, base
, step
, use
);
3371 /* At last, add auto-incremental candidates. Make such variables
3372 important since other iv uses with same base object may be based
3374 if (use
!= NULL
&& use
->type
== USE_ADDRESS
)
3375 add_autoinc_candidates (data
, iv
->base
, iv
->step
, true, use
);
3378 /* Adds candidates based on the uses. */
3381 add_iv_candidate_for_groups (struct ivopts_data
*data
)
3385 /* Only add candidate for the first use in group. */
3386 for (i
= 0; i
< data
->vgroups
.length (); i
++)
3388 struct iv_group
*group
= data
->vgroups
[i
];
3390 gcc_assert (group
->vuses
[0] != NULL
);
3391 add_iv_candidate_for_use (data
, group
->vuses
[0]);
3393 add_iv_candidate_derived_from_uses (data
);
3396 /* Record important candidates and add them to related_cands bitmaps. */
3399 record_important_candidates (struct ivopts_data
*data
)
3402 struct iv_group
*group
;
3404 for (i
= 0; i
< data
->vcands
.length (); i
++)
3406 struct iv_cand
*cand
= data
->vcands
[i
];
3408 if (cand
->important
)
3409 bitmap_set_bit (data
->important_candidates
, i
);
3412 data
->consider_all_candidates
= (data
->vcands
.length ()
3413 <= CONSIDER_ALL_CANDIDATES_BOUND
);
3415 /* Add important candidates to groups' related_cands bitmaps. */
3416 for (i
= 0; i
< data
->vgroups
.length (); i
++)
3418 group
= data
->vgroups
[i
];
3419 bitmap_ior_into (group
->related_cands
, data
->important_candidates
);
3423 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
3424 If consider_all_candidates is true, we use a two-dimensional array, otherwise
3425 we allocate a simple list to every use. */
3428 alloc_use_cost_map (struct ivopts_data
*data
)
3430 unsigned i
, size
, s
;
3432 for (i
= 0; i
< data
->vgroups
.length (); i
++)
3434 struct iv_group
*group
= data
->vgroups
[i
];
3436 if (data
->consider_all_candidates
)
3437 size
= data
->vcands
.length ();
3440 s
= bitmap_count_bits (group
->related_cands
);
3442 /* Round up to the power of two, so that moduling by it is fast. */
3443 size
= s
? (1 << ceil_log2 (s
)) : 1;
3446 group
->n_map_members
= size
;
3447 group
->cost_map
= XCNEWVEC (struct cost_pair
, size
);
3451 /* Sets cost of (GROUP, CAND) pair to COST and record that it depends
3452 on invariants DEPENDS_ON and that the value used in expressing it
3453 is VALUE, and in case of iv elimination the comparison operator is COMP. */
3456 set_group_iv_cost (struct ivopts_data
*data
,
3457 struct iv_group
*group
, struct iv_cand
*cand
,
3458 comp_cost cost
, bitmap depends_on
, tree value
,
3459 enum tree_code comp
, iv_inv_expr_ent
*inv_expr
)
3463 if (cost
.infinite_cost_p ())
3465 BITMAP_FREE (depends_on
);
3469 if (data
->consider_all_candidates
)
3471 group
->cost_map
[cand
->id
].cand
= cand
;
3472 group
->cost_map
[cand
->id
].cost
= cost
;
3473 group
->cost_map
[cand
->id
].depends_on
= depends_on
;
3474 group
->cost_map
[cand
->id
].value
= value
;
3475 group
->cost_map
[cand
->id
].comp
= comp
;
3476 group
->cost_map
[cand
->id
].inv_expr
= inv_expr
;
3480 /* n_map_members is a power of two, so this computes modulo. */
3481 s
= cand
->id
& (group
->n_map_members
- 1);
3482 for (i
= s
; i
< group
->n_map_members
; i
++)
3483 if (!group
->cost_map
[i
].cand
)
3485 for (i
= 0; i
< s
; i
++)
3486 if (!group
->cost_map
[i
].cand
)
3492 group
->cost_map
[i
].cand
= cand
;
3493 group
->cost_map
[i
].cost
= cost
;
3494 group
->cost_map
[i
].depends_on
= depends_on
;
3495 group
->cost_map
[i
].value
= value
;
3496 group
->cost_map
[i
].comp
= comp
;
3497 group
->cost_map
[i
].inv_expr
= inv_expr
;
3500 /* Gets cost of (GROUP, CAND) pair. */
3502 static struct cost_pair
*
3503 get_group_iv_cost (struct ivopts_data
*data
, struct iv_group
*group
,
3504 struct iv_cand
*cand
)
3507 struct cost_pair
*ret
;
3512 if (data
->consider_all_candidates
)
3514 ret
= group
->cost_map
+ cand
->id
;
3521 /* n_map_members is a power of two, so this computes modulo. */
3522 s
= cand
->id
& (group
->n_map_members
- 1);
3523 for (i
= s
; i
< group
->n_map_members
; i
++)
3524 if (group
->cost_map
[i
].cand
== cand
)
3525 return group
->cost_map
+ i
;
3526 else if (group
->cost_map
[i
].cand
== NULL
)
3528 for (i
= 0; i
< s
; i
++)
3529 if (group
->cost_map
[i
].cand
== cand
)
3530 return group
->cost_map
+ i
;
3531 else if (group
->cost_map
[i
].cand
== NULL
)
3537 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
3539 produce_memory_decl_rtl (tree obj
, int *regno
)
3541 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (obj
));
3542 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3546 if (TREE_STATIC (obj
) || DECL_EXTERNAL (obj
))
3548 const char *name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj
));
3549 x
= gen_rtx_SYMBOL_REF (address_mode
, name
);
3550 SET_SYMBOL_REF_DECL (x
, obj
);
3551 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
3552 set_mem_addr_space (x
, as
);
3553 targetm
.encode_section_info (obj
, x
, true);
3557 x
= gen_raw_REG (address_mode
, (*regno
)++);
3558 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
3559 set_mem_addr_space (x
, as
);
3565 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
3566 walk_tree. DATA contains the actual fake register number. */
3569 prepare_decl_rtl (tree
*expr_p
, int *ws
, void *data
)
3571 tree obj
= NULL_TREE
;
3573 int *regno
= (int *) data
;
3575 switch (TREE_CODE (*expr_p
))
3578 for (expr_p
= &TREE_OPERAND (*expr_p
, 0);
3579 handled_component_p (*expr_p
);
3580 expr_p
= &TREE_OPERAND (*expr_p
, 0))
3583 if (DECL_P (obj
) && HAS_RTL_P (obj
) && !DECL_RTL_SET_P (obj
))
3584 x
= produce_memory_decl_rtl (obj
, regno
);
3589 obj
= SSA_NAME_VAR (*expr_p
);
3590 /* Defer handling of anonymous SSA_NAMEs to the expander. */
3593 if (!DECL_RTL_SET_P (obj
))
3594 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
3603 if (DECL_RTL_SET_P (obj
))
3606 if (DECL_MODE (obj
) == BLKmode
)
3607 x
= produce_memory_decl_rtl (obj
, regno
);
3609 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
3619 decl_rtl_to_reset
.safe_push (obj
);
3620 SET_DECL_RTL (obj
, x
);
3626 /* Determines cost of the computation of EXPR. */
3629 computation_cost (tree expr
, bool speed
)
3633 tree type
= TREE_TYPE (expr
);
3635 /* Avoid using hard regs in ways which may be unsupported. */
3636 int regno
= LAST_VIRTUAL_REGISTER
+ 1;
3637 struct cgraph_node
*node
= cgraph_node::get (current_function_decl
);
3638 enum node_frequency real_frequency
= node
->frequency
;
3640 node
->frequency
= NODE_FREQUENCY_NORMAL
;
3641 crtl
->maybe_hot_insn_p
= speed
;
3642 walk_tree (&expr
, prepare_decl_rtl
, ®no
, NULL
);
3644 rslt
= expand_expr (expr
, NULL_RTX
, TYPE_MODE (type
), EXPAND_NORMAL
);
3647 default_rtl_profile ();
3648 node
->frequency
= real_frequency
;
3650 cost
= seq_cost (seq
, speed
);
3652 cost
+= address_cost (XEXP (rslt
, 0), TYPE_MODE (type
),
3653 TYPE_ADDR_SPACE (type
), speed
);
3654 else if (!REG_P (rslt
))
3655 cost
+= set_src_cost (rslt
, TYPE_MODE (type
), speed
);
3660 /* Returns variable containing the value of candidate CAND at statement AT. */
3663 var_at_stmt (struct loop
*loop
, struct iv_cand
*cand
, gimple
*stmt
)
3665 if (stmt_after_increment (loop
, cand
, stmt
))
3666 return cand
->var_after
;
3668 return cand
->var_before
;
3671 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
3672 same precision that is at least as wide as the precision of TYPE, stores
3673 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
3677 determine_common_wider_type (tree
*a
, tree
*b
)
3679 tree wider_type
= NULL
;
3681 tree atype
= TREE_TYPE (*a
);
3683 if (CONVERT_EXPR_P (*a
))
3685 suba
= TREE_OPERAND (*a
, 0);
3686 wider_type
= TREE_TYPE (suba
);
3687 if (TYPE_PRECISION (wider_type
) < TYPE_PRECISION (atype
))
3693 if (CONVERT_EXPR_P (*b
))
3695 subb
= TREE_OPERAND (*b
, 0);
3696 if (TYPE_PRECISION (wider_type
) != TYPE_PRECISION (TREE_TYPE (subb
)))
3707 /* Determines the expression by that USE is expressed from induction variable
3708 CAND at statement AT in LOOP. The expression is stored in a decomposed
3709 form into AFF. Returns false if USE cannot be expressed using CAND. */
3712 get_computation_aff (struct loop
*loop
,
3713 struct iv_use
*use
, struct iv_cand
*cand
, gimple
*at
,
3714 struct aff_tree
*aff
)
3716 tree ubase
= use
->iv
->base
;
3717 tree ustep
= use
->iv
->step
;
3718 tree cbase
= cand
->iv
->base
;
3719 tree cstep
= cand
->iv
->step
, cstep_common
;
3720 tree utype
= TREE_TYPE (ubase
), ctype
= TREE_TYPE (cbase
);
3721 tree common_type
, var
;
3723 aff_tree cbase_aff
, var_aff
;
3726 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
3728 /* We do not have a precision to express the values of use. */
3732 var
= var_at_stmt (loop
, cand
, at
);
3733 uutype
= unsigned_type_for (utype
);
3735 /* If the conversion is not noop, perform it. */
3736 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
3738 if (cand
->orig_iv
!= NULL
&& CONVERT_EXPR_P (cbase
)
3739 && (CONVERT_EXPR_P (cstep
) || TREE_CODE (cstep
) == INTEGER_CST
))
3741 tree inner_base
, inner_step
, inner_type
;
3742 inner_base
= TREE_OPERAND (cbase
, 0);
3743 if (CONVERT_EXPR_P (cstep
))
3744 inner_step
= TREE_OPERAND (cstep
, 0);
3748 inner_type
= TREE_TYPE (inner_base
);
3749 /* If candidate is added from a biv whose type is smaller than
3750 ctype, we know both candidate and the biv won't overflow.
3751 In this case, it's safe to skip the convertion in candidate.
3752 As an example, (unsigned short)((unsigned long)A) equals to
3753 (unsigned short)A, if A has a type no larger than short. */
3754 if (TYPE_PRECISION (inner_type
) <= TYPE_PRECISION (uutype
))
3760 cstep
= fold_convert (uutype
, cstep
);
3761 cbase
= fold_convert (uutype
, cbase
);
3762 var
= fold_convert (uutype
, var
);
3765 /* Ratio is 1 when computing the value of biv cand by itself.
3766 We can't rely on constant_multiple_of in this case because the
3767 use is created after the original biv is selected. The call
3768 could fail because of inconsistent fold behavior. See PR68021
3769 for more information. */
3770 if (cand
->pos
== IP_ORIGINAL
&& cand
->incremented_at
== use
->stmt
)
3772 gcc_assert (is_gimple_assign (use
->stmt
));
3773 gcc_assert (use
->iv
->ssa_name
== cand
->var_after
);
3774 gcc_assert (gimple_assign_lhs (use
->stmt
) == cand
->var_after
);
3777 else if (!constant_multiple_of (ustep
, cstep
, &rat
))
3780 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
3781 type, we achieve better folding by computing their difference in this
3782 wider type, and cast the result to UUTYPE. We do not need to worry about
3783 overflows, as all the arithmetics will in the end be performed in UUTYPE
3785 common_type
= determine_common_wider_type (&ubase
, &cbase
);
3787 /* use = ubase - ratio * cbase + ratio * var. */
3788 tree_to_aff_combination (ubase
, common_type
, aff
);
3789 tree_to_aff_combination (cbase
, common_type
, &cbase_aff
);
3790 tree_to_aff_combination (var
, uutype
, &var_aff
);
3792 /* We need to shift the value if we are after the increment. */
3793 if (stmt_after_increment (loop
, cand
, at
))
3797 if (common_type
!= uutype
)
3798 cstep_common
= fold_convert (common_type
, cstep
);
3800 cstep_common
= cstep
;
3802 tree_to_aff_combination (cstep_common
, common_type
, &cstep_aff
);
3803 aff_combination_add (&cbase_aff
, &cstep_aff
);
3806 aff_combination_scale (&cbase_aff
, -rat
);
3807 aff_combination_add (aff
, &cbase_aff
);
3808 if (common_type
!= uutype
)
3809 aff_combination_convert (aff
, uutype
);
3811 aff_combination_scale (&var_aff
, rat
);
3812 aff_combination_add (aff
, &var_aff
);
3817 /* Return the type of USE. */
3820 get_use_type (struct iv_use
*use
)
3822 tree base_type
= TREE_TYPE (use
->iv
->base
);
3825 if (use
->type
== USE_ADDRESS
)
3827 /* The base_type may be a void pointer. Create a pointer type based on
3828 the mem_ref instead. */
3829 type
= build_pointer_type (TREE_TYPE (*use
->op_p
));
3830 gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type
))
3831 == TYPE_ADDR_SPACE (TREE_TYPE (base_type
)));
3839 /* Determines the expression by that USE is expressed from induction variable
3840 CAND at statement AT in LOOP. The computation is unshared. */
3843 get_computation_at (struct loop
*loop
,
3844 struct iv_use
*use
, struct iv_cand
*cand
, gimple
*at
)
3847 tree type
= get_use_type (use
);
3849 if (!get_computation_aff (loop
, use
, cand
, at
, &aff
))
3851 unshare_aff_combination (&aff
);
3852 return fold_convert (type
, aff_combination_to_tree (&aff
));
3855 /* Determines the expression by that USE is expressed from induction variable
3856 CAND in LOOP. The computation is unshared. */
3859 get_computation (struct loop
*loop
, struct iv_use
*use
, struct iv_cand
*cand
)
3861 return get_computation_at (loop
, use
, cand
, use
->stmt
);
3864 /* Adjust the cost COST for being in loop setup rather than loop body.
3865 If we're optimizing for space, the loop setup overhead is constant;
3866 if we're optimizing for speed, amortize it over the per-iteration cost. */
3868 adjust_setup_cost (struct ivopts_data
*data
, unsigned cost
)
3872 else if (optimize_loop_for_speed_p (data
->current_loop
))
3873 return cost
/ avg_loop_niter (data
->current_loop
);
3878 /* Returns true if multiplying by RATIO is allowed in an address. Test the
3879 validity for a memory reference accessing memory of mode MODE in
3880 address space AS. */
3884 multiplier_allowed_in_address_p (HOST_WIDE_INT ratio
, machine_mode mode
,
3887 #define MAX_RATIO 128
3888 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mode
;
3889 static vec
<sbitmap
> valid_mult_list
;
3892 if (data_index
>= valid_mult_list
.length ())
3893 valid_mult_list
.safe_grow_cleared (data_index
+ 1);
3895 valid_mult
= valid_mult_list
[data_index
];
3898 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3899 rtx reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3900 rtx reg2
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
3904 valid_mult
= sbitmap_alloc (2 * MAX_RATIO
+ 1);
3905 bitmap_clear (valid_mult
);
3906 scaled
= gen_rtx_fmt_ee (MULT
, address_mode
, reg1
, NULL_RTX
);
3907 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, scaled
, reg2
);
3908 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3910 XEXP (scaled
, 1) = gen_int_mode (i
, address_mode
);
3911 if (memory_address_addr_space_p (mode
, addr
, as
)
3912 || memory_address_addr_space_p (mode
, scaled
, as
))
3913 bitmap_set_bit (valid_mult
, i
+ MAX_RATIO
);
3916 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3918 fprintf (dump_file
, " allowed multipliers:");
3919 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3920 if (bitmap_bit_p (valid_mult
, i
+ MAX_RATIO
))
3921 fprintf (dump_file
, " %d", (int) i
);
3922 fprintf (dump_file
, "\n");
3923 fprintf (dump_file
, "\n");
3926 valid_mult_list
[data_index
] = valid_mult
;
3929 if (ratio
> MAX_RATIO
|| ratio
< -MAX_RATIO
)
3932 return bitmap_bit_p (valid_mult
, ratio
+ MAX_RATIO
);
3935 /* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
3936 If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
3937 variable is omitted. Compute the cost for a memory reference that accesses
3938 a memory location of mode MEM_MODE in address space AS.
