* asan.c (create_cond_insert_point): Avoid use of REG_BR_PROB_BASE
[official-gcc.git] / gcc / asan.c
blob5f9275f6425a1c29b11b2873edd599716c61f7dc
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "alloc-pool.h"
32 #include "tree-pass.h"
33 #include "memmodel.h"
34 #include "tm_p.h"
35 #include "ssa.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
38 #include "optabs.h"
39 #include "emit-rtl.h"
40 #include "cgraph.h"
41 #include "gimple-pretty-print.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "cfganal.h"
45 #include "gimplify.h"
46 #include "gimple-iterator.h"
47 #include "varasm.h"
48 #include "stor-layout.h"
49 #include "tree-iterator.h"
50 #include "asan.h"
51 #include "dojump.h"
52 #include "explow.h"
53 #include "expr.h"
54 #include "output.h"
55 #include "langhooks.h"
56 #include "cfgloop.h"
57 #include "gimple-builder.h"
58 #include "gimple-fold.h"
59 #include "ubsan.h"
60 #include "params.h"
61 #include "builtins.h"
62 #include "fnmatch.h"
63 #include "tree-inline.h"
65 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
66 with <2x slowdown on average.
68 The tool consists of two parts:
69 instrumentation module (this file) and a run-time library.
70 The instrumentation module adds a run-time check before every memory insn.
71 For a 8- or 16- byte load accessing address X:
72 ShadowAddr = (X >> 3) + Offset
73 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
74 if (ShadowValue)
75 __asan_report_load8(X);
76 For a load of N bytes (N=1, 2 or 4) from address X:
77 ShadowAddr = (X >> 3) + Offset
78 ShadowValue = *(char*)ShadowAddr;
79 if (ShadowValue)
80 if ((X & 7) + N - 1 > ShadowValue)
81 __asan_report_loadN(X);
82 Stores are instrumented similarly, but using __asan_report_storeN functions.
83 A call too __asan_init_vN() is inserted to the list of module CTORs.
84 N is the version number of the AddressSanitizer API. The changes between the
85 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
87 The run-time library redefines malloc (so that redzone are inserted around
88 the allocated memory) and free (so that reuse of free-ed memory is delayed),
89 provides __asan_report* and __asan_init_vN functions.
91 Read more:
92 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
94 The current implementation supports detection of out-of-bounds and
95 use-after-free in the heap, on the stack and for global variables.
97 [Protection of stack variables]
99 To understand how detection of out-of-bounds and use-after-free works
100 for stack variables, lets look at this example on x86_64 where the
101 stack grows downward:
104 foo ()
106 char a[23] = {0};
107 int b[2] = {0};
109 a[5] = 1;
110 b[1] = 2;
112 return a[5] + b[1];
115 For this function, the stack protected by asan will be organized as
116 follows, from the top of the stack to the bottom:
118 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
120 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
121 the next slot be 32 bytes aligned; this one is called Partial
122 Redzone; this 32 bytes alignment is an asan constraint]
124 Slot 3/ [24 bytes for variable 'a']
126 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
128 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
130 Slot 6/ [8 bytes for variable 'b']
132 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
133 'LEFT RedZone']
135 The 32 bytes of LEFT red zone at the bottom of the stack can be
136 decomposed as such:
138 1/ The first 8 bytes contain a magical asan number that is always
139 0x41B58AB3.
141 2/ The following 8 bytes contains a pointer to a string (to be
142 parsed at runtime by the runtime asan library), which format is
143 the following:
145 "<function-name> <space> <num-of-variables-on-the-stack>
146 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
147 <length-of-var-in-bytes> ){n} "
149 where '(...){n}' means the content inside the parenthesis occurs 'n'
150 times, with 'n' being the number of variables on the stack.
152 3/ The following 8 bytes contain the PC of the current function which
153 will be used by the run-time library to print an error message.
155 4/ The following 8 bytes are reserved for internal use by the run-time.
157 The shadow memory for that stack layout is going to look like this:
159 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
160 The F1 byte pattern is a magic number called
161 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
162 the memory for that shadow byte is part of a the LEFT red zone
163 intended to seat at the bottom of the variables on the stack.
165 - content of shadow memory 8 bytes for slots 6 and 5:
166 0xF4F4F400. The F4 byte pattern is a magic number
167 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
168 memory region for this shadow byte is a PARTIAL red zone
169 intended to pad a variable A, so that the slot following
170 {A,padding} is 32 bytes aligned.
172 Note that the fact that the least significant byte of this
173 shadow memory content is 00 means that 8 bytes of its
174 corresponding memory (which corresponds to the memory of
175 variable 'b') is addressable.
177 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
178 The F2 byte pattern is a magic number called
179 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
180 region for this shadow byte is a MIDDLE red zone intended to
181 seat between two 32 aligned slots of {variable,padding}.
183 - content of shadow memory 8 bytes for slot 3 and 2:
184 0xF4000000. This represents is the concatenation of
185 variable 'a' and the partial red zone following it, like what we
186 had for variable 'b'. The least significant 3 bytes being 00
187 means that the 3 bytes of variable 'a' are addressable.
189 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
190 The F3 byte pattern is a magic number called
191 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
192 region for this shadow byte is a RIGHT red zone intended to seat
193 at the top of the variables of the stack.
195 Note that the real variable layout is done in expand_used_vars in
196 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
197 stack variables as well as the different red zones, emits some
198 prologue code to populate the shadow memory as to poison (mark as
199 non-accessible) the regions of the red zones and mark the regions of
200 stack variables as accessible, and emit some epilogue code to
201 un-poison (mark as accessible) the regions of red zones right before
202 the function exits.
204 [Protection of global variables]
206 The basic idea is to insert a red zone between two global variables
207 and install a constructor function that calls the asan runtime to do
208 the populating of the relevant shadow memory regions at load time.
210 So the global variables are laid out as to insert a red zone between
211 them. The size of the red zones is so that each variable starts on a
212 32 bytes boundary.
214 Then a constructor function is installed so that, for each global
215 variable, it calls the runtime asan library function
216 __asan_register_globals_with an instance of this type:
218 struct __asan_global
220 // Address of the beginning of the global variable.
221 const void *__beg;
223 // Initial size of the global variable.
224 uptr __size;
226 // Size of the global variable + size of the red zone. This
227 // size is 32 bytes aligned.
228 uptr __size_with_redzone;
230 // Name of the global variable.
231 const void *__name;
233 // Name of the module where the global variable is declared.
234 const void *__module_name;
236 // 1 if it has dynamic initialization, 0 otherwise.
237 uptr __has_dynamic_init;
239 // A pointer to struct that contains source location, could be NULL.
240 __asan_global_source_location *__location;
243 A destructor function that calls the runtime asan library function
244 _asan_unregister_globals is also installed. */
246 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
247 static bool asan_shadow_offset_computed;
248 static vec<char *> sanitized_sections;
249 static tree last_alloca_addr;
251 /* Set of variable declarations that are going to be guarded by
252 use-after-scope sanitizer. */
254 static hash_set<tree> *asan_handled_variables = NULL;
256 hash_set <tree> *asan_used_labels = NULL;
258 /* Sets shadow offset to value in string VAL. */
260 bool
261 set_asan_shadow_offset (const char *val)
263 char *endp;
265 errno = 0;
266 #ifdef HAVE_LONG_LONG
267 asan_shadow_offset_value = strtoull (val, &endp, 0);
268 #else
269 asan_shadow_offset_value = strtoul (val, &endp, 0);
270 #endif
271 if (!(*val != '\0' && *endp == '\0' && errno == 0))
272 return false;
274 asan_shadow_offset_computed = true;
276 return true;
279 /* Set list of user-defined sections that need to be sanitized. */
281 void
282 set_sanitized_sections (const char *sections)
284 char *pat;
285 unsigned i;
286 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
287 free (pat);
288 sanitized_sections.truncate (0);
290 for (const char *s = sections; *s; )
292 const char *end;
293 for (end = s; *end && *end != ','; ++end);
294 size_t len = end - s;
295 sanitized_sections.safe_push (xstrndup (s, len));
296 s = *end ? end + 1 : end;
300 bool
301 asan_mark_p (gimple *stmt, enum asan_mark_flags flag)
303 return (gimple_call_internal_p (stmt, IFN_ASAN_MARK)
304 && tree_to_uhwi (gimple_call_arg (stmt, 0)) == flag);
307 bool
308 asan_sanitize_stack_p (void)
310 return (sanitize_flags_p (SANITIZE_ADDRESS) && ASAN_STACK);
313 bool
314 asan_sanitize_allocas_p (void)
316 return (asan_sanitize_stack_p () && ASAN_PROTECT_ALLOCAS);
319 /* Checks whether section SEC should be sanitized. */
321 static bool
322 section_sanitized_p (const char *sec)
324 char *pat;
325 unsigned i;
326 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
327 if (fnmatch (pat, sec, FNM_PERIOD) == 0)
328 return true;
329 return false;
332 /* Returns Asan shadow offset. */
334 static unsigned HOST_WIDE_INT
335 asan_shadow_offset ()
337 if (!asan_shadow_offset_computed)
339 asan_shadow_offset_computed = true;
340 asan_shadow_offset_value = targetm.asan_shadow_offset ();
342 return asan_shadow_offset_value;
345 alias_set_type asan_shadow_set = -1;
347 /* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
348 alias set is used for all shadow memory accesses. */
349 static GTY(()) tree shadow_ptr_types[3];
351 /* Decl for __asan_option_detect_stack_use_after_return. */
352 static GTY(()) tree asan_detect_stack_use_after_return;
354 /* Hashtable support for memory references used by gimple
355 statements. */
357 /* This type represents a reference to a memory region. */
358 struct asan_mem_ref
360 /* The expression of the beginning of the memory region. */
361 tree start;
363 /* The size of the access. */
364 HOST_WIDE_INT access_size;
367 object_allocator <asan_mem_ref> asan_mem_ref_pool ("asan_mem_ref");
369 /* Initializes an instance of asan_mem_ref. */
371 static void
372 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
374 ref->start = start;
375 ref->access_size = access_size;
378 /* Allocates memory for an instance of asan_mem_ref into the memory
379 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
380 START is the address of (or the expression pointing to) the
381 beginning of memory reference. ACCESS_SIZE is the size of the
382 access to the referenced memory. */
384 static asan_mem_ref*
385 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
387 asan_mem_ref *ref = asan_mem_ref_pool.allocate ();
389 asan_mem_ref_init (ref, start, access_size);
390 return ref;
393 /* This builds and returns a pointer to the end of the memory region
394 that starts at START and of length LEN. */
396 tree
397 asan_mem_ref_get_end (tree start, tree len)
399 if (len == NULL_TREE || integer_zerop (len))
400 return start;
402 if (!ptrofftype_p (len))
403 len = convert_to_ptrofftype (len);
405 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
408 /* Return a tree expression that represents the end of the referenced
409 memory region. Beware that this function can actually build a new
410 tree expression. */
412 tree
413 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
415 return asan_mem_ref_get_end (ref->start, len);
418 struct asan_mem_ref_hasher : nofree_ptr_hash <asan_mem_ref>
420 static inline hashval_t hash (const asan_mem_ref *);
421 static inline bool equal (const asan_mem_ref *, const asan_mem_ref *);
424 /* Hash a memory reference. */
426 inline hashval_t
427 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
429 return iterative_hash_expr (mem_ref->start, 0);
432 /* Compare two memory references. We accept the length of either
433 memory references to be NULL_TREE. */
435 inline bool
436 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
437 const asan_mem_ref *m2)
439 return operand_equal_p (m1->start, m2->start, 0);
442 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
444 /* Returns a reference to the hash table containing memory references.
