PR go/67101
[official-gcc.git] / gcc / function.c
blob536de195acfd1e01671507f3fe8284b678a1fad5
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "cfghooks.h"
39 #include "tree.h"
40 #include "rtl.h"
41 #include "df.h"
42 #include "rtl-error.h"
43 #include "alias.h"
44 #include "fold-const.h"
45 #include "stor-layout.h"
46 #include "varasm.h"
47 #include "stringpool.h"
48 #include "flags.h"
49 #include "except.h"
50 #include "insn-config.h"
51 #include "expmed.h"
52 #include "dojump.h"
53 #include "explow.h"
54 #include "calls.h"
55 #include "emit-rtl.h"
56 #include "stmt.h"
57 #include "expr.h"
58 #include "insn-codes.h"
59 #include "optabs.h"
60 #include "libfuncs.h"
61 #include "regs.h"
62 #include "recog.h"
63 #include "output.h"
64 #include "tm_p.h"
65 #include "langhooks.h"
66 #include "target.h"
67 #include "common/common-target.h"
68 #include "gimple-expr.h"
69 #include "gimplify.h"
70 #include "tree-pass.h"
71 #include "cfgrtl.h"
72 #include "cfganal.h"
73 #include "cfgbuild.h"
74 #include "cfgcleanup.h"
75 #include "params.h"
76 #include "bb-reorder.h"
77 #include "shrink-wrap.h"
78 #include "toplev.h"
79 #include "rtl-iter.h"
80 #include "tree-chkp.h"
81 #include "rtl-chkp.h"
83 /* So we can assign to cfun in this file. */
84 #undef cfun
86 #ifndef STACK_ALIGNMENT_NEEDED
87 #define STACK_ALIGNMENT_NEEDED 1
88 #endif
90 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
92 /* Round a value to the lowest integer less than it that is a multiple of
93 the required alignment. Avoid using division in case the value is
94 negative. Assume the alignment is a power of two. */
95 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
97 /* Similar, but round to the next highest integer that meets the
98 alignment. */
99 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
101 /* Nonzero once virtual register instantiation has been done.
102 assign_stack_local uses frame_pointer_rtx when this is nonzero.
103 calls.c:emit_library_call_value_1 uses it to set up
104 post-instantiation libcalls. */
105 int virtuals_instantiated;
107 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
108 static GTY(()) int funcdef_no;
110 /* These variables hold pointers to functions to create and destroy
111 target specific, per-function data structures. */
112 struct machine_function * (*init_machine_status) (void);
114 /* The currently compiled function. */
115 struct function *cfun = 0;
117 /* These hashes record the prologue and epilogue insns. */
119 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
121 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
122 static bool equal (rtx a, rtx b) { return a == b; }
125 static GTY((cache))
126 hash_table<insn_cache_hasher> *prologue_insn_hash;
127 static GTY((cache))
128 hash_table<insn_cache_hasher> *epilogue_insn_hash;
131 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
132 vec<tree, va_gc> *types_used_by_cur_var_decl;
134 /* Forward declarations. */
136 static struct temp_slot *find_temp_slot_from_address (rtx);
137 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
138 static void pad_below (struct args_size *, machine_mode, tree);
139 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
140 static int all_blocks (tree, tree *);
141 static tree *get_block_vector (tree, int *);
142 extern tree debug_find_var_in_block_tree (tree, tree);
143 /* We always define `record_insns' even if it's not used so that we
144 can always export `prologue_epilogue_contains'. */
145 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
146 ATTRIBUTE_UNUSED;
147 static bool contains (const_rtx, hash_table<insn_cache_hasher> *);
148 static void prepare_function_start (void);
149 static void do_clobber_return_reg (rtx, void *);
150 static void do_use_return_reg (rtx, void *);
152 /* Stack of nested functions. */
153 /* Keep track of the cfun stack. */
155 typedef struct function *function_p;
157 static vec<function_p> function_context_stack;
159 /* Save the current context for compilation of a nested function.
160 This is called from language-specific code. */
162 void
163 push_function_context (void)
165 if (cfun == 0)
166 allocate_struct_function (NULL, false);
168 function_context_stack.safe_push (cfun);
169 set_cfun (NULL);
172 /* Restore the last saved context, at the end of a nested function.
173 This function is called from language-specific code. */
175 void
176 pop_function_context (void)
178 struct function *p = function_context_stack.pop ();
179 set_cfun (p);
180 current_function_decl = p->decl;
182 /* Reset variables that have known state during rtx generation. */
183 virtuals_instantiated = 0;
184 generating_concat_p = 1;
187 /* Clear out all parts of the state in F that can safely be discarded
188 after the function has been parsed, but not compiled, to let
189 garbage collection reclaim the memory. */
191 void
192 free_after_parsing (struct function *f)
194 f->language = 0;
197 /* Clear out all parts of the state in F that can safely be discarded
198 after the function has been compiled, to let garbage collection
199 reclaim the memory. */
201 void
202 free_after_compilation (struct function *f)
204 prologue_insn_hash = NULL;
205 epilogue_insn_hash = NULL;
207 free (crtl->emit.regno_pointer_align);
209 memset (crtl, 0, sizeof (struct rtl_data));
210 f->eh = NULL;
211 f->machine = NULL;
212 f->cfg = NULL;
213 f->curr_properties &= ~PROP_cfg;
215 regno_reg_rtx = NULL;
218 /* Return size needed for stack frame based on slots so far allocated.
219 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
220 the caller may have to do that. */
222 HOST_WIDE_INT
223 get_frame_size (void)
225 if (FRAME_GROWS_DOWNWARD)
226 return -frame_offset;
227 else
228 return frame_offset;
231 /* Issue an error message and return TRUE if frame OFFSET overflows in
232 the signed target pointer arithmetics for function FUNC. Otherwise
233 return FALSE. */
235 bool
236 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
238 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
240 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
241 /* Leave room for the fixed part of the frame. */
242 - 64 * UNITS_PER_WORD)
244 error_at (DECL_SOURCE_LOCATION (func),
245 "total size of local objects too large");
246 return TRUE;
249 return FALSE;
252 /* Return stack slot alignment in bits for TYPE and MODE. */
254 static unsigned int
255 get_stack_local_alignment (tree type, machine_mode mode)
257 unsigned int alignment;
259 if (mode == BLKmode)
260 alignment = BIGGEST_ALIGNMENT;
261 else
262 alignment = GET_MODE_ALIGNMENT (mode);
264 /* Allow the frond-end to (possibly) increase the alignment of this
265 stack slot. */
266 if (! type)
267 type = lang_hooks.types.type_for_mode (mode, 0);
269 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
272 /* Determine whether it is possible to fit a stack slot of size SIZE and
273 alignment ALIGNMENT into an area in the stack frame that starts at
274 frame offset START and has a length of LENGTH. If so, store the frame
275 offset to be used for the stack slot in *POFFSET and return true;
276 return false otherwise. This function will extend the frame size when
277 given a start/length pair that lies at the end of the frame. */
279 static bool
280 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
281 HOST_WIDE_INT size, unsigned int alignment,
282 HOST_WIDE_INT *poffset)
284 HOST_WIDE_INT this_frame_offset;
285 int frame_off, frame_alignment, frame_phase;
287 /* Calculate how many bytes the start of local variables is off from
288 stack alignment. */
289 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
290 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
291 frame_phase = frame_off ? frame_alignment - frame_off : 0;
293 /* Round the frame offset to the specified alignment. */
295 /* We must be careful here, since FRAME_OFFSET might be negative and
296 division with a negative dividend isn't as well defined as we might
297 like. So we instead assume that ALIGNMENT is a power of two and
298 use logical operations which are unambiguous. */
299 if (FRAME_GROWS_DOWNWARD)
300 this_frame_offset
301 = (FLOOR_ROUND (start + length - size - frame_phase,
302 (unsigned HOST_WIDE_INT) alignment)
303 + frame_phase);
304 else
305 this_frame_offset
306 = (CEIL_ROUND (start - frame_phase,
307 (unsigned HOST_WIDE_INT) alignment)
308 + frame_phase);
310 /* See if it fits. If this space is at the edge of the frame,
311 consider extending the frame to make it fit. Our caller relies on
312 this when allocating a new slot. */
313 if (frame_offset == start && this_frame_offset < frame_offset)
314 frame_offset = this_frame_offset;
315 else if (this_frame_offset < start)
316 return false;
317 else if (start + length == frame_offset
318 && this_frame_offset + size > start + length)
319 frame_offset = this_frame_offset + size;
320 else if (this_frame_offset + size > start + length)
321 return false;
323 *poffset = this_frame_offset;
324 return true;
327 /* Create a new frame_space structure describing free space in the stack
328 frame beginning at START and ending at END, and chain it into the
329 function's frame_space_list. */
331 static void
332 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
334 struct frame_space *space = ggc_alloc<frame_space> ();
335 space->next = crtl->frame_space_list;
336 crtl->frame_space_list = space;
337 space->start = start;
338 space->length = end - start;
341 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
342 with machine mode MODE.
344 ALIGN controls the amount of alignment for the address of the slot:
345 0 means according to MODE,
346 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
347 -2 means use BITS_PER_UNIT,
348 positive specifies alignment boundary in bits.
350 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
351 alignment and ASLK_RECORD_PAD bit set if we should remember
352 extra space we allocated for alignment purposes. When we are
353 called from assign_stack_temp_for_type, it is not set so we don't
354 track the same stack slot in two independent lists.
356 We do not round to stack_boundary here. */
359 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
360 int align, int kind)
362 rtx x, addr;
363 int bigend_correction = 0;
364 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
365 unsigned int alignment, alignment_in_bits;
367 if (align == 0)
369 alignment = get_stack_local_alignment (NULL, mode);
370 alignment /= BITS_PER_UNIT;
372 else if (align == -1)
374 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
375 size = CEIL_ROUND (size, alignment);
377 else if (align == -2)
378 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
379 else
380 alignment = align / BITS_PER_UNIT;
382 alignment_in_bits = alignment * BITS_PER_UNIT;
384 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
385 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
387 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
388 alignment = alignment_in_bits / BITS_PER_UNIT;
391 if (SUPPORTS_STACK_ALIGNMENT)
393 if (crtl->stack_alignment_estimated < alignment_in_bits)
395 if (!crtl->stack_realign_processed)
396 crtl->stack_alignment_estimated = alignment_in_bits;
397 else
399 /* If stack is realigned and stack alignment value
400 hasn't been finalized, it is OK not to increase
401 stack_alignment_estimated. The bigger alignment
402 requirement is recorded in stack_alignment_needed
403 below. */
404 gcc_assert (!crtl->stack_realign_finalized);
405 if (!crtl->stack_realign_needed)
407 /* It is OK to reduce the alignment as long as the
408 requested size is 0 or the estimated stack
409 alignment >= mode alignment. */
410 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
411 || size == 0
412 || (crtl->stack_alignment_estimated
413 >= GET_MODE_ALIGNMENT (mode)));
414 alignment_in_bits = crtl->stack_alignment_estimated;
415 alignment = alignment_in_bits / BITS_PER_UNIT;
421 if (crtl->stack_alignment_needed < alignment_in_bits)
422 crtl->stack_alignment_needed = alignment_in_bits;
423 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
424 crtl->max_used_stack_slot_alignment = alignment_in_bits;
426 if (mode != BLKmode || size != 0)
428 if (kind & ASLK_RECORD_PAD)
430 struct frame_space **psp;
432 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
434 struct frame_space *space = *psp;
435 if (!try_fit_stack_local (space->start, space->length, size,
436 alignment, &slot_offset))
437 continue;
438 *psp = space->next;
439 if (slot_offset > space->start)
440 add_frame_space (space->start, slot_offset);
441 if (slot_offset + size < space->start + space->length)
442 add_frame_space (slot_offset + size,
443 space->start + space->length);
444 goto found_space;
448 else if (!STACK_ALIGNMENT_NEEDED)
450 slot_offset = frame_offset;
451 goto found_space;
454 old_frame_offset = frame_offset;
456 if (FRAME_GROWS_DOWNWARD)
458 frame_offset -= size;
459 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
461 if (kind & ASLK_RECORD_PAD)
463 if (slot_offset > frame_offset)
464 add_frame_space (frame_offset, slot_offset);
465 if (slot_offset + size < old_frame_offset)
466 add_frame_space (slot_offset + size, old_frame_offset);
469 else
471 frame_offset += size;
472 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
474 if (kind & ASLK_RECORD_PAD)
476 if (slot_offset > old_frame_offset)
477 add_frame_space (old_frame_offset, slot_offset);
478 if (slot_offset + size < frame_offset)
479 add_frame_space (slot_offset + size, frame_offset);
483 found_space:
484 /* On a big-endian machine, if we are allocating more space than we will use,
485 use the least significant bytes of those that are allocated. */
486 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
487 bigend_correction = size - GET_MODE_SIZE (mode);
489 /* If we have already instantiated virtual registers, return the actual
490 address relative to the frame pointer. */
491 if (virtuals_instantiated)
492 addr = plus_constant (Pmode, frame_pointer_rtx,
493 trunc_int_for_mode
494 (slot_offset + bigend_correction
495 + STARTING_FRAME_OFFSET, Pmode));
496 else
497 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
498 trunc_int_for_mode
499 (slot_offset + bigend_correction,
500 Pmode));
502 x = gen_rtx_MEM (mode, addr);
503 set_mem_align (x, alignment_in_bits);
504 MEM_NOTRAP_P (x) = 1;
506 stack_slot_list
507 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
509 if (frame_offset_overflow (frame_offset, current_function_decl))
510 frame_offset = 0;
512 return x;
515 /* Wrap up assign_stack_local_1 with last parameter as false. */
518 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
520 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
523 /* In order to evaluate some expressions, such as function calls returning
524 structures in memory, we need to temporarily allocate stack locations.
525 We record each allocated temporary in the following structure.
527 Associated with each temporary slot is a nesting level. When we pop up
528 one level, all temporaries associated with the previous level are freed.
529 Normally, all temporaries are freed after the execution of the statement
530 in which they were created. However, if we are inside a ({...}) grouping,
531 the result may be in a temporary and hence must be preserved. If the
532 result could be in a temporary, we preserve it if we can determine which
533 one it is in. If we cannot determine which temporary may contain the
534 result, all temporaries are preserved. A temporary is preserved by
535 pretending it was allocated at the previous nesting level. */
537 struct GTY(()) temp_slot {
538 /* Points to next temporary slot. */
539 struct temp_slot *next;
540 /* Points to previous temporary slot. */
541 struct temp_slot *prev;
542 /* The rtx to used to reference the slot. */
543 rtx slot;
544 /* The size, in units, of the slot. */
545 HOST_WIDE_INT size;
546 /* The type of the object in the slot, or zero if it doesn't correspond
547 to a type. We use this to determine whether a slot can be reused.
548 It can be reused if objects of the type of the new slot will always
549 conflict with objects of the type of the old slot. */
550 tree type;
551 /* The alignment (in bits) of the slot. */
552 unsigned int align;
553 /* Nonzero if this temporary is currently in use. */
554 char in_use;
555 /* Nesting level at which this slot is being used. */
556 int level;
557 /* The offset of the slot from the frame_pointer, including extra space
558 for alignment. This info is for combine_temp_slots. */
559 HOST_WIDE_INT base_offset;
560 /* The size of the slot, including extra space for alignment. This
561 info is for combine_temp_slots. */
562 HOST_WIDE_INT full_size;
565 /* Entry for the below hash table. */
566 struct GTY((for_user)) temp_slot_address_entry {
567 hashval_t hash;
568 rtx address;
569 struct temp_slot *temp_slot;
572 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
574 static hashval_t hash (temp_slot_address_entry *);
575 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
578 /* A table of addresses that represent a stack slot. The table is a mapping
579 from address RTXen to a temp slot. */
580 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
581 static size_t n_temp_slots_in_use;
583 /* Removes temporary slot TEMP from LIST. */
585 static void
586 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
588 if (temp->next)
589 temp->next->prev = temp->prev;
590 if (temp->prev)
591 temp->prev->next = temp->next;
592 else
593 *list = temp->next;
595 temp->prev = temp->next = NULL;
598 /* Inserts temporary slot TEMP to LIST. */
600 static void
601 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
603 temp->next = *list;
604 if (*list)
605 (*list)->prev = temp;
606 temp->prev = NULL;
607 *list = temp;
610 /* Returns the list of used temp slots at LEVEL. */
612 static struct temp_slot **
613 temp_slots_at_level (int level)
615 if (level >= (int) vec_safe_length (used_temp_slots))
616 vec_safe_grow_cleared (used_temp_slots, level + 1);
618 return &(*used_temp_slots)[level];
621 /* Returns the maximal temporary slot level. */
623 static int
624 max_slot_level (void)
626 if (!used_temp_slots)
627 return -1;
629 return used_temp_slots->length () - 1;
632 /* Moves temporary slot TEMP to LEVEL. */
634 static void
635 move_slot_to_level (struct temp_slot *temp, int level)
637 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
638 insert_slot_to_list (temp, temp_slots_at_level (level));
639 temp->level = level;
642 /* Make temporary slot TEMP available. */
644 static void
645 make_slot_available (struct temp_slot *temp)
647 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
648 insert_slot_to_list (temp, &avail_temp_slots);
649 temp->in_use = 0;
650 temp->level = -1;
651 n_temp_slots_in_use--;
654 /* Compute the hash value for an address -> temp slot mapping.
655 The value is cached on the mapping entry. */
656 static hashval_t
657 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
659 int do_not_record = 0;
660 return hash_rtx (t->address, GET_MODE (t->address),
661 &do_not_record, NULL, false);
664 /* Return the hash value for an address -> temp slot mapping. */
665 hashval_t
666 temp_address_hasher::hash (temp_slot_address_entry *t)
668 return t->hash;
671 /* Compare two address -> temp slot mapping entries. */
672 bool
673 temp_address_hasher::equal (temp_slot_address_entry *t1,
674 temp_slot_address_entry *t2)
676 return exp_equiv_p (t1->address, t2->address, 0, true);
679 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
680 static void
681 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
683 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
684 t->address = address;
685 t->temp_slot = temp_slot;
686 t->hash = temp_slot_address_compute_hash (t);
687 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
690 /* Remove an address -> temp slot mapping entry if the temp slot is
691 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
693 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
695 const struct temp_slot_address_entry *t = *slot;
696 if (! t->temp_slot->in_use)
697 temp_slot_address_table->clear_slot (slot);
698 return 1;
701 /* Remove all mappings of addresses to unused temp slots. */
702 static void
703 remove_unused_temp_slot_addresses (void)
705 /* Use quicker clearing if there aren't any active temp slots. */
706 if (n_temp_slots_in_use)
707 temp_slot_address_table->traverse
708 <void *, remove_unused_temp_slot_addresses_1> (NULL);
709 else
710 temp_slot_address_table->empty ();
713 /* Find the temp slot corresponding to the object at address X. */
715 static struct temp_slot *
716 find_temp_slot_from_address (rtx x)
718 struct temp_slot *p;
719 struct temp_slot_address_entry tmp, *t;
721 /* First try the easy way:
722 See if X exists in the address -> temp slot mapping. */
723 tmp.address = x;
724 tmp.temp_slot = NULL;
725 tmp.hash = temp_slot_address_compute_hash (&tmp);
726 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
727 if (t)
728 return t->temp_slot;
730 /* If we have a sum involving a register, see if it points to a temp
731 slot. */
732 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
733 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
734 return p;
735 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
736 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
737 return p;
739 /* Last resort: Address is a virtual stack var address. */
740 if (GET_CODE (x) == PLUS
741 && XEXP (x, 0) == virtual_stack_vars_rtx
742 && CONST_INT_P (XEXP (x, 1)))
744 int i;
745 for (i = max_slot_level (); i >= 0; i--)
746 for (p = *temp_slots_at_level (i); p; p = p->next)
748 if (INTVAL (XEXP (x, 1)) >= p->base_offset
749 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
750 return p;
754 return NULL;
757 /* Allocate a temporary stack slot and record it for possible later
758 reuse.
760 MODE is the machine mode to be given to the returned rtx.
762 SIZE is the size in units of the space required. We do no rounding here
763 since assign_stack_local will do any required rounding.
765 TYPE is the type that will be used for the stack slot. */
768 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
769 tree type)
771 unsigned int align;
772 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
773 rtx slot;
775 /* If SIZE is -1 it means that somebody tried to allocate a temporary
776 of a variable size. */
777 gcc_assert (size != -1);
779 align = get_stack_local_alignment (type, mode);
781 /* Try to find an available, already-allocated temporary of the proper
782 mode which meets the size and alignment requirements. Choose the
783 smallest one with the closest alignment.
785 If assign_stack_temp is called outside of the tree->rtl expansion,
786 we cannot reuse the stack slots (that may still refer to
787 VIRTUAL_STACK_VARS_REGNUM). */
788 if (!virtuals_instantiated)
790 for (p = avail_temp_slots; p; p = p->next)
792 if (p->align >= align && p->size >= size
793 && GET_MODE (p->slot) == mode
794 && objects_must_conflict_p (p->type, type)
795 && (best_p == 0 || best_p->size > p->size
796 || (best_p->size == p->size && best_p->align > p->align)))
798 if (p->align == align && p->size == size)
800 selected = p;
801 cut_slot_from_list (selected, &avail_temp_slots);
802 best_p = 0;
803 break;
805 best_p = p;
810 /* Make our best, if any, the one to use. */
811 if (best_p)
813 selected = best_p;
814 cut_slot_from_list (selected, &avail_temp_slots);
816 /* If there are enough aligned bytes left over, make them into a new
817 temp_slot so that the extra bytes don't get wasted. Do this only
818 for BLKmode slots, so that we can be sure of the alignment. */
819 if (GET_MODE (best_p->slot) == BLKmode)
821 int alignment = best_p->align / BITS_PER_UNIT;
822 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
824 if (best_p->size - rounded_size >= alignment)
826 p = ggc_alloc<temp_slot> ();
827 p->in_use = 0;
828 p->size = best_p->size - rounded_size;
829 p->base_offset = best_p->base_offset + rounded_size;
830 p->full_size = best_p->full_size - rounded_size;
831 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
832 p->align = best_p->align;
833 p->type = best_p->type;
834 insert_slot_to_list (p, &avail_temp_slots);
836 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
837 stack_slot_list);
839 best_p->size = rounded_size;
840 best_p->full_size = rounded_size;
845 /* If we still didn't find one, make a new temporary. */
846 if (selected == 0)
848 HOST_WIDE_INT frame_offset_old = frame_offset;
850 p = ggc_alloc<temp_slot> ();
852 /* We are passing an explicit alignment request to assign_stack_local.
