1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2018 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
38 o some heuristics to choose insn alternative to improve the
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
47 There is special code for preventing all LRA and this pass cycling
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
90 ... r <- s (new insn -- restore)
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
111 #include "coretypes.h"
118 #include "memmodel.h"
126 #include "addresses.h"
129 #include "rtl-error.h"
133 #include "print-rtl.h"
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
138 static int bb_reload_num
;
140 /* The current insn being processed and corresponding its single set
141 (NULL otherwise), its data (basic block, the insn data, the insn
142 static data, and the mode of each operand). */
143 static rtx_insn
*curr_insn
;
144 static rtx curr_insn_set
;
145 static basic_block curr_bb
;
146 static lra_insn_recog_data_t curr_id
;
147 static struct lra_static_insn_data
*curr_static_id
;
148 static machine_mode curr_operand_mode
[MAX_RECOG_OPERANDS
];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150 (e.g. constant) and whose subreg is given operand of the current
151 insn. VOIDmode in all other cases. */
152 static machine_mode original_subreg_reg_mode
[MAX_RECOG_OPERANDS
];
156 /* Start numbers for new registers and insns at the current constraints
158 static int new_regno_start
;
159 static int new_insn_uid_start
;
161 /* If LOC is nonnull, strip any outer subreg from it. */
163 strip_subreg (rtx
*loc
)
165 return loc
&& GET_CODE (*loc
) == SUBREG
? &SUBREG_REG (*loc
) : loc
;
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169 register, use a hard register from its allocno class. */
171 get_try_hard_regno (int regno
)
174 enum reg_class rclass
;
176 if ((hard_regno
= regno
) >= FIRST_PSEUDO_REGISTER
)
177 hard_regno
= lra_get_regno_hard_regno (regno
);
180 rclass
= lra_get_allocno_class (regno
);
181 if (rclass
== NO_REGS
)
183 return ira_class_hard_regs
[rclass
][0];
186 /* Return the hard regno of X after removing its subreg. If X is not
187 a register or a subreg of a register, return -1. If X is a pseudo,
188 use its assignment. If FINAL_P return the final hard regno which will
189 be after elimination. */
191 get_hard_regno (rtx x
, bool final_p
)
198 reg
= SUBREG_REG (x
);
201 if (! HARD_REGISTER_NUM_P (hard_regno
= REGNO (reg
)))
202 hard_regno
= lra_get_regno_hard_regno (hard_regno
);
206 hard_regno
= lra_get_elimination_hard_regno (hard_regno
);
208 hard_regno
+= subreg_regno_offset (hard_regno
, GET_MODE (reg
),
209 SUBREG_BYTE (x
), GET_MODE (x
));
213 /* If REGNO is a hard register or has been allocated a hard register,
214 return the class of that register. If REGNO is a reload pseudo
215 created by the current constraints pass, return its allocno class.
216 Return NO_REGS otherwise. */
217 static enum reg_class
218 get_reg_class (int regno
)
222 if (! HARD_REGISTER_NUM_P (hard_regno
= regno
))
223 hard_regno
= lra_get_regno_hard_regno (regno
);
226 hard_regno
= lra_get_elimination_hard_regno (hard_regno
);
227 return REGNO_REG_CLASS (hard_regno
);
229 if (regno
>= new_regno_start
)
230 return lra_get_allocno_class (regno
);
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235 CL. Use elimination first if REG is a hard register. If REG is a
236 reload pseudo created by this constraints pass, assume that it will
237 be allocated a hard register from its allocno class, but allow that
238 class to be narrowed to CL if it is currently a superset of CL.
240 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241 REGNO (reg), or NO_REGS if no change in its class was needed. */
243 in_class_p (rtx reg
, enum reg_class cl
, enum reg_class
*new_class
)
245 enum reg_class rclass
, common_class
;
246 machine_mode reg_mode
;
247 int class_size
, hard_regno
, nregs
, i
, j
;
248 int regno
= REGNO (reg
);
250 if (new_class
!= NULL
)
251 *new_class
= NO_REGS
;
252 if (regno
< FIRST_PSEUDO_REGISTER
)
255 rtx
*final_loc
= &final_reg
;
257 lra_eliminate_reg_if_possible (final_loc
);
258 return TEST_HARD_REG_BIT (reg_class_contents
[cl
], REGNO (*final_loc
));
260 reg_mode
= GET_MODE (reg
);
261 rclass
= get_reg_class (regno
);
262 if (regno
< new_regno_start
263 /* Do not allow the constraints for reload instructions to
264 influence the classes of new pseudos. These reloads are
265 typically moves that have many alternatives, and restricting
266 reload pseudos for one alternative may lead to situations
267 where other reload pseudos are no longer allocatable. */
268 || (INSN_UID (curr_insn
) >= new_insn_uid_start
269 && curr_insn_set
!= NULL
270 && ((OBJECT_P (SET_SRC (curr_insn_set
))
271 && ! CONSTANT_P (SET_SRC (curr_insn_set
)))
272 || (GET_CODE (SET_SRC (curr_insn_set
)) == SUBREG
273 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set
)))
274 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set
)))))))
275 /* When we don't know what class will be used finally for reload
276 pseudos, we use ALL_REGS. */
277 return ((regno
>= new_regno_start
&& rclass
== ALL_REGS
)
278 || (rclass
!= NO_REGS
&& ira_class_subset_p
[rclass
][cl
]
279 && ! hard_reg_set_subset_p (reg_class_contents
[cl
],
280 lra_no_alloc_regs
)));
283 common_class
= ira_reg_class_subset
[rclass
][cl
];
284 if (new_class
!= NULL
)
285 *new_class
= common_class
;
286 if (hard_reg_set_subset_p (reg_class_contents
[common_class
],
289 /* Check that there are enough allocatable regs. */
290 class_size
= ira_class_hard_regs_num
[common_class
];
291 for (i
= 0; i
< class_size
; i
++)
293 hard_regno
= ira_class_hard_regs
[common_class
][i
];
294 nregs
= hard_regno_nregs (hard_regno
, reg_mode
);
297 for (j
= 0; j
< nregs
; j
++)
298 if (TEST_HARD_REG_BIT (lra_no_alloc_regs
, hard_regno
+ j
)
299 || ! TEST_HARD_REG_BIT (reg_class_contents
[common_class
],
309 /* Return true if REGNO satisfies a memory constraint. */
313 return get_reg_class (regno
) == NO_REGS
;
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317 space AS, and check that each pseudo has the proper kind of hard
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED
,
321 rtx addr
, addr_space_t as
)
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324 lra_assert (ADDR_SPACE_GENERIC_P (as
));
325 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
331 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
);
336 /* Temporarily eliminates registers in an address (for the lifetime of
338 class address_eliminator
{
340 address_eliminator (struct address_info
*ad
);
341 ~address_eliminator ();
344 struct address_info
*m_ad
;
352 address_eliminator::address_eliminator (struct address_info
*ad
)
354 m_base_loc (strip_subreg (ad
->base_term
)),
355 m_base_reg (NULL_RTX
),
356 m_index_loc (strip_subreg (ad
->index_term
)),
357 m_index_reg (NULL_RTX
)
359 if (m_base_loc
!= NULL
)
361 m_base_reg
= *m_base_loc
;
362 lra_eliminate_reg_if_possible (m_base_loc
);
363 if (m_ad
->base_term2
!= NULL
)
364 *m_ad
->base_term2
= *m_ad
->base_term
;
366 if (m_index_loc
!= NULL
)
368 m_index_reg
= *m_index_loc
;
369 lra_eliminate_reg_if_possible (m_index_loc
);
373 address_eliminator::~address_eliminator ()
375 if (m_base_loc
&& *m_base_loc
!= m_base_reg
)
377 *m_base_loc
= m_base_reg
;
378 if (m_ad
->base_term2
!= NULL
)
379 *m_ad
->base_term2
= *m_ad
->base_term
;
381 if (m_index_loc
&& *m_index_loc
!= m_index_reg
)
382 *m_index_loc
= m_index_reg
;
385 /* Return true if the eliminated form of AD is a legitimate target address. */
387 valid_address_p (struct address_info
*ad
)
389 address_eliminator
eliminator (ad
);
390 return valid_address_p (ad
->mode
, *ad
->outer
, ad
->as
);
393 /* Return true if the eliminated form of memory reference OP satisfies
394 extra (special) memory constraint CONSTRAINT. */
396 satisfies_memory_constraint_p (rtx op
, enum constraint_num constraint
)
398 struct address_info ad
;
400 decompose_mem_address (&ad
, op
);
401 address_eliminator
eliminator (&ad
);
402 return constraint_satisfied_p (op
, constraint
);
405 /* Return true if the eliminated form of address AD satisfies extra
406 address constraint CONSTRAINT. */
408 satisfies_address_constraint_p (struct address_info
*ad
,
409 enum constraint_num constraint
)
411 address_eliminator
eliminator (ad
);
412 return constraint_satisfied_p (*ad
->outer
, constraint
);
415 /* Return true if the eliminated form of address OP satisfies extra
416 address constraint CONSTRAINT. */
418 satisfies_address_constraint_p (rtx op
, enum constraint_num constraint
)
420 struct address_info ad
;
422 decompose_lea_address (&ad
, &op
);
423 return satisfies_address_constraint_p (&ad
, constraint
);
426 /* Initiate equivalences for LRA. As we keep original equivalences
427 before any elimination, we need to make copies otherwise any change
428 in insns might change the equivalences. */
430 lra_init_equiv (void)
432 ira_expand_reg_equiv ();
433 for (int i
= FIRST_PSEUDO_REGISTER
; i
< max_reg_num (); i
++)
437 if ((res
= ira_reg_equiv
[i
].memory
) != NULL_RTX
)
438 ira_reg_equiv
[i
].memory
= copy_rtx (res
);
439 if ((res
= ira_reg_equiv
[i
].invariant
) != NULL_RTX
)
440 ira_reg_equiv
[i
].invariant
= copy_rtx (res
);
444 static rtx
loc_equivalence_callback (rtx
, const_rtx
, void *);
446 /* Update equivalence for REGNO. We need to this as the equivalence
447 might contain other pseudos which are changed by their
450 update_equiv (int regno
)
454 if ((x
= ira_reg_equiv
[regno
].memory
) != NULL_RTX
)
455 ira_reg_equiv
[regno
].memory
456 = simplify_replace_fn_rtx (x
, NULL_RTX
, loc_equivalence_callback
,
458 if ((x
= ira_reg_equiv
[regno
].invariant
) != NULL_RTX
)
459 ira_reg_equiv
[regno
].invariant
460 = simplify_replace_fn_rtx (x
, NULL_RTX
, loc_equivalence_callback
,
464 /* If we have decided to substitute X with another value, return that
465 value, otherwise return X. */
472 if (! REG_P (x
) || (regno
= REGNO (x
)) < FIRST_PSEUDO_REGISTER
473 || ! ira_reg_equiv
[regno
].defined_p
474 || ! ira_reg_equiv
[regno
].profitable_p
475 || lra_get_regno_hard_regno (regno
) >= 0)
477 if ((res
= ira_reg_equiv
[regno
].memory
) != NULL_RTX
)
479 if (targetm
.cannot_substitute_mem_equiv_p (res
))
483 if ((res
= ira_reg_equiv
[regno
].constant
) != NULL_RTX
)
485 if ((res
= ira_reg_equiv
[regno
].invariant
) != NULL_RTX
)
490 /* If we have decided to substitute X with the equivalent value,
491 return that value after elimination for INSN, otherwise return
494 get_equiv_with_elimination (rtx x
, rtx_insn
*insn
)
496 rtx res
= get_equiv (x
);
498 if (x
== res
|| CONSTANT_P (res
))
500 return lra_eliminate_regs_1 (insn
, res
, GET_MODE (res
),
501 false, false, 0, true);
504 /* Set up curr_operand_mode. */
506 init_curr_operand_mode (void)
508 int nop
= curr_static_id
->n_operands
;
509 for (int i
= 0; i
< nop
; i
++)
511 machine_mode mode
= GET_MODE (*curr_id
->operand_loc
[i
]);
512 if (mode
== VOIDmode
)
514 /* The .md mode for address operands is the mode of the
515 addressed value rather than the mode of the address itself. */
516 if (curr_id
->icode
>= 0 && curr_static_id
->operand
[i
].is_address
)
519 mode
= curr_static_id
->operand
[i
].mode
;
521 curr_operand_mode
[i
] = mode
;
527 /* The page contains code to reuse input reloads. */
529 /* Structure describes input reload of the current insns. */
532 /* True for input reload of matched operands. */
534 /* Reloaded value. */
536 /* Reload pseudo used. */
540 /* The number of elements in the following array. */
541 static int curr_insn_input_reloads_num
;
542 /* Array containing info about input reloads. It is used to find the
543 same input reload and reuse the reload pseudo in this case. */
544 static struct input_reload curr_insn_input_reloads
[LRA_MAX_INSN_RELOADS
];
546 /* Initiate data concerning reuse of input reloads for the current
549 init_curr_insn_input_reloads (void)
551 curr_insn_input_reloads_num
= 0;
554 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
555 created input reload pseudo (only if TYPE is not OP_OUT). Don't
556 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
557 wrapped up in SUBREG. The result pseudo is returned through
558 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
559 reused the already created input reload pseudo. Use TITLE to
560 describe new registers for debug purposes. */
562 get_reload_reg (enum op_type type
, machine_mode mode
, rtx original
,
563 enum reg_class rclass
, bool in_subreg_p
,
564 const char *title
, rtx
*result_reg
)
567 enum reg_class new_class
;
568 bool unique_p
= false;
573 = lra_create_new_reg_with_unique_value (mode
, original
, rclass
, title
);
576 /* Prevent reuse value of expression with side effects,
577 e.g. volatile memory. */
578 if (! side_effects_p (original
))
579 for (i
= 0; i
< curr_insn_input_reloads_num
; i
++)
581 if (! curr_insn_input_reloads
[i
].match_p
582 && rtx_equal_p (curr_insn_input_reloads
[i
].input
, original
)
583 && in_class_p (curr_insn_input_reloads
[i
].reg
, rclass
, &new_class
))
585 rtx reg
= curr_insn_input_reloads
[i
].reg
;
587 /* If input is equal to original and both are VOIDmode,
588 GET_MODE (reg) might be still different from mode.
589 Ensure we don't return *result_reg with wrong mode. */
590 if (GET_MODE (reg
) != mode
)
594 if (maybe_lt (GET_MODE_SIZE (GET_MODE (reg
)),
595 GET_MODE_SIZE (mode
)))
597 reg
= lowpart_subreg (mode
, reg
, GET_MODE (reg
));
598 if (reg
== NULL_RTX
|| GET_CODE (reg
) != SUBREG
)
602 if (lra_dump_file
!= NULL
)
604 fprintf (lra_dump_file
, " Reuse r%d for reload ", regno
);
605 dump_value_slim (lra_dump_file
, original
, 1);
607 if (new_class
!= lra_get_allocno_class (regno
))
608 lra_change_class (regno
, new_class
, ", change to", false);
609 if (lra_dump_file
!= NULL
)
610 fprintf (lra_dump_file
, "\n");
613 /* If we have an input reload with a different mode, make sure it
614 will get a different hard reg. */
615 else if (REG_P (original
)
616 && REG_P (curr_insn_input_reloads
[i
].input
)
617 && REGNO (original
) == REGNO (curr_insn_input_reloads
[i
].input
)
618 && (GET_MODE (original
)
619 != GET_MODE (curr_insn_input_reloads
[i
].input
)))
622 *result_reg
= (unique_p
623 ? lra_create_new_reg_with_unique_value
624 : lra_create_new_reg
) (mode
, original
, rclass
, title
);
625 lra_assert (curr_insn_input_reloads_num
< LRA_MAX_INSN_RELOADS
);
626 curr_insn_input_reloads
[curr_insn_input_reloads_num
].input
= original
;
627 curr_insn_input_reloads
[curr_insn_input_reloads_num
].match_p
= false;
628 curr_insn_input_reloads
[curr_insn_input_reloads_num
++].reg
= *result_reg
;
634 /* The page contains code to extract memory address parts. */
636 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos. */
638 ok_for_index_p_nonstrict (rtx reg
)
640 unsigned regno
= REGNO (reg
);
642 return regno
>= FIRST_PSEUDO_REGISTER
|| REGNO_OK_FOR_INDEX_P (regno
);
645 /* A version of regno_ok_for_base_p for use here, when all pseudos
646 should count as OK. Arguments as for regno_ok_for_base_p. */
648 ok_for_base_p_nonstrict (rtx reg
, machine_mode mode
, addr_space_t as
,
649 enum rtx_code outer_code
, enum rtx_code index_code
)
651 unsigned regno
= REGNO (reg
);
653 if (regno
>= FIRST_PSEUDO_REGISTER
)
655 return ok_for_base_p_1 (regno
, mode
, as
, outer_code
, index_code
);
660 /* The page contains major code to choose the current insn alternative
661 and generate reloads for it. */
663 /* Return the offset from REGNO of the least significant register
666 This function is used to tell whether two registers satisfy
667 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
669 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
670 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
672 lra_constraint_offset (int regno
, machine_mode mode
)
674 lra_assert (regno
< FIRST_PSEUDO_REGISTER
);
676 scalar_int_mode int_mode
;
678 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
679 && GET_MODE_SIZE (int_mode
) > UNITS_PER_WORD
)
680 return hard_regno_nregs (regno
, mode
) - 1;
684 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
685 if they are the same hard reg, and has special hacks for
686 auto-increment and auto-decrement. This is specifically intended for
687 process_alt_operands to use in determining whether two operands
688 match. X is the operand whose number is the lower of the two.
690 It is supposed that X is the output operand and Y is the input
691 operand. Y_HARD_REGNO is the final hard regno of register Y or
692 register in subreg Y as we know it now. Otherwise, it is a
695 operands_match_p (rtx x
, rtx y
, int y_hard_regno
)
698 RTX_CODE code
= GET_CODE (x
);
703 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
704 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
&& REG_P (SUBREG_REG (y
)))))
708 i
= get_hard_regno (x
, false);
712 if ((j
= y_hard_regno
) < 0)
715 i
+= lra_constraint_offset (i
, GET_MODE (x
));
716 j
+= lra_constraint_offset (j
, GET_MODE (y
));
721 /* If two operands must match, because they are really a single
722 operand of an assembler insn, then two post-increments are invalid
723 because the assembler insn would increment only once. On the
724 other hand, a post-increment matches ordinary indexing if the
725 post-increment is the output operand. */
726 if (code
== POST_DEC
|| code
== POST_INC
|| code
== POST_MODIFY
)
727 return operands_match_p (XEXP (x
, 0), y
, y_hard_regno
);
729 /* Two pre-increments are invalid because the assembler insn would
730 increment only once. On the other hand, a pre-increment matches
731 ordinary indexing if the pre-increment is the input operand. */
732 if (GET_CODE (y
) == PRE_DEC
|| GET_CODE (y
) == PRE_INC
733 || GET_CODE (y
) == PRE_MODIFY
)
734 return operands_match_p (x
, XEXP (y
, 0), -1);
738 if (code
== REG
&& REG_P (y
))
739 return REGNO (x
) == REGNO (y
);
741 if (code
== REG
&& GET_CODE (y
) == SUBREG
&& REG_P (SUBREG_REG (y
))
742 && x
== SUBREG_REG (y
))
744 if (GET_CODE (y
) == REG
&& code
== SUBREG
&& REG_P (SUBREG_REG (x
))
745 && SUBREG_REG (x
) == y
)
748 /* Now we have disposed of all the cases in which different rtx
750 if (code
!= GET_CODE (y
))
753 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
754 if (GET_MODE (x
) != GET_MODE (y
))
763 return label_ref_label (x
) == label_ref_label (y
);
765 return XSTR (x
, 0) == XSTR (y
, 0);
771 /* Compare the elements. If any pair of corresponding elements fail
772 to match, return false for the whole things. */
774 fmt
= GET_RTX_FORMAT (code
);
775 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
781 if (XWINT (x
, i
) != XWINT (y
, i
))
786 if (XINT (x
, i
) != XINT (y
, i
))
791 if (maybe_ne (SUBREG_BYTE (x
), SUBREG_BYTE (y
)))
796 val
= operands_match_p (XEXP (x
, i
), XEXP (y
, i
), -1);
805 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
807 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; --j
)
809 val
= operands_match_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
), -1);
815 /* It is believed that rtx's at this level will never
816 contain anything but integers and other rtx's, except for
817 within LABEL_REFs and SYMBOL_REFs. */
825 /* True if X is a constant that can be forced into the constant pool.
826 MODE is the mode of the operand, or VOIDmode if not known. */
827 #define CONST_POOL_OK_P(MODE, X) \
828 ((MODE) != VOIDmode \
830 && GET_CODE (X) != HIGH \
831 && GET_MODE_SIZE (MODE).is_constant () \
832 && !targetm.cannot_force_const_mem (MODE, X))
834 /* True if C is a non-empty register class that has too few registers
835 to be safely used as a reload target class. */
836 #define SMALL_REGISTER_CLASS_P(C) \
837 (ira_class_hard_regs_num [(C)] == 1 \
838 || (ira_class_hard_regs_num [(C)] >= 1 \
839 && targetm.class_likely_spilled_p (C)))
841 /* If REG is a reload pseudo, try to make its class satisfying CL. */
843 narrow_reload_pseudo_class (rtx reg
, enum reg_class cl
)
845 enum reg_class rclass
;
847 /* Do not make more accurate class from reloads generated. They are
848 mostly moves with a lot of constraints. Making more accurate
849 class may results in very narrow class and impossibility of find
850 registers for several reloads of one insn. */
851 if (INSN_UID (curr_insn
) >= new_insn_uid_start
)
853 if (GET_CODE (reg
) == SUBREG
)
854 reg
= SUBREG_REG (reg
);
855 if (! REG_P (reg
) || (int) REGNO (reg
) < new_regno_start
)
857 if (in_class_p (reg
, cl
, &rclass
) && rclass
!= cl
)
858 lra_change_class (REGNO (reg
), rclass
, " Change to", true);
861 /* Searches X for any reference to a reg with the same value as REGNO,
862 returning the rtx of the reference found if any. Otherwise,
865 regno_val_use_in (unsigned int regno
, rtx x
)
871 if (REG_P (x
) && lra_reg_info
[REGNO (x
)].val
== lra_reg_info
[regno
].val
)
874 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
875 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
879 if ((tem
= regno_val_use_in (regno
, XEXP (x
, i
))))
882 else if (fmt
[i
] == 'E')
883 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
884 if ((tem
= regno_val_use_in (regno
, XVECEXP (x
, i
, j
))))
891 /* Return true if all current insn non-output operands except INS (it
892 has a negaitve end marker) do not use pseudos with the same value
895 check_conflict_input_operands (int regno
, signed char *ins
)
898 int n_operands
= curr_static_id
->n_operands
;
900 for (int nop
= 0; nop
< n_operands
; nop
++)
901 if (! curr_static_id
->operand
[nop
].is_operator
902 && curr_static_id
->operand
[nop
].type
!= OP_OUT
)
904 for (int i
= 0; (in
= ins
[i
]) >= 0; i
++)
908 && regno_val_use_in (regno
, *curr_id
->operand_loc
[nop
]) != NULL_RTX
)
914 /* Generate reloads for matching OUT and INS (array of input operand
915 numbers with end marker -1) with reg class GOAL_CLASS, considering
916 output operands OUTS (similar array to INS) needing to be in different
917 registers. Add input and output reloads correspondingly to the lists
918 *BEFORE and *AFTER. OUT might be negative. In this case we generate
919 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
920 that the output operand is early clobbered for chosen alternative. */
922 match_reload (signed char out
, signed char *ins
, signed char *outs
,
923 enum reg_class goal_class
, rtx_insn
**before
,
924 rtx_insn
**after
, bool early_clobber_p
)
928 rtx new_in_reg
, new_out_reg
, reg
;
929 machine_mode inmode
, outmode
;
930 rtx in_rtx
= *curr_id
->operand_loc
[ins
[0]];
931 rtx out_rtx
= out
< 0 ? in_rtx
: *curr_id
->operand_loc
[out
];
933 inmode
= curr_operand_mode
[ins
[0]];
934 outmode
= out
< 0 ? inmode
: curr_operand_mode
[out
];
935 push_to_sequence (*before
);
936 if (inmode
!= outmode
)
938 /* process_alt_operands has already checked that the mode sizes
940 if (partial_subreg_p (outmode
, inmode
))
943 = lra_create_new_reg_with_unique_value (inmode
, in_rtx
,
945 new_out_reg
= gen_lowpart_SUBREG (outmode
, reg
);
946 LRA_SUBREG_P (new_out_reg
) = 1;
947 /* If the input reg is dying here, we can use the same hard
948 register for REG and IN_RTX. We do it only for original
949 pseudos as reload pseudos can die although original
950 pseudos still live where reload pseudos dies. */
951 if (REG_P (in_rtx
) && (int) REGNO (in_rtx
) < lra_new_regno_start
952 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (in_rtx
))
954 || check_conflict_input_operands(REGNO (in_rtx
), ins
)))
955 lra_assign_reg_val (REGNO (in_rtx
), REGNO (reg
));
960 = lra_create_new_reg_with_unique_value (outmode
, out_rtx
,
962 new_in_reg
= gen_lowpart_SUBREG (inmode
, reg
);
963 /* NEW_IN_REG is non-paradoxical subreg. We don't want
964 NEW_OUT_REG living above. We add clobber clause for
965 this. This is just a temporary clobber. We can remove
966 it at the end of LRA work. */
967 rtx_insn
*clobber
= emit_clobber (new_out_reg
);
968 LRA_TEMP_CLOBBER_P (PATTERN (clobber
)) = 1;
969 LRA_SUBREG_P (new_in_reg
) = 1;
970 if (GET_CODE (in_rtx
) == SUBREG
)
972 rtx subreg_reg
= SUBREG_REG (in_rtx
);
974 /* If SUBREG_REG is dying here and sub-registers IN_RTX
975 and NEW_IN_REG are similar, we can use the same hard
976 register for REG and SUBREG_REG. */
977 if (REG_P (subreg_reg
)
978 && (int) REGNO (subreg_reg
) < lra_new_regno_start
979 && GET_MODE (subreg_reg
) == outmode
980 && known_eq (SUBREG_BYTE (in_rtx
), SUBREG_BYTE (new_in_reg
))
981 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (subreg_reg
))
982 && (! early_clobber_p
983 || check_conflict_input_operands (REGNO (subreg_reg
),
985 lra_assign_reg_val (REGNO (subreg_reg
), REGNO (reg
));
991 /* Pseudos have values -- see comments for lra_reg_info.
992 Different pseudos with the same value do not conflict even if
993 they live in the same place. When we create a pseudo we
994 assign value of original pseudo (if any) from which we
995 created the new pseudo. If we create the pseudo from the
996 input pseudo, the new pseudo will have no conflict with the
997 input pseudo which is wrong when the input pseudo lives after
998 the insn and as the new pseudo value is changed by the insn
999 output. Therefore we create the new pseudo from the output
1000 except the case when we have single matched dying input
1003 We cannot reuse the current output register because we might
1004 have a situation like "a <- a op b", where the constraints
1005 force the second input operand ("b") to match the output
1006 operand ("a"). "b" must then be copied into a new register
1007 so that it doesn't clobber the current value of "a".
1009 We can not use the same value if the output pseudo is
1010 early clobbered or the input pseudo is mentioned in the
1011 output, e.g. as an address part in memory, because
1012 output reload will actually extend the pseudo liveness.