3940 MAY_AUTOINC is set to true if the autoincrement (increasing index by
3941 size of MEM_MODE / RATIO) is available. To make this determination, we
3942 look at the size of the increment to be made, which is given in CSTEP.
3943 CSTEP may be zero if the step is unknown.
3944 STMT_AFTER_INC is true iff the statement we're looking at is after the
3945 increment of the original biv.
3947 TODO -- there must be some better way. This all is quite crude. */
3951 AINC_PRE_INC
, /* Pre increment. */
3952 AINC_PRE_DEC
, /* Pre decrement. */
3953 AINC_POST_INC
, /* Post increment. */
3954 AINC_POST_DEC
, /* Post decrement. */
3955 AINC_NONE
/* Also the number of auto increment types. */
3958 struct address_cost_data
3960 HOST_WIDE_INT min_offset
, max_offset
;
3961 unsigned costs
[2][2][2][2];
3962 unsigned ainc_costs
[AINC_NONE
];
3967 get_address_cost (bool symbol_present
, bool var_present
,
3968 unsigned HOST_WIDE_INT offset
, HOST_WIDE_INT ratio
,
3969 HOST_WIDE_INT cstep
, machine_mode mem_mode
,
3970 addr_space_t as
, bool speed
,
3971 bool stmt_after_inc
, bool *may_autoinc
)
3973 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3974 static vec
<address_cost_data
*> address_cost_data_list
;
3975 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mem_mode
;
3976 address_cost_data
*data
;
3977 static bool has_preinc
[MAX_MACHINE_MODE
], has_postinc
[MAX_MACHINE_MODE
];
3978 static bool has_predec
[MAX_MACHINE_MODE
], has_postdec
[MAX_MACHINE_MODE
];
3979 unsigned cost
, acost
, complexity
;
3980 enum ainc_type autoinc_type
;
3981 bool offset_p
, ratio_p
, autoinc
;
3982 HOST_WIDE_INT s_offset
, autoinc_offset
, msize
;
3983 unsigned HOST_WIDE_INT mask
;
3986 if (data_index
>= address_cost_data_list
.length ())
3987 address_cost_data_list
.safe_grow_cleared (data_index
+ 1);
3989 data
= address_cost_data_list
[data_index
];
3993 HOST_WIDE_INT rat
, off
= 0;
3994 int old_cse_not_expected
, width
;
3995 unsigned sym_p
, var_p
, off_p
, rat_p
, add_c
;
4000 data
= (address_cost_data
*) xcalloc (1, sizeof (*data
));
4002 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
4004 width
= GET_MODE_BITSIZE (address_mode
) - 1;
4005 if (width
> (HOST_BITS_PER_WIDE_INT
- 1))
4006 width
= HOST_BITS_PER_WIDE_INT
- 1;
4007 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, reg1
, NULL_RTX
);
4009 for (i
= width
; i
>= 0; i
--)
4011 off
= -(HOST_WIDE_INT_1U
<< i
);
4012 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
4013 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
4016 data
->min_offset
= (i
== -1? 0 : off
);
4018 for (i
= width
; i
>= 0; i
--)
4020 off
= (HOST_WIDE_INT_1U
<< i
) - 1;
4021 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
4022 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
4024 /* For some strict-alignment targets, the offset must be naturally
4025 aligned. Try an aligned offset if mem_mode is not QImode. */
4026 off
= mem_mode
!= QImode
4027 ? (HOST_WIDE_INT_1U
<< i
)
4028 - GET_MODE_SIZE (mem_mode
)
4032 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
4033 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
4039 data
->max_offset
= off
;
4041 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4043 fprintf (dump_file
, "get_address_cost:\n");
4044 fprintf (dump_file
, " min offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
4045 GET_MODE_NAME (mem_mode
),
4047 fprintf (dump_file
, " max offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
4048 GET_MODE_NAME (mem_mode
),
4053 for (i
= 2; i
<= MAX_RATIO
; i
++)
4054 if (multiplier_allowed_in_address_p (i
, mem_mode
, as
))
4060 /* Compute the cost of various addressing modes. */
4062 reg0
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
4063 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
4065 if (USE_LOAD_PRE_DECREMENT (mem_mode
)
4066 || USE_STORE_PRE_DECREMENT (mem_mode
))
4068 addr
= gen_rtx_PRE_DEC (address_mode
, reg0
);
4069 has_predec
[mem_mode
]
4070 = memory_address_addr_space_p (mem_mode
, addr
, as
);
4072 if (has_predec
[mem_mode
])
4073 data
->ainc_costs
[AINC_PRE_DEC
]
4074 = address_cost (addr
, mem_mode
, as
, speed
);
4076 if (USE_LOAD_POST_DECREMENT (mem_mode
)
4077 || USE_STORE_POST_DECREMENT (mem_mode
))
4079 addr
= gen_rtx_POST_DEC (address_mode
, reg0
);
4080 has_postdec
[mem_mode
]
4081 = memory_address_addr_space_p (mem_mode
, addr
, as
);
4083 if (has_postdec
[mem_mode
])
4084 data
->ainc_costs
[AINC_POST_DEC
]
4085 = address_cost (addr
, mem_mode
, as
, speed
);
4087 if (USE_LOAD_PRE_INCREMENT (mem_mode
)
4088 || USE_STORE_PRE_DECREMENT (mem_mode
))
4090 addr
= gen_rtx_PRE_INC (address_mode
, reg0
);
4091 has_preinc
[mem_mode
]
4092 = memory_address_addr_space_p (mem_mode
, addr
, as
);
4094 if (has_preinc
[mem_mode
])
4095 data
->ainc_costs
[AINC_PRE_INC
]
4096 = address_cost (addr
, mem_mode
, as
, speed
);
4098 if (USE_LOAD_POST_INCREMENT (mem_mode
)
4099 || USE_STORE_POST_INCREMENT (mem_mode
))
4101 addr
= gen_rtx_POST_INC (address_mode
, reg0
);
4102 has_postinc
[mem_mode
]
4103 = memory_address_addr_space_p (mem_mode
, addr
, as
);
4105 if (has_postinc
[mem_mode
])
4106 data
->ainc_costs
[AINC_POST_INC
]
4107 = address_cost (addr
, mem_mode
, as
, speed
);
4109 for (i
= 0; i
< 16; i
++)
4112 var_p
= (i
>> 1) & 1;
4113 off_p
= (i
>> 2) & 1;
4114 rat_p
= (i
>> 3) & 1;
4118 addr
= gen_rtx_fmt_ee (MULT
, address_mode
, addr
,
4119 gen_int_mode (rat
, address_mode
));
4122 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, reg1
);
4126 base
= gen_rtx_SYMBOL_REF (address_mode
, ggc_strdup (""));
4127 /* ??? We can run into trouble with some backends by presenting
4128 it with symbols which haven't been properly passed through
4129 targetm.encode_section_info. By setting the local bit, we
4130 enhance the probability of things working. */
4131 SYMBOL_REF_FLAGS (base
) = SYMBOL_FLAG_LOCAL
;
4134 base
= gen_rtx_fmt_e (CONST
, address_mode
,
4136 (PLUS
, address_mode
, base
,
4137 gen_int_mode (off
, address_mode
)));
4140 base
= gen_int_mode (off
, address_mode
);
4145 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, base
);
4148 /* To avoid splitting addressing modes, pretend that no cse will
4150 old_cse_not_expected
= cse_not_expected
;
4151 cse_not_expected
= true;
4152 addr
= memory_address_addr_space (mem_mode
, addr
, as
);
4153 cse_not_expected
= old_cse_not_expected
;
4157 acost
= seq_cost (seq
, speed
);
4158 acost
+= address_cost (addr
, mem_mode
, as
, speed
);
4162 data
->costs
[sym_p
][var_p
][off_p
][rat_p
] = acost
;
4165 /* On some targets, it is quite expensive to load symbol to a register,
4166 which makes addresses that contain symbols look much more expensive.
4167 However, the symbol will have to be loaded in any case before the
4168 loop (and quite likely we have it in register already), so it does not
4169 make much sense to penalize them too heavily. So make some final
4170 tweaks for the SYMBOL_PRESENT modes:
4172 If VAR_PRESENT is false, and the mode obtained by changing symbol to
4173 var is cheaper, use this mode with small penalty.
4174 If VAR_PRESENT is true, try whether the mode with
4175 SYMBOL_PRESENT = false is cheaper even with cost of addition, and
4176 if this is the case, use it. */
4177 add_c
= add_cost (speed
, address_mode
);
4178 for (i
= 0; i
< 8; i
++)
4181 off_p
= (i
>> 1) & 1;
4182 rat_p
= (i
>> 2) & 1;
4184 acost
= data
->costs
[0][1][off_p
][rat_p
] + 1;
4188 if (acost
< data
->costs
[1][var_p
][off_p
][rat_p
])
4189 data
->costs
[1][var_p
][off_p
][rat_p
] = acost
;
4192 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4194 fprintf (dump_file
, "<Address Costs>:\n");
4196 for (i
= 0; i
< 16; i
++)
4199 var_p
= (i
>> 1) & 1;
4200 off_p
= (i
>> 2) & 1;
4201 rat_p
= (i
>> 3) & 1;
4203 fprintf (dump_file
, " ");
4205 fprintf (dump_file
, "sym + ");
4207 fprintf (dump_file
, "var + ");
4209 fprintf (dump_file
, "cst + ");
4211 fprintf (dump_file
, "rat * ");
4213 acost
= data
->costs
[sym_p
][var_p
][off_p
][rat_p
];
4214 fprintf (dump_file
, "index costs %d\n", acost
);
4216 if (has_predec
[mem_mode
] || has_postdec
[mem_mode
]
4217 || has_preinc
[mem_mode
] || has_postinc
[mem_mode
])
4218 fprintf (dump_file
, " May include autoinc/dec\n");
4219 fprintf (dump_file
, "\n");
4222 address_cost_data_list
[data_index
] = data
;
4225 bits
= GET_MODE_BITSIZE (address_mode
);
4226 mask
= ~(HOST_WIDE_INT_M1U
<< (bits
- 1) << 1);
4228 if ((offset
>> (bits
- 1) & 1))
4233 autoinc_type
= AINC_NONE
;
4234 msize
= GET_MODE_SIZE (mem_mode
);
4235 autoinc_offset
= offset
;
4237 autoinc_offset
+= ratio
* cstep
;
4238 if (symbol_present
|| var_present
|| ratio
!= 1)
4242 if (has_postinc
[mem_mode
] && autoinc_offset
== 0
4244 autoinc_type
= AINC_POST_INC
;
4245 else if (has_postdec
[mem_mode
] && autoinc_offset
== 0
4247 autoinc_type
= AINC_POST_DEC
;
4248 else if (has_preinc
[mem_mode
] && autoinc_offset
== msize
4250 autoinc_type
= AINC_PRE_INC
;
4251 else if (has_predec
[mem_mode
] && autoinc_offset
== -msize
4253 autoinc_type
= AINC_PRE_DEC
;
4255 if (autoinc_type
!= AINC_NONE
)
4260 offset_p
= (s_offset
!= 0
4261 && data
->min_offset
<= s_offset
4262 && s_offset
<= data
->max_offset
);
4263 ratio_p
= (ratio
!= 1
4264 && multiplier_allowed_in_address_p (ratio
, mem_mode
, as
));
4266 if (ratio
!= 1 && !ratio_p
)
4267 cost
+= mult_by_coeff_cost (ratio
, address_mode
, speed
);
4269 if (s_offset
&& !offset_p
&& !symbol_present
)
4270 cost
+= add_cost (speed
, address_mode
);
4273 *may_autoinc
= autoinc
;
4275 acost
= data
->ainc_costs
[autoinc_type
];
4277 acost
= data
->costs
[symbol_present
][var_present
][offset_p
][ratio_p
];
4278 complexity
= (symbol_present
!= 0) + (var_present
!= 0) + offset_p
+ ratio_p
;
4279 return comp_cost (cost
+ acost
, complexity
);
4282 /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
4283 EXPR operand holding the shift. COST0 and COST1 are the costs for
4284 calculating the operands of EXPR. Returns true if successful, and returns
4285 the cost in COST. */
4288 get_shiftadd_cost (tree expr
, machine_mode mode
, comp_cost cost0
,
4289 comp_cost cost1
, tree mult
, bool speed
, comp_cost
*cost
)
4292 tree op1
= TREE_OPERAND (expr
, 1);
4293 tree cst
= TREE_OPERAND (mult
, 1);
4294 tree multop
= TREE_OPERAND (mult
, 0);
4295 int m
= exact_log2 (int_cst_value (cst
));
4296 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
4297 int as_cost
, sa_cost
;
4300 if (!(m
>= 0 && m
< maxm
))
4304 mult_in_op1
= operand_equal_p (op1
, mult
, 0);
4306 as_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
4308 /* If the target has a cheap shift-and-add or shift-and-sub instruction,
4309 use that in preference to a shift insn followed by an add insn. */
4310 sa_cost
= (TREE_CODE (expr
) != MINUS_EXPR
4311 ? shiftadd_cost (speed
, mode
, m
)
4313 ? shiftsub1_cost (speed
, mode
, m
)
4314 : shiftsub0_cost (speed
, mode
, m
)));
4316 res
= comp_cost (MIN (as_cost
, sa_cost
), 0);
4317 res
+= (mult_in_op1
? cost0
: cost1
);
4319 STRIP_NOPS (multop
);
4320 if (!is_gimple_val (multop
))
4321 res
+= force_expr_to_var_cost (multop
, speed
);
4327 /* Estimates cost of forcing expression EXPR into a variable. */
4330 force_expr_to_var_cost (tree expr
, bool speed
)
4332 static bool costs_initialized
= false;
4333 static unsigned integer_cost
[2];
4334 static unsigned symbol_cost
[2];
4335 static unsigned address_cost
[2];
4337 comp_cost cost0
, cost1
, cost
;
4340 if (!costs_initialized
)
4342 tree type
= build_pointer_type (integer_type_node
);
4347 var
= create_tmp_var_raw (integer_type_node
, "test_var");
4348 TREE_STATIC (var
) = 1;
4349 x
= produce_memory_decl_rtl (var
, NULL
);
4350 SET_DECL_RTL (var
, x
);
4352 addr
= build1 (ADDR_EXPR
, type
, var
);
4355 for (i
= 0; i
< 2; i
++)
4357 integer_cost
[i
] = computation_cost (build_int_cst (integer_type_node
,
4360 symbol_cost
[i
] = computation_cost (addr
, i
) + 1;
4363 = computation_cost (fold_build_pointer_plus_hwi (addr
, 2000), i
) + 1;
4364 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4366 fprintf (dump_file
, "force_expr_to_var_cost %s costs:\n", i
? "speed" : "size");
4367 fprintf (dump_file
, " integer %d\n", (int) integer_cost
[i
]);
4368 fprintf (dump_file
, " symbol %d\n", (int) symbol_cost
[i
]);
4369 fprintf (dump_file
, " address %d\n", (int) address_cost
[i
]);
4370 fprintf (dump_file
, " other %d\n", (int) target_spill_cost
[i
]);
4371 fprintf (dump_file
, "\n");
4375 costs_initialized
= true;
4380 if (SSA_VAR_P (expr
))
4383 if (is_gimple_min_invariant (expr
))
4385 if (TREE_CODE (expr
) == INTEGER_CST
)
4386 return comp_cost (integer_cost
[speed
], 0);
4388 if (TREE_CODE (expr
) == ADDR_EXPR
)
4390 tree obj
= TREE_OPERAND (expr
, 0);
4393 || TREE_CODE (obj
) == PARM_DECL
4394 || TREE_CODE (obj
) == RESULT_DECL
)
4395 return comp_cost (symbol_cost
[speed
], 0);
4398 return comp_cost (address_cost
[speed
], 0);
4401 switch (TREE_CODE (expr
))
4403 case POINTER_PLUS_EXPR
:
4407 op0
= TREE_OPERAND (expr
, 0);
4408 op1
= TREE_OPERAND (expr
, 1);
4415 op0
= TREE_OPERAND (expr
, 0);
4421 /* Just an arbitrary value, FIXME. */
4422 return comp_cost (target_spill_cost
[speed
], 0);
4425 if (op0
== NULL_TREE
4426 || TREE_CODE (op0
) == SSA_NAME
|| CONSTANT_CLASS_P (op0
))
4429 cost0
= force_expr_to_var_cost (op0
, speed
);
4431 if (op1
== NULL_TREE
4432 || TREE_CODE (op1
) == SSA_NAME
|| CONSTANT_CLASS_P (op1
))
4435 cost1
= force_expr_to_var_cost (op1
, speed
);
4437 mode
= TYPE_MODE (TREE_TYPE (expr
));
4438 switch (TREE_CODE (expr
))
4440 case POINTER_PLUS_EXPR
:
4444 cost
= comp_cost (add_cost (speed
, mode
), 0);
4445 if (TREE_CODE (expr
) != NEGATE_EXPR
)
4447 tree mult
= NULL_TREE
;
4449 if (TREE_CODE (op1
) == MULT_EXPR
)
4451 else if (TREE_CODE (op0
) == MULT_EXPR
)
4454 if (mult
!= NULL_TREE
4455 && cst_and_fits_in_hwi (TREE_OPERAND (mult
, 1))
4456 && get_shiftadd_cost (expr
, mode
, cost0
, cost1
, mult
,
4464 tree inner_mode
, outer_mode
;
4465 outer_mode
= TREE_TYPE (expr
);
4466 inner_mode
= TREE_TYPE (op0
);
4467 cost
= comp_cost (convert_cost (TYPE_MODE (outer_mode
),
4468 TYPE_MODE (inner_mode
), speed
), 0);
4473 if (cst_and_fits_in_hwi (op0
))
4474 cost
= comp_cost (mult_by_coeff_cost (int_cst_value (op0
),
4476 else if (cst_and_fits_in_hwi (op1
))
4477 cost