853 One side effect of that is assign_stack_local will not round SIZE
854 to ensure the frame offset remains suitably aligned.
856 So for requests which depended on the rounding of SIZE, we go ahead
857 and round it now. We also make sure ALIGNMENT is at least
858 BIGGEST_ALIGNMENT. */
859 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
860 p->slot = assign_stack_local_1 (mode,
861 (mode == BLKmode
862 ? CEIL_ROUND (size,
863 (int) align
864 / BITS_PER_UNIT)
865 : size),
866 align, 0);
868 p->align = align;
870 /* The following slot size computation is necessary because we don't
871 know the actual size of the temporary slot until assign_stack_local
872 has performed all the frame alignment and size rounding for the
873 requested temporary. Note that extra space added for alignment
874 can be either above or below this stack slot depending on which
875 way the frame grows. We include the extra space if and only if it
876 is above this slot. */
877 if (FRAME_GROWS_DOWNWARD)
878 p->size = frame_offset_old - frame_offset;
879 else
880 p->size = size;
882 /* Now define the fields used by combine_temp_slots. */
883 if (FRAME_GROWS_DOWNWARD)
885 p->base_offset = frame_offset;
886 p->full_size = frame_offset_old - frame_offset;
888 else
890 p->base_offset = frame_offset_old;
891 p->full_size = frame_offset - frame_offset_old;
894 selected = p;
897 p = selected;
898 p->in_use = 1;
899 p->type = type;
900 p->level = temp_slot_level;
901 n_temp_slots_in_use++;
903 pp = temp_slots_at_level (p->level);
904 insert_slot_to_list (p, pp);
905 insert_temp_slot_address (XEXP (p->slot, 0), p);
907 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
908 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
909 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
911 /* If we know the alias set for the memory that will be used, use
912 it. If there's no TYPE, then we don't know anything about the
913 alias set for the memory. */
914 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
915 set_mem_align (slot, align);
917 /* If a type is specified, set the relevant flags. */
918 if (type != 0)
919 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
920 MEM_NOTRAP_P (slot) = 1;
922 return slot;
925 /* Allocate a temporary stack slot and record it for possible later
926 reuse. First two arguments are same as in preceding function. */
929 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
931 return assign_stack_temp_for_type (mode, size, NULL_TREE);
934 /* Assign a temporary.
935 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
936 and so that should be used in error messages. In either case, we
937 allocate of the given type.
938 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
939 it is 0 if a register is OK.
940 DONT_PROMOTE is 1 if we should not promote values in register
941 to wider modes. */
944 assign_temp (tree type_or_decl, int memory_required,
945 int dont_promote ATTRIBUTE_UNUSED)
947 tree type, decl;
948 machine_mode mode;
949 #ifdef PROMOTE_MODE
950 int unsignedp;
951 #endif
953 if (DECL_P (type_or_decl))
954 decl = type_or_decl, type = TREE_TYPE (decl);
955 else
956 decl = NULL, type = type_or_decl;
958 mode = TYPE_MODE (type);
959 #ifdef PROMOTE_MODE
960 unsignedp = TYPE_UNSIGNED (type);
961 #endif
963 if (mode == BLKmode || memory_required)
965 HOST_WIDE_INT size = int_size_in_bytes (type);
966 rtx tmp;
968 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
969 problems with allocating the stack space. */
970 if (size == 0)
971 size = 1;
973 /* Unfortunately, we don't yet know how to allocate variable-sized
974 temporaries. However, sometimes we can find a fixed upper limit on
975 the size, so try that instead. */
976 else if (size == -1)
977 size = max_int_size_in_bytes (type);
979 /* The size of the temporary may be too large to fit into an integer. */
980 /* ??? Not sure this should happen except for user silliness, so limit
981 this to things that aren't compiler-generated temporaries. The
982 rest of the time we'll die in assign_stack_temp_for_type. */
983 if (decl && size == -1
984 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
986 error ("size of variable %q+D is too large", decl);
987 size = 1;
990 tmp = assign_stack_temp_for_type (mode, size, type);
991 return tmp;
994 #ifdef PROMOTE_MODE
995 if (! dont_promote)
996 mode = promote_mode (type, mode, &unsignedp);
997 #endif
999 return gen_reg_rtx (mode);
1002 /* Combine temporary stack slots which are adjacent on the stack.
1004 This allows for better use of already allocated stack space. This is only
1005 done for BLKmode slots because we can be sure that we won't have alignment
1006 problems in this case. */
1008 static void
1009 combine_temp_slots (void)
1011 struct temp_slot *p, *q, *next, *next_q;
1012 int num_slots;
1014 /* We can't combine slots, because the information about which slot
1015 is in which alias set will be lost. */
1016 if (flag_strict_aliasing)
1017 return;
1019 /* If there are a lot of temp slots, don't do anything unless
1020 high levels of optimization. */
1021 if (! flag_expensive_optimizations)
1022 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1023 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1024 return;
1026 for (p = avail_temp_slots; p; p = next)
1028 int delete_p = 0;
1030 next = p->next;
1032 if (GET_MODE (p->slot) != BLKmode)
1033 continue;
1035 for (q = p->next; q; q = next_q)
1037 int delete_q = 0;
1039 next_q = q->next;
1041 if (GET_MODE (q->slot) != BLKmode)
1042 continue;
1044 if (p->base_offset + p->full_size == q->base_offset)
1046 /* Q comes after P; combine Q into P. */
1047 p->size += q->size;
1048 p->full_size += q->full_size;
1049 delete_q = 1;
1051 else if (q->base_offset + q->full_size == p->base_offset)
1053 /* P comes after Q; combine P into Q. */
1054 q->size += p->size;
1055 q->full_size += p->full_size;
1056 delete_p = 1;
1057 break;
1059 if (delete_q)
1060 cut_slot_from_list (q, &avail_temp_slots);
1063 /* Either delete P or advance past it. */
1064 if (delete_p)
1065 cut_slot_from_list (p, &avail_temp_slots);
1069 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1070 slot that previously was known by OLD_RTX. */
1072 void
1073 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1075 struct temp_slot *p;
1077 if (rtx_equal_p (old_rtx, new_rtx))
1078 return;
1080 p = find_temp_slot_from_address (old_rtx);
1082 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1083 NEW_RTX is a register, see if one operand of the PLUS is a
1084 temporary location. If so, NEW_RTX points into it. Otherwise,
1085 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1086 in common between them. If so, try a recursive call on those
1087 values. */
1088 if (p == 0)
1090 if (GET_CODE (old_rtx) != PLUS)
1091 return;
1093 if (REG_P (new_rtx))
1095 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1096 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1097 return;
1099 else if (GET_CODE (new_rtx) != PLUS)
1100 return;
1102 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1103 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1104 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1105 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1106 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1107 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1108 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1109 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1111 return;
1114 /* Otherwise add an alias for the temp's address. */
1115 insert_temp_slot_address (new_rtx, p);
1118 /* If X could be a reference to a temporary slot, mark that slot as
1119 belonging to the to one level higher than the current level. If X
1120 matched one of our slots, just mark that one. Otherwise, we can't
1121 easily predict which it is, so upgrade all of them.
1123 This is called when an ({...}) construct occurs and a statement
1124 returns a value in memory. */
1126 void
1127 preserve_temp_slots (rtx x)
1129 struct temp_slot *p = 0, *next;
1131 if (x == 0)
1132 return;
1134 /* If X is a register that is being used as a pointer, see if we have
1135 a temporary slot we know it points to. */
1136 if (REG_P (x) && REG_POINTER (x))
1137 p = find_temp_slot_from_address (x);
1139 /* If X is not in memory or is at a constant address, it cannot be in
1140 a temporary slot. */
1141 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1142 return;
1144 /* First see if we can find a match. */
1145 if (p == 0)
1146 p = find_temp_slot_from_address (XEXP (x, 0));
1148 if (p != 0)
1150 if (p->level == temp_slot_level)
1151 move_slot_to_level (p, temp_slot_level - 1);
1152 return;
1155 /* Otherwise, preserve all non-kept slots at this level. */
1156 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1158 next = p->next;
1159 move_slot_to_level (p, temp_slot_level - 1);
1163 /* Free all temporaries used so far. This is normally called at the
1164 end of generating code for a statement. */
1166 void
1167 free_temp_slots (void)
1169 struct temp_slot *p, *next;
1170 bool some_available = false;
1172 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1174 next = p->next;
1175 make_slot_available (p);
1176 some_available = true;
1179 if (some_available)
1181 remove_unused_temp_slot_addresses ();
1182 combine_temp_slots ();
1186 /* Push deeper into the nesting level for stack temporaries. */
1188 void
1189 push_temp_slots (void)
1191 temp_slot_level++;
1194 /* Pop a temporary nesting level. All slots in use in the current level
1195 are freed. */
1197 void
1198 pop_temp_slots (void)
1200 free_temp_slots ();
1201 temp_slot_level--;
1204 /* Initialize temporary slots. */
1206 void
1207 init_temp_slots (void)
1209 /* We have not allocated any temporaries yet. */
1210 avail_temp_slots = 0;
1211 vec_alloc (used_temp_slots, 0);
1212 temp_slot_level = 0;
1213 n_temp_slots_in_use = 0;
1215 /* Set up the table to map addresses to temp slots. */
1216 if (! temp_slot_address_table)
1217 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1218 else
1219 temp_slot_address_table->empty ();
1222 /* Functions and data structures to keep track of the values hard regs
1223 had at the start of the function. */
1225 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1226 and has_hard_reg_initial_val.. */
1227 typedef struct GTY(()) initial_value_pair {
1228 rtx hard_reg;
1229 rtx pseudo;
1230 } initial_value_pair;
1231 /* ??? This could be a VEC but there is currently no way to define an
1232 opaque VEC type. This could be worked around by defining struct
1233 initial_value_pair in function.h. */
1234 typedef struct GTY(()) initial_value_struct {
1235 int num_entries;
1236 int max_entries;
1237 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1238 } initial_value_struct;
1240 /* If a pseudo represents an initial hard reg (or expression), return
1241 it, else return NULL_RTX. */
1244 get_hard_reg_initial_reg (rtx reg)
1246 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1247 int i;
1249 if (ivs == 0)
1250 return NULL_RTX;
1252 for (i = 0; i < ivs->num_entries; i++)
1253 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1254 return ivs->entries[i].hard_reg;
1256 return NULL_RTX;
1259 /* Make sure that there's a pseudo register of mode MODE that stores the
1260 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1263 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1265 struct initial_value_struct *ivs;
1266 rtx rv;
1268 rv = has_hard_reg_initial_val (mode, regno);
1269 if (rv)
1270 return rv;
1272 ivs = crtl->hard_reg_initial_vals;
1273 if (ivs == 0)
1275 ivs = ggc_alloc<initial_value_struct> ();
1276 ivs->num_entries = 0;
1277 ivs->max_entries = 5;
1278 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1279 crtl->hard_reg_initial_vals = ivs;
1282 if (ivs->num_entries >= ivs->max_entries)
1284 ivs->max_entries += 5;
1285 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1286 ivs->max_entries);
1289 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1290 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1292 return ivs->entries[ivs->num_entries++].pseudo;
1295 /* See if get_hard_reg_initial_val has been used to create a pseudo
1296 for the initial value of hard register REGNO in mode MODE. Return
1297 the associated pseudo if so, otherwise return NULL. */
1300 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1302 struct initial_value_struct *ivs;
1303 int i;
1305 ivs = crtl->hard_reg_initial_vals;
1306 if (ivs != 0)
1307 for (i = 0; i < ivs->num_entries; i++)
1308 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1309 && REGNO (ivs->entries[i].hard_reg) == regno)
1310 return ivs->entries[i].pseudo;
1312 return NULL_RTX;
1315 unsigned int
1316 emit_initial_value_sets (void)
1318 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1319 int i;
1320 rtx_insn *seq;
1322 if (ivs == 0)
1323 return 0;
1325 start_sequence ();
1326 for (i = 0; i < ivs->num_entries; i++)
1327 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1328 seq = get_insns ();
1329 end_sequence ();
1331 emit_insn_at_entry (seq);
1332 return 0;
1335 /* Return the hardreg-pseudoreg initial values pair entry I and
1336 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1337 bool
1338 initial_value_entry (int i, rtx *hreg, rtx *preg)
1340 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1341 if (!ivs || i >= ivs->num_entries)
1342 return false;
1344 *hreg = ivs->entries[i].hard_reg;
1345 *preg = ivs->entries[i].pseudo;
1346 return true;
1349 /* These routines are responsible for converting virtual register references
1350 to the actual hard register references once RTL generation is complete.
1352 The following four variables are used for communication between the
1353 routines. They contain the offsets of the virtual registers from their
1354 respective hard registers. */
1356 static int in_arg_offset;
1357 static int var_offset;
1358 static int dynamic_offset;
1359 static int out_arg_offset;
1360 static int cfa_offset;
1362 /* In most machines, the stack pointer register is equivalent to the bottom
1363 of the stack. */
1365 #ifndef STACK_POINTER_OFFSET
1366 #define STACK_POINTER_OFFSET 0
1367 #endif
1369 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1370 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1371 #endif
1373 /* If not defined, pick an appropriate default for the offset of dynamically
1374 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1375 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1377 #ifndef STACK_DYNAMIC_OFFSET
1379 /* The bottom of the stack points to the actual arguments. If
1380 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1381 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1382 stack space for register parameters is not pushed by the caller, but
1383 rather part of the fixed stack areas and hence not included in
1384 `crtl->outgoing_args_size'. Nevertheless, we must allow
1385 for it when allocating stack dynamic objects. */
1387 #ifdef INCOMING_REG_PARM_STACK_SPACE
1388 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1389 ((ACCUMULATE_OUTGOING_ARGS \
1390 ? (crtl->outgoing_args_size \
1391 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1392 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1393 : 0) + (STACK_POINTER_OFFSET))
1394 #else
1395 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1396 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1397 + (STACK_POINTER_OFFSET))
1398 #endif
1399 #endif
1402 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1403 is a virtual register, return the equivalent hard register and set the
1404 offset indirectly through the pointer. Otherwise, return 0. */
1406 static rtx
1407 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1409 rtx new_rtx;
1410 HOST_WIDE_INT offset;
1412 if (x == virtual_incoming_args_rtx)
1414 if (stack_realign_drap)
1416 /* Replace virtual_incoming_args_rtx with internal arg
1417 pointer if DRAP is used to realign stack. */
1418 new_rtx = crtl->args.internal_arg_pointer;
1419 offset = 0;
1421 else
1422 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1424 else if (x == virtual_stack_vars_rtx)
1425 new_rtx = frame_pointer_rtx, offset = var_offset;
1426 else if (x == virtual_stack_dynamic_rtx)
1427 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1428 else if (x == virtual_outgoing_args_rtx)
1429 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1430 else if (x == virtual_cfa_rtx)
1432 #ifdef FRAME_POINTER_CFA_OFFSET
1433 new_rtx = frame_pointer_rtx;
1434 #else
1435 new_rtx = arg_pointer_rtx;
1436 #endif
1437 offset = cfa_offset;
1439 else if (x == virtual_preferred_stack_boundary_rtx)
1441 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1442 offset = 0;
1444 else
1445 return NULL_RTX;
1447 *poffset = offset;
1448 return new_rtx;
1451 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1452 registers present inside of *LOC. The expression is simplified,
1453 as much as possible, but is not to be considered "valid" in any sense
1454 implied by the target. Return true if any change is made. */
1456 static bool
1457 instantiate_virtual_regs_in_rtx (rtx *loc)
1459 if (!*loc)
1460 return false;
1461 bool changed = false;
1462 subrtx_ptr_iterator::array_type array;
1463 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1465 rtx *loc = *iter;
1466 if (rtx x = *loc)
1468 rtx new_rtx;
1469 HOST_WIDE_INT offset;
1470 switch (GET_CODE (x))
1472 case REG:
1473 new_rtx = instantiate_new_reg (x, &offset);
1474 if (new_rtx)
1476 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1477 changed = true;
1479 iter.skip_subrtxes ();
1480 break;
1482 case PLUS:
1483 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1484 if (new_rtx)
1486 XEXP (x, 0) = new_rtx;
1487 *loc = plus_constant (GET_MODE (x), x, offset, true);
1488 changed = true;
1489 iter.skip_subrtxes ();
1490 break;
1493 /* FIXME -- from old code */
1494 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1495 we can commute the PLUS and SUBREG because pointers into the
1496 frame are well-behaved. */
1497 break;
1499 default:
1500 break;
1504 return changed;
1507 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1508 matches the predicate for insn CODE operand OPERAND. */
1510 static int
1511 safe_insn_predicate (int code, int operand, rtx x)
1513 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1516 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1517 registers present inside of insn. The result will be a valid insn. */
1519 static void
1520 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1522 HOST_WIDE_INT offset;
1523 int insn_code, i;
1524 bool any_change = false;
1525 rtx set, new_rtx, x;
1526 rtx_insn *seq;
1528 /* There are some special cases to be handled first. */
1529 set = single_set (insn);
1530 if (set)
1532 /* We're allowed to assign to a virtual register. This is interpreted
1533 to mean that the underlying register gets assigned the inverse
1534 transformation. This is used, for example, in the handling of
1535 non-local gotos. */
1536 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1537 if (new_rtx)
1539 start_sequence ();
1541 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1542 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1543 gen_int_mode (-offset, GET_MODE (new_rtx)));
1544 x = force_operand (x, new_rtx);
1545 if (x != new_rtx)
1546 emit_move_insn (new_rtx, x);
1548 seq = get_insns ();
1549 end_sequence ();
1551 emit_insn_before (seq, insn);
1552 delete_insn (insn);
1553 return;
1556 /* Handle a straight copy from a virtual register by generating a
1557 new add insn. The difference between this and falling through
1558 to the generic case is avoiding a new pseudo and eliminating a
1559 move insn in the initial rtl stream. */
1560 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1561 if (new_rtx && offset != 0
1562 && REG_P (SET_DEST (set))
1563 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1565 start_sequence ();
1567 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1568 gen_int_mode (offset,
1569 GET_MODE (SET_DEST (set))),
1570 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1571 if (x != SET_DEST (set))
1572 emit_move_insn (SET_DEST (set), x);
1574 seq = get_insns ();
1575 end_sequence ();
1577 emit_insn_before (seq, insn);
1578 delete_insn (insn);
1579 return;
1582 extract_insn (insn);
1583 insn_code = INSN_CODE (insn);
1585 /* Handle a plus involving a virtual register by determining if the
1586 operands remain valid if they're modified in place. */
1587 if (GET_CODE (SET_SRC (set)) == PLUS
1588 && recog_data.n_operands >= 3
1589 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1590 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1591 && CONST_INT_P (recog_data.operand[2])
1592 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1594 offset += INTVAL (recog_data.operand[2]);
1596 /* If the sum is zero, then replace with a plain move. */
1597 if (offset == 0
1598 && REG_P (SET_DEST (set))
1599 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1601 start_sequence ();
1602 emit_move_insn (SET_DEST (set), new_rtx);
1603 seq = get_insns ();
1604 end_sequence ();
1606 emit_insn_before (seq, insn);
1607 delete_insn (insn);
1608 return;
1611 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1613 /* Using validate_change and apply_change_group here leaves
1614 recog_data in an invalid state. Since we know exactly what
1615 we want to check, do those two by hand. */
1616 if (safe_insn_predicate (insn_code, 1, new_rtx)
1617 && safe_insn_predicate (insn_code, 2, x))
1619 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1620 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1621 any_change = true;
1623 /* Fall through into the regular operand fixup loop in
1624 order to take care of operands other than 1 and 2. */
1628 else
1630 extract_insn (insn);
1631 insn_code = INSN_CODE (insn);
1634 /* In the general case, we expect virtual registers to appear only in
1635 operands, and then only as either bare registers or inside memories. */
1636 for (i = 0; i < recog_data.n_operands; ++i)
1638 x = recog_data.operand[i];
1639 switch (GET_CODE (x))
1641 case MEM:
1643 rtx addr = XEXP (x, 0);
1645 if (!instantiate_virtual_regs_in_rtx (&addr))
1646 continue;
1648 start_sequence ();
1649 x = replace_equiv_address (x, addr, true);
1650 /* It may happen that the address with the virtual reg
1651 was valid (e.g. based on the virtual stack reg, which might
1652 be acceptable to the predicates with all offsets), whereas
1653 the address now isn't anymore, for instance when the address
1654 is still offsetted, but the base reg isn't virtual-stack-reg
1655 anymore. Below we would do a force_reg on the whole operand,
1656 but this insn might actually only accept memory. Hence,
1657 before doing that last resort, try to reload the address into
1658 a register, so this operand stays a MEM. */
1659 if (!safe_insn_predicate (insn_code, i, x))
1661 addr = force_reg (GET_MODE (addr), addr);
1662 x = replace_equiv_address (x, addr, true);
1664 seq = get_insns ();
1665 end_sequence ();
1666 if (seq)
1667 emit_insn_before (seq, insn);
1669 break;
1671 case REG:
1672 new_rtx = instantiate_new_reg (x, &offset);
1673 if (new_rtx == NULL)
1674 continue;
1675 if (offset == 0)
1676 x = new_rtx;
1677 else
1679 start_sequence ();
1681 /* Careful, special mode predicates may have stuff in
1682 insn_data[insn_code].operand[i].mode that isn't useful
1683 to us for computing a new value. */
1684 /* ??? Recognize address_operand and/or "p" constraints
1685 to see if (plus new offset) is a valid before we put
1686 this through expand_simple_binop. */
1687 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1688 gen_int_mode (offset, GET_MODE (x)),
1689 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1690 seq = get_insns ();
1691 end_sequence ();
1692 emit_insn_before (seq, insn);
1694 break;
1696 case SUBREG:
1697 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1698 if (new_rtx == NULL)
1699 continue;
1700 if (offset != 0)
1702 start_sequence ();
1703 new_rtx = expand_simple_binop
1704 (GET_MODE (new_rtx), PLUS, new_rtx,
1705 gen_int_mode (offset, GET_MODE (new_rtx)),
1706 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1707 seq = get_insns ();
1708 end_sequence ();
1709 emit_insn_before (seq, insn);
1711 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1712 GET_MODE (new_rtx), SUBREG_BYTE (x));
1713 gcc_assert (x);
1714 break;
1716 default:
1717 continue;
1720 /* At this point, X contains the new value for the operand.