1013 We don't care about eliminable hard regs here as we are
1014 interesting only in pseudos. */
1016 /* Matching input's register value is the same as one of the other
1017 output operand. Output operands in a parallel insn must be in
1018 different registers. */
1019 out_conflict
= false;
1022 for (i
= 0; outs
[i
] >= 0; i
++)
1024 rtx other_out_rtx
= *curr_id
->operand_loc
[outs
[i
]];
1025 if (REG_P (other_out_rtx
)
1026 && (regno_val_use_in (REGNO (in_rtx
), other_out_rtx
)
1029 out_conflict
= true;
1035 new_in_reg
= new_out_reg
1036 = (! early_clobber_p
&& ins
[1] < 0 && REG_P (in_rtx
)
1037 && (int) REGNO (in_rtx
) < lra_new_regno_start
1038 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (in_rtx
))
1039 && (! early_clobber_p
1040 || check_conflict_input_operands (REGNO (in_rtx
), ins
))
1042 || regno_val_use_in (REGNO (in_rtx
), out_rtx
) == NULL_RTX
)
1044 ? lra_create_new_reg (inmode
, in_rtx
, goal_class
, "")
1045 : lra_create_new_reg_with_unique_value (outmode
, out_rtx
,
1048 /* In operand can be got from transformations before processing insn
1049 constraints. One example of such transformations is subreg
1050 reloading (see function simplify_operand_subreg). The new
1051 pseudos created by the transformations might have inaccurate
1052 class (ALL_REGS) and we should make their classes more
1054 narrow_reload_pseudo_class (in_rtx
, goal_class
);
1055 lra_emit_move (copy_rtx (new_in_reg
), in_rtx
);
1056 *before
= get_insns ();
1058 /* Add the new pseudo to consider values of subsequent input reload
1060 lra_assert (curr_insn_input_reloads_num
< LRA_MAX_INSN_RELOADS
);
1061 curr_insn_input_reloads
[curr_insn_input_reloads_num
].input
= in_rtx
;
1062 curr_insn_input_reloads
[curr_insn_input_reloads_num
].match_p
= true;
1063 curr_insn_input_reloads
[curr_insn_input_reloads_num
++].reg
= new_in_reg
;
1064 for (i
= 0; (in
= ins
[i
]) >= 0; i
++)
1067 (GET_MODE (*curr_id
->operand_loc
[in
]) == VOIDmode
1068 || GET_MODE (new_in_reg
) == GET_MODE (*curr_id
->operand_loc
[in
]));
1069 *curr_id
->operand_loc
[in
] = new_in_reg
;
1071 lra_update_dups (curr_id
, ins
);
1074 /* See a comment for the input operand above. */
1075 narrow_reload_pseudo_class (out_rtx
, goal_class
);
1076 if (find_reg_note (curr_insn
, REG_UNUSED
, out_rtx
) == NULL_RTX
)
1079 lra_emit_move (out_rtx
, copy_rtx (new_out_reg
));
1081 *after
= get_insns ();
1084 *curr_id
->operand_loc
[out
] = new_out_reg
;
1085 lra_update_dup (curr_id
, out
);
1088 /* Return register class which is union of all reg classes in insn
1089 constraint alternative string starting with P. */
1090 static enum reg_class
1091 reg_class_from_constraints (const char *p
)
1094 enum reg_class op_class
= NO_REGS
;
1097 switch ((c
= *p
, len
= CONSTRAINT_LEN (c
, p
)), c
)
1104 op_class
= reg_class_subunion
[op_class
][GENERAL_REGS
];
1108 enum constraint_num cn
= lookup_constraint (p
);
1109 enum reg_class cl
= reg_class_for_constraint (cn
);
1112 if (insn_extra_address_constraint (cn
))
1114 = (reg_class_subunion
1115 [op_class
][base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
1116 ADDRESS
, SCRATCH
)]);
1120 op_class
= reg_class_subunion
[op_class
][cl
];
1123 while ((p
+= len
), c
);
1127 /* If OP is a register, return the class of the register as per
1128 get_reg_class, otherwise return NO_REGS. */
1129 static inline enum reg_class
1130 get_op_class (rtx op
)
1132 return REG_P (op
) ? get_reg_class (REGNO (op
)) : NO_REGS
;
1135 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1136 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1137 SUBREG for VAL to make them equal. */
1139 emit_spill_move (bool to_p
, rtx mem_pseudo
, rtx val
)
1141 if (GET_MODE (mem_pseudo
) != GET_MODE (val
))
1143 /* Usually size of mem_pseudo is greater than val size but in
1144 rare cases it can be less as it can be defined by target
1145 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1148 val
= gen_lowpart_SUBREG (GET_MODE (mem_pseudo
),
1149 GET_CODE (val
) == SUBREG
1150 ? SUBREG_REG (val
) : val
);
1151 LRA_SUBREG_P (val
) = 1;
1155 mem_pseudo
= gen_lowpart_SUBREG (GET_MODE (val
), mem_pseudo
);
1156 LRA_SUBREG_P (mem_pseudo
) = 1;
1159 return to_p
? gen_move_insn (mem_pseudo
, val
)
1160 : gen_move_insn (val
, mem_pseudo
);
1163 /* Process a special case insn (register move), return true if we
1164 don't need to process it anymore. INSN should be a single set
1165 insn. Set up that RTL was changed through CHANGE_P and that hook
1166 TARGET_SECONDARY_MEMORY_NEEDED says to use secondary memory through
1169 check_and_process_move (bool *change_p
, bool *sec_mem_p ATTRIBUTE_UNUSED
)
1172 rtx dest
, src
, dreg
, sreg
, new_reg
, scratch_reg
;
1174 enum reg_class dclass
, sclass
, secondary_class
;
1175 secondary_reload_info sri
;
1177 lra_assert (curr_insn_set
!= NULL_RTX
);
1178 dreg
= dest
= SET_DEST (curr_insn_set
);
1179 sreg
= src
= SET_SRC (curr_insn_set
);
1180 if (GET_CODE (dest
) == SUBREG
)
1181 dreg
= SUBREG_REG (dest
);
1182 if (GET_CODE (src
) == SUBREG
)
1183 sreg
= SUBREG_REG (src
);
1184 if (! (REG_P (dreg
) || MEM_P (dreg
)) || ! (REG_P (sreg
) || MEM_P (sreg
)))
1186 sclass
= dclass
= NO_REGS
;
1188 dclass
= get_reg_class (REGNO (dreg
));
1189 gcc_assert (dclass
< LIM_REG_CLASSES
);
1190 if (dclass
== ALL_REGS
)
1191 /* ALL_REGS is used for new pseudos created by transformations
1192 like reload of SUBREG_REG (see function
1193 simplify_operand_subreg). We don't know their class yet. We
1194 should figure out the class from processing the insn
1195 constraints not in this fast path function. Even if ALL_REGS
1196 were a right class for the pseudo, secondary_... hooks usually
1197 are not define for ALL_REGS. */
1200 sclass
= get_reg_class (REGNO (sreg
));
1201 gcc_assert (sclass
< LIM_REG_CLASSES
);
1202 if (sclass
== ALL_REGS
)
1203 /* See comments above. */
1205 if (sclass
== NO_REGS
&& dclass
== NO_REGS
)
1207 if (targetm
.secondary_memory_needed (GET_MODE (src
), sclass
, dclass
)
1208 && ((sclass
!= NO_REGS
&& dclass
!= NO_REGS
)
1210 != targetm
.secondary_memory_needed_mode (GET_MODE (src
)))))
1215 if (! REG_P (dreg
) || ! REG_P (sreg
))
1217 sri
.prev_sri
= NULL
;
1218 sri
.icode
= CODE_FOR_nothing
;
1220 secondary_class
= NO_REGS
;
1221 /* Set up hard register for a reload pseudo for hook
1222 secondary_reload because some targets just ignore unassigned
1223 pseudos in the hook. */
1224 if (dclass
!= NO_REGS
&& lra_get_regno_hard_regno (REGNO (dreg
)) < 0)
1226 dregno
= REGNO (dreg
);
1227 reg_renumber
[dregno
] = ira_class_hard_regs
[dclass
][0];
1231 if (sclass
!= NO_REGS
&& lra_get_regno_hard_regno (REGNO (sreg
)) < 0)
1233 sregno
= REGNO (sreg
);
1234 reg_renumber
[sregno
] = ira_class_hard_regs
[sclass
][0];
1238 if (sclass
!= NO_REGS
)
1240 = (enum reg_class
) targetm
.secondary_reload (false, dest
,
1241 (reg_class_t
) sclass
,
1242 GET_MODE (src
), &sri
);
1243 if (sclass
== NO_REGS
1244 || ((secondary_class
!= NO_REGS
|| sri
.icode
!= CODE_FOR_nothing
)
1245 && dclass
!= NO_REGS
))
1247 enum reg_class old_sclass
= secondary_class
;
1248 secondary_reload_info old_sri
= sri
;
1250 sri
.prev_sri
= NULL
;
1251 sri
.icode
= CODE_FOR_nothing
;
1254 = (enum reg_class
) targetm
.secondary_reload (true, src
,
1255 (reg_class_t
) dclass
,
1256 GET_MODE (src
), &sri
);
1257 /* Check the target hook consistency. */
1259 ((secondary_class
== NO_REGS
&& sri
.icode
== CODE_FOR_nothing
)
1260 || (old_sclass
== NO_REGS
&& old_sri
.icode
== CODE_FOR_nothing
)
1261 || (secondary_class
== old_sclass
&& sri
.icode
== old_sri
.icode
));
1264 reg_renumber
[sregno
] = -1;
1266 reg_renumber
[dregno
] = -1;
1267 if (secondary_class
== NO_REGS
&& sri
.icode
== CODE_FOR_nothing
)
1271 if (secondary_class
!= NO_REGS
)
1272 new_reg
= lra_create_new_reg_with_unique_value (GET_MODE (src
), NULL_RTX
,
1276 if (sri
.icode
== CODE_FOR_nothing
)
1277 lra_emit_move (new_reg
, src
);
1280 enum reg_class scratch_class
;
1282 scratch_class
= (reg_class_from_constraints
1283 (insn_data
[sri
.icode
].operand
[2].constraint
));
1284 scratch_reg
= (lra_create_new_reg_with_unique_value
1285 (insn_data
[sri
.icode
].operand
[2].mode
, NULL_RTX
,
1286 scratch_class
, "scratch"));
1287 emit_insn (GEN_FCN (sri
.icode
) (new_reg
!= NULL_RTX
? new_reg
: dest
,
1290 before
= get_insns ();
1292 lra_process_new_insns (curr_insn
, before
, NULL
, "Inserting the move");
1293 if (new_reg
!= NULL_RTX
)
1294 SET_SRC (curr_insn_set
) = new_reg
;
1297 if (lra_dump_file
!= NULL
)
1299 fprintf (lra_dump_file
, "Deleting move %u\n", INSN_UID (curr_insn
));
1300 dump_insn_slim (lra_dump_file
, curr_insn
);
1302 lra_set_insn_deleted (curr_insn
);
1308 /* The following data describe the result of process_alt_operands.
1309 The data are used in curr_insn_transform to generate reloads. */
1311 /* The chosen reg classes which should be used for the corresponding
1313 static enum reg_class goal_alt
[MAX_RECOG_OPERANDS
];
1314 /* True if the operand should be the same as another operand and that
1315 other operand does not need a reload. */
1316 static bool goal_alt_match_win
[MAX_RECOG_OPERANDS
];
1317 /* True if the operand does not need a reload. */
1318 static bool goal_alt_win
[MAX_RECOG_OPERANDS
];
1319 /* True if the operand can be offsetable memory. */
1320 static bool goal_alt_offmemok
[MAX_RECOG_OPERANDS
];
1321 /* The number of an operand to which given operand can be matched to. */
1322 static int goal_alt_matches
[MAX_RECOG_OPERANDS
];
1323 /* The number of elements in the following array. */
1324 static int goal_alt_dont_inherit_ops_num
;
1325 /* Numbers of operands whose reload pseudos should not be inherited. */
1326 static int goal_alt_dont_inherit_ops
[MAX_RECOG_OPERANDS
];
1327 /* True if the insn commutative operands should be swapped. */
1328 static bool goal_alt_swapped
;
1329 /* The chosen insn alternative. */
1330 static int goal_alt_number
;
1332 /* True if the corresponding operand is the result of an equivalence
1334 static bool equiv_substition_p
[MAX_RECOG_OPERANDS
];
1336 /* The following five variables are used to choose the best insn
1337 alternative. They reflect final characteristics of the best
1340 /* Number of necessary reloads and overall cost reflecting the
1341 previous value and other unpleasantness of the best alternative. */
1342 static int best_losers
, best_overall
;
1343 /* Overall number hard registers used for reloads. For example, on
1344 some targets we need 2 general registers to reload DFmode and only
1345 one floating point register. */
1346 static int best_reload_nregs
;
1347 /* Overall number reflecting distances of previous reloading the same
1348 value. The distances are counted from the current BB start. It is
1349 used to improve inheritance chances. */
1350 static int best_reload_sum
;
1352 /* True if the current insn should have no correspondingly input or
1354 static bool no_input_reloads_p
, no_output_reloads_p
;
1356 /* True if we swapped the commutative operands in the current
1358 static int curr_swapped
;
1360 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1361 register of class CL. Add any input reloads to list BEFORE. AFTER
1362 is nonnull if *LOC is an automodified value; handle that case by
1363 adding the required output reloads to list AFTER. Return true if
1364 the RTL was changed.
1366 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1367 register. Return false if the address register is correct. */
1369 process_addr_reg (rtx
*loc
, bool check_only_p
, rtx_insn
**before
, rtx_insn
**after
,
1373 enum reg_class rclass
, new_class
;
1377 bool subreg_p
, before_p
= false;
1379 subreg_p
= GET_CODE (*loc
) == SUBREG
;
1382 reg
= SUBREG_REG (*loc
);
1383 mode
= GET_MODE (reg
);
1385 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1386 between two registers with different classes, but there normally will
1387 be "mov" which transfers element of vector register into the general
1388 register, and this normally will be a subreg which should be reloaded
1389 as a whole. This is particularly likely to be triggered when
1390 -fno-split-wide-types specified. */
1392 || in_class_p (reg
, cl
, &new_class
)
1393 || known_le (GET_MODE_SIZE (mode
), GET_MODE_SIZE (ptr_mode
)))
1394 loc
= &SUBREG_REG (*loc
);
1398 mode
= GET_MODE (reg
);
1403 /* Always reload memory in an address even if the target supports
1405 new_reg
= lra_create_new_reg_with_unique_value (mode
, reg
, cl
, "address");
1410 regno
= REGNO (reg
);
1411 rclass
= get_reg_class (regno
);
1413 && (*loc
= get_equiv_with_elimination (reg
, curr_insn
)) != reg
)
1415 if (lra_dump_file
!= NULL
)
1417 fprintf (lra_dump_file
,
1418 "Changing pseudo %d in address of insn %u on equiv ",
1419 REGNO (reg
), INSN_UID (curr_insn
));
1420 dump_value_slim (lra_dump_file
, *loc
, 1);
1421 fprintf (lra_dump_file
, "\n");
1423 *loc
= copy_rtx (*loc
);
1425 if (*loc
!= reg
|| ! in_class_p (reg
, cl
, &new_class
))
1430 if (get_reload_reg (after
== NULL
? OP_IN
: OP_INOUT
,
1431 mode
, reg
, cl
, subreg_p
, "address", &new_reg
))
1434 else if (new_class
!= NO_REGS
&& rclass
!= new_class
)
1438 lra_change_class (regno
, new_class
, " Change to", true);
1446 push_to_sequence (*before
);
1447 lra_emit_move (new_reg
, reg
);
1448 *before
= get_insns ();
1455 lra_emit_move (before_p
? copy_rtx (reg
) : reg
, new_reg
);
1457 *after
= get_insns ();
1463 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1464 the insn to be inserted before curr insn. AFTER returns the
1465 the insn to be inserted after curr insn. ORIGREG and NEWREG
1466 are the original reg and new reg for reload. */
1468 insert_move_for_subreg (rtx_insn
**before
, rtx_insn
**after
, rtx origreg
,
1473 push_to_sequence (*before
);
1474 lra_emit_move (newreg
, origreg
);
1475 *before
= get_insns ();
1481 lra_emit_move (origreg
, newreg
);
1483 *after
= get_insns ();
1488 static int valid_address_p (machine_mode mode
, rtx addr
, addr_space_t as
);
1489 static bool process_address (int, bool, rtx_insn
**, rtx_insn
**);
1491 /* Make reloads for subreg in operand NOP with internal subreg mode
1492 REG_MODE, add new reloads for further processing. Return true if
1493 any change was done. */
1495 simplify_operand_subreg (int nop
, machine_mode reg_mode
)
1498 rtx_insn
*before
, *after
;
1499 machine_mode mode
, innermode
;
1501 rtx operand
= *curr_id
->operand_loc
[nop
];
1502 enum reg_class regclass
;
1505 before
= after
= NULL
;
1507 if (GET_CODE (operand
) != SUBREG
)
1510 mode
= GET_MODE (operand
);
1511 reg
= SUBREG_REG (operand
);
1512 innermode
= GET_MODE (reg
);
1513 type
= curr_static_id
->operand
[nop
].type
;
1516 const bool addr_was_valid
1517 = valid_address_p (innermode
, XEXP (reg
, 0), MEM_ADDR_SPACE (reg
));
1518 alter_subreg (curr_id
->operand_loc
[nop
], false);
1519 rtx subst
= *curr_id
->operand_loc
[nop
];
1520 lra_assert (MEM_P (subst
));
1523 || valid_address_p (GET_MODE (subst
), XEXP (subst
, 0),
1524 MEM_ADDR_SPACE (subst
))
1525 || ((get_constraint_type (lookup_constraint
1526 (curr_static_id
->operand
[nop
].constraint
))
1527 != CT_SPECIAL_MEMORY
)
1528 /* We still can reload address and if the address is
1529 valid, we can remove subreg without reloading its
1531 && valid_address_p (GET_MODE (subst
),
1533 [ira_class_hard_regs
1534 [base_reg_class (GET_MODE (subst
),
1535 MEM_ADDR_SPACE (subst
),
1536 ADDRESS
, SCRATCH
)][0]],
1537 MEM_ADDR_SPACE (subst
))))
1539 /* If we change the address for a paradoxical subreg of memory, the
1540 new address might violate the necessary alignment or the access
1541 might be slow; take this into consideration. We need not worry
1542 about accesses beyond allocated memory for paradoxical memory
1543 subregs as we don't substitute such equiv memory (see processing
1544 equivalences in function lra_constraints) and because for spilled
1545 pseudos we allocate stack memory enough for the biggest
1546 corresponding paradoxical subreg.
1548 However, do not blindly simplify a (subreg (mem ...)) for
1549 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1550 data into a register when the inner is narrower than outer or
1551 missing important data from memory when the inner is wider than
1552 outer. This rule only applies to modes that are no wider than
1554 if (!(maybe_ne (GET_MODE_PRECISION (mode
),
1555 GET_MODE_PRECISION (innermode
))
1556 && known_le (GET_MODE_SIZE (mode
), UNITS_PER_WORD
)
1557 && known_le (GET_MODE_SIZE (innermode
), UNITS_PER_WORD
)
1558 && WORD_REGISTER_OPERATIONS
)
1559 && (!(MEM_ALIGN (subst
) < GET_MODE_ALIGNMENT (mode
)
1560 && targetm
.slow_unaligned_access (mode
, MEM_ALIGN (subst
)))
1561 || (MEM_ALIGN (reg
) < GET_MODE_ALIGNMENT (innermode
)
1562 && targetm
.slow_unaligned_access (innermode
,
1566 *curr_id
->operand_loc
[nop
] = operand
;
1568 /* But if the address was not valid, we cannot reload the MEM without
1569 reloading the address first. */
1570 if (!addr_was_valid
)
1571 process_address (nop
, false, &before
, &after
);
1573 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1574 enum reg_class rclass
1575 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1576 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, innermode
,
1577 reg
, rclass
, TRUE
, "slow mem", &new_reg
))
1579 bool insert_before
, insert_after
;
1580 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1582 insert_before
= (type
!= OP_OUT
1583 || partial_subreg_p (mode
, innermode
));
1584 insert_after
= type
!= OP_IN
;
1585 insert_move_for_subreg (insert_before
? &before
: NULL
,
1586 insert_after
? &after
: NULL
,
1589 SUBREG_REG (operand
) = new_reg
;
1591 /* Convert to MODE. */
1594 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1595 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, mode
, reg
,
1596 rclass
, TRUE
, "slow mem", &new_reg
))
1598 bool insert_before
, insert_after
;
1599 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1601 insert_before
= type
!= OP_OUT
;
1602 insert_after
= type
!= OP_IN
;
1603 insert_move_for_subreg (insert_before
? &before
: NULL
,
1604 insert_after
? &after
: NULL
,
1607 *curr_id
->operand_loc
[nop
] = new_reg
;
1608 lra_process_new_insns (curr_insn
, before
, after
,
1609 "Inserting slow mem reload");
1613 /* If the address was valid and became invalid, prefer to reload
1614 the memory. Typical case is when the index scale should
1615 correspond the memory. */
1616 *curr_id
->operand_loc
[nop
] = operand
;
1617 /* Do not return false here as the MEM_P (reg) will be processed
1618 later in this function. */
1620 else if (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1622 alter_subreg (curr_id
->operand_loc
[nop
], false);
1625 else if (CONSTANT_P (reg
))
1627 /* Try to simplify subreg of constant. It is usually result of
1628 equivalence substitution. */
1629 if (innermode
== VOIDmode
1630 && (innermode
= original_subreg_reg_mode
[nop
]) == VOIDmode
)
1631 innermode
= curr_static_id
->operand
[nop
].mode
;
1632 if ((new_reg
= simplify_subreg (mode
, reg
, innermode
,
1633 SUBREG_BYTE (operand
))) != NULL_RTX
)
1635 *curr_id
->operand_loc
[nop
] = new_reg
;
1639 /* Put constant into memory when we have mixed modes. It generates
1640 a better code in most cases as it does not need a secondary
1641 reload memory. It also prevents LRA looping when LRA is using
1642 secondary reload memory again and again. */
1643 if (CONSTANT_P (reg
) && CONST_POOL_OK_P (reg_mode
, reg
)
1644 && SCALAR_INT_MODE_P (reg_mode
) != SCALAR_INT_MODE_P (mode
))
1646 SUBREG_REG (operand
) = force_const_mem (reg_mode
, reg
);
1647 alter_subreg (curr_id
->operand_loc
[nop
], false);
1650 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1651 if there may be a problem accessing OPERAND in the outer
1654 && REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1655 && (hard_regno
= lra_get_regno_hard_regno (REGNO (reg
))) >= 0
1656 /* Don't reload paradoxical subregs because we could be looping
1657 having repeatedly final regno out of hard regs range. */
1658 && (hard_regno_nregs (hard_regno
, innermode
)
1659 >= hard_regno_nregs (hard_regno
, mode
))
1660 && simplify_subreg_regno (hard_regno
, innermode
,
1661 SUBREG_BYTE (operand
), mode
) < 0
1662 /* Don't reload subreg for matching reload. It is actually
1663 valid subreg in LRA. */
1664 && ! LRA_SUBREG_P (operand
))
1665 || CONSTANT_P (reg
) || GET_CODE (reg
) == PLUS
|| MEM_P (reg
))
1667 enum reg_class rclass
;
1670 /* There is a big probability that we will get the same class
1671 for the new pseudo and we will get the same insn which
1672 means infinite looping. So spill the new pseudo. */
1675 /* The class will be defined later in curr_insn_transform. */
1677 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1679 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, reg_mode
, reg
,
1680 rclass
, TRUE
, "subreg reg", &new_reg
))
1682 bool insert_before
, insert_after
;
1683 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1685 insert_before
= (type
!= OP_OUT
1686 || read_modify_subreg_p (operand
));
1687 insert_after
= (type
!= OP_IN
);
1688 insert_move_for_subreg (insert_before
? &before
: NULL
,
1689 insert_after
? &after
: NULL
,
1692 SUBREG_REG (operand
) = new_reg
;
1693 lra_process_new_insns (curr_insn
, before
, after
,
1694 "Inserting subreg reload");
1697 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1698 IRA allocates hardreg to the inner pseudo reg according to its mode
1699 instead of the outermode, so the size of the hardreg may not be enough
1700 to contain the outermode operand, in that case we may need to insert
1701 reload for the reg. For the following two types of paradoxical subreg,
1702 we need to insert reload:
1703 1. If the op_type is OP_IN, and the hardreg could not be paired with
1704 other hardreg to contain the outermode operand
1705 (checked by in_hard_reg_set_p), we need to insert the reload.
1706 2. If the op_type is OP_OUT or OP_INOUT.
1708 Here is a paradoxical subreg example showing how the reload is generated:
1710 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1711 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1713 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1714 here, if reg107 is assigned to hardreg R15, because R15 is the last
1715 hardreg, compiler cannot find another hardreg to pair with R15 to
1716 contain TImode data. So we insert a TImode reload reg180 for it.
1717 After reload is inserted:
1719 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1720 (reg:DI 107 [ __comp ])) -1
1721 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1722 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1724 Two reload hard registers will be allocated to reg180 to save TImode data
1726 else if (REG_P (reg
)
1727 && REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1728 && (hard_regno
= lra_get_regno_hard_regno (REGNO (reg
))) >= 0
1729 && (hard_regno_nregs (hard_regno
, innermode
)
1730 < hard_regno_nregs (hard_regno
, mode
))
1731 && (regclass
= lra_get_allocno_class (REGNO (reg
)))
1733 || !in_hard_reg_set_p (reg_class_contents
[regclass
],
1736 /* The class will be defined later in curr_insn_transform. */
1737 enum reg_class rclass
1738 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1740 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, mode
, reg
,
1741 rclass
, TRUE
, "paradoxical subreg", &new_reg
))
1744 bool insert_before
, insert_after
;
1746 PUT_MODE (new_reg
, mode
);
1747 subreg
= gen_lowpart_SUBREG (innermode
, new_reg
);
1748 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1750 insert_before
= (type
!= OP_OUT
);
1751 insert_after
= (type
!= OP_IN
);
1752 insert_move_for_subreg (insert_before
? &before
: NULL
,
1753 insert_after
? &after
: NULL
,
1756 SUBREG_REG (operand
) = new_reg
;
1757 lra_process_new_insns (curr_insn
, before
, after
,
1758 "Inserting paradoxical subreg reload");
1764 /* Return TRUE if X refers for a hard register from SET. */
1766 uses_hard_regs_p (rtx x
, HARD_REG_SET set
)
1768 int i
, j
, x_hard_regno
;
1775 code
= GET_CODE (x
);
1776 mode
= GET_MODE (x
);
1779 mode
= wider_subreg_mode (x
);
1781 code
= GET_CODE (x
);
1786 x_hard_regno
= get_hard_regno (x
, true);
1787 return (x_hard_regno
>= 0
1788 && overlaps_hard_reg_set_p (set
, mode
, x_hard_regno
));
1792 struct address_info ad
;
1794 decompose_mem_address (&ad
, x
);
1795 if (ad
.base_term
!= NULL
&& uses_hard_regs_p (*ad
.base_term
, set
))
1797 if (ad
.index_term
!= NULL
&& uses_hard_regs_p (*ad
.index_term
, set
))
1800 fmt
= GET_RTX_FORMAT (code
);
1801 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1805 if (uses_hard_regs_p (XEXP (x
, i
), set
))
1808 else if (fmt
[i
] == 'E')
1810 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1811 if (uses_hard_regs_p (XVECEXP (x
, i
, j
), set
))
1818 /* Return true if OP is a spilled pseudo. */
1820 spilled_pseudo_p (rtx op
)
1823 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
&& in_mem_p (REGNO (op
)));
1826 /* Return true if X is a general constant. */
1828 general_constant_p (rtx x
)
1830 return CONSTANT_P (x
) && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (x
));
1834 reg_in_class_p (rtx reg
, enum reg_class cl
)
1837 return get_reg_class (REGNO (reg
)) == NO_REGS
;
1838 return in_class_p (reg
, cl
, NULL
);
1841 /* Return true if SET of RCLASS contains no hard regs which can be
1844 prohibited_class_reg_set_mode_p (enum reg_class rclass
,
1850 lra_assert (hard_reg_set_subset_p (reg_class_contents
[rclass
], set
));
1851 COPY_HARD_REG_SET (temp
, set
);
1852 AND_COMPL_HARD_REG_SET (temp
, lra_no_alloc_regs
);
1853 return (hard_reg_set_subset_p
1854 (temp
, ira_prohibited_class_mode_regs
[rclass
][mode
]));
1858 /* Used to check validity info about small class input operands. It
1859 should be incremented at start of processing an insn
1861 static unsigned int curr_small_class_check
= 0;
1863 /* Update number of used inputs of class OP_CLASS for operand NOP.
1864 Return true if we have more such class operands than the number of
1867 update_and_check_small_class_inputs (int nop
, enum reg_class op_class
)
1869 static unsigned int small_class_check
[LIM_REG_CLASSES
];
1870 static int small_class_input_nums
[LIM_REG_CLASSES
];
1872 if (SMALL_REGISTER_CLASS_P (op_class
)
1873 /* We are interesting in classes became small because of fixing
1874 some hard regs, e.g. by an user through GCC options. */
1875 && hard_reg_set_intersect_p (reg_class_contents
[op_class
],
1877 && (curr_static_id
->operand
[nop
].type
!= OP_OUT
1878 || curr_static_id
->operand
[nop
].early_clobber
))
1880 if (small_class_check
[op_class
] == curr_small_class_check
)
1881 small_class_input_nums
[op_class
]++;
1884 small_class_check
[op_class
] = curr_small_class_check
;
1885 small_class_input_nums
[op_class
] = 1;
1887 if (small_class_input_nums
[op_class
] > ira_class_hard_regs_num
[op_class
])
1893 /* Major function to choose the current insn alternative and what
1894 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1895 negative we should consider only this alternative. Return false if
1896 we can not choose the alternative or find how to reload the
1899 process_alt_operands (int only_alternative
)
1902 int nop
, overall
, nalt
;
1903 int n_alternatives
= curr_static_id
->n_alternatives
;
1904 int n_operands
= curr_static_id
->n_operands
;
1905 /* LOSERS counts the operands that don't fit this alternative and
1906 would require loading. */
1909 /* REJECT is a count of how undesirable this alternative says it is
1910 if any reloading is required. If the alternative matches exactly
1911 then REJECT is ignored, but otherwise it gets this much counted
1912 against it in addition to the reloading needed. */
1914 /* This is defined by '!' or '?' alternative constraint and added to
1915 reject. But in some cases it can be ignored. */
1918 /* The number of elements in the following array. */
1919 int early_clobbered_regs_num
;
1920 /* Numbers of operands which are early clobber registers. */
1921 int early_clobbered_nops
[MAX_RECOG_OPERANDS
];
1922 enum reg_class curr_alt
[MAX_RECOG_OPERANDS
];
1923 HARD_REG_SET curr_alt_set
[MAX_RECOG_OPERANDS
];
1924 bool curr_alt_match_win
[MAX_RECOG_OPERANDS
];
1925 bool curr_alt_win
[MAX_RECOG_OPERANDS
];
1926 bool curr_alt_offmemok
[MAX_RECOG_OPERANDS
];
1927 int curr_alt_matches
[MAX_RECOG_OPERANDS
];
1928 /* The number of elements in the following array. */
1929 int curr_alt_dont_inherit_ops_num
;
1930 /* Numbers of operands whose reload pseudos should not be inherited. */
1931 int curr_alt_dont_inherit_ops
[MAX_RECOG_OPERANDS
];
1933 /* The register when the operand is a subreg of register, otherwise the
1935 rtx no_subreg_reg_operand
[MAX_RECOG_OPERANDS
];
1936 /* The register if the operand is a register or subreg of register,
1938 rtx operand_reg
[MAX_RECOG_OPERANDS
];
1939 int hard_regno
[MAX_RECOG_OPERANDS
];
1940 machine_mode biggest_mode
[MAX_RECOG_OPERANDS
];
1941 int reload_nregs
, reload_sum
;
1945 /* Calculate some data common for all alternatives to speed up the
1947 for (nop
= 0; nop
< n_operands
; nop
++)
1951 op
= no_subreg_reg_operand
[nop
] = *curr_id
->operand_loc
[nop
];
1952 /* The real hard regno of the operand after the allocation. */
1953 hard_regno
[nop
] = get_hard_regno (op
, true);
1955 operand_reg
[nop
] = reg
= op
;
1956 biggest_mode
[nop
] = GET_MODE (op
);
1957 if (GET_CODE (op
) == SUBREG
)
1959 biggest_mode
[nop
] = wider_subreg_mode (op
);
1960 operand_reg
[nop
] = reg
= SUBREG_REG (op
);
1963 operand_reg
[nop
] = NULL_RTX
;
1964 else if (REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1965 || ((int) REGNO (reg
)
1966 == lra_get_elimination_hard_regno (REGNO (reg
))))
1967 no_subreg_reg_operand
[nop
] = reg
;
1969 operand_reg
[nop
] = no_subreg_reg_operand
[nop
]
1970 /* Just use natural mode for elimination result. It should
1971 be enough for extra constraints hooks. */
1972 = regno_reg_rtx
[hard_regno
[nop
]];
1975 /* The constraints are made of several alternatives. Each operand's
1976 constraint looks like foo,bar,... with commas separating the
1977 alternatives. The first alternatives for all operands go
1978 together, the second alternatives go together, etc.