= comp_cost (mult_by_coeff_cost (int_cst_value (op1
),
4480 return comp_cost (target_spill_cost
[speed
], 0);
4490 /* Bound the cost by target_spill_cost. The parts of complicated
4491 computations often are either loop invariant or at least can
4492 be shared between several iv uses, so letting this grow without
4493 limits would not give reasonable results. */
4494 if (cost
.cost
> (int) target_spill_cost
[speed
])
4495 cost
.cost
= target_spill_cost
[speed
];
4500 /* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
4501 invariants the computation depends on. */
4504 force_var_cost (struct ivopts_data
*data
,
4505 tree expr
, bitmap
*depends_on
)
4509 fd_ivopts_data
= data
;
4510 walk_tree (&expr
, find_depends
, depends_on
, NULL
);
4513 return force_expr_to_var_cost (expr
, data
->speed
);
4516 /* Estimates cost of expressing address ADDR as var + symbol + offset. The
4517 value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
4518 to false if the corresponding part is missing. DEPENDS_ON is a set of the
4519 invariants the computation depends on. */
4522 split_address_cost (struct ivopts_data
*data
,
4523 tree addr
, bool *symbol_present
, bool *var_present
,
4524 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
4527 HOST_WIDE_INT bitsize
;
4528 HOST_WIDE_INT bitpos
;
4531 int unsignedp
, reversep
, volatilep
;
4533 core
= get_inner_reference (addr
, &bitsize
, &bitpos
, &toffset
, &mode
,
4534 &unsignedp
, &reversep
, &volatilep
);
4537 || bitpos
% BITS_PER_UNIT
!= 0
4541 *symbol_present
= false;
4542 *var_present
= true;
4543 fd_ivopts_data
= data
;
4545 walk_tree (&addr
, find_depends
, depends_on
, NULL
);
4547 return comp_cost (target_spill_cost
[data
->speed
], 0);
4550 *offset
+= bitpos
/ BITS_PER_UNIT
;
4551 if (TREE_STATIC (core
)
4552 || DECL_EXTERNAL (core
))
4554 *symbol_present
= true;
4555 *var_present
= false;
4559 *symbol_present
= false;
4560 *var_present
= true;
4564 /* Estimates cost of expressing difference of addresses E1 - E2 as
4565 var + symbol + offset. The value of offset is added to OFFSET,
4566 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4567 part is missing. DEPENDS_ON is a set of the invariants the computation
4571 ptr_difference_cost (struct ivopts_data
*data
,
4572 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
4573 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
4575 HOST_WIDE_INT diff
= 0;
4576 aff_tree aff_e1
, aff_e2
;
4579 gcc_assert (TREE_CODE (e1
) == ADDR_EXPR
);
4581 if (ptr_difference_const (e1
, e2
, &diff
))
4584 *symbol_present
= false;
4585 *var_present
= false;
4589 if (integer_zerop (e2
))
4590 return split_address_cost (data
, TREE_OPERAND (e1
, 0),
4591 symbol_present
, var_present
, offset
, depends_on
);
4593 *symbol_present
= false;
4594 *var_present
= true;
4596 type
= signed_type_for (TREE_TYPE (e1
));
4597 tree_to_aff_combination (e1
, type
, &aff_e1
);
4598 tree_to_aff_combination (e2
, type
, &aff_e2
);
4599 aff_combination_scale (&aff_e2
, -1);
4600 aff_combination_add (&aff_e1
, &aff_e2
);
4602 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
4605 /* Estimates cost of expressing difference E1 - E2 as
4606 var + symbol + offset. The value of offset is added to OFFSET,
4607 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4608 part is missing. DEPENDS_ON is a set of the invariants the computation
4612 difference_cost (struct ivopts_data
*data
,
4613 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
4614 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
4616 machine_mode mode
= TYPE_MODE (TREE_TYPE (e1
));
4617 unsigned HOST_WIDE_INT off1
, off2
;
4618 aff_tree aff_e1
, aff_e2
;
4621 e1
= strip_offset (e1
, &off1
);
4622 e2
= strip_offset (e2
, &off2
);
4623 *offset
+= off1
- off2
;
4628 if (TREE_CODE (e1
) == ADDR_EXPR
)
4629 return ptr_difference_cost (data
, e1
, e2
, symbol_present
, var_present
,
4630 offset
, depends_on
);
4631 *symbol_present
= false;
4633 if (operand_equal_p (e1
, e2
, 0))
4635 *var_present
= false;
4639 *var_present
= true;
4641 if (integer_zerop (e2
))
4642 return force_var_cost (data
, e1
, depends_on
);
4644 if (integer_zerop (e1
))
4646 comp_cost cost
= force_var_cost (data
, e2
, depends_on
);
4647 cost
+= mult_by_coeff_cost (-1, mode
, data
->speed
);
4651 type
= signed_type_for (TREE_TYPE (e1
));
4652 tree_to_aff_combination (e1
, type
, &aff_e1
);
4653 tree_to_aff_combination (e2
, type
, &aff_e2
);
4654 aff_combination_scale (&aff_e2
, -1);
4655 aff_combination_add (&aff_e1
, &aff_e2
);
4657 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
4660 /* Returns true if AFF1 and AFF2 are identical. */
4663 compare_aff_trees (aff_tree
*aff1
, aff_tree
*aff2
)
4667 if (aff1
->n
!= aff2
->n
)
4670 for (i
= 0; i
< aff1
->n
; i
++)
4672 if (aff1
->elts
[i
].coef
!= aff2
->elts
[i
].coef
)
4675 if (!operand_equal_p (aff1
->elts
[i
].val
, aff2
->elts
[i
].val
, 0))
4681 /* Stores EXPR in DATA->inv_expr_tab, return pointer to iv_inv_expr_ent. */
4683 static iv_inv_expr_ent
*
4684 record_inv_expr (struct ivopts_data
*data
, tree expr
)
4686 struct iv_inv_expr_ent ent
;
4687 struct iv_inv_expr_ent
**slot
;
4690 ent
.hash
= iterative_hash_expr (expr
, 0);
4691 slot
= data
->inv_expr_tab
->find_slot (&ent
, INSERT
);
4695 *slot
= XNEW (struct iv_inv_expr_ent
);
4696 (*slot
)->expr
= expr
;
4697 (*slot
)->hash
= ent
.hash
;
4698 (*slot
)->id
= data
->max_inv_expr_id
++;
4704 /* Returns the invariant expression if expression UBASE - RATIO * CBASE
4705 requires a new compiler generated temporary. Returns -1 otherwise.
4706 ADDRESS_P is a flag indicating if the expression is for address
4709 static iv_inv_expr_ent
*
4710 get_loop_invariant_expr (struct ivopts_data
*data
, tree ubase
,
4711 tree cbase
, HOST_WIDE_INT ratio
,
4714 aff_tree ubase_aff
, cbase_aff
;
4722 if ((TREE_CODE (ubase
) == INTEGER_CST
)
4723 && (TREE_CODE (cbase
) == INTEGER_CST
))
4726 /* Strips the constant part. */
4727 if (TREE_CODE (ubase
) == PLUS_EXPR
4728 || TREE_CODE (ubase
) == MINUS_EXPR
4729 || TREE_CODE (ubase
) == POINTER_PLUS_EXPR
)
4731 if (TREE_CODE (TREE_OPERAND (ubase
, 1)) == INTEGER_CST
)
4732 ubase
= TREE_OPERAND (ubase
, 0);
4735 /* Strips the constant part. */
4736 if (TREE_CODE (cbase
) == PLUS_EXPR
4737 || TREE_CODE (cbase
) == MINUS_EXPR
4738 || TREE_CODE (cbase
) == POINTER_PLUS_EXPR
)
4740 if (TREE_CODE (TREE_OPERAND (cbase
, 1)) == INTEGER_CST
)
4741 cbase
= TREE_OPERAND (cbase
, 0);
4746 if (((TREE_CODE (ubase
) == SSA_NAME
)
4747 || (TREE_CODE (ubase
) == ADDR_EXPR
4748 && is_gimple_min_invariant (ubase
)))
4749 && (TREE_CODE (cbase
) == INTEGER_CST
))
4752 if (((TREE_CODE (cbase
) == SSA_NAME
)
4753 || (TREE_CODE (cbase
) == ADDR_EXPR
4754 && is_gimple_min_invariant (cbase
)))
4755 && (TREE_CODE (ubase
) == INTEGER_CST
))
4761 if (operand_equal_p (ubase
, cbase
, 0))
4764 if (TREE_CODE (ubase
) == ADDR_EXPR
4765 && TREE_CODE (cbase
) == ADDR_EXPR
)
4769 usym
= TREE_OPERAND (ubase
, 0);
4770 csym
= TREE_OPERAND (cbase
, 0);
4771 if (TREE_CODE (usym
) == ARRAY_REF
)
4773 tree ind
= TREE_OPERAND (usym
, 1);
4774 if (TREE_CODE (ind
) == INTEGER_CST
4775 && tree_fits_shwi_p (ind
)
4776 && tree_to_shwi (ind
) == 0)
4777 usym
= TREE_OPERAND (usym
, 0);
4779 if (TREE_CODE (csym
) == ARRAY_REF
)
4781 tree ind
= TREE_OPERAND (csym
, 1);
4782 if (TREE_CODE (ind
) == INTEGER_CST
4783 && tree_fits_shwi_p (ind
)
4784 && tree_to_shwi (ind
) == 0)
4785 csym
= TREE_OPERAND (csym
, 0);
4787 if (operand_equal_p (usym
, csym
, 0))
4790 /* Now do more complex comparison */
4791 tree_to_aff_combination (ubase
, TREE_TYPE (ubase
), &ubase_aff
);
4792 tree_to_aff_combination (cbase
, TREE_TYPE (cbase
), &cbase_aff
);
4793 if (compare_aff_trees (&ubase_aff
, &cbase_aff
))
4797 tree_to_aff_combination (ub
, TREE_TYPE (ub
), &ubase_aff
);
4798 tree_to_aff_combination (cb
, TREE_TYPE (cb
), &cbase_aff
);
4800 aff_combination_scale (&cbase_aff
, -1 * ratio
);
4801 aff_combination_add (&ubase_aff
, &cbase_aff
);
4802 expr
= aff_combination_to_tree (&ubase_aff
);
4803 return record_inv_expr (data
, expr
);
4806 /* Scale (multiply) the computed COST (except scratch part that should be
4807 hoisted out a loop) by header->frequency / AT->frequency,
4808 which makes expected cost more accurate. */
4811 get_scaled_computation_cost_at (ivopts_data
*data
, gimple
*at
, iv_cand
*cand
,
4814 int loop_freq
= data
->current_loop
->header
->frequency
;
4815 int bb_freq
= gimple_bb (at
)->frequency
;
4818 gcc_assert (cost
.scratch
<= cost
.cost
);
4820 = cost
.scratch
+ (cost
.cost
- cost
.scratch
) * bb_freq
/ loop_freq
;
4822 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4823 fprintf (dump_file
, "Scaling iv_use based on cand %d "
4824 "by %2.2f: %d (scratch: %d) -> %d (%d/%d)\n",
4825 cand
->id
, 1.0f
* bb_freq
/ loop_freq
, cost
.cost
,
4826 cost
.scratch
, scaled_cost
, bb_freq
, loop_freq
);
4828 cost
.cost
= scaled_cost
;
4834 /* Determines the cost of the computation by that USE is expressed
4835 from induction variable CAND. If ADDRESS_P is true, we just need
4836 to create an address from it, otherwise we want to get it into
4837 register. A set of invariants we depend on is stored in
4838 DEPENDS_ON. AT is the statement at that the value is computed.
4839 If CAN_AUTOINC is nonnull, use it to record whether autoinc
4840 addressing is likely. */
4843 get_computation_cost_at (struct ivopts_data
*data
,
4844 struct iv_use
*use
, struct iv_cand
*cand
,
4845 bool address_p
, bitmap
*depends_on
, gimple
*at
,
4847 iv_inv_expr_ent
**inv_expr
)
4849 tree ubase
= use
->iv
->base
, ustep
= use
->iv
->step
;
4851 tree utype
= TREE_TYPE (ubase
), ctype
;
4852 unsigned HOST_WIDE_INT cstepi
, offset
= 0;
4853 HOST_WIDE_INT ratio
, aratio
;
4854 bool var_present
, symbol_present
, stmt_is_after_inc
;
4857 bool speed
= optimize_bb_for_speed_p (gimple_bb (at
));
4858 machine_mode mem_mode
= (address_p
4859 ? TYPE_MODE (TREE_TYPE (*use
->op_p
))
4865 /* Only consider real candidates. */
4867 return infinite_cost
;
4869 cbase
= cand
->iv
->base
;
4870 cstep
= cand
->iv
->step
;
4871 ctype
= TREE_TYPE (cbase
);
4873 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
4875 /* We do not have a precision to express the values of use. */
4876 return infinite_cost
;
4880 || (use
->iv
->base_object
4881 && cand
->iv
->base_object
4882 && POINTER_TYPE_P (TREE_TYPE (use
->iv
->base_object
))
4883 && POINTER_TYPE_P (TREE_TYPE (cand
->iv
->base_object
))))
4885 /* Do not try to express address of an object with computation based
4886 on address of a different object. This may cause problems in rtl
4887 level alias analysis (that does not expect this to be happening,
4888 as this is illegal in C), and would be unlikely to be useful
4890 if (use
->iv
->base_object
4891 && cand
->iv
->base_object
4892 && !operand_equal_p (use
->iv
->base_object
, cand
->iv
->base_object
, 0))
4893 return infinite_cost
;
4896 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
4898 /* TODO -- add direct handling of this case. */
4902 /* CSTEPI is removed from the offset in case statement is after the
4903 increment. If the step is not constant, we use zero instead.
4904 This is a bit imprecise (there is the extra addition), but
4905 redundancy elimination is likely to transform the code so that
4906 it uses value of the variable before increment anyway,
4907 so it is not that much unrealistic. */
4908 if (cst_and_fits_in_hwi (cstep
))
4909 cstepi
= int_cst_value (cstep
);
4913 if (!constant_multiple_of (ustep
, cstep
, &rat
))
4914 return infinite_cost
;
4916 if (wi::fits_shwi_p (rat
))
4917 ratio
= rat
.to_shwi ();
4919 return infinite_cost
;
4922 ctype
= TREE_TYPE (cbase
);
4924 stmt_is_after_inc
= stmt_after_increment (data
->current_loop
, cand
, at
);
4926 /* use = ubase + ratio * (var - cbase). If either cbase is a constant
4927 or ratio == 1, it is better to handle this like
4929 ubase - ratio * cbase + ratio * var
4931 (also holds in the case ratio == -1, TODO. */
4933 if (cst_and_fits_in_hwi (cbase
))
4935 offset
= - ratio
* (unsigned HOST_WIDE_INT
) int_cst_value (cbase
);
4936 cost
= difference_cost (data
,
4937 ubase
, build_int_cst (utype
, 0),
4938 &symbol_present
, &var_present
, &offset
,
4940 cost
/= avg_loop_niter (data
->current_loop
);
4942 else if (ratio
== 1)
4944 tree real_cbase
= cbase
;
4946 /* Check to see if any adjustment is needed. */
4947 if (cstepi
== 0 && stmt_is_after_inc
)
4949 aff_tree real_cbase_aff
;
4952 tree_to_aff_combination (cbase
, TREE_TYPE (real_cbase
),
4954 tree_to_aff_combination (cstep
, TREE_TYPE (cstep
), &cstep_aff
);
4956 aff_combination_add (&real_cbase_aff
, &cstep_aff
);
4957 real_cbase
= aff_combination_to_tree (&real_cbase_aff
);
4960 cost
= difference_cost (data
,
4962 &symbol_present
, &var_present
, &offset
,
4964 cost
/= avg_loop_niter (data
->current_loop
);
4967 && !POINTER_TYPE_P (ctype
)
4968 && multiplier_allowed_in_address_p
4970 TYPE_ADDR_SPACE (TREE_TYPE (utype
))))
4972 tree real_cbase
= cbase
;
4974 if (cstepi
== 0 && stmt_is_after_inc
)
4976 if (POINTER_TYPE_P (ctype
))
4977 real_cbase
= fold_build2 (POINTER_PLUS_EXPR
, ctype
, cbase
, cstep
);
4979 real_cbase
= fold_build2 (PLUS_EXPR
, ctype
, cbase
, cstep
);
4981 real_cbase
= fold_build2 (MULT_EXPR
, ctype
, real_cbase
,
4982 build_int_cst (ctype
, ratio
));
4983 cost
= difference_cost (data
,
4985 &symbol_present
, &var_present
, &offset
,
4987 cost
/= avg_loop_niter (data
->current_loop
);
4991 cost
= force_var_cost (data
, cbase
, depends_on
);
4992 cost
+= difference_cost (data
, ubase
, build_int_cst (utype
, 0),
4993 &symbol_present
, &var_present
, &offset
,
4995 cost
/= avg_loop_niter (data
->current_loop
);
4996 cost
+= add_cost (data
->speed
, TYPE_MODE (ctype
));
4999 /* Record setup cost in scratch field. */
5000 cost
.scratch
= cost
.cost
;
5002 if (inv_expr
&& depends_on
&& *depends_on
)
5004 *inv_expr
= get_loop_invariant_expr (data
, ubase
, cbase
, ratio
,
5006 /* Clear depends on. */
5007 if (*inv_expr
!= NULL
)
5008 bitmap_clear (*depends_on
);
5011 /* If we are after the increment, the value of the candidate is higher by
5013 if (stmt_is_after_inc
)
5014 offset
-= ratio
* cstepi
;
5016 /* Now the computation is in shape symbol + var1 + const + ratio * var2.
