2009-12-15 Paolo Bonzini <bonzini@gnu.org>
[official-gcc.git] / gcc / reg-stack.c
bloba17f4f80e0d8565f6ec7962d925386b792673652
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "cfglayout.h"
171 #include "varray.h"
172 #include "reload.h"
173 #include "ggc.h"
174 #include "timevar.h"
175 #include "tree-pass.h"
176 #include "target.h"
177 #include "df.h"
178 #include "vecprim.h"
180 #ifdef STACK_REGS
182 /* We use this array to cache info about insns, because otherwise we
183 spend too much time in stack_regs_mentioned_p.
185 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
186 the insn uses stack registers, two indicates the insn does not use
187 stack registers. */
188 static VEC(char,heap) *stack_regs_mentioned_data;
190 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
192 int regstack_completed = 0;
194 /* This is the basic stack record. TOP is an index into REG[] such
195 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
197 If TOP is -2, REG[] is not yet initialized. Stack initialization
198 consists of placing each live reg in array `reg' and setting `top'
199 appropriately.
201 REG_SET indicates which registers are live. */
203 typedef struct stack_def
205 int top; /* index to top stack element */
206 HARD_REG_SET reg_set; /* set of live registers */
207 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
208 } *stack;
210 /* This is used to carry information about basic blocks. It is
211 attached to the AUX field of the standard CFG block. */
213 typedef struct block_info_def
215 struct stack_def stack_in; /* Input stack configuration. */
216 struct stack_def stack_out; /* Output stack configuration. */
217 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
218 int done; /* True if block already converted. */
219 int predecessors; /* Number of predecessors that need
220 to be visited. */
221 } *block_info;
223 #define BLOCK_INFO(B) ((block_info) (B)->aux)
225 /* Passed to change_stack to indicate where to emit insns. */
226 enum emit_where
228 EMIT_AFTER,
229 EMIT_BEFORE
232 /* The block we're currently working on. */
233 static basic_block current_block;
235 /* In the current_block, whether we're processing the first register
236 stack or call instruction, i.e. the regstack is currently the
237 same as BLOCK_INFO(current_block)->stack_in. */
238 static bool starting_stack_p;
240 /* This is the register file for all register after conversion. */
241 static rtx
242 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
244 #define FP_MODE_REG(regno,mode) \
245 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
247 /* Used to initialize uninitialized registers. */
248 static rtx not_a_num;
250 /* Forward declarations */
252 static int stack_regs_mentioned_p (const_rtx pat);
253 static void pop_stack (stack, int);
254 static rtx *get_true_reg (rtx *);
256 static int check_asm_stack_operands (rtx);
257 static void get_asm_operands_in_out (rtx, int *, int *);
258 static rtx stack_result (tree);
259 static void replace_reg (rtx *, int);
260 static void remove_regno_note (rtx, enum reg_note, unsigned int);
261 static int get_hard_regnum (stack, rtx);
262 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
263 static void swap_to_top(rtx, stack, rtx, rtx);
264 static bool move_for_stack_reg (rtx, stack, rtx);
265 static bool move_nan_for_stack_reg (rtx, stack, rtx);
266 static int swap_rtx_condition_1 (rtx);
267 static int swap_rtx_condition (rtx);
268 static void compare_for_stack_reg (rtx, stack, rtx);
269 static bool subst_stack_regs_pat (rtx, stack, rtx);
270 static void subst_asm_stack_regs (rtx, stack);
271 static bool subst_stack_regs (rtx, stack);
272 static void change_stack (rtx, stack, stack, enum emit_where);
273 static void print_stack (FILE *, stack);
274 static rtx next_flags_user (rtx);
276 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
278 static int
279 stack_regs_mentioned_p (const_rtx pat)
281 const char *fmt;
282 int i;
284 if (STACK_REG_P (pat))
285 return 1;
287 fmt = GET_RTX_FORMAT (GET_CODE (pat));
288 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
290 if (fmt[i] == 'E')
292 int j;
294 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
295 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
296 return 1;
298 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
299 return 1;
302 return 0;
305 /* Return nonzero if INSN mentions stacked registers, else return zero. */
308 stack_regs_mentioned (const_rtx insn)
310 unsigned int uid, max;
311 int test;
313 if (! INSN_P (insn) || !stack_regs_mentioned_data)
314 return 0;
316 uid = INSN_UID (insn);
317 max = VEC_length (char, stack_regs_mentioned_data);
318 if (uid >= max)
320 /* Allocate some extra size to avoid too many reallocs, but
321 do not grow too quickly. */
322 max = uid + uid / 20 + 1;
323 VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
326 test = VEC_index (char, stack_regs_mentioned_data, uid);
327 if (test == 0)
329 /* This insn has yet to be examined. Do so now. */
330 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
331 VEC_replace (char, stack_regs_mentioned_data, uid, test);
334 return test == 1;
337 static rtx ix86_flags_rtx;
339 static rtx
340 next_flags_user (rtx insn)
342 /* Search forward looking for the first use of this value.
343 Stop at block boundaries. */
345 while (insn != BB_END (current_block))
347 insn = NEXT_INSN (insn);
349 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
350 return insn;
352 if (CALL_P (insn))
353 return NULL_RTX;
355 return NULL_RTX;
358 /* Reorganize the stack into ascending numbers, before this insn. */
360 static void
361 straighten_stack (rtx insn, stack regstack)
363 struct stack_def temp_stack;
364 int top;
366 /* If there is only a single register on the stack, then the stack is
367 already in increasing order and no reorganization is needed.
369 Similarly if the stack is empty. */
370 if (regstack->top <= 0)
371 return;
373 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
375 for (top = temp_stack.top = regstack->top; top >= 0; top--)
376 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
378 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
381 /* Pop a register from the stack. */
383 static void
384 pop_stack (stack regstack, int regno)
386 int top = regstack->top;
388 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
389 regstack->top--;
390 /* If regno was not at the top of stack then adjust stack. */
391 if (regstack->reg [top] != regno)
393 int i;
394 for (i = regstack->top; i >= 0; i--)
395 if (regstack->reg [i] == regno)
397 int j;
398 for (j = i; j < top; j++)
399 regstack->reg [j] = regstack->reg [j + 1];
400 break;
405 /* Return a pointer to the REG expression within PAT. If PAT is not a
406 REG, possible enclosed by a conversion rtx, return the inner part of
407 PAT that stopped the search. */
409 static rtx *
410 get_true_reg (rtx *pat)
412 for (;;)
413 switch (GET_CODE (*pat))
415 case SUBREG:
416 /* Eliminate FP subregister accesses in favor of the
417 actual FP register in use. */
419 rtx subreg;
420 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
422 int regno_off = subreg_regno_offset (REGNO (subreg),
423 GET_MODE (subreg),
424 SUBREG_BYTE (*pat),
425 GET_MODE (*pat));
426 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
427 GET_MODE (subreg));
428 return pat;
431 case FLOAT:
432 case FIX:
433 case FLOAT_EXTEND:
434 pat = & XEXP (*pat, 0);
435 break;
437 case UNSPEC:
438 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
439 pat = & XVECEXP (*pat, 0, 0);
440 return pat;
442 case FLOAT_TRUNCATE:
443 if (!flag_unsafe_math_optimizations)
444 return pat;
445 pat = & XEXP (*pat, 0);
446 break;
448 default:
449 return pat;
453 /* Set if we find any malformed asms in a block. */
454 static bool any_malformed_asm;
456 /* There are many rules that an asm statement for stack-like regs must
457 follow. Those rules are explained at the top of this file: the rule
458 numbers below refer to that explanation. */
460 static int
461 check_asm_stack_operands (rtx insn)
463 int i;
464 int n_clobbers;
465 int malformed_asm = 0;
466 rtx body = PATTERN (insn);
468 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469 char implicitly_dies[FIRST_PSEUDO_REGISTER];
470 int alt;
472 rtx *clobber_reg = 0;
473 int n_inputs, n_outputs;
475 /* Find out what the constraints require. If no constraint
476 alternative matches, this asm is malformed. */
477 extract_insn (insn);
478 constrain_operands (1);
479 alt = which_alternative;
481 preprocess_constraints ();
483 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
485 if (alt < 0)
487 malformed_asm = 1;
488 /* Avoid further trouble with this insn. */
489 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
490 return 0;
493 /* Strip SUBREGs here to make the following code simpler. */
494 for (i = 0; i < recog_data.n_operands; i++)
495 if (GET_CODE (recog_data.operand[i]) == SUBREG
496 && REG_P (SUBREG_REG (recog_data.operand[i])))
497 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
499 /* Set up CLOBBER_REG. */
501 n_clobbers = 0;
503 if (GET_CODE (body) == PARALLEL)
505 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
507 for (i = 0; i < XVECLEN (body, 0); i++)
508 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
510 rtx clobber = XVECEXP (body, 0, i);
511 rtx reg = XEXP (clobber, 0);
513 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
514 reg = SUBREG_REG (reg);
516 if (STACK_REG_P (reg))
518 clobber_reg[n_clobbers] = reg;
519 n_clobbers++;
524 /* Enforce rule #4: Output operands must specifically indicate which
525 reg an output appears in after an asm. "=f" is not allowed: the
526 operand constraints must select a class with a single reg.
528 Also enforce rule #5: Output operands must start at the top of
529 the reg-stack: output operands may not "skip" a reg. */
531 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
532 for (i = 0; i < n_outputs; i++)
533 if (STACK_REG_P (recog_data.operand[i]))
535 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
537 error_for_asm (insn, "output constraint %d must specify a single register", i);
538 malformed_asm = 1;
540 else
542 int j;
544 for (j = 0; j < n_clobbers; j++)
545 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
547 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
548 i, reg_names [REGNO (clobber_reg[j])]);
549 malformed_asm = 1;
550 break;
552 if (j == n_clobbers)
553 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
558 /* Search for first non-popped reg. */
559 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
560 if (! reg_used_as_output[i])
561 break;
563 /* If there are any other popped regs, that's an error. */
564 for (; i < LAST_STACK_REG + 1; i++)
565 if (reg_used_as_output[i])
566 break;
568 if (i != LAST_STACK_REG + 1)
570 error_for_asm (insn, "output regs must be grouped at top of stack");
571 malformed_asm = 1;
574 /* Enforce rule #2: All implicitly popped input regs must be closer
575 to the top of the reg-stack than any input that is not implicitly
576 popped. */
578 memset (implicitly_dies, 0, sizeof (implicitly_dies));
579 for (i = n_outputs; i < n_outputs + n_inputs; i++)
580 if (STACK_REG_P (recog_data.operand[i]))
582 /* An input reg is implicitly popped if it is tied to an
583 output, or if there is a CLOBBER for it. */
584 int j;
586 for (j = 0; j < n_clobbers; j++)
587 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
588 break;
590 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
591 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
594 /* Search for first non-popped reg. */
595 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
596 if (! implicitly_dies[i])
597 break;
599 /* If there are any other popped regs, that's an error. */
600 for (; i < LAST_STACK_REG + 1; i++)
601 if (implicitly_dies[i])
602 break;
604 if (i != LAST_STACK_REG + 1)
606 error_for_asm (insn,
607 "implicitly popped regs must be grouped at top of stack");
608 malformed_asm = 1;
611 /* Enforce rule #3: If any input operand uses the "f" constraint, all
612 output constraints must use the "&" earlyclobber.