1980 First loop over alternatives. */
1981 alternative_mask preferred
= curr_id
->preferred_alternatives
;
1982 if (only_alternative
>= 0)
1983 preferred
&= ALTERNATIVE_BIT (only_alternative
);
1985 for (nalt
= 0; nalt
< n_alternatives
; nalt
++)
1987 /* Loop over operands for one constraint alternative. */
1988 if (!TEST_BIT (preferred
, nalt
))
1991 curr_small_class_check
++;
1992 overall
= losers
= addr_losers
= 0;
1993 static_reject
= reject
= reload_nregs
= reload_sum
= 0;
1994 for (nop
= 0; nop
< n_operands
; nop
++)
1996 int inc
= (curr_static_id
1997 ->operand_alternative
[nalt
* n_operands
+ nop
].reject
);
1998 if (lra_dump_file
!= NULL
&& inc
!= 0)
1999 fprintf (lra_dump_file
,
2000 " Staticly defined alt reject+=%d\n", inc
);
2001 static_reject
+= inc
;
2003 reject
+= static_reject
;
2004 early_clobbered_regs_num
= 0;
2006 for (nop
= 0; nop
< n_operands
; nop
++)
2010 int len
, c
, m
, i
, opalt_num
, this_alternative_matches
;
2011 bool win
, did_match
, offmemok
, early_clobber_p
;
2012 /* false => this operand can be reloaded somehow for this
2015 /* true => this operand can be reloaded if the alternative
2018 /* True if a constant forced into memory would be OK for
2021 enum reg_class this_alternative
, this_costly_alternative
;
2022 HARD_REG_SET this_alternative_set
, this_costly_alternative_set
;
2023 bool this_alternative_match_win
, this_alternative_win
;
2024 bool this_alternative_offmemok
;
2027 enum constraint_num cn
;
2029 opalt_num
= nalt
* n_operands
+ nop
;
2030 if (curr_static_id
->operand_alternative
[opalt_num
].anything_ok
)
2032 /* Fast track for no constraints at all. */
2033 curr_alt
[nop
] = NO_REGS
;
2034 CLEAR_HARD_REG_SET (curr_alt_set
[nop
]);
2035 curr_alt_win
[nop
] = true;
2036 curr_alt_match_win
[nop
] = false;
2037 curr_alt_offmemok
[nop
] = false;
2038 curr_alt_matches
[nop
] = -1;
2042 op
= no_subreg_reg_operand
[nop
];
2043 mode
= curr_operand_mode
[nop
];
2045 win
= did_match
= winreg
= offmemok
= constmemok
= false;
2048 early_clobber_p
= false;
2049 p
= curr_static_id
->operand_alternative
[opalt_num
].constraint
;
2051 this_costly_alternative
= this_alternative
= NO_REGS
;
2052 /* We update set of possible hard regs besides its class
2053 because reg class might be inaccurate. For example,
2054 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2055 is translated in HI_REGS because classes are merged by
2056 pairs and there is no accurate intermediate class. */
2057 CLEAR_HARD_REG_SET (this_alternative_set
);
2058 CLEAR_HARD_REG_SET (this_costly_alternative_set
);
2059 this_alternative_win
= false;
2060 this_alternative_match_win
= false;
2061 this_alternative_offmemok
= false;
2062 this_alternative_matches
= -1;
2064 /* An empty constraint should be excluded by the fast
2066 lra_assert (*p
!= 0 && *p
!= ',');
2069 /* Scan this alternative's specs for this operand; set WIN
2070 if the operand fits any letter in this alternative.
2071 Otherwise, clear BADOP if this operand could fit some
2072 letter after reloads, or set WINREG if this operand could
2073 fit after reloads provided the constraint allows some
2078 switch ((c
= *p
, len
= CONSTRAINT_LEN (c
, p
)), c
)
2088 early_clobber_p
= true;
2092 op_reject
+= LRA_MAX_REJECT
;
2095 op_reject
+= LRA_LOSER_COST_FACTOR
;
2099 /* Ignore rest of this alternative. */
2103 case '0': case '1': case '2': case '3': case '4':
2104 case '5': case '6': case '7': case '8': case '9':
2109 m
= strtoul (p
, &end
, 10);
2112 lra_assert (nop
> m
);
2114 /* Reject matches if we don't know which operand is
2115 bigger. This situation would arguably be a bug in
2116 an .md pattern, but could also occur in a user asm. */
2117 if (!ordered_p (GET_MODE_SIZE (biggest_mode
[m
]),
2118 GET_MODE_SIZE (biggest_mode
[nop
])))
2121 /* Don't match wrong asm insn operands for proper
2122 diagnostic later. */
2123 if (INSN_CODE (curr_insn
) < 0
2124 && (curr_operand_mode
[m
] == BLKmode
2125 || curr_operand_mode
[nop
] == BLKmode
)
2126 && curr_operand_mode
[m
] != curr_operand_mode
[nop
])
2129 this_alternative_matches
= m
;
2130 m_hregno
= get_hard_regno (*curr_id
->operand_loc
[m
], false);
2131 /* We are supposed to match a previous operand.
2132 If we do, we win if that one did. If we do
2133 not, count both of the operands as losers.
2134 (This is too conservative, since most of the
2135 time only a single reload insn will be needed
2136 to make the two operands win. As a result,
2137 this alternative may be rejected when it is
2138 actually desirable.) */
2140 if (operands_match_p (*curr_id
->operand_loc
[nop
],
2141 *curr_id
->operand_loc
[m
], m_hregno
))
2143 /* We should reject matching of an early
2144 clobber operand if the matching operand is
2145 not dying in the insn. */
2146 if (! curr_static_id
->operand
[m
].early_clobber
2147 || operand_reg
[nop
] == NULL_RTX
2148 || (find_regno_note (curr_insn
, REG_DEAD
,
2150 || REGNO (op
) == REGNO (operand_reg
[m
])))
2155 /* If we are matching a non-offsettable
2156 address where an offsettable address was
2157 expected, then we must reject this
2158 combination, because we can't reload
2160 if (curr_alt_offmemok
[m
]
2161 && MEM_P (*curr_id
->operand_loc
[m
])
2162 && curr_alt
[m
] == NO_REGS
&& ! curr_alt_win
[m
])
2167 /* Operands don't match. Both operands must
2168 allow a reload register, otherwise we
2169 cannot make them match. */
2170 if (curr_alt
[m
] == NO_REGS
)
2172 /* Retroactively mark the operand we had to
2173 match as a loser, if it wasn't already and
2174 it wasn't matched to a register constraint
2175 (e.g it might be matched by memory). */
2177 && (operand_reg
[m
] == NULL_RTX
2178 || hard_regno
[m
] < 0))
2182 += (ira_reg_class_max_nregs
[curr_alt
[m
]]
2183 [GET_MODE (*curr_id
->operand_loc
[m
])]);
2186 /* Prefer matching earlyclobber alternative as
2187 it results in less hard regs required for
2188 the insn than a non-matching earlyclobber
2190 if (curr_static_id
->operand
[m
].early_clobber
)
2192 if (lra_dump_file
!= NULL
)
2195 " %d Matching earlyclobber alt:"
2200 /* Otherwise we prefer no matching
2201 alternatives because it gives more freedom
2203 else if (operand_reg
[nop
] == NULL_RTX
2204 || (find_regno_note (curr_insn
, REG_DEAD
,
2205 REGNO (operand_reg
[nop
]))
2208 if (lra_dump_file
!= NULL
)
2211 " %d Matching alt: reject+=2\n",
2216 /* If we have to reload this operand and some
2217 previous operand also had to match the same
2218 thing as this operand, we don't know how to do
2220 if (!match_p
|| !curr_alt_win
[m
])
2222 for (i
= 0; i
< nop
; i
++)
2223 if (curr_alt_matches
[i
] == m
)
2231 /* This can be fixed with reloads if the operand
2232 we are supposed to match can be fixed with
2235 this_alternative
= curr_alt
[m
];
2236 COPY_HARD_REG_SET (this_alternative_set
, curr_alt_set
[m
]);
2237 winreg
= this_alternative
!= NO_REGS
;
2243 || general_constant_p (op
)
2244 || spilled_pseudo_p (op
))
2250 cn
= lookup_constraint (p
);
2251 switch (get_constraint_type (cn
))
2254 cl
= reg_class_for_constraint (cn
);
2260 if (CONST_INT_P (op
)
2261 && insn_const_int_ok_for_constraint (INTVAL (op
), cn
))
2267 && satisfies_memory_constraint_p (op
, cn
))
2269 else if (spilled_pseudo_p (op
))
2272 /* If we didn't already win, we can reload constants
2273 via force_const_mem or put the pseudo value into
2274 memory, or make other memory by reloading the
2275 address like for 'o'. */
2276 if (CONST_POOL_OK_P (mode
, op
)
2277 || MEM_P (op
) || REG_P (op
)
2278 /* We can restore the equiv insn by a
2280 || equiv_substition_p
[nop
])
2287 /* An asm operand with an address constraint
2288 that doesn't satisfy address_operand has
2289 is_address cleared, so that we don't try to
2290 make a non-address fit. */
2291 if (!curr_static_id
->operand
[nop
].is_address
)
2293 /* If we didn't already win, we can reload the address
2294 into a base register. */
2295 if (satisfies_address_constraint_p (op
, cn
))
2297 cl
= base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2303 if (constraint_satisfied_p (op
, cn
))
2307 case CT_SPECIAL_MEMORY
:
2309 && satisfies_memory_constraint_p (op
, cn
))
2311 else if (spilled_pseudo_p (op
))
2318 this_alternative
= reg_class_subunion
[this_alternative
][cl
];
2319 IOR_HARD_REG_SET (this_alternative_set
,
2320 reg_class_contents
[cl
]);
2323 this_costly_alternative
2324 = reg_class_subunion
[this_costly_alternative
][cl
];
2325 IOR_HARD_REG_SET (this_costly_alternative_set
,
2326 reg_class_contents
[cl
]);
2328 if (mode
== BLKmode
)
2333 if (hard_regno
[nop
] >= 0
2334 && in_hard_reg_set_p (this_alternative_set
,
2335 mode
, hard_regno
[nop
]))
2337 else if (hard_regno
[nop
] < 0
2338 && in_class_p (op
, this_alternative
, NULL
))
2343 if (c
!= ' ' && c
!= '\t')
2344 costly_p
= c
== '*';
2346 while ((p
+= len
), c
);
2348 scratch_p
= (operand_reg
[nop
] != NULL_RTX
2349 && lra_former_scratch_p (REGNO (operand_reg
[nop
])));
2350 /* Record which operands fit this alternative. */
2353 this_alternative_win
= true;
2354 if (operand_reg
[nop
] != NULL_RTX
)
2356 if (hard_regno
[nop
] >= 0)
2358 if (in_hard_reg_set_p (this_costly_alternative_set
,
2359 mode
, hard_regno
[nop
]))
2361 if (lra_dump_file
!= NULL
)
2362 fprintf (lra_dump_file
,
2363 " %d Costly set: reject++\n",
2370 /* Prefer won reg to spilled pseudo under other
2371 equal conditions for possibe inheritance. */
2374 if (lra_dump_file
!= NULL
)
2377 " %d Non pseudo reload: reject++\n",
2381 if (in_class_p (operand_reg
[nop
],
2382 this_costly_alternative
, NULL
))
2384 if (lra_dump_file
!= NULL
)
2387 " %d Non pseudo costly reload:"
2393 /* We simulate the behavior of old reload here.
2394 Although scratches need hard registers and it
2395 might result in spilling other pseudos, no reload
2396 insns are generated for the scratches. So it
2397 might cost something but probably less than old
2398 reload pass believes. */
2401 if (lra_dump_file
!= NULL
)
2402 fprintf (lra_dump_file
,
2403 " %d Scratch win: reject+=2\n",
2410 this_alternative_match_win
= true;
2413 int const_to_mem
= 0;
2416 reject
+= op_reject
;
2417 /* Never do output reload of stack pointer. It makes
2418 impossible to do elimination when SP is changed in
2420 if (op
== stack_pointer_rtx
&& ! frame_pointer_needed
2421 && curr_static_id
->operand
[nop
].type
!= OP_IN
)
2424 /* If this alternative asks for a specific reg class, see if there
2425 is at least one allocatable register in that class. */
2427 = (this_alternative
== NO_REGS
2428 || (hard_reg_set_subset_p
2429 (reg_class_contents
[this_alternative
],
2430 lra_no_alloc_regs
)));
2432 /* For asms, verify that the class for this alternative is possible
2433 for the mode that is specified. */
2434 if (!no_regs_p
&& INSN_CODE (curr_insn
) < 0)
2437 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2438 if (targetm
.hard_regno_mode_ok (i
, mode
)
2439 && in_hard_reg_set_p (reg_class_contents
[this_alternative
],
2442 if (i
== FIRST_PSEUDO_REGISTER
)
2446 /* If this operand accepts a register, and if the
2447 register class has at least one allocatable register,
2448 then this operand can be reloaded. */
2449 if (winreg
&& !no_regs_p
)
2454 if (lra_dump_file
!= NULL
)
2455 fprintf (lra_dump_file
,
2456 " alt=%d: Bad operand -- refuse\n",
2461 if (this_alternative
!= NO_REGS
)
2463 HARD_REG_SET available_regs
;
2465 COPY_HARD_REG_SET (available_regs
,
2466 reg_class_contents
[this_alternative
]);
2467 AND_COMPL_HARD_REG_SET
2469 ira_prohibited_class_mode_regs
[this_alternative
][mode
]);
2470 AND_COMPL_HARD_REG_SET (available_regs
, lra_no_alloc_regs
);
2471 if (hard_reg_set_empty_p (available_regs
))
2473 /* There are no hard regs holding a value of given
2477 this_alternative
= NO_REGS
;
2478 if (lra_dump_file
!= NULL
)
2479 fprintf (lra_dump_file
,
2480 " %d Using memory because of"
2481 " a bad mode: reject+=2\n",
2487 if (lra_dump_file
!= NULL
)
2488 fprintf (lra_dump_file
,
2489 " alt=%d: Wrong mode -- refuse\n",
2496 /* If not assigned pseudo has a class which a subset of
2497 required reg class, it is a less costly alternative
2498 as the pseudo still can get a hard reg of necessary
2500 if (! no_regs_p
&& REG_P (op
) && hard_regno
[nop
] < 0
2501 && (cl
= get_reg_class (REGNO (op
))) != NO_REGS
2502 && ira_class_subset_p
[this_alternative
][cl
])
2504 if (lra_dump_file
!= NULL
)
2507 " %d Super set class reg: reject-=3\n", nop
);
2511 this_alternative_offmemok
= offmemok
;
2512 if (this_costly_alternative
!= NO_REGS
)
2514 if (lra_dump_file
!= NULL
)
2515 fprintf (lra_dump_file
,
2516 " %d Costly loser: reject++\n", nop
);
2519 /* If the operand is dying, has a matching constraint,
2520 and satisfies constraints of the matched operand
2521 which failed to satisfy the own constraints, most probably
2522 the reload for this operand will be gone. */
2523 if (this_alternative_matches
>= 0
2524 && !curr_alt_win
[this_alternative_matches
]
2526 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (op
))
2527 && (hard_regno
[nop
] >= 0
2528 ? in_hard_reg_set_p (this_alternative_set
,
2529 mode
, hard_regno
[nop
])
2530 : in_class_p (op
, this_alternative
, NULL
)))
2532 if (lra_dump_file
!= NULL
)
2535 " %d Dying matched operand reload: reject++\n",
2541 /* Strict_low_part requires to reload the register
2542 not the sub-register. In this case we should
2543 check that a final reload hard reg can hold the
2545 if (curr_static_id
->operand
[nop
].strict_low
2547 && hard_regno
[nop
] < 0
2548 && GET_CODE (*curr_id
->operand_loc
[nop
]) == SUBREG
2549 && ira_class_hard_regs_num
[this_alternative
] > 0
2550 && (!targetm
.hard_regno_mode_ok
2551 (ira_class_hard_regs
[this_alternative
][0],
2552 GET_MODE (*curr_id
->operand_loc
[nop
]))))
2554 if (lra_dump_file
!= NULL
)
2557 " alt=%d: Strict low subreg reload -- refuse\n",
2563 if (operand_reg
[nop
] != NULL_RTX
2564 /* Output operands and matched input operands are
2565 not inherited. The following conditions do not
2566 exactly describe the previous statement but they
2567 are pretty close. */
2568 && curr_static_id
->operand
[nop
].type
!= OP_OUT
2569 && (this_alternative_matches
< 0
2570 || curr_static_id
->operand
[nop
].type
!= OP_IN
))
2572 int last_reload
= (lra_reg_info
[ORIGINAL_REGNO
2576 /* The value of reload_sum has sense only if we
2577 process insns in their order. It happens only on
2578 the first constraints sub-pass when we do most of
2580 if (lra_constraint_iter
== 1 && last_reload
> bb_reload_num
)
2581 reload_sum
+= last_reload
- bb_reload_num
;
2583 /* If this is a constant that is reloaded into the
2584 desired class by copying it to memory first, count
2585 that as another reload. This is consistent with
2586 other code and is required to avoid choosing another
2587 alternative when the constant is moved into memory.
2588 Note that the test here is precisely the same as in
2589 the code below that calls force_const_mem. */
2590 if (CONST_POOL_OK_P (mode
, op
)
2591 && ((targetm
.preferred_reload_class
2592 (op
, this_alternative
) == NO_REGS
)
2593 || no_input_reloads_p
))
2600 /* Alternative loses if it requires a type of reload not
2601 permitted for this insn. We can always reload
2602 objects with a REG_UNUSED note. */
2603 if ((curr_static_id
->operand
[nop
].type
!= OP_IN
2604 && no_output_reloads_p
2605 && ! find_reg_note (curr_insn
, REG_UNUSED
, op
))
2606 || (curr_static_id
->operand
[nop
].type
!= OP_OUT
2607 && no_input_reloads_p
&& ! const_to_mem
)
2608 || (this_alternative_matches
>= 0
2609 && (no_input_reloads_p
2610 || (no_output_reloads_p
2611 && (curr_static_id
->operand
2612 [this_alternative_matches
].type
!= OP_IN
)
2613 && ! find_reg_note (curr_insn
, REG_UNUSED
,
2614 no_subreg_reg_operand
2615 [this_alternative_matches
])))))
2617 if (lra_dump_file
!= NULL
)
2620 " alt=%d: No input/otput reload -- refuse\n",
2625 /* Alternative loses if it required class pseudo can not
2626 hold value of required mode. Such insns can be
2627 described by insn definitions with mode iterators. */
2628 if (GET_MODE (*curr_id
->operand_loc
[nop
]) != VOIDmode
2629 && ! hard_reg_set_empty_p (this_alternative_set
)
2630 /* It is common practice for constraints to use a
2631 class which does not have actually enough regs to
2632 hold the value (e.g. x86 AREG for mode requiring
2633 more one general reg). Therefore we have 2
2634 conditions to check that the reload pseudo can
2635 not hold the mode value. */
2636 && (!targetm
.hard_regno_mode_ok
2637 (ira_class_hard_regs
[this_alternative
][0],
2638 GET_MODE (*curr_id
->operand_loc
[nop
])))
2639 /* The above condition is not enough as the first
2640 reg in ira_class_hard_regs can be not aligned for
2641 multi-words mode values. */
2642 && (prohibited_class_reg_set_mode_p
2643 (this_alternative
, this_alternative_set
,
2644 GET_MODE (*curr_id
->operand_loc
[nop
]))))
2646 if (lra_dump_file
!= NULL
)
2647 fprintf (lra_dump_file
,
2648 " alt=%d: reload pseudo for op %d "
2649 " can not hold the mode value -- refuse\n",
2654 /* Check strong discouragement of reload of non-constant
2655 into class THIS_ALTERNATIVE. */
2656 if (! CONSTANT_P (op
) && ! no_regs_p
2657 && (targetm
.preferred_reload_class
2658 (op
, this_alternative
) == NO_REGS
2659 || (curr_static_id
->operand
[nop
].type
== OP_OUT
2660 && (targetm
.preferred_output_reload_class
2661 (op
, this_alternative
) == NO_REGS
))))
2663 if (lra_dump_file
!= NULL
)
2664 fprintf (lra_dump_file
,
2665 " %d Non-prefered reload: reject+=%d\n",
2666 nop
, LRA_MAX_REJECT
);
2667 reject
+= LRA_MAX_REJECT
;
2670 if (! (MEM_P (op
) && offmemok
)
2671 && ! (const_to_mem
&& constmemok
))
2673 /* We prefer to reload pseudos over reloading other
2674 things, since such reloads may be able to be
2675 eliminated later. So bump REJECT in other cases.
2676 Don't do this in the case where we are forcing a
2677 constant into memory and it will then win since
2678 we don't want to have a different alternative
2680 if (! (REG_P (op
) && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2682 if (lra_dump_file
!= NULL
)
2685 " %d Non-pseudo reload: reject+=2\n",
2692 += ira_reg_class_max_nregs
[this_alternative
][mode
];
2694 if (SMALL_REGISTER_CLASS_P (this_alternative
))
2696 if (lra_dump_file
!= NULL
)
2699 " %d Small class reload: reject+=%d\n",
2700 nop
, LRA_LOSER_COST_FACTOR
/ 2);
2701 reject
+= LRA_LOSER_COST_FACTOR
/ 2;
2705 /* We are trying to spill pseudo into memory. It is
2706 usually more costly than moving to a hard register
2707 although it might takes the same number of
2710 Non-pseudo spill may happen also. Suppose a target allows both
2711 register and memory in the operand constraint alternatives,
2712 then it's typical that an eliminable register has a substition
2713 of "base + offset" which can either be reloaded by a simple
2714 "new_reg <= base + offset" which will match the register
2715 constraint, or a similar reg addition followed by further spill
2716 to and reload from memory which will match the memory
2717 constraint, but this memory spill will be much more costly
2720 Code below increases the reject for both pseudo and non-pseudo
2723 && !(MEM_P (op
) && offmemok
)
2724 && !(REG_P (op
) && hard_regno
[nop
] < 0))
2726 if (lra_dump_file
!= NULL
)
2729 " %d Spill %spseudo into memory: reject+=3\n",
2730 nop
, REG_P (op
) ? "" : "Non-");
2732 if (VECTOR_MODE_P (mode
))
2734 /* Spilling vectors into memory is usually more
2735 costly as they contain big values. */
2736 if (lra_dump_file
!= NULL
)
2739 " %d Spill vector pseudo: reject+=2\n",
2745 /* When we use an operand requiring memory in given
2746 alternative, the insn should write *and* read the
2747 value to/from memory it is costly in comparison with
2748 an insn alternative which does not use memory
2749 (e.g. register or immediate operand). We exclude
2750 memory operand for such case as we can satisfy the
2751 memory constraints by reloading address. */
2752 if (no_regs_p
&& offmemok
&& !MEM_P (op
))
2754 if (lra_dump_file
!= NULL
)
2757 " Using memory insn operand %d: reject+=3\n",
2762 /* If reload requires moving value through secondary
2763 memory, it will need one more insn at least. */
2764 if (this_alternative
!= NO_REGS
2765 && REG_P (op
) && (cl
= get_reg_class (REGNO (op
))) != NO_REGS
2766 && ((curr_static_id
->operand
[nop
].type
!= OP_OUT
2767 && targetm
.secondary_memory_needed (GET_MODE (op
), cl
,
2769 || (curr_static_id
->operand
[nop
].type
!= OP_IN
2770 && (targetm
.secondary_memory_needed
2771 (GET_MODE (op
), this_alternative
, cl
)))))
2774 /* Input reloads can be inherited more often than output
2775 reloads can be removed, so penalize output
2777 if (!REG_P (op
) || curr_static_id
->operand
[nop
].type
!= OP_IN
)
2779 if (lra_dump_file
!= NULL
)
2782 " %d Non input pseudo reload: reject++\n",
2787 if (MEM_P (op
) && offmemok
)
2789 else if (curr_static_id
->operand
[nop
].type
== OP_INOUT
)
2791 if (lra_dump_file
!= NULL
)
2794 " %d Input/Output reload: reject+=%d\n",
2795 nop
, LRA_LOSER_COST_FACTOR
);
2796 reject
+= LRA_LOSER_COST_FACTOR
;
2800 if (early_clobber_p
&& ! scratch_p
)
2802 if (lra_dump_file
!= NULL
)
2803 fprintf (lra_dump_file
,
2804 " %d Early clobber: reject++\n", nop
);
2807 /* ??? We check early clobbers after processing all operands
2808 (see loop below) and there we update the costs more.
