PR go/67101
[official-gcc.git] / libsanitizer / tsan / tsan_fd.cc
blob10582035f24c7254e3468ac90d4a6e139ac1b070
1 //===-- tsan_fd.cc --------------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 //===----------------------------------------------------------------------===//
12 #include "tsan_fd.h"
13 #include "tsan_rtl.h"
14 #include <sanitizer_common/sanitizer_atomic.h>
16 namespace __tsan {
18 const int kTableSizeL1 = 1024;
19 const int kTableSizeL2 = 1024;
20 const int kTableSize = kTableSizeL1 * kTableSizeL2;
22 struct FdSync {
23 atomic_uint64_t rc;
26 struct FdDesc {
27 FdSync *sync;
28 int creation_tid;
29 u32 creation_stack;
32 struct FdContext {
33 atomic_uintptr_t tab[kTableSizeL1];
34 // Addresses used for synchronization.
35 FdSync globsync;
36 FdSync filesync;
37 FdSync socksync;
38 u64 connectsync;
41 static FdContext fdctx;
43 static bool bogusfd(int fd) {
44 // Apparently a bogus fd value.
45 return fd < 0 || fd >= kTableSize;
48 static FdSync *allocsync(ThreadState *thr, uptr pc) {
49 FdSync *s = (FdSync*)user_alloc(thr, pc, sizeof(FdSync), kDefaultAlignment,
50 false);
51 atomic_store(&s->rc, 1, memory_order_relaxed);
52 return s;
55 static FdSync *ref(FdSync *s) {
56 if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
57 atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
58 return s;
61 static void unref(ThreadState *thr, uptr pc, FdSync *s) {
62 if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
63 if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
64 CHECK_NE(s, &fdctx.globsync);
65 CHECK_NE(s, &fdctx.filesync);
66 CHECK_NE(s, &fdctx.socksync);
67 user_free(thr, pc, s, false);
72 static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
73 CHECK_GE(fd, 0);
74 CHECK_LT(fd, kTableSize);
75 atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
76 uptr l1 = atomic_load(pl1, memory_order_consume);
77 if (l1 == 0) {
78 uptr size = kTableSizeL2 * sizeof(FdDesc);
79 // We need this to reside in user memory to properly catch races on it.
80 void *p = user_alloc(thr, pc, size, kDefaultAlignment, false);
81 internal_memset(p, 0, size);
82 MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
83 if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
84 l1 = (uptr)p;
85 else
86 user_free(thr, pc, p, false);
88 return &((FdDesc*)l1)[fd % kTableSizeL2]; // NOLINT
91 // pd must be already ref'ed.
92 static void init(ThreadState *thr, uptr pc, int fd, FdSync *s) {
93 FdDesc *d = fddesc(thr, pc, fd);
94 // As a matter of fact, we don't intercept all close calls.
95 // See e.g. libc __res_iclose().
96 if (d->sync) {
97 unref(thr, pc, d->sync);
98 d->sync = 0;
100 if (flags()->io_sync == 0) {
101 unref(thr, pc, s);
102 } else if (flags()->io_sync == 1) {
103 d->sync = s;
104 } else if (flags()->io_sync == 2) {
105 unref(thr, pc, s);
106 d->sync = &fdctx.globsync;
108 d->creation_tid = thr->tid;
109 d->creation_stack = CurrentStackId(thr, pc);
110 // To catch races between fd usage and open.
111 MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
114 void FdInit() {
115 atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
116 atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
117 atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
120 void FdOnFork(ThreadState *thr, uptr pc) {
121 // On fork() we need to reset all fd's, because the child is going
122 // close all them, and that will cause races between previous read/write
123 // and the close.
