PR go/67101
[official-gcc.git] / gcc / bt-load.c
blob031b95de08275b5a9af6324580040438d8e7376f
2 /* Perform branch target register load optimizations.
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "regs.h"
29 #include "target.h"
30 #include "flags.h"
31 #include "alias.h"
32 #include "insn-config.h"
33 #include "expmed.h"
34 #include "dojump.h"
35 #include "explow.h"
36 #include "calls.h"
37 #include "emit-rtl.h"
38 #include "varasm.h"
39 #include "stmt.h"
40 #include "expr.h"
41 #include "insn-attr.h"
42 #include "except.h"
43 #include "tm_p.h"
44 #include "diagnostic-core.h"
45 #include "tree-pass.h"
46 #include "recog.h"
47 #include "cfgrtl.h"
48 #include "cfganal.h"
49 #include "cfgcleanup.h"
50 #include "cfgloop.h"
51 #include "rtl-iter.h"
52 #include "fibonacci_heap.h"
54 /* Target register optimizations - these are performed after reload. */
56 typedef struct btr_def_group_s
58 struct btr_def_group_s *next;
59 rtx src;
60 struct btr_def_s *members;
61 } *btr_def_group;
63 typedef struct btr_user_s
65 struct btr_user_s *next;
66 basic_block bb;
67 int luid;
68 rtx_insn *insn;
69 /* If INSN has a single use of a single branch register, then
70 USE points to it within INSN. If there is more than
71 one branch register use, or the use is in some way ambiguous,
72 then USE is NULL. */
73 rtx use;
74 int n_reaching_defs;
75 int first_reaching_def;
76 char other_use_this_block;
77 } *btr_user;
79 /* btr_def structs appear on three lists:
80 1. A list of all btr_def structures (head is
81 ALL_BTR_DEFS, linked by the NEXT field).
82 2. A list of branch reg definitions per basic block (head is
83 BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
84 3. A list of all branch reg definitions belonging to the same
85 group (head is in a BTR_DEF_GROUP struct, linked by
86 NEXT_THIS_GROUP field). */
88 typedef struct btr_def_s
90 struct btr_def_s *next_this_bb;
91 struct btr_def_s *next_this_group;
92 basic_block bb;
93 int luid;
94 rtx_insn *insn;
95 int btr;
96 int cost;
97 /* For a branch register setting insn that has a constant
98 source (i.e. a label), group links together all the
99 insns with the same source. For other branch register
100 setting insns, group is NULL. */
101 btr_def_group group;
102 btr_user uses;
103 /* If this def has a reaching use which is not a simple use
104 in a branch instruction, then has_ambiguous_use will be true,
105 and we will not attempt to migrate this definition. */
106 char has_ambiguous_use;
107 /* live_range is an approximation to the true live range for this
108 def/use web, because it records the set of blocks that contain
109 the live range. There could be other live ranges for the same
110 branch register in that set of blocks, either in the block
111 containing the def (before the def), or in a block containing
112 a use (after the use). If there are such other live ranges, then
113 other_btr_uses_before_def or other_btr_uses_after_use must be set true
114 as appropriate. */
115 char other_btr_uses_before_def;
116 char other_btr_uses_after_use;
117 /* We set own_end when we have moved a definition into a dominator.
118 Thus, when a later combination removes this definition again, we know
119 to clear out trs_live_at_end again. */
120 char own_end;
121 bitmap live_range;
122 } *btr_def;
124 typedef fibonacci_heap <long, btr_def_s> btr_heap_t;
125 typedef fibonacci_node <long, btr_def_s> btr_heap_node_t;
127 static int issue_rate;
129 static int basic_block_freq (const_basic_block);
130 static int insn_sets_btr_p (const rtx_insn *, int, int *);
131 static void find_btr_def_group (btr_def_group *, btr_def);
132 static btr_def add_btr_def (btr_heap_t *, basic_block, int, rtx_insn *,
133 unsigned int, int, btr_def_group *);
134 static btr_user new_btr_user (basic_block, int, rtx_insn *);
135 static void dump_hard_reg_set (HARD_REG_SET);
136 static void dump_btrs_live (int);
137 static void note_other_use_this_block (unsigned int, btr_user);
138 static void compute_defs_uses_and_gen (btr_heap_t *, btr_def *,btr_user *,
139 sbitmap *, sbitmap *, HARD_REG_SET *);
140 static void compute_kill (sbitmap *, sbitmap *, HARD_REG_SET *);
141 static void compute_out (sbitmap *bb_out, sbitmap *, sbitmap *, int);
142 static void link_btr_uses (btr_def *, btr_user *, sbitmap *, sbitmap *, int);
143 static void build_btr_def_use_webs (btr_heap_t *);
144 static int block_at_edge_of_live_range_p (int, btr_def);
145 static void clear_btr_from_live_range (btr_def def);
146 static void add_btr_to_live_range (btr_def, int);
147 static void augment_live_range (bitmap, HARD_REG_SET *, basic_block,
148 basic_block, int);
149 static int choose_btr (HARD_REG_SET);
150 static void combine_btr_defs (btr_def, HARD_REG_SET *);
151 static void btr_def_live_range (btr_def, HARD_REG_SET *);
152 static void move_btr_def (basic_block, int, btr_def, bitmap, HARD_REG_SET *);
153 static int migrate_btr_def (btr_def, int);
154 static void migrate_btr_defs (enum reg_class, int);
155 static int can_move_up (const_basic_block, const rtx_insn *, int);
156 static void note_btr_set (rtx, const_rtx, void *);
158 /* The following code performs code motion of target load instructions
159 (instructions that set branch target registers), to move them
160 forward away from the branch instructions and out of loops (or,
161 more generally, from a more frequently executed place to a less
162 frequently executed place).
163 Moving target load instructions further in front of the branch
164 instruction that uses the target register value means that the hardware
165 has a better chance of preloading the instructions at the branch
166 target by the time the branch is reached. This avoids bubbles
167 when a taken branch needs to flush out the pipeline.
