1 \input texinfo @c -*-texinfo-*-
3 @setfilename libffi.info
8 @c Merge the standard indexes into a single one.
19 This manual is for Libffi, a portable foreign-function interface
22 Copyright @copyright{} 2008, 2010, 2011 Red Hat, Inc.
25 Permission is granted to copy, distribute and/or modify this document
26 under the terms of the GNU General Public License as published by the
27 Free Software Foundation; either version 2, or (at your option) any
28 later version. A copy of the license is included in the
29 section entitled ``GNU General Public License''.
34 @dircategory Development
36 * libffi: (libffi). Portable foreign-function interface library.
42 @vskip 0pt plus 1filll
54 * Introduction:: What is libffi?
55 * Using libffi:: How to use libffi.
56 * Missing Features:: Things libffi can't do.
64 @chapter What is libffi?
66 Compilers for high level languages generate code that follow certain
67 conventions. These conventions are necessary, in part, for separate
68 compilation to work. One such convention is the @dfn{calling
69 convention}. The calling convention is a set of assumptions made by
70 the compiler about where function arguments will be found on entry to
71 a function. A calling convention also specifies where the return
72 value for a function is found. The calling convention is also
73 sometimes called the @dfn{ABI} or @dfn{Application Binary Interface}.
74 @cindex calling convention
76 @cindex Application Binary Interface
78 Some programs may not know at the time of compilation what arguments
79 are to be passed to a function. For instance, an interpreter may be
80 told at run-time about the number and types of arguments used to call
81 a given function. @samp{Libffi} can be used in such programs to
82 provide a bridge from the interpreter program to compiled code.
84 The @samp{libffi} library provides a portable, high level programming
85 interface to various calling conventions. This allows a programmer to
86 call any function specified by a call interface description at run
89 @acronym{FFI} stands for Foreign Function Interface. A foreign
90 function interface is the popular name for the interface that allows
91 code written in one language to call code written in another language.
92 The @samp{libffi} library really only provides the lowest, machine
93 dependent layer of a fully featured foreign function interface. A
94 layer must exist above @samp{libffi} that handles type conversions for
95 values passed between the two languages.
97 @cindex Foreign Function Interface
101 @chapter Using libffi
104 * The Basics:: The basic libffi API.
105 * Simple Example:: A simple example.
106 * Types:: libffi type descriptions.
107 * Multiple ABIs:: Different passing styles on one platform.
108 * The Closure API:: Writing a generic function.
109 * Closure Example:: A closure example.
116 @samp{Libffi} assumes that you have a pointer to the function you wish
117 to call and that you know the number and types of arguments to pass
118 it, as well as the return type of the function.
120 The first thing you must do is create an @code{ffi_cif} object that
121 matches the signature of the function you wish to call. This is a
122 separate step because it is common to make multiple calls using a
123 single @code{ffi_cif}. The @dfn{cif} in @code{ffi_cif} stands for
124 Call InterFace. To prepare a call interface object, use the function
129 @defun ffi_status ffi_prep_cif (ffi_cif *@var{cif}, ffi_abi @var{abi}, unsigned int @var{nargs}, ffi_type *@var{rtype}, ffi_type **@var{argtypes})
130 This initializes @var{cif} according to the given parameters.
132 @var{abi} is the ABI to use; normally @code{FFI_DEFAULT_ABI} is what
133 you want. @ref{Multiple ABIs} for more information.
135 @var{nargs} is the number of arguments that this function accepts.
137 @var{rtype} is a pointer to an @code{ffi_type} structure that
138 describes the return type of the function. @xref{Types}.
140 @var{argtypes} is a vector of @code{ffi_type} pointers.
141 @var{argtypes} must have @var{nargs} elements. If @var{nargs} is 0,
142 this argument is ignored.
144 @code{ffi_prep_cif} returns a @code{libffi} status code, of type
145 @code{ffi_status}. This will be either @code{FFI_OK} if everything
146 worked properly; @code{FFI_BAD_TYPEDEF} if one of the @code{ffi_type}
147 objects is incorrect; or @code{FFI_BAD_ABI} if the @var{abi} parameter
151 If the function being called is variadic (varargs) then
152 @code{ffi_prep_cif_var} must be used instead of @code{ffi_prep_cif}.