1721 Validate the new value vs the insn predicate. Note that
1722 asm insns will have insn_code -1 here. */
1723 if (!safe_insn_predicate (insn_code, i, x))
1725 start_sequence ();
1726 if (REG_P (x))
1728 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1729 x = copy_to_reg (x);
1731 else
1732 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1733 seq = get_insns ();
1734 end_sequence ();
1735 if (seq)
1736 emit_insn_before (seq, insn);
1739 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1740 any_change = true;
1743 if (any_change)
1745 /* Propagate operand changes into the duplicates. */
1746 for (i = 0; i < recog_data.n_dups; ++i)
1747 *recog_data.dup_loc[i]
1748 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1750 /* Force re-recognition of the instruction for validation. */
1751 INSN_CODE (insn) = -1;
1754 if (asm_noperands (PATTERN (insn)) >= 0)
1756 if (!check_asm_operands (PATTERN (insn)))
1758 error_for_asm (insn, "impossible constraint in %<asm%>");
1759 /* For asm goto, instead of fixing up all the edges
1760 just clear the template and clear input operands
1761 (asm goto doesn't have any output operands). */
1762 if (JUMP_P (insn))
1764 rtx asm_op = extract_asm_operands (PATTERN (insn));
1765 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1766 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1767 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1769 else
1770 delete_insn (insn);
1773 else
1775 if (recog_memoized (insn) < 0)
1776 fatal_insn_not_found (insn);
1780 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1781 do any instantiation required. */
1783 void
1784 instantiate_decl_rtl (rtx x)
1786 rtx addr;
1788 if (x == 0)
1789 return;
1791 /* If this is a CONCAT, recurse for the pieces. */
1792 if (GET_CODE (x) == CONCAT)
1794 instantiate_decl_rtl (XEXP (x, 0));
1795 instantiate_decl_rtl (XEXP (x, 1));
1796 return;
1799 /* If this is not a MEM, no need to do anything. Similarly if the
1800 address is a constant or a register that is not a virtual register. */
1801 if (!MEM_P (x))
1802 return;
1804 addr = XEXP (x, 0);
1805 if (CONSTANT_P (addr)
1806 || (REG_P (addr)
1807 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1808 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1809 return;
1811 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1814 /* Helper for instantiate_decls called via walk_tree: Process all decls
1815 in the given DECL_VALUE_EXPR. */
1817 static tree
1818 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1820 tree t = *tp;
1821 if (! EXPR_P (t))
1823 *walk_subtrees = 0;
1824 if (DECL_P (t))
1826 if (DECL_RTL_SET_P (t))
1827 instantiate_decl_rtl (DECL_RTL (t));
1828 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1829 && DECL_INCOMING_RTL (t))
1830 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1831 if ((TREE_CODE (t) == VAR_DECL
1832 || TREE_CODE (t) == RESULT_DECL)
1833 && DECL_HAS_VALUE_EXPR_P (t))
1835 tree v = DECL_VALUE_EXPR (t);
1836 walk_tree (&v, instantiate_expr, NULL, NULL);
1840 return NULL;
1843 /* Subroutine of instantiate_decls: Process all decls in the given
1844 BLOCK node and all its subblocks. */
1846 static void
1847 instantiate_decls_1 (tree let)
1849 tree t;
1851 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1853 if (DECL_RTL_SET_P (t))
1854 instantiate_decl_rtl (DECL_RTL (t));
1855 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1857 tree v = DECL_VALUE_EXPR (t);
1858 walk_tree (&v, instantiate_expr, NULL, NULL);
1862 /* Process all subblocks. */
1863 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1864 instantiate_decls_1 (t);
1867 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1868 all virtual registers in their DECL_RTL's. */
1870 static void
1871 instantiate_decls (tree fndecl)
1873 tree decl;
1874 unsigned ix;
1876 /* Process all parameters of the function. */
1877 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1879 instantiate_decl_rtl (DECL_RTL (decl));
1880 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1881 if (DECL_HAS_VALUE_EXPR_P (decl))
1883 tree v = DECL_VALUE_EXPR (decl);
1884 walk_tree (&v, instantiate_expr, NULL, NULL);
1888 if ((decl = DECL_RESULT (fndecl))
1889 && TREE_CODE (decl) == RESULT_DECL)
1891 if (DECL_RTL_SET_P (decl))
1892 instantiate_decl_rtl (DECL_RTL (decl));
1893 if (DECL_HAS_VALUE_EXPR_P (decl))
1895 tree v = DECL_VALUE_EXPR (decl);
1896 walk_tree (&v, instantiate_expr, NULL, NULL);
1900 /* Process the saved static chain if it exists. */
1901 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1902 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1903 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1905 /* Now process all variables defined in the function or its subblocks. */
1906 instantiate_decls_1 (DECL_INITIAL (fndecl));
1908 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1909 if (DECL_RTL_SET_P (decl))
1910 instantiate_decl_rtl (DECL_RTL (decl));
1911 vec_free (cfun->local_decls);
1914 /* Pass through the INSNS of function FNDECL and convert virtual register
1915 references to hard register references. */
1917 static unsigned int
1918 instantiate_virtual_regs (void)
1920 rtx_insn *insn;
1922 /* Compute the offsets to use for this function. */
1923 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1924 var_offset = STARTING_FRAME_OFFSET;
1925 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1926 out_arg_offset = STACK_POINTER_OFFSET;
1927 #ifdef FRAME_POINTER_CFA_OFFSET
1928 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1929 #else
1930 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1931 #endif
1933 /* Initialize recognition, indicating that volatile is OK. */
1934 init_recog ();
1936 /* Scan through all the insns, instantiating every virtual register still
1937 present. */
1938 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1939 if (INSN_P (insn))
1941 /* These patterns in the instruction stream can never be recognized.
1942 Fortunately, they shouldn't contain virtual registers either. */
1943 if (GET_CODE (PATTERN (insn)) == USE
1944 || GET_CODE (PATTERN (insn)) == CLOBBER
1945 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1946 continue;
1947 else if (DEBUG_INSN_P (insn))
1948 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1949 else
1950 instantiate_virtual_regs_in_insn (insn);
1952 if (insn->deleted ())
1953 continue;
1955 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1957 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1958 if (CALL_P (insn))
1959 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1962 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1963 instantiate_decls (current_function_decl);
1965 targetm.instantiate_decls ();
1967 /* Indicate that, from now on, assign_stack_local should use
1968 frame_pointer_rtx. */
1969 virtuals_instantiated = 1;
1971 return 0;
1974 namespace {
1976 const pass_data pass_data_instantiate_virtual_regs =
1978 RTL_PASS, /* type */
1979 "vregs", /* name */
1980 OPTGROUP_NONE, /* optinfo_flags */
1981 TV_NONE, /* tv_id */
1982 0, /* properties_required */
1983 0, /* properties_provided */
1984 0, /* properties_destroyed */
1985 0, /* todo_flags_start */
1986 0, /* todo_flags_finish */
1989 class pass_instantiate_virtual_regs : public rtl_opt_pass
1991 public:
1992 pass_instantiate_virtual_regs (gcc::context *ctxt)
1993 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1996 /* opt_pass methods: */
1997 virtual unsigned int execute (function *)
1999 return instantiate_virtual_regs ();
2002 }; // class pass_instantiate_virtual_regs
2004 } // anon namespace
2006 rtl_opt_pass *
2007 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2009 return new pass_instantiate_virtual_regs (ctxt);
2013 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2014 This means a type for which function calls must pass an address to the
2015 function or get an address back from the function.
2016 EXP may be a type node or an expression (whose type is tested). */
2019 aggregate_value_p (const_tree exp, const_tree fntype)
2021 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2022 int i, regno, nregs;
2023 rtx reg;
2025 if (fntype)
2026 switch (TREE_CODE (fntype))
2028 case CALL_EXPR:
2030 tree fndecl = get_callee_fndecl (fntype);
2031 if (fndecl)
2032 fntype = TREE_TYPE (fndecl);
2033 else if (CALL_EXPR_FN (fntype))
2034 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2035 else
2036 /* For internal functions, assume nothing needs to be
2037 returned in memory. */
2038 return 0;
2040 break;
2041 case FUNCTION_DECL:
2042 fntype = TREE_TYPE (fntype);
2043 break;
2044 case FUNCTION_TYPE:
2045 case METHOD_TYPE:
2046 break;
2047 case IDENTIFIER_NODE:
2048 fntype = NULL_TREE;
2049 break;
2050 default:
2051 /* We don't expect other tree types here. */
2052 gcc_unreachable ();
2055 if (VOID_TYPE_P (type))
2056 return 0;
2058 /* If a record should be passed the same as its first (and only) member
2059 don't pass it as an aggregate. */
2060 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2061 return aggregate_value_p (first_field (type), fntype);
2063 /* If the front end has decided that this needs to be passed by
2064 reference, do so. */
2065 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2066 && DECL_BY_REFERENCE (exp))
2067 return 1;
2069 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2070 if (fntype && TREE_ADDRESSABLE (fntype))
2071 return 1;
2073 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2074 and thus can't be returned in registers. */
2075 if (TREE_ADDRESSABLE (type))
2076 return 1;
2078 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2079 return 1;
2081 if (targetm.calls.return_in_memory (type, fntype))
2082 return 1;
2084 /* Make sure we have suitable call-clobbered regs to return
2085 the value in; if not, we must return it in memory. */
2086 reg = hard_function_value (type, 0, fntype, 0);
2088 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2089 it is OK. */
2090 if (!REG_P (reg))
2091 return 0;
2093 regno = REGNO (reg);
2094 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2095 for (i = 0; i < nregs; i++)
2096 if (! call_used_regs[regno + i])
2097 return 1;
2099 return 0;
2102 /* Return true if we should assign DECL a pseudo register; false if it
2103 should live on the local stack. */
2105 bool
2106 use_register_for_decl (const_tree decl)
2108 if (!targetm.calls.allocate_stack_slots_for_args ())
2109 return true;
2111 /* Honor volatile. */
2112 if (TREE_SIDE_EFFECTS (decl))
2113 return false;
2115 /* Honor addressability. */
2116 if (TREE_ADDRESSABLE (decl))
2117 return false;
2119 /* Decl is implicitly addressible by bound stores and loads
2120 if it is an aggregate holding bounds. */
2121 if (chkp_function_instrumented_p (current_function_decl)
2122 && TREE_TYPE (decl)
2123 && !BOUNDED_P (decl)
2124 && chkp_type_has_pointer (TREE_TYPE (decl)))
2125 return false;
2127 /* Only register-like things go in registers. */
2128 if (DECL_MODE (decl) == BLKmode)
2129 return false;
2131 /* If -ffloat-store specified, don't put explicit float variables
2132 into registers. */
2133 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2134 propagates values across these stores, and it probably shouldn't. */
2135 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2136 return false;
2138 /* If we're not interested in tracking debugging information for
2139 this decl, then we can certainly put it in a register. */
2140 if (DECL_IGNORED_P (decl))
2141 return true;
2143 if (optimize)
2144 return true;
2146 if (!DECL_REGISTER (decl))
2147 return false;
2149 switch (TREE_CODE (TREE_TYPE (decl)))
2151 case RECORD_TYPE:
2152 case UNION_TYPE:
2153 case QUAL_UNION_TYPE:
2154 /* When not optimizing, disregard register keyword for variables with
2155 types containing methods, otherwise the methods won't be callable
2156 from the debugger. */
2157 if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl))))
2158 return false;
2159 break;
2160 default:
2161 break;
2164 return true;
2167 /* Structures to communicate between the subroutines of assign_parms.
2168 The first holds data persistent across all parameters, the second
2169 is cleared out for each parameter. */
2171 struct assign_parm_data_all
2173 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2174 should become a job of the target or otherwise encapsulated. */
2175 CUMULATIVE_ARGS args_so_far_v;
2176 cumulative_args_t args_so_far;
2177 struct args_size stack_args_size;
2178 tree function_result_decl;
2179 tree orig_fnargs;
2180 rtx_insn *first_conversion_insn;
2181 rtx_insn *last_conversion_insn;
2182 HOST_WIDE_INT pretend_args_size;
2183 HOST_WIDE_INT extra_pretend_bytes;
2184 int reg_parm_stack_space;
2187 struct assign_parm_data_one
2189 tree nominal_type;
2190 tree passed_type;
2191 rtx entry_parm;
2192 rtx stack_parm;
2193 machine_mode nominal_mode;
2194 machine_mode passed_mode;
2195 machine_mode promoted_mode;
2196 struct locate_and_pad_arg_data locate;
2197 int partial;
2198 BOOL_BITFIELD named_arg : 1;
2199 BOOL_BITFIELD passed_pointer : 1;
2200 BOOL_BITFIELD on_stack : 1;
2201 BOOL_BITFIELD loaded_in_reg : 1;
2204 struct bounds_parm_data
2206 assign_parm_data_one parm_data;
2207 tree bounds_parm;
2208 tree ptr_parm;
2209 rtx ptr_entry;
2210 int bound_no;
2213 /* A subroutine of assign_parms. Initialize ALL. */
2215 static void
2216 assign_parms_initialize_all (struct assign_parm_data_all *all)
2218 tree fntype ATTRIBUTE_UNUSED;
2220 memset (all, 0, sizeof (*all));
2222 fntype = TREE_TYPE (current_function_decl);
2224 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2225 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2226 #else
2227 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2228 current_function_decl, -1);
2229 #endif
2230 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2232 #ifdef INCOMING_REG_PARM_STACK_SPACE
2233 all->reg_parm_stack_space
2234 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2235 #endif
2238 /* If ARGS contains entries with complex types, split the entry into two
2239 entries of the component type. Return a new list of substitutions are
2240 needed, else the old list. */
2242 static void
2243 split_complex_args (vec<tree> *args)
2245 unsigned i;
2246 tree p;
2248 FOR_EACH_VEC_ELT (*args, i, p)
2250 tree type = TREE_TYPE (p);
2251 if (TREE_CODE (type) == COMPLEX_TYPE
2252 && targetm.calls.split_complex_arg (type))
2254 tree decl;
2255 tree subtype = TREE_TYPE (type);
2256 bool addressable = TREE_ADDRESSABLE (p);
2258 /* Rewrite the PARM_DECL's type with its component. */
2259 p = copy_node (p);
2260 TREE_TYPE (p) = subtype;
2261 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2262 DECL_MODE (p) = VOIDmode;
2263 DECL_SIZE (p) = NULL;
2264 DECL_SIZE_UNIT (p) = NULL;
2265 /* If this arg must go in memory, put it in a pseudo here.
2266 We can't allow it to go in memory as per normal parms,
2267 because the usual place might not have the imag part
2268 adjacent to the real part. */
2269 DECL_ARTIFICIAL (p) = addressable;
2270 DECL_IGNORED_P (p) = addressable;
2271 TREE_ADDRESSABLE (p) = 0;
2272 layout_decl (p, 0);
2273 (*args)[i] = p;
2275 /* Build a second synthetic decl. */
2276 decl = build_decl (EXPR_LOCATION (p),
2277 PARM_DECL, NULL_TREE, subtype);
2278 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2279 DECL_ARTIFICIAL (decl) = addressable;
2280 DECL_IGNORED_P (decl) = addressable;
2281 layout_decl (decl, 0);
2282 args->safe_insert (++i, decl);
2287 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2288 the hidden struct return argument, and (abi willing) complex args.
2289 Return the new parameter list. */
2291 static vec<tree>
2292 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2294 tree fndecl = current_function_decl;
2295 tree fntype = TREE_TYPE (fndecl);
2296 vec<tree> fnargs = vNULL;
2297 tree arg;
2299 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2300 fnargs.safe_push (arg);
2302 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2304 /* If struct value address is treated as the first argument, make it so. */
2305 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2306 && ! cfun->returns_pcc_struct
2307 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2309 tree type = build_pointer_type (TREE_TYPE (fntype));
2310 tree decl;
2312 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2313 PARM_DECL, get_identifier (".result_ptr"), type);
2314 DECL_ARG_TYPE (decl) = type;
2315 DECL_ARTIFICIAL (decl) = 1;
2316 DECL_NAMELESS (decl) = 1;
2317 TREE_CONSTANT (decl) = 1;
2319 DECL_CHAIN (decl) = all->orig_fnargs;
2320 all->orig_fnargs = decl;
2321 fnargs.safe_insert (0, decl);
2323 all->function_result_decl = decl;
2325 /* If function is instrumented then bounds of the
2326 passed structure address is the second argument. */
2327 if (chkp_function_instrumented_p (fndecl))
2329 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2330 PARM_DECL, get_identifier (".result_bnd"),
2331 pointer_bounds_type_node);
2332 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2333 DECL_ARTIFICIAL (decl) = 1;
2334 DECL_NAMELESS (decl) = 1;
2335 TREE_CONSTANT (decl) = 1;
2337 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2338 DECL_CHAIN (all->orig_fnargs) = decl;
2339 fnargs.safe_insert (1, decl);
2343 /* If the target wants to split complex arguments into scalars, do so. */
2344 if (targetm.calls.split_complex_arg)
2345 split_complex_args (&fnargs);
2347 return fnargs;
2350 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2351 data for the parameter. Incorporate ABI specifics such as pass-by-
2352 reference and type promotion. */
2354 static void
2355 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2356 struct assign_parm_data_one *data)
2358 tree nominal_type, passed_type;
2359 machine_mode nominal_mode, passed_mode, promoted_mode;
2360 int unsignedp;
2362 memset (data, 0, sizeof (*data));
2364 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2365 if (!cfun->stdarg)
2366 data->named_arg = 1; /* No variadic parms. */
2367 else if (DECL_CHAIN (parm))
2368 data->named_arg = 1; /* Not the last non-variadic parm. */
2369 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2370 data->named_arg = 1; /* Only variadic ones are unnamed. */
2371 else
2372 data->named_arg = 0; /* Treat as variadic. */
2374 nominal_type = TREE_TYPE (parm);
2375 passed_type = DECL_ARG_TYPE (parm);
2377 /* Look out for errors propagating this far. Also, if the parameter's
2378 type is void then its value doesn't matter. */
2379 if (TREE_TYPE (parm) == error_mark_node
2380 /* This can happen after weird syntax errors
2381 or if an enum type is defined among the parms. */
2382 || TREE_CODE (parm) != PARM_DECL
2383 || passed_type == NULL
2384 || VOID_TYPE_P (nominal_type))
2386 nominal_type = passed_type = void_type_node;
2387 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2388 goto egress;
2391 /* Find mode of arg as it is passed, and mode of arg as it should be
2392 during execution of this function. */
2393 passed_mode = TYPE_MODE (passed_type);
2394 nominal_mode = TYPE_MODE (nominal_type);
2396 /* If the parm is to be passed as a transparent union or record, use the
2397 type of the first field for the tests below. We have already verified
2398 that the modes are the same. */
2399 if ((TREE_CODE (passed_type) == UNION_TYPE
2400 || TREE_CODE (passed_type) == RECORD_TYPE)
2401 && TYPE_TRANSPARENT_AGGR (passed_type))
2402 passed_type = TREE_TYPE (first_field (passed_type));
2404 /* See if this arg was passed by invisible reference. */
2405 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2406 passed_type, data->named_arg))
2408 passed_type = nominal_type = build_pointer_type (passed_type);
2409 data->passed_pointer = true;
2410 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2413 /* Find mode as it is passed by the ABI. */
2414 unsignedp = TYPE_UNSIGNED (passed_type);
2415 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2416 TREE_TYPE (current_function_decl), 0);
2418 egress:
2419 data->nominal_type = nominal_type;
2420 data->passed_type = passed_type;
2421 data->nominal_mode = nominal_mode;
2422 data->passed_mode = passed_mode;
2423 data->promoted_mode = promoted_mode;
2426 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2428 static void
2429 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2430 struct assign_parm_data_one *data, bool no_rtl)
2432 int varargs_pretend_bytes = 0;
2434 targetm.calls.setup_incoming_varargs (all->args_so_far,
2435 data->promoted_mode,
2436 data->passed_type,
2437 &varargs_pretend_bytes, no_rtl);
2439 /* If the back-end has requested extra stack space, record how much is
2440 needed. Do not change pretend_args_size otherwise since it may be
2441 nonzero from an earlier partial argument. */
2442 if (varargs_pretend_bytes > 0)
2443 all->pretend_args_size = varargs_pretend_bytes;
2446 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2447 the incoming location of the current parameter. */
2449 static void
2450 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2451 struct assign_parm_data_one *data)
2453 HOST_WIDE_INT pretend_bytes = 0;
2454 rtx entry_parm;
2455 bool in_regs;
2457 if (data->promoted_mode == VOIDmode)
2459 data->entry_parm = data->stack_parm = const0_rtx;
2460 return;
2463 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2464 data->promoted_mode,
2465 data->passed_type,
2466 data->named_arg);
2468 if (entry_parm == 0)
2469 data->promoted_mode = data->passed_mode;
2471 /* Determine parm's home in the stack, in case it arrives in the stack
2472 or we should pretend it did. Compute the stack position and rtx where
2473 the argument arrives and its size.
2475 There is one complexity here: If this was a parameter that would
2476 have been passed in registers, but wasn't only because it is
2477 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2478 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2479 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2480 as it was the previous time. */
2481 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2482 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2483 in_regs = true;
2484 #endif
2485 if (!in_regs && !data->named_arg)
2487 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2489 rtx tem;
2490 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2491 data->promoted_mode,
2492 data->passed_type, true);
2493 in_regs = tem != NULL;
2497 /* If this parameter was passed both in registers and in the stack, use
2498 the copy on the stack. */
2499 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2500 data->passed_type))
2501 entry_parm = 0;
2503 if (entry_parm)
2505 int partial;
2507 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2508 data->promoted_mode,
2509 data->passed_type,
2510 data->named_arg);
2511 data->partial = partial;
2513 /* The caller might already have allocated stack space for the
2514 register parameters. */
2515 if (partial != 0 && all->reg_parm_stack_space == 0)
2517 /* Part of this argument is passed in registers and part
2518 is passed on the stack. Ask the prologue code to extend
2519 the stack part so that we can recreate the full value.
2521 PRETEND_BYTES is the size of the registers we need to store.
2522 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2523 stack space that the prologue should allocate.