614 ??? Detect this more deterministically by having constrain_asm_operands
615 record any earlyclobber. */
617 for (i = n_outputs; i < n_outputs + n_inputs; i++)
618 if (recog_op_alt[i][alt].matches == -1)
620 int j;
622 for (j = 0; j < n_outputs; j++)
623 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
625 error_for_asm (insn,
626 "output operand %d must use %<&%> constraint", j);
627 malformed_asm = 1;
631 if (malformed_asm)
633 /* Avoid further trouble with this insn. */
634 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
635 any_malformed_asm = true;
636 return 0;
639 return 1;
642 /* Calculate the number of inputs and outputs in BODY, an
643 asm_operands. N_OPERANDS is the total number of operands, and
644 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
645 placed. */
647 static void
648 get_asm_operands_in_out (rtx body, int *pout, int *pin)
650 rtx asmop = extract_asm_operands (body);
652 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
653 *pout = (recog_data.n_operands
654 - ASM_OPERANDS_INPUT_LENGTH (asmop)
655 - ASM_OPERANDS_LABEL_LENGTH (asmop));
658 /* If current function returns its result in an fp stack register,
659 return the REG. Otherwise, return 0. */
661 static rtx
662 stack_result (tree decl)
664 rtx result;
666 /* If the value is supposed to be returned in memory, then clearly
667 it is not returned in a stack register. */
668 if (aggregate_value_p (DECL_RESULT (decl), decl))
669 return 0;
671 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
672 if (result != 0)
673 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
674 decl, true);
676 return result != 0 && STACK_REG_P (result) ? result : 0;
681 * This section deals with stack register substitution, and forms the second
682 * pass over the RTL.
685 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
686 the desired hard REGNO. */
688 static void
689 replace_reg (rtx *reg, int regno)
691 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
692 gcc_assert (STACK_REG_P (*reg));
694 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
695 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
697 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
700 /* Remove a note of type NOTE, which must be found, for register
701 number REGNO from INSN. Remove only one such note. */
703 static void
704 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
706 rtx *note_link, this_rtx;
708 note_link = &REG_NOTES (insn);
709 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
710 if (REG_NOTE_KIND (this_rtx) == note
711 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
713 *note_link = XEXP (this_rtx, 1);
714 return;
716 else
717 note_link = &XEXP (this_rtx, 1);
719 gcc_unreachable ();
722 /* Find the hard register number of virtual register REG in REGSTACK.
723 The hard register number is relative to the top of the stack. -1 is
724 returned if the register is not found. */
726 static int
727 get_hard_regnum (stack regstack, rtx reg)
729 int i;
731 gcc_assert (STACK_REG_P (reg));
733 for (i = regstack->top; i >= 0; i--)
734 if (regstack->reg[i] == REGNO (reg))
735 break;
737 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
740 /* Emit an insn to pop virtual register REG before or after INSN.
741 REGSTACK is the stack state after INSN and is updated to reflect this
742 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
743 is represented as a SET whose destination is the register to be popped
744 and source is the top of stack. A death note for the top of stack
745 cases the movdf pattern to pop. */
747 static rtx
748 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
750 rtx pop_insn, pop_rtx;
751 int hard_regno;
753 /* For complex types take care to pop both halves. These may survive in
754 CLOBBER and USE expressions. */
755 if (COMPLEX_MODE_P (GET_MODE (reg)))
757 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
758 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
760 pop_insn = NULL_RTX;
761 if (get_hard_regnum (regstack, reg1) >= 0)
762 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
763 if (get_hard_regnum (regstack, reg2) >= 0)
764 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
765 gcc_assert (pop_insn);
766 return pop_insn;
769 hard_regno = get_hard_regnum (regstack, reg);
771 gcc_assert (hard_regno >= FIRST_STACK_REG);
773 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
774 FP_MODE_REG (FIRST_STACK_REG, DFmode));
776 if (where == EMIT_AFTER)
777 pop_insn = emit_insn_after (pop_rtx, insn);
778 else
779 pop_insn = emit_insn_before (pop_rtx, insn);
781 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
783 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
784 = regstack->reg[regstack->top];
785 regstack->top -= 1;
786 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
788 return pop_insn;
791 /* Emit an insn before or after INSN to swap virtual register REG with
792 the top of stack. REGSTACK is the stack state before the swap, and
793 is updated to reflect the swap. A swap insn is represented as a
794 PARALLEL of two patterns: each pattern moves one reg to the other.
796 If REG is already at the top of the stack, no insn is emitted. */
798 static void
799 emit_swap_insn (rtx insn, stack regstack, rtx reg)
801 int hard_regno;
802 rtx swap_rtx;
803 int tmp, other_reg; /* swap regno temps */
804 rtx i1; /* the stack-reg insn prior to INSN */
805 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
807 hard_regno = get_hard_regnum (regstack, reg);
809 if (hard_regno == FIRST_STACK_REG)
810 return;
811 if (hard_regno == -1)
813 /* Something failed if the register wasn't on the stack. If we had
814 malformed asms, we zapped the instruction itself, but that didn't
815 produce the same pattern of register sets as before. To prevent
816 further failure, adjust REGSTACK to include REG at TOP. */
817 gcc_assert (any_malformed_asm);
818 regstack->reg[++regstack->top] = REGNO (reg);
819 return;
821 gcc_assert (hard_regno >= FIRST_STACK_REG);
823 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
825 tmp = regstack->reg[other_reg];
826 regstack->reg[other_reg] = regstack->reg[regstack->top];
827 regstack->reg[regstack->top] = tmp;
829 /* Find the previous insn involving stack regs, but don't pass a
830 block boundary. */
831 i1 = NULL;
832 if (current_block && insn != BB_HEAD (current_block))
834 rtx tmp = PREV_INSN (insn);
835 rtx limit = PREV_INSN (BB_HEAD (current_block));
836 while (tmp != limit)
838 if (LABEL_P (tmp)
839 || CALL_P (tmp)
840 || NOTE_INSN_BASIC_BLOCK_P (tmp)
841 || (NONJUMP_INSN_P (tmp)
842 && stack_regs_mentioned (tmp)))
844 i1 = tmp;
845 break;
847 tmp = PREV_INSN (tmp);
851 if (i1 != NULL_RTX
852 && (i1set = single_set (i1)) != NULL_RTX)
854 rtx i1src = *get_true_reg (&SET_SRC (i1set));
855 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
857 /* If the previous register stack push was from the reg we are to
858 swap with, omit the swap. */
860 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
861 && REG_P (i1src)
862 && REGNO (i1src) == (unsigned) hard_regno - 1
863 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
864 return;
866 /* If the previous insn wrote to the reg we are to swap with,
867 omit the swap. */
869 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
870 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
871 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
872 return;
875 /* Avoid emitting the swap if this is the first register stack insn
876 of the current_block. Instead update the current_block's stack_in
877 and let compensate edges take care of this for us. */
878 if (current_block && starting_stack_p)
880 BLOCK_INFO (current_block)->stack_in = *regstack;
881 starting_stack_p = false;
882 return;
885 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
886 FP_MODE_REG (FIRST_STACK_REG, XFmode));
888 if (i1)
889 emit_insn_after (swap_rtx, i1);
890 else if (current_block)
891 emit_insn_before (swap_rtx, BB_HEAD (current_block));
892 else
893 emit_insn_before (swap_rtx, insn);
896 /* Emit an insns before INSN to swap virtual register SRC1 with
897 the top of stack and virtual register SRC2 with second stack
898 slot. REGSTACK is the stack state before the swaps, and
899 is updated to reflect the swaps. A swap insn is represented as a
900 PARALLEL of two patterns: each pattern moves one reg to the other.
902 If SRC1 and/or SRC2 are already at the right place, no swap insn
903 is emitted. */
905 static void
906 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
908 struct stack_def temp_stack;
909 int regno, j, k, temp;
911 temp_stack = *regstack;
913 /* Place operand 1 at the top of stack. */
914 regno = get_hard_regnum (&temp_stack, src1);
915 gcc_assert (regno >= 0);
916 if (regno != FIRST_STACK_REG)
918 k = temp_stack.top - (regno - FIRST_STACK_REG);
919 j = temp_stack.top;
921 temp = temp_stack.reg[k];
922 temp_stack.reg[k] = temp_stack.reg[j];
923 temp_stack.reg[j] = temp;
926 /* Place operand 2 next on the stack. */
927 regno = get_hard_regnum (&temp_stack, src2);
928 gcc_assert (regno >= 0);
929 if (regno != FIRST_STACK_REG + 1)
931 k = temp_stack.top - (regno - FIRST_STACK_REG);
932 j = temp_stack.top - 1;
934 temp = temp_stack.reg[k];
935 temp_stack.reg[k] = temp_stack.reg[j];
936 temp_stack.reg[j] = temp;
939 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
942 /* Handle a move to or from a stack register in PAT, which is in INSN.
943 REGSTACK is the current stack. Return whether a control flow insn
944 was deleted in the process. */
946 static bool
947 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
949 rtx *psrc = get_true_reg (&SET_SRC (pat));
950 rtx *pdest = get_true_reg (&SET_DEST (pat));
951 rtx src, dest;
952 rtx note;
953 bool control_flow_insn_deleted = false;
955 src = *psrc; dest = *pdest;
957 if (STACK_REG_P (src) && STACK_REG_P (dest))
959 /* Write from one stack reg to another. If SRC dies here, then
960 just change the register mapping and delete the insn. */
962 note = find_regno_note (insn, REG_DEAD, REGNO (src));
963 if (note)
965 int i;
967 /* If this is a no-op move, there must not be a REG_DEAD note. */
968 gcc_assert (REGNO (src) != REGNO (dest));
970 for (i = regstack->top; i >= 0; i--)
971 if (regstack->reg[i] == REGNO (src))
972 break;
974 /* The destination must be dead, or life analysis is borked. */
975 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
977 /* If the source is not live, this is yet another case of
978 uninitialized variables. Load up a NaN instead. */
979 if (i < 0)
980 return move_nan_for_stack_reg (insn, regstack, dest);
982 /* It is possible that the dest is unused after this insn.