445 This function ensures that the hash table is created. Note that
446 this hash table is updated by the function
447 update_mem_ref_hash_table. */
449 static hash_table<asan_mem_ref_hasher> *
450 get_mem_ref_hash_table ()
452 if (!asan_mem_ref_ht)
453 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
455 return asan_mem_ref_ht;
458 /* Clear all entries from the memory references hash table. */
460 static void
461 empty_mem_ref_hash_table ()
463 if (asan_mem_ref_ht)
464 asan_mem_ref_ht->empty ();
467 /* Free the memory references hash table. */
469 static void
470 free_mem_ref_resources ()
472 delete asan_mem_ref_ht;
473 asan_mem_ref_ht = NULL;
475 asan_mem_ref_pool.release ();
478 /* Return true iff the memory reference REF has been instrumented. */
480 static bool
481 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
483 asan_mem_ref r;
484 asan_mem_ref_init (&r, ref, access_size);
486 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
487 return saved_ref && saved_ref->access_size >= access_size;
490 /* Return true iff the memory reference REF has been instrumented. */
492 static bool
493 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
495 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
498 /* Return true iff access to memory region starting at REF and of
499 length LEN has been instrumented. */
501 static bool
502 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
504 HOST_WIDE_INT size_in_bytes
505 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
507 return size_in_bytes != -1
508 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
511 /* Set REF to the memory reference present in a gimple assignment
512 ASSIGNMENT. Return true upon successful completion, false
513 otherwise. */
515 static bool
516 get_mem_ref_of_assignment (const gassign *assignment,
517 asan_mem_ref *ref,
518 bool *ref_is_store)
520 gcc_assert (gimple_assign_single_p (assignment));
522 if (gimple_store_p (assignment)
523 && !gimple_clobber_p (assignment))
525 ref->start = gimple_assign_lhs (assignment);
526 *ref_is_store = true;
528 else if (gimple_assign_load_p (assignment))
530 ref->start = gimple_assign_rhs1 (assignment);
531 *ref_is_store = false;
533 else
534 return false;
536 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
537 return true;
540 /* Return address of last allocated dynamic alloca. */
542 static tree
543 get_last_alloca_addr ()
545 if (last_alloca_addr)
546 return last_alloca_addr;
548 last_alloca_addr = create_tmp_reg (ptr_type_node, "last_alloca_addr");
549 gassign *g = gimple_build_assign (last_alloca_addr, null_pointer_node);
550 edge e = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
551 gsi_insert_on_edge_immediate (e, g);
552 return last_alloca_addr;
555 /* Insert __asan_allocas_unpoison (top, bottom) call after
556 __builtin_stack_restore (new_sp) call.
557 The pseudocode of this routine should look like this:
558 __builtin_stack_restore (new_sp);
559 top = last_alloca_addr;
560 bot = new_sp;
561 __asan_allocas_unpoison (top, bot);
562 last_alloca_addr = new_sp;
563 In general, we can't use new_sp as bot parameter because on some
564 architectures SP has non zero offset from dynamic stack area. Moreover, on
565 some architectures this offset (STACK_DYNAMIC_OFFSET) becomes known for each
566 particular function only after all callees were expanded to rtl.
567 The most noticeable example is PowerPC{,64}, see
568 http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#DYNAM-STACK.
569 To overcome the issue we use following trick: pass new_sp as a second
570 parameter to __asan_allocas_unpoison and rewrite it during expansion with
571 virtual_dynamic_stack_rtx later in expand_asan_emit_allocas_unpoison
572 function.
575 static void
576 handle_builtin_stack_restore (gcall *call, gimple_stmt_iterator *iter)
578 if (!iter || !asan_sanitize_allocas_p ())
579 return;
581 tree last_alloca = get_last_alloca_addr ();
582 tree restored_stack = gimple_call_arg (call, 0);
583 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCAS_UNPOISON);
584 gimple *g = gimple_build_call (fn, 2, last_alloca, restored_stack);
585 gsi_insert_after (iter, g, GSI_NEW_STMT);
586 g = gimple_build_assign (last_alloca, restored_stack);
587 gsi_insert_after (iter, g, GSI_NEW_STMT);
590 /* Deploy and poison redzones around __builtin_alloca call. To do this, we
591 should replace this call with another one with changed parameters and
592 replace all its uses with new address, so
593 addr = __builtin_alloca (old_size, align);
594 is replaced by
595 left_redzone_size = max (align, ASAN_RED_ZONE_SIZE);
596 Following two statements are optimized out if we know that
597 old_size & (ASAN_RED_ZONE_SIZE - 1) == 0, i.e. alloca doesn't need partial
598 redzone.
599 misalign = old_size & (ASAN_RED_ZONE_SIZE - 1);
600 partial_redzone_size = ASAN_RED_ZONE_SIZE - misalign;
601 right_redzone_size = ASAN_RED_ZONE_SIZE;
602 additional_size = left_redzone_size + partial_redzone_size +
603 right_redzone_size;
604 new_size = old_size + additional_size;
605 new_alloca = __builtin_alloca (new_size, max (align, 32))
606 __asan_alloca_poison (new_alloca, old_size)
607 addr = new_alloca + max (align, ASAN_RED_ZONE_SIZE);
608 last_alloca_addr = new_alloca;
609 ADDITIONAL_SIZE is added to make new memory allocation contain not only
610 requested memory, but also left, partial and right redzones as well as some
611 additional space, required by alignment. */
613 static void
614 handle_builtin_alloca (gcall *call, gimple_stmt_iterator *iter)
616 if (!iter || !asan_sanitize_allocas_p ())
617 return;
619 gassign *g;
620 gcall *gg;
621 const HOST_WIDE_INT redzone_mask = ASAN_RED_ZONE_SIZE - 1;
623 tree last_alloca = get_last_alloca_addr ();
624 tree callee = gimple_call_fndecl (call);
625 tree old_size = gimple_call_arg (call, 0);
626 tree ptr_type = gimple_call_lhs (call) ? TREE_TYPE (gimple_call_lhs (call))
627 : ptr_type_node;
628 tree partial_size = NULL_TREE;
629 bool alloca_with_align
630 = DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN;
631 unsigned int align
632 = alloca_with_align ? tree_to_uhwi (gimple_call_arg (call, 1)) : 0;
634 /* If ALIGN > ASAN_RED_ZONE_SIZE, we embed left redzone into first ALIGN
635 bytes of allocated space. Otherwise, align alloca to ASAN_RED_ZONE_SIZE
636 manually. */
637 align = MAX (align, ASAN_RED_ZONE_SIZE * BITS_PER_UNIT);
639 tree alloca_rz_mask = build_int_cst (size_type_node, redzone_mask);
640 tree redzone_size = build_int_cst (size_type_node, ASAN_RED_ZONE_SIZE);
642 /* Extract lower bits from old_size. */
643 wide_int size_nonzero_bits = get_nonzero_bits (old_size);
644 wide_int rz_mask
645 = wi::uhwi (redzone_mask, wi::get_precision (size_nonzero_bits));
646 wide_int old_size_lower_bits = wi::bit_and (size_nonzero_bits, rz_mask);
648 /* If alloca size is aligned to ASAN_RED_ZONE_SIZE, we don't need partial
649 redzone. Otherwise, compute its size here. */
650 if (wi::ne_p (old_size_lower_bits, 0))
652 /* misalign = size & (ASAN_RED_ZONE_SIZE - 1)
653 partial_size = ASAN_RED_ZONE_SIZE - misalign. */
654 g = gimple_build_assign (make_ssa_name (size_type_node, NULL),
655 BIT_AND_EXPR, old_size, alloca_rz_mask);
656 gsi_insert_before (iter, g, GSI_SAME_STMT);
657 tree misalign = gimple_assign_lhs (g);
658 g = gimple_build_assign (make_ssa_name (size_type_node, NULL), MINUS_EXPR,
659 redzone_size, misalign);
660 gsi_insert_before (iter, g, GSI_SAME_STMT);
661 partial_size = gimple_assign_lhs (g);
664 /* additional_size = align + ASAN_RED_ZONE_SIZE. */
665 tree additional_size = build_int_cst (size_type_node, align / BITS_PER_UNIT
666 + ASAN_RED_ZONE_SIZE);
667 /* If alloca has partial redzone, include it to additional_size too. */
668 if (partial_size)
670 /* additional_size += partial_size. */
671 g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR,
672 partial_size, additional_size);
673 gsi_insert_before (iter, g, GSI_SAME_STMT);
674 additional_size = gimple_assign_lhs (g);
677 /* new_size = old_size + additional_size. */
678 g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR, old_size,
679 additional_size);
680 gsi_insert_before (iter, g, GSI_SAME_STMT);
681 tree new_size = gimple_assign_lhs (g);
683 /* Build new __builtin_alloca call:
684 new_alloca_with_rz = __builtin_alloca (new_size, align). */
685 tree fn = builtin_decl_implicit (BUILT_IN_ALLOCA_WITH_ALIGN);
686 gg = gimple_build_call (fn, 2, new_size,
687 build_int_cst (size_type_node, align));
688 tree new_alloca_with_rz = make_ssa_name (ptr_type, gg);
689 gimple_call_set_lhs (gg, new_alloca_with_rz);
690 gsi_insert_before (iter, gg, GSI_SAME_STMT);
692 /* new_alloca = new_alloca_with_rz + align. */
693 g = gimple_build_assign (make_ssa_name (ptr_type), POINTER_PLUS_EXPR,
694 new_alloca_with_rz,
695 build_int_cst (size_type_node,
696 align / BITS_PER_UNIT));
697 gsi_insert_before (iter, g, GSI_SAME_STMT);
