* gcc.dg/cpp/assembl2.S: New test case.
[official-gcc.git] / gcc / emit-rtl.c
blob33c6d90b407d9339234f87cd114bb7645263b764
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "defaults.h"
59 /* Commonly used modes. */
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
70 static int label_num = 1;
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
76 static int last_label_num;
78 /* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
81 static int base_label_num;
83 /* Nonzero means do not generate NOTEs for source line numbers. */
85 static int no_line_numbers;
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these except perhaps the floating-point CONST_DOUBLEs
90 are unique; no other rtx-object will be equal to any of these. */
92 rtx global_rtl[GR_MAX];
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
98 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
100 rtx const_true_rtx;
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
107 /* All references to the following fixed hard registers go through
108 these unique rtl objects. On machines where the frame-pointer and
109 arg-pointer are the same register, they use the same unique object.
111 After register allocation, other rtl objects which used to be pseudo-regs
112 may be clobbered to refer to the frame-pointer register.
113 But references that were originally to the frame-pointer can be
114 distinguished from the others because they contain frame_pointer_rtx.
116 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
117 tricky: until register elimination has taken place hard_frame_pointer_rtx
118 should be used if it is being set, and frame_pointer_rtx otherwise. After
119 register elimination hard_frame_pointer_rtx should always be used.
120 On machines where the two registers are same (most) then these are the
121 same.
123 In an inline procedure, the stack and frame pointer rtxs may not be
124 used for anything else. */
125 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
126 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
127 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
140 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
145 static htab_t const_int_htab;
147 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
148 shortly thrown away. We use two mechanisms to prevent this waste:
150 For sizes up to 5 elements, we keep a SEQUENCE and its associated
151 rtvec for use by gen_sequence. One entry for each size is
152 sufficient because most cases are calls to gen_sequence followed by
153 immediately emitting the SEQUENCE. Reuse is safe since emitting a
154 sequence is destructive on the insn in it anyway and hence can't be
155 redone.
157 We do not bother to save this cached data over nested function calls.
158 Instead, we just reinitialize them. */
160 #define SEQUENCE_RESULT_SIZE 5
162 static rtx sequence_result[SEQUENCE_RESULT_SIZE];
164 /* During RTL generation, we also keep a list of free INSN rtl codes. */
165 static rtx free_insn;
167 #define first_insn (cfun->emit->x_first_insn)
168 #define last_insn (cfun->emit->x_last_insn)
169 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
170 #define last_linenum (cfun->emit->x_last_linenum)
171 #define last_filename (cfun->emit->x_last_filename)
172 #define first_label_num (cfun->emit->x_first_label_num)
174 static rtx make_jump_insn_raw PARAMS ((rtx));
175 static rtx make_call_insn_raw PARAMS ((rtx));
176 static rtx find_line_note PARAMS ((rtx));
177 static void mark_sequence_stack PARAMS ((struct sequence_stack *));
178 static void unshare_all_rtl_1 PARAMS ((rtx));
179 static void unshare_all_decls PARAMS ((tree));
180 static void reset_used_decls PARAMS ((tree));
181 static hashval_t const_int_htab_hash PARAMS ((const void *));
182 static int const_int_htab_eq PARAMS ((const void *,
183 const void *));
184 static int rtx_htab_mark_1 PARAMS ((void **, void *));
185 static void rtx_htab_mark PARAMS ((void *));
188 /* Returns a hash code for X (which is a really a CONST_INT). */
190 static hashval_t
191 const_int_htab_hash (x)
192 const void *x;
194 return (hashval_t) INTVAL ((const struct rtx_def *) x);
197 /* Returns non-zero if the value represented by X (which is really a
198 CONST_INT) is the same as that given by Y (which is really a
199 HOST_WIDE_INT *). */
201 static int
202 const_int_htab_eq (x, y)
203 const void *x;
204 const void *y;
206 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
209 /* Mark the hash-table element X (which is really a pointer to an
210 rtx). */
212 static int
213 rtx_htab_mark_1 (x, data)
214 void **x;
215 void *data ATTRIBUTE_UNUSED;
217 ggc_mark_rtx (*x);
218 return 1;
221 /* Mark all the elements of HTAB (which is really an htab_t full of
222 rtxs). */
224 static void
225 rtx_htab_mark (htab)
226 void *htab;
228 htab_traverse (*((htab_t *) htab), rtx_htab_mark_1, NULL);
231 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
232 don't attempt to share with the various global pieces of rtl (such as
233 frame_pointer_rtx). */
236 gen_raw_REG (mode, regno)
237 enum machine_mode mode;
238 int regno;
240 rtx x = gen_rtx_raw_REG (mode, regno);
241 ORIGINAL_REGNO (x) = regno;
242 return x;
245 /* There are some RTL codes that require special attention; the generation
246 functions do the raw handling. If you add to this list, modify
247 special_rtx in gengenrtl.c as well. */
250 gen_rtx_CONST_INT (mode, arg)
251 enum machine_mode mode ATTRIBUTE_UNUSED;
252 HOST_WIDE_INT arg;
254 void **slot;
256 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
257 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
259 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
260 if (const_true_rtx && arg == STORE_FLAG_VALUE)
261 return const_true_rtx;
262 #endif
264 /* Look up the CONST_INT in the hash table. */
265 slot = htab_find_slot_with_hash (const_int_htab, &arg,
266 (hashval_t) arg, INSERT);
267 if (*slot == 0)
268 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
270 return (rtx) *slot;
273 /* CONST_DOUBLEs needs special handling because their length is known
274 only at run-time. */
277 gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
278 enum machine_mode mode;
279 rtx arg0;
280 HOST_WIDE_INT arg1, arg2;
282 rtx r = rtx_alloc (CONST_DOUBLE);
283 int i;
285 PUT_MODE (r, mode);
286 XEXP (r, 0) = arg0;
287 X0EXP (r, 1) = NULL_RTX;
288 XWINT (r, 2) = arg1;
289 XWINT (r, 3) = arg2;
291 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
292 XWINT (r, i) = 0;
294 return r;
298 gen_rtx_REG (mode, regno)
299 enum machine_mode mode;
300 int regno;
302 /* In case the MD file explicitly references the frame pointer, have
303 all such references point to the same frame pointer. This is
304 used during frame pointer elimination to distinguish the explicit
305 references to these registers from pseudos that happened to be
306 assigned to them.
308 If we have eliminated the frame pointer or arg pointer, we will
309 be using it as a normal register, for example as a spill
310 register. In such cases, we might be accessing it in a mode that
311 is not Pmode and therefore cannot use the pre-allocated rtx.
313 Also don't do this when we are making new REGs in reload, since
314 we don't want to get confused with the real pointers. */
316 if (mode == Pmode && !reload_in_progress)
318 if (regno == FRAME_POINTER_REGNUM)
319 return frame_pointer_rtx;
320 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
321 if (regno == HARD_FRAME_POINTER_REGNUM)
322 return hard_frame_pointer_rtx;
323 #endif
324 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
325 if (regno == ARG_POINTER_REGNUM)
326 return arg_pointer_rtx;
327 #endif
328 #ifdef RETURN_ADDRESS_POINTER_REGNUM
329 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
330 return return_address_pointer_rtx;
331 #endif
332 if (regno == STACK_POINTER_REGNUM)
333 return stack_pointer_rtx;
336 return gen_raw_REG (mode, regno);
340 gen_rtx_MEM (mode, addr)
341 enum machine_mode mode;
342 rtx addr;
344 rtx rt = gen_rtx_raw_MEM (mode, addr);
346 /* This field is not cleared by the mere allocation of the rtx, so
347 we clear it here. */
348 MEM_ALIAS_SET (rt) = 0;
350 return rt;
353 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
355 ** This routine generates an RTX of the size specified by
356 ** <code>, which is an RTX code. The RTX structure is initialized
357 ** from the arguments <element1> through <elementn>, which are
358 ** interpreted according to the specific RTX type's format. The
359 ** special machine mode associated with the rtx (if any) is specified
360 ** in <mode>.
362 ** gen_rtx can be invoked in a way which resembles the lisp-like
363 ** rtx it will generate. For example, the following rtx structure:
365 ** (plus:QI (mem:QI (reg:SI 1))
366 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
368 ** ...would be generated by the following C code:
370 ** gen_rtx (PLUS, QImode,
371 ** gen_rtx (MEM, QImode,
372 ** gen_rtx (REG, SImode, 1)),
373 ** gen_rtx (MEM, QImode,
374 ** gen_rtx (PLUS, SImode,
375 ** gen_rtx (REG, SImode, 2),
376 ** gen_rtx (REG, SImode, 3)))),
379 /*VARARGS2*/
381 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
383 #ifndef ANSI_PROTOTYPES
384 enum rtx_code code;
385 enum machine_mode mode;
386 #endif
387 va_list p;
388 register int i; /* Array indices... */
389 register const char *fmt; /* Current rtx's format... */
390 register rtx rt_val; /* RTX to return to caller... */
392 VA_START (p, mode);
394 #ifndef ANSI_PROTOTYPES
395 code = va_arg (p, enum rtx_code);
396 mode = va_arg (p, enum machine_mode);
397 #endif
399 switch (code)
401 case CONST_INT:
402 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
403 break;
405 case CONST_DOUBLE:
407 rtx arg0 = va_arg (p, rtx);
408 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
409 HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
410 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
412 break;
414 case REG:
415 rt_val = gen_rtx_REG (mode, va_arg (p, int));
416 break;
418 case MEM:
419 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
420 break;
422 default:
423 rt_val = rtx_alloc (code); /* Allocate the storage space. */
424 rt_val->mode = mode; /* Store the machine mode... */
426 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
427 for (i = 0; i < GET_RTX_LENGTH (code); i++)
429 switch (*fmt++)
431 case '0': /* Unused field. */
432 break;
434 case 'i': /* An integer? */
435 XINT (rt_val, i) = va_arg (p, int);
436 break;
438 case 'w': /* A wide integer? */
439 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
440 break;
442 case 's': /* A string? */
443 XSTR (rt_val, i) = va_arg (p, char *);
444 break;
446 case 'e': /* An expression? */
447 case 'u': /* An insn? Same except when printing. */
448 XEXP (rt_val, i) = va_arg (p, rtx);
449 break;
451 case 'E': /* An RTX vector? */
452 XVEC (rt_val, i) = va_arg (p, rtvec);
453 break;
455 case 'b': /* A bitmap? */
456 XBITMAP (rt_val, i) = va_arg (p, bitmap);
457 break;
459 case 't': /* A tree? */
460 XTREE (rt_val, i) = va_arg (p, tree);
461 break;
463 default:
464 abort ();
467 break;
470 va_end (p);
471 return rt_val;
474 /* gen_rtvec (n, [rt1, ..., rtn])
476 ** This routine creates an rtvec and stores within it the
477 ** pointers to rtx's which are its arguments.
480 /*VARARGS1*/
481 rtvec
482 gen_rtvec VPARAMS ((int n, ...))
484 #ifndef ANSI_PROTOTYPES
485 int n;
486 #endif
487 int i;
488 va_list p;
489 rtx *vector;
491 VA_START (p, n);
493 #ifndef ANSI_PROTOTYPES
494 n = va_arg (p, int);
495 #endif
497 if (n == 0)
498 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
500 vector = (rtx *) alloca (n * sizeof (rtx));
502 for (i = 0; i < n; i++)
503 vector[i] = va_arg (p, rtx);
504 va_end (p);
506 return gen_rtvec_v (n, vector);
509 rtvec
510 gen_rtvec_v (n, argp)
511 int n;
512 rtx *argp;
514 register int i;
515 register rtvec rt_val;
517 if (n == 0)
518 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
520 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
522 for (i = 0; i < n; i++)
523 rt_val->elem[i] = *argp++;
525 return rt_val;
529 /* Generate a REG rtx for a new pseudo register of mode MODE.
530 This pseudo is assigned the next sequential register number. */
533 gen_reg_rtx (mode)
534 enum machine_mode mode;
536 struct function *f = cfun;
537 register rtx val;
539 /* Don't let anything called after initial flow analysis create new
540 registers. */
541 if (no_new_pseudos)
542 abort ();
544 if (generating_concat_p
545 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
546 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
548 /* For complex modes, don't make a single pseudo.