168 Moving target load instructions out of loops means they are executed
169 less frequently. */
171 /* An obstack to hold the def-use web data structures built up for
172 migrating branch target load instructions. */
173 static struct obstack migrate_btrl_obstack;
175 /* Array indexed by basic block number, giving the set of registers
176 live in that block. */
177 static HARD_REG_SET *btrs_live;
179 /* Array indexed by basic block number, giving the set of registers live at
180 the end of that block, including any uses by a final jump insn, if any. */
181 static HARD_REG_SET *btrs_live_at_end;
183 /* Set of all target registers that we are willing to allocate. */
184 static HARD_REG_SET all_btrs;
186 /* Provide lower and upper bounds for target register numbers, so that
187 we don't need to search through all the hard registers all the time. */
188 static int first_btr, last_btr;
192 /* Return an estimate of the frequency of execution of block bb. */
193 static int
194 basic_block_freq (const_basic_block bb)
196 return bb->frequency;
199 /* If X references (sets or reads) any branch target register, return one
200 such register. If EXCLUDEP is set, disregard any references within
201 that location. */
202 static rtx *
203 find_btr_use (rtx x, rtx *excludep = 0)
205 subrtx_ptr_iterator::array_type array;
206 FOR_EACH_SUBRTX_PTR (iter, array, &x, NONCONST)
208 rtx *loc = *iter;
209 if (loc == excludep)
210 iter.skip_subrtxes ();
211 else
213 const_rtx x = *loc;
214 if (REG_P (x)
215 && overlaps_hard_reg_set_p (all_btrs, GET_MODE (x), REGNO (x)))
216 return loc;
219 return 0;
222 /* Return true if insn is an instruction that sets a target register.
223 if CHECK_CONST is true, only return true if the source is constant.
224 If such a set is found and REGNO is nonzero, assign the register number
225 of the destination register to *REGNO. */
226 static int
227 insn_sets_btr_p (const rtx_insn *insn, int check_const, int *regno)
229 rtx set;
231 if (NONJUMP_INSN_P (insn)
232 && (set = single_set (insn)))
234 rtx dest = SET_DEST (set);
235 rtx src = SET_SRC (set);
237 if (GET_CODE (dest) == SUBREG)
238 dest = XEXP (dest, 0);
240 if (REG_P (dest)
241 && TEST_HARD_REG_BIT (all_btrs, REGNO (dest)))
243 gcc_assert (!find_btr_use (src));
245 if (!check_const || CONSTANT_P (src))
247 if (regno)
248 *regno = REGNO (dest);
249 return 1;
253 return 0;
256 /* Find the group that the target register definition DEF belongs
257 to in the list starting with *ALL_BTR_DEF_GROUPS. If no such
258 group exists, create one. Add def to the group. */
259 static void
260 find_btr_def_group (btr_def_group *all_btr_def_groups, btr_def def)
262 if (insn_sets_btr_p (def->insn, 1, NULL))
264 btr_def_group this_group;
265 rtx def_src = SET_SRC (single_set (def->insn));
267 /* ?? This linear search is an efficiency concern, particularly
268 as the search will almost always fail to find a match. */
269 for (this_group = *all_btr_def_groups;
270 this_group != NULL;
271 this_group = this_group->next)
272 if (rtx_equal_p (def_src, this_group->src))
273 break;
275 if (!this_group)
277 this_group = XOBNEW (&migrate_btrl_obstack, struct btr_def_group_s);
278 this_group->src = def_src;
279 this_group->members = NULL;
280 this_group->next = *all_btr_def_groups;
281 *all_btr_def_groups = this_group;
283 def->group = this_group;
284 def->next_this_group = this_group->members;
285 this_group->members = def;
287 else
288 def->group = NULL;
291 /* Create a new target register definition structure, for a definition in
292 block BB, instruction INSN, and insert it into ALL_BTR_DEFS. Return
293 the new definition. */
294 static btr_def
295 add_btr_def (btr_heap_t *all_btr_defs, basic_block bb, int insn_luid,
296 rtx_insn *insn,
297 unsigned int dest_reg, int other_btr_uses_before_def,
298 btr_def_group *all_btr_def_groups)
300 btr_def this_def = XOBNEW (&migrate_btrl_obstack, struct btr_def_s);
301 this_def->bb = bb;
302 this_def->luid = insn_luid;
303 this_def->insn = insn;
304 this_def->btr = dest_reg;
305 this_def->cost = basic_block_freq (bb);
306 this_def->has_ambiguous_use = 0;
307 this_def->other_btr_uses_before_def = other_btr_uses_before_def;
308 this_def->other_btr_uses_after_use = 0;
309 this_def->next_this_bb = NULL;
310 this_def->next_this_group = NULL;
311 this_def->uses = NULL;
312 this_def->live_range = NULL;
313 find_btr_def_group (all_btr_def_groups, this_def);
315 all_btr_defs->insert (-this_def->cost, this_def);
317 if (dump_file)
318 fprintf (dump_file,
319 "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
320 dest_reg, bb->index, INSN_UID (insn),
321 (this_def->group ? "" : ":not const"), this_def->cost);
323 return this_def;
326 /* Create a new target register user structure, for a use in block BB,
327 instruction INSN. Return the new user. */
328 static btr_user
329 new_btr_user (basic_block bb, int insn_luid, rtx_insn *insn)
331 /* This instruction reads target registers. We need
332 to decide whether we can replace all target register
333 uses easily.
335 rtx *usep = find_btr_use (PATTERN (insn));
336 rtx use;
337 btr_user user = NULL;
339 if (usep)
341 int unambiguous_single_use;
343 /* We want to ensure that USE is the only use of a target
344 register in INSN, so that we know that to rewrite INSN to use
345 a different target register, all we have to do is replace USE. */
346 unambiguous_single_use = !find_btr_use (PATTERN (insn), usep);
347 if (!unambiguous_single_use)
348 usep = NULL;
350 use = usep ? *usep : NULL_RTX;
351 user = XOBNEW (&migrate_btrl_obstack, struct btr_user_s);
352 user->bb = bb;
353 user->luid = insn_luid;
354 user->insn = insn;
355 user->use = use;
356 user->other_use_this_block = 0;
357 user->next = NULL;
358 user->n_reaching_defs = 0;
359 user->first_reaching_def = -1;
361 if (dump_file)
363 fprintf (dump_file, "Uses target reg: { bb %d, insn %d }",
364 bb->index, INSN_UID (insn));
366 if (user->use)
367 fprintf (dump_file, ": unambiguous use of reg %d\n",
368 REGNO (user->use));
371 return user;
374 /* Write the contents of S to the dump file. */
375 static void
376 dump_hard_reg_set (HARD_REG_SET s)
378 int reg;
379 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
380 if (TEST_HARD_REG_BIT (s, reg))
381 fprintf (dump_file, " %d", reg);
384 /* Write the set of target regs live in block BB to the dump file. */
385 static void
386 dump_btrs_live (int bb)
388 fprintf (dump_file, "BB%d live:", bb);
389 dump_hard_reg_set (btrs_live[bb]);
390 fprintf (dump_file, "\n");
393 /* REGNO is the number of a branch target register that is being used or
394 set. USERS_THIS_BB is a list of preceding branch target register users;
395 If any of them use the same register, set their other_use_this_block
396 flag. */
397 static void
398 note_other_use_this_block (unsigned int regno, btr_user users_this_bb)
400 btr_user user;
402 for (user = users_this_bb; user != NULL; user = user->next)
403 if (user->use && REGNO (user->use) == regno)
404 user->other_use_this_block = 1;
407 typedef struct {
408 btr_user users_this_bb;
409 HARD_REG_SET btrs_written_in_block;
410 HARD_REG_SET btrs_live_in_block;
411 sbitmap bb_gen;
412 sbitmap *btr_defset;
413 } defs_uses_info;
415 /* Called via note_stores or directly to register stores into /
416 clobbers of a branch target register DEST that are not recognized as
417 straightforward definitions. DATA points to information about the
418 current basic block that needs updating. */
419 static void
420 note_btr_set (rtx dest, const_rtx set ATTRIBUTE_UNUSED, void *data)
422 defs_uses_info *info = (defs_uses_info *) data;
423 int regno, end_regno;
425 if (!REG_P (dest))
426 return;
427 regno = REGNO (dest);
428 end_regno = END_REGNO (dest);
429 for (; regno < end_regno; regno++)
430 if (TEST_HARD_REG_BIT (all_btrs, regno))
432 note_other_use_this_block (regno, info->users_this_bb);
433 SET_HARD_REG_BIT (info->btrs_written_in_block, regno);
434 SET_HARD_REG_BIT (info->btrs_live_in_block, regno);
435 bitmap_and_compl (info->bb_gen, info->bb_gen,
436 info->btr_defset[regno - first_btr]);
440 static void
441 compute_defs_uses_and_gen (btr_heap_t *all_btr_defs, btr_def *def_array,
442 btr_user *use_array, sbitmap *btr_defset,
443 sbitmap *bb_gen, HARD_REG_SET *btrs_written)
445 /* Scan the code building up the set of all defs and all uses.