124 for (int l1 = 0; l1 < kTableSizeL1; l1++) {
125 FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
126 if (tab == 0)
127 break;
128 for (int l2 = 0; l2 < kTableSizeL2; l2++) {
129 FdDesc *d = &tab[l2];
130 MemoryResetRange(thr, pc, (uptr)d, 8);
135 bool FdLocation(uptr addr, int *fd, int *tid, u32 *stack) {
136 for (int l1 = 0; l1 < kTableSizeL1; l1++) {
137 FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
138 if (tab == 0)
139 break;
140 if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
141 int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
142 FdDesc *d = &tab[l2];
143 *fd = l1 * kTableSizeL1 + l2;
144 *tid = d->creation_tid;
145 *stack = d->creation_stack;
146 return true;
149 return false;
152 void FdAcquire(ThreadState *thr, uptr pc, int fd) {
153 if (bogusfd(fd))
154 return;
155 FdDesc *d = fddesc(thr, pc, fd);
156 FdSync *s = d->sync;
157 DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
158 MemoryRead(thr, pc, (uptr)d, kSizeLog8);
159 if (s)
160 Acquire(thr, pc, (uptr)s);
163 void FdRelease(ThreadState *thr, uptr pc, int fd) {
164 if (bogusfd(fd))
165 return;
166 FdDesc *d = fddesc(thr, pc, fd);
167 FdSync *s = d->sync;
168 DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
169 MemoryRead(thr, pc, (uptr)d, kSizeLog8);
170 if (s)
171 Release(thr, pc, (uptr)s);
174 void FdAccess(ThreadState *thr, uptr pc, int fd) {
175 DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
176 if (bogusfd(fd))
177 return;
178 FdDesc *d = fddesc(thr, pc, fd);
179 MemoryRead(thr, pc, (uptr)d, kSizeLog8);
182 void FdClose(ThreadState *thr, uptr pc, int fd) {
183 DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
184 if (bogusfd(fd))
185 return;
186 FdDesc *d = fddesc(thr, pc, fd);
187 // To catch races between fd usage and close.
188 MemoryWrite(thr, pc, (uptr)d, kSizeLog8);
189 // We need to clear it, because if we do not intercept any call out there
190 // that creates fd, we will hit false postives.
191 MemoryResetRange(thr, pc, (uptr)d, 8);
192 unref(thr, pc, d->sync);
193 d->sync = 0;
194 d->creation_tid = 0;
195 d->creation_stack = 0;
198 void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
199 DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
200 if (bogusfd(fd))
201 return;
202 init(thr, pc, fd, &fdctx.filesync);
205 void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd) {
206 DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
207 if (bogusfd(oldfd) || bogusfd(newfd))
208 return;
209 // Ignore the case when user dups not yet connected socket.
210 FdDesc *od = fddesc(thr, pc, oldfd);
211 MemoryRead(thr, pc, (uptr)od, kSizeLog8);
212 FdClose(thr, pc, newfd);
213 init(thr, pc, newfd, ref(od->sync));
216 void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
217 DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
218 FdSync *s = allocsync(thr, pc);
219 init(thr, pc, rfd, ref(s));
220 init(thr, pc, wfd, ref(s));
221 unref(thr, pc, s);
224 void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
225 DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
226 if (bogusfd(fd))
227 return;
228 init(thr, pc, fd, allocsync(thr, pc));
231 void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
232 DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
233 if (bogusfd(fd))
234 return;
235 init(thr, pc, fd, 0);
238 void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
239 DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
240 if (bogusfd(fd))
241 return;
242 init(thr, pc, fd, 0);
245 void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
246 DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
247 if (bogusfd(fd))
248 return;
249 init(thr, pc, fd, allocsync(thr, pc));
252 void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
253 DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
254 if (bogusfd(fd))
255 return;
256 // It can be a UDP socket.
257 init(thr, pc, fd, &fdctx.socksync);
260 void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
261 DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
262 if (bogusfd(fd))
263 return;
264 // Synchronize connect->accept.
265 Acquire(thr, pc, (uptr)&fdctx.connectsync);
266 init(thr, pc, newfd, &fdctx.socksync);
269 void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
270 DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
271 if (bogusfd(fd))
272 return;
273 // Synchronize connect->accept.
274 Release(thr, pc, (uptr)&fdctx.connectsync);
277 void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
278 DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
279 if (bogusfd(fd))
280 return;
281 init(thr, pc, fd, &fdctx.socksync);
284 uptr File2addr(const char *path) {
285 (void)path;
286 static u64 addr;
287 return (uptr)&addr;
290 uptr Dir2addr(const char *path) {
291 (void)path;
292 static u64 addr;
293 return (uptr)&addr;
296 } // namespace __tsan