549 Instead, make a CONCAT of two pseudos.
550 This allows noncontiguous allocation of the real and imaginary parts,
551 which makes much better code. Besides, allocating DCmode
552 pseudos overstrains reload on some machines like the 386. */
553 rtx realpart, imagpart;
554 int size = GET_MODE_UNIT_SIZE (mode);
555 enum machine_mode partmode
556 = mode_for_size (size * BITS_PER_UNIT,
557 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
558 ? MODE_FLOAT : MODE_INT),
561 realpart = gen_reg_rtx (partmode);
562 imagpart = gen_reg_rtx (partmode);
563 return gen_rtx_CONCAT (mode, realpart, imagpart);
566 /* Make sure regno_pointer_align and regno_reg_rtx are large enough
567 to have an element for this pseudo reg number. */
569 if (reg_rtx_no == f->emit->regno_pointer_align_length)
571 int old_size = f->emit->regno_pointer_align_length;
572 rtx *new1;
573 char *new;
574 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
575 memset (new + old_size, 0, old_size);
576 f->emit->regno_pointer_align = (unsigned char *) new;
578 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
579 old_size * 2 * sizeof (rtx));
580 memset (new1 + old_size, 0, old_size * sizeof (rtx));
581 regno_reg_rtx = new1;
583 f->emit->regno_pointer_align_length = old_size * 2;
586 val = gen_raw_REG (mode, reg_rtx_no);
587 regno_reg_rtx[reg_rtx_no++] = val;
588 return val;
591 /* Identify REG (which may be a CONCAT) as a user register. */
593 void
594 mark_user_reg (reg)
595 rtx reg;
597 if (GET_CODE (reg) == CONCAT)
599 REG_USERVAR_P (XEXP (reg, 0)) = 1;
600 REG_USERVAR_P (XEXP (reg, 1)) = 1;
602 else if (GET_CODE (reg) == REG)
603 REG_USERVAR_P (reg) = 1;
604 else
605 abort ();
608 /* Identify REG as a probable pointer register and show its alignment
609 as ALIGN, if nonzero. */
611 void
612 mark_reg_pointer (reg, align)
613 rtx reg;
614 int align;
616 if (! REG_POINTER (reg))
618 REG_POINTER (reg) = 1;
620 if (align)
621 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
623 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
624 /* We can no-longer be sure just how aligned this pointer is */
625 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
628 /* Return 1 plus largest pseudo reg number used in the current function. */
631 max_reg_num ()
633 return reg_rtx_no;
636 /* Return 1 + the largest label number used so far in the current function. */
639 max_label_num ()
641 if (last_label_num && label_num == base_label_num)
642 return last_label_num;
643 return label_num;
646 /* Return first label number used in this function (if any were used). */
649 get_first_label_num ()
651 return first_label_num;
654 /* Return a value representing some low-order bits of X, where the number
655 of low-order bits is given by MODE. Note that no conversion is done
656 between floating-point and fixed-point values, rather, the bit
657 representation is returned.
659 This function handles the cases in common between gen_lowpart, below,
660 and two variants in cse.c and combine.c. These are the cases that can
661 be safely handled at all points in the compilation.
663 If this is not a case we can handle, return 0. */
666 gen_lowpart_common (mode, x)
667 enum machine_mode mode;
668 register rtx x;
670 int word = 0;
672 if (GET_MODE (x) == mode)
673 return x;
675 /* MODE must occupy no more words than the mode of X. */
676 if (GET_MODE (x) != VOIDmode
677 && ((GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
678 > ((GET_MODE_SIZE (GET_MODE (x)) + (UNITS_PER_WORD - 1))
679 / UNITS_PER_WORD)))
680 return 0;
682 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
683 word = ((GET_MODE_SIZE (GET_MODE (x))
684 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
685 / UNITS_PER_WORD);
687 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
688 && (GET_MODE_CLASS (mode) == MODE_INT
689 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
691 /* If we are getting the low-order part of something that has been
692 sign- or zero-extended, we can either just use the object being
693 extended or make a narrower extension. If we want an even smaller
694 piece than the size of the object being extended, call ourselves
695 recursively.
697 This case is used mostly by combine and cse. */
699 if (GET_MODE (XEXP (x, 0)) == mode)
700 return XEXP (x, 0);
701 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
702 return gen_lowpart_common (mode, XEXP (x, 0));
703 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
704 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
706 else if (GET_CODE (x) == SUBREG
707 && (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
708 || GET_MODE_SIZE (mode) <= UNITS_PER_WORD
709 || GET_MODE_SIZE (mode) == GET_MODE_UNIT_SIZE (GET_MODE (x))))
710 return (GET_MODE (SUBREG_REG (x)) == mode && SUBREG_WORD (x) == 0
711 ? SUBREG_REG (x)
712 : gen_rtx_SUBREG (mode, SUBREG_REG (x), SUBREG_WORD (x) + word));
713 else if (GET_CODE (x) == REG)
715 /* Let the backend decide how many registers to skip. This is needed
716 in particular for Sparc64 where fp regs are smaller than a word. */
717 /* ??? Note that subregs are now ambiguous, in that those against
718 pseudos are sized by the Word Size, while those against hard
719 regs are sized by the underlying register size. Better would be
720 to always interpret the subreg offset parameter as bytes or bits. */
722 if (WORDS_BIG_ENDIAN && REGNO (x) < FIRST_PSEUDO_REGISTER
723 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
724 word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
725 - HARD_REGNO_NREGS (REGNO (x), mode));
727 /* If the register is not valid for MODE, return 0. If we don't
728 do this, there is no way to fix up the resulting REG later.
729 But we do do this if the current REG is not valid for its
730 mode. This latter is a kludge, but is required due to the
731 way that parameters are passed on some machines, most
732 notably Sparc. */
733 if (REGNO (x) < FIRST_PSEUDO_REGISTER
734 && ! HARD_REGNO_MODE_OK (REGNO (x) + word, mode)
735 && HARD_REGNO_MODE_OK (REGNO (x), GET_MODE (x)))
736 return 0;
737 else if (REGNO (x) < FIRST_PSEUDO_REGISTER
738 /* integrate.c can't handle parts of a return value register. */
739 && (! REG_FUNCTION_VALUE_P (x)
740 || ! rtx_equal_function_value_matters)
741 #ifdef CLASS_CANNOT_CHANGE_MODE
742 && ! (CLASS_CANNOT_CHANGE_MODE_P (mode, GET_MODE (x))
743 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_INT
744 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_FLOAT
745 && (TEST_HARD_REG_BIT
746 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
747 REGNO (x))))
748 #endif
749 /* We want to keep the stack, frame, and arg pointers
750 special. */
751 && x != frame_pointer_rtx
752 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
753 && x != arg_pointer_rtx
754 #endif
755 && x != stack_pointer_rtx)
756 return gen_rtx_REG (mode, REGNO (x) + word);
757 else
758 return gen_rtx_SUBREG (mode, x, word);
760 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
761 from the low-order part of the constant. */
762 else if ((GET_MODE_CLASS (mode) == MODE_INT
763 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
764 && GET_MODE (x) == VOIDmode
765 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
767 /* If MODE is twice the host word size, X is already the desired
768 representation. Otherwise, if MODE is wider than a word, we can't
769 do this. If MODE is exactly a word, return just one CONST_INT. */
771 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
772 return x;
773 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
774 return 0;
775 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
776 return (GET_CODE (x) == CONST_INT ? x
777 : GEN_INT (CONST_DOUBLE_LOW (x)));
778 else
780 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
781 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
782 : CONST_DOUBLE_LOW (x));
784 /* Sign extend to HOST_WIDE_INT. */
785 val = trunc_int_for_mode (val, mode);
787 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
788 : GEN_INT (val));
792 #ifndef REAL_ARITHMETIC
793 /* If X is an integral constant but we want it in floating-point, it
794 must be the case that we have a union of an integer and a floating-point
795 value. If the machine-parameters allow it, simulate that union here
796 and return the result. The two-word and single-word cases are
797 different. */
799 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
800 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
801 || flag_pretend_float)
802 && GET_MODE_CLASS (mode) == MODE_FLOAT
803 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
804 && GET_CODE (x) == CONST_INT
805 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
807 union {HOST_WIDE_INT i; float d; } u;
809 u.i = INTVAL (x);
810 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
812 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
813 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
814 || flag_pretend_float)
815 && GET_MODE_CLASS (mode) == MODE_FLOAT
816 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
817 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
818 && GET_MODE (x) == VOIDmode
819 && (sizeof (double) * HOST_BITS_PER_CHAR
820 == 2 * HOST_BITS_PER_WIDE_INT))
822 union {HOST_WIDE_INT i[2]; double d; } u;
823 HOST_WIDE_INT low, high;
825 if (GET_CODE (x) == CONST_INT)
826 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
827 else
828 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
830 #ifdef HOST_WORDS_BIG_ENDIAN
831 u.i[0] = high, u.i[1] = low;
832 #else
833 u.i[0] = low, u.i[1] = high;
834 #endif
836 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
839 /* Similarly, if this is converting a floating-point value into a
840 single-word integer. Only do this is the host and target parameters are
841 compatible. */
843 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
844 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
845 || flag_pretend_float)
846 && (GET_MODE_CLASS (mode) == MODE_INT
847 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
848 && GET_CODE (x) == CONST_DOUBLE
849 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
850 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
851 return operand_subword (x, word, 0, GET_MODE (x));
853 /* Similarly, if this is converting a floating-point value into a
854 two-word integer, we can do this one word at a time and make an
855 integer. Only do this is the host and target parameters are
856 compatible. */
858 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
859 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
860 || flag_pretend_float)
861 && (GET_MODE_CLASS (mode) == MODE_INT
862 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
863 && GET_CODE (x) == CONST_DOUBLE
864 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
865 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
867 rtx lowpart
868 = operand_subword (x, word + WORDS_BIG_ENDIAN, 0, GET_MODE (x));
869 rtx highpart
870 = operand_subword (x, word + ! WORDS_BIG_ENDIAN, 0, GET_MODE (x));
872 if (lowpart && GET_CODE (lowpart) == CONST_INT
873 && highpart && GET_CODE (highpart) == CONST_INT)
874 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
876 #else /* ifndef REAL_ARITHMETIC */
878 /* When we have a FP emulator, we can handle all conversions between
879 FP and integer operands. This simplifies reload because it
880 doesn't have to deal with constructs like (subreg:DI
881 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
883 else if (mode == SFmode
884 && GET_CODE (x) == CONST_INT)
886 REAL_VALUE_TYPE r;
887 HOST_WIDE_INT i;
889 i = INTVAL (x);
890 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
891 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
893 else if (mode == DFmode
894 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
895 && GET_MODE (x) == VOIDmode)
897 REAL_VALUE_TYPE r;
898 HOST_WIDE_INT i[2];
899 HOST_WIDE_INT low, high;
901 if (GET_CODE (x) == CONST_INT)
903 low = INTVAL (x);
904 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
906 else
908 low = CONST_DOUBLE_LOW (x);
909 high = CONST_DOUBLE_HIGH (x);
912 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
913 target machine. */
914 if (WORDS_BIG_ENDIAN)
915 i[0] = high, i[1] = low;
916 else
917 i[0] = low, i[1] = high;
919 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
920 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
922 else if ((GET_MODE_CLASS (mode) == MODE_INT
923 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
924 && GET_CODE (x) == CONST_DOUBLE
925 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
927 REAL_VALUE_TYPE r;
928 long i[4]; /* Only the low 32 bits of each 'long' are used. */
929 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
931 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
932 switch (GET_MODE (x))
934 case SFmode:
935 REAL_VALUE_TO_TARGET_SINGLE (r, i[endian]);
936 i[1 - endian] = 0;
937 break;
938 case DFmode:
939 REAL_VALUE_TO_TARGET_DOUBLE (r, i);
940 break;
941 #if LONG_DOUBLE_TYPE_SIZE == 96
942 case XFmode:
943 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
944 i[3-3*endian] = 0;
945 #else
946 case TFmode:
947 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
948 #endif
949 break;
950 default:
951 abort ();
954 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
955 and return it. */
956 #if HOST_BITS_PER_WIDE_INT == 32
957 return immed_double_const (i[endian], i[1 - endian], mode);
958 #else
960 int c;
962 if (HOST_BITS_PER_WIDE_INT != 64)
963 abort ();
965 for (c = 0; c < 4; c++)
966 i[c] &= ~ (0L);
968 switch (GET_MODE (x))
970 case SFmode:
971 case DFmode:
972 return immed_double_const (((unsigned long) i[endian]) |
973 (((HOST_WIDE_INT) i[1-endian]) << 32),
974 0, mode);
975 default:
976 return immed_double_const (((unsigned long) i[endian*3]) |
977 (((HOST_WIDE_INT) i[1+endian]) << 32),
978 ((unsigned long) i[2-endian]) |
979 (((HOST_WIDE_INT) i[3-endian*3]) << 32),
980 mode);
983 #endif
985 #endif /* ifndef REAL_ARITHMETIC */
987 /* Otherwise, we can't do this. */
988 return 0;
991 /* Return the real part (which has mode MODE) of a complex value X.
992 This always comes at the low address in memory. */
995 gen_realpart (mode, x)
996 enum machine_mode mode;
997 register rtx x;
999 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
1000 return XEXP (x, 0);
1001 else if (WORDS_BIG_ENDIAN
1002 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1003 && REG_P (x)
1004 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1005 fatal ("Unable to access real part of complex value in a hard register on this target");
1006 else if (WORDS_BIG_ENDIAN)
1007 return gen_highpart (mode, x);
1008 else
1009 return gen_lowpart (mode, x);
1012 /* Return the imaginary part (which has mode MODE) of a complex value X.
1013 This always comes at the high address in memory. */
1016 gen_imagpart (mode, x)
1017 enum machine_mode mode;
1018 register rtx x;
1020 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
1021 return XEXP (x, 1);
1022 else if (WORDS_BIG_ENDIAN)
1023 return gen_lowpart (mode, x);
1024 else if (!WORDS_BIG_ENDIAN
1025 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1026 && REG_P (x)
1027 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1028 fatal ("Unable to access imaginary part of complex value in a hard register on this target");
1029 else
1030 return gen_highpart (mode, x);
1033 /* Return 1 iff X, assumed to be a SUBREG,
1034 refers to the real part of the complex value in its containing reg.