446 For each target register, build the set of defs of that register.
447 For each block, calculate the set of target registers
448 written in that block.
449 Also calculate the set of btrs ever live in that block.
451 int i;
452 int insn_luid = 0;
453 btr_def_group all_btr_def_groups = NULL;
454 defs_uses_info info;
456 bitmap_vector_clear (bb_gen, last_basic_block_for_fn (cfun));
457 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
459 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
460 int reg;
461 btr_def defs_this_bb = NULL;
462 rtx_insn *insn;
463 rtx_insn *last;
464 int can_throw = 0;
466 info.users_this_bb = NULL;
467 info.bb_gen = bb_gen[i];
468 info.btr_defset = btr_defset;
470 CLEAR_HARD_REG_SET (info.btrs_live_in_block);
471 CLEAR_HARD_REG_SET (info.btrs_written_in_block);
472 for (reg = first_btr; reg <= last_btr; reg++)
473 if (TEST_HARD_REG_BIT (all_btrs, reg)
474 && REGNO_REG_SET_P (df_get_live_in (bb), reg))
475 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
477 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
478 insn != last;
479 insn = NEXT_INSN (insn), insn_luid++)
481 if (INSN_P (insn))
483 int regno;
484 int insn_uid = INSN_UID (insn);
486 if (insn_sets_btr_p (insn, 0, &regno))
488 btr_def def = add_btr_def (
489 all_btr_defs, bb, insn_luid, insn, regno,
490 TEST_HARD_REG_BIT (info.btrs_live_in_block, regno),
491 &all_btr_def_groups);
493 def_array[insn_uid] = def;
494 SET_HARD_REG_BIT (info.btrs_written_in_block, regno);
495 SET_HARD_REG_BIT (info.btrs_live_in_block, regno);
496 bitmap_and_compl (bb_gen[i], bb_gen[i],
497 btr_defset[regno - first_btr]);
498 bitmap_set_bit (bb_gen[i], insn_uid);
499 def->next_this_bb = defs_this_bb;
500 defs_this_bb = def;
501 bitmap_set_bit (btr_defset[regno - first_btr], insn_uid);
502 note_other_use_this_block (regno, info.users_this_bb);
504 /* Check for the blockage emitted by expand_nl_goto_receiver. */
505 else if (cfun->has_nonlocal_label
506 && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE)
508 btr_user user;
510 /* Do the equivalent of calling note_other_use_this_block
511 for every target register. */
512 for (user = info.users_this_bb; user != NULL;
513 user = user->next)
514 if (user->use)
515 user->other_use_this_block = 1;
516 IOR_HARD_REG_SET (info.btrs_written_in_block, all_btrs);
517 IOR_HARD_REG_SET (info.btrs_live_in_block, all_btrs);
518 bitmap_clear (info.bb_gen);
520 else
522 if (find_btr_use (PATTERN (insn)))
524 btr_user user = new_btr_user (bb, insn_luid, insn);
526 use_array[insn_uid] = user;
527 if (user->use)
528 SET_HARD_REG_BIT (info.btrs_live_in_block,
529 REGNO (user->use));
530 else
532 int reg;
533 for (reg = first_btr; reg <= last_btr; reg++)
534 if (TEST_HARD_REG_BIT (all_btrs, reg)
535 && refers_to_regno_p (reg, user->insn))
537 note_other_use_this_block (reg,
538 info.users_this_bb);
539 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
541 note_stores (PATTERN (insn), note_btr_set, &info);
543 user->next = info.users_this_bb;
544 info.users_this_bb = user;
546 if (CALL_P (insn))
548 HARD_REG_SET *clobbered = &call_used_reg_set;
549 HARD_REG_SET call_saved;
550 rtx pat = PATTERN (insn);
551 int i;
553 /* Check for sibcall. */
554 if (GET_CODE (pat) == PARALLEL)
555 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
556 if (ANY_RETURN_P (XVECEXP (pat, 0, i)))
558 COMPL_HARD_REG_SET (call_saved,
559 call_used_reg_set);
560 clobbered = &call_saved;
563 for (regno = first_btr; regno <= last_btr; regno++)
564 if (TEST_HARD_REG_BIT (*clobbered, regno))
565 note_btr_set (regno_reg_rtx[regno], NULL_RTX, &info);
571 COPY_HARD_REG_SET (btrs_live[i], info.btrs_live_in_block);
572 COPY_HARD_REG_SET (btrs_written[i], info.btrs_written_in_block);
574 REG_SET_TO_HARD_REG_SET (btrs_live_at_end[i], df_get_live_out (bb));
575 /* If this block ends in a jump insn, add any uses or even clobbers
576 of branch target registers that it might have. */
577 for (insn = BB_END (bb); insn != BB_HEAD (bb) && ! INSN_P (insn); )
578 insn = PREV_INSN (insn);
579 /* ??? for the fall-through edge, it would make sense to insert the
580 btr set on the edge, but that would require to split the block
581 early on so that we can distinguish between dominance from the fall
582 through edge - which can use the call-clobbered registers - from
583 dominance by the throw edge. */
584 if (can_throw_internal (insn))
586 HARD_REG_SET tmp;
588 COPY_HARD_REG_SET (tmp, call_used_reg_set);
589 AND_HARD_REG_SET (tmp, all_btrs);
590 IOR_HARD_REG_SET (btrs_live_at_end[i], tmp);
591 can_throw = 1;
593 if (can_throw || JUMP_P (insn))
595 int regno;
597 for (regno = first_btr; regno <= last_btr; regno++)
598 if (refers_to_regno_p (regno, insn))
599 SET_HARD_REG_BIT (btrs_live_at_end[i], regno);
602 if (dump_file)
603 dump_btrs_live (i);
607 static void
608 compute_kill (sbitmap *bb_kill, sbitmap *btr_defset,
609 HARD_REG_SET *btrs_written)
611 int i;
612 int regno;
614 /* For each basic block, form the set BB_KILL - the set
615 of definitions that the block kills. */
616 bitmap_vector_clear (bb_kill, last_basic_block_for_fn (cfun));
617 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
619 for (regno = first_btr; regno <= last_btr; regno++)
620 if (TEST_HARD_REG_BIT (all_btrs, regno)
621 && TEST_HARD_REG_BIT (btrs_written[i], regno))
622 bitmap_ior (bb_kill[i], bb_kill[i],
623 btr_defset[regno - first_btr]);
627 static void
628 compute_out (sbitmap *bb_out, sbitmap *bb_gen, sbitmap *bb_kill, int max_uid)
630 /* Perform iterative dataflow:
631 Initially, for all blocks, BB_OUT = BB_GEN.
632 For each block,
633 BB_IN = union over predecessors of BB_OUT(pred)
634 BB_OUT = (BB_IN - BB_KILL) + BB_GEN
635 Iterate until the bb_out sets stop growing. */
636 int i;
637 int changed;
638 sbitmap bb_in = sbitmap_alloc (max_uid);
640 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
641 bitmap_copy (bb_out[i], bb_gen[i]);
643 changed = 1;
644 while (changed)
646 changed = 0;
647 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
649 bitmap_union_of_preds (bb_in, bb_out, BASIC_BLOCK_FOR_FN (cfun, i));
650 changed |= bitmap_ior_and_compl (bb_out[i], bb_gen[i],
651 bb_in, bb_kill[i]);
654 sbitmap_free (bb_in);
657 static void
658 link_btr_uses (btr_def *def_array, btr_user *use_array, sbitmap *bb_out,
659 sbitmap *btr_defset, int max_uid)
661 int i;
662 sbitmap reaching_defs = sbitmap_alloc (max_uid);
664 /* Link uses to the uses lists of all of their reaching defs.
665 Count up the number of reaching defs of each use. */
666 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
668 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
669 rtx_insn *insn;
670 rtx_insn *last;
672 bitmap_union_of_preds (reaching_defs, bb_out, BASIC_BLOCK_FOR_FN (cfun, i));
673 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
674 insn != last;
675 insn = NEXT_INSN (insn))
677 if (INSN_P (insn))
679 int insn_uid = INSN_UID (insn);
681 btr_def def = def_array[insn_uid];
682 btr_user user = use_array[insn_uid];
683 if (def != NULL)
685 /* Remove all reaching defs of regno except
686 for this one. */
687 bitmap_and_compl (reaching_defs, reaching_defs,
688 btr_defset[def->btr - first_btr]);
689 bitmap_set_bit (reaching_defs, insn_uid);
692 if (user != NULL)
694 /* Find all the reaching defs for this use. */
695 sbitmap reaching_defs_of_reg = sbitmap_alloc (max_uid);
696 unsigned int uid = 0;
697 sbitmap_iterator sbi;
699 if (user->use)
700 bitmap_and (
701 reaching_defs_of_reg,
702 reaching_defs,
703 btr_defset[REGNO (user->use) - first_btr]);
704 else
706 int reg;
708 bitmap_clear (reaching_defs_of_reg);
709 for (reg = first_btr; reg <= last_btr; reg++)
710 if (TEST_HARD_REG_BIT (all_btrs, reg)
711 && refers_to_regno_p (reg, user->insn))
712 bitmap_or_and (reaching_defs_of_reg,
713 reaching_defs_of_reg,
714 reaching_defs,
715 btr_defset[reg - first_btr]);
717 EXECUTE_IF_SET_IN_BITMAP (reaching_defs_of_reg, 0, uid, sbi)
719 btr_def def = def_array[uid];
721 /* We now know that def reaches user. */
723 if (dump_file)
724 fprintf (dump_file,
725 "Def in insn %d reaches use in insn %d\n",
726 uid, insn_uid);
728 user->n_reaching_defs++;
729 if (!user->use)
730 def->has_ambiguous_use = 1;
731 if (user->first_reaching_def != -1)
732 { /* There is more than one reaching def. This is
733 a rare case, so just give up on this def/use
734 web when it occurs. */
735 def->has_ambiguous_use = 1;
736 def_array[user->first_reaching_def]
737 ->has_ambiguous_use = 1;
738 if (dump_file)
739 fprintf (dump_file,
740 "(use %d has multiple reaching defs)\n",
741 insn_uid);
743 else
744 user->first_reaching_def = uid;
745 if (user->other_use_this_block)
746 def->other_btr_uses_after_use = 1;
747 user->next = def->uses;
748 def->uses = user;
750 sbitmap_free (reaching_defs_of_reg);
753 if (CALL_P (insn))
755 int regno;
757 for (regno = first_btr; regno <= last_btr; regno++)
758 if (TEST_HARD_REG_BIT (all_btrs, regno)
759 && TEST_HARD_REG_BIT (call_used_reg_set, regno))
760 bitmap_and_compl (reaching_defs, reaching_defs,
761 btr_defset[regno - first_btr]);
766 sbitmap_free (reaching_defs);
769 static void
770 build_btr_def_use_webs (btr_heap_t *all_btr_defs)
772 const int max_uid = get_max_uid ();
773 btr_def *def_array = XCNEWVEC (btr_def, max_uid);
774 btr_user *use_array = XCNEWVEC (btr_user, max_uid);
775 sbitmap *btr_defset = sbitmap_vector_alloc (
776 (last_btr - first_btr) + 1, max_uid);
777 sbitmap *bb_gen = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
778 max_uid);
779 HARD_REG_SET *btrs_written = XCNEWVEC (HARD_REG_SET,
780 last_basic_block_for_fn (cfun));
781 sbitmap *bb_kill;
782 sbitmap *bb_out;
784 bitmap_vector_clear (btr_defset, (last_btr - first_btr) + 1);
786 compute_defs_uses_and_gen (all_btr_defs, def_array, use_array, btr_defset,
787 bb_gen, btrs_written);
789 bb_kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), max_uid);
790 compute_kill (bb_kill, btr_defset, btrs_written);
791 free (btrs_written);
793 bb_out = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), max_uid);
794 compute_out (bb_out, bb_gen, bb_kill, max_uid);
796 sbitmap_vector_free (bb_gen);
797 sbitmap_vector_free (bb_kill);
799 link_btr_uses (def_array, use_array, bb_out, btr_defset, max_uid);
801 sbitmap_vector_free (bb_out);
802 sbitmap_vector_free (btr_defset);
803 free (use_array);
804 free (def_array);
807 /* Return true if basic block BB contains the start or end of the
808 live range of the definition DEF, AND there are other live
809 ranges of the same target register that include BB. */
810 static int
811 block_at_edge_of_live_range_p (int bb, btr_def def)
813 if (def->other_btr_uses_before_def
814 && BASIC_BLOCK_FOR_FN (cfun, bb) == def->bb)
815 return 1;
816 else if (def->other_btr_uses_after_use)
818 btr_user user;
819 for (user = def->uses; user != NULL; user = user->next)
820 if (BASIC_BLOCK_FOR_FN (cfun, bb) == user->bb)
821 return 1;
823 return 0;
826 /* We are removing the def/use web DEF. The target register
827 used in this web is therefore no longer live in the live range
828 of this web, so remove it from the live set of all basic blocks
829 in the live range of the web.