154 @findex ffi_prep_cif_var
155 @defun ffi_status ffi_prep_cif_var (ffi_cif *@var{cif}, ffi_abi var{abi}, unsigned int @var{nfixedargs}, unsigned int var{ntotalargs}, ffi_type *@var{rtype}, ffi_type **@var{argtypes})
156 This initializes @var{cif} according to the given parameters for
157 a call to a variadic function. In general it's operation is the
158 same as for @code{ffi_prep_cif} except that:
160 @var{nfixedargs} is the number of fixed arguments, prior to any
161 variadic arguments. It must be greater than zero.
163 @var{ntotalargs} the total number of arguments, including variadic
166 Note that, different cif's must be prepped for calls to the same
167 function when different numbers of arguments are passed.
169 Also note that a call to @code{ffi_prep_cif_var} with
170 @var{nfixedargs}=@var{nototalargs} is NOT equivalent to a call to
176 To call a function using an initialized @code{ffi_cif}, use the
177 @code{ffi_call} function:
180 @defun void ffi_call (ffi_cif *@var{cif}, void *@var{fn}, void *@var{rvalue}, void **@var{avalues})
181 This calls the function @var{fn} according to the description given in
182 @var{cif}. @var{cif} must have already been prepared using
185 @var{rvalue} is a pointer to a chunk of memory that will hold the
186 result of the function call. This must be large enough to hold the
187 result, no smaller than the system register size (generally 32 or 64
188 bits), and must be suitably aligned; it is the caller's responsibility
189 to ensure this. If @var{cif} declares that the function returns
190 @code{void} (using @code{ffi_type_void}), then @var{rvalue} is
193 @var{avalues} is a vector of @code{void *} pointers that point to the
194 memory locations holding the argument values for a call. If @var{cif}
195 declares that the function has no arguments (i.e., @var{nargs} was 0),
196 then @var{avalues} is ignored. Note that argument values may be
197 modified by the callee (for instance, structs passed by value); the
198 burden of copying pass-by-value arguments is placed on the caller.
203 @section Simple Example
205 Here is a trivial example that calls @code{puts} a few times.
219 /* Initialize the argument info vectors */
220 args[0] = &ffi_type_pointer;
223 /* Initialize the cif */
224 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
225 &ffi_type_sint, args) == FFI_OK)
228 ffi_call(&cif, puts, &rc, values);
229 /* rc now holds the result of the call to puts */
231 /* values holds a pointer to the function's arg, so to
232 call puts() again all we need to do is change the
235 ffi_call(&cif, puts, &rc, values);
247 * Primitive Types:: Built-in types.
248 * Structures:: Structure types.
249 * Type Example:: Structure type example.
250 * Complex:: Complex types.
251 * Complex Type Example:: Complex type example.
254 @node Primitive Types
255 @subsection Primitive Types
257 @code{Libffi} provides a number of built-in type descriptors that can
258 be used to describe argument and return types:
262 @tindex ffi_type_void
263 The type @code{void}. This cannot be used for argument types, only
267 @tindex ffi_type_uint8
268 An unsigned, 8-bit integer type.
271 @tindex ffi_type_sint8
272 A signed, 8-bit integer type.
274 @item ffi_type_uint16
275 @tindex ffi_type_uint16
276 An unsigned, 16-bit integer type.
278 @item ffi_type_sint16
279 @tindex ffi_type_sint16
280 A signed, 16-bit integer type.
282 @item ffi_type_uint32
283 @tindex ffi_type_uint32
284 An unsigned, 32-bit integer type.
286 @item ffi_type_sint32
287 @tindex ffi_type_sint32
288 A signed, 32-bit integer type.
290 @item ffi_type_uint64
291 @tindex ffi_type_uint64
292 An unsigned, 64-bit integer type.
294 @item ffi_type_sint64
295 @tindex ffi_type_sint64
296 A signed, 64-bit integer type.
299 @tindex ffi_type_float
300 The C @code{float} type.
302 @item ffi_type_double
303 @tindex ffi_type_double
304 The C @code{double} type.
307 @tindex ffi_type_uchar
308 The C @code{unsigned char} type.
311 @tindex ffi_type_schar
312 The C @code{signed char} type. (Note that there is not an exact
313 equivalent to the C @code{char} type in @code{libffi}; ordinarily you
314 should either use @code{ffi_type_schar} or @code{ffi_type_uchar}
315 depending on whether @code{char} is signed.)
317 @item ffi_type_ushort
318 @tindex ffi_type_ushort
319 The C @code{unsigned short} type.
321 @item ffi_type_sshort
322 @tindex ffi_type_sshort
323 The C @code{short} type.
326 @tindex ffi_type_uint
327 The C @code{unsigned int} type.
330 @tindex ffi_type_sint
331 The C @code{int} type.
334 @tindex ffi_type_ulong
335 The C @code{unsigned long} type.
338 @tindex ffi_type_slong
339 The C @code{long} type.
341 @item ffi_type_longdouble
342 @tindex ffi_type_longdouble
343 On platforms that have a C @code{long double} type, this is defined.
344 On other platforms, it is not.
346 @item ffi_type_pointer
347 @tindex ffi_type_pointer
348 A generic @code{void *} pointer. You should use this for all
349 pointers, regardless of their real type.
351 @item ffi_type_complex_float
352 @tindex ffi_type_complex_float
353 The C @code{_Complex float} type.
355 @item ffi_type_complex_double
356 @tindex ffi_type_complex_double
357 The C @code{_Complex double} type.
359 @item ffi_type_complex_longdouble
360 @tindex ffi_type_complex_longdouble
361 The C @code{_Complex long double} type.
362 On platforms that have a C @code{long double} type, this is defined.
363 On other platforms, it is not.
366 Each of these is of type @code{ffi_type}, so you must take the address
367 when passing to @code{ffi_prep_cif}.
371 @subsection Structures
373 Although @samp{libffi} has no special support for unions or
374 bit-fields, it is perfectly happy passing structures back and forth.
375 You must first describe the structure to @samp{libffi} by creating a
376 new @code{ffi_type} object for it.
379 @deftp {Data type} ffi_type
380 The @code{ffi_type} has the following members:
383 This is set by @code{libffi}; you should initialize it to zero.
385 @item unsigned short alignment
386 This is set by @code{libffi}; you should initialize it to zero.
388 @item unsigned short type
389 For a structure, this should be set to @code{FFI_TYPE_STRUCT}.
391 @item ffi_type **elements
392 This is a @samp{NULL}-terminated array of pointers to @code{ffi_type}
393 objects. There is one element per field of the struct.
399 @subsection Type Example
401 The following example initializes a @code{ffi_type} object
402 representing the @code{tm} struct from Linux's @file{time.h}.
404 Here is how the struct is defined:
417 /* Those are for future use. */
418 long int __tm_gmtoff__;
419 __const char *__tm_zone__;
423 Here is the corresponding code to describe this struct to
429 ffi_type *tm_type_elements[12];
432 tm_type.size = tm_type.alignment = 0;
433 tm_type.type = FFI_TYPE_STRUCT;
434 tm_type.elements = &tm_type_elements;
436 for (i = 0; i < 9; i++)
437 tm_type_elements[i] = &ffi_type_sint;
439 tm_type_elements[9] = &ffi_type_slong;
440 tm_type_elements[10] = &ffi_type_pointer;
441 tm_type_elements[11] = NULL;
443 /* tm_type can now be used to represent tm argument types and
444 return types for ffi_prep_cif() */
449 @subsection Complex Types
451 @samp{libffi} supports the complex types defined by the C99
452 standard (@code{_Complex float}, @code{_Complex double} and
453 @code{_Complex long double} with the built-in type descriptors
454 @code{ffi_type_complex_float}, @code{ffi_type_complex_double} and
455 @code{ffi_type_complex_longdouble}.