1035 Complex values are always stored with the real part in the first word,
1036 regardless of WORDS_BIG_ENDIAN. */
1039 subreg_realpart_p (x)
1040 rtx x;
1042 if (GET_CODE (x) != SUBREG)
1043 abort ();
1045 return ((unsigned int) SUBREG_WORD (x) * UNITS_PER_WORD
1046 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1049 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1050 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1051 least-significant part of X.
1052 MODE specifies how big a part of X to return;
1053 it usually should not be larger than a word.
1054 If X is a MEM whose address is a QUEUED, the value may be so also. */
1057 gen_lowpart (mode, x)
1058 enum machine_mode mode;
1059 register rtx x;
1061 rtx result = gen_lowpart_common (mode, x);
1063 if (result)
1064 return result;
1065 else if (GET_CODE (x) == REG)
1067 /* Must be a hard reg that's not valid in MODE. */
1068 result = gen_lowpart_common (mode, copy_to_reg (x));
1069 if (result == 0)
1070 abort ();
1071 return result;
1073 else if (GET_CODE (x) == MEM)
1075 /* The only additional case we can do is MEM. */
1076 register int offset = 0;
1077 if (WORDS_BIG_ENDIAN)
1078 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1079 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1081 if (BYTES_BIG_ENDIAN)
1082 /* Adjust the address so that the address-after-the-data
1083 is unchanged. */
1084 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1085 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1087 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1089 else if (GET_CODE (x) == ADDRESSOF)
1090 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1091 else
1092 abort ();
1095 /* Like `gen_lowpart', but refer to the most significant part.
1096 This is used to access the imaginary part of a complex number. */
1099 gen_highpart (mode, x)
1100 enum machine_mode mode;
1101 register rtx x;
1103 /* This case loses if X is a subreg. To catch bugs early,
1104 complain if an invalid MODE is used even in other cases. */
1105 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
1106 && GET_MODE_SIZE (mode) != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1107 abort ();
1108 if (GET_CODE (x) == CONST_DOUBLE
1109 #if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
1110 && GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT
1111 #endif
1113 return GEN_INT (CONST_DOUBLE_HIGH (x) & GET_MODE_MASK (mode));
1114 else if (GET_CODE (x) == CONST_INT)
1116 if (HOST_BITS_PER_WIDE_INT <= BITS_PER_WORD)
1117 return const0_rtx;
1118 return GEN_INT (INTVAL (x) >> (HOST_BITS_PER_WIDE_INT - BITS_PER_WORD));
1120 else if (GET_CODE (x) == MEM)
1122 register int offset = 0;
1123 if (! WORDS_BIG_ENDIAN)
1124 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1125 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1127 if (! BYTES_BIG_ENDIAN
1128 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
1129 offset -= (GET_MODE_SIZE (mode)
1130 - MIN (UNITS_PER_WORD,
1131 GET_MODE_SIZE (GET_MODE (x))));
1133 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1135 else if (GET_CODE (x) == SUBREG)
1137 /* The only time this should occur is when we are looking at a
1138 multi-word item with a SUBREG whose mode is the same as that of the
1139 item. It isn't clear what we would do if it wasn't. */
1140 if (SUBREG_WORD (x) != 0)
1141 abort ();
1142 return gen_highpart (mode, SUBREG_REG (x));
1144 else if (GET_CODE (x) == REG)
1146 int word;
1148 /* Let the backend decide how many registers to skip. This is needed
1149 in particular for sparc64 where fp regs are smaller than a word. */
1150 /* ??? Note that subregs are now ambiguous, in that those against
1151 pseudos are sized by the word size, while those against hard
1152 regs are sized by the underlying register size. Better would be
1153 to always interpret the subreg offset parameter as bytes or bits. */
1155 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
1156 abort ();
1157 else if (WORDS_BIG_ENDIAN)
1158 word = 0;
1159 else if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1160 word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
1161 - HARD_REGNO_NREGS (REGNO (x), mode));
1162 else
1163 word = ((GET_MODE_SIZE (GET_MODE (x))
1164 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1165 / UNITS_PER_WORD);
1167 if (REGNO (x) < FIRST_PSEUDO_REGISTER
1168 /* integrate.c can't handle parts of a return value register. */
1169 && (! REG_FUNCTION_VALUE_P (x)
1170 || ! rtx_equal_function_value_matters)
1171 /* We want to keep the stack, frame, and arg pointers special. */
1172 && x != frame_pointer_rtx
1173 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1174 && x != arg_pointer_rtx
1175 #endif
1176 && x != stack_pointer_rtx)
1177 return gen_rtx_REG (mode, REGNO (x) + word);
1178 else
1179 return gen_rtx_SUBREG (mode, x, word);
1181 else
1182 abort ();
1185 /* Return 1 iff X, assumed to be a SUBREG,
1186 refers to the least significant part of its containing reg.
1187 If X is not a SUBREG, always return 1 (it is its own low part!). */
1190 subreg_lowpart_p (x)
1191 rtx x;
1193 if (GET_CODE (x) != SUBREG)
1194 return 1;
1195 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1196 return 0;
1198 if (WORDS_BIG_ENDIAN
1199 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD)
1200 return (SUBREG_WORD (x)
1201 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
1202 - MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD))
1203 / UNITS_PER_WORD));
1205 return SUBREG_WORD (x) == 0;
1208 /* Return subword I of operand OP.
1209 The word number, I, is interpreted as the word number starting at the
1210 low-order address. Word 0 is the low-order word if not WORDS_BIG_ENDIAN,
1211 otherwise it is the high-order word.
1213 If we cannot extract the required word, we return zero. Otherwise, an
1214 rtx corresponding to the requested word will be returned.
1216 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1217 reload has completed, a valid address will always be returned. After
1218 reload, if a valid address cannot be returned, we return zero.
1220 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1221 it is the responsibility of the caller.
1223 MODE is the mode of OP in case it is a CONST_INT. */
1226 operand_subword (op, i, validate_address, mode)
1227 rtx op;
1228 unsigned int i;
1229 int validate_address;
1230 enum machine_mode mode;
1232 HOST_WIDE_INT val;
1233 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1235 if (mode == VOIDmode)
1236 mode = GET_MODE (op);
1238 if (mode == VOIDmode)
1239 abort ();
1241 /* If OP is narrower than a word, fail. */
1242 if (mode != BLKmode
1243 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1244 return 0;
1246 /* If we want a word outside OP, return zero. */
1247 if (mode != BLKmode
1248 && (i + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1249 return const0_rtx;
1251 /* If OP is already an integer word, return it. */
1252 if (GET_MODE_CLASS (mode) == MODE_INT
1253 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1254 return op;
1256 /* If OP is a REG or SUBREG, we can handle it very simply. */
1257 if (GET_CODE (op) == REG)
1259 /* ??? There is a potential problem with this code. It does not
1260 properly handle extractions of a subword from a hard register
1261 that is larger than word_mode. Presumably the check for
1262 HARD_REGNO_MODE_OK catches these most of these cases. */
1264 /* If OP is a hard register, but OP + I is not a hard register,
1265 then extracting a subword is impossible.
1267 For example, consider if OP is the last hard register and it is
1268 larger than word_mode. If we wanted word N (for N > 0) because a
1269 part of that hard register was known to contain a useful value,
1270 then OP + I would refer to a pseudo, not the hard register we
1271 actually wanted. */
1272 if (REGNO (op) < FIRST_PSEUDO_REGISTER
1273 && REGNO (op) + i >= FIRST_PSEUDO_REGISTER)
1274 return 0;
1276 /* If the register is not valid for MODE, return 0. Note we
1277 have to check both OP and OP + I since they may refer to
1278 different parts of the register file.
1280 Consider if OP refers to the last 96bit FP register and we want
1281 subword 3 because that subword is known to contain a value we
1282 needed. */
1283 if (REGNO (op) < FIRST_PSEUDO_REGISTER
1284 && (! HARD_REGNO_MODE_OK (REGNO (op), word_mode)
1285 || ! HARD_REGNO_MODE_OK (REGNO (op) + i, word_mode)))
1286 return 0;
1287 else if (REGNO (op) >= FIRST_PSEUDO_REGISTER
1288 || (REG_FUNCTION_VALUE_P (op)
1289 && rtx_equal_function_value_matters)
1290 /* We want to keep the stack, frame, and arg pointers
1291 special. */
1292 || op == frame_pointer_rtx
1293 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1294 || op == arg_pointer_rtx
1295 #endif
1296 || op == stack_pointer_rtx)
1297 return gen_rtx_SUBREG (word_mode, op, i);
1298 else
1299 return gen_rtx_REG (word_mode, REGNO (op) + i);
1301 else if (GET_CODE (op) == SUBREG)
1302 return gen_rtx_SUBREG (word_mode, SUBREG_REG (op), i + SUBREG_WORD (op));
1303 else if (GET_CODE (op) == CONCAT)
1305 unsigned int partwords
1306 = GET_MODE_UNIT_SIZE (GET_MODE (op)) / UNITS_PER_WORD;
1308 if (i < partwords)
1309 return operand_subword (XEXP (op, 0), i, validate_address, mode);
1310 return operand_subword (XEXP (op, 1), i - partwords,
1311 validate_address, mode);
1314 /* Form a new MEM at the requested address. */
1315 if (GET_CODE (op) == MEM)
1317 rtx addr = plus_constant (XEXP (op, 0), i * UNITS_PER_WORD);
1318 rtx new;
1320 if (validate_address)
1322 if (reload_completed)
1324 if (! strict_memory_address_p (word_mode, addr))
1325 return 0;
1327 else
1328 addr = memory_address (word_mode, addr);
1331 new = gen_rtx_MEM (word_mode, addr);
1332 MEM_COPY_ATTRIBUTES (new, op);
1333 return new;
1336 /* The only remaining cases are when OP is a constant. If the host and
1337 target floating formats are the same, handling two-word floating
1338 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
1339 are defined as returning one or two 32 bit values, respectively,
1340 and not values of BITS_PER_WORD bits. */
1341 #ifdef REAL_ARITHMETIC
1342 /* The output is some bits, the width of the target machine's word.
1343 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1344 host can't. */
1345 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1346 && GET_MODE_CLASS (mode) == MODE_FLOAT
1347 && GET_MODE_BITSIZE (mode) == 64
1348 && GET_CODE (op) == CONST_DOUBLE)
1350 long k[2];
1351 REAL_VALUE_TYPE rv;
1353 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1354 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1356 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1357 which the words are written depends on the word endianness.
1358 ??? This is a potential portability problem and should
1359 be fixed at some point.
1361 We must excercise caution with the sign bit. By definition there
1362 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1363 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1364 So we explicitly mask and sign-extend as necessary. */
1365 if (BITS_PER_WORD == 32)
1367 val = k[i];
1368 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1369 return GEN_INT (val);
1371 #if HOST_BITS_PER_WIDE_INT >= 64
1372 else if (BITS_PER_WORD >= 64 && i == 0)
1374 val = k[! WORDS_BIG_ENDIAN];
1375 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1376 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1377 return GEN_INT (val);
1379 #endif
1380 else if (BITS_PER_WORD == 16)
1382 val = k[i >> 1];
1383 if ((i & 1) == !WORDS_BIG_ENDIAN)
1384 val >>= 16;
1385 val &= 0xffff;
1386 return GEN_INT (val);
1388 else
1389 abort ();
1391 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1392 && GET_MODE_CLASS (mode) == MODE_FLOAT
1393 && GET_MODE_BITSIZE (mode) > 64
1394 && GET_CODE (op) == CONST_DOUBLE)
1396 long k[4];
1397 REAL_VALUE_TYPE rv;
1399 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1400 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1402 if (BITS_PER_WORD == 32)
1404 val = k[i];
1405 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1406 return GEN_INT (val);
1408 #if HOST_BITS_PER_WIDE_INT >= 64
1409 else if (BITS_PER_WORD >= 64 && i <= 1)
1411 val = k[i*2 + ! WORDS_BIG_ENDIAN];
1412 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1413 val |= (HOST_WIDE_INT) k[i*2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1414 return GEN_INT (val);
1416 #endif
1417 else
1418 abort ();
1420 #else /* no REAL_ARITHMETIC */
1421 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1422 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1423 || flag_pretend_float)
1424 && GET_MODE_CLASS (mode) == MODE_FLOAT
1425 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1426 && GET_CODE (op) == CONST_DOUBLE)
1428 /* The constant is stored in the host's word-ordering,
1429 but we want to access it in the target's word-ordering. Some
1430 compilers don't like a conditional inside macro args, so we have two
1431 copies of the return. */
1432 #ifdef HOST_WORDS_BIG_ENDIAN
1433 return GEN_INT (i == WORDS_BIG_ENDIAN
1434 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1435 #else
1436 return GEN_INT (i != WORDS_BIG_ENDIAN
1437 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1438 #endif
1440 #endif /* no REAL_ARITHMETIC */
1442 /* Single word float is a little harder, since single- and double-word
1443 values often do not have the same high-order bits. We have already
1444 verified that we want the only defined word of the single-word value. */
1445 #ifdef REAL_ARITHMETIC
1446 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1447 && GET_MODE_BITSIZE (mode) == 32
1448 && GET_CODE (op) == CONST_DOUBLE)
1450 long l;
1451 REAL_VALUE_TYPE rv;
1453 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1454 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1456 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1457 val = l;
1458 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1460 if (BITS_PER_WORD == 16)
1462 if ((i & 1) == !WORDS_BIG_ENDIAN)
1463 val >>= 16;
1464 val &= 0xffff;
1467 return GEN_INT (val);
1469 #else
1470 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1471 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1472 || flag_pretend_float)
1473 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1474 && GET_MODE_CLASS (mode) == MODE_FLOAT
1475 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1476 && GET_CODE (op) == CONST_DOUBLE)
1478 double d;
1479 union {float f; HOST_WIDE_INT i; } u;
1481 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1483 u.f = d;
1484 return GEN_INT (u.i);
1486 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1487 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1488 || flag_pretend_float)
1489 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1490 && GET_MODE_CLASS (mode) == MODE_FLOAT
1491 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1492 && GET_CODE (op) == CONST_DOUBLE)
1494 double d;
1495 union {double d; HOST_WIDE_INT i; } u;
1497 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1499 u.d = d;
1500 return GEN_INT (u.i);
1502 #endif /* no REAL_ARITHMETIC */
1504 /* The only remaining cases that we can handle are integers.