698 tree new_alloca = gimple_assign_lhs (g);
700 /* Poison newly created alloca redzones:
701 __asan_alloca_poison (new_alloca, old_size). */
702 fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCA_POISON);
703 gg = gimple_build_call (fn, 2, new_alloca, old_size);
704 gsi_insert_before (iter, gg, GSI_SAME_STMT);
706 /* Save new_alloca_with_rz value into last_alloca to use it during
707 allocas unpoisoning. */
708 g = gimple_build_assign (last_alloca, new_alloca_with_rz);
709 gsi_insert_before (iter, g, GSI_SAME_STMT);
711 /* Finally, replace old alloca ptr with NEW_ALLOCA. */
712 replace_call_with_value (iter, new_alloca);
715 /* Return the memory references contained in a gimple statement
716 representing a builtin call that has to do with memory access. */
718 static bool
719 get_mem_refs_of_builtin_call (gcall *call,
720 asan_mem_ref *src0,
721 tree *src0_len,
722 bool *src0_is_store,
723 asan_mem_ref *src1,
724 tree *src1_len,
725 bool *src1_is_store,
726 asan_mem_ref *dst,
727 tree *dst_len,
728 bool *dst_is_store,
729 bool *dest_is_deref,
730 bool *intercepted_p,
731 gimple_stmt_iterator *iter = NULL)
733 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
735 tree callee = gimple_call_fndecl (call);
736 tree source0 = NULL_TREE, source1 = NULL_TREE,
737 dest = NULL_TREE, len = NULL_TREE;
738 bool is_store = true, got_reference_p = false;
739 HOST_WIDE_INT access_size = 1;
741 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
743 switch (DECL_FUNCTION_CODE (callee))
745 /* (s, s, n) style memops. */
746 case BUILT_IN_BCMP:
747 case BUILT_IN_MEMCMP:
748 source0 = gimple_call_arg (call, 0);
749 source1 = gimple_call_arg (call, 1);
750 len = gimple_call_arg (call, 2);
751 break;
753 /* (src, dest, n) style memops. */
754 case BUILT_IN_BCOPY:
755 source0 = gimple_call_arg (call, 0);
756 dest = gimple_call_arg (call, 1);
757 len = gimple_call_arg (call, 2);
758 break;
760 /* (dest, src, n) style memops. */
761 case BUILT_IN_MEMCPY:
762 case BUILT_IN_MEMCPY_CHK:
763 case BUILT_IN_MEMMOVE:
764 case BUILT_IN_MEMMOVE_CHK:
765 case BUILT_IN_MEMPCPY:
766 case BUILT_IN_MEMPCPY_CHK:
767 dest = gimple_call_arg (call, 0);
768 source0 = gimple_call_arg (call, 1);
769 len = gimple_call_arg (call, 2);
770 break;
772 /* (dest, n) style memops. */
773 case BUILT_IN_BZERO:
774 dest = gimple_call_arg (call, 0);
775 len = gimple_call_arg (call, 1);
776 break;
778 /* (dest, x, n) style memops*/
779 case BUILT_IN_MEMSET:
780 case BUILT_IN_MEMSET_CHK:
781 dest = gimple_call_arg (call, 0);
782 len = gimple_call_arg (call, 2);
783 break;
785 case BUILT_IN_STRLEN:
786 source0 = gimple_call_arg (call, 0);
787 len = gimple_call_lhs (call);
788 break;
790 case BUILT_IN_STACK_RESTORE:
791 handle_builtin_stack_restore (call, iter);
792 break;
794 case BUILT_IN_ALLOCA_WITH_ALIGN:
795 case BUILT_IN_ALLOCA:
796 handle_builtin_alloca (call, iter);
797 break;
798 /* And now the __atomic* and __sync builtins.
799 These are handled differently from the classical memory memory
800 access builtins above. */
802 case BUILT_IN_ATOMIC_LOAD_1:
803 is_store = false;
804 /* FALLTHRU */
805 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
806 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
807 case BUILT_IN_SYNC_FETCH_AND_OR_1:
808 case BUILT_IN_SYNC_FETCH_AND_AND_1:
809 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
810 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
811 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
812 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
813 case BUILT_IN_SYNC_OR_AND_FETCH_1:
814 case BUILT_IN_SYNC_AND_AND_FETCH_1:
815 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
816 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
817 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
818 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
819 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
820 case BUILT_IN_SYNC_LOCK_RELEASE_1:
821 case BUILT_IN_ATOMIC_EXCHANGE_1:
822 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
823 case BUILT_IN_ATOMIC_STORE_1:
824 case BUILT_IN_ATOMIC_ADD_FETCH_1:
825 case BUILT_IN_ATOMIC_SUB_FETCH_1:
826 case BUILT_IN_ATOMIC_AND_FETCH_1:
827 case BUILT_IN_ATOMIC_NAND_FETCH_1:
828 case BUILT_IN_ATOMIC_XOR_FETCH_1:
829 case BUILT_IN_ATOMIC_OR_FETCH_1:
830 case BUILT_IN_ATOMIC_FETCH_ADD_1:
831 case BUILT_IN_ATOMIC_FETCH_SUB_1:
832 case BUILT_IN_ATOMIC_FETCH_AND_1:
833 case BUILT_IN_ATOMIC_FETCH_NAND_1:
834 case BUILT_IN_ATOMIC_FETCH_XOR_1:
835 case BUILT_IN_ATOMIC_FETCH_OR_1:
836 access_size = 1;
837 goto do_atomic;
839 case BUILT_IN_ATOMIC_LOAD_2:
840 is_store = false;
841 /* FALLTHRU */
842 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
843 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
844 case BUILT_IN_SYNC_FETCH_AND_OR_2:
845 case BUILT_IN_SYNC_FETCH_AND_AND_2:
846 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
847 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
848 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
849 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
850 case BUILT_IN_SYNC_OR_AND_FETCH_2:
851 case BUILT_IN_SYNC_AND_AND_FETCH_2:
852 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
853 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
854 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
855 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
856 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
857 case BUILT_IN_SYNC_LOCK_RELEASE_2:
858 case BUILT_IN_ATOMIC_EXCHANGE_2:
859 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
860 case BUILT_IN_ATOMIC_STORE_2:
861 case BUILT_IN_ATOMIC_ADD_FETCH_2:
862 case BUILT_IN_ATOMIC_SUB_FETCH_2:
863 case BUILT_IN_ATOMIC_AND_FETCH_2:
864 case BUILT_IN_ATOMIC_NAND_FETCH_2:
865 case BUILT_IN_ATOMIC_XOR_FETCH_2:
866 case BUILT_IN_ATOMIC_OR_FETCH_2:
867 case BUILT_IN_ATOMIC_FETCH_ADD_2:
868 case BUILT_IN_ATOMIC_FETCH_SUB_2:
869 case BUILT_IN_ATOMIC_FETCH_AND_2:
870 case BUILT_IN_ATOMIC_FETCH_NAND_2:
871 case BUILT_IN_ATOMIC_FETCH_XOR_2:
872 case BUILT_IN_ATOMIC_FETCH_OR_2:
873 access_size = 2;
874 goto do_atomic;
876 case BUILT_IN_ATOMIC_LOAD_4:
877 is_store = false;
878 /* FALLTHRU */
879 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
880 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
881 case BUILT_IN_SYNC_FETCH_AND_OR_4:
882 case BUILT_IN_SYNC_FETCH_AND_AND_4:
883 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
884 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
885 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
886 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
887 case BUILT_IN_SYNC_OR_AND_FETCH_4:
888 case BUILT_IN_SYNC_AND_AND_FETCH_4:
889 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
890 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
891 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
892 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
893 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
894 case BUILT_IN_SYNC_LOCK_RELEASE_4:
895 case BUILT_IN_ATOMIC_EXCHANGE_4:
896 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
897 case BUILT_IN_ATOMIC_STORE_4:
898 case BUILT_IN_ATOMIC_ADD_FETCH_4:
899 case BUILT_IN_ATOMIC_SUB_FETCH_4:
900 case BUILT_IN_ATOMIC_AND_FETCH_4:
901 case BUILT_IN_ATOMIC_NAND_FETCH_4:
902 case BUILT_IN_ATOMIC_XOR_FETCH_4:
903 case BUILT_IN_ATOMIC_OR_FETCH_4:
904 case BUILT_IN_ATOMIC_FETCH_ADD_4:
905 case BUILT_IN_ATOMIC_FETCH_SUB_4:
906 case BUILT_IN_ATOMIC_FETCH_AND_4:
907 case BUILT_IN_ATOMIC_FETCH_NAND_4:
908 case BUILT_IN_ATOMIC_FETCH_XOR_4:
909 case BUILT_IN_ATOMIC_FETCH_OR_4:
910 access_size = 4;
911 goto do_atomic;
913 case BUILT_IN_ATOMIC_LOAD_8:
914 is_store = false;
915 /* FALLTHRU */
916 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
917 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
918 case BUILT_IN_SYNC_FETCH_AND_OR_8:
919 case BUILT_IN_SYNC_FETCH_AND_AND_8:
920 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
921 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
922 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
923 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
924 case BUILT_IN_SYNC_OR_AND_FETCH_8:
925 case BUILT_IN_SYNC_AND_AND_FETCH_8:
926 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
927 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
928 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
929 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
930 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
931 case BUILT_IN_SYNC_LOCK_RELEASE_8:
932 case BUILT_IN_ATOMIC_EXCHANGE_8:
933 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
934 case BUILT_IN_ATOMIC_STORE_8:
935 case BUILT_IN_ATOMIC_ADD_FETCH_8:
936 case BUILT_IN_ATOMIC_SUB_FETCH_8:
937 case BUILT_IN_ATOMIC_AND_FETCH_8:
938 case BUILT_IN_ATOMIC_NAND_FETCH_8:
939 case BUILT_IN_ATOMIC_XOR_FETCH_8:
940 case BUILT_IN_ATOMIC_OR_FETCH_8:
941 case BUILT_IN_ATOMIC_FETCH_ADD_8:
942 case BUILT_IN_ATOMIC_FETCH_SUB_8:
943 case BUILT_IN_ATOMIC_FETCH_AND_8:
944 case BUILT_IN_ATOMIC_FETCH_NAND_8:
945 case BUILT_IN_ATOMIC_FETCH_XOR_8:
946 case BUILT_IN_ATOMIC_FETCH_OR_8:
947 access_size = 8;
948 goto do_atomic;
950 case BUILT_IN_ATOMIC_LOAD_16:
951 is_store = false;
952 /* FALLTHRU */
953 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
954 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
955 case BUILT_IN_SYNC_FETCH_AND_OR_16:
956 case BUILT_IN_SYNC_FETCH_AND_AND_16:
957 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
958 case BUILT_IN_SYNC_FETCH_AND_NAND_16:
959 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
960 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
961 case BUILT_IN_SYNC_OR_AND_FETCH_16:
962 case BUILT_IN_SYNC_AND_AND_FETCH_16:
963 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
964 case BUILT_IN_SYNC_NAND_AND_FETCH_16:
965 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
966 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
967 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
968 case BUILT_IN_SYNC_LOCK_RELEASE_16:
969 case BUILT_IN_ATOMIC_EXCHANGE_16:
970 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
971 case BUILT_IN_ATOMIC_STORE_16:
972 case BUILT_IN_ATOMIC_ADD_FETCH_16:
973 case BUILT_IN_ATOMIC_SUB_FETCH_16:
974 case BUILT_IN_ATOMIC_AND_FETCH_16:
975 case BUILT_IN_ATOMIC_NAND_FETCH_16:
976 case BUILT_IN_ATOMIC_XOR_FETCH_16:
977 case BUILT_IN_ATOMIC_OR_FETCH_16:
978 case BUILT_IN_ATOMIC_FETCH_ADD_16:
979 case BUILT_IN_ATOMIC_FETCH_SUB_16:
980 case BUILT_IN_ATOMIC_FETCH_AND_16:
981 case BUILT_IN_ATOMIC_FETCH_NAND_16:
982 case BUILT_IN_ATOMIC_FETCH_XOR_16:
983 case BUILT_IN_ATOMIC_FETCH_OR_16:
984 access_size = 16;
985 /* FALLTHRU */
986 do_atomic:
988 dest = gimple_call_arg (call, 0);
989 /* DEST represents the address of a memory location.
990 instrument_derefs wants the memory location, so lets
991 dereference the address DEST before handing it to
992 instrument_derefs. */
993 tree type = build_nonstandard_integer_type (access_size
994 * BITS_PER_UNIT, 1);
995 dest = build2 (MEM_REF, type, dest,
996 build_int_cst (build_pointer_type (char_type_node), 0));
997 break;
1000 default:
1001 /* The other builtins memory access are not instrumented in this
1002 function because they either don't have any length parameter,
1003 or their length parameter is just a limit. */
1004 break;
1007 if (len != NULL_TREE)
1009 if (source0 != NULL_TREE)
1011 src0->start = source0;
1012 src0->access_size = access_size;
1013 *src0_len = len;
1014 *src0_is_store = false;
1017 if (source1 != NULL_TREE)
1019 src1->start = source1;
1020 src1->access_size = access_size;
1021 *src1_len = len;
1022 *src1_is_store = false;
1025 if (dest != NULL_TREE)
1027 dst->start = dest;
1028 dst->access_size = access_size;
1029 *dst_len = len;
1030 *dst_is_store = true;
1033 got_reference_p = true;
1035 else if (dest)
1037 dst->start = dest;
1038 dst->access_size = access_size;
1039 *dst_len = NULL_TREE;
1040 *dst_is_store = is_store;
1041 *dest_is_deref = true;
1042 got_reference_p = true;
1045 return got_reference_p;
1048 /* Return true iff a given gimple statement has been instrumented.
1049 Note that the statement is "defined" by the memory references it
1050 contains. */
1052 static bool
1053 has_stmt_been_instrumented_p (gimple *stmt)
1055 if (gimple_assign_single_p (stmt))
1057 bool r_is_store;
1058 asan_mem_ref r;
1059 asan_mem_ref_init (&r, NULL, 1);
1061 if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
1062 &r_is_store))
1063 return has_mem_ref_been_instrumented (&r);
1065 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1067 asan_mem_ref src0, src1, dest;
1068 asan_mem_ref_init (&src0, NULL, 1);
1069 asan_mem_ref_init (&src1, NULL, 1);
1070 asan_mem_ref_init (&dest, NULL, 1);
1072 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1073 bool src0_is_store = false, src1_is_store = false,
1074 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
1075 if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
1076 &src0, &src0_len, &src0_is_store,
1077 &src1, &src1_len, &src1_is_store,
1078 &dest, &dest_len, &dest_is_store,
1079 &dest_is_deref, &intercepted_p))
1081 if (src0.start != NULL_TREE
1082 && !has_mem_ref_been_instrumented (&src0, src0_len))
1083 return false;
1085 if (src1.start != NULL_TREE
1086 && !has_mem_ref_been_instrumented (&src1, src1_len))
1087 return false;
1089 if (dest.start != NULL_TREE
1090 && !has_mem_ref_been_instrumented (&dest, dest_len))
1091 return false;
1093 return true;
1096 else if (is_gimple_call (stmt) && gimple_store_p (stmt))
1098 asan_mem_ref r;
1099 asan_mem_ref_init (&r, NULL, 1);
1101 r.start = gimple_call_lhs (stmt);
1102 r.access_size = int_size_in_bytes (TREE_TYPE (r.start));
1103 return has_mem_ref_been_instrumented (&r);
1106 return false;
1109 /* Insert a memory reference into the hash table. */
1111 static void
1112 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
1114 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
1116 asan_mem_ref r;
1117 asan_mem_ref_init (&r, ref, access_size);
1119 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
1120 if (*slot == NULL || (*slot)->access_size < access_size)
1121 *slot = asan_mem_ref_new (ref, access_size);
1124 /* Initialize shadow_ptr_types array. */
1126 static void
1127 asan_init_shadow_ptr_types (void)
1129 asan_shadow_set = new_alias_set ();
1130 tree types[3] = { signed_char_type_node, short_integer_type_node,
1131 integer_type_node };
1133 for (unsigned i = 0; i < 3; i++)
1135 shadow_ptr_types[i] = build_distinct_type_copy (types[i]);
1136 TYPE_ALIAS_SET (shadow_ptr_types[i]) = asan_shadow_set;
1137 shadow_ptr_types[i] = build_pointer_type (shadow_ptr_types[i]);
1140 initialize_sanitizer_builtins ();
1143 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
1145 static tree
1146 asan_pp_string (pretty_printer *pp)
1148 const char *buf = pp_formatted_text (pp);
1149 size_t len = strlen (buf);
1150 tree ret = build_string (len + 1, buf);
1151 TREE_TYPE (ret)
1152 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
1153 build_index_type (size_int (len)));
1154 TREE_READONLY (ret) = 1;
1155 TREE_STATIC (ret) = 1;
1156 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
1159 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
1161 static rtx
1162 asan_shadow_cst (unsigned char shadow_bytes[4])
1164 int i;
1165 unsigned HOST_WIDE_INT val = 0;
1166 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
1167 for (i = 0; i < 4; i++)
1168 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
1169 << (BITS_PER_UNIT * i);
1170 return gen_int_mode (val, SImode);
1173 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
1174 though. */
1176 static void
1177 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
1179 rtx_insn *insn, *insns, *jump;
1180 rtx_code_label *top_label;
1181 rtx end, addr, tmp;
1183 start_sequence ();
1184 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
1185 insns = get_insns ();
1186 end_sequence ();
1187 for (insn = insns; insn; insn = NEXT_INSN (insn))
1188 if (CALL_P (insn))
1189 break;
1190 if (insn == NULL_RTX)
1192 emit_insn (insns);
1193 return;
1196 gcc_assert ((len & 3) == 0);
1197 top_label = gen_label_rtx ();
1198 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
1199 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
1200 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
1201 emit_label (top_label);
1203 emit_move_insn (shadow_mem, const0_rtx);
1204 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
1205 true, OPTAB_LIB_WIDEN);
1206 if (tmp != addr)
1207 emit_move_insn (addr, tmp);
1208 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1209 jump = get_last_insn ();
1210 gcc_assert (JUMP_P (jump));
1211 add_reg_br_prob_note (jump,
1212 profile_probability::guessed_always ()
1213 .apply_scale (80, 100));
1216 void
1217 asan_function_start (void)
1219 section *fnsec = function_section (current_function_decl);
1220 switch_to_section (fnsec);
1221 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1222 current_function_funcdef_no);
1225 /* Return number of shadow bytes that are occupied by a local variable
1226 of SIZE bytes. */
1228 static unsigned HOST_WIDE_INT
1229 shadow_mem_size (unsigned HOST_WIDE_INT size)
1231 return ROUND_UP (size, ASAN_SHADOW_GRANULARITY) / ASAN_SHADOW_GRANULARITY;
1234 /* Insert code to protect stack vars. The prologue sequence should be emitted
1235 directly, epilogue sequence returned. BASE is the register holding the
1236 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1237 array contains pairs of offsets in reverse order, always the end offset
1238 of some gap that needs protection followed by starting offset,
1239 and DECLS is an array of representative decls for each var partition.