457 Custom complex types like @code{_Complex int} can also be used.
458 An @code{ffi_type} object has to be defined to describe the
459 complex type to @samp{libffi}.
462 @deftp {Data type} ffi_type
465 This must be manually set to the size of the complex type.
467 @item unsigned short alignment
468 This must be manually set to the alignment of the complex type.
470 @item unsigned short type
471 For a complex type, this must be set to @code{FFI_TYPE_COMPLEX}.
473 @item ffi_type **elements
475 This is a @samp{NULL}-terminated array of pointers to
476 @code{ffi_type} objects. The first element is set to the
477 @code{ffi_type} of the complex's base type. The second element
478 must be set to @code{NULL}.
482 The section @ref{Complex Type Example} shows a way to determine
483 the @code{size} and @code{alignment} members in a platform
486 For platforms that have no complex support in @code{libffi} yet,
487 the functions @code{ffi_prep_cif} and @code{ffi_prep_args} abort
488 the program if they encounter a complex type.
490 @node Complex Type Example
491 @subsection Complex Type Example
493 This example demonstrates how to use complex types:
500 void complex_fn(_Complex float cf,
502 _Complex long double cld)
504 printf("cf=%f+%fi\ncd=%f+%fi\ncld=%f+%fi\n",
505 (float)creal (cf), (float)cimag (cf),
506 (float)creal (cd), (float)cimag (cd),
507 (float)creal (cld), (float)cimag (cld));
517 _Complex long double cld;
519 /* Initialize the argument info vectors */
520 args[0] = &ffi_type_complex_float;
521 args[1] = &ffi_type_complex_double;
522 args[2] = &ffi_type_complex_longdouble;
527 /* Initialize the cif */
528 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 3,
529 &ffi_type_void, args) == FFI_OK)
532 cd = 300.0 + 4000.0 * I;
533 cld = 50000.0 + 600000.0 * I;
534 /* Call the function */
535 ffi_call(&cif, (void (*)(void))complex_fn, 0, values);
542 This is an example for defining a custom complex type descriptor
543 for compilers that support them:
547 * This macro can be used to define new complex type descriptors
548 * in a platform independent way.
550 * name: Name of the new descriptor is ffi_type_complex_<name>.
551 * type: The C base type of the complex type.
553 #define FFI_COMPLEX_TYPEDEF(name, type, ffitype) \
554 static ffi_type *ffi_elements_complex_##name [2] = @{ \
555 (ffi_type *)(&ffitype), NULL \
557 struct struct_align_complex_##name @{ \
561 ffi_type ffi_type_complex_##name = @{ \
562 sizeof(_Complex type), \
563 offsetof(struct struct_align_complex_##name, x), \
565 (ffi_type **)ffi_elements_complex_##name \
568 /* Define new complex type descriptors using the macro: */
569 /* ffi_type_complex_sint */
570 FFI_COMPLEX_TYPEDEF(sint, int, ffi_type_sint);
571 /* ffi_type_complex_uchar */
572 FFI_COMPLEX_TYPEDEF(uchar, unsigned char, ffi_type_uint8);
575 The new type descriptors can then be used like one of the built-in
576 type descriptors in the previous example.
579 @section Multiple ABIs
581 A given platform may provide multiple different ABIs at once. For
582 instance, the x86 platform has both @samp{stdcall} and @samp{fastcall}
585 @code{libffi} provides some support for this. However, this is
586 necessarily platform-specific.
588 @c FIXME: document the platforms
590 @node The Closure API
591 @section The Closure API
593 @code{libffi} also provides a way to write a generic function -- a
594 function that can accept and decode any combination of arguments.
595 This can be useful when writing an interpreter, or to provide wrappers
596 for arbitrary functions.