830 Blocks at the boundary of the live range may contain other live
831 ranges for the same target register, so we have to be careful
832 to remove the target register from the live set of these blocks
833 only if they do not contain other live ranges for the same register. */
834 static void
835 clear_btr_from_live_range (btr_def def)
837 unsigned bb;
838 bitmap_iterator bi;
840 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
842 if ((!def->other_btr_uses_before_def
843 && !def->other_btr_uses_after_use)
844 || !block_at_edge_of_live_range_p (bb, def))
846 CLEAR_HARD_REG_BIT (btrs_live[bb], def->btr);
847 CLEAR_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
848 if (dump_file)
849 dump_btrs_live (bb);
852 if (def->own_end)
853 CLEAR_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
857 /* We are adding the def/use web DEF. Add the target register used
858 in this web to the live set of all of the basic blocks that contain
859 the live range of the web.
860 If OWN_END is set, also show that the register is live from our
861 definitions at the end of the basic block where it is defined. */
862 static void
863 add_btr_to_live_range (btr_def def, int own_end)
865 unsigned bb;
866 bitmap_iterator bi;
868 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
870 SET_HARD_REG_BIT (btrs_live[bb], def->btr);
871 SET_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
872 if (dump_file)
873 dump_btrs_live (bb);
875 if (own_end)
877 SET_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
878 def->own_end = 1;
882 /* Update a live range to contain the basic block NEW_BLOCK, and all
883 blocks on paths between the existing live range and NEW_BLOCK.
884 HEAD is a block contained in the existing live range that dominates
885 all other blocks in the existing live range.
886 Also add to the set BTRS_LIVE_IN_RANGE all target registers that
887 are live in the blocks that we add to the live range.
888 If FULL_RANGE is set, include the full live range of NEW_BB;
889 otherwise, if NEW_BB dominates HEAD_BB, only add registers that
890 are life at the end of NEW_BB for NEW_BB itself.
891 It is a precondition that either NEW_BLOCK dominates HEAD,or
892 HEAD dom NEW_BLOCK. This is used to speed up the
893 implementation of this function. */
894 static void
895 augment_live_range (bitmap live_range, HARD_REG_SET *btrs_live_in_range,
896 basic_block head_bb, basic_block new_bb, int full_range)
898 basic_block *worklist, *tos;
900 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
902 if (dominated_by_p (CDI_DOMINATORS, new_bb, head_bb))
904 if (new_bb == head_bb)
906 if (full_range)
907 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_bb->index]);
908 free (tos);
909 return;
911 *tos++ = new_bb;
913 else
915 edge e;
916 edge_iterator ei;
917 int new_block = new_bb->index;
919 gcc_assert (dominated_by_p (CDI_DOMINATORS, head_bb, new_bb));
921 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[head_bb->index]);
922 bitmap_set_bit (live_range, new_block);
923 /* A previous btr migration could have caused a register to be
924 live just at the end of new_block which we need in full, so
925 use trs_live_at_end even if full_range is set. */
926 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live_at_end[new_block]);
927 if (full_range)
928 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_block]);
929 if (dump_file)
931 fprintf (dump_file,
932 "Adding end of block %d and rest of %d to live range\n",
933 new_block, head_bb->index);
934 fprintf (dump_file,"Now live btrs are ");
935 dump_hard_reg_set (*btrs_live_in_range);
936 fprintf (dump_file, "\n");
938 FOR_EACH_EDGE (e, ei, head_bb->preds)
939 *tos++ = e->src;
942 while (tos != worklist)
944 basic_block bb = *--tos;
945 if (!bitmap_bit_p (live_range, bb->index))
947 edge e;
948 edge_iterator ei;
950 bitmap_set_bit (live_range, bb->index);
951 IOR_HARD_REG_SET (*btrs_live_in_range,
952 btrs_live[bb->index]);
953 /* A previous btr migration could have caused a register to be
954 live just at the end of a block which we need in full. */
955 IOR_HARD_REG_SET (*btrs_live_in_range,
956 btrs_live_at_end[bb->index]);
957 if (dump_file)
959 fprintf (dump_file,
960 "Adding block %d to live range\n", bb->index);
961 fprintf (dump_file,"Now live btrs are ");
962 dump_hard_reg_set (*btrs_live_in_range);
963 fprintf (dump_file, "\n");
966 FOR_EACH_EDGE (e, ei, bb->preds)
968 basic_block pred = e->src;
969 if (!bitmap_bit_p (live_range, pred->index))
970 *tos++ = pred;
975 free (worklist);
978 /* Return the most desirable target register that is not in
979 the set USED_BTRS. */
980 static int
981 choose_btr (HARD_REG_SET used_btrs)
983 int i;
985 if (!hard_reg_set_subset_p (all_btrs, used_btrs))
986 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
988 #ifdef REG_ALLOC_ORDER
989 int regno = reg_alloc_order[i];
990 #else
991 int regno = i;
992 #endif
993 if (TEST_HARD_REG_BIT (all_btrs, regno)
994 && !TEST_HARD_REG_BIT (used_btrs, regno))
995 return regno;
997 return -1;
1000 /* Calculate the set of basic blocks that contain the live range of
1001 the def/use web DEF.