983 If so, just pop the src. */
985 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
986 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
987 else
989 regstack->reg[i] = REGNO (dest);
990 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
991 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
994 control_flow_insn_deleted |= control_flow_insn_p (insn);
995 delete_insn (insn);
996 return control_flow_insn_deleted;
999 /* The source reg does not die. */
1001 /* If this appears to be a no-op move, delete it, or else it
1002 will confuse the machine description output patterns. But if
1003 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1004 for REG_UNUSED will not work for deleted insns. */
1006 if (REGNO (src) == REGNO (dest))
1008 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1009 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1011 control_flow_insn_deleted |= control_flow_insn_p (insn);
1012 delete_insn (insn);
1013 return control_flow_insn_deleted;
1016 /* The destination ought to be dead. */
1017 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1019 replace_reg (psrc, get_hard_regnum (regstack, src));
1021 regstack->reg[++regstack->top] = REGNO (dest);
1022 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1023 replace_reg (pdest, FIRST_STACK_REG);
1025 else if (STACK_REG_P (src))
1027 /* Save from a stack reg to MEM, or possibly integer reg. Since
1028 only top of stack may be saved, emit an exchange first if
1029 needs be. */
1031 emit_swap_insn (insn, regstack, src);
1033 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1034 if (note)
1036 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1037 regstack->top--;
1038 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1040 else if ((GET_MODE (src) == XFmode)
1041 && regstack->top < REG_STACK_SIZE - 1)
1043 /* A 387 cannot write an XFmode value to a MEM without
1044 clobbering the source reg. The output code can handle
1045 this by reading back the value from the MEM.
1046 But it is more efficient to use a temp register if one is
1047 available. Push the source value here if the register
1048 stack is not full, and then write the value to memory via
1049 a pop. */
1050 rtx push_rtx;
1051 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1053 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1054 emit_insn_before (push_rtx, insn);
1055 add_reg_note (insn, REG_DEAD, top_stack_reg);
1058 replace_reg (psrc, FIRST_STACK_REG);
1060 else
1062 rtx pat = PATTERN (insn);
1064 gcc_assert (STACK_REG_P (dest));
1066 /* Load from MEM, or possibly integer REG or constant, into the
1067 stack regs. The actual target is always the top of the
1068 stack. The stack mapping is changed to reflect that DEST is
1069 now at top of stack. */
1071 /* The destination ought to be dead. However, there is a
1072 special case with i387 UNSPEC_TAN, where destination is live
1073 (an argument to fptan) but inherent load of 1.0 is modelled
1074 as a load from a constant. */
1075 if (GET_CODE (pat) == PARALLEL
1076 && XVECLEN (pat, 0) == 2
1077 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1078 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1079 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1080 emit_swap_insn (insn, regstack, dest);
1081 else
1082 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1084 gcc_assert (regstack->top < REG_STACK_SIZE);
1086 regstack->reg[++regstack->top] = REGNO (dest);
1087 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1088 replace_reg (pdest, FIRST_STACK_REG);
1091 return control_flow_insn_deleted;
1094 /* A helper function which replaces INSN with a pattern that loads up
1095 a NaN into DEST, then invokes move_for_stack_reg. */
1097 static bool
1098 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1100 rtx pat;
1102 dest = FP_MODE_REG (REGNO (dest), SFmode);
1103 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1104 PATTERN (insn) = pat;
1105 INSN_CODE (insn) = -1;
1107 return move_for_stack_reg (insn, regstack, pat);
1110 /* Swap the condition on a branch, if there is one. Return true if we
1111 found a condition to swap. False if the condition was not used as
1112 such. */
1114 static int
1115 swap_rtx_condition_1 (rtx pat)
1117 const char *fmt;
1118 int i, r = 0;
1120 if (COMPARISON_P (pat))
1122 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1123 r = 1;
1125 else
1127 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1128 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1130 if (fmt[i] == 'E')
1132 int j;
1134 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1135 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1137 else if (fmt[i] == 'e')
1138 r |= swap_rtx_condition_1 (XEXP (pat, i));
1142 return r;
1145 static int
1146 swap_rtx_condition (rtx insn)
1148 rtx pat = PATTERN (insn);
1150 /* We're looking for a single set to cc0 or an HImode temporary. */
1152 if (GET_CODE (pat) == SET
1153 && REG_P (SET_DEST (pat))
1154 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1156 insn = next_flags_user (insn);
1157 if (insn == NULL_RTX)
1158 return 0;
1159 pat = PATTERN (insn);
1162 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1163 with the cc value right now. We may be able to search for one
1164 though. */
1166 if (GET_CODE (pat) == SET
1167 && GET_CODE (SET_SRC (pat)) == UNSPEC
1168 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1170 rtx dest = SET_DEST (pat);
1172 /* Search forward looking for the first use of this value.
1173 Stop at block boundaries. */
1174 while (insn != BB_END (current_block))
1176 insn = NEXT_INSN (insn);
1177 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1178 break;
1179 if (CALL_P (insn))
1180 return 0;
1183 /* We haven't found it. */
1184 if (insn == BB_END (current_block))
1185 return 0;
1187 /* So we've found the insn using this value. If it is anything
1188 other than sahf or the value does not die (meaning we'd have
1189 to search further), then we must give up. */
1190 pat = PATTERN (insn);
1191 if (GET_CODE (pat) != SET
1192 || GET_CODE (SET_SRC (pat)) != UNSPEC
1193 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1194 || ! dead_or_set_p (insn, dest))
1195 return 0;
1197 /* Now we are prepared to handle this as a normal cc0 setter. */
1198 insn = next_flags_user (insn);
1199 if (insn == NULL_RTX)
1200 return 0;
1201 pat = PATTERN (insn);
1204 if (swap_rtx_condition_1 (pat))
1206 int fail = 0;
1207 INSN_CODE (insn) = -1;
1208 if (recog_memoized (insn) == -1)
1209 fail = 1;
1210 /* In case the flags don't die here, recurse to try fix
1211 following user too. */
1212 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1214 insn = next_flags_user (insn);
1215 if (!insn || !swap_rtx_condition (insn))
1216 fail = 1;
1218 if (fail)
1220 swap_rtx_condition_1 (pat);
1221 return 0;
1223 return 1;
1225 return 0;
1228 /* Handle a comparison. Special care needs to be taken to avoid
1229 causing comparisons that a 387 cannot do correctly, such as EQ.
1231 Also, a pop insn may need to be emitted. The 387 does have an
1232 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1233 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1234 set up. */
1236 static void
1237 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1239 rtx *src1, *src2;
1240 rtx src1_note, src2_note;
1242 src1 = get_true_reg (&XEXP (pat_src, 0));
1243 src2 = get_true_reg (&XEXP (pat_src, 1));
1245 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1246 registers that die in this insn - move those to stack top first. */
1247 if ((! STACK_REG_P (*src1)
1248 || (STACK_REG_P (*src2)
1249 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1250 && swap_rtx_condition (insn))
1252 rtx temp;
1253 temp = XEXP (pat_src, 0);
1254 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1255 XEXP (pat_src, 1) = temp;
1257 src1 = get_true_reg (&XEXP (pat_src, 0));
1258 src2 = get_true_reg (&XEXP (pat_src, 1));
1260 INSN_CODE (insn) = -1;
1263 /* We will fix any death note later. */
1265 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1267 if (STACK_REG_P (*src2))
1268 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1269 else
1270 src2_note = NULL_RTX;
1272 emit_swap_insn (insn, regstack, *src1);
1274 replace_reg (src1, FIRST_STACK_REG);
1276 if (STACK_REG_P (*src2))
1277 replace_reg (src2, get_hard_regnum (regstack, *src2));
1279 if (src1_note)
1281 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1282 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1285 /* If the second operand dies, handle that. But if the operands are
1286 the same stack register, don't bother, because only one death is
1287 needed, and it was just handled. */
1289 if (src2_note
1290 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1291 && REGNO (*src1) == REGNO (*src2)))
1293 /* As a special case, two regs may die in this insn if src2 is
1294 next to top of stack and the top of stack also dies. Since
1295 we have already popped src1, "next to top of stack" is really
1296 at top (FIRST_STACK_REG) now. */
1298 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1299 && src1_note)
1301 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1302 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1304 else
1306 /* The 386 can only represent death of the first operand in
1307 the case handled above. In all other cases, emit a separate
1308 pop and remove the death note from here. */
1310 /* link_cc0_insns (insn); */
1312 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1314 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1315 EMIT_AFTER);
1320 /* Substitute new registers in LOC, which is part of a debug insn.
1321 REGSTACK is the current register layout. */
1323 static int
1324 subst_stack_regs_in_debug_insn (rtx *loc, void *data)
1326 rtx *tloc = get_true_reg (loc);
1327 stack regstack = (stack)data;
1328 int hard_regno;
1330 if (!STACK_REG_P (*tloc))
1331 return 0;
1333 if (tloc != loc)
1334 return 0;
1336 hard_regno = get_hard_regnum (regstack, *loc);
1337 gcc_assert (hard_regno >= FIRST_STACK_REG);
1339 replace_reg (loc, hard_regno);
1341 return -1;
1344 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1345 is the current register layout. Return whether a control flow insn
1346 was deleted in the process. */
1348 static bool
1349 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1351 rtx *dest, *src;
1352 bool control_flow_insn_deleted = false;
1354 switch (GET_CODE (pat))
1356 case USE:
1357 /* Deaths in USE insns can happen in non optimizing compilation.
1358 Handle them by popping the dying register. */
1359 src = get_true_reg (&XEXP (pat, 0));
1360 if (STACK_REG_P (*src)
1361 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1363 /* USEs are ignored for liveness information so USEs of dead
1364 register might happen. */
1365 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1366 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1367 return control_flow_insn_deleted;
1369 /* Uninitialized USE might happen for functions returning uninitialized
1370 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1371 so it is safe to ignore the use here. This is consistent with behavior
1372 of dataflow analyzer that ignores USE too. (This also imply that
1373 forcibly initializing the register to NaN here would lead to ICE later,
1374 since the REG_DEAD notes are not issued.) */
1375 break;
1377 case VAR_LOCATION:
1378 gcc_unreachable ();
1380 case CLOBBER:
1382 rtx note;
1384 dest = get_true_reg (&XEXP (pat, 0));
1385 if (STACK_REG_P (*dest))
1387 note = find_reg_note (insn, REG_DEAD, *dest);
1389 if (pat != PATTERN (insn))
1391 /* The fix_truncdi_1 pattern wants to be able to
1392 allocate its own scratch register. It does this by
1393 clobbering an fp reg so that it is assured of an
1394 empty reg-stack register. If the register is live,
1395 kill it now. Remove the DEAD/UNUSED note so we
1396 don't try to kill it later too.