1240 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1241 elements long (OFFSETS include gap before the first variable as well
1242 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1243 register which stack vars DECL_RTLs are based on. Either BASE should be
1244 assigned to PBASE, when not doing use after return protection, or
1245 corresponding address based on __asan_stack_malloc* return value. */
1247 rtx_insn *
1248 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1249 HOST_WIDE_INT *offsets, tree *decls, int length)
1251 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1252 rtx_code_label *lab;
1253 rtx_insn *insns;
1254 char buf[32];
1255 unsigned char shadow_bytes[4];
1256 HOST_WIDE_INT base_offset = offsets[length - 1];
1257 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1258 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1259 HOST_WIDE_INT last_offset, last_size;
1260 int l;
1261 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1262 tree str_cst, decl, id;
1263 int use_after_return_class = -1;
1265 if (shadow_ptr_types[0] == NULL_TREE)
1266 asan_init_shadow_ptr_types ();
1268 /* First of all, prepare the description string. */
1269 pretty_printer asan_pp;
1271 pp_decimal_int (&asan_pp, length / 2 - 1);
1272 pp_space (&asan_pp);
1273 for (l = length - 2; l; l -= 2)
1275 tree decl = decls[l / 2 - 1];
1276 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1277 pp_space (&asan_pp);
1278 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1279 pp_space (&asan_pp);
1280 if (DECL_P (decl) && DECL_NAME (decl))
1282 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1283 pp_space (&asan_pp);
1284 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1286 else
1287 pp_string (&asan_pp, "9 <unknown>");
1288 pp_space (&asan_pp);
1290 str_cst = asan_pp_string (&asan_pp);
1292 /* Emit the prologue sequence. */
1293 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1294 && ASAN_USE_AFTER_RETURN)
1296 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1297 /* __asan_stack_malloc_N guarantees alignment
1298 N < 6 ? (64 << N) : 4096 bytes. */
1299 if (alignb > (use_after_return_class < 6
1300 ? (64U << use_after_return_class) : 4096U))
1301 use_after_return_class = -1;
1302 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1303 base_align_bias = ((asan_frame_size + alignb - 1)
1304 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1306 /* Align base if target is STRICT_ALIGNMENT. */
1307 if (STRICT_ALIGNMENT)
1308 base = expand_binop (Pmode, and_optab, base,
1309 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1310 << ASAN_SHADOW_SHIFT)
1311 / BITS_PER_UNIT), Pmode), NULL_RTX,
1312 1, OPTAB_DIRECT);
1314 if (use_after_return_class == -1 && pbase)
1315 emit_move_insn (pbase, base);
1317 base = expand_binop (Pmode, add_optab, base,
1318 gen_int_mode (base_offset - base_align_bias, Pmode),
1319 NULL_RTX, 1, OPTAB_DIRECT);
1320 orig_base = NULL_RTX;
1321 if (use_after_return_class != -1)
1323 if (asan_detect_stack_use_after_return == NULL_TREE)
1325 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1326 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1327 integer_type_node);
1328 SET_DECL_ASSEMBLER_NAME (decl, id);
1329 TREE_ADDRESSABLE (decl) = 1;
1330 DECL_ARTIFICIAL (decl) = 1;
1331 DECL_IGNORED_P (decl) = 1;
1332 DECL_EXTERNAL (decl) = 1;
1333 TREE_STATIC (decl) = 1;
1334 TREE_PUBLIC (decl) = 1;
1335 TREE_USED (decl) = 1;
1336 asan_detect_stack_use_after_return = decl;
1338 orig_base = gen_reg_rtx (Pmode);
1339 emit_move_insn (orig_base, base);
1340 ret = expand_normal (asan_detect_stack_use_after_return);
1341 lab = gen_label_rtx ();
1342 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1343 VOIDmode, 0, lab,
1344 profile_probability::very_likely ());
1345 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1346 use_after_return_class);
1347 ret = init_one_libfunc (buf);
1348 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 1,
1349 GEN_INT (asan_frame_size
1350 + base_align_bias),
1351 TYPE_MODE (pointer_sized_int_node));
1352 /* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
1353 and NULL otherwise. Check RET value is NULL here and jump over the
1354 BASE reassignment in this case. Otherwise, reassign BASE to RET. */
1355 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1356 VOIDmode, 0, lab,
1357 profile_probability:: very_unlikely ());
1358 ret = convert_memory_address (Pmode, ret);
1359 emit_move_insn (base, ret);
1360 emit_label (lab);
1361 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1362 gen_int_mode (base_align_bias
1363 - base_offset, Pmode),
1364 NULL_RTX, 1, OPTAB_DIRECT));
1366 mem = gen_rtx_MEM (ptr_mode, base);
1367 mem = adjust_address (mem, VOIDmode, base_align_bias);
1368 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1369 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1370 emit_move_insn (mem, expand_normal (str_cst));
1371 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1372 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1373 id = get_identifier (buf);
1374 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1375 VAR_DECL, id, char_type_node);
1376 SET_DECL_ASSEMBLER_NAME (decl, id);
1377 TREE_ADDRESSABLE (decl) = 1;
1378 TREE_READONLY (decl) = 1;
1379 DECL_ARTIFICIAL (decl) = 1;
1380 DECL_IGNORED_P (decl) = 1;
1381 TREE_STATIC (decl) = 1;
1382 TREE_PUBLIC (decl) = 0;
1383 TREE_USED (decl) = 1;
1384 DECL_INITIAL (decl) = decl;
1385 TREE_ASM_WRITTEN (decl) = 1;
1386 TREE_ASM_WRITTEN (id) = 1;
1387 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1388 shadow_base = expand_binop (Pmode, lshr_optab, base,
1389 GEN_INT (ASAN_SHADOW_SHIFT),
1390 NULL_RTX, 1, OPTAB_DIRECT);
1391 shadow_base
1392 = plus_constant (Pmode, shadow_base,
1393 asan_shadow_offset ()
1394 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1395 gcc_assert (asan_shadow_set != -1
1396 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1397 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1398 set_mem_alias_set (shadow_mem, asan_shadow_set);
1399 if (STRICT_ALIGNMENT)
1400 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1401 prev_offset = base_offset;
1402 for (l = length; l; l -= 2)
1404 if (l == 2)
1405 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1406 offset = offsets[l - 1];
1407 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1409 int i;
1410 HOST_WIDE_INT aoff
1411 = base_offset + ((offset - base_offset)
1412 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1413 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1414 (aoff - prev_offset)
1415 >> ASAN_SHADOW_SHIFT);
1416 prev_offset = aoff;
1417 for (i = 0; i < 4; i++, aoff += ASAN_SHADOW_GRANULARITY)
1418 if (aoff < offset)
1420 if (aoff < offset - (HOST_WIDE_INT)ASAN_SHADOW_GRANULARITY + 1)
1421 shadow_bytes[i] = 0;
1422 else
1423 shadow_bytes[i] = offset - aoff;
1425 else
1426 shadow_bytes[i] = ASAN_STACK_MAGIC_MIDDLE;
1427 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1428 offset = aoff;
1430 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1432 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1433 (offset - prev_offset)
1434 >> ASAN_SHADOW_SHIFT);
1435 prev_offset = offset;
1436 memset (shadow_bytes, cur_shadow_byte, 4);
1437 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1438 offset += ASAN_RED_ZONE_SIZE;
1440 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1442 do_pending_stack_adjust ();
1444 /* Construct epilogue sequence. */
1445 start_sequence ();
1447 lab = NULL;
1448 if (use_after_return_class != -1)
1450 rtx_code_label *lab2 = gen_label_rtx ();
1451 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1452 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1453 VOIDmode, 0, lab2,
1454 profile_probability::very_likely ());
1455 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1456 set_mem_alias_set (shadow_mem, asan_shadow_set);
1457 mem = gen_rtx_MEM (ptr_mode, base);
1458 mem = adjust_address (mem, VOIDmode, base_align_bias);
1459 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1460 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1461 if (use_after_return_class < 5
1462 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1463 BITS_PER_UNIT, true))
1464 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1465 BITS_PER_UNIT, true, 0);
1466 else if (use_after_return_class >= 5
1467 || !set_storage_via_setmem (shadow_mem,
1468 GEN_INT (sz),
1469 gen_int_mode (c, QImode),
1470 BITS_PER_UNIT, BITS_PER_UNIT,
1471 -1, sz, sz, sz))
1473 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1474 use_after_return_class);
1475 ret = init_one_libfunc (buf);
1476 rtx addr = convert_memory_address (ptr_mode, base);
1477 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1478 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1479 GEN_INT (asan_frame_size + base_align_bias),
1480 TYPE_MODE (pointer_sized_int_node),
1481 orig_addr, ptr_mode);
1483 lab = gen_label_rtx ();
1484 emit_jump (lab);
1485 emit_label (lab2);
1488 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1489 set_mem_alias_set (shadow_mem, asan_shadow_set);
1491 if (STRICT_ALIGNMENT)
1492 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1494 prev_offset = base_offset;
1495 last_offset = base_offset;
1496 last_size = 0;
1497 for (l = length; l; l -= 2)
1499 offset = base_offset + ((offsets[l - 1] - base_offset)
1500 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1501 if (last_offset + last_size != offset)
1503 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1504 (last_offset - prev_offset)
1505 >> ASAN_SHADOW_SHIFT);
1506 prev_offset = last_offset;
1507 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1508 last_offset = offset;
1509 last_size = 0;
1511 last_size += base_offset + ((offsets[l - 2] - base_offset)
1512 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1513 - offset;
1515 /* Unpoison shadow memory that corresponds to a variable that is
1516 is subject of use-after-return sanitization. */
1517 if (l > 2)
1519 decl = decls[l / 2 - 2];
1520 if (asan_handled_variables != NULL
1521 && asan_handled_variables->contains (decl))
1523 HOST_WIDE_INT size = offsets[l - 3] - offsets[l - 2];
1524 if (dump_file && (dump_flags & TDF_DETAILS))
1526 const char *n = (DECL_NAME (decl)
1527 ? IDENTIFIER_POINTER (DECL_NAME (decl))
1528 : "<unknown>");
1529 fprintf (dump_file, "Unpoisoning shadow stack for variable: "