2809 Should we update the cost (may be approximately) here
2810 because of early clobber register reloads or it is a rare
2811 or non-important thing to be worth to do it. */
2812 overall
= (losers
* LRA_LOSER_COST_FACTOR
+ reject
2813 - (addr_losers
== losers
? static_reject
: 0));
2814 if ((best_losers
== 0 || losers
!= 0) && best_overall
< overall
)
2816 if (lra_dump_file
!= NULL
)
2817 fprintf (lra_dump_file
,
2818 " alt=%d,overall=%d,losers=%d -- refuse\n",
2819 nalt
, overall
, losers
);
2823 if (update_and_check_small_class_inputs (nop
, this_alternative
))
2825 if (lra_dump_file
!= NULL
)
2826 fprintf (lra_dump_file
,
2827 " alt=%d, not enough small class regs -- refuse\n",
2831 curr_alt
[nop
] = this_alternative
;
2832 COPY_HARD_REG_SET (curr_alt_set
[nop
], this_alternative_set
);
2833 curr_alt_win
[nop
] = this_alternative_win
;
2834 curr_alt_match_win
[nop
] = this_alternative_match_win
;
2835 curr_alt_offmemok
[nop
] = this_alternative_offmemok
;
2836 curr_alt_matches
[nop
] = this_alternative_matches
;
2838 if (this_alternative_matches
>= 0
2839 && !did_match
&& !this_alternative_win
)
2840 curr_alt_win
[this_alternative_matches
] = false;
2842 if (early_clobber_p
&& operand_reg
[nop
] != NULL_RTX
)
2843 early_clobbered_nops
[early_clobbered_regs_num
++] = nop
;
2846 if (curr_insn_set
!= NULL_RTX
&& n_operands
== 2
2847 /* Prevent processing non-move insns. */
2848 && (GET_CODE (SET_SRC (curr_insn_set
)) == SUBREG
2849 || SET_SRC (curr_insn_set
) == no_subreg_reg_operand
[1])
2850 && ((! curr_alt_win
[0] && ! curr_alt_win
[1]
2851 && REG_P (no_subreg_reg_operand
[0])
2852 && REG_P (no_subreg_reg_operand
[1])
2853 && (reg_in_class_p (no_subreg_reg_operand
[0], curr_alt
[1])
2854 || reg_in_class_p (no_subreg_reg_operand
[1], curr_alt
[0])))
2855 || (! curr_alt_win
[0] && curr_alt_win
[1]
2856 && REG_P (no_subreg_reg_operand
[1])
2857 /* Check that we reload memory not the memory
2859 && ! (curr_alt_offmemok
[0]
2860 && MEM_P (no_subreg_reg_operand
[0]))
2861 && reg_in_class_p (no_subreg_reg_operand
[1], curr_alt
[0]))
2862 || (curr_alt_win
[0] && ! curr_alt_win
[1]
2863 && REG_P (no_subreg_reg_operand
[0])
2864 /* Check that we reload memory not the memory
2866 && ! (curr_alt_offmemok
[1]
2867 && MEM_P (no_subreg_reg_operand
[1]))
2868 && reg_in_class_p (no_subreg_reg_operand
[0], curr_alt
[1])
2869 && (! CONST_POOL_OK_P (curr_operand_mode
[1],
2870 no_subreg_reg_operand
[1])
2871 || (targetm
.preferred_reload_class
2872 (no_subreg_reg_operand
[1],
2873 (enum reg_class
) curr_alt
[1]) != NO_REGS
))
2874 /* If it is a result of recent elimination in move
2875 insn we can transform it into an add still by
2876 using this alternative. */
2877 && GET_CODE (no_subreg_reg_operand
[1]) != PLUS
2878 /* Likewise if the source has been replaced with an
2879 equivalent value. This only happens once -- the reload
2880 will use the equivalent value instead of the register it
2881 replaces -- so there should be no danger of cycling. */
2882 && !equiv_substition_p
[1])))
2884 /* We have a move insn and a new reload insn will be similar
2885 to the current insn. We should avoid such situation as
2886 it results in LRA cycling. */
2887 if (lra_dump_file
!= NULL
)
2888 fprintf (lra_dump_file
,
2889 " Cycle danger: overall += LRA_MAX_REJECT\n");
2890 overall
+= LRA_MAX_REJECT
;
2893 curr_alt_dont_inherit_ops_num
= 0;
2894 for (nop
= 0; nop
< early_clobbered_regs_num
; nop
++)
2896 int i
, j
, clobbered_hard_regno
, first_conflict_j
, last_conflict_j
;
2897 HARD_REG_SET temp_set
;
2899 i
= early_clobbered_nops
[nop
];
2900 if ((! curr_alt_win
[i
] && ! curr_alt_match_win
[i
])
2901 || hard_regno
[i
] < 0)
2903 lra_assert (operand_reg
[i
] != NULL_RTX
);
2904 clobbered_hard_regno
= hard_regno
[i
];
2905 CLEAR_HARD_REG_SET (temp_set
);
2906 add_to_hard_reg_set (&temp_set
, biggest_mode
[i
], clobbered_hard_regno
);
2907 first_conflict_j
= last_conflict_j
= -1;
2908 for (j
= 0; j
< n_operands
; j
++)
2910 /* We don't want process insides of match_operator and
2911 match_parallel because otherwise we would process
2912 their operands once again generating a wrong
2914 || curr_static_id
->operand
[j
].is_operator
)
2916 else if ((curr_alt_matches
[j
] == i
&& curr_alt_match_win
[j
])
2917 || (curr_alt_matches
[i
] == j
&& curr_alt_match_win
[i
]))
2919 /* If we don't reload j-th operand, check conflicts. */
2920 else if ((curr_alt_win
[j
] || curr_alt_match_win
[j
])
2921 && uses_hard_regs_p (*curr_id
->operand_loc
[j
], temp_set
))
2923 if (first_conflict_j
< 0)
2924 first_conflict_j
= j
;
2925 last_conflict_j
= j
;
2927 if (last_conflict_j
< 0)
2929 /* If earlyclobber operand conflicts with another
2930 non-matching operand which is actually the same register
2931 as the earlyclobber operand, it is better to reload the
2932 another operand as an operand matching the earlyclobber
2933 operand can be also the same. */
2934 if (first_conflict_j
== last_conflict_j
2935 && operand_reg
[last_conflict_j
] != NULL_RTX
2936 && ! curr_alt_match_win
[last_conflict_j
]
2937 && REGNO (operand_reg
[i
]) == REGNO (operand_reg
[last_conflict_j
]))
2939 curr_alt_win
[last_conflict_j
] = false;
2940 curr_alt_dont_inherit_ops
[curr_alt_dont_inherit_ops_num
++]
2943 /* Early clobber was already reflected in REJECT. */
2944 lra_assert (reject
> 0);
2945 if (lra_dump_file
!= NULL
)
2948 " %d Conflict early clobber reload: reject--\n",
2951 overall
+= LRA_LOSER_COST_FACTOR
- 1;
2955 /* We need to reload early clobbered register and the
2956 matched registers. */
2957 for (j
= 0; j
< n_operands
; j
++)
2958 if (curr_alt_matches
[j
] == i
)
2960 curr_alt_match_win
[j
] = false;
2962 overall
+= LRA_LOSER_COST_FACTOR
;
2964 if (! curr_alt_match_win
[i
])
2965 curr_alt_dont_inherit_ops
[curr_alt_dont_inherit_ops_num
++] = i
;
2968 /* Remember pseudos used for match reloads are never
2970 lra_assert (curr_alt_matches
[i
] >= 0);
2971 curr_alt_win
[curr_alt_matches
[i
]] = false;
2973 curr_alt_win
[i
] = curr_alt_match_win
[i
] = false;
2975 /* Early clobber was already reflected in REJECT. */
2976 lra_assert (reject
> 0);
2977 if (lra_dump_file
!= NULL
)
2980 " %d Matched conflict early clobber reloads: "
2984 overall
+= LRA_LOSER_COST_FACTOR
- 1;
2987 if (lra_dump_file
!= NULL
)
2988 fprintf (lra_dump_file
, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2989 nalt
, overall
, losers
, reload_nregs
);
2991 /* If this alternative can be made to work by reloading, and it
2992 needs less reloading than the others checked so far, record
2993 it as the chosen goal for reloading. */
2994 if ((best_losers
!= 0 && losers
== 0)
2995 || (((best_losers
== 0 && losers
== 0)
2996 || (best_losers
!= 0 && losers
!= 0))
2997 && (best_overall
> overall
2998 || (best_overall
== overall
2999 /* If the cost of the reloads is the same,
3000 prefer alternative which requires minimal
3001 number of reload regs. */
3002 && (reload_nregs
< best_reload_nregs
3003 || (reload_nregs
== best_reload_nregs
3004 && (best_reload_sum
< reload_sum
3005 || (best_reload_sum
== reload_sum
3006 && nalt
< goal_alt_number
))))))))
3008 for (nop
= 0; nop
< n_operands
; nop
++)
3010 goal_alt_win
[nop
] = curr_alt_win
[nop
];
3011 goal_alt_match_win
[nop
] = curr_alt_match_win
[nop
];
3012 goal_alt_matches
[nop
] = curr_alt_matches
[nop
];
3013 goal_alt
[nop
] = curr_alt
[nop
];
3014 goal_alt_offmemok
[nop
] = curr_alt_offmemok
[nop
];
3016 goal_alt_dont_inherit_ops_num
= curr_alt_dont_inherit_ops_num
;
3017 for (nop
= 0; nop
< curr_alt_dont_inherit_ops_num
; nop
++)
3018 goal_alt_dont_inherit_ops
[nop
] = curr_alt_dont_inherit_ops
[nop
];
3019 goal_alt_swapped
= curr_swapped
;
3020 best_overall
= overall
;
3021 best_losers
= losers
;
3022 best_reload_nregs
= reload_nregs
;
3023 best_reload_sum
= reload_sum
;
3024 goal_alt_number
= nalt
;
3027 /* Everything is satisfied. Do not process alternatives
3036 /* Make reload base reg from address AD. */
3038 base_to_reg (struct address_info
*ad
)
3042 rtx new_inner
= NULL_RTX
;
3043 rtx new_reg
= NULL_RTX
;
3045 rtx_insn
*last_insn
= get_last_insn();
3047 lra_assert (ad
->disp
== ad
->disp_term
);
3048 cl
= base_reg_class (ad
->mode
, ad
->as
, ad
->base_outer_code
,
3049 get_index_code (ad
));
3050 new_reg
= lra_create_new_reg (GET_MODE (*ad
->base
), NULL_RTX
,
3052 new_inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
), new_reg
,
3053 ad
->disp_term
== NULL
3056 if (!valid_address_p (ad
->mode
, new_inner
, ad
->as
))
3058 insn
= emit_insn (gen_rtx_SET (new_reg
, *ad
->base
));
3059 code
= recog_memoized (insn
);
3062 delete_insns_since (last_insn
);
3069 /* Make reload base reg + DISP from address AD. Return the new pseudo. */
3071 base_plus_disp_to_reg (struct address_info
*ad
, rtx disp
)
3076 lra_assert (ad
->base
== ad
->base_term
);
3077 cl
= base_reg_class (ad
->mode
, ad
->as
, ad
->base_outer_code
,
3078 get_index_code (ad
));
3079 new_reg
= lra_create_new_reg (GET_MODE (*ad
->base_term
), NULL_RTX
,
3081 lra_emit_add (new_reg
, *ad
->base_term
, disp
);
3085 /* Make reload of index part of address AD. Return the new
3088 index_part_to_reg (struct address_info
*ad
)
3092 new_reg
= lra_create_new_reg (GET_MODE (*ad
->index
), NULL_RTX
,
3093 INDEX_REG_CLASS
, "index term");
3094 expand_mult (GET_MODE (*ad
->index
), *ad
->index_term
,
3095 GEN_INT (get_index_scale (ad
)), new_reg
, 1);
3099 /* Return true if we can add a displacement to address AD, even if that
3100 makes the address invalid. The fix-up code requires any new address
3101 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3103 can_add_disp_p (struct address_info
*ad
)
3105 return (!ad
->autoinc_p
3106 && ad
->segment
== NULL
3107 && ad
->base
== ad
->base_term
3108 && ad
->disp
== ad
->disp_term
);
3111 /* Make equiv substitution in address AD. Return true if a substitution
3114 equiv_address_substitution (struct address_info
*ad
)
3116 rtx base_reg
, new_base_reg
, index_reg
, new_index_reg
, *base_term
, *index_term
;
3118 HOST_WIDE_INT scale
;
3121 base_term
= strip_subreg (ad
->base_term
);
3122 if (base_term
== NULL
)
3123 base_reg
= new_base_reg
= NULL_RTX
;
3126 base_reg
= *base_term
;
3127 new_base_reg
= get_equiv_with_elimination (base_reg
, curr_insn
);
3129 index_term
= strip_subreg (ad
->index_term
);
3130 if (index_term
== NULL
)
3131 index_reg
= new_index_reg
= NULL_RTX
;
3134 index_reg
= *index_term
;
3135 new_index_reg
= get_equiv_with_elimination (index_reg
, curr_insn
);
3137 if (base_reg
== new_base_reg
&& index_reg
== new_index_reg
)
3141 if (lra_dump_file
!= NULL
)
3143 fprintf (lra_dump_file
, "Changing address in insn %d ",
3144 INSN_UID (curr_insn
));
3145 dump_value_slim (lra_dump_file
, *ad
->outer
, 1);
3147 if (base_reg
!= new_base_reg
)
3150 if (REG_P (new_base_reg
))
3152 *base_term
= new_base_reg
;
3155 else if (GET_CODE (new_base_reg
) == PLUS
3156 && REG_P (XEXP (new_base_reg
, 0))
3157 && poly_int_rtx_p (XEXP (new_base_reg
, 1), &offset
)
3158 && can_add_disp_p (ad
))
3161 *base_term
= XEXP (new_base_reg
, 0);
3164 if (ad
->base_term2
!= NULL
)
3165 *ad
->base_term2
= *ad
->base_term
;
3167 if (index_reg
!= new_index_reg
)
3170 if (REG_P (new_index_reg
))
3172 *index_term
= new_index_reg
;
3175 else if (GET_CODE (new_index_reg
) == PLUS
3176 && REG_P (XEXP (new_index_reg
, 0))
3177 && poly_int_rtx_p (XEXP (new_index_reg
, 1), &offset
)
3178 && can_add_disp_p (ad
)
3179 && (scale
= get_index_scale (ad
)))
3181 disp
+= offset
* scale
;
3182 *index_term
= XEXP (new_index_reg
, 0);
3186 if (maybe_ne (disp
, 0))
3188 if (ad
->disp
!= NULL
)
3189 *ad
->disp
= plus_constant (GET_MODE (*ad
->inner
), *ad
->disp
, disp
);
3192 *ad
->inner
= plus_constant (GET_MODE (*ad
->inner
), *ad
->inner
, disp
);
3193 update_address (ad
);
3197 if (lra_dump_file
!= NULL
)
3200 fprintf (lra_dump_file
, " -- no change\n");
3203 fprintf (lra_dump_file
, " on equiv ");
3204 dump_value_slim (lra_dump_file
, *ad
->outer
, 1);
3205 fprintf (lra_dump_file
, "\n");
3211 /* Major function to make reloads for an address in operand NOP or
3212 check its correctness (If CHECK_ONLY_P is true). The supported
3215 1) an address that existed before LRA started, at which point it
3216 must have been valid. These addresses are subject to elimination
3217 and may have become invalid due to the elimination offset being out
3220 2) an address created by forcing a constant to memory
3221 (force_const_to_mem). The initial form of these addresses might
3222 not be valid, and it is this function's job to make them valid.
3224 3) a frame address formed from a register and a (possibly zero)
3225 constant offset. As above, these addresses might not be valid and
3226 this function must make them so.
3228 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3229 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3230 address. Return true for any RTL change.
3232 The function is a helper function which does not produce all
3233 transformations (when CHECK_ONLY_P is false) which can be
3234 necessary. It does just basic steps. To do all necessary
3235 transformations use function process_address. */
3237 process_address_1 (int nop
, bool check_only_p
,
3238 rtx_insn
**before
, rtx_insn
**after
)
3240 struct address_info ad
;
3242 HOST_WIDE_INT scale
;
3243 rtx op
= *curr_id
->operand_loc
[nop
];
3244 const char *constraint
= curr_static_id
->operand
[nop
].constraint
;
3245 enum constraint_num cn
= lookup_constraint (constraint
);
3246 bool change_p
= false;
3249 && GET_MODE (op
) == BLKmode
3250 && GET_CODE (XEXP (op
, 0)) == SCRATCH
)
3253 if (insn_extra_address_constraint (cn
)
3254 /* When we find an asm operand with an address constraint that
3255 doesn't satisfy address_operand to begin with, we clear
3256 is_address, so that we don't try to make a non-address fit.
3257 If the asm statement got this far, it's because other
3258 constraints are available, and we'll use them, disregarding
3259 the unsatisfiable address ones. */
3260 && curr_static_id
->operand
[nop
].is_address
)
3261 decompose_lea_address (&ad
, curr_id
->operand_loc
[nop
]);
3262 /* Do not attempt to decompose arbitrary addresses generated by combine
3263 for asm operands with loose constraints, e.g 'X'. */
3265 && !(INSN_CODE (curr_insn
) < 0
3266 && get_constraint_type (cn
) == CT_FIXED_FORM
3267 && constraint_satisfied_p (op
, cn
)))
3268 decompose_mem_address (&ad
, op
);
3269 else if (GET_CODE (op
) == SUBREG
3270 && MEM_P (SUBREG_REG (op
)))
3271 decompose_mem_address (&ad
, SUBREG_REG (op
));
3274 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3275 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3276 when INDEX_REG_CLASS is a single register class. */
3277 if (ad
.base_term
!= NULL
3278 && ad
.index_term
!= NULL
3279 && ira_class_hard_regs_num
[INDEX_REG_CLASS
] == 1
3280 && REG_P (*ad
.base_term
)
3281 && REG_P (*ad
.index_term
)
3282 && in_class_p (*ad
.base_term
, INDEX_REG_CLASS
, NULL
)
3283 && ! in_class_p (*ad
.index_term
, INDEX_REG_CLASS
, NULL
))
3285 std::swap (ad
.base
, ad
.index
);
3286 std::swap (ad
.base_term
, ad
.index_term
);
3289 change_p
= equiv_address_substitution (&ad
);
3290 if (ad
.base_term
!= NULL
3291 && (process_addr_reg
3292 (ad
.base_term
, check_only_p
, before
,
3294 && !(REG_P (*ad
.base_term
)
3295 && find_regno_note (curr_insn
, REG_DEAD
,
3296 REGNO (*ad
.base_term
)) != NULL_RTX
)
3298 base_reg_class (ad
.mode
, ad
.as
, ad
.base_outer_code
,
3299 get_index_code (&ad
)))))
3302 if (ad
.base_term2
!= NULL
)
3303 *ad
.base_term2
= *ad
.base_term
;
3305 if (ad
.index_term
!= NULL
3306 && process_addr_reg (ad
.index_term
, check_only_p
,
3307 before
, NULL
, INDEX_REG_CLASS
))
3310 /* Target hooks sometimes don't treat extra-constraint addresses as
3311 legitimate address_operands, so handle them specially. */
3312 if (insn_extra_address_constraint (cn
)
3313 && satisfies_address_constraint_p (&ad
, cn
))
3319 /* There are three cases where the shape of *AD.INNER may now be invalid:
3321 1) the original address was valid, but either elimination or
3322 equiv_address_substitution was applied and that made
3323 the address invalid.
3325 2) the address is an invalid symbolic address created by
3328 3) the address is a frame address with an invalid offset.
3330 4) the address is a frame address with an invalid base.
3332 All these cases involve a non-autoinc address, so there is no
3333 point revalidating other types. */
3334 if (ad
.autoinc_p
|| valid_address_p (&ad
))
3337 /* Any index existed before LRA started, so we can assume that the
3338 presence and shape of the index is valid. */
3339 push_to_sequence (*before
);
3340 lra_assert (ad
.disp
== ad
.disp_term
);
3341 if (ad
.base
== NULL
)
3343 if (ad
.index
== NULL
)
3346 rtx_insn
*last
= get_last_insn ();
3348 enum reg_class cl
= base_reg_class (ad
.mode
, ad
.as
,
3350 rtx addr
= *ad
.inner
;
3352 new_reg
= lra_create_new_reg (Pmode
, NULL_RTX
, cl
, "addr");
3355 /* addr => lo_sum (new_base, addr), case (2) above. */
3356 insn
= emit_insn (gen_rtx_SET
3358 gen_rtx_HIGH (Pmode
, copy_rtx (addr
))));
3359 code
= recog_memoized (insn
);
3362 *ad
.inner
= gen_rtx_LO_SUM (Pmode
, new_reg
, addr
);
3363 if (! valid_address_p (ad
.mode
, *ad
.outer
, ad
.as
))
3365 /* Try to put lo_sum into register. */
3366 insn
= emit_insn (gen_rtx_SET
3368 gen_rtx_LO_SUM (Pmode
, new_reg
, addr
)));
3369 code
= recog_memoized (insn
);
3372 *ad
.inner
= new_reg
;
3373 if (! valid_address_p (ad
.mode
, *ad
.outer
, ad
.as
))
3383 delete_insns_since (last
);
3388 /* addr => new_base, case (2) above. */
3389 lra_emit_move (new_reg
, addr
);
3391 for (insn
= last
== NULL_RTX
? get_insns () : NEXT_INSN (last
);
3393 insn
= NEXT_INSN (insn
))
3394 if (recog_memoized (insn
) < 0)
3396 if (insn
!= NULL_RTX
)
3398 /* Do nothing if we cannot generate right insns.
3399 This is analogous to reload pass behavior. */
3400 delete_insns_since (last
);
3404 *ad
.inner
= new_reg
;
3409 /* index * scale + disp => new base + index * scale,
3411 enum reg_class cl
= base_reg_class (ad
.mode
, ad
.as
, PLUS
,
3412 GET_CODE (*ad
.index
));
3414 lra_assert (INDEX_REG_CLASS
!= NO_REGS
);
3415 new_reg
= lra_create_new_reg (Pmode
, NULL_RTX
, cl
, "disp");
3416 lra_emit_move (new_reg
, *ad
.disp
);
3417 *ad
.inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
),
3418 new_reg
, *ad
.index
);
3421 else if (ad
.index
== NULL
)
3426 rtx_insn
*insns
, *last_insn
;
3427 /* Try to reload base into register only if the base is invalid
3428 for the address but with valid offset, case (4) above. */
3430 new_reg
= base_to_reg (&ad
);
3432 /* base + disp => new base, cases (1) and (3) above. */
3433 /* Another option would be to reload the displacement into an
3434 index register. However, postreload has code to optimize
3435 address reloads that have the same base and different
3436 displacements, so reloading into an index register would
3437 not necessarily be a win. */
3438 if (new_reg
== NULL_RTX
)
3440 /* See if the target can split the displacement into a
3441 legitimate new displacement from a local anchor. */
3442 gcc_assert (ad
.disp
== ad
.disp_term
);
3443 poly_int64 orig_offset
;
3444 rtx offset1
, offset2
;
3445 if (poly_int_rtx_p (*ad
.disp
, &orig_offset
)
3446 && targetm
.legitimize_address_displacement (&offset1
, &offset2
,
3450 new_reg
= base_plus_disp_to_reg (&ad
, offset1
);
3451 new_reg
= gen_rtx_PLUS (GET_MODE (new_reg
), new_reg
, offset2
);
3454 new_reg
= base_plus_disp_to_reg (&ad
, *ad
.disp
);
3456 insns
= get_insns ();
3457 last_insn
= get_last_insn ();
3458 /* If we generated at least two insns, try last insn source as
3459 an address. If we succeed, we generate one less insn. */
3461 && last_insn
!= insns
3462 && (set
= single_set (last_insn
)) != NULL_RTX
3463 && GET_CODE (SET_SRC (set
)) == PLUS
3464 && REG_P (XEXP (SET_SRC (set
), 0))
3465 && CONSTANT_P (XEXP (SET_SRC (set
), 1)))
3467 *ad
.inner
= SET_SRC (set
);
3468 if (valid_address_p (ad
.mode
, *ad
.outer
, ad
.as
))
3470 *ad
.base_term
= XEXP (SET_SRC (set
), 0);
3471 *ad
.disp_term
= XEXP (SET_SRC (set
), 1);
3472 cl
= base_reg_class (ad
.mode
, ad
.as
, ad
.base_outer_code
,
3473 get_index_code (&ad
));
3474 regno
= REGNO (*ad
.base_term
);
3475 if (regno
>= FIRST_PSEUDO_REGISTER
3476 && cl
!= lra_get_allocno_class (regno
))
3477 lra_change_class (regno
, cl
, " Change to", true);
3478 new_reg
= SET_SRC (set
);
3479 delete_insns_since (PREV_INSN (last_insn
));
3484 *ad
.inner
= new_reg
;
3486 else if (ad
.disp_term
!= NULL
)
3488 /* base + scale * index + disp => new base + scale * index,
3490 gcc_assert (ad
.disp
== ad
.disp_term
);
3491 new_reg
= base_plus_disp_to_reg (&ad
, *ad
.disp
);
3492 *ad
.inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
),
3493 new_reg
, *ad
.index
);
3495 else if ((scale
= get_index_scale (&ad
)) == 1)
3497 /* The last transformation to one reg will be made in
3498 curr_insn_transform function. */
3502 else if (scale
!= 0)
3504 /* base + scale * index => base + new_reg,
3506 Index part of address may become invalid. For example, we
3507 changed pseudo on the equivalent memory and a subreg of the
3508 pseudo onto the memory of different mode for which the scale is
3510 new_reg
= index_part_to_reg (&ad
);
3511 *ad
.inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
),
3512 *ad
.base_term
, new_reg
);
3516 enum reg_class cl
= base_reg_class (ad
.mode
, ad
.as
,
3518 rtx addr
= *ad
.inner
;
3520 new_reg
= lra_create_new_reg (Pmode
, NULL_RTX
, cl
, "addr");
3521 /* addr => new_base. */
3522 lra_emit_move (new_reg
, addr
);
3523 *ad
.inner
= new_reg
;
3525 *before
= get_insns ();
3530 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3531 Use process_address_1 as a helper function. Return true for any
3534 If CHECK_ONLY_P is true, just check address correctness. Return
3535 false if the address correct. */
3537 process_address (int nop
, bool check_only_p
,
3538 rtx_insn
**before
, rtx_insn
**after
)
3542 while (process_address_1 (nop
, check_only_p
, before
, after
))
3551 /* Emit insns to reload VALUE into a new register. VALUE is an
3552 auto-increment or auto-decrement RTX whose operand is a register or
3553 memory location; so reloading involves incrementing that location.
3554 IN is either identical to VALUE, or some cheaper place to reload
3555 value being incremented/decremented from.
3557 INC_AMOUNT is the number to increment or decrement by (always
3558 positive and ignored for POST_MODIFY/PRE_MODIFY).
3560 Return pseudo containing the result. */
3562 emit_inc (enum reg_class new_rclass
, rtx in
, rtx value
, poly_int64 inc_amount
)
3564 /* REG or MEM to be copied and incremented. */
3565 rtx incloc
= XEXP (value
, 0);
3566 /* Nonzero if increment after copying. */
3567 int post
= (GET_CODE (value
) == POST_DEC
|| GET_CODE (value
) == POST_INC
3568 || GET_CODE (value
) == POST_MODIFY
);
3573 rtx real_in
= in
== value
? incloc
: in
;
3577 if (GET_CODE (value
) == PRE_MODIFY
|| GET_CODE (value
) == POST_MODIFY
)
3579 lra_assert (GET_CODE (XEXP (value
, 1)) == PLUS
3580 || GET_CODE (XEXP (value
, 1)) == MINUS
);
3581 lra_assert (rtx_equal_p (XEXP (XEXP (value
, 1), 0), XEXP (value
, 0)));
3582 plus_p
= GET_CODE (XEXP (value
, 1)) == PLUS
;
3583 inc
= XEXP (XEXP (value
, 1), 1);
3587 if (GET_CODE (value
) == PRE_DEC
|| GET_CODE (value
) == POST_DEC
)
3588 inc_amount
= -inc_amount
;
3590 inc
= gen_int_mode (inc_amount
, GET_MODE (value
));
3593 if (! post
&& REG_P (incloc
))
3596 result
= lra_create_new_reg (GET_MODE (value
), value
, new_rclass
,
3599 if (real_in
!= result
)
3601 /* First copy the location to the result register. */
3602 lra_assert (REG_P (result
));
3603 emit_insn (gen_move_insn (result
, real_in
));
3606 /* We suppose that there are insns to add/sub with the constant
3607 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3608 old reload worked with this assumption. If the assumption
3609 becomes wrong, we should use approach in function
3610 base_plus_disp_to_reg. */
3613 /* See if we can directly increment INCLOC. */
3614 last
= get_last_insn ();
3615 add_insn
= emit_insn (plus_p
3616 ? gen_add2_insn (incloc
, inc
)
3617 : gen_sub2_insn (incloc
, inc
));
3619 code
= recog_memoized (add_insn
);
3622 if (! post
&& result
!= incloc
)
3623 emit_insn (gen_move_insn (result
, incloc
));
3626 delete_insns_since (last
);
3629 /* If couldn't do the increment directly, must increment in RESULT.
3630 The way we do this depends on whether this is pre- or
3631 post-increment. For pre-increment, copy INCLOC to the reload
3632 register, increment it there, then save back. */
3635 if (real_in
!= result
)
3636 emit_insn (gen_move_insn (result
, real_in
));
3638 emit_insn (gen_add2_insn (result
, inc
));
3640 emit_insn (gen_sub2_insn (result
, inc
));
3641 if (result
!= incloc
)
3642 emit_insn (gen_move_insn (incloc
, result
));
3648 Because this might be a jump insn or a compare, and because
3649 RESULT may not be available after the insn in an input
3650 reload, we must do the incrementing before the insn being
3653 We have already copied IN to RESULT. Increment the copy in
3654 RESULT, save that back, then decrement RESULT so it has
3655 the original value. */
3657 emit_insn (gen_add2_insn (result
, inc
));
3659 emit_insn (gen_sub2_insn (result
, inc
));
3660 emit_insn (gen_move_insn (incloc
, result
));
3661 /* Restore non-modified value for the result. We prefer this
3662 way because it does not require an additional hard
3667 if (poly_int_rtx_p (inc
, &offset
))
3668 emit_insn (gen_add2_insn (result
,
3669 gen_int_mode (-offset
,
3670 GET_MODE (result
))));
3672 emit_insn (gen_sub2_insn (result
, inc
));
3675 emit_insn (gen_add2_insn (result
, inc
));
3680 /* Return true if the current move insn does not need processing as we
3681 already know that it satisfies its constraints. */
3683 simple_move_p (void)
3686 enum reg_class dclass
, sclass
;
3688 lra_assert (curr_insn_set
!= NULL_RTX
);
3689 dest
= SET_DEST (curr_insn_set
);
3690 src
= SET_SRC (curr_insn_set
);
3692 /* If the instruction has multiple sets we need to process it even if it
3693 is single_set. This can happen if one or more of the SETs are dead.
3695 if (multiple_sets (curr_insn
))
3698 return ((dclass
= get_op_class (dest
)) != NO_REGS
3699 && (sclass
= get_op_class (src
)) != NO_REGS
3700 /* The backend guarantees that register moves of cost 2
3701 never need reloads. */
3702 && targetm
.register_move_cost (GET_MODE (src
), sclass
, dclass
) == 2);
3705 /* Swap operands NOP and NOP + 1. */
3707 swap_operands (int nop
)
3709 std::swap (curr_operand_mode
[nop
], curr_operand_mode
[nop
+ 1]);
3710 std::swap (original_subreg_reg_mode
[nop
], original_subreg_reg_mode
[nop
+ 1]);
3711 std::swap (*curr_id
->operand_loc
[nop
], *curr_id
->operand_loc
[nop
+ 1]);
3712 std::swap (equiv_substition_p
[nop
], equiv_substition_p
[nop
+ 1]);
3713 /* Swap the duplicates too. */
3714 lra_update_dup (curr_id
, nop
);
3715 lra_update_dup (curr_id
, nop
+ 1);
3718 /* Main entry point of the constraint code: search the body of the
3719 current insn to choose the best alternative. It is mimicking insn
3720 alternative cost calculation model of former reload pass. That is
3721 because machine descriptions were written to use this model. This
3722 model can be changed in future. Make commutative operand exchange
3725 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3726 constraints. Return true if any change happened during function
3729 If CHECK_ONLY_P is true then don't do any transformation. Just
3730 check that the insn satisfies all constraints. If the insn does
3731 not satisfy any constraint, return true. */
3733 curr_insn_transform (bool check_only_p
)
3740 signed char goal_alt_matched
[MAX_RECOG_OPERANDS
][MAX_RECOG_OPERANDS
];
3741 signed char match_inputs
[MAX_RECOG_OPERANDS
+ 1];
3742 signed char outputs
[MAX_RECOG_OPERANDS
+ 1];
3743 rtx_insn
*before
, *after
;
3745 /* Flag that the insn has been changed through a transformation. */
3749 int max_regno_before
;
3750 int reused_alternative_num
;
3752 curr_insn_set
= single_set (curr_insn
);
3753 if (curr_insn_set
!= NULL_RTX
&& simple_move_p ())
3755 /* We assume that the corresponding insn alternative has no
3756 earlier clobbers. If it is not the case, don't define move
3757 cost equal to 2 for the corresponding register classes. */
3758 lra_set_used_insn_alternative (curr_insn
, LRA_NON_CLOBBERED_ALT
);
3762 no_input_reloads_p
= no_output_reloads_p
= false;
3763 goal_alt_number
= -1;
3764 change_p
= sec_mem_p
= false;
3765 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3766 reloads; neither are insns that SET cc0. Insns that use CC0 are
3767 not allowed to have any input reloads. */
3768 if (JUMP_P (curr_insn
) || CALL_P (curr_insn
))
3769 no_output_reloads_p
= true;
3771 if (HAVE_cc0
&& reg_referenced_p (cc0_rtx
, PATTERN (curr_insn
)))
3772 no_input_reloads_p
= true;
3773 if (HAVE_cc0
&& reg_set_p (cc0_rtx
, PATTERN (curr_insn
)))
3774 no_output_reloads_p
= true;
3776 n_operands
= curr_static_id
->n_operands
;
3777 n_alternatives
= curr_static_id
->n_alternatives
;
3779 /* Just return "no reloads" if insn has no operands with
3781 if (n_operands
== 0 || n_alternatives
== 0)
3784 max_regno_before
= max_reg_num ();
3786 for (i
= 0; i
< n_operands
; i
++)
3788 goal_alt_matched
[i
][0] = -1;
3789 goal_alt_matches
[i
] = -1;
3792 commutative
= curr_static_id
->commutative
;
3794 /* Now see what we need for pseudos that didn't get hard regs or got
3795 the wrong kind of hard reg. For this, we must consider all the
3796 operands together against the register constraints. */
3798 best_losers
= best_overall
= INT_MAX
;
3799 best_reload_sum
= 0;
3801 curr_swapped
= false;
3802 goal_alt_swapped
= false;
3805 /* Make equivalence substitution and memory subreg elimination
3806 before address processing because an address legitimacy can
3807 depend on memory mode. */
3808 for (i
= 0; i
< n_operands
; i
++)
3811 bool op_change_p
= false;
3813 if (curr_static_id
->operand
[i
].is_operator
)
3816 old
= op
= *curr_id
->operand_loc
[i
];
3817 if (GET_CODE (old
) == SUBREG
)
3818 old
= SUBREG_REG (old
);
3819 subst
= get_equiv_with_elimination (old
, curr_insn
);
3820 original_subreg_reg_mode
[i
] = VOIDmode
;
3821 equiv_substition_p
[i
] = false;
3824 equiv_substition_p
[i
] = true;
3825 subst
= copy_rtx (subst
);
3826 lra_assert (REG_P (old
));
3827 if (GET_CODE (op
) != SUBREG
)
3828 *curr_id
->operand_loc
[i
] = subst
;
3831 SUBREG_REG (op
) = subst
;
3832 if (GET_MODE (subst
) == VOIDmode
)
3833 original_subreg_reg_mode
[i
] = GET_MODE (old
);
3835 if (lra_dump_file
!= NULL
)
3837 fprintf (lra_dump_file
,
3838 "Changing pseudo %d in operand %i of insn %u on equiv ",
3839 REGNO (old
), i
, INSN_UID (curr_insn
));
3840 dump_value_slim (lra_dump_file
, subst
, 1);
3841 fprintf (lra_dump_file
, "\n");
3843 op_change_p
= change_p
= true;
3845 if (simplify_operand_subreg (i
, GET_MODE (old
)) || op_change_p
)
3848 lra_update_dup (curr_id
, i
);
3852 /* Reload address registers and displacements. We do it before
3853 finding an alternative because of memory constraints. */
3854 before
= after
= NULL
;
3855 for (i
= 0; i
< n_operands
; i
++)
3856 if (! curr_static_id
->operand
[i
].is_operator
3857 && process_address (i
, check_only_p
, &before
, &after
))
3862 lra_update_dup (curr_id
, i
);
3866 /* If we've changed the instruction then any alternative that
3867 we chose previously may no longer be valid. */
3868 lra_set_used_insn_alternative (curr_insn
, LRA_UNKNOWN_ALT
);
3870 if (! check_only_p
&& curr_insn_set
!= NULL_RTX
3871 && check_and_process_move (&change_p
, &sec_mem_p
))
3876 reused_alternative_num
= check_only_p
? LRA_UNKNOWN_ALT
: curr_id
->used_insn_alternative
;
3877 if (lra_dump_file
!= NULL
&& reused_alternative_num
>= 0)
3878 fprintf (lra_dump_file
, "Reusing alternative %d for insn #%u\n",
3879 reused_alternative_num
, INSN_UID (curr_insn
));
3881 if (process_alt_operands (reused_alternative_num
))
3885 return ! alt_p
|| best_losers
!= 0;
3887 /* If insn is commutative (it's safe to exchange a certain pair of
3888 operands) then we need to try each alternative twice, the second
3889 time matching those two operands as if we had exchanged them. To
3890 do this, really exchange them in operands.