5017 (symbol/var1/const parts may be omitted). If we are looking for an
5018 address, find the cost of addressing this. */
5021 cost
+= get_address_cost (symbol_present
, var_present
,
5022 offset
, ratio
, cstepi
,
5024 TYPE_ADDR_SPACE (TREE_TYPE (utype
)),
5025 speed
, stmt_is_after_inc
, can_autoinc
);
5026 return get_scaled_computation_cost_at (data
, at
, cand
, cost
);
5029 /* Otherwise estimate the costs for computing the expression. */
5030 if (!symbol_present
&& !var_present
&& !offset
)
5033 cost
+= mult_by_coeff_cost (ratio
, TYPE_MODE (ctype
), speed
);
5034 return get_scaled_computation_cost_at (data
, at
, cand
, cost
);
5037 /* Symbol + offset should be compile-time computable so consider that they
5038 are added once to the variable, if present. */
5039 if (var_present
&& (symbol_present
|| offset
))
5040 cost
+= adjust_setup_cost (data
,
5041 add_cost (speed
, TYPE_MODE (ctype
)));
5043 /* Having offset does not affect runtime cost in case it is added to
5044 symbol, but it increases complexity. */
5048 cost
+= add_cost (speed
, TYPE_MODE (ctype
));
5050 aratio
= ratio
> 0 ? ratio
: -ratio
;
5052 cost
+= mult_by_coeff_cost (aratio
, TYPE_MODE (ctype
), speed
);
5054 return get_scaled_computation_cost_at (data
, at
, cand
, cost
);
5058 *can_autoinc
= false;
5060 /* Just get the expression, expand it and measure the cost. */
5061 tree comp
= get_computation_at (data
->current_loop
, use
, cand
, at
);
5064 return infinite_cost
;
5067 comp
= build_simple_mem_ref (comp
);
5069 cost
= comp_cost (computation_cost (comp
, speed
), 0);
5071 return get_scaled_computation_cost_at (data
, at
, cand
, cost
);
5074 /* Determines the cost of the computation by that USE is expressed
5075 from induction variable CAND. If ADDRESS_P is true, we just need
5076 to create an address from it, otherwise we want to get it into
5077 register. A set of invariants we depend on is stored in
5078 DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
5079 autoinc addressing is likely. */
5082 get_computation_cost (struct ivopts_data
*data
,
5083 struct iv_use
*use
, struct iv_cand
*cand
,
5084 bool address_p
, bitmap
*depends_on
,
5085 bool *can_autoinc
, iv_inv_expr_ent
**inv_expr
)
5087 return get_computation_cost_at (data
,
5088 use
, cand
, address_p
, depends_on
, use
->stmt
,
5089 can_autoinc
, inv_expr
);
5092 /* Determines cost of computing the use in GROUP with CAND in a generic
5096 determine_group_iv_cost_generic (struct ivopts_data
*data
,
5097 struct iv_group
*group
, struct iv_cand
*cand
)
5100 iv_inv_expr_ent
*inv_expr
= NULL
;
5101 bitmap depends_on
= NULL
;
5102 struct iv_use
*use
= group
->vuses
[0];
5104 /* The simple case first -- if we need to express value of the preserved
5105 original biv, the cost is 0. This also prevents us from counting the
5106 cost of increment twice -- once at this use and once in the cost of
5108 if (cand
->pos
== IP_ORIGINAL
&& cand
->incremented_at
== use
->stmt
)
5111 cost
= get_computation_cost (data
, use
, cand
, false,
5112 &depends_on
, NULL
, &inv_expr
);
5114 set_group_iv_cost (data
, group
, cand
, cost
, depends_on
,
5115 NULL_TREE
, ERROR_MARK
, inv_expr
);
5116 return !cost
.infinite_cost_p ();
5119 /* Determines cost of computing uses in GROUP with CAND in addresses. */
5122 determine_group_iv_cost_address (struct ivopts_data
*data
,
5123 struct iv_group
*group
, struct iv_cand
*cand
)
5128 iv_inv_expr_ent
*inv_expr
= NULL
;
5129 struct iv_use
*use
= group
->vuses
[0];
5130 comp_cost sum_cost
= no_cost
, cost
;
5132 cost
= get_computation_cost (data
, use
, cand
, true,
5133 &depends_on
, &can_autoinc
, &inv_expr
);
5136 if (!sum_cost
.infinite_cost_p () && cand
->ainc_use
== use
)
5139 sum_cost
-= cand
->cost_step
;
5140 /* If we generated the candidate solely for exploiting autoincrement
5141 opportunities, and it turns out it can't be used, set the cost to
5142 infinity to make sure we ignore it. */
5143 else if (cand
->pos
== IP_AFTER_USE
|| cand
->pos
== IP_BEFORE_USE
)
5144 sum_cost
= infinite_cost
;
5147 /* Uses in a group can share setup code, so only add setup cost once. */
5148 cost
-= cost
.scratch
;
5149 /* Compute and add costs for rest uses of this group. */
5150 for (i
= 1; i
< group
->vuses
.length () && !sum_cost
.infinite_cost_p (); i
++)
5152 struct iv_use
*next
= group
->vuses
[i
];
5154 /* TODO: We could skip computing cost for sub iv_use when it has the
5155 same cost as the first iv_use, but the cost really depends on the
5156 offset and where the iv_use is. */
5157 cost
= get_computation_cost (data
, next
, cand
, true,
5158 NULL
, &can_autoinc
, NULL
);
5161 set_group_iv_cost (data
, group
, cand
, sum_cost
, depends_on
,
5162 NULL_TREE
, ERROR_MARK
, inv_expr
);
5164 return !sum_cost
.infinite_cost_p ();
5167 /* Computes value of candidate CAND at position AT in iteration NITER, and
5168 stores it to VAL. */
5171 cand_value_at (struct loop
*loop
, struct iv_cand
*cand
, gimple
*at
, tree niter
,
5174 aff_tree step
, delta
, nit
;
5175 struct iv
*iv
= cand
->iv
;
5176 tree type
= TREE_TYPE (iv
->base
);
5178 if (POINTER_TYPE_P (type
))
5179 steptype
= sizetype
;
5181 steptype
= unsigned_type_for (type
);
5183 tree_to_aff_combination (iv
->step
, TREE_TYPE (iv
->step
), &step
);
5184 aff_combination_convert (&step
, steptype
);
5185 tree_to_aff_combination (niter
, TREE_TYPE (niter
), &nit
);
5186 aff_combination_convert (&nit
, steptype
);
5187 aff_combination_mult (&nit
, &step
, &delta
);
5188 if (stmt_after_increment (loop
, cand
, at
))
5189 aff_combination_add (&delta
, &step
);
5191 tree_to_aff_combination (iv
->base
, type
, val
);
5192 if (!POINTER_TYPE_P (type
))
5193 aff_combination_convert (val
, steptype
);
5194 aff_combination_add (val
, &delta
);
5197 /* Returns period of induction variable iv. */
5200 iv_period (struct iv
*iv
)
5202 tree step
= iv
->step
, period
, type
;
5205 gcc_assert (step
&& TREE_CODE (step
) == INTEGER_CST
);
5207 type
= unsigned_type_for (TREE_TYPE (step
));
5208 /* Period of the iv is lcm (step, type_range)/step -1,
5209 i.e., N*type_range/step - 1. Since type range is power
5210 of two, N == (step >> num_of_ending_zeros_binary (step),
5211 so the final result is
5213 (type_range >> num_of_ending_zeros_binary (step)) - 1
5216 pow2div
= num_ending_zeros (step
);
5218 period
= build_low_bits_mask (type
,
5219 (TYPE_PRECISION (type
)
5220 - tree_to_uhwi (pow2div
)));
5225 /* Returns the comparison operator used when eliminating the iv USE. */
5227 static enum tree_code
5228 iv_elimination_compare (struct ivopts_data
*data
, struct iv_use
*use
)
5230 struct loop
*loop
= data
->current_loop
;
5234 ex_bb
= gimple_bb (use
->stmt
);
5235 exit
= EDGE_SUCC (ex_bb
, 0);
5236 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
5237 exit
= EDGE_SUCC (ex_bb
, 1);
5239 return (exit
->flags
& EDGE_TRUE_VALUE
? EQ_EXPR
: NE_EXPR
);
5242 /* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
5243 we only detect the situation that BASE = SOMETHING + OFFSET, where the
5244 calculation is performed in non-wrapping type.
5246 TODO: More generally, we could test for the situation that
5247 BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
5248 This would require knowing the sign of OFFSET. */
5251 difference_cannot_overflow_p (struct ivopts_data
*data
, tree base
, tree offset
)
5253 enum tree_code code
;
5255 aff_tree aff_e1
, aff_e2
, aff_offset
;
5257 if (!nowrap_type_p (TREE_TYPE (base
)))
5260 base
= expand_simple_operations (base
);
5262 if (TREE_CODE (base
) == SSA_NAME
)
5264 gimple
*stmt
= SSA_NAME_DEF_STMT (base
);
5266 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
5269 code
= gimple_assign_rhs_code (stmt
);
5270 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
5273 e1
= gimple_assign_rhs1 (stmt
);
5274 e2
= gimple_assign_rhs2 (stmt
);
5278 code
= TREE_CODE (base
);
5279 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
5281 e1
= TREE_OPERAND (base
, 0);
5282 e2
= TREE_OPERAND (base
, 1);
5285 /* Use affine expansion as deeper inspection to prove the equality. */
5286 tree_to_aff_combination_expand (e2
, TREE_TYPE (e2
),
5287 &aff_e2
, &data
->name_expansion_cache
);
5288 tree_to_aff_combination_expand (offset
, TREE_TYPE (offset
),
5289 &aff_offset
, &data
->name_expansion_cache
);
5290 aff_combination_scale (&aff_offset
, -1);
5294 aff_combination_add (&aff_e2
, &aff_offset
);
5295 if (aff_combination_zero_p (&aff_e2
))
5298 tree_to_aff_combination_expand (e1
, TREE_TYPE (e1
),
5299 &aff_e1
, &data
->name_expansion_cache
);
5300 aff_combination_add (&aff_e1
, &aff_offset
);
5301 return aff_combination_zero_p (&aff_e1
);
5303 case POINTER_PLUS_EXPR
:
5304 aff_combination_add (&aff_e2
, &aff_offset
);
5305 return aff_combination_zero_p (&aff_e2
);
5312 /* Tries to replace loop exit by one formulated in terms of a LT_EXPR
5313 comparison with CAND. NITER describes the number of iterations of
5314 the loops. If successful, the comparison in COMP_P is altered accordingly.
5316 We aim to handle the following situation:
5332 Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
5333 We aim to optimize this to
5341 while (p < p_0 - a + b);
5343 This preserves the correctness, since the pointer arithmetics does not
5344 overflow. More precisely:
5346 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
5347 overflow in computing it or the values of p.
5348 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
5349 overflow. To prove this, we use the fact that p_0 = base + a. */
5352 iv_elimination_compare_lt (struct ivopts_data
*data
,
5353 struct iv_cand
*cand
, enum tree_code
*comp_p
,
5354 struct tree_niter_desc
*niter
)
5356 tree cand_type
, a
, b
, mbz
, nit_type
= TREE_TYPE (niter
->niter
), offset
;
5357 struct aff_tree nit
, tmpa
, tmpb
;
5358 enum tree_code comp
;
5361 /* We need to know that the candidate induction variable does not overflow.
5362 While more complex analysis may be used to prove this, for now just
5363 check that the variable appears in the original program and that it
5364 is computed in a type that guarantees no overflows. */
5365 cand_type
= TREE_TYPE (cand
->iv
->base
);
5366 if (cand
->pos
!= IP_ORIGINAL
|| !nowrap_type_p (cand_type
))
5369 /* Make sure that the loop iterates till the loop bound is hit, as otherwise
5370 the calculation of the BOUND could overflow, making the comparison
5372 if (!data
->loop_single_exit_p
)
5375 /* We need to be able to decide whether candidate is increasing or decreasing
5376 in order to choose the right comparison operator. */
5377 if (!cst_and_fits_in_hwi (cand
->iv
->step
))
5379 step
= int_cst_value (cand
->iv
->step
);
5381 /* Check that the number of iterations matches the expected pattern:
5382 a + 1 > b ? 0 : b - a - 1. */
5383 mbz
= niter
->may_be_zero
;
5384 if (TREE_CODE (mbz
) == GT_EXPR
)
5386 /* Handle a + 1 > b. */
5387 tree op0
= TREE_OPERAND (mbz
, 0);
5388 if (TREE_CODE (op0
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op0
, 1)))
5390 a
= TREE_OPERAND (op0
, 0);
5391 b
= TREE_OPERAND (mbz
, 1);
5396 else if (TREE_CODE (mbz
) == LT_EXPR
)
5398 tree op1
= TREE_OPERAND (mbz
, 1);
5400 /* Handle b < a + 1. */
5401 if (TREE_CODE (op1
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op1
, 1)))
5403 a
= TREE_OPERAND (op1
, 0);
5404 b
= TREE_OPERAND (mbz
, 0);
5412 /* Expected number of iterations is B - A - 1. Check that it matches
5413 the actual number, i.e., that B - A - NITER = 1. */
5414 tree_to_aff_combination (niter
->niter
, nit_type
, &nit
);
5415 tree_to_aff_combination (fold_convert (nit_type
, a
), nit_type
, &tmpa
);
5416 tree_to_aff_combination (fold_convert (nit_type
, b
), nit_type
, &tmpb
);
5417 aff_combination_scale (&nit
, -1);
5418 aff_combination_scale (&tmpa
, -1);
5419 aff_combination_add (&tmpb
, &tmpa
);
5420 aff_combination_add (&tmpb
, &nit
);
5421 if (tmpb
.n
!= 0 || tmpb
.offset
!= 1)
5424 /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
5426 offset
= fold_build2 (MULT_EXPR
, TREE_TYPE (cand
->iv
->step
),
5428 fold_convert (TREE_TYPE (cand
->iv
->step
), a
));
5429 if (!difference_cannot_overflow_p (data
, cand
->iv
->base
, offset
))
5432 /* Determine the new comparison operator. */
5433 comp
= step
< 0 ? GT_EXPR
: LT_EXPR
;
5434 if (*comp_p
== NE_EXPR
)
5436 else if (*comp_p
== EQ_EXPR
)
5437 *comp_p
= invert_tree_comparison (comp
, false);
5444 /* Check whether it is possible to express the condition in USE by comparison
5445 of candidate CAND. If so, store the value compared with to BOUND, and the
5446 comparison operator to COMP. */
5449 may_eliminate_iv (struct ivopts_data
*data
,
5450 struct iv_use
*use
, struct iv_cand
*cand
, tree
*bound
,
5451 enum tree_code
*comp
)
5456 struct loop
*loop
= data
->current_loop
;
5458 struct tree_niter_desc
*desc
= NULL
;
5460 if (TREE_CODE (cand
->iv
->step
) != INTEGER_CST
)
5463 /* For now works only for exits that dominate the loop latch.
5464 TODO: extend to other conditions inside loop body. */
5465 ex_bb
= gimple_bb (use
->stmt
);
5466 if (use
->stmt
!= last_stmt (ex_bb
)
5467 || gimple_code (use
->stmt
) != GIMPLE_COND
5468 || !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, ex_bb
))
5471 exit
= EDGE_SUCC (ex_bb
, 0);
5472 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
5473 exit
= EDGE_SUCC (ex_bb
, 1);
5474 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
5477 desc
= niter_for_exit (data
, exit
);
5481 /* Determine whether we can use the variable to test the exit condition.