598 This facility is called the @dfn{closure API}. Closures are not
599 supported on all platforms; you can check the @code{FFI_CLOSURES}
600 define to determine whether they are supported on the current
606 Because closures work by assembling a tiny function at runtime, they
607 require special allocation on platforms that have a non-executable
608 heap. Memory management for closures is handled by a pair of
611 @findex ffi_closure_alloc
612 @defun void *ffi_closure_alloc (size_t @var{size}, void **@var{code})
613 Allocate a chunk of memory holding @var{size} bytes. This returns a
614 pointer to the writable address, and sets *@var{code} to the
615 corresponding executable address.
617 @var{size} should be sufficient to hold a @code{ffi_closure} object.
620 @findex ffi_closure_free
621 @defun void ffi_closure_free (void *@var{writable})
622 Free memory allocated using @code{ffi_closure_alloc}. The argument is
623 the writable address that was returned.
627 Once you have allocated the memory for a closure, you must construct a
628 @code{ffi_cif} describing the function call. Finally you can prepare
629 the closure function:
631 @findex ffi_prep_closure_loc
632 @defun ffi_status ffi_prep_closure_loc (ffi_closure *@var{closure}, ffi_cif *@var{cif}, void (*@var{fun}) (ffi_cif *@var{cif}, void *@var{ret}, void **@var{args}, void *@var{user_data}), void *@var{user_data}, void *@var{codeloc})
633 Prepare a closure function.
635 @var{closure} is the address of a @code{ffi_closure} object; this is
636 the writable address returned by @code{ffi_closure_alloc}.
638 @var{cif} is the @code{ffi_cif} describing the function parameters.
640 @var{user_data} is an arbitrary datum that is passed, uninterpreted,
641 to your closure function.
643 @var{codeloc} is the executable address returned by
644 @code{ffi_closure_alloc}.
646 @var{fun} is the function which will be called when the closure is
647 invoked. It is called with the arguments:
650 The @code{ffi_cif} passed to @code{ffi_prep_closure_loc}.
653 A pointer to the memory used for the function's return value.
654 @var{fun} must fill this, unless the function is declared as returning
656 @c FIXME: is this NULL for void-returning functions?
659 A vector of pointers to memory holding the arguments to the function.
662 The same @var{user_data} that was passed to
663 @code{ffi_prep_closure_loc}.
666 @code{ffi_prep_closure_loc} will return @code{FFI_OK} if everything
667 went ok, and something else on error.
670 After calling @code{ffi_prep_closure_loc}, you can cast @var{codeloc}
671 to the appropriate pointer-to-function type.
674 You may see old code referring to @code{ffi_prep_closure}. This
675 function is deprecated, as it cannot handle the need for separate
676 writable and executable addresses.
678 @node Closure Example
679 @section Closure Example
681 A trivial example that creates a new @code{puts} by binding
682 @code{fputs} with @code{stdout}.
688 /* Acts like puts with the file given at time of enclosure. */
689 void puts_binding(ffi_cif *cif, void *ret, void* args[],
692 *(ffi_arg *)ret = fputs(*(char **)args[0], (FILE *)stream);
695 typedef int (*puts_t)(char *);
701 ffi_closure *closure;
706 /* Allocate closure and bound_puts */
707 closure = ffi_closure_alloc(sizeof(ffi_closure), &bound_puts);
711 /* Initialize the argument info vectors */
712 args[0] = &ffi_type_pointer;
714 /* Initialize the cif */
715 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
716 &ffi_type_sint, args) == FFI_OK)
718 /* Initialize the closure, setting stream to stdout */
719 if (ffi_prep_closure_loc(closure, &cif, puts_binding,
720 stdout, bound_puts) == FFI_OK)
722 rc = ((puts_t)bound_puts)("Hello World!");
723 /* rc now holds the result of the call to fputs */
728 /* Deallocate both closure, and bound_puts */
729 ffi_closure_free(closure);
737 @node Missing Features
738 @chapter Missing Features
740 @code{libffi} is missing a few features. We welcome patches to add
748 There is no support for bit fields in structures.
751 The ``raw'' API is undocumented.
752 @c argument promotion?
757 Note that variadic support is very new and tested on a relatively
758 small number of platforms.