1002 Also calculate the set of target registers that are live at time
1003 in this live range, but ignore the live range represented by DEF
1004 when calculating this set. */
1005 static void
1006 btr_def_live_range (btr_def def, HARD_REG_SET *btrs_live_in_range)
1008 if (!def->live_range)
1010 btr_user user;
1012 def->live_range = BITMAP_ALLOC (NULL);
1014 bitmap_set_bit (def->live_range, def->bb->index);
1015 COPY_HARD_REG_SET (*btrs_live_in_range,
1016 (flag_btr_bb_exclusive
1017 ? btrs_live : btrs_live_at_end)[def->bb->index]);
1019 for (user = def->uses; user != NULL; user = user->next)
1020 augment_live_range (def->live_range, btrs_live_in_range,
1021 def->bb, user->bb,
1022 (flag_btr_bb_exclusive
1023 || user->insn != BB_END (def->bb)
1024 || !JUMP_P (user->insn)));
1026 else
1028 /* def->live_range is accurate, but we need to recompute
1029 the set of target registers live over it, because migration
1030 of other PT instructions may have affected it.
1032 unsigned bb;
1033 unsigned def_bb = flag_btr_bb_exclusive ? -1 : def->bb->index;
1034 bitmap_iterator bi;
1036 CLEAR_HARD_REG_SET (*btrs_live_in_range);
1037 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
1039 IOR_HARD_REG_SET (*btrs_live_in_range,
1040 (def_bb == bb
1041 ? btrs_live_at_end : btrs_live) [bb]);
1044 if (!def->other_btr_uses_before_def &&
1045 !def->other_btr_uses_after_use)
1046 CLEAR_HARD_REG_BIT (*btrs_live_in_range, def->btr);
1049 /* Merge into the def/use web DEF any other def/use webs in the same
1050 group that are dominated by DEF, provided that there is a target
1051 register available to allocate to the merged web. */
1052 static void
1053 combine_btr_defs (btr_def def, HARD_REG_SET *btrs_live_in_range)
1055 btr_def other_def;
1057 for (other_def = def->group->members;
1058 other_def != NULL;
1059 other_def = other_def->next_this_group)
1061 if (other_def != def
1062 && other_def->uses != NULL
1063 && ! other_def->has_ambiguous_use
1064 && dominated_by_p (CDI_DOMINATORS, other_def->bb, def->bb))
1066 /* def->bb dominates the other def, so def and other_def could
1067 be combined. */
1068 /* Merge their live ranges, and get the set of
1069 target registers live over the merged range. */
1070 int btr;
1071 HARD_REG_SET combined_btrs_live;
1072 bitmap combined_live_range = BITMAP_ALLOC (NULL);
1073 btr_user user;
1075 if (other_def->live_range == NULL)
1077 HARD_REG_SET dummy_btrs_live_in_range;
1078 btr_def_live_range (other_def, &dummy_btrs_live_in_range);
1080 COPY_HARD_REG_SET (combined_btrs_live, *btrs_live_in_range);
1081 bitmap_copy (combined_live_range, def->live_range);
1083 for (user = other_def->uses; user != NULL; user = user->next)
1084 augment_live_range (combined_live_range, &combined_btrs_live,
1085 def->bb, user->bb,
1086 (flag_btr_bb_exclusive
1087 || user->insn != BB_END (def->bb)
1088 || !JUMP_P (user->insn)));
1090 btr = choose_btr (combined_btrs_live);
1091 if (btr != -1)
1093 /* We can combine them. */
1094 if (dump_file)
1095 fprintf (dump_file,
1096 "Combining def in insn %d with def in insn %d\n",
1097 INSN_UID (other_def->insn), INSN_UID (def->insn));
1099 def->btr = btr;
1100 user = other_def->uses;
1101 while (user != NULL)
1103 btr_user next = user->next;
1105 user->next = def->uses;
1106 def->uses = user;
1107 user = next;
1109 /* Combining def/use webs can make target registers live
1110 after uses where they previously were not. This means
1111 some REG_DEAD notes may no longer be correct. We could
1112 be more precise about this if we looked at the combined
1113 live range, but here I just delete any REG_DEAD notes
1114 in case they are no longer correct. */
1115 for (user = def->uses; user != NULL; user = user->next)
1116 remove_note (user->insn,
1117 find_regno_note (user->insn, REG_DEAD,
1118 REGNO (user->use)));
1119 clear_btr_from_live_range (other_def);
1120 other_def->uses = NULL;
1121 bitmap_copy (def->live_range, combined_live_range);
1122 if (other_def->btr == btr && other_def->other_btr_uses_after_use)
1123 def->other_btr_uses_after_use = 1;
1124 COPY_HARD_REG_SET (*btrs_live_in_range, combined_btrs_live);
1126 /* Delete the old target register initialization. */
1127 delete_insn (other_def->insn);
1130 BITMAP_FREE (combined_live_range);
1135 /* Move the definition DEF from its current position to basic
1136 block NEW_DEF_BB, and modify it to use branch target register BTR.
1137 Delete the old defining insn, and insert a new one in NEW_DEF_BB.
1138 Update all reaching uses of DEF in the RTL to use BTR.
1139 If this new position means that other defs in the
1140 same group can be combined with DEF then combine them. */
1141 static void
1142 move_btr_def (basic_block new_def_bb, int btr, btr_def def, bitmap live_range,
1143 HARD_REG_SET *btrs_live_in_range)
1145 /* We can move the instruction.
1146 Set a target register in block NEW_DEF_BB to the value
1147 needed for this target register definition.