2525 Internally, gcc assumes that the argument pointer is aligned
2526 to STACK_BOUNDARY bits. This is used both for alignment
2527 optimizations (see init_emit) and to locate arguments that are
2528 aligned to more than PARM_BOUNDARY bits. We must preserve this
2529 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2530 a stack boundary. */
2532 /* We assume at most one partial arg, and it must be the first
2533 argument on the stack. */
2534 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2536 pretend_bytes = partial;
2537 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2539 /* We want to align relative to the actual stack pointer, so
2540 don't include this in the stack size until later. */
2541 all->extra_pretend_bytes = all->pretend_args_size;
2545 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2546 all->reg_parm_stack_space,
2547 entry_parm ? data->partial : 0, current_function_decl,
2548 &all->stack_args_size, &data->locate);
2550 /* Update parm_stack_boundary if this parameter is passed in the
2551 stack. */
2552 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2553 crtl->parm_stack_boundary = data->locate.boundary;
2555 /* Adjust offsets to include the pretend args. */
2556 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2557 data->locate.slot_offset.constant += pretend_bytes;
2558 data->locate.offset.constant += pretend_bytes;
2560 data->entry_parm = entry_parm;
2563 /* A subroutine of assign_parms. If there is actually space on the stack
2564 for this parm, count it in stack_args_size and return true. */
2566 static bool
2567 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2568 struct assign_parm_data_one *data)
2570 /* Bounds are never passed on the stack to keep compatibility
2571 with not instrumented code. */
2572 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2573 return false;
2574 /* Trivially true if we've no incoming register. */
2575 else if (data->entry_parm == NULL)
2577 /* Also true if we're partially in registers and partially not,
2578 since we've arranged to drop the entire argument on the stack. */
2579 else if (data->partial != 0)
2581 /* Also true if the target says that it's passed in both registers
2582 and on the stack. */
2583 else if (GET_CODE (data->entry_parm) == PARALLEL
2584 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2586 /* Also true if the target says that there's stack allocated for
2587 all register parameters. */
2588 else if (all->reg_parm_stack_space > 0)
2590 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2591 else
2592 return false;
2594 all->stack_args_size.constant += data->locate.size.constant;
2595 if (data->locate.size.var)
2596 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2598 return true;
2601 /* A subroutine of assign_parms. Given that this parameter is allocated
2602 stack space by the ABI, find it. */
2604 static void
2605 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2607 rtx offset_rtx, stack_parm;
2608 unsigned int align, boundary;
2610 /* If we're passing this arg using a reg, make its stack home the
2611 aligned stack slot. */
2612 if (data->entry_parm)
2613 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2614 else
2615 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2617 stack_parm = crtl->args.internal_arg_pointer;
2618 if (offset_rtx != const0_rtx)
2619 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2620 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2622 if (!data->passed_pointer)
2624 set_mem_attributes (stack_parm, parm, 1);
2625 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2626 while promoted mode's size is needed. */
2627 if (data->promoted_mode != BLKmode
2628 && data->promoted_mode != DECL_MODE (parm))
2630 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2631 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2633 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2634 data->promoted_mode);
2635 if (offset)
2636 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2641 boundary = data->locate.boundary;
2642 align = BITS_PER_UNIT;
2644 /* If we're padding upward, we know that the alignment of the slot
2645 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2646 intentionally forcing upward padding. Otherwise we have to come
2647 up with a guess at the alignment based on OFFSET_RTX. */
2648 if (data->locate.where_pad != downward || data->entry_parm)
2649 align = boundary;
2650 else if (CONST_INT_P (offset_rtx))
2652 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2653 align = align & -align;
2655 set_mem_align (stack_parm, align);
2657 if (data->entry_parm)
2658 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2660 data->stack_parm = stack_parm;
2663 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2664 always valid and contiguous. */
2666 static void
2667 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2669 rtx entry_parm = data->entry_parm;
2670 rtx stack_parm = data->stack_parm;
2672 /* If this parm was passed part in regs and part in memory, pretend it
2673 arrived entirely in memory by pushing the register-part onto the stack.
2674 In the special case of a DImode or DFmode that is split, we could put
2675 it together in a pseudoreg directly, but for now that's not worth
2676 bothering with. */
2677 if (data->partial != 0)
2679 /* Handle calls that pass values in multiple non-contiguous
2680 locations. The Irix 6 ABI has examples of this. */
2681 if (GET_CODE (entry_parm) == PARALLEL)
2682 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2683 data->passed_type,
2684 int_size_in_bytes (data->passed_type));
2685 else
2687 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2688 move_block_from_reg (REGNO (entry_parm),
2689 validize_mem (copy_rtx (stack_parm)),
2690 data->partial / UNITS_PER_WORD);
2693 entry_parm = stack_parm;
2696 /* If we didn't decide this parm came in a register, by default it came
2697 on the stack. */
2698 else if (entry_parm == NULL)
2699 entry_parm = stack_parm;
2701 /* When an argument is passed in multiple locations, we can't make use
2702 of this information, but we can save some copying if the whole argument
2703 is passed in a single register. */
2704 else if (GET_CODE (entry_parm) == PARALLEL
2705 && data->nominal_mode != BLKmode
2706 && data->passed_mode != BLKmode)
2708 size_t i, len = XVECLEN (entry_parm, 0);
2710 for (i = 0; i < len; i++)
2711 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2712 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2713 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2714 == data->passed_mode)
2715 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2717 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2718 break;
2722 data->entry_parm = entry_parm;
2725 /* A subroutine of assign_parms. Reconstitute any values which were
2726 passed in multiple registers and would fit in a single register. */
2728 static void
2729 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2731 rtx entry_parm = data->entry_parm;
2733 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2734 This can be done with register operations rather than on the
2735 stack, even if we will store the reconstituted parameter on the
2736 stack later. */
2737 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2739 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2740 emit_group_store (parmreg, entry_parm, data->passed_type,
2741 GET_MODE_SIZE (GET_MODE (entry_parm)));
2742 entry_parm = parmreg;
2745 data->entry_parm = entry_parm;
2748 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2749 always valid and properly aligned. */
2751 static void
2752 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2754 rtx stack_parm = data->stack_parm;
2756 /* If we can't trust the parm stack slot to be aligned enough for its
2757 ultimate type, don't use that slot after entry. We'll make another
2758 stack slot, if we need one. */
2759 if (stack_parm
2760 && ((STRICT_ALIGNMENT
2761 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2762 || (data->nominal_type
2763 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2764 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2765 stack_parm = NULL;
2767 /* If parm was passed in memory, and we need to convert it on entry,
2768 don't store it back in that same slot. */
2769 else if (data->entry_parm == stack_parm
2770 && data->nominal_mode != BLKmode
2771 && data->nominal_mode != data->passed_mode)
2772 stack_parm = NULL;
2774 /* If stack protection is in effect for this function, don't leave any
2775 pointers in their passed stack slots. */
2776 else if (crtl->stack_protect_guard
2777 && (flag_stack_protect == 2
2778 || data->passed_pointer
2779 || POINTER_TYPE_P (data->nominal_type)))
2780 stack_parm = NULL;
2782 data->stack_parm = stack_parm;
2785 /* A subroutine of assign_parms. Return true if the current parameter
2786 should be stored as a BLKmode in the current frame. */
2788 static bool
2789 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2791 if (data->nominal_mode == BLKmode)
2792 return true;
2793 if (GET_MODE (data->entry_parm) == BLKmode)
2794 return true;
2796 #ifdef BLOCK_REG_PADDING
2797 /* Only assign_parm_setup_block knows how to deal with register arguments
2798 that are padded at the least significant end. */
2799 if (REG_P (data->entry_parm)
2800 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2801 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2802 == (BYTES_BIG_ENDIAN ? upward : downward)))
2803 return true;
2804 #endif
2806 return false;
2809 /* A subroutine of assign_parms. Arrange for the parameter to be
2810 present and valid in DATA->STACK_RTL. */
2812 static void
2813 assign_parm_setup_block (struct assign_parm_data_all *all,
2814 tree parm, struct assign_parm_data_one *data)
2816 rtx entry_parm = data->entry_parm;
2817 rtx stack_parm = data->stack_parm;
2818 HOST_WIDE_INT size;
2819 HOST_WIDE_INT size_stored;
2821 if (GET_CODE (entry_parm) == PARALLEL)
2822 entry_parm = emit_group_move_into_temps (entry_parm);
2824 size = int_size_in_bytes (data->passed_type);
2825 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2826 if (stack_parm == 0)
2828 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2829 stack_parm = assign_stack_local (BLKmode, size_stored,
2830 DECL_ALIGN (parm));
2831 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2832 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2833 set_mem_attributes (stack_parm, parm, 1);
2836 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2837 calls that pass values in multiple non-contiguous locations. */
2838 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2840 rtx mem;
2842 /* Note that we will be storing an integral number of words.
2843 So we have to be careful to ensure that we allocate an
2844 integral number of words. We do this above when we call
2845 assign_stack_local if space was not allocated in the argument
2846 list. If it was, this will not work if PARM_BOUNDARY is not
2847 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2848 if it becomes a problem. Exception is when BLKmode arrives
2849 with arguments not conforming to word_mode. */
2851 if (data->stack_parm == 0)
2853 else if (GET_CODE (entry_parm) == PARALLEL)
2855 else
2856 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2858 mem = validize_mem (copy_rtx (stack_parm));
2860 /* Handle values in multiple non-contiguous locations. */
2861 if (GET_CODE (entry_parm) == PARALLEL)
2863 push_to_sequence2 (all->first_conversion_insn,
2864 all->last_conversion_insn);
2865 emit_group_store (mem, entry_parm, data->passed_type, size);
2866 all->first_conversion_insn = get_insns ();
2867 all->last_conversion_insn = get_last_insn ();
2868 end_sequence ();
2871 else if (size == 0)
2874 /* If SIZE is that of a mode no bigger than a word, just use
2875 that mode's store operation. */
2876 else if (size <= UNITS_PER_WORD)
2878 machine_mode mode
2879 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2881 if (mode != BLKmode
2882 #ifdef BLOCK_REG_PADDING
2883 && (size == UNITS_PER_WORD
2884 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2885 != (BYTES_BIG_ENDIAN ? upward : downward)))
2886 #endif
2889 rtx reg;
2891 /* We are really truncating a word_mode value containing
2892 SIZE bytes into a value of mode MODE. If such an
2893 operation requires no actual instructions, we can refer
2894 to the value directly in mode MODE, otherwise we must
2895 start with the register in word_mode and explicitly
2896 convert it. */
2897 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2898 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2899 else
2901 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2902 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2904 emit_move_insn (change_address (mem, mode, 0), reg);
2907 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2908 machine must be aligned to the left before storing
2909 to memory. Note that the previous test doesn't
2910 handle all cases (e.g. SIZE == 3). */
2911 else if (size != UNITS_PER_WORD
2912 #ifdef BLOCK_REG_PADDING
2913 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2914 == downward)
2915 #else
2916 && BYTES_BIG_ENDIAN
2917 #endif
2920 rtx tem, x;
2921 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2922 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2924 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2925 tem = change_address (mem, word_mode, 0);
2926 emit_move_insn (tem, x);
2928 else
2929 move_block_from_reg (REGNO (entry_parm), mem,
2930 size_stored / UNITS_PER_WORD);
2932 else
2933 move_block_from_reg (REGNO (entry_parm), mem,
2934 size_stored / UNITS_PER_WORD);
2936 else if (data->stack_parm == 0)
2938 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2939 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2940 BLOCK_OP_NORMAL);
2941 all->first_conversion_insn = get_insns ();
2942 all->last_conversion_insn = get_last_insn ();
2943 end_sequence ();
2946 data->stack_parm = stack_parm;
2947 SET_DECL_RTL (parm, stack_parm);
2950 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2951 parameter. Get it there. Perform all ABI specified conversions. */
2953 static void
2954 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2955 struct assign_parm_data_one *data)
2957 rtx parmreg, validated_mem;
2958 rtx equiv_stack_parm;
2959 machine_mode promoted_nominal_mode;
2960 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2961 bool did_conversion = false;
2962 bool need_conversion, moved;
2964 /* Store the parm in a pseudoregister during the function, but we may
2965 need to do it in a wider mode. Using 2 here makes the result
2966 consistent with promote_decl_mode and thus expand_expr_real_1. */
2967 promoted_nominal_mode
2968 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2969 TREE_TYPE (current_function_decl), 2);
2971 parmreg = gen_reg_rtx (promoted_nominal_mode);
2973 if (!DECL_ARTIFICIAL (parm))
2974 mark_user_reg (parmreg);
2976 /* If this was an item that we received a pointer to,
2977 set DECL_RTL appropriately. */
2978 if (data->passed_pointer)
2980 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2981 set_mem_attributes (x, parm, 1);
2982 SET_DECL_RTL (parm, x);
2984 else
2985 SET_DECL_RTL (parm, parmreg);
2987 assign_parm_remove_parallels (data);
2989 /* Copy the value into the register, thus bridging between
2990 assign_parm_find_data_types and expand_expr_real_1. */
2992 equiv_stack_parm = data->stack_parm;
2993 validated_mem = validize_mem (copy_rtx (data->entry_parm));
2995 need_conversion = (data->nominal_mode != data->passed_mode
2996 || promoted_nominal_mode != data->promoted_mode);
2997 moved = false;
2999 if (need_conversion
3000 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3001 && data->nominal_mode == data->passed_mode
3002 && data->nominal_mode == GET_MODE (data->entry_parm))
3004 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3005 mode, by the caller. We now have to convert it to
3006 NOMINAL_MODE, if different. However, PARMREG may be in
3007 a different mode than NOMINAL_MODE if it is being stored
3008 promoted.
3010 If ENTRY_PARM is a hard register, it might be in a register
3011 not valid for operating in its mode (e.g., an odd-numbered
3012 register for a DFmode). In that case, moves are the only
3013 thing valid, so we can't do a convert from there. This
3014 occurs when the calling sequence allow such misaligned
3015 usages.
3017 In addition, the conversion may involve a call, which could
3018 clobber parameters which haven't been copied to pseudo
3019 registers yet.
3021 First, we try to emit an insn which performs the necessary
3022 conversion. We verify that this insn does not clobber any
3023 hard registers. */
3025 enum insn_code icode;
3026 rtx op0, op1;
3028 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3029 unsignedp);
3031 op0 = parmreg;
3032 op1 = validated_mem;
3033 if (icode != CODE_FOR_nothing
3034 && insn_operand_matches (icode, 0, op0)
3035 && insn_operand_matches (icode, 1, op1))
3037 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3038 rtx_insn *insn, *insns;
3039 rtx t = op1;
3040 HARD_REG_SET hardregs;
3042 start_sequence ();
3043 /* If op1 is a hard register that is likely spilled, first
3044 force it into a pseudo, otherwise combiner might extend
3045 its lifetime too much. */
3046 if (GET_CODE (t) == SUBREG)
3047 t = SUBREG_REG (t);
3048 if (REG_P (t)
3049 && HARD_REGISTER_P (t)
3050 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3051 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3053 t = gen_reg_rtx (GET_MODE (op1));
3054 emit_move_insn (t, op1);
3056 else
3057 t = op1;
3058 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3059 data->passed_mode, unsignedp);
3060 emit_insn (pat);
3061 insns = get_insns ();
3063 moved = true;
3064 CLEAR_HARD_REG_SET (hardregs);
3065 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3067 if (INSN_P (insn))
3068 note_stores (PATTERN (insn), record_hard_reg_sets,
3069 &hardregs);
3070 if (!hard_reg_set_empty_p (hardregs))
3071 moved = false;
3074 end_sequence ();
3076 if (moved)
3078 emit_insn (insns);
3079 if (equiv_stack_parm != NULL_RTX)
3080 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3081 equiv_stack_parm);
3086 if (moved)
3087 /* Nothing to do. */
3089 else if (need_conversion)
3091 /* We did not have an insn to convert directly, or the sequence
3092 generated appeared unsafe. We must first copy the parm to a
3093 pseudo reg, and save the conversion until after all
3094 parameters have been moved. */
3096 int save_tree_used;
3097 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3099 emit_move_insn (tempreg, validated_mem);
3101 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3102 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3104 if (GET_CODE (tempreg) == SUBREG
3105 && GET_MODE (tempreg) == data->nominal_mode
3106 && REG_P (SUBREG_REG (tempreg))
3107 && data->nominal_mode == data->passed_mode
3108 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3109 && GET_MODE_SIZE (GET_MODE (tempreg))
3110 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3112 /* The argument is already sign/zero extended, so note it
3113 into the subreg. */
3114 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3115 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3118 /* TREE_USED gets set erroneously during expand_assignment. */
3119 save_tree_used = TREE_USED (parm);
3120 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3121 TREE_USED (parm) = save_tree_used;
3122 all->first_conversion_insn = get_insns ();
3123 all->last_conversion_insn = get_last_insn ();
3124 end_sequence ();
3126 did_conversion = true;
3128 else
3129 emit_move_insn (parmreg, validated_mem);
3131 /* If we were passed a pointer but the actual value can safely live
3132 in a register, retrieve it and use it directly. */
3133 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3135 /* We can't use nominal_mode, because it will have been set to
3136 Pmode above. We must use the actual mode of the parm. */
3137 if (use_register_for_decl (parm))
3139 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3140 mark_user_reg (parmreg);
3142 else
3144 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3145 TYPE_MODE (TREE_TYPE (parm)),
3146 TYPE_ALIGN (TREE_TYPE (parm)));
3147 parmreg
3148 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3149 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3150 align);
3151 set_mem_attributes (parmreg, parm, 1);
3154 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3156 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3157 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3159 push_to_sequence2 (all->first_conversion_insn,
3160 all->last_conversion_insn);
3161 emit_move_insn (tempreg, DECL_RTL (parm));
3162 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3163 emit_move_insn (parmreg, tempreg);
3164 all->first_conversion_insn = get_insns ();
3165 all->last_conversion_insn = get_last_insn ();
3166 end_sequence ();
3168 did_conversion = true;
3170 else
3171 emit_move_insn (parmreg, DECL_RTL (parm));
3173 SET_DECL_RTL (parm, parmreg);
3175 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3176 now the parm. */
3177 data->stack_parm = NULL;
3180 /* Mark the register as eliminable if we did no conversion and it was
3181 copied from memory at a fixed offset, and the arg pointer was not
3182 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3183 offset formed an invalid address, such memory-equivalences as we
3184 make here would screw up life analysis for it. */
3185 if (data->nominal_mode == data->passed_mode
3186 && !did_conversion
3187 && data->stack_parm != 0
3188 && MEM_P (data->stack_parm)
3189 && data->locate.offset.var == 0
3190 && reg_mentioned_p (virtual_incoming_args_rtx,
3191 XEXP (data->stack_parm, 0)))
3193 rtx_insn *linsn = get_last_insn ();
3194 rtx_insn *sinsn;
3195 rtx set;
3197 /* Mark complex types separately. */
3198 if (GET_CODE (parmreg) == CONCAT)
3200 machine_mode submode
3201 = GET_MODE_INNER (GET_MODE (parmreg));
3202 int regnor = REGNO (XEXP (parmreg, 0));
3203 int regnoi = REGNO (XEXP (parmreg, 1));
3204 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3205 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3206 GET_MODE_SIZE (submode));
3208 /* Scan backwards for the set of the real and
3209 imaginary parts. */
3210 for (sinsn = linsn; sinsn != 0;
3211 sinsn = prev_nonnote_insn (sinsn))
3213 set = single_set (sinsn);
3214 if (set == 0)
3215 continue;
3217 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3218 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3219 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3220 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3223 else
3224 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3227 /* For pointer data type, suggest pointer register. */
3228 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3229 mark_reg_pointer (parmreg,
3230 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3233 /* A subroutine of assign_parms. Allocate stack space to hold the current
3234 parameter. Get it there. Perform all ABI specified conversions. */
3236 static void
3237 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3238 struct assign_parm_data_one *data)
3240 /* Value must be stored in the stack slot STACK_PARM during function
3241 execution. */
3242 bool to_conversion = false;
3244 assign_parm_remove_parallels (data);
3246 if (data->promoted_mode != data->nominal_mode)
3248 /* Conversion is required. */
3249 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3251 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3253 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3254 to_conversion = true;
3256 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3257 TYPE_UNSIGNED (TREE_TYPE (parm)));
3259 if (data->stack_parm)
3261 int offset = subreg_lowpart_offset (data->nominal_mode,
3262 GET_MODE (data->stack_parm));
3263 /* ??? This may need a big-endian conversion on sparc64. */
3264 data->stack_parm
3265 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3266 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3267 set_mem_offset (data->stack_parm,
3268 MEM_OFFSET (data->stack_parm) + offset);
3272 if (data->entry_parm != data->stack_parm)
3274 rtx src, dest;
3276 if (data->stack_parm == 0)
3278 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3279 GET_MODE (data->entry_parm),
3280 TYPE_ALIGN (data->passed_type));
3281 data->stack_parm
3282 = assign_stack_local (GET_MODE (data->entry_parm),
3283 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3284 align);
3285 set_mem_attributes (data->stack_parm, parm, 1);
3288 dest = validize_mem (copy_rtx (data->stack_parm));
3289 src = validize_mem (copy_rtx (data->entry_parm));
3291 if (MEM_P (src))
3293 /* Use a block move to handle potentially misaligned entry_parm. */
3294 if (!to_conversion)
3295 push_to_sequence2 (all->first_conversion_insn,
3296 all->last_conversion_insn);
3297 to_conversion = true;
3299 emit_block_move (dest, src,
3300 GEN_INT (int_size_in_bytes (data->passed_type)),
3301 BLOCK_OP_NORMAL);
3303 else
3304 emit_move_insn (dest, src);
3307 if (to_conversion)
3309 all->first_conversion_insn = get_insns ();
3310 all->last_conversion_insn = get_last_insn ();
3311 end_sequence ();
3314 SET_DECL_RTL (parm, data->stack_parm);
3317 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3318 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3320 static void
3321 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3322 vec<tree> fnargs)
3324 tree parm;
3325 tree orig_fnargs = all->orig_fnargs;
3326 unsigned i = 0;
3328 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3330 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3331 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3333 rtx tmp, real, imag;
3334 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3336 real = DECL_RTL (fnargs[i]);
3337 imag = DECL_RTL (fnargs[i + 1]);
3338 if (inner != GET_MODE (real))
3340 real = gen_lowpart_SUBREG (inner, real);
3341 imag = gen_lowpart_SUBREG (inner, imag);
3344 if (TREE_ADDRESSABLE (parm))
3346 rtx rmem, imem;
3347 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3348 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3349 DECL_MODE (parm),
3350 TYPE_ALIGN (TREE_TYPE (parm)));
3352 /* split_complex_arg put the real and imag parts in
3353 pseudos. Move them to memory. */
3354 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3355 set_mem_attributes (tmp, parm, 1);
3356 rmem = adjust_address_nv (tmp, inner, 0);
3357 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3358 push_to_sequence2 (all->first_conversion_insn,
3359 all->last_conversion_insn);
3360 emit_move_insn (rmem, real);
3361 emit_move_insn (imem, imag);
3362 all->first_conversion_insn = get_insns ();
3363 all->last_conversion_insn = get_last_insn ();
3364 end_sequence ();
3366 else