5482 This is the case iff the period of the induction variable is greater
5483 than the number of iterations for which the exit condition is true. */
5484 period
= iv_period (cand
->iv
);
5486 /* If the number of iterations is constant, compare against it directly. */
5487 if (TREE_CODE (desc
->niter
) == INTEGER_CST
)
5489 /* See cand_value_at. */
5490 if (stmt_after_increment (loop
, cand
, use
->stmt
))
5492 if (!tree_int_cst_lt (desc
->niter
, period
))
5497 if (tree_int_cst_lt (period
, desc
->niter
))
5502 /* If not, and if this is the only possible exit of the loop, see whether
5503 we can get a conservative estimate on the number of iterations of the
5504 entire loop and compare against that instead. */
5507 widest_int period_value
, max_niter
;
5509 max_niter
= desc
->max
;
5510 if (stmt_after_increment (loop
, cand
, use
->stmt
))
5512 period_value
= wi::to_widest (period
);
5513 if (wi::gtu_p (max_niter
, period_value
))
5515 /* See if we can take advantage of inferred loop bound
5517 if (data
->loop_single_exit_p
)
5519 if (!max_loop_iterations (loop
, &max_niter
))
5521 /* The loop bound is already adjusted by adding 1. */
5522 if (wi::gtu_p (max_niter
, period_value
))
5530 cand_value_at (loop
, cand
, use
->stmt
, desc
->niter
, &bnd
);
5532 *bound
= fold_convert (TREE_TYPE (cand
->iv
->base
),
5533 aff_combination_to_tree (&bnd
));
5534 *comp
= iv_elimination_compare (data
, use
);
5536 /* It is unlikely that computing the number of iterations using division
5537 would be more profitable than keeping the original induction variable. */
5538 if (expression_expensive_p (*bound
))
5541 /* Sometimes, it is possible to handle the situation that the number of
5542 iterations may be zero unless additional assumtions by using <
5543 instead of != in the exit condition.
5545 TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
5546 base the exit condition on it. However, that is often too
5548 if (!integer_zerop (desc
->may_be_zero
))
5549 return iv_elimination_compare_lt (data
, cand
, comp
, desc
);
5554 /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
5555 be copied, if it is used in the loop body and DATA->body_includes_call. */
5558 parm_decl_cost (struct ivopts_data
*data
, tree bound
)
5560 tree sbound
= bound
;
5561 STRIP_NOPS (sbound
);
5563 if (TREE_CODE (sbound
) == SSA_NAME
5564 && SSA_NAME_IS_DEFAULT_DEF (sbound
)
5565 && TREE_CODE (SSA_NAME_VAR (sbound
)) == PARM_DECL
5566 && data
->body_includes_call
)
5567 return COSTS_N_INSNS (1);
5572 /* Determines cost of computing the use in GROUP with CAND in a condition. */
5575 determine_group_iv_cost_cond (struct ivopts_data
*data
,
5576 struct iv_group
*group
, struct iv_cand
*cand
)
5578 tree bound
= NULL_TREE
;
5580 bitmap depends_on_elim
= NULL
, depends_on_express
= NULL
, depends_on
;
5581 comp_cost elim_cost
, express_cost
, cost
, bound_cost
;
5583 iv_inv_expr_ent
*elim_inv_expr
= NULL
, *express_inv_expr
= NULL
, *inv_expr
;
5584 tree
*control_var
, *bound_cst
;
5585 enum tree_code comp
= ERROR_MARK
;
5586 struct iv_use
*use
= group
->vuses
[0];
5588 gcc_assert (cand
->iv
);
5590 /* Try iv elimination. */
5591 if (may_eliminate_iv (data
, use
, cand
, &bound
, &comp
))
5593 elim_cost
= force_var_cost (data
, bound
, &depends_on_elim
);
5594 if (elim_cost
.cost
== 0)
5595 elim_cost
.cost
= parm_decl_cost (data
, bound
);
5596 else if (TREE_CODE (bound
) == INTEGER_CST
)
5598 /* If we replace a loop condition 'i < n' with 'p < base + n',
5599 depends_on_elim will have 'base' and 'n' set, which implies
5600 that both 'base' and 'n' will be live during the loop. More likely,
5601 'base + n' will be loop invariant, resulting in only one live value
5602 during the loop. So in that case we clear depends_on_elim and set
5603 elim_inv_expr_id instead. */
5604 if (depends_on_elim
&& bitmap_count_bits (depends_on_elim
) > 1)
5606 elim_inv_expr
= record_inv_expr (data
, bound
);
5607 bitmap_clear (depends_on_elim
);
5609 /* The bound is a loop invariant, so it will be only computed
5611 elim_cost
.cost
= adjust_setup_cost (data
, elim_cost
.cost
);
5614 elim_cost
= infinite_cost
;
5616 /* Try expressing the original giv. If it is compared with an invariant,
5617 note that we cannot get rid of it. */
5618 ok
= extract_cond_operands (data
, use
->stmt
, &control_var
, &bound_cst
,
5622 /* When the condition is a comparison of the candidate IV against
5623 zero, prefer this IV.
5625 TODO: The constant that we're subtracting from the cost should
5626 be target-dependent. This information should be added to the
5627 target costs for each backend. */
5628 if (!elim_cost
.infinite_cost_p () /* Do not try to decrease infinite! */
5629 && integer_zerop (*bound_cst
)
5630 && (operand_equal_p (*control_var
, cand
->var_after
, 0)
5631 || operand_equal_p (*control_var
, cand
->var_before
, 0)))
5634 express_cost
= get_computation_cost (data
, use
, cand
, false,
5635 &depends_on_express
, NULL
,
5637 fd_ivopts_data
= data
;
5638 walk_tree (&cmp_iv
->base
, find_depends
, &depends_on_express
, NULL
);
5640 /* Count the cost of the original bound as well. */
5641 bound_cost
= force_var_cost (data
, *bound_cst
, NULL
);
5642 if (bound_cost
.cost
== 0)
5643 bound_cost
.cost
= parm_decl_cost (data
, *bound_cst
);
5644 else if (TREE_CODE (*bound_cst
) == INTEGER_CST
)
5645 bound_cost
.cost
= 0;
5646 express_cost
+= bound_cost
;
5648 /* Choose the better approach, preferring the eliminated IV. */
5649 if (elim_cost
<= express_cost
)
5652 depends_on
= depends_on_elim
;
5653 depends_on_elim
= NULL
;
5654 inv_expr
= elim_inv_expr
;
5658 cost
= express_cost
;
5659 depends_on
= depends_on_express
;
5660 depends_on_express
= NULL
;
5663 inv_expr
= express_inv_expr
;
5666 set_group_iv_cost (data
, group
, cand
, cost
,
5667 depends_on
, bound
, comp
, inv_expr
);
5669 if (depends_on_elim
)
5670 BITMAP_FREE (depends_on_elim
);
5671 if (depends_on_express
)
5672 BITMAP_FREE (depends_on_express
);
5674 return !cost
.infinite_cost_p ();
5677 /* Determines cost of computing uses in GROUP with CAND. Returns false
5678 if USE cannot be represented with CAND. */
5681 determine_group_iv_cost (struct ivopts_data
*data
,
5682 struct iv_group
*group
, struct iv_cand
*cand
)
5684 switch (group
->type
)
5686 case USE_NONLINEAR_EXPR
:
5687 return determine_group_iv_cost_generic (data
, group
, cand
);
5690 return determine_group_iv_cost_address (data
, group
, cand
);
5693 return determine_group_iv_cost_cond (data
, group
, cand
);
5700 /* Return true if get_computation_cost indicates that autoincrement is
5701 a possibility for the pair of USE and CAND, false otherwise. */
5704 autoinc_possible_for_pair (struct ivopts_data
*data
, struct iv_use
*use
,
5705 struct iv_cand
*cand
)
5711 if (use
->type
!= USE_ADDRESS
)
5714 cost
= get_computation_cost (data
, use
, cand
, true, &depends_on
,
5715 &can_autoinc
, NULL
);
5717 BITMAP_FREE (depends_on
);
5719 return !cost
.infinite_cost_p () && can_autoinc
;
5722 /* Examine IP_ORIGINAL candidates to see if they are incremented next to a
5723 use that allows autoincrement, and set their AINC_USE if possible. */
5726 set_autoinc_for_original_candidates (struct ivopts_data
*data
)
5730 for (i
= 0; i
< data
->vcands
.length (); i
++)
5732 struct iv_cand
*cand
= data
->vcands
[i
];
5733 struct iv_use
*closest_before
= NULL
;
5734 struct iv_use
*closest_after
= NULL
;
5735 if (cand
->pos
!= IP_ORIGINAL
)
5738 for (j
= 0; j
< data
->vgroups
.length (); j
++)
5740 struct iv_group
*group
= data
->vgroups
[j
];
5741 struct iv_use
*use
= group
->vuses
[0];
5742 unsigned uid
= gimple_uid (use
->stmt
);
5744 if (gimple_bb (use
->stmt
) != gimple_bb (cand
->incremented_at
))
5747 if (uid
< gimple_uid (cand
->incremented_at
)
5748 && (closest_before
== NULL
5749 || uid
> gimple_uid (closest_before
->stmt
)))
5750 closest_before
= use
;
5752 if (uid
> gimple_uid (cand
->incremented_at
)
5753 && (closest_after
== NULL
5754 || uid
< gimple_uid (closest_after
->stmt
)))
5755 closest_after
= use
;
5758 if (closest_before
!= NULL
5759 && autoinc_possible_for_pair (data
, closest_before
, cand
))
5760 cand
->ainc_use
= closest_before
;
5761 else if (closest_after
!= NULL
5762 && autoinc_possible_for_pair (data
, closest_after
, cand
))
5763 cand
->ainc_use
= closest_after
;
5767 /* Finds the candidates for the induction variables. */
5770 find_iv_candidates (struct ivopts_data
*data
)
5772 /* Add commonly used ivs. */
5773 add_standard_iv_candidates (data
);
5775 /* Add old induction variables. */
5776 add_iv_candidate_for_bivs (data
);
5778 /* Add induction variables derived from uses. */
5779 add_iv_candidate_for_groups (data
);
5781 set_autoinc_for_original_candidates (data
);
5783 /* Record the important candidates. */
5784 record_important_candidates (data
);
5786 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5790 fprintf (dump_file
, "\n<Important Candidates>:\t");
5791 for (i
= 0; i
< data
->vcands
.length (); i
++)
5792 if (data
->vcands
[i
]->important
)
5793 fprintf (dump_file
, " %d,", data
->vcands
[i
]->id
);
5794 fprintf (dump_file
, "\n");
5796 fprintf (dump_file
, "\n<Group, Cand> Related:\n");
5797 for (i
= 0; i
< data
->vgroups
.length (); i
++)
5799 struct iv_group
*group
= data
->vgroups
[i
];
5801 if (group
->related_cands
)
5803 fprintf (dump_file
, " Group %d:\t", group
->id
);
5804 dump_bitmap (dump_file
, group
->related_cands
);
5807 fprintf (dump_file
, "\n");
5811 /* Determines costs of computing use of iv with an iv candidate. */
5814 determine_group_iv_costs (struct ivopts_data
*data
)
5817 struct iv_cand
*cand
;
5818 struct iv_group
*group
;
5819 bitmap to_clear
= BITMAP_ALLOC (NULL
);
5821 alloc_use_cost_map (data
);
5823 for (i
= 0; i
< data
->vgroups
.length (); i
++)
5825 group
= data
->vgroups
[i
];
5827 if (data
->consider_all_candidates
)
5829 for (j
= 0; j
< data
->vcands
.length (); j
++)
5831 cand
= data
->vcands
[j
];
5832 determine_group_iv_cost (data
, group
, cand
);
5839 EXECUTE_IF_SET_IN_BITMAP (group
->related_cands
, 0, j
, bi
)
5841 cand
= data
->vcands
[j
];
5842 if (!determine_group_iv_cost (data
, group
, cand
))
5843 bitmap_set_bit (to_clear
, j
);
5846 /* Remove the candidates for that the cost is infinite from
5847 the list of related candidates. */
5848 bitmap_and_compl_into (group
->related_cands
, to_clear
);
5849 bitmap_clear (to_clear
);
5853 BITMAP_FREE (to_clear
);
5855 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5857 fprintf (dump_file
, "\n<Invariant Expressions>:\n");
5858 auto_vec
<iv_inv_expr_ent
*> list (data
->inv_expr_tab
->elements ());
5860 for (hash_table
<iv_inv_expr_hasher
>::iterator it
5861 = data
->inv_expr_tab
->begin (); it
!= data
->inv_expr_tab
->end ();
5863 list
.safe_push (*it
);
5865 list
.qsort (sort_iv_inv_expr_ent
);
5867 for (i
= 0; i
< list
.length (); ++i
)
5869 fprintf (dump_file
, "inv_expr %d: \t", i
);
5870 print_generic_expr (dump_file
, list
[i
]->expr
, TDF_SLIM
);
5871 fprintf (dump_file
, "\n");
5874 fprintf (dump_file
, "\n<Group-candidate Costs>:\n");
5876 for (i
= 0; i
< data
->vgroups
.length (); i
++)
5878 group
= data
->vgroups
[i
];
5880 fprintf (dump_file
, "Group %d:\n", i
);
5881 fprintf (dump_file
, " cand\tcost\tcompl.\tinv.ex.\tdepends on\n");
5882 for (j
= 0; j
< group
->n_map_members
; j
++)
5884 if (!group
->cost_map
[j
].cand
5885 || group
->cost_map
[j
].cost
.infinite_cost_p ())
5888 fprintf (dump_file
, " %d\t%d\t%d\t",
5889 group
->cost_map
[j
].cand
->id
,
5890 group
->cost_map
[j
].cost
.cost
,
5891 group
->cost_map
[j
].cost
.complexity
);
5892 if (group
->cost_map
[j
].inv_expr
!= NULL
)
5893 fprintf (dump_file
, "%d\t",
5894 group
->cost_map
[j
].inv_expr
->id
);
5896 fprintf (dump_file
, "\t");
5897 if (group
->cost_map
[j
].depends_on
)
5898 bitmap_print (dump_file
,
5899 group
->cost_map
[j
].depends_on
, "","");
5900 fprintf (dump_file
, "\n");
5903 fprintf (dump_file
, "\n");
5905 fprintf (dump_file
, "\n");
5909 /* Determines cost of the candidate CAND. */
5912 determine_iv_cost (struct ivopts_data
*data
, struct iv_cand
*cand
)
5914 comp_cost cost_base
;
5915 unsigned cost
, cost_step
;
5924 /* There are two costs associated with the candidate -- its increment
5925 and its initialization. The second is almost negligible for any loop
5926 that rolls enough, so we take it just very little into account. */
5928 base
= cand
->iv
->base
;
5929 cost_base
= force_var_cost (data
, base
, NULL
);
5930 /* It will be exceptional that the iv register happens to be initialized with
5931 the proper value at no cost. In general, there will at least be a regcopy
5933 if (cost_base
.cost
== 0)
5934 cost_base
.cost
= COSTS_N_INSNS (1);
5935 cost_step
= add_cost (data
->speed
, TYPE_MODE (TREE_TYPE (base
)));
5937 cost
= cost_step
+ adjust_setup_cost (data
, cost_base
.cost
);
5939 /* Prefer the original ivs unless we may gain something by replacing it.