1398 In reality the UNUSED note can be absent in some
1399 complicated cases when the register is reused for
1400 partially set variable. */
1402 if (note)
1403 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1404 else
1405 note = find_reg_note (insn, REG_UNUSED, *dest);
1406 if (note)
1407 remove_note (insn, note);
1408 replace_reg (dest, FIRST_STACK_REG + 1);
1410 else
1412 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1413 indicates an uninitialized value. Because reload removed
1414 all other clobbers, this must be due to a function
1415 returning without a value. Load up a NaN. */
1417 if (!note)
1419 rtx t = *dest;
1420 if (COMPLEX_MODE_P (GET_MODE (t)))
1422 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1423 if (get_hard_regnum (regstack, u) == -1)
1425 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1426 rtx insn2 = emit_insn_before (pat2, insn);
1427 control_flow_insn_deleted
1428 |= move_nan_for_stack_reg (insn2, regstack, u);
1431 if (get_hard_regnum (regstack, t) == -1)
1432 control_flow_insn_deleted
1433 |= move_nan_for_stack_reg (insn, regstack, t);
1437 break;
1440 case SET:
1442 rtx *src1 = (rtx *) 0, *src2;
1443 rtx src1_note, src2_note;
1444 rtx pat_src;
1446 dest = get_true_reg (&SET_DEST (pat));
1447 src = get_true_reg (&SET_SRC (pat));
1448 pat_src = SET_SRC (pat);
1450 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1451 if (STACK_REG_P (*src)
1452 || (STACK_REG_P (*dest)
1453 && (REG_P (*src) || MEM_P (*src)
1454 || GET_CODE (*src) == CONST_DOUBLE)))
1456 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1457 break;
1460 switch (GET_CODE (pat_src))
1462 case COMPARE:
1463 compare_for_stack_reg (insn, regstack, pat_src);
1464 break;
1466 case CALL:
1468 int count;
1469 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1470 --count >= 0;)
1472 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1473 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1476 replace_reg (dest, FIRST_STACK_REG);
1477 break;
1479 case REG:
1480 /* This is a `tstM2' case. */
1481 gcc_assert (*dest == cc0_rtx);
1482 src1 = src;
1484 /* Fall through. */
1486 case FLOAT_TRUNCATE:
1487 case SQRT:
1488 case ABS:
1489 case NEG:
1490 /* These insns only operate on the top of the stack. DEST might
1491 be cc0_rtx if we're processing a tstM pattern. Also, it's
1492 possible that the tstM case results in a REG_DEAD note on the
1493 source. */
1495 if (src1 == 0)
1496 src1 = get_true_reg (&XEXP (pat_src, 0));
1498 emit_swap_insn (insn, regstack, *src1);
1500 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1502 if (STACK_REG_P (*dest))
1503 replace_reg (dest, FIRST_STACK_REG);
1505 if (src1_note)
1507 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1508 regstack->top--;
1509 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1512 replace_reg (src1, FIRST_STACK_REG);
1513 break;
1515 case MINUS:
1516 case DIV:
1517 /* On i386, reversed forms of subM3 and divM3 exist for
1518 MODE_FLOAT, so the same code that works for addM3 and mulM3
1519 can be used. */
1520 case MULT:
1521 case PLUS:
1522 /* These insns can accept the top of stack as a destination
1523 from a stack reg or mem, or can use the top of stack as a
1524 source and some other stack register (possibly top of stack)
1525 as a destination. */
1527 src1 = get_true_reg (&XEXP (pat_src, 0));
1528 src2 = get_true_reg (&XEXP (pat_src, 1));
1530 /* We will fix any death note later. */
1532 if (STACK_REG_P (*src1))
1533 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1534 else
1535 src1_note = NULL_RTX;
1536 if (STACK_REG_P (*src2))
1537 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1538 else
1539 src2_note = NULL_RTX;
1541 /* If either operand is not a stack register, then the dest
1542 must be top of stack. */
1544 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1545 emit_swap_insn (insn, regstack, *dest);
1546 else
1548 /* Both operands are REG. If neither operand is already
1549 at the top of stack, choose to make the one that is the
1550 dest the new top of stack. */
1552 int src1_hard_regnum, src2_hard_regnum;
1554 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1555 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1557 /* If the source is not live, this is yet another case of
1558 uninitialized variables. Load up a NaN instead. */
1559 if (src1_hard_regnum == -1)
1561 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1562 rtx insn2 = emit_insn_before (pat2, insn);
1563 control_flow_insn_deleted
1564 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1566 if (src2_hard_regnum == -1)
1568 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1569 rtx insn2 = emit_insn_before (pat2, insn);
1570 control_flow_insn_deleted
1571 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1574 if (src1_hard_regnum != FIRST_STACK_REG
1575 && src2_hard_regnum != FIRST_STACK_REG)
1576 emit_swap_insn (insn, regstack, *dest);
1579 if (STACK_REG_P (*src1))
1580 replace_reg (src1, get_hard_regnum (regstack, *src1));
1581 if (STACK_REG_P (*src2))
1582 replace_reg (src2, get_hard_regnum (regstack, *src2));
1584 if (src1_note)
1586 rtx src1_reg = XEXP (src1_note, 0);
1588 /* If the register that dies is at the top of stack, then
1589 the destination is somewhere else - merely substitute it.
1590 But if the reg that dies is not at top of stack, then
1591 move the top of stack to the dead reg, as though we had
1592 done the insn and then a store-with-pop. */
1594 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1596 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1597 replace_reg (dest, get_hard_regnum (regstack, *dest));
1599 else
1601 int regno = get_hard_regnum (regstack, src1_reg);
1603 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1604 replace_reg (dest, regno);
1606 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1607 = regstack->reg[regstack->top];
1610 CLEAR_HARD_REG_BIT (regstack->reg_set,
1611 REGNO (XEXP (src1_note, 0)));
1612 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1613 regstack->top--;
1615 else if (src2_note)
1617 rtx src2_reg = XEXP (src2_note, 0);
1618 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1620 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1621 replace_reg (dest, get_hard_regnum (regstack, *dest));
1623 else
1625 int regno = get_hard_regnum (regstack, src2_reg);
1627 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1628 replace_reg (dest, regno);
1630 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1631 = regstack->reg[regstack->top];
1634 CLEAR_HARD_REG_BIT (regstack->reg_set,
1635 REGNO (XEXP (src2_note, 0)));
1636 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1637 regstack->top--;
1639 else
1641 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1642 replace_reg (dest, get_hard_regnum (regstack, *dest));
1645 /* Keep operand 1 matching with destination. */
1646 if (COMMUTATIVE_ARITH_P (pat_src)
1647 && REG_P (*src1) && REG_P (*src2)
1648 && REGNO (*src1) != REGNO (*dest))
1650 int tmp = REGNO (*src1);
1651 replace_reg (src1, REGNO (*src2));
1652 replace_reg (src2, tmp);
1654 break;
1656 case UNSPEC:
1657 switch (XINT (pat_src, 1))
1659 case UNSPEC_FIST:
1661 case UNSPEC_FIST_FLOOR:
1662 case UNSPEC_FIST_CEIL:
1664 /* These insns only operate on the top of the stack. */
1666 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1667 emit_swap_insn (insn, regstack, *src1);
1669 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1671 if (STACK_REG_P (*dest))
1672 replace_reg (dest, FIRST_STACK_REG);
1674 if (src1_note)
1676 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1677 regstack->top--;
1678 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1681 replace_reg (src1, FIRST_STACK_REG);
1682 break;
1684 case UNSPEC_FXAM:
1686 /* This insn only operate on the top of the stack. */
1688 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1689 emit_swap_insn (insn, regstack, *src1);
1691 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1693 replace_reg (src1, FIRST_STACK_REG);
1695 if (src1_note)
1697 remove_regno_note (insn, REG_DEAD,
1698 REGNO (XEXP (src1_note, 0)));
1699 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1700 EMIT_AFTER);
1703 break;
1705 case UNSPEC_SIN:
1706 case UNSPEC_COS:
1707 case UNSPEC_FRNDINT:
1708 case UNSPEC_F2XM1:
1710 case UNSPEC_FRNDINT_FLOOR:
1711 case UNSPEC_FRNDINT_CEIL:
1712 case UNSPEC_FRNDINT_TRUNC:
1713 case UNSPEC_FRNDINT_MASK_PM:
1715 /* Above insns operate on the top of the stack. */
1717 case UNSPEC_SINCOS_COS:
1718 case UNSPEC_XTRACT_FRACT:
1720 /* Above insns operate on the top two stack slots,
1721 first part of one input, double output insn. */
1723 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1725 emit_swap_insn (insn, regstack, *src1);
1727 /* Input should never die, it is replaced with output. */
1728 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1729 gcc_assert (!src1_note);
1731 if (STACK_REG_P (*dest))
1732 replace_reg (dest, FIRST_STACK_REG);
1734 replace_reg (src1, FIRST_STACK_REG);
1735 break;
1737 case UNSPEC_SINCOS_SIN:
1738 case UNSPEC_XTRACT_EXP:
1740 /* These insns operate on the top two stack slots,
1741 second part of one input, double output insn. */
1743 regstack->top++;
1744 /* FALLTHRU */
1746 case UNSPEC_TAN:
1748 /* For UNSPEC_TAN, regstack->top is already increased
1749 by inherent load of constant 1.0. */
1751 /* Output value is generated in the second stack slot.