3367 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3368 SET_DECL_RTL (parm, tmp);
3370 real = DECL_INCOMING_RTL (fnargs[i]);
3371 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3372 if (inner != GET_MODE (real))
3374 real = gen_lowpart_SUBREG (inner, real);
3375 imag = gen_lowpart_SUBREG (inner, imag);
3377 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3378 set_decl_incoming_rtl (parm, tmp, false);
3379 i++;
3384 /* Load bounds of PARM from bounds table. */
3385 static void
3386 assign_parm_load_bounds (struct assign_parm_data_one *data,
3387 tree parm,
3388 rtx entry,
3389 unsigned bound_no)
3391 bitmap_iterator bi;
3392 unsigned i, offs = 0;
3393 int bnd_no = -1;
3394 rtx slot = NULL, ptr = NULL;
3396 if (parm)
3398 bitmap slots;
3399 bitmap_obstack_initialize (NULL);
3400 slots = BITMAP_ALLOC (NULL);
3401 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3402 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3404 if (bound_no)
3405 bound_no--;
3406 else
3408 bnd_no = i;
3409 break;
3412 BITMAP_FREE (slots);
3413 bitmap_obstack_release (NULL);
3416 /* We may have bounds not associated with any pointer. */
3417 if (bnd_no != -1)
3418 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3420 /* Find associated pointer. */
3421 if (bnd_no == -1)
3423 /* If bounds are not associated with any bounds,
3424 then it is passed in a register or special slot. */
3425 gcc_assert (data->entry_parm);
3426 ptr = const0_rtx;
3428 else if (MEM_P (entry))
3429 slot = adjust_address (entry, Pmode, offs);
3430 else if (REG_P (entry))
3431 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3432 else if (GET_CODE (entry) == PARALLEL)
3433 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3434 else
3435 gcc_unreachable ();
3436 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3437 data->entry_parm);
3440 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3442 static void
3443 assign_bounds (vec<bounds_parm_data> &bndargs,
3444 struct assign_parm_data_all &all,
3445 bool assign_regs, bool assign_special,
3446 bool assign_bt)
3448 unsigned i, pass;
3449 bounds_parm_data *pbdata;
3451 if (!bndargs.exists ())
3452 return;
3454 /* We make few passes to store input bounds. Firstly handle bounds
3455 passed in registers. After that we load bounds passed in special
3456 slots. Finally we load bounds from Bounds Table. */
3457 for (pass = 0; pass < 3; pass++)
3458 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3460 /* Pass 0 => regs only. */
3461 if (pass == 0
3462 && (!assign_regs
3463 ||(!pbdata->parm_data.entry_parm
3464 || GET_CODE (pbdata->parm_data.entry_parm) != REG)))
3465 continue;
3466 /* Pass 1 => slots only. */
3467 else if (pass == 1
3468 && (!assign_special
3469 || (!pbdata->parm_data.entry_parm
3470 || GET_CODE (pbdata->parm_data.entry_parm) == REG)))
3471 continue;
3472 /* Pass 2 => BT only. */
3473 else if (pass == 2
3474 && (!assign_bt
3475 || pbdata->parm_data.entry_parm))
3476 continue;
3478 if (!pbdata->parm_data.entry_parm
3479 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3480 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3481 pbdata->ptr_entry, pbdata->bound_no);
3483 set_decl_incoming_rtl (pbdata->bounds_parm,
3484 pbdata->parm_data.entry_parm, false);
3486 if (assign_parm_setup_block_p (&pbdata->parm_data))
3487 assign_parm_setup_block (&all, pbdata->bounds_parm,
3488 &pbdata->parm_data);
3489 else if (pbdata->parm_data.passed_pointer
3490 || use_register_for_decl (pbdata->bounds_parm))
3491 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3492 &pbdata->parm_data);
3493 else
3494 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3495 &pbdata->parm_data);
3499 /* Assign RTL expressions to the function's parameters. This may involve
3500 copying them into registers and using those registers as the DECL_RTL. */
3502 static void
3503 assign_parms (tree fndecl)
3505 struct assign_parm_data_all all;
3506 tree parm;
3507 vec<tree> fnargs;
3508 unsigned i, bound_no = 0;
3509 tree last_arg = NULL;
3510 rtx last_arg_entry = NULL;
3511 vec<bounds_parm_data> bndargs = vNULL;
3512 bounds_parm_data bdata;
3514 crtl->args.internal_arg_pointer
3515 = targetm.calls.internal_arg_pointer ();
3517 assign_parms_initialize_all (&all);
3518 fnargs = assign_parms_augmented_arg_list (&all);
3520 FOR_EACH_VEC_ELT (fnargs, i, parm)
3522 struct assign_parm_data_one data;
3524 /* Extract the type of PARM; adjust it according to ABI. */
3525 assign_parm_find_data_types (&all, parm, &data);
3527 /* Early out for errors and void parameters. */
3528 if (data.passed_mode == VOIDmode)
3530 SET_DECL_RTL (parm, const0_rtx);
3531 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3532 continue;
3535 /* Estimate stack alignment from parameter alignment. */
3536 if (SUPPORTS_STACK_ALIGNMENT)
3538 unsigned int align
3539 = targetm.calls.function_arg_boundary (data.promoted_mode,
3540 data.passed_type);
3541 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3542 align);
3543 if (TYPE_ALIGN (data.nominal_type) > align)
3544 align = MINIMUM_ALIGNMENT (data.nominal_type,
3545 TYPE_MODE (data.nominal_type),
3546 TYPE_ALIGN (data.nominal_type));
3547 if (crtl->stack_alignment_estimated < align)
3549 gcc_assert (!crtl->stack_realign_processed);
3550 crtl->stack_alignment_estimated = align;
3554 /* Find out where the parameter arrives in this function. */
3555 assign_parm_find_entry_rtl (&all, &data);
3557 /* Find out where stack space for this parameter might be. */
3558 if (assign_parm_is_stack_parm (&all, &data))
3560 assign_parm_find_stack_rtl (parm, &data);
3561 assign_parm_adjust_entry_rtl (&data);
3563 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3565 /* Remember where last non bounds arg was passed in case
3566 we have to load associated bounds for it from Bounds
3567 Table. */
3568 last_arg = parm;
3569 last_arg_entry = data.entry_parm;
3570 bound_no = 0;
3572 /* Record permanently how this parm was passed. */
3573 if (data.passed_pointer)
3575 rtx incoming_rtl
3576 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3577 data.entry_parm);
3578 set_decl_incoming_rtl (parm, incoming_rtl, true);
3580 else
3581 set_decl_incoming_rtl (parm, data.entry_parm, false);
3583 /* Boudns should be loaded in the particular order to
3584 have registers allocated correctly. Collect info about
3585 input bounds and load them later. */
3586 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3588 /* Expect bounds in instrumented functions only. */
3589 gcc_assert (chkp_function_instrumented_p (fndecl));
3591 bdata.parm_data = data;
3592 bdata.bounds_parm = parm;
3593 bdata.ptr_parm = last_arg;
3594 bdata.ptr_entry = last_arg_entry;
3595 bdata.bound_no = bound_no;
3596 bndargs.safe_push (bdata);
3598 else
3600 assign_parm_adjust_stack_rtl (&data);
3602 if (assign_parm_setup_block_p (&data))
3603 assign_parm_setup_block (&all, parm, &data);
3604 else if (data.passed_pointer || use_register_for_decl (parm))
3605 assign_parm_setup_reg (&all, parm, &data);
3606 else
3607 assign_parm_setup_stack (&all, parm, &data);
3610 if (cfun->stdarg && !DECL_CHAIN (parm))
3612 int pretend_bytes = 0;
3614 assign_parms_setup_varargs (&all, &data, false);
3616 if (chkp_function_instrumented_p (fndecl))
3618 /* We expect this is the last parm. Otherwise it is wrong
3619 to assign bounds right now. */
3620 gcc_assert (i == (fnargs.length () - 1));
3621 assign_bounds (bndargs, all, true, false, false);
3622 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3623 data.promoted_mode,
3624 data.passed_type,
3625 &pretend_bytes,
3626 false);
3627 assign_bounds (bndargs, all, false, true, true);
3628 bndargs.release ();
3632 /* Update info on where next arg arrives in registers. */
3633 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3634 data.passed_type, data.named_arg);
3636 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3637 bound_no++;
3640 assign_bounds (bndargs, all, true, true, true);
3641 bndargs.release ();
3643 if (targetm.calls.split_complex_arg)
3644 assign_parms_unsplit_complex (&all, fnargs);
3646 fnargs.release ();
3648 /* Output all parameter conversion instructions (possibly including calls)
3649 now that all parameters have been copied out of hard registers. */
3650 emit_insn (all.first_conversion_insn);
3652 /* Estimate reload stack alignment from scalar return mode. */
3653 if (SUPPORTS_STACK_ALIGNMENT)
3655 if (DECL_RESULT (fndecl))
3657 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3658 machine_mode mode = TYPE_MODE (type);
3660 if (mode != BLKmode
3661 && mode != VOIDmode
3662 && !AGGREGATE_TYPE_P (type))
3664 unsigned int align = GET_MODE_ALIGNMENT (mode);
3665 if (crtl->stack_alignment_estimated < align)
3667 gcc_assert (!crtl->stack_realign_processed);
3668 crtl->stack_alignment_estimated = align;
3674 /* If we are receiving a struct value address as the first argument, set up
3675 the RTL for the function result. As this might require code to convert
3676 the transmitted address to Pmode, we do this here to ensure that possible
3677 preliminary conversions of the address have been emitted already. */
3678 if (all.function_result_decl)
3680 tree result = DECL_RESULT (current_function_decl);
3681 rtx addr = DECL_RTL (all.function_result_decl);
3682 rtx x;
3684 if (DECL_BY_REFERENCE (result))
3686 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3687 x = addr;
3689 else
3691 SET_DECL_VALUE_EXPR (result,
3692 build1 (INDIRECT_REF, TREE_TYPE (result),
3693 all.function_result_decl));
3694 addr = convert_memory_address (Pmode, addr);
3695 x = gen_rtx_MEM (DECL_MODE (result), addr);
3696 set_mem_attributes (x, result, 1);
3699 DECL_HAS_VALUE_EXPR_P (result) = 1;
3701 SET_DECL_RTL (result, x);
3704 /* We have aligned all the args, so add space for the pretend args. */
3705 crtl->args.pretend_args_size = all.pretend_args_size;
3706 all.stack_args_size.constant += all.extra_pretend_bytes;
3707 crtl->args.size = all.stack_args_size.constant;
3709 /* Adjust function incoming argument size for alignment and
3710 minimum length. */
3712 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3713 crtl->args.size = CEIL_ROUND (crtl->args.size,
3714 PARM_BOUNDARY / BITS_PER_UNIT);
3716 if (ARGS_GROW_DOWNWARD)
3718 crtl->args.arg_offset_rtx
3719 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3720 : expand_expr (size_diffop (all.stack_args_size.var,
3721 size_int (-all.stack_args_size.constant)),
3722 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3724 else
3725 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3727 /* See how many bytes, if any, of its args a function should try to pop
3728 on return. */
3730 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3731 TREE_TYPE (fndecl),
3732 crtl->args.size);
3734 /* For stdarg.h function, save info about
3735 regs and stack space used by the named args. */
3737 crtl->args.info = all.args_so_far_v;
3739 /* Set the rtx used for the function return value. Put this in its
3740 own variable so any optimizers that need this information don't have
3741 to include tree.h. Do this here so it gets done when an inlined
3742 function gets output. */
3744 crtl->return_rtx
3745 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3746 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3748 /* If scalar return value was computed in a pseudo-reg, or was a named
3749 return value that got dumped to the stack, copy that to the hard
3750 return register. */
3751 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3753 tree decl_result = DECL_RESULT (fndecl);
3754 rtx decl_rtl = DECL_RTL (decl_result);
3756 if (REG_P (decl_rtl)
3757 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3758 : DECL_REGISTER (decl_result))
3760 rtx real_decl_rtl;
3762 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3763 fndecl, true);
3764 if (chkp_function_instrumented_p (fndecl))
3765 crtl->return_bnd
3766 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3767 fndecl, true);
3768 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3769 /* The delay slot scheduler assumes that crtl->return_rtx
3770 holds the hard register containing the return value, not a
3771 temporary pseudo. */
3772 crtl->return_rtx = real_decl_rtl;
3777 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3778 For all seen types, gimplify their sizes. */
3780 static tree
3781 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3783 tree t = *tp;
3785 *walk_subtrees = 0;
3786 if (TYPE_P (t))
3788 if (POINTER_TYPE_P (t))
3789 *walk_subtrees = 1;
3790 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3791 && !TYPE_SIZES_GIMPLIFIED (t))
3793 gimplify_type_sizes (t, (gimple_seq *) data);
3794 *walk_subtrees = 1;
3798 return NULL;
3801 /* Gimplify the parameter list for current_function_decl. This involves
3802 evaluating SAVE_EXPRs of variable sized parameters and generating code
3803 to implement callee-copies reference parameters. Returns a sequence of
3804 statements to add to the beginning of the function. */
3806 gimple_seq
3807 gimplify_parameters (void)
3809 struct assign_parm_data_all all;
3810 tree parm;
3811 gimple_seq stmts = NULL;
3812 vec<tree> fnargs;
3813 unsigned i;
3815 assign_parms_initialize_all (&all);
3816 fnargs = assign_parms_augmented_arg_list (&all);
3818 FOR_EACH_VEC_ELT (fnargs, i, parm)
3820 struct assign_parm_data_one data;
3822 /* Extract the type of PARM; adjust it according to ABI. */
3823 assign_parm_find_data_types (&all, parm, &data);
3825 /* Early out for errors and void parameters. */
3826 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3827 continue;
3829 /* Update info on where next arg arrives in registers. */
3830 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3831 data.passed_type, data.named_arg);
3833 /* ??? Once upon a time variable_size stuffed parameter list
3834 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3835 turned out to be less than manageable in the gimple world.
3836 Now we have to hunt them down ourselves. */
3837 walk_tree_without_duplicates (&data.passed_type,
3838 gimplify_parm_type, &stmts);
3840 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3842 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3843 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3846 if (data.passed_pointer)
3848 tree type = TREE_TYPE (data.passed_type);
3849 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3850 type, data.named_arg))
3852 tree local, t;
3854 /* For constant-sized objects, this is trivial; for
3855 variable-sized objects, we have to play games. */
3856 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3857 && !(flag_stack_check == GENERIC_STACK_CHECK
3858 && compare_tree_int (DECL_SIZE_UNIT (parm),
3859 STACK_CHECK_MAX_VAR_SIZE) > 0))
3861 local = create_tmp_var (type, get_name (parm));
3862 DECL_IGNORED_P (local) = 0;
3863 /* If PARM was addressable, move that flag over
3864 to the local copy, as its address will be taken,
3865 not the PARMs. Keep the parms address taken
3866 as we'll query that flag during gimplification. */
3867 if (TREE_ADDRESSABLE (parm))
3868 TREE_ADDRESSABLE (local) = 1;
3869 else if (TREE_CODE (type) == COMPLEX_TYPE
3870 || TREE_CODE (type) == VECTOR_TYPE)
3871 DECL_GIMPLE_REG_P (local) = 1;
3873 else
3875 tree ptr_type, addr;
3877 ptr_type = build_pointer_type (type);
3878 addr = create_tmp_reg (ptr_type, get_name (parm));
3879 DECL_IGNORED_P (addr) = 0;
3880 local = build_fold_indirect_ref (addr);
3882 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3883 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3884 size_int (DECL_ALIGN (parm)));
3886 /* The call has been built for a variable-sized object. */
3887 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3888 t = fold_convert (ptr_type, t);
3889 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3890 gimplify_and_add (t, &stmts);
3893 gimplify_assign (local, parm, &stmts);
3895 SET_DECL_VALUE_EXPR (parm, local);
3896 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3901 fnargs.release ();
3903 return stmts;
3906 /* Compute the size and offset from the start of the stacked arguments for a
3907 parm passed in mode PASSED_MODE and with type TYPE.
3909 INITIAL_OFFSET_PTR points to the current offset into the stacked
3910 arguments.
3912 The starting offset and size for this parm are returned in
3913 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3914 nonzero, the offset is that of stack slot, which is returned in
3915 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3916 padding required from the initial offset ptr to the stack slot.
3918 IN_REGS is nonzero if the argument will be passed in registers. It will
3919 never be set if REG_PARM_STACK_SPACE is not defined.
3921 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3922 for arguments which are passed in registers.
3924 FNDECL is the function in which the argument was defined.
3926 There are two types of rounding that are done. The first, controlled by
3927 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3928 argument list to be aligned to the specific boundary (in bits). This
3929 rounding affects the initial and starting offsets, but not the argument
3930 size.
3932 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3933 optionally rounds the size of the parm to PARM_BOUNDARY. The
3934 initial offset is not affected by this rounding, while the size always
3935 is and the starting offset may be. */
3937 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3938 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3939 callers pass in the total size of args so far as
3940 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3942 void
3943 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
3944 int reg_parm_stack_space, int partial,
3945 tree fndecl ATTRIBUTE_UNUSED,
3946 struct args_size *initial_offset_ptr,
3947 struct locate_and_pad_arg_data *locate)
3949 tree sizetree;
3950 enum direction where_pad;
3951 unsigned int boundary, round_boundary;
3952 int part_size_in_regs;
3954 /* If we have found a stack parm before we reach the end of the
3955 area reserved for registers, skip that area. */
3956 if (! in_regs)
3958 if (reg_parm_stack_space > 0)
3960 if (initial_offset_ptr->var)
3962 initial_offset_ptr->var
3963 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3964 ssize_int (reg_parm_stack_space));
3965 initial_offset_ptr->constant = 0;
3967 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3968 initial_offset_ptr->constant = reg_parm_stack_space;
3972 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3974 sizetree
3975 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3976 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3977 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3978 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3979 type);
3980 locate->where_pad = where_pad;
3982 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3983 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3984 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3986 locate->boundary = boundary;
3988 if (SUPPORTS_STACK_ALIGNMENT)
3990 /* stack_alignment_estimated can't change after stack has been
3991 realigned. */
3992 if (crtl->stack_alignment_estimated < boundary)
3994 if (!crtl->stack_realign_processed)
3995 crtl->stack_alignment_estimated = boundary;
3996 else
3998 /* If stack is realigned and stack alignment value
3999 hasn't been finalized, it is OK not to increase
4000 stack_alignment_estimated. The bigger alignment
4001 requirement is recorded in stack_alignment_needed
4002 below. */
4003 gcc_assert (!crtl->stack_realign_finalized
4004 && crtl->stack_realign_needed);
4009 /* Remember if the outgoing parameter requires extra alignment on the
4010 calling function side. */
4011 if (crtl->stack_alignment_needed < boundary)
4012 crtl->stack_alignment_needed = boundary;
4013 if (crtl->preferred_stack_boundary < boundary)
4014 crtl->preferred_stack_boundary = boundary;
4016 if (ARGS_GROW_DOWNWARD)
4018 locate->slot_offset.constant = -initial_offset_ptr->constant;
4019 if (initial_offset_ptr->var)
4020 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4021 initial_offset_ptr->var);
4024 tree s2 = sizetree;
4025 if (where_pad != none
4026 && (!tree_fits_uhwi_p (sizetree)
4027 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4028 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4029 SUB_PARM_SIZE (locate->slot_offset, s2);
4032 locate->slot_offset.constant += part_size_in_regs;
4034 if (!in_regs || reg_parm_stack_space > 0)
4035 pad_to_arg_alignment (&locate->slot_offset, boundary,
4036 &locate->alignment_pad);
4038 locate->size.constant = (-initial_offset_ptr->constant
4039 - locate->slot_offset.constant);
4040 if (initial_offset_ptr->var)
4041 locate->size.var = size_binop (MINUS_EXPR,
4042 size_binop (MINUS_EXPR,
4043 ssize_int (0),
4044 initial_offset_ptr->var),
4045 locate->slot_offset.var);
4047 /* Pad_below needs the pre-rounded size to know how much to pad
4048 below. */
4049 locate->offset = locate->slot_offset;
4050 if (where_pad == downward)
4051 pad_below (&locate->offset, passed_mode, sizetree);
4054 else
4056 if (!in_regs || reg_parm_stack_space > 0)
4057 pad_to_arg_alignment (initial_offset_ptr, boundary,
4058 &locate->alignment_pad);
4059 locate->slot_offset = *initial_offset_ptr;
4061 #ifdef PUSH_ROUNDING
4062 if (passed_mode != BLKmode)
4063 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4064 #endif
4066 /* Pad_below needs the pre-rounded size to know how much to pad below
4067 so this must be done before rounding up. */
4068 locate->offset = locate->slot_offset;
4069 if (where_pad == downward)
4070 pad_below (&locate->offset, passed_mode, sizetree);
4072 if (where_pad != none
4073 && (!tree_fits_uhwi_p (sizetree)
4074 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4075 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4077 ADD_PARM_SIZE (locate->size, sizetree);
4079 locate->size.constant -= part_size_in_regs;
4082 #ifdef FUNCTION_ARG_OFFSET
4083 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
4084 #endif
4087 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4088 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4090 static void
4091 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4092 struct args_size *alignment_pad)
4094 tree save_var = NULL_TREE;
4095 HOST_WIDE_INT save_constant = 0;
4096 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4097 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
4099 #ifdef SPARC_STACK_BOUNDARY_HACK
4100 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4101 the real alignment of %sp. However, when it does this, the
4102 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4103 if (SPARC_STACK_BOUNDARY_HACK)
4104 sp_offset = 0;
4105 #endif
4107 if (boundary > PARM_BOUNDARY)
4109 save_var = offset_ptr->var;
4110 save_constant = offset_ptr->constant;
4113 alignment_pad->var = NULL_TREE;
4114 alignment_pad->constant = 0;
4116 if (boundary > BITS_PER_UNIT)
4118 if (offset_ptr->var)
4120 tree sp_offset_tree = ssize_int (sp_offset);
4121 tree offset = size_binop (PLUS_EXPR,
4122 ARGS_SIZE_TREE (*offset_ptr),
4123 sp_offset_tree);
4124 tree rounded;
4125 if (ARGS_GROW_DOWNWARD)
4126 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4127 else
4128 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4130 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4131 /* ARGS_SIZE_TREE includes constant term. */
4132 offset_ptr->constant = 0;
4133 if (boundary > PARM_BOUNDARY)
4134 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4135 save_var);
4137 else
4139 offset_ptr->constant = -sp_offset +
4140 (ARGS_GROW_DOWNWARD
4141 ? FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes)
4142 : CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes));
4144 if (boundary > PARM_BOUNDARY)
4145 alignment_pad->constant = offset_ptr->constant - save_constant;
4150 static void
4151 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4153 if (passed_mode != BLKmode)
4155 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4156 offset_ptr->constant
4157 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4158 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4159 - GET_MODE_SIZE (passed_mode));
4161 else
4163 if (TREE_CODE (sizetree) != INTEGER_CST
4164 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4166 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4167 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4168 /* Add it in. */
4169 ADD_PARM_SIZE (*offset_ptr, s2);
4170 SUB_PARM_SIZE (*offset_ptr, sizetree);
4176 /* True if register REGNO was alive at a place where `setjmp' was
4177 called and was set more than once or is an argument. Such regs may
4178 be clobbered by `longjmp'. */
4180 static bool
4181 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4183 /* There appear to be cases where some local vars never reach the
4184 backend but have bogus regnos. */
4185 if (regno >= max_reg_num ())
4186 return false;
4188 return ((REG_N_SETS (regno) > 1
4189 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4190 regno))
4191 && REGNO_REG_SET_P (setjmp_crosses, regno));
4194 /* Walk the tree of blocks describing the binding levels within a
4195 function and warn about variables the might be killed by setjmp or
4196 vfork. This is done after calling flow_analysis before register
4197 allocation since that will clobber the pseudo-regs to hard
4198 regs. */
4200 static void
4201 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4203 tree decl, sub;
4205 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4207 if (TREE_CODE (decl) == VAR_DECL
4208 && DECL_RTL_SET_P (decl)
4209 && REG_P (DECL_RTL (decl))
4210 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4211 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4212 " %<longjmp%> or %<vfork%>", decl);
4215 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4216 setjmp_vars_warning (setjmp_crosses, sub);
4219 /* Do the appropriate part of setjmp_vars_warning
4220 but for arguments instead of local variables. */
4222 static void
4223 setjmp_args_warning (bitmap setjmp_crosses)
4225 tree decl;
4226 for (decl = DECL_ARGUMENTS (current_function_decl);
4227 decl; decl = DECL_CHAIN (decl))
4228 if (DECL_RTL (decl) != 0
4229 && REG_P (DECL_RTL (decl))
4230 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4231 warning (OPT_Wclobbered,
4232 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4233 decl);
4236 /* Generate warning messages for variables live across setjmp. */
4238 void
4239 generate_setjmp_warnings (void)
4241 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4243 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4244 || bitmap_empty_p (setjmp_crosses))
4245 return;
4247 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4248 setjmp_args_warning (setjmp_crosses);
4252 /* Reverse the order of elements in the fragment chain T of blocks,
4253 and return the new head of the chain (old last element).