3892 If we have just tried the alternatives the second time, return
3893 operands to normal and drop through. */
3895 if (reused_alternative_num
< 0 && commutative
>= 0)
3897 curr_swapped
= !curr_swapped
;
3900 swap_operands (commutative
);
3904 swap_operands (commutative
);
3907 if (! alt_p
&& ! sec_mem_p
)
3909 /* No alternative works with reloads?? */
3910 if (INSN_CODE (curr_insn
) >= 0)
3911 fatal_insn ("unable to generate reloads for:", curr_insn
);
3912 error_for_asm (curr_insn
,
3913 "inconsistent operand constraints in an %<asm%>");
3914 /* Avoid further trouble with this insn. Don't generate use
3915 pattern here as we could use the insn SP offset. */
3916 lra_set_insn_deleted (curr_insn
);
3920 /* If the best alternative is with operands 1 and 2 swapped, swap
3921 them. Update the operand numbers of any reloads already
3924 if (goal_alt_swapped
)
3926 if (lra_dump_file
!= NULL
)
3927 fprintf (lra_dump_file
, " Commutative operand exchange in insn %u\n",
3928 INSN_UID (curr_insn
));
3930 /* Swap the duplicates too. */
3931 swap_operands (commutative
);
3935 /* Some targets' TARGET_SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3936 too conservatively. So we use the secondary memory only if there
3937 is no any alternative without reloads. */
3938 use_sec_mem_p
= false;
3940 use_sec_mem_p
= true;
3943 for (i
= 0; i
< n_operands
; i
++)
3944 if (! goal_alt_win
[i
] && ! goal_alt_match_win
[i
])
3946 use_sec_mem_p
= i
< n_operands
;
3951 int in
= -1, out
= -1;
3952 rtx new_reg
, src
, dest
, rld
;
3953 machine_mode sec_mode
, rld_mode
;
3955 lra_assert (curr_insn_set
!= NULL_RTX
&& sec_mem_p
);
3956 dest
= SET_DEST (curr_insn_set
);
3957 src
= SET_SRC (curr_insn_set
);
3958 for (i
= 0; i
< n_operands
; i
++)
3959 if (*curr_id
->operand_loc
[i
] == dest
)
3961 else if (*curr_id
->operand_loc
[i
] == src
)
3963 for (i
= 0; i
< curr_static_id
->n_dups
; i
++)
3964 if (out
< 0 && *curr_id
->dup_loc
[i
] == dest
)
3965 out
= curr_static_id
->dup_num
[i
];
3966 else if (in
< 0 && *curr_id
->dup_loc
[i
] == src
)
3967 in
= curr_static_id
->dup_num
[i
];
3968 lra_assert (out
>= 0 && in
>= 0
3969 && curr_static_id
->operand
[out
].type
== OP_OUT
3970 && curr_static_id
->operand
[in
].type
== OP_IN
);
3971 rld
= partial_subreg_p (GET_MODE (src
), GET_MODE (dest
)) ? src
: dest
;
3972 rld_mode
= GET_MODE (rld
);
3973 sec_mode
= targetm
.secondary_memory_needed_mode (rld_mode
);
3974 new_reg
= lra_create_new_reg (sec_mode
, NULL_RTX
,
3975 NO_REGS
, "secondary");
3976 /* If the mode is changed, it should be wider. */
3977 lra_assert (!partial_subreg_p (sec_mode
, rld_mode
));
3978 if (sec_mode
!= rld_mode
)
3980 /* If the target says specifically to use another mode for
3981 secondary memory moves we can not reuse the original
3983 after
= emit_spill_move (false, new_reg
, dest
);
3984 lra_process_new_insns (curr_insn
, NULL
, after
,
3985 "Inserting the sec. move");
3986 /* We may have non null BEFORE here (e.g. after address
3988 push_to_sequence (before
);
3989 before
= emit_spill_move (true, new_reg
, src
);
3991 before
= get_insns ();
3993 lra_process_new_insns (curr_insn
, before
, NULL
, "Changing on");
3994 lra_set_insn_deleted (curr_insn
);
3996 else if (dest
== rld
)
3998 *curr_id
->operand_loc
[out
] = new_reg
;
3999 lra_update_dup (curr_id
, out
);
4000 after
= emit_spill_move (false, new_reg
, dest
);
4001 lra_process_new_insns (curr_insn
, NULL
, after
,
4002 "Inserting the sec. move");
4006 *curr_id
->operand_loc
[in
] = new_reg
;
4007 lra_update_dup (curr_id
, in
);
4008 /* See comments above. */
4009 push_to_sequence (before
);
4010 before
= emit_spill_move (true, new_reg
, src
);
4012 before
= get_insns ();
4014 lra_process_new_insns (curr_insn
, before
, NULL
,
4015 "Inserting the sec. move");
4017 lra_update_insn_regno_info (curr_insn
);
4021 lra_assert (goal_alt_number
>= 0);
4022 lra_set_used_insn_alternative (curr_insn
, goal_alt_number
);
4024 if (lra_dump_file
!= NULL
)
4028 fprintf (lra_dump_file
, " Choosing alt %d in insn %u:",
4029 goal_alt_number
, INSN_UID (curr_insn
));
4030 for (i
= 0; i
< n_operands
; i
++)
4032 p
= (curr_static_id
->operand_alternative
4033 [goal_alt_number
* n_operands
+ i
].constraint
);
4036 fprintf (lra_dump_file
, " (%d) ", i
);
4037 for (; *p
!= '\0' && *p
!= ',' && *p
!= '#'; p
++)
4038 fputc (*p
, lra_dump_file
);
4040 if (INSN_CODE (curr_insn
) >= 0
4041 && (p
= get_insn_name (INSN_CODE (curr_insn
))) != NULL
)
4042 fprintf (lra_dump_file
, " {%s}", p
);
4043 if (maybe_ne (curr_id
->sp_offset
, 0))
4045 fprintf (lra_dump_file
, " (sp_off=");
4046 print_dec (curr_id
->sp_offset
, lra_dump_file
);
4047 fprintf (lra_dump_file
, ")");
4049 fprintf (lra_dump_file
, "\n");
4052 /* Right now, for any pair of operands I and J that are required to
4053 match, with J < I, goal_alt_matches[I] is J. Add I to
4054 goal_alt_matched[J]. */
4056 for (i
= 0; i
< n_operands
; i
++)
4057 if ((j
= goal_alt_matches
[i
]) >= 0)
4059 for (k
= 0; goal_alt_matched
[j
][k
] >= 0; k
++)
4061 /* We allow matching one output operand and several input
4064 || (curr_static_id
->operand
[j
].type
== OP_OUT
4065 && curr_static_id
->operand
[i
].type
== OP_IN
4066 && (curr_static_id
->operand
4067 [goal_alt_matched
[j
][0]].type
== OP_IN
)));
4068 goal_alt_matched
[j
][k
] = i
;
4069 goal_alt_matched
[j
][k
+ 1] = -1;
4072 for (i
= 0; i
< n_operands
; i
++)
4073 goal_alt_win
[i
] |= goal_alt_match_win
[i
];
4075 /* Any constants that aren't allowed and can't be reloaded into
4076 registers are here changed into memory references. */
4077 for (i
= 0; i
< n_operands
; i
++)
4078 if (goal_alt_win
[i
])
4081 enum reg_class new_class
;
4082 rtx reg
= *curr_id
->operand_loc
[i
];
4084 if (GET_CODE (reg
) == SUBREG
)
4085 reg
= SUBREG_REG (reg
);
4087 if (REG_P (reg
) && (regno
= REGNO (reg
)) >= FIRST_PSEUDO_REGISTER
)
4089 bool ok_p
= in_class_p (reg
, goal_alt
[i
], &new_class
);
4091 if (new_class
!= NO_REGS
&& get_reg_class (regno
) != new_class
)
4094 lra_change_class (regno
, new_class
, " Change to", true);
4100 const char *constraint
;
4102 rtx op
= *curr_id
->operand_loc
[i
];
4103 rtx subreg
= NULL_RTX
;
4104 machine_mode mode
= curr_operand_mode
[i
];
4106 if (GET_CODE (op
) == SUBREG
)
4109 op
= SUBREG_REG (op
);
4110 mode
= GET_MODE (op
);
4113 if (CONST_POOL_OK_P (mode
, op
)
4114 && ((targetm
.preferred_reload_class
4115 (op
, (enum reg_class
) goal_alt
[i
]) == NO_REGS
)
4116 || no_input_reloads_p
))
4118 rtx tem
= force_const_mem (mode
, op
);
4121 if (subreg
!= NULL_RTX
)
4122 tem
= gen_rtx_SUBREG (mode
, tem
, SUBREG_BYTE (subreg
));
4124 *curr_id
->operand_loc
[i
] = tem
;
4125 lra_update_dup (curr_id
, i
);
4126 process_address (i
, false, &before
, &after
);
4128 /* If the alternative accepts constant pool refs directly
4129 there will be no reload needed at all. */
4130 if (subreg
!= NULL_RTX
)
4132 /* Skip alternatives before the one requested. */
4133 constraint
= (curr_static_id
->operand_alternative
4134 [goal_alt_number
* n_operands
+ i
].constraint
);
4136 (c
= *constraint
) && c
!= ',' && c
!= '#';
4137 constraint
+= CONSTRAINT_LEN (c
, constraint
))
4139 enum constraint_num cn
= lookup_constraint (constraint
);
4140 if ((insn_extra_memory_constraint (cn
)
4141 || insn_extra_special_memory_constraint (cn
))
4142 && satisfies_memory_constraint_p (tem
, cn
))
4145 if (c
== '\0' || c
== ',' || c
== '#')
4148 goal_alt_win
[i
] = true;
4154 for (i
= 0; i
< n_operands
; i
++)
4157 bool optional_p
= false;
4159 rtx op
= *curr_id
->operand_loc
[i
];
4161 if (goal_alt_win
[i
])
4163 if (goal_alt
[i
] == NO_REGS
4165 /* When we assign NO_REGS it means that we will not
4166 assign a hard register to the scratch pseudo by
4167 assigment pass and the scratch pseudo will be
4168 spilled. Spilled scratch pseudos are transformed
4169 back to scratches at the LRA end. */
4170 && lra_former_scratch_operand_p (curr_insn
, i
)
4171 && lra_former_scratch_p (REGNO (op
)))
4173 int regno
= REGNO (op
);
4174 lra_change_class (regno
, NO_REGS
, " Change to", true);
4175 if (lra_get_regno_hard_regno (regno
) >= 0)
4176 /* We don't have to mark all insn affected by the
4177 spilled pseudo as there is only one such insn, the
4179 reg_renumber
[regno
] = -1;
4180 lra_assert (bitmap_single_bit_set_p
4181 (&lra_reg_info
[REGNO (op
)].insn_bitmap
));
4183 /* We can do an optional reload. If the pseudo got a hard
4184 reg, we might improve the code through inheritance. If
4185 it does not get a hard register we coalesce memory/memory
4186 moves later. Ignore move insns to avoid cycling. */
4188 && lra_undo_inheritance_iter
< LRA_MAX_INHERITANCE_PASSES
4189 && goal_alt
[i
] != NO_REGS
&& REG_P (op
)
4190 && (regno
= REGNO (op
)) >= FIRST_PSEUDO_REGISTER
4191 && regno
< new_regno_start
4192 && ! lra_former_scratch_p (regno
)
4193 && reg_renumber
[regno
] < 0
4194 /* Check that the optional reload pseudo will be able to
4195 hold given mode value. */
4196 && ! (prohibited_class_reg_set_mode_p
4197 (goal_alt
[i
], reg_class_contents
[goal_alt
[i
]],
4198 PSEUDO_REGNO_MODE (regno
)))
4199 && (curr_insn_set
== NULL_RTX
4200 || !((REG_P (SET_SRC (curr_insn_set
))
4201 || MEM_P (SET_SRC (curr_insn_set
))
4202 || GET_CODE (SET_SRC (curr_insn_set
)) == SUBREG
)
4203 && (REG_P (SET_DEST (curr_insn_set
))
4204 || MEM_P (SET_DEST (curr_insn_set
))
4205 || GET_CODE (SET_DEST (curr_insn_set
)) == SUBREG
))))
4211 /* Operands that match previous ones have already been handled. */
4212 if (goal_alt_matches
[i
] >= 0)
4215 /* We should not have an operand with a non-offsettable address
4216 appearing where an offsettable address will do. It also may
4217 be a case when the address should be special in other words
4218 not a general one (e.g. it needs no index reg). */
4219 if (goal_alt_matched
[i
][0] == -1 && goal_alt_offmemok
[i
] && MEM_P (op
))
4221 enum reg_class rclass
;
4222 rtx
*loc
= &XEXP (op
, 0);
4223 enum rtx_code code
= GET_CODE (*loc
);
4225 push_to_sequence (before
);
4226 rclass
= base_reg_class (GET_MODE (op
), MEM_ADDR_SPACE (op
),
4228 if (GET_RTX_CLASS (code
) == RTX_AUTOINC
)
4229 new_reg
= emit_inc (rclass
, *loc
, *loc
,
4230 /* This value does not matter for MODIFY. */
4231 GET_MODE_SIZE (GET_MODE (op
)));
4232 else if (get_reload_reg (OP_IN
, Pmode
, *loc
, rclass
, FALSE
,
4233 "offsetable address", &new_reg
))
4236 enum rtx_code code
= GET_CODE (addr
);
4238 if (code
== AND
&& CONST_INT_P (XEXP (addr
, 1)))
4239 /* (and ... (const_int -X)) is used to align to X bytes. */
4240 addr
= XEXP (*loc
, 0);
4241 lra_emit_move (new_reg
, addr
);
4243 emit_move_insn (new_reg
, gen_rtx_AND (GET_MODE (new_reg
), new_reg
, XEXP (*loc
, 1)));
4245 before
= get_insns ();
4248 lra_update_dup (curr_id
, i
);
4250 else if (goal_alt_matched
[i
][0] == -1)
4255 enum op_type type
= curr_static_id
->operand
[i
].type
;
4257 loc
= curr_id
->operand_loc
[i
];
4258 mode
= curr_operand_mode
[i
];
4259 if (GET_CODE (*loc
) == SUBREG
)
4261 reg
= SUBREG_REG (*loc
);
4262 poly_int64 byte
= SUBREG_BYTE (*loc
);
4264 /* Strict_low_part requires reloading the register and not
4265 just the subreg. Likewise for a strict subreg no wider
4266 than a word for WORD_REGISTER_OPERATIONS targets. */
4267 && (curr_static_id
->operand
[i
].strict_low
4268 || (!paradoxical_subreg_p (mode
, GET_MODE (reg
))
4270 = get_try_hard_regno (REGNO (reg
))) >= 0
4271 && (simplify_subreg_regno
4273 GET_MODE (reg
), byte
, mode
) < 0)
4274 && (goal_alt
[i
] == NO_REGS
4275 || (simplify_subreg_regno
4276 (ira_class_hard_regs
[goal_alt
[i
]][0],
4277 GET_MODE (reg
), byte
, mode
) >= 0)))
4278 || (partial_subreg_p (mode
, GET_MODE (reg
))
4279 && known_le (GET_MODE_SIZE (GET_MODE (reg
)),
4281 && WORD_REGISTER_OPERATIONS
)))
4283 /* An OP_INOUT is required when reloading a subreg of a
4284 mode wider than a word to ensure that data beyond the
4285 word being reloaded is preserved. Also automatically
4286 ensure that strict_low_part reloads are made into
4287 OP_INOUT which should already be true from the backend
4290 && (curr_static_id
->operand
[i
].strict_low
4291 || read_modify_subreg_p (*loc
)))
4293 loc
= &SUBREG_REG (*loc
);
4294 mode
= GET_MODE (*loc
);
4298 if (get_reload_reg (type
, mode
, old
, goal_alt
[i
],
4299 loc
!= curr_id
->operand_loc
[i
], "", &new_reg
)
4302 push_to_sequence (before
);
4303 lra_emit_move (new_reg
, old
);
4304 before
= get_insns ();
4309 && find_reg_note (curr_insn
, REG_UNUSED
, old
) == NULL_RTX
)
4312 lra_emit_move (type
== OP_INOUT
? copy_rtx (old
) : old
, new_reg
);
4314 after
= get_insns ();
4318 for (j
= 0; j
< goal_alt_dont_inherit_ops_num
; j
++)
4319 if (goal_alt_dont_inherit_ops
[j
] == i
)
4321 lra_set_regno_unique_value (REGNO (new_reg
));
4324 lra_update_dup (curr_id
, i
);
4326 else if (curr_static_id
->operand
[i
].type
== OP_IN
4327 && (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4329 || (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4331 && (operands_match_p
4332 (*curr_id
->operand_loc
[i
],
4333 *curr_id
->operand_loc
[goal_alt_matched
[i
][0]],
4336 /* generate reloads for input and matched outputs. */
4337 match_inputs
[0] = i
;
4338 match_inputs
[1] = -1;
4339 match_reload (goal_alt_matched
[i
][0], match_inputs
, outputs
,
4340 goal_alt
[i
], &before
, &after
,
4341 curr_static_id
->operand_alternative
4342 [goal_alt_number
* n_operands
+ goal_alt_matched
[i
][0]]
4345 else if ((curr_static_id
->operand
[i
].type
== OP_OUT
4346 || (curr_static_id
->operand
[i
].type
== OP_INOUT
4347 && (operands_match_p
4348 (*curr_id
->operand_loc
[i
],
4349 *curr_id
->operand_loc
[goal_alt_matched
[i
][0]],
4351 && (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4353 /* Generate reloads for output and matched inputs. */
4354 match_reload (i
, goal_alt_matched
[i
], outputs
, goal_alt
[i
], &before
,
4355 &after
, curr_static_id
->operand_alternative
4356 [goal_alt_number
* n_operands
+ i
].earlyclobber
);
4357 else if (curr_static_id
->operand
[i
].type
== OP_IN
4358 && (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4361 /* Generate reloads for matched inputs. */
4362 match_inputs
[0] = i
;
4363 for (j
= 0; (k
= goal_alt_matched
[i
][j
]) >= 0; j
++)
4364 match_inputs
[j
+ 1] = k
;
4365 match_inputs
[j
+ 1] = -1;
4366 match_reload (-1, match_inputs
, outputs
, goal_alt
[i
], &before
,
4370 /* We must generate code in any case when function
4371 process_alt_operands decides that it is possible. */
4374 /* Memorise processed outputs so that output remaining to be processed
4375 can avoid using the same register value (see match_reload). */
4376 if (curr_static_id
->operand
[i
].type
== OP_OUT
)
4378 outputs
[n_outputs
++] = i
;
4379 outputs
[n_outputs
] = -1;
4386 lra_assert (REG_P (reg
));
4387 regno
= REGNO (reg
);
4388 op
= *curr_id
->operand_loc
[i
]; /* Substitution. */
4389 if (GET_CODE (op
) == SUBREG
)
4390 op
= SUBREG_REG (op
);
4391 gcc_assert (REG_P (op
) && (int) REGNO (op
) >= new_regno_start
);
4392 bitmap_set_bit (&lra_optional_reload_pseudos
, REGNO (op
));
4393 lra_reg_info
[REGNO (op
)].restore_rtx
= reg
;
4394 if (lra_dump_file
!= NULL
)
4395 fprintf (lra_dump_file
,
4396 " Making reload reg %d for reg %d optional\n",
4400 if (before
!= NULL_RTX
|| after
!= NULL_RTX
4401 || max_regno_before
!= max_reg_num ())
4405 lra_update_operator_dups (curr_id
);
4406 /* Something changes -- process the insn. */
4407 lra_update_insn_regno_info (curr_insn
);
4409 lra_process_new_insns (curr_insn
, before
, after
, "Inserting insn reload");
4413 /* Return true if INSN satisfies all constraints. In other words, no
4414 reload insns are needed. */
4416 lra_constrain_insn (rtx_insn
*insn
)
4418 int saved_new_regno_start
= new_regno_start
;
4419 int saved_new_insn_uid_start
= new_insn_uid_start
;
4423 curr_id
= lra_get_insn_recog_data (curr_insn
);
4424 curr_static_id
= curr_id
->insn_static_data
;
4425 new_insn_uid_start
= get_max_uid ();
4426 new_regno_start
= max_reg_num ();
4427 change_p
= curr_insn_transform (true);
4428 new_regno_start
= saved_new_regno_start
;
4429 new_insn_uid_start
= saved_new_insn_uid_start
;
4433 /* Return true if X is in LIST. */
4435 in_list_p (rtx x
, rtx list
)
4437 for (; list
!= NULL_RTX
; list
= XEXP (list
, 1))
4438 if (XEXP (list
, 0) == x
)
4443 /* Return true if X contains an allocatable hard register (if
4444 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4446 contains_reg_p (rtx x
, bool hard_reg_p
, bool spilled_p
)
4452 code
= GET_CODE (x
);
4455 int regno
= REGNO (x
);
4456 HARD_REG_SET alloc_regs
;
4460 if (regno
>= FIRST_PSEUDO_REGISTER
)
4461 regno
= lra_get_regno_hard_regno (regno
);
4464 COMPL_HARD_REG_SET (alloc_regs
, lra_no_alloc_regs
);
4465 return overlaps_hard_reg_set_p (alloc_regs
, GET_MODE (x
), regno
);
4469 if (regno
< FIRST_PSEUDO_REGISTER
)
4473 return lra_get_regno_hard_regno (regno
) < 0;
4476 fmt
= GET_RTX_FORMAT (code
);
4477 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4481 if (contains_reg_p (XEXP (x
, i
), hard_reg_p
, spilled_p
))
4484 else if (fmt
[i
] == 'E')
4486 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4487 if (contains_reg_p (XVECEXP (x
, i
, j
), hard_reg_p
, spilled_p
))
4494 /* Process all regs in location *LOC and change them on equivalent
4495 substitution. Return true if any change was done. */
4497 loc_equivalence_change_p (rtx
*loc
)
4499 rtx subst
, reg
, x
= *loc
;
4500 bool result
= false;
4501 enum rtx_code code
= GET_CODE (x
);
4507 reg
= SUBREG_REG (x
);
4508 if ((subst
= get_equiv_with_elimination (reg
, curr_insn
)) != reg
4509 && GET_MODE (subst
) == VOIDmode
)
4511 /* We cannot reload debug location. Simplify subreg here
4512 while we know the inner mode. */
4513 *loc
= simplify_gen_subreg (GET_MODE (x
), subst
,
4514 GET_MODE (reg
), SUBREG_BYTE (x
));
4518 if (code
== REG
&& (subst
= get_equiv_with_elimination (x
, curr_insn
)) != x
)
4524 /* Scan all the operand sub-expressions. */
4525 fmt
= GET_RTX_FORMAT (code
);
4526 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4529 result
= loc_equivalence_change_p (&XEXP (x
, i
)) || result
;
4530 else if (fmt
[i
] == 'E')
4531 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4533 = loc_equivalence_change_p (&XVECEXP (x
, i
, j
)) || result
;
4538 /* Similar to loc_equivalence_change_p, but for use as
4539 simplify_replace_fn_rtx callback. DATA is insn for which the
4540 elimination is done. If it null we don't do the elimination. */
4542 loc_equivalence_callback (rtx loc
, const_rtx
, void *data
)
4547 rtx subst
= (data
== NULL
4548 ? get_equiv (loc
) : get_equiv_with_elimination (loc
, (rtx_insn
*) data
));
4555 /* Maximum number of generated reload insns per an insn. It is for
4556 preventing this pass cycling in a bug case. */
4557 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4559 /* The current iteration number of this LRA pass. */
4560 int lra_constraint_iter
;
4562 /* True if we substituted equiv which needs checking register
4563 allocation correctness because the equivalent value contains
4564 allocatable hard registers or when we restore multi-register
4566 bool lra_risky_transformations_p
;
4568 /* Return true if REGNO is referenced in more than one block. */
4570 multi_block_pseudo_p (int regno
)
4572 basic_block bb
= NULL
;
4576 if (regno
< FIRST_PSEUDO_REGISTER
)
4579 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info
[regno
].insn_bitmap
, 0, uid
, bi
)
4581 bb
= BLOCK_FOR_INSN (lra_insn_recog_data
[uid
]->insn
);
4582 else if (BLOCK_FOR_INSN (lra_insn_recog_data
[uid
]->insn
) != bb
)
4587 /* Return true if LIST contains a deleted insn. */
4589 contains_deleted_insn_p (rtx_insn_list
*list
)
4591 for (; list
!= NULL_RTX
; list
= list
->next ())
4592 if (NOTE_P (list
->insn ())
4593 && NOTE_KIND (list
->insn ()) == NOTE_INSN_DELETED
)
4598 /* Return true if X contains a pseudo dying in INSN. */
4600 dead_pseudo_p (rtx x
, rtx_insn
*insn
)
4607 return (insn
!= NULL_RTX
4608 && find_regno_note (insn
, REG_DEAD
, REGNO (x
)) != NULL_RTX
);
4609 code
= GET_CODE (x
);
4610 fmt
= GET_RTX_FORMAT (code
);
4611 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4615 if (dead_pseudo_p (XEXP (x
, i
), insn
))
4618 else if (fmt
[i
] == 'E')
4620 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4621 if (dead_pseudo_p (XVECEXP (x
, i
, j
), insn
))
4628 /* Return true if INSN contains a dying pseudo in INSN right hand
4631 insn_rhs_dead_pseudo_p (rtx_insn
*insn
)
4633 rtx set
= single_set (insn
);
4635 gcc_assert (set
!= NULL
);
4636 return dead_pseudo_p (SET_SRC (set
), insn
);
4639 /* Return true if any init insn of REGNO contains a dying pseudo in
4640 insn right hand side. */
4642 init_insn_rhs_dead_pseudo_p (int regno
)
4644 rtx_insn_list
*insns
= ira_reg_equiv
[regno
].init_insns
;
4648 for (; insns
!= NULL_RTX
; insns
= insns
->next ())
4649 if (insn_rhs_dead_pseudo_p (insns
->insn ()))
4654 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4655 reverse only if we have one init insn with given REGNO as a
4658 reverse_equiv_p (int regno
)
4660 rtx_insn_list
*insns
= ira_reg_equiv
[regno
].init_insns
;
4665 if (! INSN_P (insns
->insn ())
4666 || insns
->next () != NULL
)
4668 if ((set
= single_set (insns
->insn ())) == NULL_RTX
)
4670 return REG_P (SET_SRC (set
)) && (int) REGNO (SET_SRC (set
)) == regno
;
4673 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4674 call this function only for non-reverse equivalence. */
4676 contains_reloaded_insn_p (int regno
)
4679 rtx_insn_list
*list
= ira_reg_equiv
[regno
].init_insns
;
4681 for (; list
!= NULL
; list
= list
->next ())
4682 if ((set
= single_set (list
->insn ())) == NULL_RTX
4683 || ! REG_P (SET_DEST (set
))
4684 || (int) REGNO (SET_DEST (set
)) != regno
)
4689 /* Entry function of LRA constraint pass. Return true if the
4690 constraint pass did change the code. */
4692 lra_constraints (bool first_p
)
4695 int i
, hard_regno
, new_insns_num
;
4696 unsigned int min_len
, new_min_len
, uid
;
4697 rtx set
, x
, reg
, dest_reg
;
4698 basic_block last_bb
;
4701 lra_constraint_iter
++;
4702 if (lra_dump_file
!= NULL
)
4703 fprintf (lra_dump_file
, "\n********** Local #%d: **********\n\n",
4704 lra_constraint_iter
);
4706 if (pic_offset_table_rtx
4707 && REGNO (pic_offset_table_rtx
) >= FIRST_PSEUDO_REGISTER
)
4708 lra_risky_transformations_p
= true;
4710 /* On the first iteration we should check IRA assignment
4711 correctness. In rare cases, the assignments can be wrong as
4712 early clobbers operands are ignored in IRA. */
4713 lra_risky_transformations_p
= first_p
;
4714 new_insn_uid_start
= get_max_uid ();
4715 new_regno_start
= first_p
? lra_constraint_new_regno_start
: max_reg_num ();
4716 /* Mark used hard regs for target stack size calulations. */
4717 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4718 if (lra_reg_info
[i
].nrefs
!= 0
4719 && (hard_regno
= lra_get_regno_hard_regno (i
)) >= 0)
4723 nregs
= hard_regno_nregs (hard_regno
, lra_reg_info
[i
].biggest_mode
);
4724 for (j
= 0; j
< nregs
; j
++)
4725 df_set_regs_ever_live (hard_regno
+ j
, true);
4727 /* Do elimination before the equivalence processing as we can spill
4728 some pseudos during elimination. */
4729 lra_eliminate (false, first_p
);
4730 auto_bitmap
equiv_insn_bitmap (®_obstack
);
4731 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4732 if (lra_reg_info
[i
].nrefs
!= 0)
4734 ira_reg_equiv
[i
].profitable_p
= true;
4735 reg
= regno_reg_rtx
[i
];
4736 if (lra_get_regno_hard_regno (i
) < 0 && (x
= get_equiv (reg
)) != reg
)
4738 bool pseudo_p
= contains_reg_p (x
, false, false);
4740 /* After RTL transformation, we can not guarantee that
4741 pseudo in the substitution was not reloaded which might
4742 make equivalence invalid. For example, in reverse
4749 the memory address register was reloaded before the 2nd
4751 if ((! first_p
&& pseudo_p
)
4752 /* We don't use DF for compilation speed sake. So it
4753 is problematic to update live info when we use an
4754 equivalence containing pseudos in more than one
4756 || (pseudo_p
&& multi_block_pseudo_p (i
))
4757 /* If an init insn was deleted for some reason, cancel
4758 the equiv. We could update the equiv insns after
4759 transformations including an equiv insn deletion
4760 but it is not worthy as such cases are extremely
4762 || contains_deleted_insn_p (ira_reg_equiv
[i
].init_insns
)
4763 /* If it is not a reverse equivalence, we check that a
4764 pseudo in rhs of the init insn is not dying in the
4765 insn. Otherwise, the live info at the beginning of
4766 the corresponding BB might be wrong after we
4767 removed the insn. When the equiv can be a
4768 constant, the right hand side of the init insn can
4770 || (! reverse_equiv_p (i
)
4771 && (init_insn_rhs_dead_pseudo_p (i
)
4772 /* If we reloaded the pseudo in an equivalence
4773 init insn, we can not remove the equiv init
4774 insns and the init insns might write into
4775 const memory in this case. */
4776 || contains_reloaded_insn_p (i
)))
4777 /* Prevent access beyond equivalent memory for
4778 paradoxical subregs. */
4780 && maybe_gt (GET_MODE_SIZE (lra_reg_info
[i
].biggest_mode
),
4781 GET_MODE_SIZE (GET_MODE (x
))))
4782 || (pic_offset_table_rtx
4783 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i
), x
)
4784 && (targetm
.preferred_reload_class
4785 (x
, lra_get_allocno_class (i
)) == NO_REGS
))
4786 || contains_symbol_ref_p (x
))))
4787 ira_reg_equiv
[i
].defined_p
= false;
4788 if (contains_reg_p (x
, false, true))
4789 ira_reg_equiv
[i
].profitable_p
= false;
4790 if (get_equiv (reg
) != reg
)
4791 bitmap_ior_into (equiv_insn_bitmap
, &lra_reg_info
[i
].insn_bitmap
);
4794 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4796 /* We should add all insns containing pseudos which should be
4797 substituted by their equivalences. */
4798 EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap
, 0, uid
, bi
)
4799 lra_push_insn_by_uid (uid
);
4800 min_len
= lra_insn_stack_length ();
4804 while ((new_min_len
= lra_insn_stack_length ()) != 0)
4806 curr_insn
= lra_pop_insn ();
4808 curr_bb
= BLOCK_FOR_INSN (curr_insn
);
4809 if (curr_bb
!= last_bb
)
4812 bb_reload_num
= lra_curr_reload_num
;
4814 if (min_len
> new_min_len
)
4816 min_len
= new_min_len
;
4819 if (new_insns_num
> MAX_RELOAD_INSNS_NUMBER
)
4821 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4822 MAX_RELOAD_INSNS_NUMBER
);
4824 if (DEBUG_INSN_P (curr_insn
))
4826 /* We need to check equivalence in debug insn and change
4827 pseudo to the equivalent value if necessary. */
4828 curr_id
= lra_get_insn_recog_data (curr_insn
);
4829 if (bitmap_bit_p (equiv_insn_bitmap
, INSN_UID (curr_insn
)))
4831 rtx old
= *curr_id
->operand_loc
[0];
4832 *curr_id
->operand_loc
[0]
4833 = simplify_replace_fn_rtx (old
, NULL_RTX
,
4834 loc_equivalence_callback
, curr_insn
);
4835 if (old
!= *curr_id
->operand_loc
[0])
4837 lra_update_insn_regno_info (curr_insn
);
4842 else if (INSN_P (curr_insn
))
4844 if ((set
= single_set (curr_insn
)) != NULL_RTX
)
4846 dest_reg
= SET_DEST (set
);
4847 /* The equivalence pseudo could be set up as SUBREG in a
4848 case when it is a call restore insn in a mode
4849 different from the pseudo mode. */
4850 if (GET_CODE (dest_reg
) == SUBREG
)
4851 dest_reg
= SUBREG_REG (dest_reg
);
4852 if ((REG_P (dest_reg
)
4853 && (x
= get_equiv (dest_reg
)) != dest_reg
4854 /* Remove insns which set up a pseudo whose value
4855 can not be changed. Such insns might be not in
4856 init_insns because we don't update equiv data
4857 during insn transformations.