1752 Move current value from second slot to the top. */
1753 regstack->reg[regstack->top]
1754 = regstack->reg[regstack->top - 1];
1756 gcc_assert (STACK_REG_P (*dest));
1758 regstack->reg[regstack->top - 1] = REGNO (*dest);
1759 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1760 replace_reg (dest, FIRST_STACK_REG + 1);
1762 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1764 replace_reg (src1, FIRST_STACK_REG);
1765 break;
1767 case UNSPEC_FPATAN:
1768 case UNSPEC_FYL2X:
1769 case UNSPEC_FYL2XP1:
1770 /* These insns operate on the top two stack slots. */
1772 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1773 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1775 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1776 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1778 swap_to_top (insn, regstack, *src1, *src2);
1780 replace_reg (src1, FIRST_STACK_REG);
1781 replace_reg (src2, FIRST_STACK_REG + 1);
1783 if (src1_note)
1784 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1785 if (src2_note)
1786 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1788 /* Pop both input operands from the stack. */
1789 CLEAR_HARD_REG_BIT (regstack->reg_set,
1790 regstack->reg[regstack->top]);
1791 CLEAR_HARD_REG_BIT (regstack->reg_set,
1792 regstack->reg[regstack->top - 1]);
1793 regstack->top -= 2;
1795 /* Push the result back onto the stack. */
1796 regstack->reg[++regstack->top] = REGNO (*dest);
1797 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1798 replace_reg (dest, FIRST_STACK_REG);
1799 break;
1801 case UNSPEC_FSCALE_FRACT:
1802 case UNSPEC_FPREM_F:
1803 case UNSPEC_FPREM1_F:
1804 /* These insns operate on the top two stack slots,
1805 first part of double input, double output insn. */
1807 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1808 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1810 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1811 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1813 /* Inputs should never die, they are
1814 replaced with outputs. */
1815 gcc_assert (!src1_note);
1816 gcc_assert (!src2_note);
1818 swap_to_top (insn, regstack, *src1, *src2);
1820 /* Push the result back onto stack. Empty stack slot
1821 will be filled in second part of insn. */
1822 if (STACK_REG_P (*dest))
1824 regstack->reg[regstack->top] = REGNO (*dest);
1825 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1826 replace_reg (dest, FIRST_STACK_REG);
1829 replace_reg (src1, FIRST_STACK_REG);
1830 replace_reg (src2, FIRST_STACK_REG + 1);
1831 break;
1833 case UNSPEC_FSCALE_EXP:
1834 case UNSPEC_FPREM_U:
1835 case UNSPEC_FPREM1_U:
1836 /* These insns operate on the top two stack slots,
1837 second part of double input, double output insn. */
1839 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1840 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1842 /* Push the result back onto stack. Fill empty slot from
1843 first part of insn and fix top of stack pointer. */
1844 if (STACK_REG_P (*dest))
1846 regstack->reg[regstack->top - 1] = REGNO (*dest);
1847 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1848 replace_reg (dest, FIRST_STACK_REG + 1);
1851 replace_reg (src1, FIRST_STACK_REG);
1852 replace_reg (src2, FIRST_STACK_REG + 1);
1853 break;
1855 case UNSPEC_C2_FLAG:
1856 /* This insn operates on the top two stack slots,
1857 third part of C2 setting double input insn. */
1859 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1860 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1862 replace_reg (src1, FIRST_STACK_REG);
1863 replace_reg (src2, FIRST_STACK_REG + 1);
1864 break;
1866 case UNSPEC_SAHF:
1867 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1868 The combination matches the PPRO fcomi instruction. */
1870 pat_src = XVECEXP (pat_src, 0, 0);
1871 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1872 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1873 /* Fall through. */
1875 case UNSPEC_FNSTSW:
1876 /* Combined fcomp+fnstsw generated for doing well with
1877 CSE. When optimizing this would have been broken
1878 up before now. */
1880 pat_src = XVECEXP (pat_src, 0, 0);
1881 gcc_assert (GET_CODE (pat_src) == COMPARE);
1883 compare_for_stack_reg (insn, regstack, pat_src);
1884 break;
1886 default:
1887 gcc_unreachable ();
1889 break;
1891 case IF_THEN_ELSE:
1892 /* This insn requires the top of stack to be the destination. */
1894 src1 = get_true_reg (&XEXP (pat_src, 1));
1895 src2 = get_true_reg (&XEXP (pat_src, 2));
1897 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1898 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1900 /* If the comparison operator is an FP comparison operator,
1901 it is handled correctly by compare_for_stack_reg () who
1902 will move the destination to the top of stack. But if the
1903 comparison operator is not an FP comparison operator, we
1904 have to handle it here. */
1905 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1906 && REGNO (*dest) != regstack->reg[regstack->top])
1908 /* In case one of operands is the top of stack and the operands
1909 dies, it is safe to make it the destination operand by
1910 reversing the direction of cmove and avoid fxch. */
1911 if ((REGNO (*src1) == regstack->reg[regstack->top]
1912 && src1_note)
1913 || (REGNO (*src2) == regstack->reg[regstack->top]
1914 && src2_note))
1916 int idx1 = (get_hard_regnum (regstack, *src1)
1917 - FIRST_STACK_REG);
1918 int idx2 = (get_hard_regnum (regstack, *src2)
1919 - FIRST_STACK_REG);
1921 /* Make reg-stack believe that the operands are already
1922 swapped on the stack */
1923 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1924 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1926 /* Reverse condition to compensate the operand swap.
1927 i386 do have comparison always reversible. */
1928 PUT_CODE (XEXP (pat_src, 0),
1929 reversed_comparison_code (XEXP (pat_src, 0), insn));
1931 else
1932 emit_swap_insn (insn, regstack, *dest);
1936 rtx src_note [3];
1937 int i;
1939 src_note[0] = 0;
1940 src_note[1] = src1_note;
1941 src_note[2] = src2_note;
1943 if (STACK_REG_P (*src1))
1944 replace_reg (src1, get_hard_regnum (regstack, *src1));
1945 if (STACK_REG_P (*src2))
1946 replace_reg (src2, get_hard_regnum (regstack, *src2));
1948 for (i = 1; i <= 2; i++)
1949 if (src_note [i])
1951 int regno = REGNO (XEXP (src_note[i], 0));
1953 /* If the register that dies is not at the top of
1954 stack, then move the top of stack to the dead reg.
1955 Top of stack should never die, as it is the
1956 destination. */
1957 gcc_assert (regno != regstack->reg[regstack->top]);
1958 remove_regno_note (insn, REG_DEAD, regno);
1959 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1960 EMIT_AFTER);
1964 /* Make dest the top of stack. Add dest to regstack if
1965 not present. */
1966 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1967 regstack->reg[++regstack->top] = REGNO (*dest);
1968 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1969 replace_reg (dest, FIRST_STACK_REG);
1970 break;
1972 default:
1973 gcc_unreachable ();
1975 break;
1978 default:
1979 break;
1982 return control_flow_insn_deleted;
1985 /* Substitute hard regnums for any stack regs in INSN, which has
1986 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1987 before the insn, and is updated with changes made here.
1989 There are several requirements and assumptions about the use of
1990 stack-like regs in asm statements. These rules are enforced by
1991 record_asm_stack_regs; see comments there for details. Any
1992 asm_operands left in the RTL at this point may be assume to meet the
1993 requirements, since record_asm_stack_regs removes any problem asm. */
1995 static void
1996 subst_asm_stack_regs (rtx insn, stack regstack)
1998 rtx body = PATTERN (insn);
1999 int alt;
2001 rtx *note_reg; /* Array of note contents */
2002 rtx **note_loc; /* Address of REG field of each note */
2003 enum reg_note *note_kind; /* The type of each note */
2005 rtx *clobber_reg = 0;
2006 rtx **clobber_loc = 0;
2008 struct stack_def temp_stack;
2009 int n_notes;
2010 int n_clobbers;
2011 rtx note;
2012 int i;
2013 int n_inputs, n_outputs;
2015 if (! check_asm_stack_operands (insn))
2016 return;
2018 /* Find out what the constraints required. If no constraint
2019 alternative matches, that is a compiler bug: we should have caught
2020 such an insn in check_asm_stack_operands. */
2021 extract_insn (insn);
2022 constrain_operands (1);
2023 alt = which_alternative;
2025 preprocess_constraints ();
2027 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2029 gcc_assert (alt >= 0);
2031 /* Strip SUBREGs here to make the following code simpler. */
2032 for (i = 0; i < recog_data.n_operands; i++)
2033 if (GET_CODE (recog_data.operand[i]) == SUBREG
2034 && REG_P (SUBREG_REG (recog_data.operand[i])))
2036 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2037 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2040 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2042 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2043 i++;
2045 note_reg = XALLOCAVEC (rtx, i);
2046 note_loc = XALLOCAVEC (rtx *, i);
2047 note_kind = XALLOCAVEC (enum reg_note, i);
2049 n_notes = 0;
2050 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2052 rtx reg = XEXP (note, 0);
2053 rtx *loc = & XEXP (note, 0);
2055 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2057 loc = & SUBREG_REG (reg);
2058 reg = SUBREG_REG (reg);
2061 if (STACK_REG_P (reg)
2062 && (REG_NOTE_KIND (note) == REG_DEAD
2063 || REG_NOTE_KIND (note) == REG_UNUSED))
2065 note_reg[n_notes] = reg;
2066 note_loc[n_notes] = loc;
2067 note_kind[n_notes] = REG_NOTE_KIND (note);
2068 n_notes++;
2072 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2074 n_clobbers = 0;
2076 if (GET_CODE (body) == PARALLEL)
2078 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2079 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2081 for (i = 0; i < XVECLEN (body, 0); i++)
2082 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2084 rtx clobber = XVECEXP (body, 0, i);
2085 rtx reg = XEXP (clobber, 0);
2086 rtx *loc = & XEXP (clobber, 0);
2088 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2090 loc = & SUBREG_REG (reg);
2091 reg = SUBREG_REG (reg);
2094 if (STACK_REG_P (reg))
2096 clobber_reg[n_clobbers] = reg;
2097 clobber_loc[n_clobbers] = loc;
2098 n_clobbers++;
2103 temp_stack = *regstack;
2105 /* Put the input regs into the desired place in TEMP_STACK. */
2107 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2108 if (STACK_REG_P (recog_data.operand[i])
2109 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2110 FLOAT_REGS)
2111 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2113 /* If an operand needs to be in a particular reg in
2114 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2115 these constraints are for single register classes, and
2116 reload guaranteed that operand[i] is already in that class,
2117 we can just use REGNO (recog_data.operand[i]) to know which
2118 actual reg this operand needs to be in. */
2120 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2122 gcc_assert (regno >= 0);
2124 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2126 /* recog_data.operand[i] is not in the right place. Find
2127 it and swap it with whatever is already in I's place.