4254 In addition to that clear BLOCK_SAME_RANGE flags when needed
4255 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4256 its super fragment origin. */
4258 static tree
4259 block_fragments_nreverse (tree t)
4261 tree prev = 0, block, next, prev_super = 0;
4262 tree super = BLOCK_SUPERCONTEXT (t);
4263 if (BLOCK_FRAGMENT_ORIGIN (super))
4264 super = BLOCK_FRAGMENT_ORIGIN (super);
4265 for (block = t; block; block = next)
4267 next = BLOCK_FRAGMENT_CHAIN (block);
4268 BLOCK_FRAGMENT_CHAIN (block) = prev;
4269 if ((prev && !BLOCK_SAME_RANGE (prev))
4270 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4271 != prev_super))
4272 BLOCK_SAME_RANGE (block) = 0;
4273 prev_super = BLOCK_SUPERCONTEXT (block);
4274 BLOCK_SUPERCONTEXT (block) = super;
4275 prev = block;
4277 t = BLOCK_FRAGMENT_ORIGIN (t);
4278 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4279 != prev_super)
4280 BLOCK_SAME_RANGE (t) = 0;
4281 BLOCK_SUPERCONTEXT (t) = super;
4282 return prev;
4285 /* Reverse the order of elements in the chain T of blocks,
4286 and return the new head of the chain (old last element).
4287 Also do the same on subblocks and reverse the order of elements
4288 in BLOCK_FRAGMENT_CHAIN as well. */
4290 static tree
4291 blocks_nreverse_all (tree t)
4293 tree prev = 0, block, next;
4294 for (block = t; block; block = next)
4296 next = BLOCK_CHAIN (block);
4297 BLOCK_CHAIN (block) = prev;
4298 if (BLOCK_FRAGMENT_CHAIN (block)
4299 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4301 BLOCK_FRAGMENT_CHAIN (block)
4302 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4303 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4304 BLOCK_SAME_RANGE (block) = 0;
4306 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4307 prev = block;
4309 return prev;
4313 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4314 and create duplicate blocks. */
4315 /* ??? Need an option to either create block fragments or to create
4316 abstract origin duplicates of a source block. It really depends
4317 on what optimization has been performed. */
4319 void
4320 reorder_blocks (void)
4322 tree block = DECL_INITIAL (current_function_decl);
4324 if (block == NULL_TREE)
4325 return;
4327 auto_vec<tree, 10> block_stack;
4329 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4330 clear_block_marks (block);
4332 /* Prune the old trees away, so that they don't get in the way. */
4333 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4334 BLOCK_CHAIN (block) = NULL_TREE;
4336 /* Recreate the block tree from the note nesting. */
4337 reorder_blocks_1 (get_insns (), block, &block_stack);
4338 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4341 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4343 void
4344 clear_block_marks (tree block)
4346 while (block)
4348 TREE_ASM_WRITTEN (block) = 0;
4349 clear_block_marks (BLOCK_SUBBLOCKS (block));
4350 block = BLOCK_CHAIN (block);
4354 static void
4355 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4356 vec<tree> *p_block_stack)
4358 rtx_insn *insn;
4359 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4361 for (insn = insns; insn; insn = NEXT_INSN (insn))
4363 if (NOTE_P (insn))
4365 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4367 tree block = NOTE_BLOCK (insn);
4368 tree origin;
4370 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4371 origin = block;
4373 if (prev_end)
4374 BLOCK_SAME_RANGE (prev_end) = 0;
4375 prev_end = NULL_TREE;
4377 /* If we have seen this block before, that means it now
4378 spans multiple address regions. Create a new fragment. */
4379 if (TREE_ASM_WRITTEN (block))
4381 tree new_block = copy_node (block);
4383 BLOCK_SAME_RANGE (new_block) = 0;
4384 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4385 BLOCK_FRAGMENT_CHAIN (new_block)
4386 = BLOCK_FRAGMENT_CHAIN (origin);
4387 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4389 NOTE_BLOCK (insn) = new_block;
4390 block = new_block;
4393 if (prev_beg == current_block && prev_beg)
4394 BLOCK_SAME_RANGE (block) = 1;
4396 prev_beg = origin;
4398 BLOCK_SUBBLOCKS (block) = 0;
4399 TREE_ASM_WRITTEN (block) = 1;
4400 /* When there's only one block for the entire function,
4401 current_block == block and we mustn't do this, it
4402 will cause infinite recursion. */
4403 if (block != current_block)
4405 tree super;
4406 if (block != origin)
4407 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4408 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4409 (origin))
4410 == current_block);
4411 if (p_block_stack->is_empty ())
4412 super = current_block;
4413 else
4415 super = p_block_stack->last ();
4416 gcc_assert (super == current_block
4417 || BLOCK_FRAGMENT_ORIGIN (super)
4418 == current_block);
4420 BLOCK_SUPERCONTEXT (block) = super;
4421 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4422 BLOCK_SUBBLOCKS (current_block) = block;
4423 current_block = origin;
4425 p_block_stack->safe_push (block);
4427 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4429 NOTE_BLOCK (insn) = p_block_stack->pop ();
4430 current_block = BLOCK_SUPERCONTEXT (current_block);
4431 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4432 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4433 prev_beg = NULL_TREE;
4434 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4435 ? NOTE_BLOCK (insn) : NULL_TREE;
4438 else
4440 prev_beg = NULL_TREE;
4441 if (prev_end)
4442 BLOCK_SAME_RANGE (prev_end) = 0;
4443 prev_end = NULL_TREE;
4448 /* Reverse the order of elements in the chain T of blocks,
4449 and return the new head of the chain (old last element). */
4451 tree
4452 blocks_nreverse (tree t)
4454 tree prev = 0, block, next;
4455 for (block = t; block; block = next)
4457 next = BLOCK_CHAIN (block);
4458 BLOCK_CHAIN (block) = prev;
4459 prev = block;
4461 return prev;
4464 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4465 by modifying the last node in chain 1 to point to chain 2. */
4467 tree
4468 block_chainon (tree op1, tree op2)
4470 tree t1;
4472 if (!op1)
4473 return op2;
4474 if (!op2)
4475 return op1;
4477 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4478 continue;
4479 BLOCK_CHAIN (t1) = op2;
4481 #ifdef ENABLE_TREE_CHECKING
4483 tree t2;
4484 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4485 gcc_assert (t2 != t1);
4487 #endif
4489 return op1;
4492 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4493 non-NULL, list them all into VECTOR, in a depth-first preorder
4494 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4495 blocks. */
4497 static int
4498 all_blocks (tree block, tree *vector)
4500 int n_blocks = 0;
4502 while (block)
4504 TREE_ASM_WRITTEN (block) = 0;
4506 /* Record this block. */
4507 if (vector)
4508 vector[n_blocks] = block;
4510 ++n_blocks;
4512 /* Record the subblocks, and their subblocks... */
4513 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4514 vector ? vector + n_blocks : 0);
4515 block = BLOCK_CHAIN (block);
4518 return n_blocks;
4521 /* Return a vector containing all the blocks rooted at BLOCK. The
4522 number of elements in the vector is stored in N_BLOCKS_P. The
4523 vector is dynamically allocated; it is the caller's responsibility
4524 to call `free' on the pointer returned. */
4526 static tree *
4527 get_block_vector (tree block, int *n_blocks_p)
4529 tree *block_vector;
4531 *n_blocks_p = all_blocks (block, NULL);
4532 block_vector = XNEWVEC (tree, *n_blocks_p);
4533 all_blocks (block, block_vector);
4535 return block_vector;
4538 static GTY(()) int next_block_index = 2;
4540 /* Set BLOCK_NUMBER for all the blocks in FN. */
4542 void
4543 number_blocks (tree fn)
4545 int i;
4546 int n_blocks;
4547 tree *block_vector;
4549 /* For SDB and XCOFF debugging output, we start numbering the blocks
4550 from 1 within each function, rather than keeping a running
4551 count. */
4552 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4553 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4554 next_block_index = 1;
4555 #endif
4557 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4559 /* The top-level BLOCK isn't numbered at all. */
4560 for (i = 1; i < n_blocks; ++i)
4561 /* We number the blocks from two. */
4562 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4564 free (block_vector);
4566 return;
4569 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4571 DEBUG_FUNCTION tree
4572 debug_find_var_in_block_tree (tree var, tree block)
4574 tree t;
4576 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4577 if (t == var)
4578 return block;
4580 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4582 tree ret = debug_find_var_in_block_tree (var, t);
4583 if (ret)
4584 return ret;
4587 return NULL_TREE;
4590 /* Keep track of whether we're in a dummy function context. If we are,
4591 we don't want to invoke the set_current_function hook, because we'll
4592 get into trouble if the hook calls target_reinit () recursively or
4593 when the initial initialization is not yet complete. */
4595 static bool in_dummy_function;
4597 /* Invoke the target hook when setting cfun. Update the optimization options
4598 if the function uses different options than the default. */
4600 static void
4601 invoke_set_current_function_hook (tree fndecl)
4603 if (!in_dummy_function)
4605 tree opts = ((fndecl)
4606 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4607 : optimization_default_node);
4609 if (!opts)
4610 opts = optimization_default_node;
4612 /* Change optimization options if needed. */
4613 if (optimization_current_node != opts)
4615 optimization_current_node = opts;
4616 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4619 targetm.set_current_function (fndecl);
4620 this_fn_optabs = this_target_optabs;
4622 if (opts != optimization_default_node)
4624 init_tree_optimization_optabs (opts);
4625 if (TREE_OPTIMIZATION_OPTABS (opts))
4626 this_fn_optabs = (struct target_optabs *)
4627 TREE_OPTIMIZATION_OPTABS (opts);
4632 /* cfun should never be set directly; use this function. */
4634 void
4635 set_cfun (struct function *new_cfun)
4637 if (cfun != new_cfun)
4639 cfun = new_cfun;
4640 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4644 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4646 static vec<function_p> cfun_stack;
4648 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4649 current_function_decl accordingly. */
4651 void
4652 push_cfun (struct function *new_cfun)
4654 gcc_assert ((!cfun && !current_function_decl)
4655 || (cfun && current_function_decl == cfun->decl));
4656 cfun_stack.safe_push (cfun);
4657 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4658 set_cfun (new_cfun);
4661 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4663 void
4664 pop_cfun (void)
4666 struct function *new_cfun = cfun_stack.pop ();
4667 /* When in_dummy_function, we do have a cfun but current_function_decl is
4668 NULL. We also allow pushing NULL cfun and subsequently changing
4669 current_function_decl to something else and have both restored by
4670 pop_cfun. */
4671 gcc_checking_assert (in_dummy_function
4672 || !cfun
4673 || current_function_decl == cfun->decl);
4674 set_cfun (new_cfun);
4675 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4678 /* Return value of funcdef and increase it. */
4680 get_next_funcdef_no (void)
4682 return funcdef_no++;
4685 /* Return value of funcdef. */
4687 get_last_funcdef_no (void)
4689 return funcdef_no;
4692 /* Allocate a function structure for FNDECL and set its contents
4693 to the defaults. Set cfun to the newly-allocated object.
4694 Some of the helper functions invoked during initialization assume
4695 that cfun has already been set. Therefore, assign the new object
4696 directly into cfun and invoke the back end hook explicitly at the
4697 very end, rather than initializing a temporary and calling set_cfun
4698 on it.
4700 ABSTRACT_P is true if this is a function that will never be seen by
4701 the middle-end. Such functions are front-end concepts (like C++
4702 function templates) that do not correspond directly to functions
4703 placed in object files. */
4705 void
4706 allocate_struct_function (tree fndecl, bool abstract_p)
4708 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4710 cfun = ggc_cleared_alloc<function> ();
4712 init_eh_for_function ();
4714 if (init_machine_status)
4715 cfun->machine = (*init_machine_status) ();
4717 #ifdef OVERRIDE_ABI_FORMAT
4718 OVERRIDE_ABI_FORMAT (fndecl);
4719 #endif
4721 if (fndecl != NULL_TREE)
4723 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4724 cfun->decl = fndecl;
4725 current_function_funcdef_no = get_next_funcdef_no ();
4728 invoke_set_current_function_hook (fndecl);
4730 if (fndecl != NULL_TREE)
4732 tree result = DECL_RESULT (fndecl);
4733 if (!abstract_p && aggregate_value_p (result, fndecl))
4735 #ifdef PCC_STATIC_STRUCT_RETURN
4736 cfun->returns_pcc_struct = 1;
4737 #endif
4738 cfun->returns_struct = 1;
4741 cfun->stdarg = stdarg_p (fntype);
4743 /* Assume all registers in stdarg functions need to be saved. */
4744 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4745 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4747 /* ??? This could be set on a per-function basis by the front-end
4748 but is this worth the hassle? */
4749 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4750 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4752 if (!profile_flag && !flag_instrument_function_entry_exit)
4753 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4757 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4758 instead of just setting it. */
4760 void
4761 push_struct_function (tree fndecl)
4763 /* When in_dummy_function we might be in the middle of a pop_cfun and
4764 current_function_decl and cfun may not match. */
4765 gcc_assert (in_dummy_function
4766 || (!cfun && !current_function_decl)
4767 || (cfun && current_function_decl == cfun->decl));
4768 cfun_stack.safe_push (cfun);
4769 current_function_decl = fndecl;
4770 allocate_struct_function (fndecl, false);
4773 /* Reset crtl and other non-struct-function variables to defaults as
4774 appropriate for emitting rtl at the start of a function. */
4776 static void
4777 prepare_function_start (void)
4779 gcc_assert (!get_last_insn ());
4780 init_temp_slots ();
4781 init_emit ();
4782 init_varasm_status ();
4783 init_expr ();
4784 default_rtl_profile ();
4786 if (flag_stack_usage_info)
4788 cfun->su = ggc_cleared_alloc<stack_usage> ();
4789 cfun->su->static_stack_size = -1;
4792 cse_not_expected = ! optimize;
4794 /* Caller save not needed yet. */
4795 caller_save_needed = 0;
4797 /* We haven't done register allocation yet. */
4798 reg_renumber = 0;
4800 /* Indicate that we have not instantiated virtual registers yet. */
4801 virtuals_instantiated = 0;
4803 /* Indicate that we want CONCATs now. */
4804 generating_concat_p = 1;
4806 /* Indicate we have no need of a frame pointer yet. */
4807 frame_pointer_needed = 0;
4810 void
4811 push_dummy_function (bool with_decl)
4813 tree fn_decl, fn_type, fn_result_decl;
4815 gcc_assert (!in_dummy_function);
4816 in_dummy_function = true;
4818 if (with_decl)
4820 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4821 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4822 fn_type);
4823 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4824 NULL_TREE, void_type_node);
4825 DECL_RESULT (fn_decl) = fn_result_decl;
4827 else
4828 fn_decl = NULL_TREE;
4830 push_struct_function (fn_decl);
4833 /* Initialize the rtl expansion mechanism so that we can do simple things
4834 like generate sequences. This is used to provide a context during global
4835 initialization of some passes. You must call expand_dummy_function_end
4836 to exit this context. */
4838 void
4839 init_dummy_function_start (void)
4841 push_dummy_function (false);
4842 prepare_function_start ();
4845 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4846 and initialize static variables for generating RTL for the statements
4847 of the function. */
4849 void
4850 init_function_start (tree subr)
4852 if (subr && DECL_STRUCT_FUNCTION (subr))
4853 set_cfun (DECL_STRUCT_FUNCTION (subr));
4854 else
4855 allocate_struct_function (subr, false);
4857 /* Initialize backend, if needed. */
4858 initialize_rtl ();
4860 prepare_function_start ();
4861 decide_function_section (subr);
4863 /* Warn if this value is an aggregate type,
4864 regardless of which calling convention we are using for it. */
4865 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4866 warning (OPT_Waggregate_return, "function returns an aggregate");
4869 /* Expand code to verify the stack_protect_guard. This is invoked at
4870 the end of a function to be protected. */
4872 void
4873 stack_protect_epilogue (void)
4875 tree guard_decl = targetm.stack_protect_guard ();
4876 rtx_code_label *label = gen_label_rtx ();
4877 rtx x, y, tmp;
4878 rtx_insn *seq;
4880 x = expand_normal (crtl->stack_protect_guard);
4881 y = expand_normal (guard_decl);
4883 /* Allow the target to compare Y with X without leaking either into
4884 a register. */
4885 if (targetm.have_stack_protect_test ()
4886 && ((seq = targetm.gen_stack_protect_test (x, y, label)) != NULL_RTX))
4887 emit_insn (seq);
4888 else
4889 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4891 /* The noreturn predictor has been moved to the tree level. The rtl-level
4892 predictors estimate this branch about 20%, which isn't enough to get
4893 things moved out of line. Since this is the only extant case of adding
4894 a noreturn function at the rtl level, it doesn't seem worth doing ought
4895 except adding the prediction by hand. */
4896 tmp = get_last_insn ();
4897 if (JUMP_P (tmp))
4898 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4900 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4901 free_temp_slots ();
4902 emit_label (label);
4905 /* Start the RTL for a new function, and set variables used for
4906 emitting RTL.
4907 SUBR is the FUNCTION_DECL node.
4908 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4909 the function's parameters, which must be run at any return statement. */
4911 void
4912 expand_function_start (tree subr)
4914 /* Make sure volatile mem refs aren't considered
4915 valid operands of arithmetic insns. */
4916 init_recog_no_volatile ();
4918 crtl->profile
4919 = (profile_flag
4920 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4922 crtl->limit_stack
4923 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4925 /* Make the label for return statements to jump to. Do not special
4926 case machines with special return instructions -- they will be
4927 handled later during jump, ifcvt, or epilogue creation. */
4928 return_label = gen_label_rtx ();
4930 /* Initialize rtx used to return the value. */
4931 /* Do this before assign_parms so that we copy the struct value address
4932 before any library calls that assign parms might generate. */
4934 /* Decide whether to return the value in memory or in a register. */
4935 if (aggregate_value_p (DECL_RESULT (subr), subr))
4937 /* Returning something that won't go in a register. */
4938 rtx value_address = 0;
4940 #ifdef PCC_STATIC_STRUCT_RETURN
4941 if (cfun->returns_pcc_struct)
4943 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4944 value_address = assemble_static_space (size);
4946 else
4947 #endif
4949 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4950 /* Expect to be passed the address of a place to store the value.
4951 If it is passed as an argument, assign_parms will take care of
4952 it. */
4953 if (sv)
4955 value_address = gen_reg_rtx (Pmode);
4956 emit_move_insn (value_address, sv);
4959 if (value_address)
4961 rtx x = value_address;
4962 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4964 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4965 set_mem_attributes (x, DECL_RESULT (subr), 1);
4967 SET_DECL_RTL (DECL_RESULT (subr), x);
4970 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4971 /* If return mode is void, this decl rtl should not be used. */
4972 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4973 else
4975 /* Compute the return values into a pseudo reg, which we will copy
4976 into the true return register after the cleanups are done. */
4977 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4978 if (TYPE_MODE (return_type) != BLKmode
4979 && targetm.calls.return_in_msb (return_type))
4980 /* expand_function_end will insert the appropriate padding in
4981 this case. Use the return value's natural (unpadded) mode
4982 within the function proper. */
4983 SET_DECL_RTL (DECL_RESULT (subr),
4984 gen_reg_rtx (TYPE_MODE (return_type)));
4985 else
4987 /* In order to figure out what mode to use for the pseudo, we
4988 figure out what the mode of the eventual return register will
4989 actually be, and use that. */
4990 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4992 /* Structures that are returned in registers are not
4993 aggregate_value_p, so we may see a PARALLEL or a REG. */
4994 if (REG_P (hard_reg))
4995 SET_DECL_RTL (DECL_RESULT (subr),
4996 gen_reg_rtx (GET_MODE (hard_reg)));
4997 else
4999 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5000 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
5004 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5005 result to the real return register(s). */
5006 DECL_REGISTER (DECL_RESULT (subr)) = 1;
5008 if (chkp_function_instrumented_p (current_function_decl))
5010 tree return_type = TREE_TYPE (DECL_RESULT (subr));
5011 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5012 subr, 1);
5013 SET_DECL_BOUNDS_RTL (DECL_RESULT (subr), bounds);
5017 /* Initialize rtx for parameters and local variables.