1148 Replace all uses of the old target register definition by
1149 uses of the new definition. Delete the old definition. */
1150 basic_block b = new_def_bb;
1151 rtx_insn *insp = BB_HEAD (b);
1152 rtx_insn *old_insn = def->insn;
1153 rtx src;
1154 rtx btr_rtx;
1155 rtx_insn *new_insn;
1156 machine_mode btr_mode;
1157 btr_user user;
1158 rtx set;
1160 if (dump_file)
1161 fprintf(dump_file, "migrating to basic block %d, using reg %d\n",
1162 new_def_bb->index, btr);
1164 clear_btr_from_live_range (def);
1165 def->btr = btr;
1166 def->bb = new_def_bb;
1167 def->luid = 0;
1168 def->cost = basic_block_freq (new_def_bb);
1169 bitmap_copy (def->live_range, live_range);
1170 combine_btr_defs (def, btrs_live_in_range);
1171 btr = def->btr;
1172 def->other_btr_uses_before_def
1173 = TEST_HARD_REG_BIT (btrs_live[b->index], btr) ? 1 : 0;
1174 add_btr_to_live_range (def, 1);
1175 if (LABEL_P (insp))
1176 insp = NEXT_INSN (insp);
1177 /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now. Some
1178 optimizations can result in insp being both first and last insn of
1179 its basic block. */
1180 /* ?? some assertions to check that insp is sensible? */
1182 if (def->other_btr_uses_before_def)
1184 insp = BB_END (b);
1185 for (insp = BB_END (b); ! INSN_P (insp); insp = PREV_INSN (insp))
1186 gcc_assert (insp != BB_HEAD (b));
1188 if (JUMP_P (insp) || can_throw_internal (insp))
1189 insp = PREV_INSN (insp);
1192 set = single_set (old_insn);
1193 src = SET_SRC (set);
1194 btr_mode = GET_MODE (SET_DEST (set));
1195 btr_rtx = gen_rtx_REG (btr_mode, btr);
1197 new_insn = gen_move_insn (btr_rtx, src);
1199 /* Insert target register initialization at head of basic block. */
1200 def->insn = emit_insn_after (new_insn, insp);
1202 df_set_regs_ever_live (btr, true);
1204 if (dump_file)
1205 fprintf (dump_file, "New pt is insn %d, inserted after insn %d\n",
1206 INSN_UID (def->insn), INSN_UID (insp));
1208 /* Delete the old target register initialization. */
1209 delete_insn (old_insn);
1211 /* Replace each use of the old target register by a use of the new target
1212 register. */
1213 for (user = def->uses; user != NULL; user = user->next)
1215 /* Some extra work here to ensure consistent modes, because
1216 it seems that a target register REG rtx can be given a different
1217 mode depending on the context (surely that should not be
1218 the case?). */
1219 rtx replacement_rtx;
1220 if (GET_MODE (user->use) == GET_MODE (btr_rtx)
1221 || GET_MODE (user->use) == VOIDmode)
1222 replacement_rtx = btr_rtx;
1223 else
1224 replacement_rtx = gen_rtx_REG (GET_MODE (user->use), btr);
1225 validate_replace_rtx (user->use, replacement_rtx, user->insn);
1226 user->use = replacement_rtx;
1230 /* We anticipate intra-block scheduling to be done. See if INSN could move
1231 up within BB by N_INSNS. */
1232 static int
1233 can_move_up (const_basic_block bb, const rtx_insn *insn, int n_insns)
1235 while (insn != BB_HEAD (bb) && n_insns > 0)
1237 insn = PREV_INSN (insn);
1238 /* ??? What if we have an anti-dependency that actually prevents the
1239 scheduler from doing the move? We'd like to re-allocate the register,
1240 but not necessarily put the load into another basic block. */
1241 if (INSN_P (insn))
1242 n_insns--;
1244 return n_insns <= 0;
1247 /* Attempt to migrate the target register definition DEF to an
1248 earlier point in the flowgraph.
1250 It is a precondition of this function that DEF is migratable:
1251 i.e. it has a constant source, and all uses are unambiguous.
1253 Only migrations that reduce the cost of DEF will be made.
1254 MIN_COST is the lower bound on the cost of the DEF after migration.
1255 If we migrate DEF so that its cost falls below MIN_COST,
1256 then we do not attempt to migrate further. The idea is that
1257 we migrate definitions in a priority order based on their cost,
1258 when the cost of this definition falls below MIN_COST, then
1259 there is another definition with cost == MIN_COST which now
1260 has a higher priority than this definition.
1262 Return nonzero if there may be benefit from attempting to
1263 migrate this DEF further (i.e. we have reduced the cost below
1264 MIN_COST, but we may be able to reduce it further).
1265 Return zero if no further migration is possible. */
1266 static int
1267 migrate_btr_def (btr_def def, int min_cost)
1269 bitmap live_range;
1270 HARD_REG_SET btrs_live_in_range;
1271 int btr_used_near_def = 0;
1272 int def_basic_block_freq;
1273 basic_block attempt;
1274 int give_up = 0;
1275 int def_moved = 0;
1276 btr_user user;
1277 int def_latency;
1279 if (dump_file)
1280 fprintf (dump_file,
1281 "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
1282 INSN_UID (def->insn), def->cost, min_cost);
1284 if (!def->group || def->has_ambiguous_use)
1285 /* These defs are not migratable. */
1287 if (dump_file)
1288 fprintf (dump_file, "it's not migratable\n");
1289 return 0;
1292 if (!def->uses)
1293 /* We have combined this def with another in the same group, so
1294 no need to consider it further.
1297 if (dump_file)
1298 fprintf (dump_file, "it's already combined with another pt\n");
1299 return 0;
1302 btr_def_live_range (def, &btrs_live_in_range);
1303 live_range = BITMAP_ALLOC (NULL);
1304 bitmap_copy (live_range, def->live_range);
1306 #ifdef INSN_SCHEDULING
1307 def_latency = insn_default_latency (def->insn) * issue_rate;
1308 #else
1309 def_latency = issue_rate;
1310 #endif
1312 for (user = def->uses; user != NULL; user = user->next)
1314 if (user->bb == def->bb
1315 && user->luid > def->luid
1316 && (def->luid + def_latency) > user->luid
1317 && ! can_move_up (def->bb, def->insn,
1318 (def->luid + def_latency) - user->luid))
1320 btr_used_near_def = 1;
1321 break;
1325 def_basic_block_freq = basic_block_freq (def->bb);
1327 for (attempt = get_immediate_dominator (CDI_DOMINATORS, def->bb);
1328 !give_up && attempt && attempt != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1329 && def->cost >= min_cost;
1330 attempt = get_immediate_dominator (CDI_DOMINATORS, attempt))
1332 /* Try to move the instruction that sets the target register into
1333 basic block ATTEMPT. */
1334 int try_freq = basic_block_freq (attempt);
1335 edge_iterator ei;
1336 edge e;
1338 /* If ATTEMPT has abnormal edges, skip it. */
1339 FOR_EACH_EDGE (e, ei, attempt->succs)
1340 if (e->flags & EDGE_COMPLEX)
1341 break;
1342 if (e)
1343 continue;