4859 As an example, let suppose that a pseudo got
4860 hard register and on the 1st pass was not
4861 changed to equivalent constant. We generate an
4862 additional insn setting up the pseudo because of
4863 secondary memory movement. Then the pseudo is
4864 spilled and we use the equiv constant. In this
4865 case we should remove the additional insn and
4866 this insn is not init_insns list. */
4867 && (! MEM_P (x
) || MEM_READONLY_P (x
)
4868 /* Check that this is actually an insn setting
4869 up the equivalence. */
4870 || in_list_p (curr_insn
,
4872 [REGNO (dest_reg
)].init_insns
)))
4873 || (((x
= get_equiv (SET_SRC (set
))) != SET_SRC (set
))
4874 && in_list_p (curr_insn
,
4876 [REGNO (SET_SRC (set
))].init_insns
)))
4878 /* This is equiv init insn of pseudo which did not get a
4879 hard register -- remove the insn. */
4880 if (lra_dump_file
!= NULL
)
4882 fprintf (lra_dump_file
,
4883 " Removing equiv init insn %i (freq=%d)\n",
4884 INSN_UID (curr_insn
),
4885 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn
)));
4886 dump_insn_slim (lra_dump_file
, curr_insn
);
4888 if (contains_reg_p (x
, true, false))
4889 lra_risky_transformations_p
= true;
4890 lra_set_insn_deleted (curr_insn
);
4894 curr_id
= lra_get_insn_recog_data (curr_insn
);
4895 curr_static_id
= curr_id
->insn_static_data
;
4896 init_curr_insn_input_reloads ();
4897 init_curr_operand_mode ();
4898 if (curr_insn_transform (false))
4900 /* Check non-transformed insns too for equiv change as USE
4901 or CLOBBER don't need reloads but can contain pseudos
4902 being changed on their equivalences. */
4903 else if (bitmap_bit_p (equiv_insn_bitmap
, INSN_UID (curr_insn
))
4904 && loc_equivalence_change_p (&PATTERN (curr_insn
)))
4906 lra_update_insn_regno_info (curr_insn
);
4912 /* If we used a new hard regno, changed_p should be true because the
4913 hard reg is assigned to a new pseudo. */
4914 if (flag_checking
&& !changed_p
)
4916 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4917 if (lra_reg_info
[i
].nrefs
!= 0
4918 && (hard_regno
= lra_get_regno_hard_regno (i
)) >= 0)
4920 int j
, nregs
= hard_regno_nregs (hard_regno
,
4921 PSEUDO_REGNO_MODE (i
));
4923 for (j
= 0; j
< nregs
; j
++)
4924 lra_assert (df_regs_ever_live_p (hard_regno
+ j
));
4930 static void initiate_invariants (void);
4931 static void finish_invariants (void);
4933 /* Initiate the LRA constraint pass. It is done once per
4936 lra_constraints_init (void)
4938 initiate_invariants ();
4941 /* Finalize the LRA constraint pass. It is done once per
4944 lra_constraints_finish (void)
4946 finish_invariants ();
4951 /* Structure describes invariants for ineheritance. */
4952 struct lra_invariant
4954 /* The order number of the invariant. */
4956 /* The invariant RTX. */
4958 /* The origin insn of the invariant. */
4962 typedef lra_invariant invariant_t
;
4963 typedef invariant_t
*invariant_ptr_t
;
4964 typedef const invariant_t
*const_invariant_ptr_t
;
4966 /* Pointer to the inheritance invariants. */
4967 static vec
<invariant_ptr_t
> invariants
;
4969 /* Allocation pool for the invariants. */
4970 static object_allocator
<lra_invariant
> *invariants_pool
;
4972 /* Hash table for the invariants. */
4973 static htab_t invariant_table
;
4975 /* Hash function for INVARIANT. */
4977 invariant_hash (const void *invariant
)
4979 rtx inv
= ((const_invariant_ptr_t
) invariant
)->invariant_rtx
;
4980 return lra_rtx_hash (inv
);
4983 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
4985 invariant_eq_p (const void *invariant1
, const void *invariant2
)
4987 rtx inv1
= ((const_invariant_ptr_t
) invariant1
)->invariant_rtx
;
4988 rtx inv2
= ((const_invariant_ptr_t
) invariant2
)->invariant_rtx
;
4990 return rtx_equal_p (inv1
, inv2
);
4993 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
4994 invariant which is in the table. */
4995 static invariant_ptr_t
4996 insert_invariant (rtx invariant_rtx
)
4999 invariant_t invariant
;
5000 invariant_ptr_t invariant_ptr
;
5002 invariant
.invariant_rtx
= invariant_rtx
;
5003 entry_ptr
= htab_find_slot (invariant_table
, &invariant
, INSERT
);
5004 if (*entry_ptr
== NULL
)
5006 invariant_ptr
= invariants_pool
->allocate ();
5007 invariant_ptr
->invariant_rtx
= invariant_rtx
;
5008 invariant_ptr
->insn
= NULL
;
5009 invariants
.safe_push (invariant_ptr
);
5010 *entry_ptr
= (void *) invariant_ptr
;
5012 return (invariant_ptr_t
) *entry_ptr
;
5015 /* Initiate the invariant table. */
5017 initiate_invariants (void)
5019 invariants
.create (100);
5021 = new object_allocator
<lra_invariant
> ("Inheritance invariants");
5022 invariant_table
= htab_create (100, invariant_hash
, invariant_eq_p
, NULL
);
5025 /* Finish the invariant table. */
5027 finish_invariants (void)
5029 htab_delete (invariant_table
);
5030 delete invariants_pool
;
5031 invariants
.release ();
5034 /* Make the invariant table empty. */
5036 clear_invariants (void)
5038 htab_empty (invariant_table
);
5039 invariants_pool
->release ();
5040 invariants
.truncate (0);
5045 /* This page contains code to do inheritance/split
5048 /* Number of reloads passed so far in current EBB. */
5049 static int reloads_num
;
5051 /* Number of calls passed so far in current EBB. */
5052 static int calls_num
;
5054 /* Current reload pseudo check for validity of elements in
5056 static int curr_usage_insns_check
;
5058 /* Info about last usage of registers in EBB to do inheritance/split
5059 transformation. Inheritance transformation is done from a spilled
5060 pseudo and split transformations from a hard register or a pseudo
5061 assigned to a hard register. */
5064 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5065 value INSNS is valid. The insns is chain of optional debug insns
5066 and a finishing non-debug insn using the corresponding reg. The
5067 value is also used to mark the registers which are set up in the
5068 current insn. The negated insn uid is used for this. */
5070 /* Value of global reloads_num at the last insn in INSNS. */
5072 /* Value of global reloads_nums at the last insn in INSNS. */
5074 /* It can be true only for splitting. And it means that the restore
5075 insn should be put after insn given by the following member. */
5077 /* Next insns in the current EBB which use the original reg and the
5078 original reg value is not changed between the current insn and
5079 the next insns. In order words, e.g. for inheritance, if we need
5080 to use the original reg value again in the next insns we can try
5081 to use the value in a hard register from a reload insn of the
5086 /* Map: regno -> corresponding pseudo usage insns. */
5087 static struct usage_insns
*usage_insns
;
5090 setup_next_usage_insn (int regno
, rtx insn
, int reloads_num
, bool after_p
)
5092 usage_insns
[regno
].check
= curr_usage_insns_check
;
5093 usage_insns
[regno
].insns
= insn
;
5094 usage_insns
[regno
].reloads_num
= reloads_num
;
5095 usage_insns
[regno
].calls_num
= calls_num
;
5096 usage_insns
[regno
].after_p
= after_p
;
5099 /* The function is used to form list REGNO usages which consists of
5100 optional debug insns finished by a non-debug insn using REGNO.
5101 RELOADS_NUM is current number of reload insns processed so far. */
5103 add_next_usage_insn (int regno
, rtx_insn
*insn
, int reloads_num
)
5105 rtx next_usage_insns
;
5107 if (usage_insns
[regno
].check
== curr_usage_insns_check
5108 && (next_usage_insns
= usage_insns
[regno
].insns
) != NULL_RTX
5109 && DEBUG_INSN_P (insn
))
5111 /* Check that we did not add the debug insn yet. */
5112 if (next_usage_insns
!= insn
5113 && (GET_CODE (next_usage_insns
) != INSN_LIST
5114 || XEXP (next_usage_insns
, 0) != insn
))
5115 usage_insns
[regno
].insns
= gen_rtx_INSN_LIST (VOIDmode
, insn
,
5118 else if (NONDEBUG_INSN_P (insn
))
5119 setup_next_usage_insn (regno
, insn
, reloads_num
, false);
5121 usage_insns
[regno
].check
= 0;
5124 /* Return first non-debug insn in list USAGE_INSNS. */
5126 skip_usage_debug_insns (rtx usage_insns
)
5130 /* Skip debug insns. */
5131 for (insn
= usage_insns
;
5132 insn
!= NULL_RTX
&& GET_CODE (insn
) == INSN_LIST
;
5133 insn
= XEXP (insn
, 1))
5135 return safe_as_a
<rtx_insn
*> (insn
);
5138 /* Return true if we need secondary memory moves for insn in
5139 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5142 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED
,
5143 rtx usage_insns ATTRIBUTE_UNUSED
)
5149 if (inher_cl
== ALL_REGS
5150 || (insn
= skip_usage_debug_insns (usage_insns
)) == NULL_RTX
)
5152 lra_assert (INSN_P (insn
));
5153 if ((set
= single_set (insn
)) == NULL_RTX
|| ! REG_P (SET_DEST (set
)))
5155 dest
= SET_DEST (set
);
5158 lra_assert (inher_cl
!= NO_REGS
);
5159 cl
= get_reg_class (REGNO (dest
));
5160 return (cl
!= NO_REGS
&& cl
!= ALL_REGS
5161 && targetm
.secondary_memory_needed (GET_MODE (dest
), inher_cl
, cl
));
5164 /* Registers involved in inheritance/split in the current EBB
5165 (inheritance/split pseudos and original registers). */
5166 static bitmap_head check_only_regs
;
5168 /* Reload pseudos can not be involded in invariant inheritance in the
5170 static bitmap_head invalid_invariant_regs
;
5172 /* Do inheritance transformations for insn INSN, which defines (if
5173 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5174 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5175 form as the "insns" field of usage_insns. Return true if we
5176 succeed in such transformation.
5178 The transformations look like:
5181 ... p <- i (new insn)
5183 <- ... p ... <- ... i ...
5185 ... i <- p (new insn)
5186 <- ... p ... <- ... i ...
5188 <- ... p ... <- ... i ...
5189 where p is a spilled original pseudo and i is a new inheritance pseudo.
5192 The inheritance pseudo has the smallest class of two classes CL and
5193 class of ORIGINAL REGNO. */
5195 inherit_reload_reg (bool def_p
, int original_regno
,
5196 enum reg_class cl
, rtx_insn
*insn
, rtx next_usage_insns
)
5198 if (optimize_function_for_size_p (cfun
))
5201 enum reg_class rclass
= lra_get_allocno_class (original_regno
);
5202 rtx original_reg
= regno_reg_rtx
[original_regno
];
5203 rtx new_reg
, usage_insn
;
5204 rtx_insn
*new_insns
;
5206 lra_assert (! usage_insns
[original_regno
].after_p
);
5207 if (lra_dump_file
!= NULL
)
5208 fprintf (lra_dump_file
,
5209 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5210 if (! ira_reg_classes_intersect_p
[cl
][rclass
])
5212 if (lra_dump_file
!= NULL
)
5214 fprintf (lra_dump_file
,
5215 " Rejecting inheritance for %d "
5216 "because of disjoint classes %s and %s\n",
5217 original_regno
, reg_class_names
[cl
],
5218 reg_class_names
[rclass
]);
5219 fprintf (lra_dump_file
,
5220 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5224 if ((ira_class_subset_p
[cl
][rclass
] && cl
!= rclass
)
5225 /* We don't use a subset of two classes because it can be
5226 NO_REGS. This transformation is still profitable in most
5227 cases even if the classes are not intersected as register
5228 move is probably cheaper than a memory load. */
5229 || ira_class_hard_regs_num
[cl
] < ira_class_hard_regs_num
[rclass
])
5231 if (lra_dump_file
!= NULL
)
5232 fprintf (lra_dump_file
, " Use smallest class of %s and %s\n",
5233 reg_class_names
[cl
], reg_class_names
[rclass
]);
5237 if (check_secondary_memory_needed_p (rclass
, next_usage_insns
))
5239 /* Reject inheritance resulting in secondary memory moves.
5240 Otherwise, there is a danger in LRA cycling. Also such
5241 transformation will be unprofitable. */
5242 if (lra_dump_file
!= NULL
)
5244 rtx_insn
*insn
= skip_usage_debug_insns (next_usage_insns
);
5245 rtx set
= single_set (insn
);
5247 lra_assert (set
!= NULL_RTX
);
5249 rtx dest
= SET_DEST (set
);
5251 lra_assert (REG_P (dest
));
5252 fprintf (lra_dump_file
,
5253 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5254 "as secondary mem is needed\n",
5255 REGNO (dest
), reg_class_names
[get_reg_class (REGNO (dest
))],
5256 original_regno
, reg_class_names
[rclass
]);
5257 fprintf (lra_dump_file
,
5258 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5262 new_reg
= lra_create_new_reg (GET_MODE (original_reg
), original_reg
,
5263 rclass
, "inheritance");
5266 lra_emit_move (original_reg
, new_reg
);
5268 lra_emit_move (new_reg
, original_reg
);
5269 new_insns
= get_insns ();
5271 if (NEXT_INSN (new_insns
) != NULL_RTX
)
5273 if (lra_dump_file
!= NULL
)
5275 fprintf (lra_dump_file
,
5276 " Rejecting inheritance %d->%d "
5277 "as it results in 2 or more insns:\n",
5278 original_regno
, REGNO (new_reg
));
5279 dump_rtl_slim (lra_dump_file
, new_insns
, NULL
, -1, 0);
5280 fprintf (lra_dump_file
,
5281 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5285 lra_substitute_pseudo_within_insn (insn
, original_regno
, new_reg
, false);
5286 lra_update_insn_regno_info (insn
);
5288 /* We now have a new usage insn for original regno. */
5289 setup_next_usage_insn (original_regno
, new_insns
, reloads_num
, false);
5290 if (lra_dump_file
!= NULL
)
5291 fprintf (lra_dump_file
, " Original reg change %d->%d (bb%d):\n",
5292 original_regno
, REGNO (new_reg
), BLOCK_FOR_INSN (insn
)->index
);
5293 lra_reg_info
[REGNO (new_reg
)].restore_rtx
= regno_reg_rtx
[original_regno
];
5294 bitmap_set_bit (&check_only_regs
, REGNO (new_reg
));
5295 bitmap_set_bit (&check_only_regs
, original_regno
);
5296 bitmap_set_bit (&lra_inheritance_pseudos
, REGNO (new_reg
));
5298 lra_process_new_insns (insn
, NULL
, new_insns
,
5299 "Add original<-inheritance");
5301 lra_process_new_insns (insn
, new_insns
, NULL
,
5302 "Add inheritance<-original");
5303 while (next_usage_insns
!= NULL_RTX
)
5305 if (GET_CODE (next_usage_insns
) != INSN_LIST
)
5307 usage_insn
= next_usage_insns
;
5308 lra_assert (NONDEBUG_INSN_P (usage_insn
));
5309 next_usage_insns
= NULL
;
5313 usage_insn
= XEXP (next_usage_insns
, 0);
5314 lra_assert (DEBUG_INSN_P (usage_insn
));
5315 next_usage_insns
= XEXP (next_usage_insns
, 1);
5317 lra_substitute_pseudo (&usage_insn
, original_regno
, new_reg
, false,
5318 DEBUG_INSN_P (usage_insn
));
5319 lra_update_insn_regno_info (as_a
<rtx_insn
*> (usage_insn
));
5320 if (lra_dump_file
!= NULL
)
5322 basic_block bb
= BLOCK_FOR_INSN (usage_insn
);
5323 fprintf (lra_dump_file
,
5324 " Inheritance reuse change %d->%d (bb%d):\n",
5325 original_regno
, REGNO (new_reg
),
5326 bb
? bb
->index
: -1);
5327 dump_insn_slim (lra_dump_file
, as_a
<rtx_insn
*> (usage_insn
));
5330 if (lra_dump_file
!= NULL
)
5331 fprintf (lra_dump_file
,
5332 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5336 /* Return true if we need a caller save/restore for pseudo REGNO which
5337 was assigned to a hard register. */
5339 need_for_call_save_p (int regno
)
5341 lra_assert (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] >= 0);
5342 return (usage_insns
[regno
].calls_num
< calls_num
5343 && (overlaps_hard_reg_set_p
5345 ! hard_reg_set_empty_p (lra_reg_info
[regno
].actual_call_used_reg_set
))
5346 ? lra_reg_info
[regno
].actual_call_used_reg_set
5347 : call_used_reg_set
,
5348 PSEUDO_REGNO_MODE (regno
), reg_renumber
[regno
])
5349 || (targetm
.hard_regno_call_part_clobbered
5350 (reg_renumber
[regno
], PSEUDO_REGNO_MODE (regno
)))));
5353 /* Global registers occurring in the current EBB. */
5354 static bitmap_head ebb_global_regs
;
5356 /* Return true if we need a split for hard register REGNO or pseudo
5357 REGNO which was assigned to a hard register.
5358 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5359 used for reloads since the EBB end. It is an approximation of the
5360 used hard registers in the split range. The exact value would
5361 require expensive calculations. If we were aggressive with
5362 splitting because of the approximation, the split pseudo will save
5363 the same hard register assignment and will be removed in the undo
5364 pass. We still need the approximation because too aggressive
5365 splitting would result in too inaccurate cost calculation in the
5366 assignment pass because of too many generated moves which will be
5367 probably removed in the undo pass. */
5369 need_for_split_p (HARD_REG_SET potential_reload_hard_regs
, int regno
)
5371 int hard_regno
= regno
< FIRST_PSEUDO_REGISTER
? regno
: reg_renumber
[regno
];
5373 lra_assert (hard_regno
>= 0);
5374 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs
, hard_regno
)
5375 /* Don't split eliminable hard registers, otherwise we can
5376 split hard registers like hard frame pointer, which
5377 lives on BB start/end according to DF-infrastructure,
5378 when there is a pseudo assigned to the register and
5379 living in the same BB. */
5380 && (regno
>= FIRST_PSEUDO_REGISTER
5381 || ! TEST_HARD_REG_BIT (eliminable_regset
, hard_regno
))
5382 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs
, hard_regno
)
5383 /* Don't split call clobbered hard regs living through
5384 calls, otherwise we might have a check problem in the
5385 assign sub-pass as in the most cases (exception is a
5386 situation when lra_risky_transformations_p value is
5387 true) the assign pass assumes that all pseudos living
5388 through calls are assigned to call saved hard regs. */
5389 && (regno
>= FIRST_PSEUDO_REGISTER
5390 || ! TEST_HARD_REG_BIT (call_used_reg_set
, regno
)
5391 || usage_insns
[regno
].calls_num
== calls_num
)
5392 /* We need at least 2 reloads to make pseudo splitting
5393 profitable. We should provide hard regno splitting in
5394 any case to solve 1st insn scheduling problem when
5395 moving hard register definition up might result in
5396 impossibility to find hard register for reload pseudo of
5397 small register class. */
5398 && (usage_insns
[regno
].reloads_num
5399 + (regno
< FIRST_PSEUDO_REGISTER
? 0 : 3) < reloads_num
)
5400 && (regno
< FIRST_PSEUDO_REGISTER
5401 /* For short living pseudos, spilling + inheritance can
5402 be considered a substitution for splitting.
5403 Therefore we do not splitting for local pseudos. It
5404 decreases also aggressiveness of splitting. The
5405 minimal number of references is chosen taking into
5406 account that for 2 references splitting has no sense
5407 as we can just spill the pseudo. */
5408 || (regno
>= FIRST_PSEUDO_REGISTER
5409 && lra_reg_info
[regno
].nrefs
> 3
5410 && bitmap_bit_p (&ebb_global_regs
, regno
))))
5411 || (regno
>= FIRST_PSEUDO_REGISTER
&& need_for_call_save_p (regno
)));
5414 /* Return class for the split pseudo created from original pseudo with
5415 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5416 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5417 results in no secondary memory movements. */
5418 static enum reg_class
5419 choose_split_class (enum reg_class allocno_class
,
5420 int hard_regno ATTRIBUTE_UNUSED
,
5421 machine_mode mode ATTRIBUTE_UNUSED
)
5424 enum reg_class cl
, best_cl
= NO_REGS
;
5425 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5426 = REGNO_REG_CLASS (hard_regno
);
5428 if (! targetm
.secondary_memory_needed (mode
, allocno_class
, allocno_class
)
5429 && TEST_HARD_REG_BIT (reg_class_contents
[allocno_class
], hard_regno
))
5430 return allocno_class
;
5432 (cl
= reg_class_subclasses
[allocno_class
][i
]) != LIM_REG_CLASSES
;
5434 if (! targetm
.secondary_memory_needed (mode
, cl
, hard_reg_class
)
5435 && ! targetm
.secondary_memory_needed (mode
, hard_reg_class
, cl
)
5436 && TEST_HARD_REG_BIT (reg_class_contents
[cl
], hard_regno
)
5437 && (best_cl
== NO_REGS
5438 || ira_class_hard_regs_num
[best_cl
] < ira_class_hard_regs_num
[cl
]))
5443 /* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO.
5444 It only makes sense to call this function if NEW_REGNO is always
5445 equal to ORIGINAL_REGNO. */
5448 lra_copy_reg_equiv (unsigned int new_regno
, unsigned int original_regno
)
5450 if (!ira_reg_equiv
[original_regno
].defined_p
)
5453 ira_expand_reg_equiv ();
5454 ira_reg_equiv
[new_regno
].defined_p
= true;
5455 if (ira_reg_equiv
[original_regno
].memory
)
5456 ira_reg_equiv
[new_regno
].memory
5457 = copy_rtx (ira_reg_equiv
[original_regno
].memory
);
5458 if (ira_reg_equiv
[original_regno
].constant
)
5459 ira_reg_equiv
[new_regno
].constant
5460 = copy_rtx (ira_reg_equiv
[original_regno
].constant
);
5461 if (ira_reg_equiv
[original_regno
].invariant
)
5462 ira_reg_equiv
[new_regno
].invariant
5463 = copy_rtx (ira_reg_equiv
[original_regno
].invariant
);
5466 /* Do split transformations for insn INSN, which defines or uses
5467 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
5468 the EBB next uses ORIGINAL_REGNO; it has the same form as the
5469 "insns" field of usage_insns. If TO is not NULL, we don't use
5470 usage_insns, we put restore insns after TO insn.
5472 The transformations look like:
5475 ... s <- p (new insn -- save)
5477 ... p <- s (new insn -- restore)
5478 <- ... p ... <- ... p ...
5480 <- ... p ... <- ... p ...
5481 ... s <- p (new insn -- save)
5483 ... p <- s (new insn -- restore)
5484 <- ... p ... <- ... p ...