5018 In some cases this requires emitting insns. */
5019 assign_parms (subr);
5021 /* If function gets a static chain arg, store it. */
5022 if (cfun->static_chain_decl)
5024 tree parm = cfun->static_chain_decl;
5025 rtx local, chain;
5026 rtx_insn *insn;
5028 local = gen_reg_rtx (Pmode);
5029 chain = targetm.calls.static_chain (current_function_decl, true);
5031 set_decl_incoming_rtl (parm, chain, false);
5032 SET_DECL_RTL (parm, local);
5033 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5035 insn = emit_move_insn (local, chain);
5037 /* Mark the register as eliminable, similar to parameters. */
5038 if (MEM_P (chain)
5039 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5040 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5042 /* If we aren't optimizing, save the static chain onto the stack. */
5043 if (!optimize)
5045 tree saved_static_chain_decl
5046 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5047 DECL_NAME (parm), TREE_TYPE (parm));
5048 rtx saved_static_chain_rtx
5049 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5050 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5051 emit_move_insn (saved_static_chain_rtx, chain);
5052 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5053 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5057 /* If the function receives a non-local goto, then store the
5058 bits we need to restore the frame pointer. */
5059 if (cfun->nonlocal_goto_save_area)
5061 tree t_save;
5062 rtx r_save;
5064 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5065 gcc_assert (DECL_RTL_SET_P (var));
5067 t_save = build4 (ARRAY_REF,
5068 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5069 cfun->nonlocal_goto_save_area,
5070 integer_zero_node, NULL_TREE, NULL_TREE);
5071 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5072 gcc_assert (GET_MODE (r_save) == Pmode);
5074 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5075 update_nonlocal_goto_save_area ();
5078 /* The following was moved from init_function_start.
5079 The move is supposed to make sdb output more accurate. */
5080 /* Indicate the beginning of the function body,
5081 as opposed to parm setup. */
5082 emit_note (NOTE_INSN_FUNCTION_BEG);
5084 gcc_assert (NOTE_P (get_last_insn ()));
5086 parm_birth_insn = get_last_insn ();
5088 if (crtl->profile)
5090 #ifdef PROFILE_HOOK
5091 PROFILE_HOOK (current_function_funcdef_no);
5092 #endif
5095 /* If we are doing generic stack checking, the probe should go here. */
5096 if (flag_stack_check == GENERIC_STACK_CHECK)
5097 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5100 void
5101 pop_dummy_function (void)
5103 pop_cfun ();
5104 in_dummy_function = false;
5107 /* Undo the effects of init_dummy_function_start. */
5108 void
5109 expand_dummy_function_end (void)
5111 gcc_assert (in_dummy_function);
5113 /* End any sequences that failed to be closed due to syntax errors. */
5114 while (in_sequence_p ())
5115 end_sequence ();
5117 /* Outside function body, can't compute type's actual size
5118 until next function's body starts. */
5120 free_after_parsing (cfun);
5121 free_after_compilation (cfun);
5122 pop_dummy_function ();
5125 /* Helper for diddle_return_value. */
5127 void
5128 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5130 if (! outgoing)
5131 return;
5133 if (REG_P (outgoing))
5134 (*doit) (outgoing, arg);
5135 else if (GET_CODE (outgoing) == PARALLEL)
5137 int i;
5139 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5141 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5143 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5144 (*doit) (x, arg);
5149 /* Call DOIT for each hard register used as a return value from
5150 the current function. */
5152 void
5153 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5155 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5156 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5159 static void
5160 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5162 emit_clobber (reg);
5165 void
5166 clobber_return_register (void)
5168 diddle_return_value (do_clobber_return_reg, NULL);
5170 /* In case we do use pseudo to return value, clobber it too. */
5171 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5173 tree decl_result = DECL_RESULT (current_function_decl);
5174 rtx decl_rtl = DECL_RTL (decl_result);
5175 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5177 do_clobber_return_reg (decl_rtl, NULL);
5182 static void
5183 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5185 emit_use (reg);
5188 static void
5189 use_return_register (void)
5191 diddle_return_value (do_use_return_reg, NULL);
5194 /* Set the location of the insn chain starting at INSN to LOC. */
5196 static void
5197 set_insn_locations (rtx_insn *insn, int loc)
5199 while (insn != NULL)
5201 if (INSN_P (insn))
5202 INSN_LOCATION (insn) = loc;
5203 insn = NEXT_INSN (insn);
5207 /* Generate RTL for the end of the current function. */
5209 void
5210 expand_function_end (void)
5212 /* If arg_pointer_save_area was referenced only from a nested
5213 function, we will not have initialized it yet. Do that now. */
5214 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5215 get_arg_pointer_save_area ();
5217 /* If we are doing generic stack checking and this function makes calls,
5218 do a stack probe at the start of the function to ensure we have enough
5219 space for another stack frame. */
5220 if (flag_stack_check == GENERIC_STACK_CHECK)
5222 rtx_insn *insn, *seq;
5224 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5225 if (CALL_P (insn))
5227 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5228 start_sequence ();
5229 if (STACK_CHECK_MOVING_SP)
5230 anti_adjust_stack_and_probe (max_frame_size, true);
5231 else
5232 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5233 seq = get_insns ();
5234 end_sequence ();
5235 set_insn_locations (seq, prologue_location);
5236 emit_insn_before (seq, stack_check_probe_note);
5237 break;
5241 /* End any sequences that failed to be closed due to syntax errors. */
5242 while (in_sequence_p ())
5243 end_sequence ();
5245 clear_pending_stack_adjust ();
5246 do_pending_stack_adjust ();
5248 /* Output a linenumber for the end of the function.
5249 SDB depends on this. */
5250 set_curr_insn_location (input_location);
5252 /* Before the return label (if any), clobber the return
5253 registers so that they are not propagated live to the rest of
5254 the function. This can only happen with functions that drop
5255 through; if there had been a return statement, there would
5256 have either been a return rtx, or a jump to the return label.
5258 We delay actual code generation after the current_function_value_rtx
5259 is computed. */
5260 rtx_insn *clobber_after = get_last_insn ();
5262 /* Output the label for the actual return from the function. */
5263 emit_label (return_label);
5265 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5267 /* Let except.c know where it should emit the call to unregister
5268 the function context for sjlj exceptions. */
5269 if (flag_exceptions)
5270 sjlj_emit_function_exit_after (get_last_insn ());
5272 else
5274 /* We want to ensure that instructions that may trap are not
5275 moved into the epilogue by scheduling, because we don't
5276 always emit unwind information for the epilogue. */
5277 if (cfun->can_throw_non_call_exceptions)
5278 emit_insn (gen_blockage ());
5281 /* If this is an implementation of throw, do what's necessary to
5282 communicate between __builtin_eh_return and the epilogue. */
5283 expand_eh_return ();
5285 /* If scalar return value was computed in a pseudo-reg, or was a named
5286 return value that got dumped to the stack, copy that to the hard
5287 return register. */
5288 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5290 tree decl_result = DECL_RESULT (current_function_decl);
5291 rtx decl_rtl = DECL_RTL (decl_result);
5293 if (REG_P (decl_rtl)
5294 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5295 : DECL_REGISTER (decl_result))
5297 rtx real_decl_rtl = crtl->return_rtx;
5299 /* This should be set in assign_parms. */
5300 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5302 /* If this is a BLKmode structure being returned in registers,
5303 then use the mode computed in expand_return. Note that if
5304 decl_rtl is memory, then its mode may have been changed,
5305 but that crtl->return_rtx has not. */
5306 if (GET_MODE (real_decl_rtl) == BLKmode)
5307 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5309 /* If a non-BLKmode return value should be padded at the least
5310 significant end of the register, shift it left by the appropriate
5311 amount. BLKmode results are handled using the group load/store
5312 machinery. */
5313 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5314 && REG_P (real_decl_rtl)
5315 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5317 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5318 REGNO (real_decl_rtl)),
5319 decl_rtl);
5320 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5322 /* If a named return value dumped decl_return to memory, then
5323 we may need to re-do the PROMOTE_MODE signed/unsigned
5324 extension. */
5325 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5327 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5328 promote_function_mode (TREE_TYPE (decl_result),
5329 GET_MODE (decl_rtl), &unsignedp,
5330 TREE_TYPE (current_function_decl), 1);
5332 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5334 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5336 /* If expand_function_start has created a PARALLEL for decl_rtl,
5337 move the result to the real return registers. Otherwise, do
5338 a group load from decl_rtl for a named return. */
5339 if (GET_CODE (decl_rtl) == PARALLEL)
5340 emit_group_move (real_decl_rtl, decl_rtl);
5341 else
5342 emit_group_load (real_decl_rtl, decl_rtl,
5343 TREE_TYPE (decl_result),
5344 int_size_in_bytes (TREE_TYPE (decl_result)));
5346 /* In the case of complex integer modes smaller than a word, we'll
5347 need to generate some non-trivial bitfield insertions. Do that
5348 on a pseudo and not the hard register. */
5349 else if (GET_CODE (decl_rtl) == CONCAT
5350 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5351 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5353 int old_generating_concat_p;
5354 rtx tmp;
5356 old_generating_concat_p = generating_concat_p;
5357 generating_concat_p = 0;
5358 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5359 generating_concat_p = old_generating_concat_p;
5361 emit_move_insn (tmp, decl_rtl);
5362 emit_move_insn (real_decl_rtl, tmp);
5364 else
5365 emit_move_insn (real_decl_rtl, decl_rtl);
5369 /* If returning a structure, arrange to return the address of the value
5370 in a place where debuggers expect to find it.
5372 If returning a structure PCC style,
5373 the caller also depends on this value.
5374 And cfun->returns_pcc_struct is not necessarily set. */
5375 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5376 && !targetm.calls.omit_struct_return_reg)
5378 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5379 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5380 rtx outgoing;
5382 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5383 type = TREE_TYPE (type);
5384 else
5385 value_address = XEXP (value_address, 0);
5387 outgoing = targetm.calls.function_value (build_pointer_type (type),
5388 current_function_decl, true);
5390 /* Mark this as a function return value so integrate will delete the
5391 assignment and USE below when inlining this function. */
5392 REG_FUNCTION_VALUE_P (outgoing) = 1;
5394 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5395 value_address = convert_memory_address (GET_MODE (outgoing),
5396 value_address);
5398 emit_move_insn (outgoing, value_address);
5400 /* Show return register used to hold result (in this case the address
5401 of the result. */
5402 crtl->return_rtx = outgoing;
5405 /* Emit the actual code to clobber return register. Don't emit
5406 it if clobber_after is a barrier, then the previous basic block
5407 certainly doesn't fall thru into the exit block. */
5408 if (!BARRIER_P (clobber_after))
5410 start_sequence ();
5411 clobber_return_register ();
5412 rtx_insn *seq = get_insns ();
5413 end_sequence ();
5415 emit_insn_after (seq, clobber_after);
5418 /* Output the label for the naked return from the function. */
5419 if (naked_return_label)
5420 emit_label (naked_return_label);
5422 /* @@@ This is a kludge. We want to ensure that instructions that
5423 may trap are not moved into the epilogue by scheduling, because
5424 we don't always emit unwind information for the epilogue. */
5425 if (cfun->can_throw_non_call_exceptions
5426 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5427 emit_insn (gen_blockage ());
5429 /* If stack protection is enabled for this function, check the guard. */
5430 if (crtl->stack_protect_guard)
5431 stack_protect_epilogue ();
5433 /* If we had calls to alloca, and this machine needs
5434 an accurate stack pointer to exit the function,
5435 insert some code to save and restore the stack pointer. */
5436 if (! EXIT_IGNORE_STACK
5437 && cfun->calls_alloca)
5439 rtx tem = 0;
5441 start_sequence ();
5442 emit_stack_save (SAVE_FUNCTION, &tem);
5443 rtx_insn *seq = get_insns ();
5444 end_sequence ();
5445 emit_insn_before (seq, parm_birth_insn);
5447 emit_stack_restore (SAVE_FUNCTION, tem);
5450 /* ??? This should no longer be necessary since stupid is no longer with
5451 us, but there are some parts of the compiler (eg reload_combine, and
5452 sh mach_dep_reorg) that still try and compute their own lifetime info
5453 instead of using the general framework. */
5454 use_return_register ();
5458 get_arg_pointer_save_area (void)
5460 rtx ret = arg_pointer_save_area;
5462 if (! ret)
5464 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5465 arg_pointer_save_area = ret;
5468 if (! crtl->arg_pointer_save_area_init)
5470 /* Save the arg pointer at the beginning of the function. The
5471 generated stack slot may not be a valid memory address, so we
5472 have to check it and fix it if necessary. */
5473 start_sequence ();
5474 emit_move_insn (validize_mem (copy_rtx (ret)),
5475 crtl->args.internal_arg_pointer);
5476 rtx_insn *seq = get_insns ();
5477 end_sequence ();
5479 push_topmost_sequence ();
5480 emit_insn_after (seq, entry_of_function ());
5481 pop_topmost_sequence ();
5483 crtl->arg_pointer_save_area_init = true;
5486 return ret;
5489 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5490 for the first time. */
5492 static void
5493 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5495 rtx_insn *tmp;
5496 hash_table<insn_cache_hasher> *hash = *hashp;
5498 if (hash == NULL)
5499 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5501 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5503 rtx *slot = hash->find_slot (tmp, INSERT);
5504 gcc_assert (*slot == NULL);
5505 *slot = tmp;
5509 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5510 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5511 insn, then record COPY as well. */
5513 void
5514 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5516 hash_table<insn_cache_hasher> *hash;
5517 rtx *slot;
5519 hash = epilogue_insn_hash;
5520 if (!hash || !hash->find (insn))
5522 hash = prologue_insn_hash;
5523 if (!hash || !hash->find (insn))
5524 return;
5527 slot = hash->find_slot (copy, INSERT);
5528 gcc_assert (*slot == NULL);
5529 *slot = copy;
5532 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5533 we can be running after reorg, SEQUENCE rtl is possible. */
5535 static bool
5536 contains (const_rtx insn, hash_table<insn_cache_hasher> *hash)
5538 if (hash == NULL)
5539 return false;
5541 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5543 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5544 int i;
5545 for (i = seq->len () - 1; i >= 0; i--)
5546 if (hash->find (seq->element (i)))
5547 return true;
5548 return false;
5551 return hash->find (const_cast<rtx> (insn)) != NULL;
5555 prologue_epilogue_contains (const_rtx insn)
5557 if (contains (insn, prologue_insn_hash))
5558 return 1;
5559 if (contains (insn, epilogue_insn_hash))
5560 return 1;
5561 return 0;
5564 /* Insert use of return register before the end of BB. */
5566 static void
5567 emit_use_return_register_into_block (basic_block bb)
5569 start_sequence ();
5570 use_return_register ();
5571 rtx_insn *seq = get_insns ();
5572 end_sequence ();
5573 rtx_insn *insn = BB_END (bb);
5574 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5575 insn = prev_cc0_setter (insn);
5577 emit_insn_before (seq, insn);
5581 /* Create a return pattern, either simple_return or return, depending on
5582 simple_p. */
5584 static rtx_insn *
5585 gen_return_pattern (bool simple_p)
5587 return (simple_p
5588 ? targetm.gen_simple_return ()
5589 : targetm.gen_return ());
5592 /* Insert an appropriate return pattern at the end of block BB. This
5593 also means updating block_for_insn appropriately. SIMPLE_P is
5594 the same as in gen_return_pattern and passed to it. */
5596 void
5597 emit_return_into_block (bool simple_p, basic_block bb)
5599 rtx_jump_insn *jump = emit_jump_insn_after (gen_return_pattern (simple_p),
5600 BB_END (bb));
5601 rtx pat = PATTERN (jump);
5602 if (GET_CODE (pat) == PARALLEL)
5603 pat = XVECEXP (pat, 0, 0);
5604 gcc_assert (ANY_RETURN_P (pat));
5605 JUMP_LABEL (jump) = pat;
5608 /* Set JUMP_LABEL for a return insn. */
5610 void
5611 set_return_jump_label (rtx_insn *returnjump)
5613 rtx pat = PATTERN (returnjump);
5614 if (GET_CODE (pat) == PARALLEL)
5615 pat = XVECEXP (pat, 0, 0);
5616 if (ANY_RETURN_P (pat))
5617 JUMP_LABEL (returnjump) = pat;
5618 else
5619 JUMP_LABEL (returnjump) = ret_rtx;
5622 /* Return true if there are any active insns between HEAD and TAIL. */
5623 bool
5624 active_insn_between (rtx_insn *head, rtx_insn *tail)
5626 while (tail)
5628 if (active_insn_p (tail))
5629 return true;
5630 if (tail == head)
5631 return false;
5632 tail = PREV_INSN (tail);
5634 return false;
5637 /* LAST_BB is a block that exits, and empty of active instructions.
5638 Examine its predecessors for jumps that can be converted to
5639 (conditional) returns. */
5640 vec<edge>
5641 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5642 vec<edge> unconverted ATTRIBUTE_UNUSED)
5644 int i;
5645 basic_block bb;
5646 edge_iterator ei;
5647 edge e;
5648 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5650 FOR_EACH_EDGE (e, ei, last_bb->preds)
5651 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5652 src_bbs.quick_push (e->src);
5654 rtx_insn *label = BB_HEAD (last_bb);
5656 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5658 rtx_insn *jump = BB_END (bb);
5660 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5661 continue;
5663 e = find_edge (bb, last_bb);
5665 /* If we have an unconditional jump, we can replace that
5666 with a simple return instruction. */
5667 if (simplejump_p (jump))
5669 /* The use of the return register might be present in the exit
5670 fallthru block. Either:
5671 - removing the use is safe, and we should remove the use in
5672 the exit fallthru block, or
5673 - removing the use is not safe, and we should add it here.
5674 For now, we conservatively choose the latter. Either of the
5675 2 helps in crossjumping. */
5676 emit_use_return_register_into_block (bb);
5678 emit_return_into_block (simple_p, bb);
5679 delete_insn (jump);
5682 /* If we have a conditional jump branching to the last
5683 block, we can try to replace that with a conditional
5684 return instruction. */
5685 else if (condjump_p (jump))
5687 rtx dest;
5689 if (simple_p)
5690 dest = simple_return_rtx;
5691 else
5692 dest = ret_rtx;
5693 if (!redirect_jump (as_a <rtx_jump_insn *> (jump), dest, 0))
5695 if (targetm.have_simple_return () && simple_p)
5697 if (dump_file)
5698 fprintf (dump_file,
5699 "Failed to redirect bb %d branch.\n", bb->index);
5700 unconverted.safe_push (e);
5702 continue;
5705 /* See comment in simplejump_p case above. */
5706 emit_use_return_register_into_block (bb);
5708 /* If this block has only one successor, it both jumps
5709 and falls through to the fallthru block, so we can't
5710 delete the edge. */
5711 if (single_succ_p (bb))
5712 continue;
5714 else
5716 if (targetm.have_simple_return () && simple_p)
5718 if (dump_file)
5719 fprintf (dump_file,
5720 "Failed to redirect bb %d branch.\n", bb->index);
5721 unconverted.safe_push (e);
5723 continue;
5726 /* Fix up the CFG for the successful change we just made. */
5727 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5728 e->flags &= ~EDGE_CROSSING;
5730 src_bbs.release ();
5731 return unconverted;
5734 /* Emit a return insn for the exit fallthru block. */
5735 basic_block
5736 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5738 basic_block last_bb = exit_fallthru_edge->src;
5740 if (JUMP_P (BB_END (last_bb)))
5742 last_bb = split_edge (exit_fallthru_edge);
5743 exit_fallthru_edge = single_succ_edge (last_bb);
5745 emit_barrier_after (BB_END (last_bb));
5746 emit_return_into_block (simple_p, last_bb);
5747 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5748 return last_bb;
5752 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5753 this into place with notes indicating where the prologue ends and where
5754 the epilogue begins. Update the basic block information when possible.
5756 Notes on epilogue placement:
5757 There are several kinds of edges to the exit block:
5758 * a single fallthru edge from LAST_BB
5759 * possibly, edges from blocks containing sibcalls
5760 * possibly, fake edges from infinite loops
5762 The epilogue is always emitted on the fallthru edge from the last basic
5763 block in the function, LAST_BB, into the exit block.
5765 If LAST_BB is empty except for a label, it is the target of every
5766 other basic block in the function that ends in a return. If a
5767 target has a return or simple_return pattern (possibly with
5768 conditional variants), these basic blocks can be changed so that a
5769 return insn is emitted into them, and their target is adjusted to
5770 the real exit block.
5772 Notes on shrink wrapping: We implement a fairly conservative
5773 version of shrink-wrapping rather than the textbook one. We only
5774 generate a single prologue and a single epilogue. This is
5775 sufficient to catch a number of interesting cases involving early
5776 exits.
5778 First, we identify the blocks that require the prologue to occur before
5779 them. These are the ones that modify a call-saved register, or reference
5780 any of the stack or frame pointer registers. To simplify things, we then
5781 mark everything reachable from these blocks as also requiring a prologue.
5782 This takes care of loops automatically, and avoids the need to examine
5783 whether MEMs reference the frame, since it is sufficient to check for
5784 occurrences of the stack or frame pointer.
5786 We then compute the set of blocks for which the need for a prologue
5787 is anticipatable (borrowing terminology from the shrink-wrapping
5788 description in Muchnick's book). These are the blocks which either
5789 require a prologue themselves, or those that have only successors
5790 where the prologue is anticipatable. The prologue needs to be
5791 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5792 is not. For the moment, we ensure that only one such edge exists.