1505 Convert to proper endianness now since these cases need it.
1506 At this point, i == 0 means the low-order word.
1508 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1509 in general. However, if OP is (const_int 0), we can just return
1510 it for any word. */
1512 if (op == const0_rtx)
1513 return op;
1515 if (GET_MODE_CLASS (mode) != MODE_INT
1516 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1517 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1518 return 0;
1520 if (WORDS_BIG_ENDIAN)
1521 i = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - i;
1523 /* Find out which word on the host machine this value is in and get
1524 it from the constant. */
1525 val = (i / size_ratio == 0
1526 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1527 : (GET_CODE (op) == CONST_INT
1528 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1530 /* Get the value we want into the low bits of val. */
1531 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1532 val = ((val >> ((i % size_ratio) * BITS_PER_WORD)));
1534 val = trunc_int_for_mode (val, word_mode);
1536 return GEN_INT (val);
1539 /* Similar to `operand_subword', but never return 0. If we can't extract
1540 the required subword, put OP into a register and try again. If that fails,
1541 abort. We always validate the address in this case. It is not valid
1542 to call this function after reload; it is mostly meant for RTL
1543 generation.
1545 MODE is the mode of OP, in case it is CONST_INT. */
1548 operand_subword_force (op, i, mode)
1549 rtx op;
1550 unsigned int i;
1551 enum machine_mode mode;
1553 rtx result = operand_subword (op, i, 1, mode);
1555 if (result)
1556 return result;
1558 if (mode != BLKmode && mode != VOIDmode)
1560 /* If this is a register which can not be accessed by words, copy it
1561 to a pseudo register. */
1562 if (GET_CODE (op) == REG)
1563 op = copy_to_reg (op);
1564 else
1565 op = force_reg (mode, op);
1568 result = operand_subword (op, i, 1, mode);
1569 if (result == 0)
1570 abort ();
1572 return result;
1575 /* Given a compare instruction, swap the operands.
1576 A test instruction is changed into a compare of 0 against the operand. */
1578 void
1579 reverse_comparison (insn)
1580 rtx insn;
1582 rtx body = PATTERN (insn);
1583 rtx comp;
1585 if (GET_CODE (body) == SET)
1586 comp = SET_SRC (body);
1587 else
1588 comp = SET_SRC (XVECEXP (body, 0, 0));
1590 if (GET_CODE (comp) == COMPARE)
1592 rtx op0 = XEXP (comp, 0);
1593 rtx op1 = XEXP (comp, 1);
1594 XEXP (comp, 0) = op1;
1595 XEXP (comp, 1) = op0;
1597 else
1599 rtx new = gen_rtx_COMPARE (VOIDmode,
1600 CONST0_RTX (GET_MODE (comp)), comp);
1601 if (GET_CODE (body) == SET)
1602 SET_SRC (body) = new;
1603 else
1604 SET_SRC (XVECEXP (body, 0, 0)) = new;
1608 /* Return a memory reference like MEMREF, but with its mode changed
1609 to MODE and its address changed to ADDR.
1610 (VOIDmode means don't change the mode.
1611 NULL for ADDR means don't change the address.) */
1614 change_address (memref, mode, addr)
1615 rtx memref;
1616 enum machine_mode mode;
1617 rtx addr;
1619 rtx new;
1621 if (GET_CODE (memref) != MEM)
1622 abort ();
1623 if (mode == VOIDmode)
1624 mode = GET_MODE (memref);
1625 if (addr == 0)
1626 addr = XEXP (memref, 0);
1628 /* If reload is in progress or has completed, ADDR must be valid.
1629 Otherwise, we can call memory_address to make it valid. */
1630 if (reload_completed || reload_in_progress)
1632 if (! memory_address_p (mode, addr))
1633 abort ();
1635 else
1636 addr = memory_address (mode, addr);
1638 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1639 return memref;
1641 new = gen_rtx_MEM (mode, addr);
1642 MEM_COPY_ATTRIBUTES (new, memref);
1643 return new;
1646 /* Return a newly created CODE_LABEL rtx with a unique label number. */
1649 gen_label_rtx ()
1651 register rtx label;
1653 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
1654 NULL_RTX, label_num++, NULL_PTR, NULL_PTR);
1656 LABEL_NUSES (label) = 0;
1657 LABEL_ALTERNATE_NAME (label) = NULL;
1658 return label;
1661 /* For procedure integration. */
1663 /* Install new pointers to the first and last insns in the chain.
1664 Also, set cur_insn_uid to one higher than the last in use.
1665 Used for an inline-procedure after copying the insn chain. */
1667 void
1668 set_new_first_and_last_insn (first, last)
1669 rtx first, last;
1671 rtx insn;
1673 first_insn = first;
1674 last_insn = last;
1675 cur_insn_uid = 0;
1677 for (insn = first; insn; insn = NEXT_INSN (insn))
1678 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1680 cur_insn_uid++;
1683 /* Set the range of label numbers found in the current function.
1684 This is used when belatedly compiling an inline function. */
1686 void
1687 set_new_first_and_last_label_num (first, last)
1688 int first, last;
1690 base_label_num = label_num;
1691 first_label_num = first;
1692 last_label_num = last;
1695 /* Set the last label number found in the current function.
1696 This is used when belatedly compiling an inline function. */
1698 void
1699 set_new_last_label_num (last)
1700 int last;
1702 base_label_num = label_num;
1703 last_label_num = last;
1706 /* Restore all variables describing the current status from the structure *P.
1707 This is used after a nested function. */
1709 void
1710 restore_emit_status (p)
1711 struct function *p ATTRIBUTE_UNUSED;
1713 last_label_num = 0;
1714 clear_emit_caches ();
1717 /* Clear out all parts of the state in F that can safely be discarded
1718 after the function has been compiled, to let garbage collection
1719 reclaim the memory. */
1721 void
1722 free_emit_status (f)
1723 struct function *f;
1725 free (f->emit->x_regno_reg_rtx);
1726 free (f->emit->regno_pointer_align);
1727 free (f->emit);
1728 f->emit = NULL;
1731 /* Go through all the RTL insn bodies and copy any invalid shared
1732 structure. This routine should only be called once. */
1734 void
1735 unshare_all_rtl (fndecl, insn)
1736 tree fndecl;
1737 rtx insn;
1739 tree decl;
1741 /* Make sure that virtual parameters are not shared. */
1742 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1743 DECL_RTL (decl) = copy_rtx_if_shared (DECL_RTL (decl));
1745 /* Make sure that virtual stack slots are not shared. */
1746 unshare_all_decls (DECL_INITIAL (fndecl));
1748 /* Unshare just about everything else. */
1749 unshare_all_rtl_1 (insn);
1751 /* Make sure the addresses of stack slots found outside the insn chain
1752 (such as, in DECL_RTL of a variable) are not shared
1753 with the insn chain.
1755 This special care is necessary when the stack slot MEM does not
1756 actually appear in the insn chain. If it does appear, its address
1757 is unshared from all else at that point. */
1758 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
1761 /* Go through all the RTL insn bodies and copy any invalid shared
1762 structure, again. This is a fairly expensive thing to do so it
1763 should be done sparingly. */
1765 void
1766 unshare_all_rtl_again (insn)
1767 rtx insn;
1769 rtx p;
1770 tree decl;
1772 for (p = insn; p; p = NEXT_INSN (p))
1773 if (INSN_P (p))
1775 reset_used_flags (PATTERN (p));
1776 reset_used_flags (REG_NOTES (p));
1777 reset_used_flags (LOG_LINKS (p));
1780 /* Make sure that virtual stack slots are not shared. */
1781 reset_used_decls (DECL_INITIAL (cfun->decl));
1783 /* Make sure that virtual parameters are not shared. */
1784 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
1785 reset_used_flags (DECL_RTL (decl));
1787 reset_used_flags (stack_slot_list);
1789 unshare_all_rtl (cfun->decl, insn);
1792 /* Go through all the RTL insn bodies and copy any invalid shared structure.
1793 Assumes the mark bits are cleared at entry. */
1795 static void
1796 unshare_all_rtl_1 (insn)
1797 rtx insn;
1799 for (; insn; insn = NEXT_INSN (insn))
1800 if (INSN_P (insn))
1802 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
1803 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
1804 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
1808 /* Go through all virtual stack slots of a function and copy any
1809 shared structure. */
1810 static void
1811 unshare_all_decls (blk)
1812 tree blk;
1814 tree t;
1816 /* Copy shared decls. */
1817 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1818 DECL_RTL (t) = copy_rtx_if_shared (DECL_RTL (t));
1820 /* Now process sub-blocks. */
1821 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1822 unshare_all_decls (t);
1825 /* Go through all virtual stack slots of a function and mark them as
1826 not shared. */
1827 static void
1828 reset_used_decls (blk)
1829 tree blk;
1831 tree t;
1833 /* Mark decls. */
1834 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1835 reset_used_flags (DECL_RTL (t));
1837 /* Now process sub-blocks. */
1838 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1839 reset_used_decls (t);
1842 /* Mark ORIG as in use, and return a copy of it if it was already in use.
1843 Recursively does the same for subexpressions. */
1846 copy_rtx_if_shared (orig)
1847 rtx orig;
1849 register rtx x = orig;
1850 register int i;
1851 register enum rtx_code code;
1852 register const char *format_ptr;
1853 int copied = 0;
1855 if (x == 0)
1856 return 0;
1858 code = GET_CODE (x);
1860 /* These types may be freely shared. */
1862 switch (code)
1864 case REG:
1865 case QUEUED:
1866 case CONST_INT:
1867 case CONST_DOUBLE:
1868 case SYMBOL_REF:
1869 case CODE_LABEL:
1870 case PC:
1871 case CC0:
1872 case SCRATCH:
1873 /* SCRATCH must be shared because they represent distinct values. */
1874 return x;
1876 case CONST:
1877 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1878 a LABEL_REF, it isn't sharable. */
1879 if (GET_CODE (XEXP (x, 0)) == PLUS
1880 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1881 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1882 return x;
1883 break;
1885 case INSN:
1886 case JUMP_INSN:
1887 case CALL_INSN:
1888 case NOTE:
1889 case BARRIER:
1890 /* The chain of insns is not being copied. */
1891 return x;
1893 case MEM:
1894 /* A MEM is allowed to be shared if its address is constant.
1896 We used to allow sharing of MEMs which referenced
1897 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
1898 that can lose. instantiate_virtual_regs will not unshare
1899 the MEMs, and combine may change the structure of the address
1900 because it looks safe and profitable in one context, but
1901 in some other context it creates unrecognizable RTL. */
1902 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
1903 return x;
1905 break;
1907 default:
1908 break;
1911 /* This rtx may not be shared. If it has already been seen,
1912 replace it with a copy of itself. */
1914 if (x->used)
1916 register rtx copy;
1918 copy = rtx_alloc (code);
1919 memcpy (copy, x,
1920 (sizeof (*copy) - sizeof (copy->fld)
1921 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
1922 x = copy;
1923 copied = 1;
1925 x->used = 1;
1927 /* Now scan the subexpressions recursively.
1928 We can store any replaced subexpressions directly into X
1929 since we know X is not shared! Any vectors in X
1930 must be copied if X was copied. */
1932 format_ptr = GET_RTX_FORMAT (code);
1934 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1936 switch (*format_ptr++)
1938 case 'e':
1939 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
1940 break;
1942 case 'E':
1943 if (XVEC (x, i) != NULL)
1945 register int j;
1946 int len = XVECLEN (x, i);
1948 if (copied && len > 0)
1949 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
1950 for (j = 0; j < len; j++)
1951 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
1953 break;
1956 return x;
1959 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1960 to look for shared sub-parts. */
1962 void
1963 reset_used_flags (x)
1964 rtx x;
1966 register int i, j;
1967 register enum rtx_code code;
1968 register const char *format_ptr;
1970 if (x == 0)
1971 return;
1973 code = GET_CODE (x);
1975 /* These types may be freely shared so we needn't do any resetting
1976 for them. */
1978 switch (code)
1980 case REG:
1981 case QUEUED:
1982 case CONST_INT:
1983 case CONST_DOUBLE:
1984 case SYMBOL_REF:
1985 case CODE_LABEL:
1986 case PC:
1987 case CC0:
1988 return;
1990 case INSN:
1991 case JUMP_INSN:
1992 case CALL_INSN:
1993 case NOTE:
1994 case LABEL_REF:
1995 case BARRIER:
1996 /* The chain of insns is not being copied. */
1997 return;
1999 default:
2000 break;
2003 x->used = 0;
2005 format_ptr = GET_RTX_FORMAT (code);
2006 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2008 switch (*format_ptr++)
2010 case 'e':
2011 reset_used_flags (XEXP (x, i));
2012 break;
2014 case 'E':
2015 for (j = 0; j < XVECLEN (x, i); j++)
2016 reset_used_flags (XVECEXP (x, i, j));
2017 break;
2022 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2023 Return X or the rtx for the pseudo reg the value of X was copied into.