2128 K is where recog_data.operand[i] is now. J is where it
2129 should be. */
2130 int j, k, temp;
2132 k = temp_stack.top - (regno - FIRST_STACK_REG);
2133 j = (temp_stack.top
2134 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2136 temp = temp_stack.reg[k];
2137 temp_stack.reg[k] = temp_stack.reg[j];
2138 temp_stack.reg[j] = temp;
2142 /* Emit insns before INSN to make sure the reg-stack is in the right
2143 order. */
2145 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2147 /* Make the needed input register substitutions. Do death notes and
2148 clobbers too, because these are for inputs, not outputs. */
2150 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2151 if (STACK_REG_P (recog_data.operand[i]))
2153 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2155 gcc_assert (regnum >= 0);
2157 replace_reg (recog_data.operand_loc[i], regnum);
2160 for (i = 0; i < n_notes; i++)
2161 if (note_kind[i] == REG_DEAD)
2163 int regnum = get_hard_regnum (regstack, note_reg[i]);
2165 gcc_assert (regnum >= 0);
2167 replace_reg (note_loc[i], regnum);
2170 for (i = 0; i < n_clobbers; i++)
2172 /* It's OK for a CLOBBER to reference a reg that is not live.
2173 Don't try to replace it in that case. */
2174 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2176 if (regnum >= 0)
2178 /* Sigh - clobbers always have QImode. But replace_reg knows
2179 that these regs can't be MODE_INT and will assert. Just put
2180 the right reg there without calling replace_reg. */
2182 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2186 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2188 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2189 if (STACK_REG_P (recog_data.operand[i]))
2191 /* An input reg is implicitly popped if it is tied to an
2192 output, or if there is a CLOBBER for it. */
2193 int j;
2195 for (j = 0; j < n_clobbers; j++)
2196 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2197 break;
2199 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2201 /* recog_data.operand[i] might not be at the top of stack.
2202 But that's OK, because all we need to do is pop the
2203 right number of regs off of the top of the reg-stack.
2204 record_asm_stack_regs guaranteed that all implicitly
2205 popped regs were grouped at the top of the reg-stack. */
2207 CLEAR_HARD_REG_BIT (regstack->reg_set,
2208 regstack->reg[regstack->top]);
2209 regstack->top--;
2213 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2214 Note that there isn't any need to substitute register numbers.
2215 ??? Explain why this is true. */
2217 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2219 /* See if there is an output for this hard reg. */
2220 int j;
2222 for (j = 0; j < n_outputs; j++)
2223 if (STACK_REG_P (recog_data.operand[j])
2224 && REGNO (recog_data.operand[j]) == (unsigned) i)
2226 regstack->reg[++regstack->top] = i;
2227 SET_HARD_REG_BIT (regstack->reg_set, i);
2228 break;
2232 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2233 input that the asm didn't implicitly pop. If the asm didn't
2234 implicitly pop an input reg, that reg will still be live.
2236 Note that we can't use find_regno_note here: the register numbers
2237 in the death notes have already been substituted. */
2239 for (i = 0; i < n_outputs; i++)
2240 if (STACK_REG_P (recog_data.operand[i]))
2242 int j;
2244 for (j = 0; j < n_notes; j++)
2245 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2246 && note_kind[j] == REG_UNUSED)
2248 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2249 EMIT_AFTER);
2250 break;
2254 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2255 if (STACK_REG_P (recog_data.operand[i]))
2257 int j;
2259 for (j = 0; j < n_notes; j++)
2260 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2261 && note_kind[j] == REG_DEAD
2262 && TEST_HARD_REG_BIT (regstack->reg_set,
2263 REGNO (recog_data.operand[i])))
2265 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2266 EMIT_AFTER);
2267 break;
2272 /* Substitute stack hard reg numbers for stack virtual registers in
2273 INSN. Non-stack register numbers are not changed. REGSTACK is the
2274 current stack content. Insns may be emitted as needed to arrange the
2275 stack for the 387 based on the contents of the insn. Return whether
2276 a control flow insn was deleted in the process. */
2278 static bool
2279 subst_stack_regs (rtx insn, stack regstack)
2281 rtx *note_link, note;
2282 bool control_flow_insn_deleted = false;
2283 int i;
2285 if (CALL_P (insn))
2287 int top = regstack->top;
2289 /* If there are any floating point parameters to be passed in
2290 registers for this call, make sure they are in the right
2291 order. */
2293 if (top >= 0)
2295 straighten_stack (insn, regstack);
2297 /* Now mark the arguments as dead after the call. */
2299 while (regstack->top >= 0)
2301 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2302 regstack->top--;
2307 /* Do the actual substitution if any stack regs are mentioned.
2308 Since we only record whether entire insn mentions stack regs, and
2309 subst_stack_regs_pat only works for patterns that contain stack regs,
2310 we must check each pattern in a parallel here. A call_value_pop could
2311 fail otherwise. */
2313 if (stack_regs_mentioned (insn))
2315 int n_operands = asm_noperands (PATTERN (insn));
2316 if (n_operands >= 0)
2318 /* This insn is an `asm' with operands. Decode the operands,
2319 decide how many are inputs, and do register substitution.
2320 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2322 subst_asm_stack_regs (insn, regstack);
2323 return control_flow_insn_deleted;
2326 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2327 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2329 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2331 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2332 XVECEXP (PATTERN (insn), 0, i)
2333 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2334 control_flow_insn_deleted
2335 |= subst_stack_regs_pat (insn, regstack,
2336 XVECEXP (PATTERN (insn), 0, i));
2339 else
2340 control_flow_insn_deleted
2341 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2344 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2345 REG_UNUSED will already have been dealt with, so just return. */
2347 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2348 return control_flow_insn_deleted;
2350 /* If this a noreturn call, we can't insert pop insns after it.
2351 Instead, reset the stack state to empty. */
2352 if (CALL_P (insn)
2353 && find_reg_note (insn, REG_NORETURN, NULL))
2355 regstack->top = -1;
2356 CLEAR_HARD_REG_SET (regstack->reg_set);
2357 return control_flow_insn_deleted;
2360 /* If there is a REG_UNUSED note on a stack register on this insn,
2361 the indicated reg must be popped. The REG_UNUSED note is removed,
2362 since the form of the newly emitted pop insn references the reg,
2363 making it no longer `unset'. */
2365 note_link = &REG_NOTES (insn);
2366 for (note = *note_link; note; note = XEXP (note, 1))
2367 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2369 *note_link = XEXP (note, 1);
2370 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2372 else
2373 note_link = &XEXP (note, 1);
2375 return control_flow_insn_deleted;
2378 /* Change the organization of the stack so that it fits a new basic
2379 block. Some registers might have to be popped, but there can never be
2380 a register live in the new block that is not now live.
2382 Insert any needed insns before or after INSN, as indicated by
2383 WHERE. OLD is the original stack layout, and NEW is the desired
2384 form. OLD is updated to reflect the code emitted, i.e., it will be
2385 the same as NEW upon return.
2387 This function will not preserve block_end[]. But that information
2388 is no longer needed once this has executed. */
2390 static void
2391 change_stack (rtx insn, stack old, stack new_stack, enum emit_where where)
2393 int reg;
2394 int update_end = 0;
2395 int i;
2397 /* Stack adjustments for the first insn in a block update the
2398 current_block's stack_in instead of inserting insns directly.
2399 compensate_edges will add the necessary code later. */
2400 if (current_block
2401 && starting_stack_p
2402 && where == EMIT_BEFORE)
2404 BLOCK_INFO (current_block)->stack_in = *new_stack;
2405 starting_stack_p = false;
2406 *old = *new_stack;
2407 return;
2410 /* We will be inserting new insns "backwards". If we are to insert
2411 after INSN, find the next insn, and insert before it. */
2413 if (where == EMIT_AFTER)
2415 if (current_block && BB_END (current_block) == insn)
2416 update_end = 1;
2417 insn = NEXT_INSN (insn);
2420 /* Initialize partially dead variables. */
2421 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2422 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2423 && !TEST_HARD_REG_BIT (old->reg_set, i))
2425 old->reg[++old->top] = i;
2426 SET_HARD_REG_BIT (old->reg_set, i);
2427 emit_insn_before (gen_rtx_SET (VOIDmode,
2428 FP_MODE_REG (i, SFmode), not_a_num), insn);
2431 /* Pop any registers that are not needed in the new block. */
2433 /* If the destination block's stack already has a specified layout
2434 and contains two or more registers, use a more intelligent algorithm
2435 to pop registers that minimizes the number number of fxchs below. */
2436 if (new_stack->top > 0)
2438 bool slots[REG_STACK_SIZE];
2439 int pops[REG_STACK_SIZE];
2440 int next, dest, topsrc;
2442 /* First pass to determine the free slots. */
2443 for (reg = 0; reg <= new_stack->top; reg++)
2444 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2446 /* Second pass to allocate preferred slots. */
2447 topsrc = -1;
2448 for (reg = old->top; reg > new_stack->top; reg--)
2449 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2451 dest = -1;
2452 for (next = 0; next <= new_stack->top; next++)
2453 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2455 /* If this is a preference for the new top of stack, record
2456 the fact by remembering it's old->reg in topsrc. */
2457 if (next == new_stack->top)
2458 topsrc = reg;
2459 slots[next] = true;
2460 dest = next;
2461 break;
2463 pops[reg] = dest;
2465 else
2466 pops[reg] = reg;
2468 /* Intentionally, avoid placing the top of stack in it's correct
2469 location, if we still need to permute the stack below and we
2470 can usefully place it somewhere else. This is the case if any
2471 slot is still unallocated, in which case we should place the
2472 top of stack there. */
2473 if (topsrc != -1)
2474 for (reg = 0; reg < new_stack->top; reg++)
2475 if (!slots[reg])
2477 pops[topsrc] = reg;
2478 slots[new_stack->top] = false;
2479 slots[reg] = true;
2480 break;
2483 /* Third pass allocates remaining slots and emits pop insns. */
2484 next = new_stack->top;
2485 for (reg = old->top; reg > new_stack->top; reg--)
2487 dest = pops[reg];
2488 if (dest == -1)
2490 /* Find next free slot. */
2491 while (slots[next])
2492 next--;
2493 dest = next--;
2495 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2496 EMIT_BEFORE);
2499 else
2501 /* The following loop attempts to maximize the number of times we
2502 pop the top of the stack, as this permits the use of the faster
2503 ffreep instruction on platforms that support it. */
2504 int live, next;
2506 live = 0;
2507 for (reg = 0; reg <= old->top; reg++)
2508 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2509 live++;
2511 next = live;
2512 while (old->top >= live)
2513 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2515 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2516 next--;
2517 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2518 EMIT_BEFORE);
2520 else
2521 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2522 EMIT_BEFORE);
2525 if (new_stack->top == -2)
2527 /* If the new block has never been processed, then it can inherit
2528 the old stack order. */
2530 new_stack->top = old->top;
2531 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2533 else
2535 /* This block has been entered before, and we must match the
2536 previously selected stack order. */
2538 /* By now, the only difference should be the order of the stack,
2539 not their depth or liveliness. */
2541 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2542 gcc_assert (old->top == new_stack->top);
2544 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2545 swaps until the stack is correct.