5940 The reason is to make debugging simpler; so this is not relevant for
5941 artificial ivs created by other optimization passes. */
5942 if (cand
->pos
!= IP_ORIGINAL
5943 || !SSA_NAME_VAR (cand
->var_before
)
5944 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand
->var_before
)))
5947 /* Prefer not to insert statements into latch unless there are some
5948 already (so that we do not create unnecessary jumps). */
5949 if (cand
->pos
== IP_END
5950 && empty_block_p (ip_end_pos (data
->current_loop
)))
5954 cand
->cost_step
= cost_step
;
5957 /* Determines costs of computation of the candidates. */
5960 determine_iv_costs (struct ivopts_data
*data
)
5964 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5966 fprintf (dump_file
, "<Candidate Costs>:\n");
5967 fprintf (dump_file
, " cand\tcost\n");
5970 for (i
= 0; i
< data
->vcands
.length (); i
++)
5972 struct iv_cand
*cand
= data
->vcands
[i
];
5974 determine_iv_cost (data
, cand
);
5976 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5977 fprintf (dump_file
, " %d\t%d\n", i
, cand
->cost
);
5980 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5981 fprintf (dump_file
, "\n");
5984 /* Calculates cost for having SIZE induction variables. */
5987 ivopts_global_cost_for_size (struct ivopts_data
*data
, unsigned size
)
5989 /* We add size to the cost, so that we prefer eliminating ivs
5991 return size
+ estimate_reg_pressure_cost (size
, data
->regs_used
, data
->speed
,
5992 data
->body_includes_call
);
5995 /* For each size of the induction variable set determine the penalty. */
5998 determine_set_costs (struct ivopts_data
*data
)
6004 struct loop
*loop
= data
->current_loop
;
6007 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6009 fprintf (dump_file
, "<Global Costs>:\n");
6010 fprintf (dump_file
, " target_avail_regs %d\n", target_avail_regs
);
6011 fprintf (dump_file
, " target_clobbered_regs %d\n", target_clobbered_regs
);
6012 fprintf (dump_file
, " target_reg_cost %d\n", target_reg_cost
[data
->speed
]);
6013 fprintf (dump_file
, " target_spill_cost %d\n", target_spill_cost
[data
->speed
]);
6017 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
6020 op
= PHI_RESULT (phi
);
6022 if (virtual_operand_p (op
))
6025 if (get_iv (data
, op
))
6031 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
6033 struct version_info
*info
= ver_info (data
, j
);
6035 if (info
->inv_id
&& info
->has_nonlin_use
)
6039 data
->regs_used
= n
;
6040 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6041 fprintf (dump_file
, " regs_used %d\n", n
);
6043 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6045 fprintf (dump_file
, " cost for size:\n");
6046 fprintf (dump_file
, " ivs\tcost\n");
6047 for (j
= 0; j
<= 2 * target_avail_regs
; j
++)
6048 fprintf (dump_file
, " %d\t%d\n", j
,
6049 ivopts_global_cost_for_size (data
, j
));
6050 fprintf (dump_file
, "\n");
6054 /* Returns true if A is a cheaper cost pair than B. */
6057 cheaper_cost_pair (struct cost_pair
*a
, struct cost_pair
*b
)
6065 if (a
->cost
< b
->cost
)
6068 if (b
->cost
< a
->cost
)
6071 /* In case the costs are the same, prefer the cheaper candidate. */
6072 if (a
->cand
->cost
< b
->cand
->cost
)
6079 /* Returns candidate by that USE is expressed in IVS. */
6081 static struct cost_pair
*
6082 iv_ca_cand_for_group (struct iv_ca
*ivs
, struct iv_group
*group
)
6084 return ivs
->cand_for_group
[group
->id
];
6087 /* Computes the cost field of IVS structure. */
6090 iv_ca_recount_cost (struct ivopts_data
*data
, struct iv_ca
*ivs
)
6092 comp_cost cost
= ivs
->cand_use_cost
;
6094 cost
+= ivs
->cand_cost
;
6096 cost
+= ivopts_global_cost_for_size (data
,
6098 + ivs
->used_inv_exprs
->elements ());
6103 /* Remove invariants in set INVS to set IVS. */
6106 iv_ca_set_remove_invariants (struct iv_ca
*ivs
, bitmap invs
)
6114 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
6116 ivs
->n_invariant_uses
[iid
]--;
6117 if (ivs
->n_invariant_uses
[iid
] == 0)
6122 /* Set USE not to be expressed by any candidate in IVS. */
6125 iv_ca_set_no_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6126 struct iv_group
*group
)
6128 unsigned gid
= group
->id
, cid
;
6129 struct cost_pair
*cp
;
6131 cp
= ivs
->cand_for_group
[gid
];
6137 ivs
->cand_for_group
[gid
] = NULL
;
6138 ivs
->n_cand_uses
[cid
]--;
6140 if (ivs
->n_cand_uses
[cid
] == 0)
6142 bitmap_clear_bit (ivs
->cands
, cid
);
6143 /* Do not count the pseudocandidates. */
6147 ivs
->cand_cost
-= cp
->cand
->cost
;
6149 iv_ca_set_remove_invariants (ivs
, cp
->cand
->depends_on
);
6152 ivs
->cand_use_cost
-= cp
->cost
;
6154 iv_ca_set_remove_invariants (ivs
, cp
->depends_on
);
6156 if (cp
->inv_expr
!= NULL
)
6158 unsigned *slot
= ivs
->used_inv_exprs
->get (cp
->inv_expr
);
6161 ivs
->used_inv_exprs
->remove (cp
->inv_expr
);
6163 iv_ca_recount_cost (data
, ivs
);
6166 /* Add invariants in set INVS to set IVS. */
6169 iv_ca_set_add_invariants (struct iv_ca
*ivs
, bitmap invs
)
6177 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
6179 ivs
->n_invariant_uses
[iid
]++;
6180 if (ivs
->n_invariant_uses
[iid
] == 1)
6185 /* Set cost pair for GROUP in set IVS to CP. */
6188 iv_ca_set_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6189 struct iv_group
*group
, struct cost_pair
*cp
)
6191 unsigned gid
= group
->id
, cid
;
6193 if (ivs
->cand_for_group
[gid
] == cp
)
6196 if (ivs
->cand_for_group
[gid
])
6197 iv_ca_set_no_cp (data
, ivs
, group
);
6204 ivs
->cand_for_group
[gid
] = cp
;
6205 ivs
->n_cand_uses
[cid
]++;
6206 if (ivs
->n_cand_uses
[cid
] == 1)
6208 bitmap_set_bit (ivs
->cands
, cid
);
6209 /* Do not count the pseudocandidates. */
6213 ivs
->cand_cost
+= cp
->cand
->cost
;
6215 iv_ca_set_add_invariants (ivs
, cp
->cand
->depends_on
);
6218 ivs
->cand_use_cost
+= cp
->cost
;
6219 iv_ca_set_add_invariants (ivs
, cp
->depends_on
);
6221 if (cp
->inv_expr
!= NULL
)
6223 unsigned *slot
= &ivs
->used_inv_exprs
->get_or_insert (cp
->inv_expr
);
6226 iv_ca_recount_cost (data
, ivs
);
6230 /* Extend set IVS by expressing USE by some of the candidates in it
6231 if possible. Consider all important candidates if candidates in
6232 set IVS don't give any result. */
6235 iv_ca_add_group (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6236 struct iv_group
*group
)
6238 struct cost_pair
*best_cp
= NULL
, *cp
;
6241 struct iv_cand
*cand
;
6243 gcc_assert (ivs
->upto
>= group
->id
);
6247 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
6249 cand
= data
->vcands
[i
];
6250 cp
= get_group_iv_cost (data
, group
, cand
);
6251 if (cheaper_cost_pair (cp
, best_cp
))
6255 if (best_cp
== NULL
)
6257 EXECUTE_IF_SET_IN_BITMAP (data
->important_candidates
, 0, i
, bi
)
6259 cand
= data
->vcands
[i
];
6260 cp
= get_group_iv_cost (data
, group
, cand
);
6261 if (cheaper_cost_pair (cp
, best_cp
))
6266 iv_ca_set_cp (data
, ivs
, group
, best_cp
);
6269 /* Get cost for assignment IVS. */
6272 iv_ca_cost (struct iv_ca
*ivs
)
6274 /* This was a conditional expression but it triggered a bug in
6276 if (ivs
->bad_groups
)
6277 return infinite_cost
;
6282 /* Returns true if all dependences of CP are among invariants in IVS. */
6285 iv_ca_has_deps (struct iv_ca
*ivs
, struct cost_pair
*cp
)
6290 if (!cp
->depends_on
)
6293 EXECUTE_IF_SET_IN_BITMAP (cp
->depends_on
, 0, i
, bi
)
6295 if (ivs
->n_invariant_uses
[i
] == 0)
6302 /* Creates change of expressing GROUP by NEW_CP instead of OLD_CP and chains
6305 static struct iv_ca_delta
*
6306 iv_ca_delta_add (struct iv_group
*group
, struct cost_pair
*old_cp
,
6307 struct cost_pair
*new_cp
, struct iv_ca_delta
*next
)
6309 struct iv_ca_delta
*change
= XNEW (struct iv_ca_delta
);
6311 change
->group
= group
;
6312 change
->old_cp
= old_cp
;
6313 change
->new_cp
= new_cp
;
6314 change
->next
= next
;
6319 /* Joins two lists of changes L1 and L2. Destructive -- old lists
6322 static struct iv_ca_delta
*
6323 iv_ca_delta_join (struct iv_ca_delta
*l1
, struct iv_ca_delta
*l2
)
6325 struct iv_ca_delta
*last
;
6333 for (last
= l1
; last
->next
; last
= last
->next
)
6340 /* Reverse the list of changes DELTA, forming the inverse to it. */
6342 static struct iv_ca_delta
*
6343 iv_ca_delta_reverse (struct iv_ca_delta
*delta
)
6345 struct iv_ca_delta
*act
, *next
, *prev
= NULL
;
6347 for (act
= delta
; act
; act
= next
)
6353 std::swap (act
->old_cp
, act
->new_cp
);
6359 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
6360 reverted instead. */
6363 iv_ca_delta_commit (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6364 struct iv_ca_delta
*delta
, bool forward
)
6366 struct cost_pair
*from
, *to
;
6367 struct iv_ca_delta
*act
;
6370 delta
= iv_ca_delta_reverse (delta
);
6372 for (act
= delta
; act
; act
= act
->next
)
6376 gcc_assert (iv_ca_cand_for_group (ivs
, act
->group
) == from
);
6377 iv_ca_set_cp (data
, ivs
, act
->group
, to
);
6381 iv_ca_delta_reverse (delta
);
6384 /* Returns true if CAND is used in IVS. */
6387 iv_ca_cand_used_p (struct iv_ca
*ivs
, struct iv_cand
*cand
)
6389 return ivs
->n_cand_uses
[cand
->id
] > 0;
6392 /* Returns number of induction variable candidates in the set IVS. */
6395 iv_ca_n_cands (struct iv_ca
*ivs
)
6397 return ivs
->n_cands
;
6400 /* Free the list of changes DELTA. */
6403 iv_ca_delta_free (struct iv_ca_delta
**delta
)
6405 struct iv_ca_delta
*act
, *next
;
6407 for (act
= *delta
; act
; act
= next
)
6416 /* Allocates new iv candidates assignment. */
6418 static struct iv_ca
*
6419 iv_ca_new (struct ivopts_data
*data
)
6421 struct iv_ca
*nw
= XNEW (struct iv_ca
);
6425 nw
->cand_for_group
= XCNEWVEC (struct cost_pair
*,
6426 data
->vgroups
.length ());
6427 nw
->n_cand_uses
= XCNEWVEC (unsigned, data
->vcands
.length ());
6428 nw
->cands
= BITMAP_ALLOC (NULL
);
6431 nw
->cand_use_cost
= no_cost
;
6433 nw
->n_invariant_uses
= XCNEWVEC (unsigned, data
->max_inv_id
+ 1);
6434 nw
->used_inv_exprs
= new hash_map
<iv_inv_expr_ent
*, unsigned> (13);
6440 /* Free memory occupied by the set IVS. */
6443 iv_ca_free (struct iv_ca
**ivs
)
6445 free ((*ivs
)->cand_for_group
);
6446 free ((*ivs
)->n_cand_uses
);
6447 BITMAP_FREE ((*ivs
)->cands
);
6448 free ((*ivs
)->n_invariant_uses
);
6449 delete ((*ivs
)->used_inv_exprs
);
6454 /* Dumps IVS to FILE. */
6457 iv_ca_dump (struct ivopts_data
*data
, FILE *file
, struct iv_ca
*ivs
)
6460 comp_cost cost
= iv_ca_cost (ivs
);
6462 fprintf (file
, " cost: %d (complexity %d)\n", cost
.cost
,
6464 fprintf (file
, " cand_cost: %d\n cand_group_cost: %d (complexity %d)\n",
6465 ivs
->cand_cost
, ivs
->cand_use_cost
.cost
,
6466 ivs
->cand_use_cost
.complexity
);
6467 bitmap_print (file
, ivs
->cands
, " candidates: ","\n");
6469 for (i
= 0; i
< ivs
->upto
; i
++)
6471 struct iv_group
*group
= data
->vgroups
[i
];
6472 struct cost_pair
*cp
= iv_ca_cand_for_group (ivs
, group
);
6474 fprintf (file
, " group:%d --> iv_cand:%d, cost=(%d,%d)\n",
6475 group
->id
, cp
->cand
->id
, cp
->cost
.cost
,
6476 cp
->cost
.complexity
);
6478 fprintf (file
, " group:%d --> ??\n", group
->id
);
6481 const char *pref
= "";
6482 fprintf (file
, " invariant variables: ");
6483 for (i
= 1; i
<= data
->max_inv_id
; i
++)
6484 if (ivs
->n_invariant_uses
[i
])
6486 fprintf (file
, "%s%d", pref
, i
);
6491 fprintf (file
, "\n invariant expressions: ");
6492 for (hash_map
<iv_inv_expr_ent
*, unsigned>::iterator it
6493 = ivs
->used_inv_exprs
->begin (); it
!= ivs
->used_inv_exprs
->end (); ++it
)
6495 fprintf (file
, "%s%d", pref
, (*it
).first
->id
);
6499 fprintf (file
, "\n\n");
6502 /* Try changing candidate in IVS to CAND for each use. Return cost of the
6503 new set, and store differences in DELTA. Number of induction variables
6504 in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
6505 the function will try to find a solution with mimimal iv candidates. */
6508 iv_ca_extend (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6509 struct iv_cand
*cand
, struct iv_ca_delta
**delta
,
6510 unsigned *n_ivs
, bool min_ncand
)
6514 struct iv_group
*group
;
6515 struct cost_pair
*old_cp
, *new_cp
;
6518 for (i
= 0; i
< ivs
->upto
; i
++)
6520 group
= data
->vgroups
[i
];
6521 old_cp
= iv_ca_cand_for_group (ivs
, group
);
6524 && old_cp
->cand
== cand
)
6527 new_cp
= get_group_iv_cost (data
, group
, cand
);
6531 if (!min_ncand
&& !iv_ca_has_deps (ivs
, new_cp
))
6534 if (!min_ncand
&& !cheaper_cost_pair (new_cp
, old_cp
))
6537 *delta
= iv_ca_delta_add (group
, old_cp
, new_cp
, *delta
);
6540 iv_ca_delta_commit (data
, ivs
, *delta
, true);
6541 cost
= iv_ca_cost (ivs
);
6543 *n_ivs
= iv_ca_n_cands (ivs
);
6544 iv_ca_delta_commit (data
, ivs
, *delta
, false);
6549 /* Try narrowing set IVS by removing CAND. Return the cost of
6550 the new set and store the differences in DELTA. START is
6551 the candidate with which we start narrowing. */
6554 iv_ca_narrow (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6555 struct iv_cand
*cand
, struct iv_cand
*start
,
6556 struct iv_ca_delta
**delta
)
6559 struct iv_group
*group
;
6560 struct cost_pair
*old_cp
, *new_cp
, *cp
;
6562 struct iv_cand
*cnd
;
6563 comp_cost cost
, best_cost
, acost
;
6566 for (i
= 0; i
< data
->vgroups
.length (); i
++)
6568 group
= data
->vgroups
[i
];
6570 old_cp
= iv_ca_cand_for_group (ivs
, group
);
6571 if (old_cp
->cand
!= cand
)
6574 best_cost
= iv_ca_cost (ivs
);
6575 /* Start narrowing with START. */
6576 new_cp
= get_group_iv_cost (data
, group
, start
);
6578 if (data
->consider_all_candidates
)
6580 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, ci
, bi
)
6582 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
6585 cnd
= data
->vcands
[ci
];
6587 cp
= get_group_iv_cost (data
, group
, cnd
);
6591 iv_ca_set_cp (data
, ivs
, group
, cp
);
6592 acost
= iv_ca_cost (ivs
);
6594 if (acost
< best_cost
)
6603 EXECUTE_IF_AND_IN_BITMAP (group
->related_cands
, ivs
->cands
, 0, ci
, bi
)
6605 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
6608 cnd
= data
->vcands
[ci
];
6610 cp
= get_group_iv_cost (data
, group
, cnd
);
6614 iv_ca_set_cp (data
, ivs
, group
, cp
);
6615 acost
= iv_ca_cost (ivs
);
6617 if (acost
< best_cost
)
6624 /* Restore to old cp for use. */
6625 iv_ca_set_cp (data
, ivs
, group
, old_cp
);
6629 iv_ca_delta_free (delta
);
6630 return infinite_cost
;
6633 *delta
= iv_ca_delta_add (group
, old_cp
, new_cp
, *delta
);
6636 iv_ca_delta_commit (data
, ivs
, *delta
, true);
6637 cost
= iv_ca_cost (ivs
);
6638 iv_ca_delta_commit (data
, ivs
, *delta
, false);
6643 /* Try optimizing the set of candidates IVS by removing candidates different
6644 from to EXCEPT_CAND from it. Return cost of the new set, and store
6645 differences in DELTA. */
6648 iv_ca_prune (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6649 struct iv_cand
*except_cand
, struct iv_ca_delta
**delta
)
6652 struct iv_ca_delta
*act_delta
, *best_delta
;
6654 comp_cost best_cost
, acost
;
6655 struct iv_cand
*cand
;
6658 best_cost
= iv_ca_cost (ivs
);
6660 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
6662 cand
= data
->vcands
[i
];
6664 if (cand
== except_cand
)
6667 acost
= iv_ca_narrow (data
, ivs
, cand
, except_cand
, &act_delta
);
6669 if (acost
< best_cost
)
6672 iv_ca_delta_free (&best_delta
);
6673 best_delta
= act_delta
;
6676 iv_ca_delta_free (&act_delta
);
6685 /* Recurse to possibly remove other unnecessary ivs. */
6686 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6687 best_cost
= iv_ca_prune (data
, ivs
, except_cand
, delta
);
6688 iv_ca_delta_commit (data
, ivs
, best_delta
, false);
6689 *delta
= iv_ca_delta_join (best_delta
, *delta
);
6693 /* Check if CAND_IDX is a candidate other than OLD_CAND and has
6694 cheaper local cost for GROUP than BEST_CP. Return pointer to
6695 the corresponding cost_pair, otherwise just return BEST_CP. */
6697 static struct cost_pair
*
6698 cheaper_cost_with_cand (struct ivopts_data
*data
, struct iv_group
*group
,
6699 unsigned int cand_idx
, struct iv_cand
*old_cand
,
6700 struct cost_pair
*best_cp
)
6702 struct iv_cand
*cand
;
6703 struct cost_pair
*cp
;
6705 gcc_assert (old_cand
!= NULL
&& best_cp
!= NULL
);
6706 if (cand_idx
== old_cand
->id
)
6709 cand
= data
->vcands
[cand_idx
];
6710 cp
= get_group_iv_cost (data
, group
, cand
);
6711 if (cp
!= NULL
&& cheaper_cost_pair (cp
, best_cp
))
6717 /* Try breaking local optimal fixed-point for IVS by replacing candidates
6718 which are used by more than one iv uses. For each of those candidates,
6719 this function tries to represent iv uses under that candidate using
6720 other ones with lower local cost, then tries to prune the new set.