2024 OTHER must be valid as a SET_DEST. */
2027 make_safe_from (x, other)
2028 rtx x, other;
2030 while (1)
2031 switch (GET_CODE (other))
2033 case SUBREG:
2034 other = SUBREG_REG (other);
2035 break;
2036 case STRICT_LOW_PART:
2037 case SIGN_EXTEND:
2038 case ZERO_EXTEND:
2039 other = XEXP (other, 0);
2040 break;
2041 default:
2042 goto done;
2044 done:
2045 if ((GET_CODE (other) == MEM
2046 && ! CONSTANT_P (x)
2047 && GET_CODE (x) != REG
2048 && GET_CODE (x) != SUBREG)
2049 || (GET_CODE (other) == REG
2050 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2051 || reg_mentioned_p (other, x))))
2053 rtx temp = gen_reg_rtx (GET_MODE (x));
2054 emit_move_insn (temp, x);
2055 return temp;
2057 return x;
2060 /* Emission of insns (adding them to the doubly-linked list). */
2062 /* Return the first insn of the current sequence or current function. */
2065 get_insns ()
2067 return first_insn;
2070 /* Return the last insn emitted in current sequence or current function. */
2073 get_last_insn ()
2075 return last_insn;
2078 /* Specify a new insn as the last in the chain. */
2080 void
2081 set_last_insn (insn)
2082 rtx insn;
2084 if (NEXT_INSN (insn) != 0)
2085 abort ();
2086 last_insn = insn;
2089 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2092 get_last_insn_anywhere ()
2094 struct sequence_stack *stack;
2095 if (last_insn)
2096 return last_insn;
2097 for (stack = seq_stack; stack; stack = stack->next)
2098 if (stack->last != 0)
2099 return stack->last;
2100 return 0;
2103 /* Return a number larger than any instruction's uid in this function. */
2106 get_max_uid ()
2108 return cur_insn_uid;
2111 /* Renumber instructions so that no instruction UIDs are wasted. */
2113 void
2114 renumber_insns (stream)
2115 FILE *stream;
2117 rtx insn;
2119 /* If we're not supposed to renumber instructions, don't. */
2120 if (!flag_renumber_insns)
2121 return;
2123 /* If there aren't that many instructions, then it's not really
2124 worth renumbering them. */
2125 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2126 return;
2128 cur_insn_uid = 1;
2130 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2132 if (stream)
2133 fprintf (stream, "Renumbering insn %d to %d\n",
2134 INSN_UID (insn), cur_insn_uid);
2135 INSN_UID (insn) = cur_insn_uid++;
2139 /* Return the next insn. If it is a SEQUENCE, return the first insn
2140 of the sequence. */
2143 next_insn (insn)
2144 rtx insn;
2146 if (insn)
2148 insn = NEXT_INSN (insn);
2149 if (insn && GET_CODE (insn) == INSN
2150 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2151 insn = XVECEXP (PATTERN (insn), 0, 0);
2154 return insn;
2157 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2158 of the sequence. */
2161 previous_insn (insn)
2162 rtx insn;
2164 if (insn)
2166 insn = PREV_INSN (insn);
2167 if (insn && GET_CODE (insn) == INSN
2168 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2169 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2172 return insn;
2175 /* Return the next insn after INSN that is not a NOTE. This routine does not
2176 look inside SEQUENCEs. */
2179 next_nonnote_insn (insn)
2180 rtx insn;
2182 while (insn)
2184 insn = NEXT_INSN (insn);
2185 if (insn == 0 || GET_CODE (insn) != NOTE)
2186 break;
2189 return insn;
2192 /* Return the previous insn before INSN that is not a NOTE. This routine does
2193 not look inside SEQUENCEs. */
2196 prev_nonnote_insn (insn)
2197 rtx insn;
2199 while (insn)
2201 insn = PREV_INSN (insn);
2202 if (insn == 0 || GET_CODE (insn) != NOTE)
2203 break;
2206 return insn;
2209 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2210 or 0, if there is none. This routine does not look inside
2211 SEQUENCEs. */
2214 next_real_insn (insn)
2215 rtx insn;
2217 while (insn)
2219 insn = NEXT_INSN (insn);
2220 if (insn == 0 || GET_CODE (insn) == INSN
2221 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2222 break;
2225 return insn;
2228 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2229 or 0, if there is none. This routine does not look inside
2230 SEQUENCEs. */
2233 prev_real_insn (insn)
2234 rtx insn;
2236 while (insn)
2238 insn = PREV_INSN (insn);
2239 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2240 || GET_CODE (insn) == JUMP_INSN)
2241 break;
2244 return insn;
2247 /* Find the next insn after INSN that really does something. This routine
2248 does not look inside SEQUENCEs. Until reload has completed, this is the
2249 same as next_real_insn. */
2252 active_insn_p (insn)
2253 rtx insn;
2255 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2256 || (GET_CODE (insn) == INSN
2257 && (! reload_completed
2258 || (GET_CODE (PATTERN (insn)) != USE
2259 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2263 next_active_insn (insn)
2264 rtx insn;
2266 while (insn)
2268 insn = NEXT_INSN (insn);
2269 if (insn == 0 || active_insn_p (insn))
2270 break;
2273 return insn;
2276 /* Find the last insn before INSN that really does something. This routine
2277 does not look inside SEQUENCEs. Until reload has completed, this is the
2278 same as prev_real_insn. */
2281 prev_active_insn (insn)
2282 rtx insn;
2284 while (insn)
2286 insn = PREV_INSN (insn);
2287 if (insn == 0 || active_insn_p (insn))
2288 break;
2291 return insn;
2294 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2297 next_label (insn)
2298 rtx insn;
2300 while (insn)
2302 insn = NEXT_INSN (insn);
2303 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2304 break;
2307 return insn;
2310 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2313 prev_label (insn)
2314 rtx insn;
2316 while (insn)
2318 insn = PREV_INSN (insn);
2319 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2320 break;
2323 return insn;
2326 #ifdef HAVE_cc0
2327 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2328 and REG_CC_USER notes so we can find it. */
2330 void
2331 link_cc0_insns (insn)
2332 rtx insn;
2334 rtx user = next_nonnote_insn (insn);
2336 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2337 user = XVECEXP (PATTERN (user), 0, 0);
2339 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2340 REG_NOTES (user));
2341 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2344 /* Return the next insn that uses CC0 after INSN, which is assumed to
2345 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2346 applied to the result of this function should yield INSN).
2348 Normally, this is simply the next insn. However, if a REG_CC_USER note
2349 is present, it contains the insn that uses CC0.
2351 Return 0 if we can't find the insn. */
2354 next_cc0_user (insn)
2355 rtx insn;
2357 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
2359 if (note)
2360 return XEXP (note, 0);
2362 insn = next_nonnote_insn (insn);
2363 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2364 insn = XVECEXP (PATTERN (insn), 0, 0);
2366 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2367 return insn;
2369 return 0;
2372 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2373 note, it is the previous insn. */
2376 prev_cc0_setter (insn)
2377 rtx insn;
2379 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2381 if (note)
2382 return XEXP (note, 0);
2384 insn = prev_nonnote_insn (insn);
2385 if (! sets_cc0_p (PATTERN (insn)))
2386 abort ();
2388 return insn;
2390 #endif
2392 /* Try splitting insns that can be split for better scheduling.
2393 PAT is the pattern which might split.
2394 TRIAL is the insn providing PAT.
2395 LAST is non-zero if we should return the last insn of the sequence produced.
2397 If this routine succeeds in splitting, it returns the first or last
2398 replacement insn depending on the value of LAST. Otherwise, it
2399 returns TRIAL. If the insn to be returned can be split, it will be. */
2402 try_split (pat, trial, last)
2403 rtx pat, trial;
2404 int last;
2406 rtx before = PREV_INSN (trial);
2407 rtx after = NEXT_INSN (trial);
2408 rtx seq = split_insns (pat, trial);
2409 int has_barrier = 0;
2410 rtx tem;
2412 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2413 We may need to handle this specially. */
2414 if (after && GET_CODE (after) == BARRIER)
2416 has_barrier = 1;
2417 after = NEXT_INSN (after);
2420 if (seq)
2422 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2423 The latter case will normally arise only when being done so that
2424 it, in turn, will be split (SFmode on the 29k is an example). */
2425 if (GET_CODE (seq) == SEQUENCE)
2427 int i;
2429 /* Avoid infinite loop if any insn of the result matches
2430 the original pattern. */
2431 for (i = 0; i < XVECLEN (seq, 0); i++)
2432 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2433 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2434 return trial;
2436 /* Mark labels. */
2437 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2438 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2439 mark_jump_label (PATTERN (XVECEXP (seq, 0, i)),
2440 XVECEXP (seq, 0, i), 0, 0);
2442 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2443 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2444 if (GET_CODE (trial) == CALL_INSN)
2445 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2446 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
2447 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
2448 = CALL_INSN_FUNCTION_USAGE (trial);
2450 tem = emit_insn_after (seq, before);
2452 delete_insn (trial);
2453 if (has_barrier)
2454 emit_barrier_after (tem);
2456 /* Recursively call try_split for each new insn created; by the
2457 time control returns here that insn will be fully split, so
2458 set LAST and continue from the insn after the one returned.
2459 We can't use next_active_insn here since AFTER may be a note.
2460 Ignore deleted insns, which can be occur if not optimizing. */
2461 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2462 if (! INSN_DELETED_P (tem) && INSN_P (tem))
2463 tem = try_split (PATTERN (tem), tem, 1);
2465 /* Avoid infinite loop if the result matches the original pattern. */
2466 else if (rtx_equal_p (seq, pat))
2467 return trial;
2468 else
2470 PATTERN (trial) = seq;
2471 INSN_CODE (trial) = -1;
2472 try_split (seq, trial, last);
2475 /* Return either the first or the last insn, depending on which was
2476 requested. */
2477 return last
2478 ? (after ? prev_active_insn (after) : last_insn)
2479 : next_active_insn (before);
2482 return trial;
2485 /* Make and return an INSN rtx, initializing all its slots.
2486 Store PATTERN in the pattern slots. */
2489 make_insn_raw (pattern)
2490 rtx pattern;
2492 register rtx insn;
2494 insn = rtx_alloc (INSN);
2496 INSN_UID (insn) = cur_insn_uid++;
2497 PATTERN (insn) = pattern;
2498 INSN_CODE (insn) = -1;
2499 LOG_LINKS (insn) = NULL;
2500 REG_NOTES (insn) = NULL;
2502 #ifdef ENABLE_RTL_CHECKING
2503 if (insn
2504 && INSN_P (insn)
2505 && (returnjump_p (insn)
2506 || (GET_CODE (insn) == SET
2507 && SET_DEST (insn) == pc_rtx)))
2509 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2510 debug_rtx (insn);
2512 #endif
2514 return insn;
2517 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2519 static rtx
2520 make_jump_insn_raw (pattern)
2521 rtx pattern;
2523 register rtx insn;
2525 insn = rtx_alloc (JUMP_INSN);
2526 INSN_UID (insn) = cur_insn_uid++;
2528 PATTERN (insn) = pattern;
2529 INSN_CODE (insn) = -1;
2530 LOG_LINKS (insn) = NULL;
2531 REG_NOTES (insn) = NULL;
2532 JUMP_LABEL (insn) = NULL;
2534 return insn;
2537 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
2539 static rtx
2540 make_call_insn_raw (pattern)
2541 rtx pattern;
2543 register rtx insn;
2545 insn = rtx_alloc (CALL_INSN);
2546 INSN_UID (insn) = cur_insn_uid++;
2548 PATTERN (insn) = pattern;
2549 INSN_CODE (insn) = -1;
2550 LOG_LINKS (insn) = NULL;
2551 REG_NOTES (insn) = NULL;
2552 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2554 return insn;
2557 /* Add INSN to the end of the doubly-linked list.