2547 The worst case number of swaps emitted is N + 2, where N is the
2548 depth of the stack. In some cases, the reg at the top of
2549 stack may be correct, but swapped anyway in order to fix
2550 other regs. But since we never swap any other reg away from
2551 its correct slot, this algorithm will converge. */
2553 if (new_stack->top != -1)
2556 /* Swap the reg at top of stack into the position it is
2557 supposed to be in, until the correct top of stack appears. */
2559 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2561 for (reg = new_stack->top; reg >= 0; reg--)
2562 if (new_stack->reg[reg] == old->reg[old->top])
2563 break;
2565 gcc_assert (reg != -1);
2567 emit_swap_insn (insn, old,
2568 FP_MODE_REG (old->reg[reg], DFmode));
2571 /* See if any regs remain incorrect. If so, bring an
2572 incorrect reg to the top of stack, and let the while loop
2573 above fix it. */
2575 for (reg = new_stack->top; reg >= 0; reg--)
2576 if (new_stack->reg[reg] != old->reg[reg])
2578 emit_swap_insn (insn, old,
2579 FP_MODE_REG (old->reg[reg], DFmode));
2580 break;
2582 } while (reg >= 0);
2584 /* At this point there must be no differences. */
2586 for (reg = old->top; reg >= 0; reg--)
2587 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2590 if (update_end)
2591 BB_END (current_block) = PREV_INSN (insn);
2594 /* Print stack configuration. */
2596 static void
2597 print_stack (FILE *file, stack s)
2599 if (! file)
2600 return;
2602 if (s->top == -2)
2603 fprintf (file, "uninitialized\n");
2604 else if (s->top == -1)
2605 fprintf (file, "empty\n");
2606 else
2608 int i;
2609 fputs ("[ ", file);
2610 for (i = 0; i <= s->top; ++i)
2611 fprintf (file, "%d ", s->reg[i]);
2612 fputs ("]\n", file);
2616 /* This function was doing life analysis. We now let the regular live
2617 code do it's job, so we only need to check some extra invariants
2618 that reg-stack expects. Primary among these being that all registers
2619 are initialized before use.
2621 The function returns true when code was emitted to CFG edges and
2622 commit_edge_insertions needs to be called. */
2624 static int
2625 convert_regs_entry (void)
2627 int inserted = 0;
2628 edge e;
2629 edge_iterator ei;
2631 /* Load something into each stack register live at function entry.
2632 Such live registers can be caused by uninitialized variables or
2633 functions not returning values on all paths. In order to keep
2634 the push/pop code happy, and to not scrog the register stack, we
2635 must put something in these registers. Use a QNaN.
2637 Note that we are inserting converted code here. This code is
2638 never seen by the convert_regs pass. */
2640 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2642 basic_block block = e->dest;
2643 block_info bi = BLOCK_INFO (block);
2644 int reg, top = -1;
2646 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2647 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2649 rtx init;
2651 bi->stack_in.reg[++top] = reg;
2653 init = gen_rtx_SET (VOIDmode,
2654 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2655 not_a_num);
2656 insert_insn_on_edge (init, e);
2657 inserted = 1;
2660 bi->stack_in.top = top;
2663 return inserted;
2666 /* Construct the desired stack for function exit. This will either
2667 be `empty', or the function return value at top-of-stack. */
2669 static void
2670 convert_regs_exit (void)
2672 int value_reg_low, value_reg_high;
2673 stack output_stack;
2674 rtx retvalue;
2676 retvalue = stack_result (current_function_decl);
2677 value_reg_low = value_reg_high = -1;
2678 if (retvalue)
2680 value_reg_low = REGNO (retvalue);
2681 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2684 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2685 if (value_reg_low == -1)
2686 output_stack->top = -1;
2687 else
2689 int reg;
2691 output_stack->top = value_reg_high - value_reg_low;
2692 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2694 output_stack->reg[value_reg_high - reg] = reg;
2695 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2700 /* Copy the stack info from the end of edge E's source block to the
2701 start of E's destination block. */
2703 static void
2704 propagate_stack (edge e)
2706 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2707 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2708 int reg;
2710 /* Preserve the order of the original stack, but check whether
2711 any pops are needed. */
2712 dest_stack->top = -1;
2713 for (reg = 0; reg <= src_stack->top; ++reg)
2714 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2715 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2717 /* Push in any partially dead values. */
2718 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2719 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2720 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2721 dest_stack->reg[++dest_stack->top] = reg;
2725 /* Adjust the stack of edge E's source block on exit to match the stack
2726 of it's target block upon input. The stack layouts of both blocks
2727 should have been defined by now. */
2729 static bool
2730 compensate_edge (edge e)
2732 basic_block source = e->src, target = e->dest;
2733 stack target_stack = &BLOCK_INFO (target)->stack_in;
2734 stack source_stack = &BLOCK_INFO (source)->stack_out;
2735 struct stack_def regstack;
2736 int reg;
2738 if (dump_file)
2739 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2741 gcc_assert (target_stack->top != -2);
2743 /* Check whether stacks are identical. */
2744 if (target_stack->top == source_stack->top)
2746 for (reg = target_stack->top; reg >= 0; --reg)
2747 if (target_stack->reg[reg] != source_stack->reg[reg])
2748 break;
2750 if (reg == -1)
2752 if (dump_file)
2753 fprintf (dump_file, "no changes needed\n");
2754 return false;
2758 if (dump_file)
2760 fprintf (dump_file, "correcting stack to ");
2761 print_stack (dump_file, target_stack);
2764 /* Abnormal calls may appear to have values live in st(0), but the
2765 abnormal return path will not have actually loaded the values. */
2766 if (e->flags & EDGE_ABNORMAL_CALL)
2768 /* Assert that the lifetimes are as we expect -- one value
2769 live at st(0) on the end of the source block, and no
2770 values live at the beginning of the destination block.
2771 For complex return values, we may have st(1) live as well. */
2772 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2773 gcc_assert (target_stack->top == -1);
2774 return false;
2777 /* Handle non-call EH edges specially. The normal return path have
2778 values in registers. These will be popped en masse by the unwind
2779 library. */
2780 if (e->flags & EDGE_EH)
2782 gcc_assert (target_stack->top == -1);
2783 return false;
2786 /* We don't support abnormal edges. Global takes care to
2787 avoid any live register across them, so we should never
2788 have to insert instructions on such edges. */
2789 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2791 /* Make a copy of source_stack as change_stack is destructive. */
2792 regstack = *source_stack;
2794 /* It is better to output directly to the end of the block
2795 instead of to the edge, because emit_swap can do minimal
2796 insn scheduling. We can do this when there is only one
2797 edge out, and it is not abnormal. */
2798 if (EDGE_COUNT (source->succs) == 1)
2800 current_block = source;
2801 change_stack (BB_END (source), &regstack, target_stack,
2802 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2804 else
2806 rtx seq, after;
2808 current_block = NULL;
2809 start_sequence ();
2811 /* ??? change_stack needs some point to emit insns after. */
2812 after = emit_note (NOTE_INSN_DELETED);
2814 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2816 seq = get_insns ();
2817 end_sequence ();
2819 insert_insn_on_edge (seq, e);
2820 return true;
2822 return false;
2825 /* Traverse all non-entry edges in the CFG, and emit the necessary
2826 edge compensation code to change the stack from stack_out of the
2827 source block to the stack_in of the destination block. */
2829 static bool
2830 compensate_edges (void)
2832 bool inserted = false;
2833 basic_block bb;
2835 starting_stack_p = false;
2837 FOR_EACH_BB (bb)
2838 if (bb != ENTRY_BLOCK_PTR)
2840 edge e;
2841 edge_iterator ei;
2843 FOR_EACH_EDGE (e, ei, bb->succs)
2844 inserted |= compensate_edge (e);
2846 return inserted;
2849 /* Select the better of two edges E1 and E2 to use to determine the
2850 stack layout for their shared destination basic block. This is
2851 typically the more frequently executed. The edge E1 may be NULL
2852 (in which case E2 is returned), but E2 is always non-NULL. */
2854 static edge
2855 better_edge (edge e1, edge e2)
2857 if (!e1)
2858 return e2;
2860 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2861 return e1;
2862 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2863 return e2;
2865 if (e1->count > e2->count)
2866 return e1;
2867 if (e1->count < e2->count)
2868 return e2;
2870 /* Prefer critical edges to minimize inserting compensation code on
2871 critical edges. */
2873 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2874 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2876 /* Avoid non-deterministic behavior. */
2877 return (e1->src->index < e2->src->index) ? e1 : e2;
2880 /* Convert stack register references in one block. */
2882 static void
2883 convert_regs_1 (basic_block block)
2885 struct stack_def regstack;
2886 block_info bi = BLOCK_INFO (block);
2887 int reg;
2888 rtx insn, next;
2889 bool control_flow_insn_deleted = false;
2890 int debug_insns_with_starting_stack = 0;
2892 any_malformed_asm = false;
2894 /* Choose an initial stack layout, if one hasn't already been chosen. */
2895 if (bi->stack_in.top == -2)
2897 edge e, beste = NULL;
2898 edge_iterator ei;
2900 /* Select the best incoming edge (typically the most frequent) to
2901 use as a template for this basic block. */
2902 FOR_EACH_EDGE (e, ei, block->preds)
2903 if (BLOCK_INFO (e->src)->done)
2904 beste = better_edge (beste, e);
2906 if (beste)
2907 propagate_stack (beste);
2908 else
2910 /* No predecessors. Create an arbitrary input stack. */
2911 bi->stack_in.top = -1;
2912 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2913 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2914 bi->stack_in.reg[++bi->stack_in.top] = reg;
2918 if (dump_file)
2920 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2921 print_stack (dump_file, &bi->stack_in);
2924 /* Process all insns in this block. Keep track of NEXT so that we
2925 don't process insns emitted while substituting in INSN. */
2926 current_block = block;
2927 next = BB_HEAD (block);
2928 regstack = bi->stack_in;
2929 starting_stack_p = true;
2933 insn = next;
2934 next = NEXT_INSN (insn);
2936 /* Ensure we have not missed a block boundary. */
2937 gcc_assert (next);
2938 if (insn == BB_END (block))
2939 next = NULL;
2941 /* Don't bother processing unless there is a stack reg
2942 mentioned or if it's a CALL_INSN. */
2943 if (DEBUG_INSN_P (insn))
2945 if (starting_stack_p)
2946 debug_insns_with_starting_stack++;
2947 else
2949 for_each_rtx (&PATTERN (insn), subst_stack_regs_in_debug_insn,
2950 &regstack);
2952 /* Nothing must ever die at a debug insn. If something
2953 is referenced in it that becomes dead, it should have
2954 died before and the reference in the debug insn
2955 should have been removed so as to avoid changing code
2956 generation. */
2957 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2960 else if (stack_regs_mentioned (insn)
2961 || CALL_P (insn))
2963 if (dump_file)
2965 fprintf (dump_file, " insn %d input stack: ",
2966 INSN_UID (insn));
2967 print_stack (dump_file, &regstack);
2969 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2970 starting_stack_p = false;
2973 while (next);
2975 if (debug_insns_with_starting_stack)
2977 /* Since it's the first non-debug instruction that determines
2978 the stack requirements of the current basic block, we refrain
2979 from updating debug insns before it in the loop above, and
2980 fix them up here. */
2981 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2982 insn = NEXT_INSN (insn))
2984 if (!DEBUG_INSN_P (insn))
2985 continue;
2987 debug_insns_with_starting_stack--;
2988 for_each_rtx (&PATTERN (insn), subst_stack_regs_in_debug_insn,
2989 &bi->stack_in);
2993 if (dump_file)
2995 fprintf (dump_file, "Expected live registers [");
2996 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2997 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2998 fprintf (dump_file, " %d", reg);
2999 fprintf (dump_file, " ]\nOutput stack: ");
3000 print_stack (dump_file, &regstack);
3003 insn = BB_END (block);
3004 if (JUMP_P (insn))
3005 insn = PREV_INSN (insn);
3007 /* If the function is declared to return a value, but it returns one
3008 in only some cases, some registers might come live here. Emit
3009 necessary moves for them. */
3011 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3013 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3014 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3016 rtx set;
3018 if (dump_file)
3019 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3021 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3022 insn = emit_insn_after (set, insn);
3023 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3027 /* Amongst the insns possibly deleted during the substitution process above,
3028 might have been the only trapping insn in the block. We purge the now
3029 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3030 called at the end of convert_regs. The order in which we process the
3031 blocks ensures that we never delete an already processed edge.