6721 If the new set has lower cost, It returns the new cost after recording
6722 candidate replacement in list DELTA. */
6725 iv_ca_replace (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6726 struct iv_ca_delta
**delta
)
6728 bitmap_iterator bi
, bj
;
6729 unsigned int i
, j
, k
;
6730 struct iv_cand
*cand
;
6731 comp_cost orig_cost
, acost
;
6732 struct iv_ca_delta
*act_delta
, *tmp_delta
;
6733 struct cost_pair
*old_cp
, *best_cp
= NULL
;
6736 orig_cost
= iv_ca_cost (ivs
);
6738 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
6740 if (ivs
->n_cand_uses
[i
] == 1
6741 || ivs
->n_cand_uses
[i
] > ALWAYS_PRUNE_CAND_SET_BOUND
)
6744 cand
= data
->vcands
[i
];
6747 /* Represent uses under current candidate using other ones with
6748 lower local cost. */
6749 for (j
= 0; j
< ivs
->upto
; j
++)
6751 struct iv_group
*group
= data
->vgroups
[j
];
6752 old_cp
= iv_ca_cand_for_group (ivs
, group
);
6754 if (old_cp
->cand
!= cand
)
6758 if (data
->consider_all_candidates
)
6759 for (k
= 0; k
< data
->vcands
.length (); k
++)
6760 best_cp
= cheaper_cost_with_cand (data
, group
, k
,
6761 old_cp
->cand
, best_cp
);
6763 EXECUTE_IF_SET_IN_BITMAP (group
->related_cands
, 0, k
, bj
)
6764 best_cp
= cheaper_cost_with_cand (data
, group
, k
,
6765 old_cp
->cand
, best_cp
);
6767 if (best_cp
== old_cp
)
6770 act_delta
= iv_ca_delta_add (group
, old_cp
, best_cp
, act_delta
);
6772 /* No need for further prune. */
6776 /* Prune the new candidate set. */
6777 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
6778 acost
= iv_ca_prune (data
, ivs
, NULL
, &tmp_delta
);
6779 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
6780 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
6782 if (acost
< orig_cost
)
6788 iv_ca_delta_free (&act_delta
);
6794 /* Tries to extend the sets IVS in the best possible way in order to
6795 express the GROUP. If ORIGINALP is true, prefer candidates from
6796 the original set of IVs, otherwise favor important candidates not
6797 based on any memory object. */
6800 try_add_cand_for (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6801 struct iv_group
*group
, bool originalp
)
6803 comp_cost best_cost
, act_cost
;
6806 struct iv_cand
*cand
;
6807 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
;
6808 struct cost_pair
*cp
;
6810 iv_ca_add_group (data
, ivs
, group
);
6811 best_cost
= iv_ca_cost (ivs
);
6812 cp
= iv_ca_cand_for_group (ivs
, group
);
6815 best_delta
= iv_ca_delta_add (group
, NULL
, cp
, NULL
);
6816 iv_ca_set_no_cp (data
, ivs
, group
);
6819 /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
6820 first try important candidates not based on any memory object. Only if
6821 this fails, try the specific ones. Rationale -- in loops with many
6822 variables the best choice often is to use just one generic biv. If we
6823 added here many ivs specific to the uses, the optimization algorithm later
6824 would be likely to get stuck in a local minimum, thus causing us to create
6825 too many ivs. The approach from few ivs to more seems more likely to be
6826 successful -- starting from few ivs, replacing an expensive use by a
6827 specific iv should always be a win. */
6828 EXECUTE_IF_SET_IN_BITMAP (group
->related_cands
, 0, i
, bi
)
6830 cand
= data
->vcands
[i
];
6832 if (originalp
&& cand
->pos
!=IP_ORIGINAL
)
6835 if (!originalp
&& cand
->iv
->base_object
!= NULL_TREE
)
6838 if (iv_ca_cand_used_p (ivs
, cand
))
6841 cp
= get_group_iv_cost (data
, group
, cand
);
6845 iv_ca_set_cp (data
, ivs
, group
, cp
);
6846 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
,
6848 iv_ca_set_no_cp (data
, ivs
, group
);
6849 act_delta
= iv_ca_delta_add (group
, NULL
, cp
, act_delta
);
6851 if (act_cost
< best_cost
)
6853 best_cost
= act_cost
;
6855 iv_ca_delta_free (&best_delta
);
6856 best_delta
= act_delta
;
6859 iv_ca_delta_free (&act_delta
);
6862 if (best_cost
.infinite_cost_p ())
6864 for (i
= 0; i
< group
->n_map_members
; i
++)
6866 cp
= group
->cost_map
+ i
;
6871 /* Already tried this. */
6872 if (cand
->important
)
6874 if (originalp
&& cand
->pos
== IP_ORIGINAL
)
6876 if (!originalp
&& cand
->iv
->base_object
== NULL_TREE
)
6880 if (iv_ca_cand_used_p (ivs
, cand
))
6884 iv_ca_set_cp (data
, ivs
, group
, cp
);
6885 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
, true);
6886 iv_ca_set_no_cp (data
, ivs
, group
);
6887 act_delta
= iv_ca_delta_add (group
,
6888 iv_ca_cand_for_group (ivs
, group
),
6891 if (act_cost
< best_cost
)
6893 best_cost
= act_cost
;
6896 iv_ca_delta_free (&best_delta
);
6897 best_delta
= act_delta
;
6900 iv_ca_delta_free (&act_delta
);
6904 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6905 iv_ca_delta_free (&best_delta
);
6907 return !best_cost
.infinite_cost_p ();
6910 /* Finds an initial assignment of candidates to uses. */
6912 static struct iv_ca
*
6913 get_initial_solution (struct ivopts_data
*data
, bool originalp
)
6916 struct iv_ca
*ivs
= iv_ca_new (data
);
6918 for (i
= 0; i
< data
->vgroups
.length (); i
++)
6919 if (!try_add_cand_for (data
, ivs
, data
->vgroups
[i
], originalp
))
6928 /* Tries to improve set of induction variables IVS. TRY_REPLACE_P
6929 points to a bool variable, this function tries to break local
6930 optimal fixed-point by replacing candidates in IVS if it's true. */
6933 try_improve_iv_set (struct ivopts_data
*data
,
6934 struct iv_ca
*ivs
, bool *try_replace_p
)
6937 comp_cost acost
, best_cost
= iv_ca_cost (ivs
);
6938 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
, *tmp_delta
;
6939 struct iv_cand
*cand
;
6941 /* Try extending the set of induction variables by one. */
6942 for (i
= 0; i
< data
->vcands
.length (); i
++)
6944 cand
= data
->vcands
[i
];
6946 if (iv_ca_cand_used_p (ivs
, cand
))
6949 acost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, &n_ivs
, false);
6953 /* If we successfully added the candidate and the set is small enough,
6954 try optimizing it by removing other candidates. */
6955 if (n_ivs
<= ALWAYS_PRUNE_CAND_SET_BOUND
)
6957 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
6958 acost
= iv_ca_prune (data
, ivs
, cand
, &tmp_delta
);
6959 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
6960 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
6963 if (acost
< best_cost
)
6966 iv_ca_delta_free (&best_delta
);
6967 best_delta
= act_delta
;
6970 iv_ca_delta_free (&act_delta
);
6975 /* Try removing the candidates from the set instead. */
6976 best_cost
= iv_ca_prune (data
, ivs
, NULL
, &best_delta
);
6978 if (!best_delta
&& *try_replace_p
)
6980 *try_replace_p
= false;
6981 /* So far candidate selecting algorithm tends to choose fewer IVs
6982 so that it can handle cases in which loops have many variables
6983 but the best choice is often to use only one general biv. One
6984 weakness is it can't handle opposite cases, in which different
6985 candidates should be chosen with respect to each use. To solve
6986 the problem, we replace candidates in a manner described by the
6987 comments of iv_ca_replace, thus give general algorithm a chance
6988 to break local optimal fixed-point in these cases. */
6989 best_cost
= iv_ca_replace (data
, ivs
, &best_delta
);
6996 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6997 gcc_assert (best_cost
== iv_ca_cost (ivs
));
6998 iv_ca_delta_free (&best_delta
);
7002 /* Attempts to find the optimal set of induction variables. We do simple
7003 greedy heuristic -- we try to replace at most one candidate in the selected
7004 solution and remove the unused ivs while this improves the cost. */
7006 static struct iv_ca
*
7007 find_optimal_iv_set_1 (struct ivopts_data
*data
, bool originalp
)
7010 bool try_replace_p
= true;
7012 /* Get the initial solution. */
7013 set
= get_initial_solution (data
, originalp
);
7016 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7017 fprintf (dump_file
, "Unable to substitute for ivs, failed.\n");
7021 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7023 fprintf (dump_file
, "Initial set of candidates:\n");
7024 iv_ca_dump (data
, dump_file
, set
);
7027 while (try_improve_iv_set (data
, set
, &try_replace_p
))
7029 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7031 fprintf (dump_file
, "Improved to:\n");
7032 iv_ca_dump (data
, dump_file
, set
);
7039 static struct iv_ca
*
7040 find_optimal_iv_set (struct ivopts_data
*data
)
7043 comp_cost cost
, origcost
;
7044 struct iv_ca
*set
, *origset
;
7046 /* Determine the cost based on a strategy that starts with original IVs,
7047 and try again using a strategy that prefers candidates not based
7049 origset
= find_optimal_iv_set_1 (data
, true);
7050 set
= find_optimal_iv_set_1 (data
, false);
7052 if (!origset
&& !set
)
7055 origcost
= origset
? iv_ca_cost (origset
) : infinite_cost
;
7056 cost
= set
? iv_ca_cost (set
) : infinite_cost
;
7058 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7060 fprintf (dump_file
, "Original cost %d (complexity %d)\n\n",
7061 origcost
.cost
, origcost
.complexity
);
7062 fprintf (dump_file
, "Final cost %d (complexity %d)\n\n",
7063 cost
.cost
, cost
.complexity
);
7066 /* Choose the one with the best cost. */
7067 if (origcost
<= cost
)
7074 iv_ca_free (&origset
);
7076 for (i
= 0; i
< data
->vgroups
.length (); i
++)
7078 struct iv_group
*group
= data
->vgroups
[i
];
7079 group
->selected
= iv_ca_cand_for_group (set
, group
)->cand
;
7085 /* Creates a new induction variable corresponding to CAND. */
7088 create_new_iv (struct ivopts_data
*data
, struct iv_cand
*cand
)
7090 gimple_stmt_iterator incr_pos
;
7093 struct iv_group
*group
;
7102 incr_pos
= gsi_last_bb (ip_normal_pos (data
->current_loop
));
7106 incr_pos
= gsi_last_bb (ip_end_pos (data
->current_loop
));
7114 incr_pos
= gsi_for_stmt (cand
->incremented_at
);
7118 /* Mark that the iv is preserved. */
7119 name_info (data
, cand
->var_before
)->preserve_biv
= true;
7120 name_info (data
, cand
->var_after
)->preserve_biv
= true;
7122 /* Rewrite the increment so that it uses var_before directly. */
7123 use
= find_interesting_uses_op (data
, cand
->var_after
);
7124 group
= data
->vgroups
[use
->group_id
];
7125 group
->selected
= cand
;
7129 gimple_add_tmp_var (cand
->var_before
);
7131 base
= unshare_expr (cand
->iv
->base
);
7133 create_iv (base
, unshare_expr (cand
->iv
->step
),
7134 cand
->var_before
, data
->current_loop
,
7135 &incr_pos
, after
, &cand
->var_before
, &cand
->var_after
);
7138 /* Creates new induction variables described in SET. */
7141 create_new_ivs (struct ivopts_data
*data
, struct iv_ca
*set
)
7144 struct iv_cand
*cand
;
7147 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
7149 cand
= data
->vcands
[i
];
7150 create_new_iv (data
, cand
);
7153 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7155 fprintf (dump_file
, "Selected IV set for loop %d",
7156 data
->current_loop
->num
);
7157 if (data
->loop_loc
!= UNKNOWN_LOCATION
)
7158 fprintf (dump_file
, " at %s:%d", LOCATION_FILE (data
->loop_loc
),
7159 LOCATION_LINE (data
->loop_loc
));
7160 fprintf (dump_file
, ", " HOST_WIDE_INT_PRINT_DEC
" avg niters",
7161 avg_loop_niter (data
->current_loop
));
7162 fprintf (dump_file
, ", " HOST_WIDE_INT_PRINT_UNSIGNED
" expressions",
7163 (unsigned HOST_WIDE_INT
) set
->used_inv_exprs
->elements ());
7164 fprintf (dump_file
, ", %lu IVs:\n", bitmap_count_bits (set
->cands
));
7165 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
7167 cand
= data
->vcands
[i
];
7168 dump_cand (dump_file
, cand
);
7170 fprintf (dump_file
, "\n");
7174 /* Rewrites USE (definition of iv used in a nonlinear expression)
7175 using candidate CAND. */
7178 rewrite_use_nonlinear_expr (struct ivopts_data
*data
,
7179 struct iv_use
*use
, struct iv_cand
*cand
)
7184 gimple_stmt_iterator bsi
;
7186 /* An important special case -- if we are asked to express value of
7187 the original iv by itself, just exit; there is no need to
7188 introduce a new computation (that might also need casting the
7189 variable to unsigned and back). */
7190 if (cand
->pos
== IP_ORIGINAL
7191 && cand
->incremented_at
== use
->stmt
)
7193 enum tree_code stmt_code
;
7195 gcc_assert (is_gimple_assign (use
->stmt
));
7196 gcc_assert (gimple_assign_lhs (use
->stmt
) == cand
->var_after
);
7198 /* Check whether we may leave the computation unchanged.
7199 This is the case only if it does not rely on other
7200 computations in the loop -- otherwise, the computation
7201 we rely upon may be removed in remove_unused_ivs,
7202 thus leading to ICE. */
7203 stmt_code
= gimple_assign_rhs_code (use
->stmt
);
7204 if (stmt_code
== PLUS_EXPR
7205 || stmt_code
== MINUS_EXPR
7206 || stmt_code
== POINTER_PLUS_EXPR
)
7208 if (gimple_assign_rhs1 (use
->stmt
) == cand
->var_before
)
7209 op
= gimple_assign_rhs2 (use
->stmt
);
7210 else if (gimple_assign_rhs2 (use
->stmt
) == cand
->var_before
)
7211 op
= gimple_assign_rhs1 (use
->stmt
);
7218 if (op
&& expr_invariant_in_loop_p (data
->current_loop
, op
))
7222 comp
= get_computation (data
->current_loop
, use
, cand
);
7223 gcc_assert (comp
!= NULL_TREE
);
7225 switch (gimple_code (use
->stmt
))
7228 tgt
= PHI_RESULT (use
->stmt
);
7230 /* If we should keep the biv, do not replace it. */
7231 if (name_info (data
, tgt
)->preserve_biv
)
7234 bsi
= gsi_after_labels (gimple_bb (use
->stmt
));
7238 tgt
= gimple_assign_lhs (use
->stmt
);
7239 bsi
= gsi_for_stmt (use
->stmt
);
7246 if (!valid_gimple_rhs_p (comp
)
7247 || (gimple_code (use
->stmt
) != GIMPLE_PHI
7248 /* We can't allow re-allocating the stmt as it might be pointed
7250 && (get_gimple_rhs_num_ops (TREE_CODE (comp
))
7251 >= gimple_num_ops (gsi_stmt (bsi
)))))
7253 comp
= force_gimple_operand_gsi (&bsi
, comp
, true, NULL_TREE
,
7254 true, GSI_SAME_STMT
);
7255 if (POINTER_TYPE_P (TREE_TYPE (tgt
)))
7257 duplicate_ssa_name_ptr_info (comp
, SSA_NAME_PTR_INFO (tgt
));
7258 /* As this isn't a plain copy we have to reset alignment
7260 if (SSA_NAME_PTR_INFO (comp
))
7261 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp
));
7265 if (gimple_code (use
->stmt
) == GIMPLE_PHI
)
7267 ass
= gimple_build_assign (tgt
, comp
);
7268 gsi_insert_before (&bsi
, ass
, GSI_SAME_STMT
);
7270 bsi
= gsi_for_stmt (use
->stmt
);
7271 remove_phi_node (&bsi
, false);
7275 gimple_assign_set_rhs_from_tree (&bsi
, comp
);
7276 use
->stmt
= gsi_stmt (bsi
);
7280 /* Performs a peephole optimization to reorder the iv update statement with
7281 a mem ref to enable instruction combining in later phases. The mem ref uses
7282 the iv value before the update, so the reordering transformation requires
7283 adjustment of the offset. CAND is the selected IV_CAND.