5794 The epilogue is placed as described above, but we make a
5795 distinction between inserting return and simple_return patterns
5796 when modifying other blocks that end in a return. Blocks that end
5797 in a sibcall omit the sibcall_epilogue if the block is not in
5798 ANTIC. */
5800 void
5801 thread_prologue_and_epilogue_insns (void)
5803 bool inserted;
5804 vec<edge> unconverted_simple_returns = vNULL;
5805 bitmap_head bb_flags;
5806 rtx_insn *returnjump;
5807 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5808 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5809 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5810 edge_iterator ei;
5812 df_analyze ();
5814 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5816 inserted = false;
5817 epilogue_end = NULL;
5818 returnjump = NULL;
5820 /* Can't deal with multiple successors of the entry block at the
5821 moment. Function should always have at least one entry
5822 point. */
5823 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5824 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5825 orig_entry_edge = entry_edge;
5827 split_prologue_seq = NULL;
5828 if (flag_split_stack
5829 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5830 == NULL))
5832 start_sequence ();
5833 emit_insn (targetm.gen_split_stack_prologue ());
5834 split_prologue_seq = get_insns ();
5835 end_sequence ();
5837 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5838 set_insn_locations (split_prologue_seq, prologue_location);
5841 prologue_seq = NULL;
5842 if (targetm.have_prologue ())
5844 start_sequence ();
5845 rtx_insn *seq = targetm.gen_prologue ();
5846 emit_insn (seq);
5848 /* Insert an explicit USE for the frame pointer
5849 if the profiling is on and the frame pointer is required. */
5850 if (crtl->profile && frame_pointer_needed)
5851 emit_use (hard_frame_pointer_rtx);
5853 /* Retain a map of the prologue insns. */
5854 record_insns (seq, NULL, &prologue_insn_hash);
5855 emit_note (NOTE_INSN_PROLOGUE_END);
5857 /* Ensure that instructions are not moved into the prologue when
5858 profiling is on. The call to the profiling routine can be
5859 emitted within the live range of a call-clobbered register. */
5860 if (!targetm.profile_before_prologue () && crtl->profile)
5861 emit_insn (gen_blockage ());
5863 prologue_seq = get_insns ();
5864 end_sequence ();
5865 set_insn_locations (prologue_seq, prologue_location);
5868 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5870 /* Try to perform a kind of shrink-wrapping, making sure the
5871 prologue/epilogue is emitted only around those parts of the
5872 function that require it. */
5874 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5876 if (split_prologue_seq != NULL_RTX)
5878 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5879 inserted = true;
5881 if (prologue_seq != NULL_RTX)
5883 insert_insn_on_edge (prologue_seq, entry_edge);
5884 inserted = true;
5887 /* If the exit block has no non-fake predecessors, we don't need
5888 an epilogue. */
5889 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5890 if ((e->flags & EDGE_FAKE) == 0)
5891 break;
5892 if (e == NULL)
5893 goto epilogue_done;
5895 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5897 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5899 if (targetm.have_simple_return () && entry_edge != orig_entry_edge)
5900 exit_fallthru_edge
5901 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5902 &unconverted_simple_returns,
5903 &returnjump);
5904 if (targetm.have_return ())
5906 if (exit_fallthru_edge == NULL)
5907 goto epilogue_done;
5909 if (optimize)
5911 basic_block last_bb = exit_fallthru_edge->src;
5913 if (LABEL_P (BB_HEAD (last_bb))
5914 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
5915 convert_jumps_to_returns (last_bb, false, vNULL);
5917 if (EDGE_COUNT (last_bb->preds) != 0
5918 && single_succ_p (last_bb))
5920 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
5921 epilogue_end = returnjump = BB_END (last_bb);
5923 /* Emitting the return may add a basic block.
5924 Fix bb_flags for the added block. */
5925 if (targetm.have_simple_return ()
5926 && last_bb != exit_fallthru_edge->src)
5927 bitmap_set_bit (&bb_flags, last_bb->index);
5929 goto epilogue_done;
5934 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5935 this marker for the splits of EH_RETURN patterns, and nothing else
5936 uses the flag in the meantime. */
5937 epilogue_completed = 1;
5939 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5940 some targets, these get split to a special version of the epilogue
5941 code. In order to be able to properly annotate these with unwind
5942 info, try to split them now. If we get a valid split, drop an
5943 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5944 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5946 rtx_insn *prev, *last, *trial;
5948 if (e->flags & EDGE_FALLTHRU)
5949 continue;
5950 last = BB_END (e->src);
5951 if (!eh_returnjump_p (last))
5952 continue;
5954 prev = PREV_INSN (last);
5955 trial = try_split (PATTERN (last), last, 1);
5956 if (trial == last)
5957 continue;
5959 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5960 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5963 /* If nothing falls through into the exit block, we don't need an
5964 epilogue. */
5966 if (exit_fallthru_edge == NULL)
5967 goto epilogue_done;
5969 if (targetm.have_epilogue ())
5971 start_sequence ();
5972 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5973 rtx_insn *seq = targetm.gen_epilogue ();
5974 if (seq)
5975 emit_jump_insn (seq);
5977 /* Retain a map of the epilogue insns. */
5978 record_insns (seq, NULL, &epilogue_insn_hash);
5979 set_insn_locations (seq, epilogue_location);
5981 seq = get_insns ();
5982 returnjump = get_last_insn ();
5983 end_sequence ();
5985 insert_insn_on_edge (seq, exit_fallthru_edge);
5986 inserted = true;
5988 if (JUMP_P (returnjump))
5989 set_return_jump_label (returnjump);
5991 else
5993 basic_block cur_bb;
5995 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
5996 goto epilogue_done;
5997 /* We have a fall-through edge to the exit block, the source is not
5998 at the end of the function, and there will be an assembler epilogue
5999 at the end of the function.
6000 We can't use force_nonfallthru here, because that would try to
6001 use return. Inserting a jump 'by hand' is extremely messy, so
6002 we take advantage of cfg_layout_finalize using
6003 fixup_fallthru_exit_predecessor. */
6004 cfg_layout_initialize (0);
6005 FOR_EACH_BB_FN (cur_bb, cfun)
6006 if (cur_bb->index >= NUM_FIXED_BLOCKS
6007 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6008 cur_bb->aux = cur_bb->next_bb;
6009 cfg_layout_finalize ();
6012 epilogue_done:
6014 default_rtl_profile ();
6016 if (inserted)
6018 sbitmap blocks;
6020 commit_edge_insertions ();
6022 /* Look for basic blocks within the prologue insns. */
6023 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6024 bitmap_clear (blocks);
6025 bitmap_set_bit (blocks, entry_edge->dest->index);
6026 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6027 find_many_sub_basic_blocks (blocks);
6028 sbitmap_free (blocks);
6030 /* The epilogue insns we inserted may cause the exit edge to no longer
6031 be fallthru. */
6032 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6034 if (((e->flags & EDGE_FALLTHRU) != 0)
6035 && returnjump_p (BB_END (e->src)))
6036 e->flags &= ~EDGE_FALLTHRU;
6040 if (targetm.have_simple_return ())
6041 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags,
6042 returnjump, unconverted_simple_returns);
6044 /* Emit sibling epilogues before any sibling call sites. */
6045 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6046 ei_safe_edge (ei));
6049 basic_block bb = e->src;
6050 rtx_insn *insn = BB_END (bb);
6052 if (!CALL_P (insn)
6053 || ! SIBLING_CALL_P (insn)
6054 || (targetm.have_simple_return ()
6055 && entry_edge != orig_entry_edge
6056 && !bitmap_bit_p (&bb_flags, bb->index)))
6058 ei_next (&ei);
6059 continue;
6062 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6064 start_sequence ();
6065 emit_note (NOTE_INSN_EPILOGUE_BEG);
6066 emit_insn (ep_seq);
6067 rtx_insn *seq = get_insns ();
6068 end_sequence ();
6070 /* Retain a map of the epilogue insns. Used in life analysis to
6071 avoid getting rid of sibcall epilogue insns. Do this before we
6072 actually emit the sequence. */
6073 record_insns (seq, NULL, &epilogue_insn_hash);
6074 set_insn_locations (seq, epilogue_location);
6076 emit_insn_before (seq, insn);
6078 ei_next (&ei);
6081 if (epilogue_end)
6083 rtx_insn *insn, *next;
6085 /* Similarly, move any line notes that appear after the epilogue.
6086 There is no need, however, to be quite so anal about the existence
6087 of such a note. Also possibly move
6088 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6089 info generation. */
6090 for (insn = epilogue_end; insn; insn = next)
6092 next = NEXT_INSN (insn);
6093 if (NOTE_P (insn)
6094 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6095 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6099 bitmap_clear (&bb_flags);
6101 /* Threading the prologue and epilogue changes the artificial refs
6102 in the entry and exit blocks. */
6103 epilogue_completed = 1;
6104 df_update_entry_exit_and_calls ();
6107 /* Reposition the prologue-end and epilogue-begin notes after
6108 instruction scheduling. */
6110 void
6111 reposition_prologue_and_epilogue_notes (void)
6113 if (!targetm.have_prologue ()
6114 && !targetm.have_epilogue ()
6115 && !targetm.have_sibcall_epilogue ())
6116 return;
6118 /* Since the hash table is created on demand, the fact that it is
6119 non-null is a signal that it is non-empty. */
6120 if (prologue_insn_hash != NULL)
6122 size_t len = prologue_insn_hash->elements ();
6123 rtx_insn *insn, *last = NULL, *note = NULL;
6125 /* Scan from the beginning until we reach the last prologue insn. */
6126 /* ??? While we do have the CFG intact, there are two problems:
6127 (1) The prologue can contain loops (typically probing the stack),
6128 which means that the end of the prologue isn't in the first bb.
6129 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6130 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6132 if (NOTE_P (insn))
6134 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6135 note = insn;
6137 else if (contains (insn, prologue_insn_hash))
6139 last = insn;
6140 if (--len == 0)
6141 break;
6145 if (last)
6147 if (note == NULL)
6149 /* Scan forward looking for the PROLOGUE_END note. It should
6150 be right at the beginning of the block, possibly with other
6151 insn notes that got moved there. */
6152 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6154 if (NOTE_P (note)
6155 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6156 break;
6160 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6161 if (LABEL_P (last))
6162 last = NEXT_INSN (last);
6163 reorder_insns (note, note, last);
6167 if (epilogue_insn_hash != NULL)
6169 edge_iterator ei;
6170 edge e;
6172 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6174 rtx_insn *insn, *first = NULL, *note = NULL;
6175 basic_block bb = e->src;
6177 /* Scan from the beginning until we reach the first epilogue insn. */
6178 FOR_BB_INSNS (bb, insn)
6180 if (NOTE_P (insn))
6182 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6184 note = insn;
6185 if (first != NULL)
6186 break;
6189 else if (first == NULL && contains (insn, epilogue_insn_hash))
6191 first = insn;
6192 if (note != NULL)
6193 break;
6197 if (note)
6199 /* If the function has a single basic block, and no real
6200 epilogue insns (e.g. sibcall with no cleanup), the
6201 epilogue note can get scheduled before the prologue
6202 note. If we have frame related prologue insns, having
6203 them scanned during the epilogue will result in a crash.
6204 In this case re-order the epilogue note to just before
6205 the last insn in the block. */
6206 if (first == NULL)
6207 first = BB_END (bb);
6209 if (PREV_INSN (first) != note)
6210 reorder_insns (note, note, PREV_INSN (first));
6216 /* Returns the name of function declared by FNDECL. */
6217 const char *
6218 fndecl_name (tree fndecl)
6220 if (fndecl == NULL)
6221 return "(nofn)";
6222 return lang_hooks.decl_printable_name (fndecl, 2);
6225 /* Returns the name of function FN. */
6226 const char *
6227 function_name (struct function *fn)
6229 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6230 return fndecl_name (fndecl);
6233 /* Returns the name of the current function. */
6234 const char *
6235 current_function_name (void)
6237 return function_name (cfun);
6241 static unsigned int
6242 rest_of_handle_check_leaf_regs (void)
6244 #ifdef LEAF_REGISTERS
6245 crtl->uses_only_leaf_regs
6246 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6247 #endif
6248 return 0;
6251 /* Insert a TYPE into the used types hash table of CFUN. */
6253 static void
6254 used_types_insert_helper (tree type, struct function *func)
6256 if (type != NULL && func != NULL)
6258 if (func->used_types_hash == NULL)
6259 func->used_types_hash = hash_set<tree>::create_ggc (37);
6261 func->used_types_hash->add (type);
6265 /* Given a type, insert it into the used hash table in cfun. */
6266 void
6267 used_types_insert (tree t)
6269 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6270 if (TYPE_NAME (t))
6271 break;
6272 else
6273 t = TREE_TYPE (t);
6274 if (TREE_CODE (t) == ERROR_MARK)
6275 return;
6276 if (TYPE_NAME (t) == NULL_TREE
6277 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6278 t = TYPE_MAIN_VARIANT (t);
6279 if (debug_info_level > DINFO_LEVEL_NONE)
6281 if (cfun)
6282 used_types_insert_helper (t, cfun);
6283 else
6285 /* So this might be a type referenced by a global variable.
6286 Record that type so that we can later decide to emit its
6287 debug information. */
6288 vec_safe_push (types_used_by_cur_var_decl, t);
6293 /* Helper to Hash a struct types_used_by_vars_entry. */
6295 static hashval_t
6296 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6298 gcc_assert (entry && entry->var_decl && entry->type);
6300 return iterative_hash_object (entry->type,
6301 iterative_hash_object (entry->var_decl, 0));
6304 /* Hash function of the types_used_by_vars_entry hash table. */
6306 hashval_t
6307 used_type_hasher::hash (types_used_by_vars_entry *entry)
6309 return hash_types_used_by_vars_entry (entry);
6312 /*Equality function of the types_used_by_vars_entry hash table. */
6314 bool
6315 used_type_hasher::equal (types_used_by_vars_entry *e1,
6316 types_used_by_vars_entry *e2)
6318 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6321 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6323 void
6324 types_used_by_var_decl_insert (tree type, tree var_decl)
6326 if (type != NULL && var_decl != NULL)
6328 types_used_by_vars_entry **slot;
6329 struct types_used_by_vars_entry e;
6330 e.var_decl = var_decl;
6331 e.type = type;
6332 if (types_used_by_vars_hash == NULL)
6333 types_used_by_vars_hash
6334 = hash_table<used_type_hasher>::create_ggc (37);
6336 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6337 if (*slot == NULL)
6339 struct types_used_by_vars_entry *entry;
6340 entry = ggc_alloc<types_used_by_vars_entry> ();
6341 entry->type = type;
6342 entry->var_decl = var_decl;
6343 *slot = entry;
6348 namespace {
6350 const pass_data pass_data_leaf_regs =
6352 RTL_PASS, /* type */
6353 "*leaf_regs", /* name */
6354 OPTGROUP_NONE, /* optinfo_flags */
6355 TV_NONE, /* tv_id */
6356 0, /* properties_required */
6357 0, /* properties_provided */
6358 0, /* properties_destroyed */
6359 0, /* todo_flags_start */
6360 0, /* todo_flags_finish */
6363 class pass_leaf_regs : public rtl_opt_pass
6365 public:
6366 pass_leaf_regs (gcc::context *ctxt)
6367 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6370 /* opt_pass methods: */
6371 virtual unsigned int execute (function *)
6373 return rest_of_handle_check_leaf_regs ();
6376 }; // class pass_leaf_regs
6378 } // anon namespace
6380 rtl_opt_pass *
6381 make_pass_leaf_regs (gcc::context *ctxt)
6383 return new pass_leaf_regs (ctxt);
6386 static unsigned int
6387 rest_of_handle_thread_prologue_and_epilogue (void)
6389 if (optimize)
6390 cleanup_cfg (CLEANUP_EXPENSIVE);
6392 /* On some machines, the prologue and epilogue code, or parts thereof,
6393 can be represented as RTL. Doing so lets us schedule insns between
6394 it and the rest of the code and also allows delayed branch
6395 scheduling to operate in the epilogue. */
6396 thread_prologue_and_epilogue_insns ();
6398 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6399 see PR57320. */
6400 cleanup_cfg (0);
6402 /* The stack usage info is finalized during prologue expansion. */
6403 if (flag_stack_usage_info)
6404 output_stack_usage ();
6406 return 0;
6409 namespace {
6411 const pass_data pass_data_thread_prologue_and_epilogue =
6413 RTL_PASS, /* type */
6414 "pro_and_epilogue", /* name */
6415 OPTGROUP_NONE, /* optinfo_flags */
6416 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6417 0, /* properties_required */
6418 0, /* properties_provided */
6419 0, /* properties_destroyed */
6420 0, /* todo_flags_start */
6421 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6424 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6426 public:
6427 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6428 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6431 /* opt_pass methods: */
6432 virtual unsigned int execute (function *)
6434 return rest_of_handle_thread_prologue_and_epilogue ();
6437 }; // class pass_thread_prologue_and_epilogue
6439 } // anon namespace
6441 rtl_opt_pass *
6442 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6444 return new pass_thread_prologue_and_epilogue (ctxt);
6448 /* This mini-pass fixes fall-out from SSA in asm statements that have
6449 in-out constraints. Say you start with
6451 orig = inout;
6452 asm ("": "+mr" (inout));
6453 use (orig);
6455 which is transformed very early to use explicit output and match operands:
6457 orig = inout;
6458 asm ("": "=mr" (inout) : "0" (inout));
6459 use (orig);
6461 Or, after SSA and copyprop,
6463 asm ("": "=mr" (inout_2) : "0" (inout_1));
6464 use (inout_1);
6466 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6467 they represent two separate values, so they will get different pseudo
6468 registers during expansion. Then, since the two operands need to match
6469 per the constraints, but use different pseudo registers, reload can
6470 only register a reload for these operands. But reloads can only be
6471 satisfied by hardregs, not by memory, so we need a register for this
6472 reload, just because we are presented with non-matching operands.
6473 So, even though we allow memory for this operand, no memory can be
6474 used for it, just because the two operands don't match. This can
6475 cause reload failures on register-starved targets.
6477 So it's a symptom of reload not being able to use memory for reloads
6478 or, alternatively it's also a symptom of both operands not coming into
6479 reload as matching (in which case the pseudo could go to memory just
6480 fine, as the alternative allows it, and no reload would be necessary).
6481 We fix the latter problem here, by transforming
6483 asm ("": "=mr" (inout_2) : "0" (inout_1));
6485 back to
6487 inout_2 = inout_1;
6488 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6490 static void
6491 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6493 int i;
6494 bool changed = false;
6495 rtx op = SET_SRC (p_sets[0]);
6496 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6497 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6498 bool *output_matched = XALLOCAVEC (bool, noutputs);
6500 memset (output_matched, 0, noutputs * sizeof (bool));
6501 for (i = 0; i < ninputs; i++)
6503 rtx input, output;
6504 rtx_insn *insns;
6505 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6506 char *end;
6507 int match, j;
6509 if (*constraint == '%')
6510 constraint++;
6512 match = strtoul (constraint, &end, 10);
6513 if (end == constraint)
6514 continue;
6516 gcc_assert (match < noutputs);
6517 output = SET_DEST (p_sets[match]);
6518 input = RTVEC_ELT (inputs, i);
6519 /* Only do the transformation for pseudos. */
6520 if (! REG_P (output)
6521 || rtx_equal_p (output, input)
6522 || (GET_MODE (input) != VOIDmode
6523 && GET_MODE (input) != GET_MODE (output)))
6524 continue;
6526 /* We can't do anything if the output is also used as input,
6527 as we're going to overwrite it. */
6528 for (j = 0; j < ninputs; j++)
6529 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6530 break;
6531 if (j != ninputs)
6532 continue;
6534 /* Avoid changing the same input several times. For
6535 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6536 only change in once (to out1), rather than changing it
6537 first to out1 and afterwards to out2. */
6538 if (i > 0)
6540 for (j = 0; j < noutputs; j++)
6541 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6542 break;
6543 if (j != noutputs)
6544 continue;
6546 output_matched[match] = true;
6548 start_sequence ();
6549 emit_move_insn (output, input);
6550 insns = get_insns ();
6551 end_sequence ();
6552 emit_insn_before (insns, insn);
6554 /* Now replace all mentions of the input with output. We can't
6555 just replace the occurrence in inputs[i], as the register might
6556 also be used in some other input (or even in an address of an
6557 output), which would mean possibly increasing the number of
6558 inputs by one (namely 'output' in addition), which might pose
6559 a too complicated problem for reload to solve. E.g. this situation:
6561 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6563 Here 'input' is used in two occurrences as input (once for the
6564 input operand, once for the address in the second output operand).
6565 If we would replace only the occurrence of the input operand (to
6566 make the matching) we would be left with this:
6568 output = input
6569 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6571 Now we suddenly have two different input values (containing the same
6572 value, but different pseudos) where we formerly had only one.
6573 With more complicated asms this might lead to reload failures
6574 which wouldn't have happen without this pass. So, iterate over
6575 all operands and replace all occurrences of the register used. */
6576 for (j = 0; j < noutputs; j++)
6577 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6578 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6579 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6580 input, output);
6581 for (j = 0; j < ninputs; j++)
6582 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6583 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6584 input, output);
6586 changed = true;
6589 if (changed)
6590 df_insn_rescan (insn);
6593 /* Add the decl D to the local_decls list of FUN. */
6595 void
6596 add_local_decl (struct function *fun, tree d)
6598 gcc_assert (TREE_CODE (d) == VAR_DECL);
6599 vec_safe_push (fun->local_decls, d);
6602 namespace {
6604 const pass_data pass_data_match_asm_constraints =
6606 RTL_PASS, /* type */
6607 "asmcons", /* name */
6608 OPTGROUP_NONE, /* optinfo_flags */
6609 TV_NONE, /* tv_id */
6610 0, /* properties_required */
6611 0, /* properties_provided */
6612 0, /* properties_destroyed */
6613 0, /* todo_flags_start */
6614 0, /* todo_flags_finish */
6617 class pass_match_asm_constraints : public rtl_opt_pass
6619 public:
6620 pass_match_asm_constraints (gcc::context *ctxt)
6621 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6624 /* opt_pass methods: */
6625 virtual unsigned int execute (function *);
6627 }; // class pass_match_asm_constraints
6629 unsigned
6630 pass_match_asm_constraints::execute (function *fun)
6632 basic_block bb;
6633 rtx_insn *insn;
6634 rtx pat, *p_sets;
6635 int noutputs;
6637 if (!crtl->has_asm_statement)
6638 return 0;
6640 df_set_flags (DF_DEFER_INSN_RESCAN);
6641 FOR_EACH_BB_FN (bb, fun)
6643 FOR_BB_INSNS (bb, insn)
6645 if (!INSN_P (insn))
6646 continue;
6648 pat = PATTERN (insn);
6649 if (GET_CODE (pat) == PARALLEL)
6650 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6651 else if (GET_CODE (pat) == SET)
6652 p_sets = &PATTERN (insn), noutputs = 1;
6653 else
6654 continue;
6656 if (GET_CODE (*p_sets) == SET
6657 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6658 match_asm_constraints_1 (insn, p_sets, noutputs);
6662 return TODO_df_finish;
6665 } // anon namespace
6667 rtl_opt_pass *
6668 make_pass_match_asm_constraints (gcc::context *ctxt)
6670 return new pass_match_asm_constraints (ctxt);
6674 #include "gt-function.h"