3033 Note that, at this point, the CFG may have been damaged by the emission
3034 of instructions after an abnormal call, which moves the basic block end
3035 (and is the reason why we call fixup_abnormal_edges later). So we must
3036 be sure that the trapping insn has been deleted before trying to purge
3037 dead edges, otherwise we risk purging valid edges.
3039 ??? We are normally supposed not to delete trapping insns, so we pretend
3040 that the insns deleted above don't actually trap. It would have been
3041 better to detect this earlier and avoid creating the EH edge in the first
3042 place, still, but we don't have enough information at that time. */
3044 if (control_flow_insn_deleted)
3045 purge_dead_edges (block);
3047 /* Something failed if the stack lives don't match. If we had malformed
3048 asms, we zapped the instruction itself, but that didn't produce the
3049 same pattern of register kills as before. */
3051 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3052 || any_malformed_asm);
3053 bi->stack_out = regstack;
3054 bi->done = true;
3057 /* Convert registers in all blocks reachable from BLOCK. */
3059 static void
3060 convert_regs_2 (basic_block block)
3062 basic_block *stack, *sp;
3064 /* We process the blocks in a top-down manner, in a way such that one block
3065 is only processed after all its predecessors. The number of predecessors
3066 of every block has already been computed. */
3068 stack = XNEWVEC (basic_block, n_basic_blocks);
3069 sp = stack;
3071 *sp++ = block;
3075 edge e;
3076 edge_iterator ei;
3078 block = *--sp;
3080 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3081 some dead EH outgoing edge after the deletion of the trapping
3082 insn inside the block. Since the number of predecessors of
3083 BLOCK's successors was computed based on the initial edge set,
3084 we check the necessity to process some of these successors
3085 before such an edge deletion may happen. However, there is
3086 a pitfall: if BLOCK is the only predecessor of a successor and
3087 the edge between them happens to be deleted, the successor
3088 becomes unreachable and should not be processed. The problem
3089 is that there is no way to preventively detect this case so we
3090 stack the successor in all cases and hand over the task of
3091 fixing up the discrepancy to convert_regs_1. */
3093 FOR_EACH_EDGE (e, ei, block->succs)
3094 if (! (e->flags & EDGE_DFS_BACK))
3096 BLOCK_INFO (e->dest)->predecessors--;
3097 if (!BLOCK_INFO (e->dest)->predecessors)
3098 *sp++ = e->dest;
3101 convert_regs_1 (block);
3103 while (sp != stack);
3105 free (stack);
3108 /* Traverse all basic blocks in a function, converting the register
3109 references in each insn from the "flat" register file that gcc uses,
3110 to the stack-like registers the 387 uses. */
3112 static void
3113 convert_regs (void)
3115 int inserted;
3116 basic_block b;
3117 edge e;
3118 edge_iterator ei;
3120 /* Initialize uninitialized registers on function entry. */
3121 inserted = convert_regs_entry ();
3123 /* Construct the desired stack for function exit. */
3124 convert_regs_exit ();
3125 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3127 /* ??? Future: process inner loops first, and give them arbitrary
3128 initial stacks which emit_swap_insn can modify. This ought to
3129 prevent double fxch that often appears at the head of a loop. */
3131 /* Process all blocks reachable from all entry points. */
3132 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3133 convert_regs_2 (e->dest);
3135 /* ??? Process all unreachable blocks. Though there's no excuse
3136 for keeping these even when not optimizing. */
3137 FOR_EACH_BB (b)
3139 block_info bi = BLOCK_INFO (b);
3141 if (! bi->done)
3142 convert_regs_2 (b);
3145 inserted |= compensate_edges ();
3147 clear_aux_for_blocks ();
3149 fixup_abnormal_edges ();
3150 if (inserted)
3151 commit_edge_insertions ();
3153 if (dump_file)
3154 fputc ('\n', dump_file);
3157 /* Convert register usage from "flat" register file usage to a "stack
3158 register file. FILE is the dump file, if used.
3160 Construct a CFG and run life analysis. Then convert each insn one
3161 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3162 code duplication created when the converter inserts pop insns on
3163 the edges. */
3165 static bool
3166 reg_to_stack (void)
3168 basic_block bb;
3169 int i;
3170 int max_uid;
3172 /* Clean up previous run. */
3173 if (stack_regs_mentioned_data != NULL)
3174 VEC_free (char, heap, stack_regs_mentioned_data);
3176 /* See if there is something to do. Flow analysis is quite
3177 expensive so we might save some compilation time. */
3178 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3179 if (df_regs_ever_live_p (i))
3180 break;
3181 if (i > LAST_STACK_REG)
3182 return false;
3184 df_note_add_problem ();
3185 df_analyze ();
3187 mark_dfs_back_edges ();
3189 /* Set up block info for each basic block. */
3190 alloc_aux_for_blocks (sizeof (struct block_info_def));
3191 FOR_EACH_BB (bb)
3193 block_info bi = BLOCK_INFO (bb);
3194 edge_iterator ei;
3195 edge e;
3196 int reg;
3198 FOR_EACH_EDGE (e, ei, bb->preds)
3199 if (!(e->flags & EDGE_DFS_BACK)
3200 && e->src != ENTRY_BLOCK_PTR)
3201 bi->predecessors++;
3203 /* Set current register status at last instruction `uninitialized'. */
3204 bi->stack_in.top = -2;
3206 /* Copy live_at_end and live_at_start into temporaries. */
3207 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3209 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3210 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3211 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3212 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3216 /* Create the replacement registers up front. */
3217 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3219 enum machine_mode mode;
3220 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3221 mode != VOIDmode;
3222 mode = GET_MODE_WIDER_MODE (mode))
3223 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3224 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3225 mode != VOIDmode;
3226 mode = GET_MODE_WIDER_MODE (mode))
3227 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3230 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3232 /* A QNaN for initializing uninitialized variables.
3234 ??? We can't load from constant memory in PIC mode, because
3235 we're inserting these instructions before the prologue and
3236 the PIC register hasn't been set up. In that case, fall back
3237 on zero, which we can get from `fldz'. */
3239 if ((flag_pic && !TARGET_64BIT)
3240 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3241 not_a_num = CONST0_RTX (SFmode);
3242 else
3244 REAL_VALUE_TYPE r;
3246 real_nan (&r, "", 1, SFmode);
3247 not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3248 not_a_num = force_const_mem (SFmode, not_a_num);
3251 /* Allocate a cache for stack_regs_mentioned. */
3252 max_uid = get_max_uid ();
3253 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3254 memset (VEC_address (char, stack_regs_mentioned_data),
3255 0, sizeof (char) * (max_uid + 1));
3257 convert_regs ();
3259 free_aux_for_blocks ();
3260 return true;
3262 #endif /* STACK_REGS */
3264 static bool
3265 gate_handle_stack_regs (void)
3267 #ifdef STACK_REGS
3268 return 1;
3269 #else
3270 return 0;
3271 #endif
3274 struct rtl_opt_pass pass_stack_regs =
3277 RTL_PASS,
3278 "*stack_regs", /* name */
3279 gate_handle_stack_regs, /* gate */
3280 NULL, /* execute */
3281 NULL, /* sub */
3282 NULL, /* next */
3283 0, /* static_pass_number */
3284 TV_REG_STACK, /* tv_id */
3285 0, /* properties_required */
3286 0, /* properties_provided */
3287 0, /* properties_destroyed */
3288 0, /* todo_flags_start */
3289 0 /* todo_flags_finish */
3293 /* Convert register usage from flat register file usage to a stack
3294 register file. */
3295 static unsigned int
3296 rest_of_handle_stack_regs (void)
3298 #ifdef STACK_REGS
3299 reg_to_stack ();
3300 regstack_completed = 1;
3301 #endif
3302 return 0;
3305 struct rtl_opt_pass pass_stack_regs_run =
3308 RTL_PASS,
3309 "stack", /* name */
3310 NULL, /* gate */
3311 rest_of_handle_stack_regs, /* execute */
3312 NULL, /* sub */
3313 NULL, /* next */
3314 0, /* static_pass_number */
3315 TV_REG_STACK, /* tv_id */
3316 0, /* properties_required */
3317 0, /* properties_provided */
3318 0, /* properties_destroyed */
3319 0, /* todo_flags_start */
3320 TODO_df_finish | TODO_verify_rtl_sharing |
3321 TODO_dump_func |
3322 TODO_ggc_collect /* todo_flags_finish */