1530 "%s (%" PRId64 " B)\n", n, size);
1533 last_size += size & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1);
1537 if (last_size)
1539 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1540 (last_offset - prev_offset)
1541 >> ASAN_SHADOW_SHIFT);
1542 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1545 /* Clean-up set with instrumented stack variables. */
1546 delete asan_handled_variables;
1547 asan_handled_variables = NULL;
1548 delete asan_used_labels;
1549 asan_used_labels = NULL;
1551 do_pending_stack_adjust ();
1552 if (lab)
1553 emit_label (lab);
1555 insns = get_insns ();
1556 end_sequence ();
1557 return insns;
1560 /* Emit __asan_allocas_unpoison (top, bot) call. The BASE parameter corresponds
1561 to BOT argument, for TOP virtual_stack_dynamic_rtx is used. NEW_SEQUENCE
1562 indicates whether we're emitting new instructions sequence or not. */
1564 rtx_insn *
1565 asan_emit_allocas_unpoison (rtx top, rtx bot, rtx_insn *before)
1567 if (before)
1568 push_to_sequence (before);
1569 else
1570 start_sequence ();
1571 rtx ret = init_one_libfunc ("__asan_allocas_unpoison");
1572 top = convert_memory_address (ptr_mode, top);
1573 bot = convert_memory_address (ptr_mode, bot);
1574 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2, top,
1575 ptr_mode, bot, ptr_mode);
1577 do_pending_stack_adjust ();
1578 rtx_insn *insns = get_insns ();
1579 end_sequence ();
1580 return insns;
1583 /* Return true if DECL, a global var, might be overridden and needs
1584 therefore a local alias. */
1586 static bool
1587 asan_needs_local_alias (tree decl)
1589 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1592 /* Return true if DECL, a global var, is an artificial ODR indicator symbol
1593 therefore doesn't need protection. */
1595 static bool
1596 is_odr_indicator (tree decl)
1598 return (DECL_ARTIFICIAL (decl)
1599 && lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl)));
1602 /* Return true if DECL is a VAR_DECL that should be protected
1603 by Address Sanitizer, by appending a red zone with protected
1604 shadow memory after it and aligning it to at least
1605 ASAN_RED_ZONE_SIZE bytes. */
1607 bool
1608 asan_protect_global (tree decl)
1610 if (!ASAN_GLOBALS)
1611 return false;
1613 rtx rtl, symbol;
1615 if (TREE_CODE (decl) == STRING_CST)
1617 /* Instrument all STRING_CSTs except those created
1618 by asan_pp_string here. */
1619 if (shadow_ptr_types[0] != NULL_TREE
1620 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1621 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1622 return false;
1623 return true;
1625 if (!VAR_P (decl)
1626 /* TLS vars aren't statically protectable. */
1627 || DECL_THREAD_LOCAL_P (decl)
1628 /* Externs will be protected elsewhere. */
1629 || DECL_EXTERNAL (decl)
1630 || !DECL_RTL_SET_P (decl)
1631 /* Comdat vars pose an ABI problem, we can't know if
1632 the var that is selected by the linker will have
1633 padding or not. */
1634 || DECL_ONE_ONLY (decl)
1635 /* Similarly for common vars. People can use -fno-common.
1636 Note: Linux kernel is built with -fno-common, so we do instrument
1637 globals there even if it is C. */
1638 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1639 /* Don't protect if using user section, often vars placed
1640 into user section from multiple TUs are then assumed
1641 to be an array of such vars, putting padding in there
1642 breaks this assumption. */
1643 || (DECL_SECTION_NAME (decl) != NULL
1644 && !symtab_node::get (decl)->implicit_section
1645 && !section_sanitized_p (DECL_SECTION_NAME (decl)))
1646 || DECL_SIZE (decl) == 0
1647 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1648 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1649 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1650 || TREE_TYPE (decl) == ubsan_get_source_location_type ()
1651 || is_odr_indicator (decl))
1652 return false;
1654 rtl = DECL_RTL (decl);
1655 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1656 return false;
1657 symbol = XEXP (rtl, 0);
1659 if (CONSTANT_POOL_ADDRESS_P (symbol)
1660 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1661 return false;
1663 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1664 return false;
1666 #ifndef ASM_OUTPUT_DEF
1667 if (asan_needs_local_alias (decl))
1668 return false;
1669 #endif
1671 return true;
1674 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1675 IS_STORE is either 1 (for a store) or 0 (for a load). */
1677 static tree
1678 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1679 int *nargs)
1681 static enum built_in_function report[2][2][6]
1682 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1683 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1684 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1685 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1686 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1687 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1688 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1689 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1690 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1691 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1692 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1693 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1694 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1695 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1696 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1697 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1698 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1699 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1700 if (size_in_bytes == -1)
1702 *nargs = 2;
1703 return builtin_decl_implicit (report[recover_p][is_store][5]);
1705 *nargs = 1;
1706 int size_log2 = exact_log2 (size_in_bytes);
1707 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1710 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1711 IS_STORE is either 1 (for a store) or 0 (for a load). */
1713 static tree
1714 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1715 int *nargs)
1717 static enum built_in_function check[2][2][6]
1718 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1719 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1720 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1721 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1722 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1723 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1724 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1725 BUILT_IN_ASAN_LOAD2_NOABORT,
1726 BUILT_IN_ASAN_LOAD4_NOABORT,
1727 BUILT_IN_ASAN_LOAD8_NOABORT,
1728 BUILT_IN_ASAN_LOAD16_NOABORT,
1729 BUILT_IN_ASAN_LOADN_NOABORT },
1730 { BUILT_IN_ASAN_STORE1_NOABORT,
1731 BUILT_IN_ASAN_STORE2_NOABORT,
1732 BUILT_IN_ASAN_STORE4_NOABORT,
1733 BUILT_IN_ASAN_STORE8_NOABORT,
1734 BUILT_IN_ASAN_STORE16_NOABORT,
1735 BUILT_IN_ASAN_STOREN_NOABORT } } };
1736 if (size_in_bytes == -1)
1738 *nargs = 2;
1739 return builtin_decl_implicit (check[recover_p][is_store][5]);
1741 *nargs = 1;
1742 int size_log2 = exact_log2 (size_in_bytes);
1743 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1746 /* Split the current basic block and create a condition statement
1747 insertion point right before or after the statement pointed to by
1748 ITER. Return an iterator to the point at which the caller might
1749 safely insert the condition statement.
1751 THEN_BLOCK must be set to the address of an uninitialized instance
1752 of basic_block. The function will then set *THEN_BLOCK to the
1753 'then block' of the condition statement to be inserted by the
1754 caller.
1756 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1757 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1759 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1760 block' of the condition statement to be inserted by the caller.
1762 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1763 statements starting from *ITER, and *THEN_BLOCK is a new empty
1764 block.
1766 *ITER is adjusted to point to always point to the first statement
1767 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1768 same as what ITER was pointing to prior to calling this function,
1769 if BEFORE_P is true; otherwise, it is its following statement. */
1771 gimple_stmt_iterator
1772 create_cond_insert_point (gimple_stmt_iterator *iter,
1773 bool before_p,
1774 bool then_more_likely_p,
1775 bool create_then_fallthru_edge,
1776 basic_block *then_block,
1777 basic_block *fallthrough_block)
1779 gimple_stmt_iterator gsi = *iter;
1781 if (!gsi_end_p (gsi) && before_p)
1782 gsi_prev (&gsi);
1784 basic_block cur_bb = gsi_bb (*iter);
1786 edge e = split_block (cur_bb, gsi_stmt (gsi));
1788 /* Get a hold on the 'condition block', the 'then block' and the
1789 'else block'. */
1790 basic_block cond_bb = e->src;
1791 basic_block fallthru_bb = e->dest;
1792 basic_block then_bb = create_empty_bb (cond_bb);
1793 if (current_loops)
1795 add_bb_to_loop (then_bb, cond_bb->loop_father);
1796 loops_state_set (LOOPS_NEED_FIXUP);
1799 /* Set up the newly created 'then block'. */
1800 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1801 profile_probability fallthrough_probability
1802 = then_more_likely_p
1803 ? profile_probability::very_unlikely ()
1804 : profile_probability::very_likely ();
1805 e->probability = fallthrough_probability.invert ();
1806 if (create_then_fallthru_edge)
1807 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1809 /* Set up the fallthrough basic block. */
1810 e = find_edge (cond_bb, fallthru_bb);
1811 e->flags = EDGE_FALSE_VALUE;
1812 e->count = cond_bb->count;
1813 e->probability = fallthrough_probability;
1815 /* Update dominance info for the newly created then_bb; note that
1816 fallthru_bb's dominance info has already been updated by
1817 split_bock. */
1818 if (dom_info_available_p (CDI_DOMINATORS))
1819 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1821 *then_block = then_bb;
1822 *fallthrough_block = fallthru_bb;
1823 *iter = gsi_start_bb (fallthru_bb);
1825 return gsi_last_bb (cond_bb);
1828 /* Insert an if condition followed by a 'then block' right before the
1829 statement pointed to by ITER. The fallthrough block -- which is the
1830 else block of the condition as well as the destination of the
1831 outcoming edge of the 'then block' -- starts with the statement
1832 pointed to by ITER.