5486 where p is an original pseudo got a hard register or a hard
5487 register and s is a new split pseudo. The save is put before INSN
5488 if BEFORE_P is true. Return true if we succeed in such
5491 split_reg (bool before_p
, int original_regno
, rtx_insn
*insn
,
5492 rtx next_usage_insns
, rtx_insn
*to
)
5494 enum reg_class rclass
;
5496 int hard_regno
, nregs
;
5497 rtx new_reg
, usage_insn
;
5498 rtx_insn
*restore
, *save
;
5503 if (original_regno
< FIRST_PSEUDO_REGISTER
)
5505 rclass
= ira_allocno_class_translate
[REGNO_REG_CLASS (original_regno
)];
5506 hard_regno
= original_regno
;
5507 call_save_p
= false;
5509 mode
= lra_reg_info
[hard_regno
].biggest_mode
;
5510 machine_mode reg_rtx_mode
= GET_MODE (regno_reg_rtx
[hard_regno
]);
5511 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5512 as part of a multi-word register. In that case, or if the biggest
5513 mode was larger than a register, just use the reg_rtx. Otherwise,
5514 limit the size to that of the biggest access in the function. */
5515 if (mode
== VOIDmode
5516 || paradoxical_subreg_p (mode
, reg_rtx_mode
))
5518 original_reg
= regno_reg_rtx
[hard_regno
];
5519 mode
= reg_rtx_mode
;
5522 original_reg
= gen_rtx_REG (mode
, hard_regno
);
5526 mode
= PSEUDO_REGNO_MODE (original_regno
);
5527 hard_regno
= reg_renumber
[original_regno
];
5528 nregs
= hard_regno_nregs (hard_regno
, mode
);
5529 rclass
= lra_get_allocno_class (original_regno
);
5530 original_reg
= regno_reg_rtx
[original_regno
];
5531 call_save_p
= need_for_call_save_p (original_regno
);
5533 lra_assert (hard_regno
>= 0);
5534 if (lra_dump_file
!= NULL
)
5535 fprintf (lra_dump_file
,
5536 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5540 mode
= HARD_REGNO_CALLER_SAVE_MODE (hard_regno
,
5541 hard_regno_nregs (hard_regno
, mode
),
5543 new_reg
= lra_create_new_reg (mode
, NULL_RTX
, NO_REGS
, "save");
5547 rclass
= choose_split_class (rclass
, hard_regno
, mode
);
5548 if (rclass
== NO_REGS
)
5550 if (lra_dump_file
!= NULL
)
5552 fprintf (lra_dump_file
,
5553 " Rejecting split of %d(%s): "
5554 "no good reg class for %d(%s)\n",
5556 reg_class_names
[lra_get_allocno_class (original_regno
)],
5558 reg_class_names
[REGNO_REG_CLASS (hard_regno
)]);
5561 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5565 /* Split_if_necessary can split hard registers used as part of a
5566 multi-register mode but splits each register individually. The
5567 mode used for each independent register may not be supported
5568 so reject the split. Splitting the wider mode should theoretically
5569 be possible but is not implemented. */
5570 if (!targetm
.hard_regno_mode_ok (hard_regno
, mode
))
5572 if (lra_dump_file
!= NULL
)
5574 fprintf (lra_dump_file
,
5575 " Rejecting split of %d(%s): unsuitable mode %s\n",
5577 reg_class_names
[lra_get_allocno_class (original_regno
)],
5578 GET_MODE_NAME (mode
));
5581 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5585 new_reg
= lra_create_new_reg (mode
, original_reg
, rclass
, "split");
5586 reg_renumber
[REGNO (new_reg
)] = hard_regno
;
5588 int new_regno
= REGNO (new_reg
);
5589 save
= emit_spill_move (true, new_reg
, original_reg
);
5590 if (NEXT_INSN (save
) != NULL_RTX
&& !call_save_p
)
5592 if (lra_dump_file
!= NULL
)
5596 " Rejecting split %d->%d resulting in > 2 save insns:\n",
5597 original_regno
, new_regno
);
5598 dump_rtl_slim (lra_dump_file
, save
, NULL
, -1, 0);
5599 fprintf (lra_dump_file
,
5600 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5604 restore
= emit_spill_move (false, new_reg
, original_reg
);
5605 if (NEXT_INSN (restore
) != NULL_RTX
&& !call_save_p
)
5607 if (lra_dump_file
!= NULL
)
5609 fprintf (lra_dump_file
,
5610 " Rejecting split %d->%d "
5611 "resulting in > 2 restore insns:\n",
5612 original_regno
, new_regno
);
5613 dump_rtl_slim (lra_dump_file
, restore
, NULL
, -1, 0);
5614 fprintf (lra_dump_file
,
5615 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5619 /* Transfer equivalence information to the spill register, so that
5620 if we fail to allocate the spill register, we have the option of
5621 rematerializing the original value instead of spilling to the stack. */
5622 if (!HARD_REGISTER_NUM_P (original_regno
)
5623 && mode
== PSEUDO_REGNO_MODE (original_regno
))
5624 lra_copy_reg_equiv (new_regno
, original_regno
);
5625 lra_reg_info
[new_regno
].restore_rtx
= regno_reg_rtx
[original_regno
];
5626 bitmap_set_bit (&check_only_regs
, new_regno
);
5627 bitmap_set_bit (&check_only_regs
, original_regno
);
5628 bitmap_set_bit (&lra_split_regs
, new_regno
);
5636 after_p
= usage_insns
[original_regno
].after_p
;
5639 if (GET_CODE (next_usage_insns
) != INSN_LIST
)
5641 usage_insn
= next_usage_insns
;
5644 usage_insn
= XEXP (next_usage_insns
, 0);
5645 lra_assert (DEBUG_INSN_P (usage_insn
));
5646 next_usage_insns
= XEXP (next_usage_insns
, 1);
5647 lra_substitute_pseudo (&usage_insn
, original_regno
, new_reg
, false,
5649 lra_update_insn_regno_info (as_a
<rtx_insn
*> (usage_insn
));
5650 if (lra_dump_file
!= NULL
)
5652 fprintf (lra_dump_file
, " Split reuse change %d->%d:\n",
5653 original_regno
, new_regno
);
5654 dump_insn_slim (lra_dump_file
, as_a
<rtx_insn
*> (usage_insn
));
5658 lra_assert (NOTE_P (usage_insn
) || NONDEBUG_INSN_P (usage_insn
));
5659 lra_assert (usage_insn
!= insn
|| (after_p
&& before_p
));
5660 lra_process_new_insns (as_a
<rtx_insn
*> (usage_insn
),
5661 after_p
? NULL
: restore
,
5662 after_p
? restore
: NULL
,
5664 ? "Add reg<-save" : "Add reg<-split");
5665 lra_process_new_insns (insn
, before_p
? save
: NULL
,
5666 before_p
? NULL
: save
,
5668 ? "Add save<-reg" : "Add split<-reg");
5670 /* If we are trying to split multi-register. We should check
5671 conflicts on the next assignment sub-pass. IRA can allocate on
5672 sub-register levels, LRA do this on pseudos level right now and
5673 this discrepancy may create allocation conflicts after
5675 lra_risky_transformations_p
= true;
5676 if (lra_dump_file
!= NULL
)
5677 fprintf (lra_dump_file
,
5678 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5682 /* Split a hard reg for reload pseudo REGNO having RCLASS and living
5683 in the range [FROM, TO]. Return true if did a split. Otherwise,
5686 spill_hard_reg_in_range (int regno
, enum reg_class rclass
, rtx_insn
*from
, rtx_insn
*to
)
5693 HARD_REG_SET ignore
;
5695 lra_assert (from
!= NULL
&& to
!= NULL
);
5696 CLEAR_HARD_REG_SET (ignore
);
5697 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info
[regno
].insn_bitmap
, 0, uid
, bi
)
5699 lra_insn_recog_data_t id
= lra_insn_recog_data
[uid
];
5700 struct lra_static_insn_data
*static_id
= id
->insn_static_data
;
5701 struct lra_insn_reg
*reg
;
5703 for (reg
= id
->regs
; reg
!= NULL
; reg
= reg
->next
)
5704 if (reg
->regno
<= FIRST_PSEUDO_REGISTER
)
5705 SET_HARD_REG_BIT (ignore
, reg
->regno
);
5706 for (reg
= static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
5707 SET_HARD_REG_BIT (ignore
, reg
->regno
);
5709 rclass_size
= ira_class_hard_regs_num
[rclass
];
5710 for (i
= 0; i
< rclass_size
; i
++)
5712 hard_regno
= ira_class_hard_regs
[rclass
][i
];
5713 if (! TEST_HARD_REG_BIT (lra_reg_info
[regno
].conflict_hard_regs
, hard_regno
)
5714 || TEST_HARD_REG_BIT (ignore
, hard_regno
))
5716 for (insn
= from
; insn
!= NEXT_INSN (to
); insn
= NEXT_INSN (insn
))
5717 if (bitmap_bit_p (&lra_reg_info
[hard_regno
].insn_bitmap
,
5720 if (insn
!= NEXT_INSN (to
))
5722 if (split_reg (TRUE
, hard_regno
, from
, NULL
, to
))
5728 /* Recognize that we need a split transformation for insn INSN, which
5729 defines or uses REGNO in its insn biggest MODE (we use it only if
5730 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5731 hard registers which might be used for reloads since the EBB end.
5732 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5733 uid before starting INSN processing. Return true if we succeed in
5734 such transformation. */
5736 split_if_necessary (int regno
, machine_mode mode
,
5737 HARD_REG_SET potential_reload_hard_regs
,
5738 bool before_p
, rtx_insn
*insn
, int max_uid
)
5742 rtx next_usage_insns
;
5744 if (regno
< FIRST_PSEUDO_REGISTER
)
5745 nregs
= hard_regno_nregs (regno
, mode
);
5746 for (i
= 0; i
< nregs
; i
++)
5747 if (usage_insns
[regno
+ i
].check
== curr_usage_insns_check
5748 && (next_usage_insns
= usage_insns
[regno
+ i
].insns
) != NULL_RTX
5749 /* To avoid processing the register twice or more. */
5750 && ((GET_CODE (next_usage_insns
) != INSN_LIST
5751 && INSN_UID (next_usage_insns
) < max_uid
)
5752 || (GET_CODE (next_usage_insns
) == INSN_LIST
5753 && (INSN_UID (XEXP (next_usage_insns
, 0)) < max_uid
)))
5754 && need_for_split_p (potential_reload_hard_regs
, regno
+ i
)
5755 && split_reg (before_p
, regno
+ i
, insn
, next_usage_insns
, NULL
))
5760 /* Return TRUE if rtx X is considered as an invariant for
5763 invariant_p (const_rtx x
)
5770 code
= GET_CODE (x
);
5771 mode
= GET_MODE (x
);
5775 code
= GET_CODE (x
);
5776 mode
= wider_subreg_mode (mode
, GET_MODE (x
));
5784 int i
, nregs
, regno
= REGNO (x
);
5786 if (regno
>= FIRST_PSEUDO_REGISTER
|| regno
== STACK_POINTER_REGNUM
5787 || TEST_HARD_REG_BIT (eliminable_regset
, regno
)
5788 || GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
)
5790 nregs
= hard_regno_nregs (regno
, mode
);
5791 for (i
= 0; i
< nregs
; i
++)
5792 if (! fixed_regs
[regno
+ i
]
5793 /* A hard register may be clobbered in the current insn
5794 but we can ignore this case because if the hard
5795 register is used it should be set somewhere after the
5797 || bitmap_bit_p (&invalid_invariant_regs
, regno
+ i
))
5800 fmt
= GET_RTX_FORMAT (code
);
5801 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5805 if (! invariant_p (XEXP (x
, i
)))
5808 else if (fmt
[i
] == 'E')
5810 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5811 if (! invariant_p (XVECEXP (x
, i
, j
)))
5818 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
5819 inheritance transformation (using dest_reg instead invariant in a
5820 subsequent insn). */
5822 process_invariant_for_inheritance (rtx dst_reg
, rtx invariant_rtx
)
5824 invariant_ptr_t invariant_ptr
;
5825 rtx_insn
*insn
, *new_insns
;
5826 rtx insn_set
, insn_reg
, new_reg
;
5828 bool succ_p
= false;
5829 int dst_regno
= REGNO (dst_reg
);
5830 machine_mode dst_mode
= GET_MODE (dst_reg
);
5831 enum reg_class cl
= lra_get_allocno_class (dst_regno
), insn_reg_cl
;
5833 invariant_ptr
= insert_invariant (invariant_rtx
);
5834 if ((insn
= invariant_ptr
->insn
) != NULL_RTX
)
5836 /* We have a subsequent insn using the invariant. */
5837 insn_set
= single_set (insn
);
5838 lra_assert (insn_set
!= NULL
);
5839 insn_reg
= SET_DEST (insn_set
);
5840 lra_assert (REG_P (insn_reg
));
5841 insn_regno
= REGNO (insn_reg
);
5842 insn_reg_cl
= lra_get_allocno_class (insn_regno
);
5844 if (dst_mode
== GET_MODE (insn_reg
)
5845 /* We should consider only result move reg insns which are
5847 && targetm
.register_move_cost (dst_mode
, cl
, insn_reg_cl
) == 2
5848 && targetm
.register_move_cost (dst_mode
, cl
, cl
) == 2)
5850 if (lra_dump_file
!= NULL
)
5851 fprintf (lra_dump_file
,
5852 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5853 new_reg
= lra_create_new_reg (dst_mode
, dst_reg
,
5854 cl
, "invariant inheritance");
5855 bitmap_set_bit (&lra_inheritance_pseudos
, REGNO (new_reg
));
5856 bitmap_set_bit (&check_only_regs
, REGNO (new_reg
));
5857 lra_reg_info
[REGNO (new_reg
)].restore_rtx
= PATTERN (insn
);
5859 lra_emit_move (new_reg
, dst_reg
);
5860 new_insns
= get_insns ();
5862 lra_process_new_insns (curr_insn
, NULL
, new_insns
,
5863 "Add invariant inheritance<-original");
5865 lra_emit_move (SET_DEST (insn_set
), new_reg
);
5866 new_insns
= get_insns ();
5868 lra_process_new_insns (insn
, NULL
, new_insns
,
5869 "Changing reload<-inheritance");
5870 lra_set_insn_deleted (insn
);
5872 if (lra_dump_file
!= NULL
)
5874 fprintf (lra_dump_file
,
5875 " Invariant inheritance reuse change %d (bb%d):\n",
5876 REGNO (new_reg
), BLOCK_FOR_INSN (insn
)->index
);
5877 dump_insn_slim (lra_dump_file
, insn
);
5878 fprintf (lra_dump_file
,
5879 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
5883 invariant_ptr
->insn
= curr_insn
;
5887 /* Check only registers living at the current program point in the
5889 static bitmap_head live_regs
;
5891 /* Update live info in EBB given by its HEAD and TAIL insns after
5892 inheritance/split transformation. The function removes dead moves
5895 update_ebb_live_info (rtx_insn
*head
, rtx_insn
*tail
)
5900 rtx_insn
*prev_insn
;
5903 basic_block last_bb
, prev_bb
, curr_bb
;
5905 struct lra_insn_reg
*reg
;
5909 last_bb
= BLOCK_FOR_INSN (tail
);
5911 for (curr_insn
= tail
;
5912 curr_insn
!= PREV_INSN (head
);
5913 curr_insn
= prev_insn
)
5915 prev_insn
= PREV_INSN (curr_insn
);
5916 /* We need to process empty blocks too. They contain
5917 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
5918 if (NOTE_P (curr_insn
) && NOTE_KIND (curr_insn
) != NOTE_INSN_BASIC_BLOCK
)
5920 curr_bb
= BLOCK_FOR_INSN (curr_insn
);
5921 if (curr_bb
!= prev_bb
)
5923 if (prev_bb
!= NULL
)
5925 /* Update df_get_live_in (prev_bb): */
5926 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs
, 0, j
, bi
)
5927 if (bitmap_bit_p (&live_regs
, j
))
5928 bitmap_set_bit (df_get_live_in (prev_bb
), j
);
5930 bitmap_clear_bit (df_get_live_in (prev_bb
), j
);
5932 if (curr_bb
!= last_bb
)
5934 /* Update df_get_live_out (curr_bb): */
5935 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs
, 0, j
, bi
)
5937 live_p
= bitmap_bit_p (&live_regs
, j
);
5939 FOR_EACH_EDGE (e
, ei
, curr_bb
->succs
)
5940 if (bitmap_bit_p (df_get_live_in (e
->dest
), j
))
5946 bitmap_set_bit (df_get_live_out (curr_bb
), j
);
5948 bitmap_clear_bit (df_get_live_out (curr_bb
), j
);
5952 bitmap_and (&live_regs
, &check_only_regs
, df_get_live_out (curr_bb
));
5954 if (! NONDEBUG_INSN_P (curr_insn
))
5956 curr_id
= lra_get_insn_recog_data (curr_insn
);
5957 curr_static_id
= curr_id
->insn_static_data
;
5959 if ((set
= single_set (curr_insn
)) != NULL_RTX
5960 && REG_P (SET_DEST (set
))
5961 && (regno
= REGNO (SET_DEST (set
))) >= FIRST_PSEUDO_REGISTER
5962 && SET_DEST (set
) != pic_offset_table_rtx
5963 && bitmap_bit_p (&check_only_regs
, regno
)
5964 && ! bitmap_bit_p (&live_regs
, regno
))
5966 /* See which defined values die here. */
5967 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
5968 if (reg
->type
== OP_OUT
&& ! reg
->subreg_p
)
5969 bitmap_clear_bit (&live_regs
, reg
->regno
);
5970 for (reg
= curr_static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
5971 if (reg
->type
== OP_OUT
&& ! reg
->subreg_p
)
5972 bitmap_clear_bit (&live_regs
, reg
->regno
);
5973 if (curr_id
->arg_hard_regs
!= NULL
)
5974 /* Make clobbered argument hard registers die. */
5975 for (i
= 0; (regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
5976 if (regno
>= FIRST_PSEUDO_REGISTER
)
5977 bitmap_clear_bit (&live_regs
, regno
- FIRST_PSEUDO_REGISTER
);
5978 /* Mark each used value as live. */
5979 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
5980 if (reg
->type
!= OP_OUT
5981 && bitmap_bit_p (&check_only_regs
, reg
->regno
))
5982 bitmap_set_bit (&live_regs
, reg
->regno
);
5983 for (reg
= curr_static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
5984 if (reg
->type
!= OP_OUT
5985 && bitmap_bit_p (&check_only_regs
, reg
->regno
))
5986 bitmap_set_bit (&live_regs
, reg
->regno
);
5987 if (curr_id
->arg_hard_regs
!= NULL
)
5988 /* Make used argument hard registers live. */
5989 for (i
= 0; (regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
5990 if (regno
< FIRST_PSEUDO_REGISTER
5991 && bitmap_bit_p (&check_only_regs
, regno
))
5992 bitmap_set_bit (&live_regs
, regno
);
5993 /* It is quite important to remove dead move insns because it
5994 means removing dead store. We don't need to process them for
5998 if (lra_dump_file
!= NULL
)
6000 fprintf (lra_dump_file
, " Removing dead insn:\n ");
6001 dump_insn_slim (lra_dump_file
, curr_insn
);
6003 lra_set_insn_deleted (curr_insn
);
6008 /* The structure describes info to do an inheritance for the current
6009 insn. We need to collect such info first before doing the
6010 transformations because the transformations change the insn
6011 internal representation. */
6014 /* Original regno. */
6016 /* Subsequent insns which can inherit original reg value. */
6020 /* Array containing all info for doing inheritance from the current
6022 static struct to_inherit to_inherit
[LRA_MAX_INSN_RELOADS
];
6024 /* Number elements in the previous array. */
6025 static int to_inherit_num
;
6027 /* Add inheritance info REGNO and INSNS. Their meaning is described in
6028 structure to_inherit. */
6030 add_to_inherit (int regno
, rtx insns
)
6034 for (i
= 0; i
< to_inherit_num
; i
++)
6035 if (to_inherit
[i
].regno
== regno
)
6037 lra_assert (to_inherit_num
< LRA_MAX_INSN_RELOADS
);
6038 to_inherit
[to_inherit_num
].regno
= regno
;
6039 to_inherit
[to_inherit_num
++].insns
= insns
;
6042 /* Return the last non-debug insn in basic block BB, or the block begin
6045 get_last_insertion_point (basic_block bb
)
6049 FOR_BB_INSNS_REVERSE (bb
, insn
)
6050 if (NONDEBUG_INSN_P (insn
) || NOTE_INSN_BASIC_BLOCK_P (insn
))
6055 /* Set up RES by registers living on edges FROM except the edge (FROM,
6056 TO) or by registers set up in a jump insn in BB FROM. */
6058 get_live_on_other_edges (basic_block from
, basic_block to
, bitmap res
)
6061 struct lra_insn_reg
*reg
;
6065 lra_assert (to
!= NULL
);
6067 FOR_EACH_EDGE (e
, ei
, from
->succs
)
6069 bitmap_ior_into (res
, df_get_live_in (e
->dest
));
6070 last
= get_last_insertion_point (from
);
6071 if (! JUMP_P (last
))
6073 curr_id
= lra_get_insn_recog_data (last
);
6074 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
6075 if (reg
->type
!= OP_IN
)
6076 bitmap_set_bit (res
, reg
->regno
);
6079 /* Used as a temporary results of some bitmap calculations. */
6080 static bitmap_head temp_bitmap
;
6082 /* We split for reloads of small class of hard regs. The following
6083 defines how many hard regs the class should have to be qualified as
6084 small. The code is mostly oriented to x86/x86-64 architecture
6085 where some insns need to use only specific register or pair of
6086 registers and these register can live in RTL explicitly, e.g. for
6087 parameter passing. */
6088 static const int max_small_class_regs_num
= 2;
6090 /* Do inheritance/split transformations in EBB starting with HEAD and
6091 finishing on TAIL. We process EBB insns in the reverse order.
6092 Return true if we did any inheritance/split transformation in the
6095 We should avoid excessive splitting which results in worse code
6096 because of inaccurate cost calculations for spilling new split
6097 pseudos in such case. To achieve this we do splitting only if
6098 register pressure is high in given basic block and there are reload
6099 pseudos requiring hard registers. We could do more register
6100 pressure calculations at any given program point to avoid necessary
6101 splitting even more but it is to expensive and the current approach
6102 works well enough. */
6104 inherit_in_ebb (rtx_insn
*head
, rtx_insn
*tail
)
6106 int i
, src_regno
, dst_regno
, nregs
;
6107 bool change_p
, succ_p
, update_reloads_num_p
;
6108 rtx_insn
*prev_insn
, *last_insn
;
6109 rtx next_usage_insns
, curr_set
;
6111 struct lra_insn_reg
*reg
;
6112 basic_block last_processed_bb
, curr_bb
= NULL
;
6113 HARD_REG_SET potential_reload_hard_regs
, live_hard_regs
;
6117 bool head_p
, after_p
;
6120 curr_usage_insns_check
++;
6121 clear_invariants ();
6122 reloads_num
= calls_num
= 0;
6123 bitmap_clear (&check_only_regs
);
6124 bitmap_clear (&invalid_invariant_regs
);
6125 last_processed_bb
= NULL
;
6126 CLEAR_HARD_REG_SET (potential_reload_hard_regs
);
6127 COPY_HARD_REG_SET (live_hard_regs
, eliminable_regset
);
6128 IOR_HARD_REG_SET (live_hard_regs
, lra_no_alloc_regs
);
6129 /* We don't process new insns generated in the loop. */
6130 for (curr_insn
= tail
; curr_insn
!= PREV_INSN (head
); curr_insn
= prev_insn
)
6132 prev_insn
= PREV_INSN (curr_insn
);
6133 if (BLOCK_FOR_INSN (curr_insn
) != NULL
)
6134 curr_bb
= BLOCK_FOR_INSN (curr_insn
);
6135 if (last_processed_bb
!= curr_bb
)
6137 /* We are at the end of BB. Add qualified living
6138 pseudos for potential splitting. */
6139 to_process
= df_get_live_out (curr_bb
);
6140 if (last_processed_bb
!= NULL
)
6142 /* We are somewhere in the middle of EBB. */
6143 get_live_on_other_edges (curr_bb
, last_processed_bb
,
6145 to_process
= &temp_bitmap
;
6147 last_processed_bb
= curr_bb
;
6148 last_insn
= get_last_insertion_point (curr_bb
);
6149 after_p
= (! JUMP_P (last_insn
)
6150 && (! CALL_P (last_insn
)
6151 || (find_reg_note (last_insn
,
6152 REG_NORETURN
, NULL_RTX
) == NULL_RTX
6153 && ! SIBLING_CALL_P (last_insn
))));
6154 CLEAR_HARD_REG_SET (potential_reload_hard_regs
);
6155 EXECUTE_IF_SET_IN_BITMAP (to_process
, 0, j
, bi
)
6157 if ((int) j
>= lra_constraint_new_regno_start
)
6159 if (j
< FIRST_PSEUDO_REGISTER
|| reg_renumber
[j
] >= 0)
6161 if (j
< FIRST_PSEUDO_REGISTER
)
6162 SET_HARD_REG_BIT (live_hard_regs
, j
);
6164 add_to_hard_reg_set (&live_hard_regs
,
6165 PSEUDO_REGNO_MODE (j
),
6167 setup_next_usage_insn (j
, last_insn
, reloads_num
, after_p
);
6171 src_regno
= dst_regno
= -1;
6172 curr_set
= single_set (curr_insn
);
6173 if (curr_set
!= NULL_RTX
&& REG_P (SET_DEST (curr_set
)))
6174 dst_regno
= REGNO (SET_DEST (curr_set
));
6175 if (curr_set
!= NULL_RTX
&& REG_P (SET_SRC (curr_set
)))
6176 src_regno
= REGNO (SET_SRC (curr_set
));
6177 update_reloads_num_p
= true;
6178 if (src_regno
< lra_constraint_new_regno_start
6179 && src_regno
>= FIRST_PSEUDO_REGISTER
6180 && reg_renumber
[src_regno
] < 0
6181 && dst_regno
>= lra_constraint_new_regno_start
6182 && (cl
= lra_get_allocno_class (dst_regno
)) != NO_REGS
)
6184 /* 'reload_pseudo <- original_pseudo'. */
6185 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
6187 update_reloads_num_p
= false;
6189 if (usage_insns
[src_regno
].check
== curr_usage_insns_check
6190 && (next_usage_insns
= usage_insns
[src_regno
].insns
) != NULL_RTX
)
6191 succ_p
= inherit_reload_reg (false, src_regno
, cl
,
6192 curr_insn
, next_usage_insns
);
6196 setup_next_usage_insn (src_regno
, curr_insn
, reloads_num
, false);
6197 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
6198 IOR_HARD_REG_SET (potential_reload_hard_regs
,
6199 reg_class_contents
[cl
]);
6201 else if (src_regno
< 0
6202 && dst_regno
>= lra_constraint_new_regno_start
6203 && invariant_p (SET_SRC (curr_set
))
6204 && (cl
= lra_get_allocno_class (dst_regno
)) != NO_REGS
6205 && ! bitmap_bit_p (&invalid_invariant_regs
, dst_regno
)
6206 && ! bitmap_bit_p (&invalid_invariant_regs
,
6207 ORIGINAL_REGNO(regno_reg_rtx
[dst_regno
])))
6209 /* 'reload_pseudo <- invariant'. */
6210 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
6212 update_reloads_num_p
= false;
6213 if (process_invariant_for_inheritance (SET_DEST (curr_set
), SET_SRC (curr_set
)))
6215 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
6216 IOR_HARD_REG_SET (potential_reload_hard_regs
,
6217 reg_class_contents
[cl
]);
6219 else if (src_regno
>= lra_constraint_new_regno_start
6220 && dst_regno
< lra_constraint_new_regno_start
6221 && dst_regno
>= FIRST_PSEUDO_REGISTER
6222 && reg_renumber
[dst_regno
] < 0
6223 && (cl
= lra_get_allocno_class (src_regno
)) != NO_REGS
6224 && usage_insns
[dst_regno
].check
== curr_usage_insns_check
6225 && (next_usage_insns
6226 = usage_insns
[dst_regno
].insns
) != NULL_RTX
)
6228 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
6230 update_reloads_num_p
= false;
6231 /* 'original_pseudo <- reload_pseudo'. */
6232 if (! JUMP_P (curr_insn
)
6233 && inherit_reload_reg (true, dst_regno
, cl
,
6234 curr_insn
, next_usage_insns
))
6237 usage_insns
[dst_regno
].check
= 0;
6238 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
6239 IOR_HARD_REG_SET (potential_reload_hard_regs
,
6240 reg_class_contents
[cl
]);
6242 else if (INSN_P (curr_insn
))
6245 int max_uid
= get_max_uid ();
6247 curr_id
= lra_get_insn_recog_data (curr_insn
);
6248 curr_static_id
= curr_id
->insn_static_data
;
6250 /* Process insn definitions. */
6251 for (iter
= 0; iter
< 2; iter
++)
6252 for (reg
= iter
== 0 ? curr_id
->regs
: curr_static_id
->hard_regs
;
6255 if (reg
->type
!= OP_IN
6256 && (dst_regno
= reg
->regno
) < lra_constraint_new_regno_start
)
6258 if (dst_regno
>= FIRST_PSEUDO_REGISTER
&& reg
->type
== OP_OUT
6259 && reg_renumber
[dst_regno
] < 0 && ! reg
->subreg_p
6260 && usage_insns
[dst_regno
].check
== curr_usage_insns_check
6261 && (next_usage_insns
6262 = usage_insns
[dst_regno
].insns
) != NULL_RTX
)
6264 struct lra_insn_reg
*r
;
6266 for (r
= curr_id
->regs
; r
!= NULL
; r
= r
->next
)
6267 if (r
->type
!= OP_OUT
&& r
->regno
== dst_regno
)
6269 /* Don't do inheritance if the pseudo is also
6270 used in the insn. */
6272 /* We can not do inheritance right now
6273 because the current insn reg info (chain
6274 regs) can change after that. */
6275 add_to_inherit (dst_regno
, next_usage_insns
);
6277 /* We can not process one reg twice here because of
6278 usage_insns invalidation. */
6279 if ((dst_regno
< FIRST_PSEUDO_REGISTER
6280 || reg_renumber
[dst_regno
] >= 0)
6281 && ! reg
->subreg_p
&& reg
->type
!= OP_IN
)
6285 if (split_if_necessary (dst_regno
, reg
->biggest_mode
,
6286 potential_reload_hard_regs
,
6287 false, curr_insn
, max_uid
))
6289 CLEAR_HARD_REG_SET (s
);
6290 if (dst_regno
< FIRST_PSEUDO_REGISTER
)
6291 add_to_hard_reg_set (&s
, reg
->biggest_mode
, dst_regno
);
6293 add_to_hard_reg_set (&s
, PSEUDO_REGNO_MODE (dst_regno
),
6294 reg_renumber
[dst_regno
]);
6295 AND_COMPL_HARD_REG_SET (live_hard_regs
, s
);
6297 /* We should invalidate potential inheritance or
6298 splitting for the current insn usages to the next
6299 usage insns (see code below) as the output pseudo
6301 if ((dst_regno
>= FIRST_PSEUDO_REGISTER
6302 && reg_renumber
[dst_regno
] < 0)
6303 || (reg
->type
== OP_OUT
&& ! reg
->subreg_p
6304 && (dst_regno
< FIRST_PSEUDO_REGISTER
6305 || reg_renumber
[dst_regno
] >= 0)))
6307 /* Invalidate and mark definitions. */
6308 if (dst_regno
>= FIRST_PSEUDO_REGISTER
)
6309 usage_insns
[dst_regno
].check
= -(int) INSN_UID (curr_insn
);
6312 nregs
= hard_regno_nregs (dst_regno
,
6314 for (i
= 0; i
< nregs
; i
++)
6315 usage_insns
[dst_regno
+ i
].check
6316 = -(int) INSN_UID (curr_insn
);
6320 /* Process clobbered call regs. */
6321 if (curr_id
->arg_hard_regs
!= NULL
)
6322 for (i
= 0; (dst_regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
6323 if (dst_regno
>= FIRST_PSEUDO_REGISTER
)
6324 usage_insns
[dst_regno
- FIRST_PSEUDO_REGISTER
].check
6325 = -(int) INSN_UID (curr_insn
);
6326 if (! JUMP_P (curr_insn
))
6327 for (i
= 0; i
< to_inherit_num
; i
++)
6328 if (inherit_reload_reg (true, to_inherit
[i
].regno
,
6329 ALL_REGS
, curr_insn
,
6330 to_inherit
[i
].insns
))
6332 if (CALL_P (curr_insn
))
6334 rtx cheap
, pat
, dest
;
6336 int regno
, hard_regno
;
6339 if ((cheap
= find_reg_note (curr_insn
,
6340 REG_RETURNED
, NULL_RTX
)) != NULL_RTX
6341 && ((cheap
= XEXP (cheap
, 0)), true)
6342 && (regno
= REGNO (cheap
)) >= FIRST_PSEUDO_REGISTER
6343 && (hard_regno
= reg_renumber
[regno
]) >= 0
6344 && usage_insns
[regno
].check
== curr_usage_insns_check
6345 /* If there are pending saves/restores, the
6346 optimization is not worth. */
6347 && usage_insns
[regno
].calls_num
== calls_num
- 1
6348 && TEST_HARD_REG_BIT (call_used_reg_set
, hard_regno
))
6350 /* Restore the pseudo from the call result as
6351 REG_RETURNED note says that the pseudo value is
6352 in the call result and the pseudo is an argument
6354 pat
= PATTERN (curr_insn
);
6355 if (GET_CODE (pat
) == PARALLEL
)
6356 pat
= XVECEXP (pat
, 0, 0);
6357 dest
= SET_DEST (pat
);
6358 /* For multiple return values dest is PARALLEL.