2558 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2560 void
2561 add_insn (insn)
2562 register rtx insn;
2564 PREV_INSN (insn) = last_insn;
2565 NEXT_INSN (insn) = 0;
2567 if (NULL != last_insn)
2568 NEXT_INSN (last_insn) = insn;
2570 if (NULL == first_insn)
2571 first_insn = insn;
2573 last_insn = insn;
2576 /* Add INSN into the doubly-linked list after insn AFTER. This and
2577 the next should be the only functions called to insert an insn once
2578 delay slots have been filled since only they know how to update a
2579 SEQUENCE. */
2581 void
2582 add_insn_after (insn, after)
2583 rtx insn, after;
2585 rtx next = NEXT_INSN (after);
2587 if (optimize && INSN_DELETED_P (after))
2588 abort ();
2590 NEXT_INSN (insn) = next;
2591 PREV_INSN (insn) = after;
2593 if (next)
2595 PREV_INSN (next) = insn;
2596 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2597 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2599 else if (last_insn == after)
2600 last_insn = insn;
2601 else
2603 struct sequence_stack *stack = seq_stack;
2604 /* Scan all pending sequences too. */
2605 for (; stack; stack = stack->next)
2606 if (after == stack->last)
2608 stack->last = insn;
2609 break;
2612 if (stack == 0)
2613 abort ();
2616 NEXT_INSN (after) = insn;
2617 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
2619 rtx sequence = PATTERN (after);
2620 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2624 /* Add INSN into the doubly-linked list before insn BEFORE. This and
2625 the previous should be the only functions called to insert an insn once
2626 delay slots have been filled since only they know how to update a
2627 SEQUENCE. */
2629 void
2630 add_insn_before (insn, before)
2631 rtx insn, before;
2633 rtx prev = PREV_INSN (before);
2635 if (optimize && INSN_DELETED_P (before))
2636 abort ();
2638 PREV_INSN (insn) = prev;
2639 NEXT_INSN (insn) = before;
2641 if (prev)
2643 NEXT_INSN (prev) = insn;
2644 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2646 rtx sequence = PATTERN (prev);
2647 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2650 else if (first_insn == before)
2651 first_insn = insn;
2652 else
2654 struct sequence_stack *stack = seq_stack;
2655 /* Scan all pending sequences too. */
2656 for (; stack; stack = stack->next)
2657 if (before == stack->first)
2659 stack->first = insn;
2660 break;
2663 if (stack == 0)
2664 abort ();
2667 PREV_INSN (before) = insn;
2668 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
2669 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
2672 /* Remove an insn from its doubly-linked list. This function knows how
2673 to handle sequences. */
2674 void
2675 remove_insn (insn)
2676 rtx insn;
2678 rtx next = NEXT_INSN (insn);
2679 rtx prev = PREV_INSN (insn);
2680 if (prev)
2682 NEXT_INSN (prev) = next;
2683 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2685 rtx sequence = PATTERN (prev);
2686 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
2689 else if (first_insn == insn)
2690 first_insn = next;
2691 else
2693 struct sequence_stack *stack = seq_stack;
2694 /* Scan all pending sequences too. */
2695 for (; stack; stack = stack->next)
2696 if (insn == stack->first)
2698 stack->first = next;
2699 break;
2702 if (stack == 0)
2703 abort ();
2706 if (next)
2708 PREV_INSN (next) = prev;
2709 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2710 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2712 else if (last_insn == insn)
2713 last_insn = prev;
2714 else
2716 struct sequence_stack *stack = seq_stack;
2717 /* Scan all pending sequences too. */
2718 for (; stack; stack = stack->next)
2719 if (insn == stack->last)
2721 stack->last = prev;
2722 break;
2725 if (stack == 0)
2726 abort ();
2730 /* Delete all insns made since FROM.
2731 FROM becomes the new last instruction. */
2733 void
2734 delete_insns_since (from)
2735 rtx from;
2737 if (from == 0)
2738 first_insn = 0;
2739 else
2740 NEXT_INSN (from) = 0;
2741 last_insn = from;
2744 /* This function is deprecated, please use sequences instead.
2746 Move a consecutive bunch of insns to a different place in the chain.
2747 The insns to be moved are those between FROM and TO.
2748 They are moved to a new position after the insn AFTER.
2749 AFTER must not be FROM or TO or any insn in between.
2751 This function does not know about SEQUENCEs and hence should not be
2752 called after delay-slot filling has been done. */
2754 void
2755 reorder_insns (from, to, after)
2756 rtx from, to, after;
2758 /* Splice this bunch out of where it is now. */
2759 if (PREV_INSN (from))
2760 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
2761 if (NEXT_INSN (to))
2762 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
2763 if (last_insn == to)
2764 last_insn = PREV_INSN (from);
2765 if (first_insn == from)
2766 first_insn = NEXT_INSN (to);
2768 /* Make the new neighbors point to it and it to them. */
2769 if (NEXT_INSN (after))
2770 PREV_INSN (NEXT_INSN (after)) = to;
2772 NEXT_INSN (to) = NEXT_INSN (after);
2773 PREV_INSN (from) = after;
2774 NEXT_INSN (after) = from;
2775 if (after == last_insn)
2776 last_insn = to;
2779 /* Return the line note insn preceding INSN. */
2781 static rtx
2782 find_line_note (insn)
2783 rtx insn;
2785 if (no_line_numbers)
2786 return 0;
2788 for (; insn; insn = PREV_INSN (insn))
2789 if (GET_CODE (insn) == NOTE
2790 && NOTE_LINE_NUMBER (insn) >= 0)
2791 break;
2793 return insn;
2796 /* Like reorder_insns, but inserts line notes to preserve the line numbers
2797 of the moved insns when debugging. This may insert a note between AFTER
2798 and FROM, and another one after TO. */
2800 void
2801 reorder_insns_with_line_notes (from, to, after)
2802 rtx from, to, after;
2804 rtx from_line = find_line_note (from);
2805 rtx after_line = find_line_note (after);
2807 reorder_insns (from, to, after);
2809 if (from_line == after_line)
2810 return;
2812 if (from_line)
2813 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
2814 NOTE_LINE_NUMBER (from_line),
2815 after);
2816 if (after_line)
2817 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
2818 NOTE_LINE_NUMBER (after_line),
2819 to);
2822 /* Remove unnecessary notes from the instruction stream. */
2824 void
2825 remove_unnecessary_notes ()
2827 rtx insn;
2828 rtx next;
2830 /* We must not remove the first instruction in the function because
2831 the compiler depends on the first instruction being a note. */
2832 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
2834 /* Remember what's next. */
2835 next = NEXT_INSN (insn);
2837 /* We're only interested in notes. */
2838 if (GET_CODE (insn) != NOTE)
2839 continue;
2841 /* By now, all notes indicating lexical blocks should have
2842 NOTE_BLOCK filled in. */
2843 if ((NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2844 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
2845 && NOTE_BLOCK (insn) == NULL_TREE)
2846 abort ();
2848 /* Remove NOTE_INSN_DELETED notes. */
2849 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2850 remove_insn (insn);
2851 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
2853 /* Scan back to see if there are any non-note instructions
2854 between INSN and the beginning of this block. If not,
2855 then there is no PC range in the generated code that will
2856 actually be in this block, so there's no point in
2857 remembering the existence of the block. */
2858 rtx prev;
2860 for (prev = PREV_INSN (insn); prev; prev = PREV_INSN (prev))
2862 /* This block contains a real instruction. Note that we
2863 don't include labels; if the only thing in the block
2864 is a label, then there are still no PC values that
2865 lie within the block. */
2866 if (INSN_P (prev))
2867 break;
2869 /* We're only interested in NOTEs. */
2870 if (GET_CODE (prev) != NOTE)
2871 continue;
2873 if (NOTE_LINE_NUMBER (prev) == NOTE_INSN_BLOCK_BEG)
2875 /* If the BLOCKs referred to by these notes don't
2876 match, then something is wrong with our BLOCK
2877 nesting structure. */
2878 if (NOTE_BLOCK (prev) != NOTE_BLOCK (insn))
2879 abort ();
2881 if (debug_ignore_block (NOTE_BLOCK (insn)))
2883 remove_insn (prev);
2884 remove_insn (insn);
2886 break;
2888 else if (NOTE_LINE_NUMBER (prev) == NOTE_INSN_BLOCK_END)
2889 /* There's a nested block. We need to leave the
2890 current block in place since otherwise the debugger
2891 wouldn't be able to show symbols from our block in
2892 the nested block. */
2893 break;
2900 /* Emit an insn of given code and pattern
2901 at a specified place within the doubly-linked list. */
2903 /* Make an instruction with body PATTERN
2904 and output it before the instruction BEFORE. */
2907 emit_insn_before (pattern, before)
2908 register rtx pattern, before;
2910 register rtx insn = before;
2912 if (GET_CODE (pattern) == SEQUENCE)
2914 register int i;
2916 for (i = 0; i < XVECLEN (pattern, 0); i++)
2918 insn = XVECEXP (pattern, 0, i);
2919 add_insn_before (insn, before);
2922 else
2924 insn = make_insn_raw (pattern);
2925 add_insn_before (insn, before);
2928 return insn;
2931 /* Similar to emit_insn_before, but update basic block boundaries as well. */
2934 emit_block_insn_before (pattern, before, block)
2935 rtx pattern, before;
2936 basic_block block;
2938 rtx prev = PREV_INSN (before);
2939 rtx r = emit_insn_before (pattern, before);
2940 if (block && block->head == before)
2941 block->head = NEXT_INSN (prev);
2942 return r;
2945 /* Make an instruction with body PATTERN and code JUMP_INSN
2946 and output it before the instruction BEFORE. */
2949 emit_jump_insn_before (pattern, before)
2950 register rtx pattern, before;
2952 register rtx insn;
2954 if (GET_CODE (pattern) == SEQUENCE)
2955 insn = emit_insn_before (pattern, before);
2956 else
2958 insn = make_jump_insn_raw (pattern);
2959 add_insn_before (insn, before);
2962 return insn;
2965 /* Make an instruction with body PATTERN and code CALL_INSN
2966 and output it before the instruction BEFORE. */
2969 emit_call_insn_before (pattern, before)
2970 register rtx pattern, before;
2972 register rtx insn;
2974 if (GET_CODE (pattern) == SEQUENCE)
2975 insn = emit_insn_before (pattern, before);
2976 else
2978 insn = make_call_insn_raw (pattern);
2979 add_insn_before (insn, before);
2980 PUT_CODE (insn, CALL_INSN);
2983 return insn;
2986 /* Make an insn of code BARRIER
2987 and output it before the insn BEFORE. */
2990 emit_barrier_before (before)
2991 register rtx before;
2993 register rtx insn = rtx_alloc (BARRIER);
2995 INSN_UID (insn) = cur_insn_uid++;
2997 add_insn_before (insn, before);
2998 return insn;
3001 /* Emit the label LABEL before the insn BEFORE. */
3004 emit_label_before (label, before)
3005 rtx label, before;
3007 /* This can be called twice for the same label as a result of the
3008 confusion that follows a syntax error! So make it harmless. */
3009 if (INSN_UID (label) == 0)
3011 INSN_UID (label) = cur_insn_uid++;
3012 add_insn_before (label, before);
3015 return label;
3018 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3021 emit_note_before (subtype, before)
3022 int subtype;
3023 rtx before;
3025 register rtx note = rtx_alloc (NOTE);
3026 INSN_UID (note) = cur_insn_uid++;
3027 NOTE_SOURCE_FILE (note) = 0;
3028 NOTE_LINE_NUMBER (note) = subtype;
3030 add_insn_before (note, before);
3031 return note;
3034 /* Make an insn of code INSN with body PATTERN
3035 and output it after the insn AFTER. */
3038 emit_insn_after (pattern, after)
3039 register rtx pattern, after;
3041 register rtx insn = after;
3043 if (GET_CODE (pattern) == SEQUENCE)
3045 register int i;
3047 for (i = 0; i < XVECLEN (pattern, 0); i++)
3049 insn = XVECEXP (pattern, 0, i);
3050 add_insn_after (insn, after);
3051 after = insn;
3054 else
3056 insn = make_insn_raw (pattern);
3057 add_insn_after (insn, after);
3060 return insn;
3063 /* Similar to emit_insn_after, except that line notes are to be inserted so
3064 as to act as if this insn were at FROM. */
3066 void
3067 emit_insn_after_with_line_notes (pattern, after, from)
3068 rtx pattern, after, from;
3070 rtx from_line = find_line_note (from);
3071 rtx after_line = find_line_note (after);
3072 rtx insn = emit_insn_after (pattern, after);
3074 if (from_line)
3075 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3076 NOTE_LINE_NUMBER (from_line),
3077 after);
3079 if (after_line)
3080 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3081 NOTE_LINE_NUMBER (after_line),
3082 insn);
3085 /* Similar to emit_insn_after, but update basic block boundaries as well. */
3088 emit_block_insn_after (pattern, after, block)
3089 rtx pattern, after;
3090 basic_block block;
3092 rtx r = emit_insn_after (pattern, after);
3093 if (block && block->end == after)
3094 block->end = r;
3095 return r;
3098 /* Make an insn of code JUMP_INSN with body PATTERN
3099 and output it after the insn AFTER. */
3102 emit_jump_insn_after (pattern, after)
3103 register rtx pattern, after;
3105 register rtx insn;
3107 if (GET_CODE (pattern) == SEQUENCE)
3108 insn = emit_insn_after (pattern, after);
3109 else
3111 insn = make_jump_insn_raw (pattern);
3112 add_insn_after (insn, after);
3115 return insn;
3118 /* Make an insn of code BARRIER
3119 and output it after the insn AFTER. */
3122 emit_barrier_after (after)
3123 register rtx after;
3125 register rtx insn = rtx_alloc (BARRIER);
3127 INSN_UID (insn) = cur_insn_uid++;
3129 add_insn_after (insn, after);
3130 return insn;
3133 /* Emit the label LABEL after the insn AFTER. */
3136 emit_label_after (label, after)
3137 rtx label, after;
3139 /* This can be called twice for the same label
3140 as a result of the confusion that follows a syntax error!