1345 if (dump_file)
1346 fprintf (dump_file, "trying block %d ...", attempt->index);
1348 if (try_freq < def_basic_block_freq
1349 || (try_freq == def_basic_block_freq && btr_used_near_def))
1351 int btr;
1352 augment_live_range (live_range, &btrs_live_in_range, def->bb, attempt,
1353 flag_btr_bb_exclusive);
1354 if (dump_file)
1356 fprintf (dump_file, "Now btrs live in range are: ");
1357 dump_hard_reg_set (btrs_live_in_range);
1358 fprintf (dump_file, "\n");
1360 btr = choose_btr (btrs_live_in_range);
1361 if (btr != -1)
1363 move_btr_def (attempt, btr, def, live_range, &btrs_live_in_range);
1364 bitmap_copy (live_range, def->live_range);
1365 btr_used_near_def = 0;
1366 def_moved = 1;
1367 def_basic_block_freq = basic_block_freq (def->bb);
1369 else
1371 /* There are no free target registers available to move
1372 this far forward, so give up */
1373 give_up = 1;
1374 if (dump_file)
1375 fprintf (dump_file,
1376 "giving up because there are no free target registers\n");
1381 if (!def_moved)
1383 give_up = 1;
1384 if (dump_file)
1385 fprintf (dump_file, "failed to move\n");
1387 BITMAP_FREE (live_range);
1388 return !give_up;
1391 /* Attempt to move instructions that set target registers earlier
1392 in the flowgraph, away from their corresponding uses. */
1393 static void
1394 migrate_btr_defs (enum reg_class btr_class, int allow_callee_save)
1396 btr_heap_t all_btr_defs (LONG_MIN);
1397 int reg;
1399 gcc_obstack_init (&migrate_btrl_obstack);
1400 if (dump_file)
1402 int i;
1404 for (i = NUM_FIXED_BLOCKS; i < last_basic_block_for_fn (cfun); i++)
1406 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1407 fprintf (dump_file,
1408 "Basic block %d: count = %" PRId64
1409 " loop-depth = %d idom = %d\n",
1410 i, (int64_t) bb->count, bb_loop_depth (bb),
1411 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
1415 CLEAR_HARD_REG_SET (all_btrs);
1416 for (first_btr = -1, reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
1417 if (TEST_HARD_REG_BIT (reg_class_contents[(int) btr_class], reg)
1418 && (allow_callee_save || call_used_regs[reg]
1419 || df_regs_ever_live_p (reg)))
1421 SET_HARD_REG_BIT (all_btrs, reg);
1422 last_btr = reg;
1423 if (first_btr < 0)
1424 first_btr = reg;
1427 btrs_live = XCNEWVEC (HARD_REG_SET, last_basic_block_for_fn (cfun));
1428 btrs_live_at_end = XCNEWVEC (HARD_REG_SET, last_basic_block_for_fn (cfun));
1430 build_btr_def_use_webs (&all_btr_defs);
1432 while (!all_btr_defs.empty ())
1434 int min_cost = -all_btr_defs.min_key ();
1435 btr_def def = all_btr_defs.extract_min ();
1436 if (migrate_btr_def (def, min_cost))
1438 all_btr_defs.insert (-def->cost, def);
1439 if (dump_file)
1441 fprintf (dump_file,
1442 "Putting insn %d back on queue with priority %d\n",
1443 INSN_UID (def->insn), def->cost);
1446 else
1447 BITMAP_FREE (def->live_range);
1450 free (btrs_live);
1451 free (btrs_live_at_end);
1452 obstack_free (&migrate_btrl_obstack, NULL);
1455 static void
1456 branch_target_load_optimize (bool after_prologue_epilogue_gen)
1458 enum reg_class klass
1459 = (enum reg_class) targetm.branch_target_register_class ();
1460 if (klass != NO_REGS)
1462 /* Initialize issue_rate. */
1463 if (targetm.sched.issue_rate)
1464 issue_rate = targetm.sched.issue_rate ();
1465 else
1466 issue_rate = 1;
1468 if (!after_prologue_epilogue_gen)
1470 /* Build the CFG for migrate_btr_defs. */
1471 #if 1
1472 /* This may or may not be needed, depending on where we
1473 run this phase. */
1474 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
1475 #endif
1477 df_analyze ();
1480 /* Dominator info is also needed for migrate_btr_def. */
1481 calculate_dominance_info (CDI_DOMINATORS);
1482 migrate_btr_defs (klass,
1483 (targetm.branch_target_register_callee_saved
1484 (after_prologue_epilogue_gen)));
1486 free_dominance_info (CDI_DOMINATORS);
1490 namespace {
1492 const pass_data pass_data_branch_target_load_optimize1 =
1494 RTL_PASS, /* type */
1495 "btl1", /* name */
1496 OPTGROUP_NONE, /* optinfo_flags */
1497 TV_NONE, /* tv_id */
1498 0, /* properties_required */
1499 0, /* properties_provided */
1500 0, /* properties_destroyed */
1501 0, /* todo_flags_start */
1502 0, /* todo_flags_finish */
1505 class pass_branch_target_load_optimize1 : public rtl_opt_pass
1507 public:
1508 pass_branch_target_load_optimize1 (gcc::context *ctxt)
1509 : rtl_opt_pass (pass_data_branch_target_load_optimize1, ctxt)
1512 /* opt_pass methods: */
1513 virtual bool gate (function *) { return flag_branch_target_load_optimize; }
1514 virtual unsigned int execute (function *)
1516 branch_target_load_optimize (epilogue_completed);
1517 return 0;
1520 }; // class pass_branch_target_load_optimize1
1522 } // anon namespace
1524 rtl_opt_pass *
1525 make_pass_branch_target_load_optimize1 (gcc::context *ctxt)
1527 return new pass_branch_target_load_optimize1 (ctxt);
1531 namespace {
1533 const pass_data pass_data_branch_target_load_optimize2 =
1535 RTL_PASS, /* type */
1536 "btl2", /* name */
1537 OPTGROUP_NONE, /* optinfo_flags */
1538 TV_NONE, /* tv_id */
1539 0, /* properties_required */
1540 0, /* properties_provided */
1541 0, /* properties_destroyed */
1542 0, /* todo_flags_start */
1543 0, /* todo_flags_finish */
1546 class pass_branch_target_load_optimize2 : public rtl_opt_pass
1548 public:
1549 pass_branch_target_load_optimize2 (gcc::context *ctxt)
1550 : rtl_opt_pass (pass_data_branch_target_load_optimize2, ctxt)
1553 /* opt_pass methods: */
1554 virtual bool gate (function *)
1556 return (optimize > 0 && flag_branch_target_load_optimize2);
1559 virtual unsigned int execute (function *);
1561 }; // class pass_branch_target_load_optimize2
1563 unsigned int
1564 pass_branch_target_load_optimize2::execute (function *)
1566 static int warned = 0;
1568 /* Leave this a warning for now so that it is possible to experiment
1569 with running this pass twice. In 3.6, we should either make this
1570 an error, or use separate dump files. */
1571 if (flag_branch_target_load_optimize
1572 && flag_branch_target_load_optimize2
1573 && !warned)
1575 warning (0, "branch target register load optimization is not intended "
1576 "to be run twice");
1578 warned = 1;
1581 branch_target_load_optimize (epilogue_completed);
1582 return 0;
1585 } // anon namespace
1587 rtl_opt_pass *
1588 make_pass_branch_target_load_optimize2 (gcc::context *ctxt)
1590 return new pass_branch_target_load_optimize2 (ctxt);