6359 Currently we handle only single return value case. */
6363 emit_move_insn (cheap
, copy_rtx (dest
));
6364 restore
= get_insns ();
6366 lra_process_new_insns (curr_insn
, NULL
, restore
,
6367 "Inserting call parameter restore");
6368 /* We don't need to save/restore of the pseudo from
6370 usage_insns
[regno
].calls_num
= calls_num
;
6371 bitmap_set_bit (&check_only_regs
, regno
);
6376 /* Process insn usages. */
6377 for (iter
= 0; iter
< 2; iter
++)
6378 for (reg
= iter
== 0 ? curr_id
->regs
: curr_static_id
->hard_regs
;
6381 if ((reg
->type
!= OP_OUT
6382 || (reg
->type
== OP_OUT
&& reg
->subreg_p
))
6383 && (src_regno
= reg
->regno
) < lra_constraint_new_regno_start
)
6385 if (src_regno
>= FIRST_PSEUDO_REGISTER
6386 && reg_renumber
[src_regno
] < 0 && reg
->type
== OP_IN
)
6388 if (usage_insns
[src_regno
].check
== curr_usage_insns_check
6389 && (next_usage_insns
6390 = usage_insns
[src_regno
].insns
) != NULL_RTX
6391 && NONDEBUG_INSN_P (curr_insn
))
6392 add_to_inherit (src_regno
, next_usage_insns
);
6393 else if (usage_insns
[src_regno
].check
6394 != -(int) INSN_UID (curr_insn
))
6395 /* Add usages but only if the reg is not set up
6396 in the same insn. */
6397 add_next_usage_insn (src_regno
, curr_insn
, reloads_num
);
6399 else if (src_regno
< FIRST_PSEUDO_REGISTER
6400 || reg_renumber
[src_regno
] >= 0)
6403 rtx_insn
*use_insn
= curr_insn
;
6405 before_p
= (JUMP_P (curr_insn
)
6406 || (CALL_P (curr_insn
) && reg
->type
== OP_IN
));
6407 if (NONDEBUG_INSN_P (curr_insn
)
6408 && (! JUMP_P (curr_insn
) || reg
->type
== OP_IN
)
6409 && split_if_necessary (src_regno
, reg
->biggest_mode
,
6410 potential_reload_hard_regs
,
6411 before_p
, curr_insn
, max_uid
))
6414 lra_risky_transformations_p
= true;
6417 usage_insns
[src_regno
].check
= 0;
6419 use_insn
= PREV_INSN (curr_insn
);
6421 if (NONDEBUG_INSN_P (curr_insn
))
6423 if (src_regno
< FIRST_PSEUDO_REGISTER
)
6424 add_to_hard_reg_set (&live_hard_regs
,
6425 reg
->biggest_mode
, src_regno
);
6427 add_to_hard_reg_set (&live_hard_regs
,
6428 PSEUDO_REGNO_MODE (src_regno
),
6429 reg_renumber
[src_regno
]);
6431 if (src_regno
>= FIRST_PSEUDO_REGISTER
)
6432 add_next_usage_insn (src_regno
, use_insn
, reloads_num
);
6435 for (i
= 0; i
< hard_regno_nregs (src_regno
, reg
->biggest_mode
); i
++)
6436 add_next_usage_insn (src_regno
+ i
, use_insn
, reloads_num
);
6440 /* Process used call regs. */
6441 if (curr_id
->arg_hard_regs
!= NULL
)
6442 for (i
= 0; (src_regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
6443 if (src_regno
< FIRST_PSEUDO_REGISTER
)
6445 SET_HARD_REG_BIT (live_hard_regs
, src_regno
);
6446 add_next_usage_insn (src_regno
, curr_insn
, reloads_num
);
6448 for (i
= 0; i
< to_inherit_num
; i
++)
6450 src_regno
= to_inherit
[i
].regno
;
6451 if (inherit_reload_reg (false, src_regno
, ALL_REGS
,
6452 curr_insn
, to_inherit
[i
].insns
))
6455 setup_next_usage_insn (src_regno
, curr_insn
, reloads_num
, false);
6458 if (update_reloads_num_p
6459 && NONDEBUG_INSN_P (curr_insn
) && curr_set
!= NULL_RTX
)
6462 if ((REG_P (SET_DEST (curr_set
))
6463 && (regno
= REGNO (SET_DEST (curr_set
))) >= lra_constraint_new_regno_start
6464 && reg_renumber
[regno
] < 0
6465 && (cl
= lra_get_allocno_class (regno
)) != NO_REGS
)
6466 || (REG_P (SET_SRC (curr_set
))
6467 && (regno
= REGNO (SET_SRC (curr_set
))) >= lra_constraint_new_regno_start
6468 && reg_renumber
[regno
] < 0
6469 && (cl
= lra_get_allocno_class (regno
)) != NO_REGS
))
6471 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
6473 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
6474 IOR_HARD_REG_SET (potential_reload_hard_regs
,
6475 reg_class_contents
[cl
]);
6478 if (NONDEBUG_INSN_P (curr_insn
))
6482 /* Invalidate invariants with changed regs. */
6483 curr_id
= lra_get_insn_recog_data (curr_insn
);
6484 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
6485 if (reg
->type
!= OP_IN
)
6487 bitmap_set_bit (&invalid_invariant_regs
, reg
->regno
);
6488 bitmap_set_bit (&invalid_invariant_regs
,
6489 ORIGINAL_REGNO (regno_reg_rtx
[reg
->regno
]));
6491 curr_static_id
= curr_id
->insn_static_data
;
6492 for (reg
= curr_static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
6493 if (reg
->type
!= OP_IN
)
6494 bitmap_set_bit (&invalid_invariant_regs
, reg
->regno
);
6495 if (curr_id
->arg_hard_regs
!= NULL
)
6496 for (i
= 0; (regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
6497 if (regno
>= FIRST_PSEUDO_REGISTER
)
6498 bitmap_set_bit (&invalid_invariant_regs
,
6499 regno
- FIRST_PSEUDO_REGISTER
);
6501 /* We reached the start of the current basic block. */
6502 if (prev_insn
== NULL_RTX
|| prev_insn
== PREV_INSN (head
)
6503 || BLOCK_FOR_INSN (prev_insn
) != curr_bb
)
6505 /* We reached the beginning of the current block -- do
6506 rest of spliting in the current BB. */
6507 to_process
= df_get_live_in (curr_bb
);
6508 if (BLOCK_FOR_INSN (head
) != curr_bb
)
6510 /* We are somewhere in the middle of EBB. */
6511 get_live_on_other_edges (EDGE_PRED (curr_bb
, 0)->src
,
6512 curr_bb
, &temp_bitmap
);
6513 to_process
= &temp_bitmap
;
6516 EXECUTE_IF_SET_IN_BITMAP (to_process
, 0, j
, bi
)
6518 if ((int) j
>= lra_constraint_new_regno_start
)
6520 if (((int) j
< FIRST_PSEUDO_REGISTER
|| reg_renumber
[j
] >= 0)
6521 && usage_insns
[j
].check
== curr_usage_insns_check
6522 && (next_usage_insns
= usage_insns
[j
].insns
) != NULL_RTX
)
6524 if (need_for_split_p (potential_reload_hard_regs
, j
))
6526 if (lra_dump_file
!= NULL
&& head_p
)
6528 fprintf (lra_dump_file
,
6529 " ----------------------------------\n");
6532 if (split_reg (false, j
, bb_note (curr_bb
),
6533 next_usage_insns
, NULL
))
6536 usage_insns
[j
].check
= 0;
6544 /* This value affects EBB forming. If probability of edge from EBB to
6545 a BB is not greater than the following value, we don't add the BB
6547 #define EBB_PROBABILITY_CUTOFF \
6548 ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6550 /* Current number of inheritance/split iteration. */
6551 int lra_inheritance_iter
;
6553 /* Entry function for inheritance/split pass. */
6555 lra_inheritance (void)
6558 basic_block bb
, start_bb
;
6561 lra_inheritance_iter
++;
6562 if (lra_inheritance_iter
> LRA_MAX_INHERITANCE_PASSES
)
6564 timevar_push (TV_LRA_INHERITANCE
);
6565 if (lra_dump_file
!= NULL
)
6566 fprintf (lra_dump_file
, "\n********** Inheritance #%d: **********\n\n",
6567 lra_inheritance_iter
);
6568 curr_usage_insns_check
= 0;
6569 usage_insns
= XNEWVEC (struct usage_insns
, lra_constraint_new_regno_start
);
6570 for (i
= 0; i
< lra_constraint_new_regno_start
; i
++)
6571 usage_insns
[i
].check
= 0;
6572 bitmap_initialize (&check_only_regs
, ®_obstack
);
6573 bitmap_initialize (&invalid_invariant_regs
, ®_obstack
);
6574 bitmap_initialize (&live_regs
, ®_obstack
);
6575 bitmap_initialize (&temp_bitmap
, ®_obstack
);
6576 bitmap_initialize (&ebb_global_regs
, ®_obstack
);
6577 FOR_EACH_BB_FN (bb
, cfun
)
6580 if (lra_dump_file
!= NULL
)
6581 fprintf (lra_dump_file
, "EBB");
6582 /* Form a EBB starting with BB. */
6583 bitmap_clear (&ebb_global_regs
);
6584 bitmap_ior_into (&ebb_global_regs
, df_get_live_in (bb
));
6587 if (lra_dump_file
!= NULL
)
6588 fprintf (lra_dump_file
, " %d", bb
->index
);
6589 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
6590 || LABEL_P (BB_HEAD (bb
->next_bb
)))
6592 e
= find_fallthru_edge (bb
->succs
);
6595 if (e
->probability
.initialized_p ()
6596 && e
->probability
.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF
)
6600 bitmap_ior_into (&ebb_global_regs
, df_get_live_out (bb
));
6601 if (lra_dump_file
!= NULL
)
6602 fprintf (lra_dump_file
, "\n");
6603 if (inherit_in_ebb (BB_HEAD (start_bb
), BB_END (bb
)))
6604 /* Remember that the EBB head and tail can change in
6606 update_ebb_live_info (BB_HEAD (start_bb
), BB_END (bb
));
6608 bitmap_clear (&ebb_global_regs
);
6609 bitmap_clear (&temp_bitmap
);
6610 bitmap_clear (&live_regs
);
6611 bitmap_clear (&invalid_invariant_regs
);
6612 bitmap_clear (&check_only_regs
);
6615 timevar_pop (TV_LRA_INHERITANCE
);
6620 /* This page contains code to undo failed inheritance/split
6623 /* Current number of iteration undoing inheritance/split. */
6624 int lra_undo_inheritance_iter
;
6626 /* Fix BB live info LIVE after removing pseudos created on pass doing
6627 inheritance/split which are REMOVED_PSEUDOS. */
6629 fix_bb_live_info (bitmap live
, bitmap removed_pseudos
)
6634 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos
, 0, regno
, bi
)
6635 if (bitmap_clear_bit (live
, regno
)
6636 && REG_P (lra_reg_info
[regno
].restore_rtx
))
6637 bitmap_set_bit (live
, REGNO (lra_reg_info
[regno
].restore_rtx
));
6640 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6645 if (GET_CODE (reg
) == SUBREG
)
6646 reg
= SUBREG_REG (reg
);
6652 /* Delete a move INSN with destination reg DREGNO and a previous
6653 clobber insn with the same regno. The inheritance/split code can
6654 generate moves with preceding clobber and when we delete such moves
6655 we should delete the clobber insn too to keep the correct life
6658 delete_move_and_clobber (rtx_insn
*insn
, int dregno
)
6660 rtx_insn
*prev_insn
= PREV_INSN (insn
);
6662 lra_set_insn_deleted (insn
);
6663 lra_assert (dregno
>= 0);
6664 if (prev_insn
!= NULL
&& NONDEBUG_INSN_P (prev_insn
)
6665 && GET_CODE (PATTERN (prev_insn
)) == CLOBBER
6666 && dregno
== get_regno (XEXP (PATTERN (prev_insn
), 0)))
6667 lra_set_insn_deleted (prev_insn
);
6670 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6671 return true if we did any change. The undo transformations for
6672 inheritance looks like
6676 p <- i, i <- p, and i <- i3
6677 where p is original pseudo from which inheritance pseudo i was
6678 created, i and i3 are removed inheritance pseudos, i2 is another
6679 not removed inheritance pseudo. All split pseudos or other
6680 occurrences of removed inheritance pseudos are changed on the
6681 corresponding original pseudos.
6683 The function also schedules insns changed and created during
6684 inheritance/split pass for processing by the subsequent constraint
6687 remove_inheritance_pseudos (bitmap remove_pseudos
)
6690 int regno
, sregno
, prev_sregno
, dregno
;
6693 rtx_insn
*prev_insn
;
6694 bool change_p
, done_p
;
6696 change_p
= ! bitmap_empty_p (remove_pseudos
);
6697 /* We can not finish the function right away if CHANGE_P is true
6698 because we need to marks insns affected by previous
6699 inheritance/split pass for processing by the subsequent
6701 FOR_EACH_BB_FN (bb
, cfun
)
6703 fix_bb_live_info (df_get_live_in (bb
), remove_pseudos
);
6704 fix_bb_live_info (df_get_live_out (bb
), remove_pseudos
);
6705 FOR_BB_INSNS_REVERSE (bb
, curr_insn
)
6707 if (! INSN_P (curr_insn
))
6710 sregno
= dregno
= -1;
6711 if (change_p
&& NONDEBUG_INSN_P (curr_insn
)
6712 && (set
= single_set (curr_insn
)) != NULL_RTX
)
6714 dregno
= get_regno (SET_DEST (set
));
6715 sregno
= get_regno (SET_SRC (set
));
6718 if (sregno
>= 0 && dregno
>= 0)
6720 if (bitmap_bit_p (remove_pseudos
, dregno
)
6721 && ! REG_P (lra_reg_info
[dregno
].restore_rtx
))
6723 /* invariant inheritance pseudo <- original pseudo */
6724 if (lra_dump_file
!= NULL
)
6726 fprintf (lra_dump_file
, " Removing invariant inheritance:\n");
6727 dump_insn_slim (lra_dump_file
, curr_insn
);
6728 fprintf (lra_dump_file
, "\n");
6730 delete_move_and_clobber (curr_insn
, dregno
);
6733 else if (bitmap_bit_p (remove_pseudos
, sregno
)
6734 && ! REG_P (lra_reg_info
[sregno
].restore_rtx
))
6736 /* reload pseudo <- invariant inheritance pseudo */
6738 /* We can not just change the source. It might be
6739 an insn different from the move. */
6740 emit_insn (lra_reg_info
[sregno
].restore_rtx
);
6741 rtx_insn
*new_insns
= get_insns ();
6743 lra_assert (single_set (new_insns
) != NULL
6744 && SET_DEST (set
) == SET_DEST (single_set (new_insns
)));
6745 lra_process_new_insns (curr_insn
, NULL
, new_insns
,
6746 "Changing reload<-invariant inheritance");
6747 delete_move_and_clobber (curr_insn
, dregno
);
6750 else if ((bitmap_bit_p (remove_pseudos
, sregno
)
6751 && (get_regno (lra_reg_info
[sregno
].restore_rtx
) == dregno
6752 || (bitmap_bit_p (remove_pseudos
, dregno
)
6753 && get_regno (lra_reg_info
[sregno
].restore_rtx
) >= 0
6754 && (get_regno (lra_reg_info
[sregno
].restore_rtx
)
6755 == get_regno (lra_reg_info
[dregno
].restore_rtx
)))))
6756 || (bitmap_bit_p (remove_pseudos
, dregno
)
6757 && get_regno (lra_reg_info
[dregno
].restore_rtx
) == sregno
))
6758 /* One of the following cases:
6759 original <- removed inheritance pseudo
6760 removed inherit pseudo <- another removed inherit pseudo
6761 removed inherit pseudo <- original pseudo
6763 removed_split_pseudo <- original_reg
6764 original_reg <- removed_split_pseudo */
6766 if (lra_dump_file
!= NULL
)
6768 fprintf (lra_dump_file
, " Removing %s:\n",
6769 bitmap_bit_p (&lra_split_regs
, sregno
)
6770 || bitmap_bit_p (&lra_split_regs
, dregno
)
6771 ? "split" : "inheritance");
6772 dump_insn_slim (lra_dump_file
, curr_insn
);
6774 delete_move_and_clobber (curr_insn
, dregno
);
6777 else if (bitmap_bit_p (remove_pseudos
, sregno
)
6778 && bitmap_bit_p (&lra_inheritance_pseudos
, sregno
))
6780 /* Search the following pattern:
6781 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6782 original_pseudo <- inherit_or_split_pseudo1
6783 where the 2nd insn is the current insn and
6784 inherit_or_split_pseudo2 is not removed. If it is found,
6785 change the current insn onto:
6786 original_pseudo <- inherit_or_split_pseudo2. */
6787 for (prev_insn
= PREV_INSN (curr_insn
);
6788 prev_insn
!= NULL_RTX
&& ! NONDEBUG_INSN_P (prev_insn
);
6789 prev_insn
= PREV_INSN (prev_insn
))
6791 if (prev_insn
!= NULL_RTX
&& BLOCK_FOR_INSN (prev_insn
) == bb
6792 && (prev_set
= single_set (prev_insn
)) != NULL_RTX
6793 /* There should be no subregs in insn we are
6794 searching because only the original reg might
6795 be in subreg when we changed the mode of
6796 load/store for splitting. */
6797 && REG_P (SET_DEST (prev_set
))
6798 && REG_P (SET_SRC (prev_set
))
6799 && (int) REGNO (SET_DEST (prev_set
)) == sregno
6800 && ((prev_sregno
= REGNO (SET_SRC (prev_set
)))
6801 >= FIRST_PSEUDO_REGISTER
)
6802 && (lra_reg_info
[prev_sregno
].restore_rtx
== NULL_RTX
6804 /* As we consider chain of inheritance or
6805 splitting described in above comment we should
6806 check that sregno and prev_sregno were
6807 inheritance/split pseudos created from the
6808 same original regno. */
6809 (get_regno (lra_reg_info
[sregno
].restore_rtx
) >= 0
6810 && (get_regno (lra_reg_info
[sregno
].restore_rtx
)
6811 == get_regno (lra_reg_info
[prev_sregno
].restore_rtx
))))
6812 && ! bitmap_bit_p (remove_pseudos
, prev_sregno
))
6814 lra_assert (GET_MODE (SET_SRC (prev_set
))
6815 == GET_MODE (regno_reg_rtx
[sregno
]));
6816 /* Although we have a single set, the insn can
6817 contain more one sregno register occurrence
6818 as a source. Change all occurrences. */
6819 lra_substitute_pseudo_within_insn (curr_insn
, sregno
,
6822 /* As we are finishing with processing the insn
6823 here, check the destination too as it might
6824 inheritance pseudo for another pseudo. */
6825 if (bitmap_bit_p (remove_pseudos
, dregno
)
6826 && bitmap_bit_p (&lra_inheritance_pseudos
, dregno
)
6828 = lra_reg_info
[dregno
].restore_rtx
) != NULL_RTX
)
6830 if (GET_CODE (SET_DEST (set
)) == SUBREG
)
6831 SUBREG_REG (SET_DEST (set
)) = restore_rtx
;
6833 SET_DEST (set
) = restore_rtx
;
6835 lra_push_insn_and_update_insn_regno_info (curr_insn
);
6836 lra_set_used_insn_alternative_by_uid
6837 (INSN_UID (curr_insn
), LRA_UNKNOWN_ALT
);
6839 if (lra_dump_file
!= NULL
)
6841 fprintf (lra_dump_file
, " Change reload insn:\n");
6842 dump_insn_slim (lra_dump_file
, curr_insn
);
6849 struct lra_insn_reg
*reg
;
6850 bool restored_regs_p
= false;
6851 bool kept_regs_p
= false;
6853 curr_id
= lra_get_insn_recog_data (curr_insn
);
6854 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
6857 restore_rtx
= lra_reg_info
[regno
].restore_rtx
;
6858 if (restore_rtx
!= NULL_RTX
)
6860 if (change_p
&& bitmap_bit_p (remove_pseudos
, regno
))
6862 lra_substitute_pseudo_within_insn
6863 (curr_insn
, regno
, restore_rtx
, false);
6864 restored_regs_p
= true;
6870 if (NONDEBUG_INSN_P (curr_insn
) && kept_regs_p
)
6872 /* The instruction has changed since the previous
6873 constraints pass. */
6874 lra_push_insn_and_update_insn_regno_info (curr_insn
);
6875 lra_set_used_insn_alternative_by_uid
6876 (INSN_UID (curr_insn
), LRA_UNKNOWN_ALT
);
6878 else if (restored_regs_p
)
6879 /* The instruction has been restored to the form that
6880 it had during the previous constraints pass. */
6881 lra_update_insn_regno_info (curr_insn
);
6882 if (restored_regs_p
&& lra_dump_file
!= NULL
)
6884 fprintf (lra_dump_file
, " Insn after restoring regs:\n");
6885 dump_insn_slim (lra_dump_file
, curr_insn
);
6893 /* If optional reload pseudos failed to get a hard register or was not
6894 inherited, it is better to remove optional reloads. We do this
6895 transformation after undoing inheritance to figure out necessity to
6896 remove optional reloads easier. Return true if we do any
6899 undo_optional_reloads (void)
6901 bool change_p
, keep_p
;
6902 unsigned int regno
, uid
;
6903 bitmap_iterator bi
, bi2
;
6906 auto_bitmap
removed_optional_reload_pseudos (®_obstack
);
6908 bitmap_copy (removed_optional_reload_pseudos
, &lra_optional_reload_pseudos
);
6909 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos
, 0, regno
, bi
)
6912 /* Keep optional reloads from previous subpasses. */
6913 if (lra_reg_info
[regno
].restore_rtx
== NULL_RTX
6914 /* If the original pseudo changed its allocation, just
6915 removing the optional pseudo is dangerous as the original
6916 pseudo will have longer live range. */
6917 || reg_renumber
[REGNO (lra_reg_info
[regno
].restore_rtx
)] >= 0)
6919 else if (reg_renumber
[regno
] >= 0)
6920 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info
[regno
].insn_bitmap
, 0, uid
, bi2
)
6922 insn
= lra_insn_recog_data
[uid
]->insn
;
6923 if ((set
= single_set (insn
)) == NULL_RTX
)
6925 src
= SET_SRC (set
);
6926 dest
= SET_DEST (set
);
6927 if (! REG_P (src
) || ! REG_P (dest
))
6929 if (REGNO (dest
) == regno
6930 /* Ignore insn for optional reloads itself. */
6931 && REGNO (lra_reg_info
[regno
].restore_rtx
) != REGNO (src
)
6932 /* Check only inheritance on last inheritance pass. */
6933 && (int) REGNO (src
) >= new_regno_start
6934 /* Check that the optional reload was inherited. */
6935 && bitmap_bit_p (&lra_inheritance_pseudos
, REGNO (src
)))
6943 bitmap_clear_bit (removed_optional_reload_pseudos
, regno
);
6944 if (lra_dump_file
!= NULL
)
6945 fprintf (lra_dump_file
, "Keep optional reload reg %d\n", regno
);
6948 change_p
= ! bitmap_empty_p (removed_optional_reload_pseudos
);
6949 auto_bitmap
insn_bitmap (®_obstack
);
6950 EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos
, 0, regno
, bi
)
6952 if (lra_dump_file
!= NULL
)
6953 fprintf (lra_dump_file
, "Remove optional reload reg %d\n", regno
);
6954 bitmap_copy (insn_bitmap
, &lra_reg_info
[regno
].insn_bitmap
);
6955 EXECUTE_IF_SET_IN_BITMAP (insn_bitmap
, 0, uid
, bi2
)
6957 insn
= lra_insn_recog_data
[uid
]->insn
;
6958 if ((set
= single_set (insn
)) != NULL_RTX
)
6960 src
= SET_SRC (set
);
6961 dest
= SET_DEST (set
);
6962 if (REG_P (src
) && REG_P (dest
)
6963 && ((REGNO (src
) == regno
6964 && (REGNO (lra_reg_info
[regno
].restore_rtx
)
6966 || (REGNO (dest
) == regno
6967 && (REGNO (lra_reg_info
[regno
].restore_rtx
)
6970 if (lra_dump_file
!= NULL
)
6972 fprintf (lra_dump_file
, " Deleting move %u\n",
6974 dump_insn_slim (lra_dump_file
, insn
);
6976 delete_move_and_clobber (insn
, REGNO (dest
));
6979 /* We should not worry about generation memory-memory
6980 moves here as if the corresponding inheritance did
6981 not work (inheritance pseudo did not get a hard reg),
6982 we remove the inheritance pseudo and the optional
6985 lra_substitute_pseudo_within_insn
6986 (insn
, regno
, lra_reg_info
[regno
].restore_rtx
, false);
6987 lra_update_insn_regno_info (insn
);
6988 if (lra_dump_file
!= NULL
)
6990 fprintf (lra_dump_file
,
6991 " Restoring original insn:\n");
6992 dump_insn_slim (lra_dump_file
, insn
);
6996 /* Clear restore_regnos. */
6997 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos
, 0, regno
, bi
)
6998 lra_reg_info
[regno
].restore_rtx
= NULL_RTX
;
7002 /* Entry function for undoing inheritance/split transformation. Return true
7003 if we did any RTL change in this pass. */
7005 lra_undo_inheritance (void)
7009 int n_all_inherit
, n_inherit
, n_all_split
, n_split
;
7014 lra_undo_inheritance_iter
++;
7015 if (lra_undo_inheritance_iter
> LRA_MAX_INHERITANCE_PASSES
)
7017 if (lra_dump_file
!= NULL
)
7018 fprintf (lra_dump_file
,
7019 "\n********** Undoing inheritance #%d: **********\n\n",
7020 lra_undo_inheritance_iter
);
7021 auto_bitmap
remove_pseudos (®_obstack
);
7022 n_inherit
= n_all_inherit
= 0;
7023 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos
, 0, regno
, bi
)
7024 if (lra_reg_info
[regno
].restore_rtx
!= NULL_RTX
)
7027 if (reg_renumber
[regno
] < 0
7028 /* If the original pseudo changed its allocation, just
7029 removing inheritance is dangerous as for changing
7030 allocation we used shorter live-ranges. */
7031 && (! REG_P (lra_reg_info
[regno
].restore_rtx
)
7032 || reg_renumber
[REGNO (lra_reg_info
[regno
].restore_rtx
)] < 0))
7033 bitmap_set_bit (remove_pseudos
, regno
);
7037 if (lra_dump_file
!= NULL
&& n_all_inherit
!= 0)
7038 fprintf (lra_dump_file
, "Inherit %d out of %d (%.2f%%)\n",
7039 n_inherit
, n_all_inherit
,
7040 (double) n_inherit
/ n_all_inherit
* 100);
7041 n_split
= n_all_split
= 0;
7042 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs
, 0, regno
, bi
)
7043 if ((restore_rtx
= lra_reg_info
[regno
].restore_rtx
) != NULL_RTX
)
7045 int restore_regno
= REGNO (restore_rtx
);
7048 hard_regno
= (restore_regno
>= FIRST_PSEUDO_REGISTER
7049 ? reg_renumber
[restore_regno
] : restore_regno
);
7050 if (hard_regno
< 0 || reg_renumber
[regno
] == hard_regno
)
7051 bitmap_set_bit (remove_pseudos
, regno
);
7055 if (lra_dump_file
!= NULL
)
7056 fprintf (lra_dump_file
, " Keep split r%d (orig=r%d)\n",
7057 regno
, restore_regno
);
7060 if (lra_dump_file
!= NULL
&& n_all_split
!= 0)
7061 fprintf (lra_dump_file
, "Split %d out of %d (%.2f%%)\n",
7062 n_split
, n_all_split
,
7063 (double) n_split
/ n_all_split
* 100);
7064 change_p
= remove_inheritance_pseudos (remove_pseudos
);
7065 /* Clear restore_regnos. */
7066 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos
, 0, regno
, bi
)
7067 lra_reg_info
[regno
].restore_rtx
= NULL_RTX
;
7068 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs
, 0, regno
, bi
)
7069 lra_reg_info
[regno
].restore_rtx
= NULL_RTX
;
7070 change_p
= undo_optional_reloads () || change_p
;