3141 So make it harmless. */
3142 if (INSN_UID (label) == 0)
3144 INSN_UID (label) = cur_insn_uid++;
3145 add_insn_after (label, after);
3148 return label;
3151 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3154 emit_note_after (subtype, after)
3155 int subtype;
3156 rtx after;
3158 register rtx note = rtx_alloc (NOTE);
3159 INSN_UID (note) = cur_insn_uid++;
3160 NOTE_SOURCE_FILE (note) = 0;
3161 NOTE_LINE_NUMBER (note) = subtype;
3162 add_insn_after (note, after);
3163 return note;
3166 /* Emit a line note for FILE and LINE after the insn AFTER. */
3169 emit_line_note_after (file, line, after)
3170 const char *file;
3171 int line;
3172 rtx after;
3174 register rtx note;
3176 if (no_line_numbers && line > 0)
3178 cur_insn_uid++;
3179 return 0;
3182 note = rtx_alloc (NOTE);
3183 INSN_UID (note) = cur_insn_uid++;
3184 NOTE_SOURCE_FILE (note) = file;
3185 NOTE_LINE_NUMBER (note) = line;
3186 add_insn_after (note, after);
3187 return note;
3190 /* Make an insn of code INSN with pattern PATTERN
3191 and add it to the end of the doubly-linked list.
3192 If PATTERN is a SEQUENCE, take the elements of it
3193 and emit an insn for each element.
3195 Returns the last insn emitted. */
3198 emit_insn (pattern)
3199 rtx pattern;
3201 rtx insn = last_insn;
3203 if (GET_CODE (pattern) == SEQUENCE)
3205 register int i;
3207 for (i = 0; i < XVECLEN (pattern, 0); i++)
3209 insn = XVECEXP (pattern, 0, i);
3210 add_insn (insn);
3213 else
3215 insn = make_insn_raw (pattern);
3216 add_insn (insn);
3219 return insn;
3222 /* Emit the insns in a chain starting with INSN.
3223 Return the last insn emitted. */
3226 emit_insns (insn)
3227 rtx insn;
3229 rtx last = 0;
3231 while (insn)
3233 rtx next = NEXT_INSN (insn);
3234 add_insn (insn);
3235 last = insn;
3236 insn = next;
3239 return last;
3242 /* Emit the insns in a chain starting with INSN and place them in front of
3243 the insn BEFORE. Return the last insn emitted. */
3246 emit_insns_before (insn, before)
3247 rtx insn;
3248 rtx before;
3250 rtx last = 0;
3252 while (insn)
3254 rtx next = NEXT_INSN (insn);
3255 add_insn_before (insn, before);
3256 last = insn;
3257 insn = next;
3260 return last;
3263 /* Emit the insns in a chain starting with FIRST and place them in back of
3264 the insn AFTER. Return the last insn emitted. */
3267 emit_insns_after (first, after)
3268 register rtx first;
3269 register rtx after;
3271 register rtx last;
3272 register rtx after_after;
3274 if (!after)
3275 abort ();
3277 if (!first)
3278 return first;
3280 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3281 continue;
3283 after_after = NEXT_INSN (after);
3285 NEXT_INSN (after) = first;
3286 PREV_INSN (first) = after;
3287 NEXT_INSN (last) = after_after;
3288 if (after_after)
3289 PREV_INSN (after_after) = last;
3291 if (after == last_insn)
3292 last_insn = last;
3293 return last;
3296 /* Make an insn of code JUMP_INSN with pattern PATTERN
3297 and add it to the end of the doubly-linked list. */
3300 emit_jump_insn (pattern)
3301 rtx pattern;
3303 if (GET_CODE (pattern) == SEQUENCE)
3304 return emit_insn (pattern);
3305 else
3307 register rtx insn = make_jump_insn_raw (pattern);
3308 add_insn (insn);
3309 return insn;
3313 /* Make an insn of code CALL_INSN with pattern PATTERN
3314 and add it to the end of the doubly-linked list. */
3317 emit_call_insn (pattern)
3318 rtx pattern;
3320 if (GET_CODE (pattern) == SEQUENCE)
3321 return emit_insn (pattern);
3322 else
3324 register rtx insn = make_call_insn_raw (pattern);
3325 add_insn (insn);
3326 PUT_CODE (insn, CALL_INSN);
3327 return insn;
3331 /* Add the label LABEL to the end of the doubly-linked list. */
3334 emit_label (label)
3335 rtx label;
3337 /* This can be called twice for the same label
3338 as a result of the confusion that follows a syntax error!
3339 So make it harmless. */
3340 if (INSN_UID (label) == 0)
3342 INSN_UID (label) = cur_insn_uid++;
3343 add_insn (label);
3345 return label;
3348 /* Make an insn of code BARRIER
3349 and add it to the end of the doubly-linked list. */
3352 emit_barrier ()
3354 register rtx barrier = rtx_alloc (BARRIER);
3355 INSN_UID (barrier) = cur_insn_uid++;
3356 add_insn (barrier);
3357 return barrier;
3360 /* Make an insn of code NOTE
3361 with data-fields specified by FILE and LINE
3362 and add it to the end of the doubly-linked list,
3363 but only if line-numbers are desired for debugging info. */
3366 emit_line_note (file, line)
3367 const char *file;
3368 int line;
3370 set_file_and_line_for_stmt (file, line);
3372 #if 0
3373 if (no_line_numbers)
3374 return 0;
3375 #endif
3377 return emit_note (file, line);
3380 /* Make an insn of code NOTE
3381 with data-fields specified by FILE and LINE
3382 and add it to the end of the doubly-linked list.
3383 If it is a line-number NOTE, omit it if it matches the previous one. */
3386 emit_note (file, line)
3387 const char *file;
3388 int line;
3390 register rtx note;
3392 if (line > 0)
3394 if (file && last_filename && !strcmp (file, last_filename)
3395 && line == last_linenum)
3396 return 0;
3397 last_filename = file;
3398 last_linenum = line;
3401 if (no_line_numbers && line > 0)
3403 cur_insn_uid++;
3404 return 0;
3407 note = rtx_alloc (NOTE);
3408 INSN_UID (note) = cur_insn_uid++;
3409 NOTE_SOURCE_FILE (note) = file;
3410 NOTE_LINE_NUMBER (note) = line;
3411 add_insn (note);
3412 return note;
3415 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
3418 emit_line_note_force (file, line)
3419 const char *file;
3420 int line;
3422 last_linenum = -1;
3423 return emit_line_note (file, line);
3426 /* Cause next statement to emit a line note even if the line number
3427 has not changed. This is used at the beginning of a function. */
3429 void
3430 force_next_line_note ()
3432 last_linenum = -1;
3435 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
3436 note of this type already exists, remove it first. */
3438 void
3439 set_unique_reg_note (insn, kind, datum)
3440 rtx insn;
3441 enum reg_note kind;
3442 rtx datum;
3444 rtx note = find_reg_note (insn, kind, NULL_RTX);
3446 /* First remove the note if there already is one. */
3447 if (note)
3448 remove_note (insn, note);
3450 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3453 /* Return an indication of which type of insn should have X as a body.
3454 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3456 enum rtx_code
3457 classify_insn (x)
3458 rtx x;
3460 if (GET_CODE (x) == CODE_LABEL)
3461 return CODE_LABEL;
3462 if (GET_CODE (x) == CALL)
3463 return CALL_INSN;
3464 if (GET_CODE (x) == RETURN)
3465 return JUMP_INSN;
3466 if (GET_CODE (x) == SET)
3468 if (SET_DEST (x) == pc_rtx)
3469 return JUMP_INSN;
3470 else if (GET_CODE (SET_SRC (x)) == CALL)
3471 return CALL_INSN;
3472 else
3473 return INSN;
3475 if (GET_CODE (x) == PARALLEL)
3477 register int j;
3478 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3479 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3480 return CALL_INSN;
3481 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3482 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3483 return JUMP_INSN;
3484 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3485 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3486 return CALL_INSN;
3488 return INSN;
3491 /* Emit the rtl pattern X as an appropriate kind of insn.
3492 If X is a label, it is simply added into the insn chain. */
3495 emit (x)
3496 rtx x;
3498 enum rtx_code code = classify_insn (x);
3500 if (code == CODE_LABEL)
3501 return emit_label (x);
3502 else if (code == INSN)
3503 return emit_insn (x);
3504 else if (code == JUMP_INSN)
3506 register rtx insn = emit_jump_insn (x);
3507 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
3508 return emit_barrier ();
3509 return insn;
3511 else if (code == CALL_INSN)
3512 return emit_call_insn (x);
3513 else
3514 abort ();
3517 /* Begin emitting insns to a sequence which can be packaged in an
3518 RTL_EXPR. If this sequence will contain something that might cause
3519 the compiler to pop arguments to function calls (because those
3520 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3521 details), use do_pending_stack_adjust before calling this function.
3522 That will ensure that the deferred pops are not accidentally
3523 emitted in the middle of this sequence. */
3525 void
3526 start_sequence ()
3528 struct sequence_stack *tem;
3530 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
3532 tem->next = seq_stack;
3533 tem->first = first_insn;
3534 tem->last = last_insn;
3535 tem->sequence_rtl_expr = seq_rtl_expr;
3537 seq_stack = tem;
3539 first_insn = 0;
3540 last_insn = 0;
3543 /* Similarly, but indicate that this sequence will be placed in T, an
3544 RTL_EXPR. See the documentation for start_sequence for more
3545 information about how to use this function. */
3547 void
3548 start_sequence_for_rtl_expr (t)
3549 tree t;
3551 start_sequence ();
3553 seq_rtl_expr = t;
3556 /* Set up the insn chain starting with FIRST as the current sequence,
3557 saving the previously current one. See the documentation for
3558 start_sequence for more information about how to use this function. */
3560 void
3561 push_to_sequence (first)
3562 rtx first;
3564 rtx last;
3566 start_sequence ();
3568 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
3570 first_insn = first;
3571 last_insn = last;
3574 /* Set up the insn chain from a chain stort in FIRST to LAST. */
3576 void
3577 push_to_full_sequence (first, last)
3578 rtx first, last;
3580 start_sequence ();
3581 first_insn = first;
3582 last_insn = last;
3583 /* We really should have the end of the insn chain here. */
3584 if (last && NEXT_INSN (last))
3585 abort ();
3588 /* Set up the outer-level insn chain
3589 as the current sequence, saving the previously current one. */
3591 void
3592 push_topmost_sequence ()
3594 struct sequence_stack *stack, *top = NULL;
3596 start_sequence ();
3598 for (stack = seq_stack; stack; stack = stack->next)
3599 top = stack;
3601 first_insn = top->first;
3602 last_insn = top->last;
3603 seq_rtl_expr = top->sequence_rtl_expr;
3606 /* After emitting to the outer-level insn chain, update the outer-level
3607 insn chain, and restore the previous saved state. */
3609 void
3610 pop_topmost_sequence ()
3612 struct sequence_stack *stack, *top = NULL;
3614 for (stack = seq_stack; stack; stack = stack->next)
3615 top = stack;
3617 top->first = first_insn;
3618 top->last = last_insn;
3619 /* ??? Why don't we save seq_rtl_expr here? */
3621 end_sequence ();
3624 /* After emitting to a sequence, restore previous saved state.
3626 To get the contents of the sequence just made, you must call
3627 `gen_sequence' *before* calling here.
3629 If the compiler might have deferred popping arguments while
3630 generating this sequence, and this sequence will not be immediately
3631 inserted into the instruction stream, use do_pending_stack_adjust
3632 before calling gen_sequence. That will ensure that the deferred
3633 pops are inserted into this sequence, and not into some random
3634 location in the instruction stream. See INHIBIT_DEFER_POP for more
3635 information about deferred popping of arguments. */
3637 void
3638 end_sequence ()
3640 struct sequence_stack *tem = seq_stack;
3642 first_insn = tem->first;
3643 last_insn = tem->last;
3644 seq_rtl_expr = tem->sequence_rtl_expr;
3645 seq_stack = tem->next;
3647 free (tem);
3650 /* This works like end_sequence, but records the old sequence in FIRST
3651 and LAST. */
3653 void
3654 end_full_sequence (first, last)
3655 rtx *first, *last;
3657 *first = first_insn;
3658 *last = last_insn;
3659 end_sequence();
3662 /* Return 1 if currently emitting into a sequence. */
3665 in_sequence_p ()
3667 return seq_stack != 0;
3670 /* Generate a SEQUENCE rtx containing the insns already emitted
3671 to the current sequence.
3673 This is how the gen_... function from a DEFINE_EXPAND
3674 constructs the SEQUENCE that it returns. */
3677 gen_sequence ()
3679 rtx result;
3680 rtx tem;
3681 int i;
3682 int len;
3684 /* Count the insns in the chain. */
3685 len = 0;
3686 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
3687 len++;
3689 /* If only one insn, return it rather than a SEQUENCE.
3690 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
3691 the case of an empty list.)