1834 COND is the condition of the if.
1836 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1837 'then block' is higher than the probability of the edge to the
1838 fallthrough block.
1840 Upon completion of the function, *THEN_BB is set to the newly
1841 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1842 fallthrough block.
1844 *ITER is adjusted to still point to the same statement it was
1845 pointing to initially. */
1847 static void
1848 insert_if_then_before_iter (gcond *cond,
1849 gimple_stmt_iterator *iter,
1850 bool then_more_likely_p,
1851 basic_block *then_bb,
1852 basic_block *fallthrough_bb)
1854 gimple_stmt_iterator cond_insert_point =
1855 create_cond_insert_point (iter,
1856 /*before_p=*/true,
1857 then_more_likely_p,
1858 /*create_then_fallthru_edge=*/true,
1859 then_bb,
1860 fallthrough_bb);
1861 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1864 /* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
1865 If RETURN_ADDRESS is set to true, return memory location instread
1866 of a value in the shadow memory. */
1868 static tree
1869 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1870 tree base_addr, tree shadow_ptr_type,
1871 bool return_address = false)
1873 tree t, uintptr_type = TREE_TYPE (base_addr);
1874 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1875 gimple *g;
1877 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1878 g = gimple_build_assign (make_ssa_name (uintptr_type), RSHIFT_EXPR,
1879 base_addr, t);
1880 gimple_set_location (g, location);
1881 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1883 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1884 g = gimple_build_assign (make_ssa_name (uintptr_type), PLUS_EXPR,
1885 gimple_assign_lhs (g), t);
1886 gimple_set_location (g, location);
1887 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1889 g = gimple_build_assign (make_ssa_name (shadow_ptr_type), NOP_EXPR,
1890 gimple_assign_lhs (g));
1891 gimple_set_location (g, location);
1892 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1894 if (!return_address)
1896 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1897 build_int_cst (shadow_ptr_type, 0));
1898 g = gimple_build_assign (make_ssa_name (shadow_type), MEM_REF, t);
1899 gimple_set_location (g, location);
1900 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1903 return gimple_assign_lhs (g);
1906 /* BASE can already be an SSA_NAME; in that case, do not create a
1907 new SSA_NAME for it. */
1909 static tree
1910 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1911 bool before_p)
1913 if (TREE_CODE (base) == SSA_NAME)
1914 return base;
1915 gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (base)),
1916 TREE_CODE (base), base);
1917 gimple_set_location (g, loc);
1918 if (before_p)
1919 gsi_insert_before (iter, g, GSI_SAME_STMT);
1920 else
1921 gsi_insert_after (iter, g, GSI_NEW_STMT);
1922 return gimple_assign_lhs (g);
1925 /* LEN can already have necessary size and precision;
1926 in that case, do not create a new variable. */
1928 tree
1929 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1930 bool before_p)
1932 if (ptrofftype_p (len))
1933 return len;
1934 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
1935 NOP_EXPR, len);
1936 gimple_set_location (g, loc);
1937 if (before_p)
1938 gsi_insert_before (iter, g, GSI_SAME_STMT);
1939 else
1940 gsi_insert_after (iter, g, GSI_NEW_STMT);
1941 return gimple_assign_lhs (g);
1944 /* Instrument the memory access instruction BASE. Insert new
1945 statements before or after ITER.
1947 Note that the memory access represented by BASE can be either an
1948 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1949 location. IS_STORE is TRUE for a store, FALSE for a load.
1950 BEFORE_P is TRUE for inserting the instrumentation code before
1951 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1952 for a scalar memory access and FALSE for memory region access.
1953 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1954 length. ALIGN tells alignment of accessed memory object.
1956 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1957 memory region have already been instrumented.
1959 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1960 statement it was pointing to prior to calling this function,
1961 otherwise, it points to the statement logically following it. */
1963 static void
1964 build_check_stmt (location_t loc, tree base, tree len,
1965 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1966 bool is_non_zero_len, bool before_p, bool is_store,
1967 bool is_scalar_access, unsigned int align = 0)
1969 gimple_stmt_iterator gsi = *iter;
1970 gimple *g;
1972 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1974 gsi = *iter;
1976 base = unshare_expr (base);
1977 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1979 if (len)
1981 len = unshare_expr (len);
1982 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1984 else
1986 gcc_assert (size_in_bytes != -1);
1987 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1990 if (size_in_bytes > 1)
1992 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1993 || size_in_bytes > 16)
1994 is_scalar_access = false;
1995 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1997 /* On non-strict alignment targets, if
1998 16-byte access is just 8-byte aligned,
1999 this will result in misaligned shadow
2000 memory 2 byte load, but otherwise can
2001 be handled using one read. */
2002 if (size_in_bytes != 16
2003 || STRICT_ALIGNMENT
2004 || align < 8 * BITS_PER_UNIT)
2005 is_scalar_access = false;
2009 HOST_WIDE_INT flags = 0;
2010 if (is_store)
2011 flags |= ASAN_CHECK_STORE;
2012 if (is_non_zero_len)
2013 flags |= ASAN_CHECK_NON_ZERO_LEN;
2014 if (is_scalar_access)
2015 flags |= ASAN_CHECK_SCALAR_ACCESS;
2017 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
2018 build_int_cst (integer_type_node, flags),
2019 base, len,
2020 build_int_cst (integer_type_node,
2021 align / BITS_PER_UNIT));
2022 gimple_set_location (g, loc);
2023 if (before_p)
2024 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2025 else
2027 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2028 gsi_next (&gsi);
2029 *iter = gsi;
2033 /* If T represents a memory access, add instrumentation code before ITER.
2034 LOCATION is source code location.
2035 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
2037 static void
2038 instrument_derefs (gimple_stmt_iterator *iter, tree t,
2039 location_t location, bool is_store)
2041 if (is_store && !ASAN_INSTRUMENT_WRITES)
2042 return;
2043 if (!is_store && !ASAN_INSTRUMENT_READS)
2044 return;
2046 tree type, base;
2047 HOST_WIDE_INT size_in_bytes;
2048 if (location == UNKNOWN_LOCATION)
2049 location = EXPR_LOCATION (t);
2051 type = TREE_TYPE (t);
2052 switch (TREE_CODE (t))
2054 case ARRAY_REF:
2055 case COMPONENT_REF:
2056 case INDIRECT_REF:
2057 case MEM_REF:
2058 case VAR_DECL:
2059 case BIT_FIELD_REF:
2060 break;
2061 /* FALLTHRU */
2062 default:
2063 return;
2066 size_in_bytes = int_size_in_bytes (type);
2067 if (size_in_bytes <= 0)
2068 return;
2070 HOST_WIDE_INT bitsize, bitpos;
2071 tree offset;
2072 machine_mode mode;
2073 int unsignedp, reversep, volatilep = 0;
2074 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
2075 &unsignedp, &reversep, &volatilep);
2077 if (TREE_CODE (t) == COMPONENT_REF
2078 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
2080 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
2081 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
2082 TREE_OPERAND (t, 0), repr,
2083 TREE_OPERAND (t, 2)),
2084 location, is_store);
2085 return;
2088 if (bitpos % BITS_PER_UNIT
2089 || bitsize != size_in_bytes * BITS_PER_UNIT)
2090 return;
2092 if (VAR_P (inner) && DECL_HARD_REGISTER (inner))
2093 return;
2095 if (VAR_P (inner)
2096 && offset == NULL_TREE
2097 && bitpos >= 0
2098 && DECL_SIZE (inner)
2099 && tree_fits_shwi_p (DECL_SIZE (inner))
2100 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
2102 if (DECL_THREAD_LOCAL_P (inner))
2103 return;
2104 if (!ASAN_GLOBALS && is_global_var (inner))
2105 return;
2106 if (!TREE_STATIC (inner))
2108 /* Automatic vars in the current function will be always
2109 accessible. */
2110 if (decl_function_context (inner) == current_function_decl
2111 && (!asan_sanitize_use_after_scope ()
2112 || !TREE_ADDRESSABLE (inner)))
2113 return;
2115 /* Always instrument external vars, they might be dynamically
2116 initialized. */
2117 else if (!DECL_EXTERNAL (inner))
2119 /* For static vars if they are known not to be dynamically
2120 initialized, they will be always accessible. */
2121 varpool_node *vnode = varpool_node::get (inner);
2122 if (vnode && !vnode->dynamically_initialized)
2123 return;
2127 base = build_fold_addr_expr (t);
2128 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
2130 unsigned int align = get_object_alignment (t);
2131 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
2132 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
2133 is_store, /*is_scalar_access*/true, align);
2134 update_mem_ref_hash_table (base, size_in_bytes);
2135 update_mem_ref_hash_table (t, size_in_bytes);
2140 /* Insert a memory reference into the hash table if access length
2141 can be determined in compile time. */
2143 static void
2144 maybe_update_mem_ref_hash_table (tree base, tree len)
2146 if (!POINTER_TYPE_P (TREE_TYPE (base))
2147 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
2148 return;
2150 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2152 if (size_in_bytes != -1)
2153 update_mem_ref_hash_table (base, size_in_bytes);
2156 /* Instrument an access to a contiguous memory region that starts at
2157 the address pointed to by BASE, over a length of LEN (expressed in
2158 the sizeof (*BASE) bytes). ITER points to the instruction before
2159 which the instrumentation instructions must be inserted. LOCATION
2160 is the source location that the instrumentation instructions must
2161 have. If IS_STORE is true, then the memory access is a store;
2162 otherwise, it's a load. */
2164 static void
2165 instrument_mem_region_access (tree base, tree len,
2166 gimple_stmt_iterator *iter,
2167 location_t location, bool is_store)
2169 if (!POINTER_TYPE_P (TREE_TYPE (base))
2170 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
2171 || integer_zerop (len))
2172 return;
2174 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2176 if ((size_in_bytes == -1)
2177 || !has_mem_ref_been_instrumented (base, size_in_bytes))
2179 build_check_stmt (location, base, len, size_in_bytes, iter,
2180 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
2181 is_store, /*is_scalar_access*/false, /*align*/0);
2184 maybe_update_mem_ref_hash_table (base, len);
2185 *iter = gsi_for_stmt (gsi_stmt (*iter));
2188 /* Instrument the call to a built-in memory access function that is
2189 pointed to by the iterator ITER.