7287 t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
7295 directly propagating t over to (1) will introduce overlapping live range
7296 thus increase register pressure. This peephole transform it into:
7300 t = MEM_REF (base, iv2, 8, 8);
7307 adjust_iv_update_pos (struct iv_cand
*cand
, struct iv_use
*use
)
7310 gimple
*iv_update
, *stmt
;
7312 gimple_stmt_iterator gsi
, gsi_iv
;
7314 if (cand
->pos
!= IP_NORMAL
)
7317 var_after
= cand
->var_after
;
7318 iv_update
= SSA_NAME_DEF_STMT (var_after
);
7320 bb
= gimple_bb (iv_update
);
7321 gsi
= gsi_last_nondebug_bb (bb
);
7322 stmt
= gsi_stmt (gsi
);
7324 /* Only handle conditional statement for now. */
7325 if (gimple_code (stmt
) != GIMPLE_COND
)
7328 gsi_prev_nondebug (&gsi
);
7329 stmt
= gsi_stmt (gsi
);
7330 if (stmt
!= iv_update
)
7333 gsi_prev_nondebug (&gsi
);
7334 if (gsi_end_p (gsi
))
7337 stmt
= gsi_stmt (gsi
);
7338 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
7341 if (stmt
!= use
->stmt
)
7344 if (TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
7347 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7349 fprintf (dump_file
, "Reordering \n");
7350 print_gimple_stmt (dump_file
, iv_update
, 0, 0);
7351 print_gimple_stmt (dump_file
, use
->stmt
, 0, 0);
7352 fprintf (dump_file
, "\n");
7355 gsi
= gsi_for_stmt (use
->stmt
);
7356 gsi_iv
= gsi_for_stmt (iv_update
);
7357 gsi_move_before (&gsi_iv
, &gsi
);
7359 cand
->pos
= IP_BEFORE_USE
;
7360 cand
->incremented_at
= use
->stmt
;
7363 /* Rewrites USE (address that is an iv) using candidate CAND. */
7366 rewrite_use_address (struct ivopts_data
*data
,
7367 struct iv_use
*use
, struct iv_cand
*cand
)
7370 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
7371 tree base_hint
= NULL_TREE
;
7375 adjust_iv_update_pos (cand
, use
);
7376 ok
= get_computation_aff (data
->current_loop
, use
, cand
, use
->stmt
, &aff
);
7378 unshare_aff_combination (&aff
);
7380 /* To avoid undefined overflow problems, all IV candidates use unsigned
7381 integer types. The drawback is that this makes it impossible for
7382 create_mem_ref to distinguish an IV that is based on a memory object
7383 from one that represents simply an offset.
7385 To work around this problem, we pass a hint to create_mem_ref that
7386 indicates which variable (if any) in aff is an IV based on a memory
7387 object. Note that we only consider the candidate. If this is not
7388 based on an object, the base of the reference is in some subexpression
7389 of the use -- but these will use pointer types, so they are recognized
7390 by the create_mem_ref heuristics anyway. */
7391 if (cand
->iv
->base_object
)
7392 base_hint
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
7394 iv
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
7395 ref
= create_mem_ref (&bsi
, TREE_TYPE (*use
->op_p
), &aff
,
7396 reference_alias_ptr_type (*use
->op_p
),
7397 iv
, base_hint
, data
->speed
);
7398 copy_ref_info (ref
, *use
->op_p
);
7402 /* Rewrites USE (the condition such that one of the arguments is an iv) using
7406 rewrite_use_compare (struct ivopts_data
*data
,
7407 struct iv_use
*use
, struct iv_cand
*cand
)
7409 tree comp
, *var_p
, op
, bound
;
7410 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
7411 enum tree_code compare
;
7412 struct iv_group
*group
= data
->vgroups
[use
->group_id
];
7413 struct cost_pair
*cp
= get_group_iv_cost (data
, group
, cand
);
7419 tree var
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
7420 tree var_type
= TREE_TYPE (var
);
7423 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7425 fprintf (dump_file
, "Replacing exit test: ");
7426 print_gimple_stmt (dump_file
, use
->stmt
, 0, TDF_SLIM
);
7429 bound
= unshare_expr (fold_convert (var_type
, bound
));
7430 op
= force_gimple_operand (bound
, &stmts
, true, NULL_TREE
);
7432 gsi_insert_seq_on_edge_immediate (
7433 loop_preheader_edge (data
->current_loop
),
7436 gcond
*cond_stmt
= as_a
<gcond
*> (use
->stmt
);
7437 gimple_cond_set_lhs (cond_stmt
, var
);
7438 gimple_cond_set_code (cond_stmt
, compare
);
7439 gimple_cond_set_rhs (cond_stmt
, op
);
7443 /* The induction variable elimination failed; just express the original
7445 comp
= get_computation (data
->current_loop
, use
, cand
);
7446 gcc_assert (comp
!= NULL_TREE
);
7448 ok
= extract_cond_operands (data
, use
->stmt
, &var_p
, NULL
, NULL
, NULL
);
7451 *var_p
= force_gimple_operand_gsi (&bsi
, comp
, true, SSA_NAME_VAR (*var_p
),
7452 true, GSI_SAME_STMT
);
7455 /* Rewrite the groups using the selected induction variables. */
7458 rewrite_groups (struct ivopts_data
*data
)
7462 for (i
= 0; i
< data
->vgroups
.length (); i
++)
7464 struct iv_group
*group
= data
->vgroups
[i
];
7465 struct iv_cand
*cand
= group
->selected
;
7469 if (group
->type
== USE_NONLINEAR_EXPR
)
7471 for (j
= 0; j
< group
->vuses
.length (); j
++)
7473 rewrite_use_nonlinear_expr (data
, group
->vuses
[j
], cand
);
7474 update_stmt (group
->vuses
[j
]->stmt
);
7477 else if (group
->type
== USE_ADDRESS
)
7479 for (j
= 0; j
< group
->vuses
.length (); j
++)
7481 rewrite_use_address (data
, group
->vuses
[j
], cand
);
7482 update_stmt (group
->vuses
[j
]->stmt
);
7487 gcc_assert (group
->type
== USE_COMPARE
);
7489 for (j
= 0; j
< group
->vuses
.length (); j
++)
7491 rewrite_use_compare (data
, group
->vuses
[j
], cand
);
7492 update_stmt (group
->vuses
[j
]->stmt
);
7498 /* Removes the ivs that are not used after rewriting. */
7501 remove_unused_ivs (struct ivopts_data
*data
)
7505 bitmap toremove
= BITMAP_ALLOC (NULL
);
7507 /* Figure out an order in which to release SSA DEFs so that we don't
7508 release something that we'd have to propagate into a debug stmt
7510 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
7512 struct version_info
*info
;
7514 info
= ver_info (data
, j
);
7516 && !integer_zerop (info
->iv
->step
)
7518 && !info
->iv
->nonlin_use
7519 && !info
->preserve_biv
)
7521 bitmap_set_bit (toremove
, SSA_NAME_VERSION (info
->iv
->ssa_name
));
7523 tree def
= info
->iv
->ssa_name
;
7525 if (MAY_HAVE_DEBUG_STMTS
&& SSA_NAME_DEF_STMT (def
))
7527 imm_use_iterator imm_iter
;
7528 use_operand_p use_p
;
7532 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
7534 if (!gimple_debug_bind_p (stmt
))
7537 /* We just want to determine whether to do nothing
7538 (count == 0), to substitute the computed
7539 expression into a single use of the SSA DEF by
7540 itself (count == 1), or to use a debug temp
7541 because the SSA DEF is used multiple times or as
7542 part of a larger expression (count > 1). */
7544 if (gimple_debug_bind_get_value (stmt
) != def
)
7548 BREAK_FROM_IMM_USE_STMT (imm_iter
);
7554 struct iv_use dummy_use
;
7555 struct iv_cand
*best_cand
= NULL
, *cand
;
7556 unsigned i
, best_pref
= 0, cand_pref
;
7558 memset (&dummy_use
, 0, sizeof (dummy_use
));
7559 dummy_use
.iv
= info
->iv
;
7560 for (i
= 0; i
< data
->vgroups
.length () && i
< 64; i
++)
7562 cand
= data
->vgroups
[i
]->selected
;
7563 if (cand
== best_cand
)
7565 cand_pref
= operand_equal_p (cand
->iv
->step
,
7569 += TYPE_MODE (TREE_TYPE (cand
->iv
->base
))
7570 == TYPE_MODE (TREE_TYPE (info
->iv
->base
))
7573 += TREE_CODE (cand
->iv
->base
) == INTEGER_CST
7575 if (best_cand
== NULL
|| best_pref
< cand_pref
)
7578 best_pref
= cand_pref
;
7585 tree comp
= get_computation_at (data
->current_loop
,
7586 &dummy_use
, best_cand
,
7587 SSA_NAME_DEF_STMT (def
));
7593 tree vexpr
= make_node (DEBUG_EXPR_DECL
);
7594 DECL_ARTIFICIAL (vexpr
) = 1;
7595 TREE_TYPE (vexpr
) = TREE_TYPE (comp
);
7596 if (SSA_NAME_VAR (def
))
7597 SET_DECL_MODE (vexpr
, DECL_MODE (SSA_NAME_VAR (def
)));
7599 SET_DECL_MODE (vexpr
, TYPE_MODE (TREE_TYPE (vexpr
)));
7601 = gimple_build_debug_bind (vexpr
, comp
, NULL
);
7602 gimple_stmt_iterator gsi
;
7604 if (gimple_code (SSA_NAME_DEF_STMT (def
)) == GIMPLE_PHI
)
7605 gsi
= gsi_after_labels (gimple_bb
7606 (SSA_NAME_DEF_STMT (def
)));
7608 gsi
= gsi_for_stmt (SSA_NAME_DEF_STMT (def
));
7610 gsi_insert_before (&gsi
, def_temp
, GSI_SAME_STMT
);
7614 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
7616 if (!gimple_debug_bind_p (stmt
))
7619 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
7620 SET_USE (use_p
, comp
);
7628 release_defs_bitset (toremove
);
7630 BITMAP_FREE (toremove
);
7633 /* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
7634 for hash_map::traverse. */
7637 free_tree_niter_desc (edge
const &, tree_niter_desc
*const &value
, void *)
7643 /* Frees data allocated by the optimization of a single loop. */
7646 free_loop_data (struct ivopts_data
*data
)
7654 data
->niters
->traverse
<void *, free_tree_niter_desc
> (NULL
);
7655 delete data
->niters
;
7656 data
->niters
= NULL
;
7659 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
7661 struct version_info
*info
;
7663 info
= ver_info (data
, i
);
7665 info
->has_nonlin_use
= false;
7666 info
->preserve_biv
= false;
7669 bitmap_clear (data
->relevant
);
7670 bitmap_clear (data
->important_candidates
);
7672 for (i
= 0; i
< data
->vgroups
.length (); i
++)
7674 struct iv_group
*group
= data
->vgroups
[i
];
7676 for (j
= 0; j
< group
->vuses
.length (); j
++)
7677 free (group
->vuses
[j
]);
7678 group
->vuses
.release ();
7680 BITMAP_FREE (group
->related_cands
);
7681 for (j
= 0; j
< group
->n_map_members
; j
++)
7682 if (group
->cost_map
[j
].depends_on
)
7683 BITMAP_FREE (group
->cost_map
[j
].depends_on
);
7685 free (group
->cost_map
);
7688 data
->vgroups
.truncate (0);
7690 for (i
= 0; i
< data
->vcands
.length (); i
++)
7692 struct iv_cand
*cand
= data
->vcands
[i
];
7694 if (cand
->depends_on
)
7695 BITMAP_FREE (cand
->depends_on
);
7698 data
->vcands
.truncate (0);
7700 if (data
->version_info_size
< num_ssa_names
)
7702 data
->version_info_size
= 2 * num_ssa_names
;
7703 free (data
->version_info
);
7704 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
7707 data
->max_inv_id
= 0;
7709 FOR_EACH_VEC_ELT (decl_rtl_to_reset
, i
, obj
)
7710 SET_DECL_RTL (obj
, NULL_RTX
);
7712 decl_rtl_to_reset
.truncate (0);
7714 data
->inv_expr_tab
->empty ();
7715 data
->max_inv_expr_id
= 0;
7717 data
->iv_common_cand_tab
->empty ();
7718 data
->iv_common_cands
.truncate (0);
7721 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
7725 tree_ssa_iv_optimize_finalize (struct ivopts_data
*data
)
7727 free_loop_data (data
);
7728 free (data
->version_info
);
7729 BITMAP_FREE (data
->relevant
);
7730 BITMAP_FREE (data
->important_candidates
);
7732 decl_rtl_to_reset
.release ();
7733 data
->vgroups
.release ();
7734 data
->vcands
.release ();
7735 delete data
->inv_expr_tab
;
7736 data
->inv_expr_tab
= NULL
;
7737 free_affine_expand_cache (&data
->name_expansion_cache
);
7738 delete data
->iv_common_cand_tab
;
7739 data
->iv_common_cand_tab
= NULL
;
7740 data
->iv_common_cands
.release ();
7741 obstack_free (&data
->iv_obstack
, NULL
);
7744 /* Returns true if the loop body BODY includes any function calls. */
7747 loop_body_includes_call (basic_block
*body
, unsigned num_nodes
)
7749 gimple_stmt_iterator gsi
;
7752 for (i
= 0; i
< num_nodes
; i
++)
7753 for (gsi
= gsi_start_bb (body
[i
]); !gsi_end_p (gsi
); gsi_next (&gsi
))
7755 gimple
*stmt
= gsi_stmt (gsi
);
7756 if (is_gimple_call (stmt
)
7757 && !gimple_call_internal_p (stmt
)
7758 && !is_inexpensive_builtin (gimple_call_fndecl (stmt
)))
7764 /* Optimizes the LOOP. Returns true if anything changed. */
7767 tree_ssa_iv_optimize_loop (struct ivopts_data
*data
, struct loop
*loop
)
7769 bool changed
= false;
7770 struct iv_ca
*iv_ca
;
7771 edge exit
= single_dom_exit (loop
);
7774 gcc_assert (!data
->niters
);
7775 data
->current_loop
= loop
;
7776 data
->loop_loc
= find_loop_location (loop
);
7777 data
->speed
= optimize_loop_for_speed_p (loop
);
7779 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7781 fprintf (dump_file
, "Processing loop %d", loop
->num
);
7782 if (data
->loop_loc
!= UNKNOWN_LOCATION
)
7783 fprintf (dump_file
, " at %s:%d", LOCATION_FILE (data
->loop_loc
),
7784 LOCATION_LINE (data
->loop_loc
));
7785 fprintf (dump_file
, "\n");
7789 fprintf (dump_file
, " single exit %d -> %d, exit condition ",
7790 exit
->src
->index
, exit
->dest
->index
);
7791 print_gimple_stmt (dump_file
, last_stmt (exit
->src
), 0, TDF_SLIM
);
7792 fprintf (dump_file
, "\n");
7795 fprintf (dump_file
, "\n");
7798 body
= get_loop_body (loop
);
7799 data
->body_includes_call
= loop_body_includes_call (body
, loop
->num_nodes
);
7800 renumber_gimple_stmt_uids_in_blocks (body
, loop
->num_nodes
);
7803 data
->loop_single_exit_p
= exit
!= NULL
&& loop_only_exit_p (loop
, exit
);
7805 /* For each ssa name determines whether it behaves as an induction variable
7807 if (!find_induction_variables (data
))
7810 /* Finds interesting uses (item 1). */
7811 find_interesting_uses (data
);
7812 if (data
->vgroups
.length () > MAX_CONSIDERED_GROUPS
)
7815 /* Finds candidates for the induction variables (item 2). */
7816 find_iv_candidates (data
);
7818 /* Calculates the costs (item 3, part 1). */
7819 determine_iv_costs (data
);
7820 determine_group_iv_costs (data
);
7821 determine_set_costs (data
);
7823 /* Find the optimal set of induction variables (item 3, part 2). */
7824 iv_ca
= find_optimal_iv_set (data
);
7829 /* Create the new induction variables (item 4, part 1). */
7830 create_new_ivs (data
, iv_ca
);
7831 iv_ca_free (&iv_ca
);
7833 /* Rewrite the uses (item 4, part 2). */
7834 rewrite_groups (data
);
7836 /* Remove the ivs that are unused after rewriting. */
7837 remove_unused_ivs (data
);
7839 /* We have changed the structure of induction variables; it might happen
7840 that definitions in the scev database refer to some of them that were
7845 free_loop_data (data
);
7850 /* Main entry point. Optimizes induction variables in loops. */
7853 tree_ssa_iv_optimize (void)
7856 struct ivopts_data data
;
7858 tree_ssa_iv_optimize_init (&data
);
7860 /* Optimize the loops starting with the innermost ones. */
7861 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
7863 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7864 flow_loop_dump (loop
, dump_file
, NULL
, 1);
7866 tree_ssa_iv_optimize_loop (&data
, loop
);
7869 tree_ssa_iv_optimize_finalize (&data
);