3692 We only return the pattern of an insn if its code is INSN and it
3693 has no notes. This ensures that no information gets lost. */
3694 if (len == 1
3695 && ! RTX_FRAME_RELATED_P (first_insn)
3696 && GET_CODE (first_insn) == INSN
3697 /* Don't throw away any reg notes. */
3698 && REG_NOTES (first_insn) == 0)
3699 return PATTERN (first_insn);
3701 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
3703 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
3704 XVECEXP (result, 0, i) = tem;
3706 return result;
3709 /* Put the various virtual registers into REGNO_REG_RTX. */
3711 void
3712 init_virtual_regs (es)
3713 struct emit_status *es;
3715 rtx *ptr = es->x_regno_reg_rtx;
3716 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
3717 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
3718 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
3719 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
3720 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
3723 void
3724 clear_emit_caches ()
3726 int i;
3728 /* Clear the start_sequence/gen_sequence cache. */
3729 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
3730 sequence_result[i] = 0;
3731 free_insn = 0;
3734 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3735 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
3736 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
3737 static int copy_insn_n_scratches;
3739 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3740 copied an ASM_OPERANDS.
3741 In that case, it is the original input-operand vector. */
3742 static rtvec orig_asm_operands_vector;
3744 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3745 copied an ASM_OPERANDS.
3746 In that case, it is the copied input-operand vector. */
3747 static rtvec copy_asm_operands_vector;
3749 /* Likewise for the constraints vector. */
3750 static rtvec orig_asm_constraints_vector;
3751 static rtvec copy_asm_constraints_vector;
3753 /* Recursively create a new copy of an rtx for copy_insn.
3754 This function differs from copy_rtx in that it handles SCRATCHes and
3755 ASM_OPERANDs properly.
3756 Normally, this function is not used directly; use copy_insn as front end.
3757 However, you could first copy an insn pattern with copy_insn and then use
3758 this function afterwards to properly copy any REG_NOTEs containing
3759 SCRATCHes. */
3762 copy_insn_1 (orig)
3763 register rtx orig;
3765 register rtx copy;
3766 register int i, j;
3767 register RTX_CODE code;
3768 register const char *format_ptr;
3770 code = GET_CODE (orig);
3772 switch (code)
3774 case REG:
3775 case QUEUED:
3776 case CONST_INT:
3777 case CONST_DOUBLE:
3778 case SYMBOL_REF:
3779 case CODE_LABEL:
3780 case PC:
3781 case CC0:
3782 case ADDRESSOF:
3783 return orig;
3785 case SCRATCH:
3786 for (i = 0; i < copy_insn_n_scratches; i++)
3787 if (copy_insn_scratch_in[i] == orig)
3788 return copy_insn_scratch_out[i];
3789 break;
3791 case CONST:
3792 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
3793 a LABEL_REF, it isn't sharable. */
3794 if (GET_CODE (XEXP (orig, 0)) == PLUS
3795 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
3796 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
3797 return orig;
3798 break;
3800 /* A MEM with a constant address is not sharable. The problem is that
3801 the constant address may need to be reloaded. If the mem is shared,
3802 then reloading one copy of this mem will cause all copies to appear
3803 to have been reloaded. */
3805 default:
3806 break;
3809 copy = rtx_alloc (code);
3811 /* Copy the various flags, and other information. We assume that
3812 all fields need copying, and then clear the fields that should
3813 not be copied. That is the sensible default behavior, and forces
3814 us to explicitly document why we are *not* copying a flag. */
3815 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
3817 /* We do not copy the USED flag, which is used as a mark bit during
3818 walks over the RTL. */
3819 copy->used = 0;
3821 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
3822 if (GET_RTX_CLASS (code) == 'i')
3824 copy->jump = 0;
3825 copy->call = 0;
3826 copy->frame_related = 0;
3829 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
3831 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
3833 copy->fld[i] = orig->fld[i];
3834 switch (*format_ptr++)
3836 case 'e':
3837 if (XEXP (orig, i) != NULL)
3838 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
3839 break;
3841 case 'E':
3842 case 'V':
3843 if (XVEC (orig, i) == orig_asm_constraints_vector)
3844 XVEC (copy, i) = copy_asm_constraints_vector;
3845 else if (XVEC (orig, i) == orig_asm_operands_vector)
3846 XVEC (copy, i) = copy_asm_operands_vector;
3847 else if (XVEC (orig, i) != NULL)
3849 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
3850 for (j = 0; j < XVECLEN (copy, i); j++)
3851 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
3853 break;
3855 case 't':
3856 case 'w':
3857 case 'i':
3858 case 's':
3859 case 'S':
3860 case 'u':
3861 case '0':
3862 /* These are left unchanged. */
3863 break;
3865 default:
3866 abort ();
3870 if (code == SCRATCH)
3872 i = copy_insn_n_scratches++;
3873 if (i >= MAX_RECOG_OPERANDS)
3874 abort ();
3875 copy_insn_scratch_in[i] = orig;
3876 copy_insn_scratch_out[i] = copy;
3878 else if (code == ASM_OPERANDS)
3880 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
3881 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
3882 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
3883 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
3886 return copy;
3889 /* Create a new copy of an rtx.
3890 This function differs from copy_rtx in that it handles SCRATCHes and
3891 ASM_OPERANDs properly.
3892 INSN doesn't really have to be a full INSN; it could be just the
3893 pattern. */
3895 copy_insn (insn)
3896 rtx insn;
3898 copy_insn_n_scratches = 0;
3899 orig_asm_operands_vector = 0;
3900 orig_asm_constraints_vector = 0;
3901 copy_asm_operands_vector = 0;
3902 copy_asm_constraints_vector = 0;
3903 return copy_insn_1 (insn);
3906 /* Initialize data structures and variables in this file
3907 before generating rtl for each function. */
3909 void
3910 init_emit ()
3912 struct function *f = cfun;
3914 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
3915 first_insn = NULL;
3916 last_insn = NULL;
3917 seq_rtl_expr = NULL;
3918 cur_insn_uid = 1;
3919 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
3920 last_linenum = 0;
3921 last_filename = 0;
3922 first_label_num = label_num;
3923 last_label_num = 0;
3924 seq_stack = NULL;
3926 clear_emit_caches ();
3928 /* Init the tables that describe all the pseudo regs. */
3930 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
3932 f->emit->regno_pointer_align
3933 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
3934 sizeof (unsigned char));
3936 regno_reg_rtx
3937 = (rtx *) xcalloc (f->emit->regno_pointer_align_length * sizeof (rtx),
3938 sizeof (rtx));
3940 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
3941 init_virtual_regs (f->emit);
3943 /* Indicate that the virtual registers and stack locations are
3944 all pointers. */
3945 REG_POINTER (stack_pointer_rtx) = 1;
3946 REG_POINTER (frame_pointer_rtx) = 1;
3947 REG_POINTER (hard_frame_pointer_rtx) = 1;
3948 REG_POINTER (arg_pointer_rtx) = 1;
3950 REG_POINTER (virtual_incoming_args_rtx) = 1;
3951 REG_POINTER (virtual_stack_vars_rtx) = 1;
3952 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
3953 REG_POINTER (virtual_outgoing_args_rtx) = 1;
3954 REG_POINTER (virtual_cfa_rtx) = 1;
3956 #ifdef STACK_BOUNDARY
3957 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
3958 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
3959 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
3960 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
3962 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
3963 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
3964 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
3965 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
3966 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
3967 #endif
3969 #ifdef INIT_EXPANDERS
3970 INIT_EXPANDERS;
3971 #endif
3974 /* Mark SS for GC. */
3976 static void
3977 mark_sequence_stack (ss)
3978 struct sequence_stack *ss;
3980 while (ss)
3982 ggc_mark_rtx (ss->first);
3983 ggc_mark_tree (ss->sequence_rtl_expr);
3984 ss = ss->next;
3988 /* Mark ES for GC. */
3990 void
3991 mark_emit_status (es)
3992 struct emit_status *es;
3994 rtx *r;
3995 int i;
3997 if (es == 0)
3998 return;
4000 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx;
4001 i > 0; --i, ++r)
4002 ggc_mark_rtx (*r);
4004 mark_sequence_stack (es->sequence_stack);
4005 ggc_mark_tree (es->sequence_rtl_expr);
4006 ggc_mark_rtx (es->x_first_insn);
4009 /* Create some permanent unique rtl objects shared between all functions.
4010 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4012 void
4013 init_emit_once (line_numbers)
4014 int line_numbers;
4016 int i;
4017 enum machine_mode mode;
4018 enum machine_mode double_mode;
4020 /* Initialize the CONST_INT hash table. */
4021 const_int_htab = htab_create (37, const_int_htab_hash,
4022 const_int_htab_eq, NULL);
4023 ggc_add_root (&const_int_htab, 1, sizeof (const_int_htab),
4024 rtx_htab_mark);
4026 no_line_numbers = ! line_numbers;
4028 /* Compute the word and byte modes. */
4030 byte_mode = VOIDmode;
4031 word_mode = VOIDmode;
4032 double_mode = VOIDmode;
4034 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4035 mode = GET_MODE_WIDER_MODE (mode))
4037 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4038 && byte_mode == VOIDmode)
4039 byte_mode = mode;
4041 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4042 && word_mode == VOIDmode)
4043 word_mode = mode;
4046 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4047 mode = GET_MODE_WIDER_MODE (mode))
4049 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4050 && double_mode == VOIDmode)
4051 double_mode = mode;
4054 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4056 /* Assign register numbers to the globally defined register rtx.
4057 This must be done at runtime because the register number field
4058 is in a union and some compilers can't initialize unions. */
4060 pc_rtx = gen_rtx (PC, VOIDmode);
4061 cc0_rtx = gen_rtx (CC0, VOIDmode);
4062 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4063 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4064 if (hard_frame_pointer_rtx == 0)
4065 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
4066 HARD_FRAME_POINTER_REGNUM);
4067 if (arg_pointer_rtx == 0)
4068 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
4069 virtual_incoming_args_rtx =
4070 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4071 virtual_stack_vars_rtx =
4072 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4073 virtual_stack_dynamic_rtx =
4074 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4075 virtual_outgoing_args_rtx =
4076 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4077 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4079 /* These rtx must be roots if GC is enabled. */
4080 ggc_add_rtx_root (global_rtl, GR_MAX);
4082 #ifdef INIT_EXPANDERS
4083 /* This is to initialize {init|mark|free}_machine_status before the first
4084 call to push_function_context_to. This is needed by the Chill front
4085 end which calls push_function_context_to before the first cal to
4086 init_function_start. */
4087 INIT_EXPANDERS;
4088 #endif
4090 /* Create the unique rtx's for certain rtx codes and operand values. */
4092 /* Don't use gen_rtx here since gen_rtx in this case
4093 tries to use these variables. */
4094 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
4095 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4096 gen_rtx_raw_CONST_INT (VOIDmode, i);
4097 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
4099 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4100 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
4101 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
4102 else
4103 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
4105 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4106 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4107 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4108 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
4110 for (i = 0; i <= 2; i++)
4112 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4113 mode = GET_MODE_WIDER_MODE (mode))
4115 rtx tem = rtx_alloc (CONST_DOUBLE);
4116 union real_extract u;
4118 memset ((char *) &u, 0, sizeof u); /* Zero any holes in a structure. */
4119 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4121 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
4122 CONST_DOUBLE_MEM (tem) = cc0_rtx;
4123 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
4124 PUT_MODE (tem, mode);
4126 const_tiny_rtx[i][(int) mode] = tem;
4129 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
4131 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4132 mode = GET_MODE_WIDER_MODE (mode))
4133 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4135 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4136 mode != VOIDmode;
4137 mode = GET_MODE_WIDER_MODE (mode))
4138 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4141 for (mode = CCmode; mode < MAX_MACHINE_MODE; ++mode)
4142 if (GET_MODE_CLASS (mode) == MODE_CC)
4143 const_tiny_rtx[0][(int) mode] = const0_rtx;
4145 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4146 if (STORE_FLAG_VALUE == 1)
4147 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4149 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4150 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4151 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4152 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
4153 ggc_add_rtx_root (&const_true_rtx, 1);
4155 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4156 return_address_pointer_rtx
4157 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4158 #endif
4160 #ifdef STRUCT_VALUE
4161 struct_value_rtx = STRUCT_VALUE;
4162 #else
4163 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4164 #endif
4166 #ifdef STRUCT_VALUE_INCOMING
4167 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4168 #else
4169 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4170 struct_value_incoming_rtx
4171 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4172 #else
4173 struct_value_incoming_rtx = struct_value_rtx;
4174 #endif
4175 #endif
4177 #ifdef STATIC_CHAIN_REGNUM
4178 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4180 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4181 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4182 static_chain_incoming_rtx
4183 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4184 else
4185 #endif
4186 static_chain_incoming_rtx = static_chain_rtx;
4187 #endif
4189 #ifdef STATIC_CHAIN
4190 static_chain_rtx = STATIC_CHAIN;
4192 #ifdef STATIC_CHAIN_INCOMING
4193 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4194 #else
4195 static_chain_incoming_rtx = static_chain_rtx;
4196 #endif
4197 #endif
4199 #ifdef PIC_OFFSET_TABLE_REGNUM
4200 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
4201 #endif
4203 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4204 ggc_add_rtx_root (&struct_value_rtx, 1);
4205 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4206 ggc_add_rtx_root (&static_chain_rtx, 1);
4207 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4208 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
4211 /* Query and clear/ restore no_line_numbers. This is used by the
4212 switch / case handling in stmt.c to give proper line numbers in
4213 warnings about unreachable code. */
4216 force_line_numbers ()
4218 int old = no_line_numbers;
4220 no_line_numbers = 0;
4221 if (old)
4222 force_next_line_note ();
4223 return old;
4226 void
4227 restore_line_number_status (old_value)
4228 int old_value;
4230 no_line_numbers = old_value;