2191 Upon completion, return TRUE iff *ITER has been advanced to the
2192 statement following the one it was originally pointing to. */
2194 static bool
2195 instrument_builtin_call (gimple_stmt_iterator *iter)
2197 if (!ASAN_MEMINTRIN)
2198 return false;
2200 bool iter_advanced_p = false;
2201 gcall *call = as_a <gcall *> (gsi_stmt (*iter));
2203 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
2205 location_t loc = gimple_location (call);
2207 asan_mem_ref src0, src1, dest;
2208 asan_mem_ref_init (&src0, NULL, 1);
2209 asan_mem_ref_init (&src1, NULL, 1);
2210 asan_mem_ref_init (&dest, NULL, 1);
2212 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
2213 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
2214 dest_is_deref = false, intercepted_p = true;
2216 if (get_mem_refs_of_builtin_call (call,
2217 &src0, &src0_len, &src0_is_store,
2218 &src1, &src1_len, &src1_is_store,
2219 &dest, &dest_len, &dest_is_store,
2220 &dest_is_deref, &intercepted_p, iter))
2222 if (dest_is_deref)
2224 instrument_derefs (iter, dest.start, loc, dest_is_store);
2225 gsi_next (iter);
2226 iter_advanced_p = true;
2228 else if (!intercepted_p
2229 && (src0_len || src1_len || dest_len))
2231 if (src0.start != NULL_TREE)
2232 instrument_mem_region_access (src0.start, src0_len,
2233 iter, loc, /*is_store=*/false);
2234 if (src1.start != NULL_TREE)
2235 instrument_mem_region_access (src1.start, src1_len,
2236 iter, loc, /*is_store=*/false);
2237 if (dest.start != NULL_TREE)
2238 instrument_mem_region_access (dest.start, dest_len,
2239 iter, loc, /*is_store=*/true);
2241 *iter = gsi_for_stmt (call);
2242 gsi_next (iter);
2243 iter_advanced_p = true;
2245 else
2247 if (src0.start != NULL_TREE)
2248 maybe_update_mem_ref_hash_table (src0.start, src0_len);
2249 if (src1.start != NULL_TREE)
2250 maybe_update_mem_ref_hash_table (src1.start, src1_len);
2251 if (dest.start != NULL_TREE)
2252 maybe_update_mem_ref_hash_table (dest.start, dest_len);
2255 return iter_advanced_p;
2258 /* Instrument the assignment statement ITER if it is subject to
2259 instrumentation. Return TRUE iff instrumentation actually
2260 happened. In that case, the iterator ITER is advanced to the next
2261 logical expression following the one initially pointed to by ITER,
2262 and the relevant memory reference that which access has been
2263 instrumented is added to the memory references hash table. */
2265 static bool
2266 maybe_instrument_assignment (gimple_stmt_iterator *iter)
2268 gimple *s = gsi_stmt (*iter);
2270 gcc_assert (gimple_assign_single_p (s));
2272 tree ref_expr = NULL_TREE;
2273 bool is_store, is_instrumented = false;
2275 if (gimple_store_p (s))
2277 ref_expr = gimple_assign_lhs (s);
2278 is_store = true;
2279 instrument_derefs (iter, ref_expr,
2280 gimple_location (s),
2281 is_store);
2282 is_instrumented = true;
2285 if (gimple_assign_load_p (s))
2287 ref_expr = gimple_assign_rhs1 (s);
2288 is_store = false;
2289 instrument_derefs (iter, ref_expr,
2290 gimple_location (s),
2291 is_store);
2292 is_instrumented = true;
2295 if (is_instrumented)
2296 gsi_next (iter);
2298 return is_instrumented;
2301 /* Instrument the function call pointed to by the iterator ITER, if it
2302 is subject to instrumentation. At the moment, the only function
2303 calls that are instrumented are some built-in functions that access
2304 memory. Look at instrument_builtin_call to learn more.
2306 Upon completion return TRUE iff *ITER was advanced to the statement
2307 following the one it was originally pointing to. */
2309 static bool
2310 maybe_instrument_call (gimple_stmt_iterator *iter)
2312 gimple *stmt = gsi_stmt (*iter);
2313 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2315 if (is_builtin && instrument_builtin_call (iter))
2316 return true;
2318 if (gimple_call_noreturn_p (stmt))
2320 if (is_builtin)
2322 tree callee = gimple_call_fndecl (stmt);
2323 switch (DECL_FUNCTION_CODE (callee))
2325 case BUILT_IN_UNREACHABLE:
2326 case BUILT_IN_TRAP:
2327 /* Don't instrument these. */
2328 return false;
2329 default:
2330 break;
2333 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2334 gimple *g = gimple_build_call (decl, 0);
2335 gimple_set_location (g, gimple_location (stmt));
2336 gsi_insert_before (iter, g, GSI_SAME_STMT);
2339 bool instrumented = false;
2340 if (gimple_store_p (stmt))
2342 tree ref_expr = gimple_call_lhs (stmt);
2343 instrument_derefs (iter, ref_expr,
2344 gimple_location (stmt),
2345 /*is_store=*/true);
2347 instrumented = true;
2350 /* Walk through gimple_call arguments and check them id needed. */
2351 unsigned args_num = gimple_call_num_args (stmt);
2352 for (unsigned i = 0; i < args_num; ++i)
2354 tree arg = gimple_call_arg (stmt, i);
2355 /* If ARG is not a non-aggregate register variable, compiler in general
2356 creates temporary for it and pass it as argument to gimple call.
2357 But in some cases, e.g. when we pass by value a small structure that
2358 fits to register, compiler can avoid extra overhead by pulling out
2359 these temporaries. In this case, we should check the argument. */
2360 if (!is_gimple_reg (arg) && !is_gimple_min_invariant (arg))
2362 instrument_derefs (iter, arg,
2363 gimple_location (stmt),
2364 /*is_store=*/false);
2365 instrumented = true;
2368 if (instrumented)
2369 gsi_next (iter);
2370 return instrumented;
2373 /* Walk each instruction of all basic block and instrument those that
2374 represent memory references: loads, stores, or function calls.
2375 In a given basic block, this function avoids instrumenting memory
2376 references that have already been instrumented. */
2378 static void
2379 transform_statements (void)
2381 basic_block bb, last_bb = NULL;
2382 gimple_stmt_iterator i;
2383 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2385 FOR_EACH_BB_FN (bb, cfun)
2387 basic_block prev_bb = bb;
2389 if (bb->index >= saved_last_basic_block) continue;
2391 /* Flush the mem ref hash table, if current bb doesn't have
2392 exactly one predecessor, or if that predecessor (skipping
2393 over asan created basic blocks) isn't the last processed
2394 basic block. Thus we effectively flush on extended basic
2395 block boundaries. */
2396 while (single_pred_p (prev_bb))
2398 prev_bb = single_pred (prev_bb);
2399 if (prev_bb->index < saved_last_basic_block)
2400 break;
2402 if (prev_bb != last_bb)
2403 empty_mem_ref_hash_table ();
2404 last_bb = bb;
2406 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2408 gimple *s = gsi_stmt (i);
2410 if (has_stmt_been_instrumented_p (s))
2411 gsi_next (&i);
2412 else if (gimple_assign_single_p (s)
2413 && !gimple_clobber_p (s)
2414 && maybe_instrument_assignment (&i))
2415 /* Nothing to do as maybe_instrument_assignment advanced
2416 the iterator I. */;
2417 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2418 /* Nothing to do as maybe_instrument_call
2419 advanced the iterator I. */;
2420 else
2422 /* No instrumentation happened.
2424 If the current instruction is a function call that
2425 might free something, let's forget about the memory
2426 references that got instrumented. Otherwise we might
2427 miss some instrumentation opportunities. Do the same
2428 for a ASAN_MARK poisoning internal function. */
2429 if (is_gimple_call (s)
2430 && (!nonfreeing_call_p (s)
2431 || asan_mark_p (s, ASAN_MARK_POISON)))
2432 empty_mem_ref_hash_table ();
2434 gsi_next (&i);
2438 free_mem_ref_resources ();
2441 /* Build
2442 __asan_before_dynamic_init (module_name)
2444 __asan_after_dynamic_init ()
2445 call. */
2447 tree
2448 asan_dynamic_init_call (bool after_p)
2450 if (shadow_ptr_types[0] == NULL_TREE)
2451 asan_init_shadow_ptr_types ();
2453 tree fn = builtin_decl_implicit (after_p
2454 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2455 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2456 tree module_name_cst = NULL_TREE;
2457 if (!after_p)
2459 pretty_printer module_name_pp;
2460 pp_string (&module_name_pp, main_input_filename);
2462 module_name_cst = asan_pp_string (&module_name_pp);
2463 module_name_cst = fold_convert (const_ptr_type_node,
2464 module_name_cst);
2467 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2470 /* Build
2471 struct __asan_global
2473 const void *__beg;
2474 uptr __size;
2475 uptr __size_with_redzone;
2476 const void *__name;
2477 const void *__module_name;
2478 uptr __has_dynamic_init;
2479 __asan_global_source_location *__location;
2480 char *__odr_indicator;
2481 } type. */
2483 static tree
2484 asan_global_struct (void)
2486 static const char *field_names[]
2487 = { "__beg", "__size", "__size_with_redzone",
2488 "__name", "__module_name", "__has_dynamic_init", "__location",
2489 "__odr_indicator" };
2490 tree fields[ARRAY_SIZE (field_names)], ret;
2491 unsigned i;
2493 ret = make_node (RECORD_TYPE);
2494 for (i = 0; i < ARRAY_SIZE (field_names); i++)
2496 fields[i]
2497 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2498 get_identifier (field_names[i]),
2499 (i == 0 || i == 3) ? const_ptr_type_node
2500 : pointer_sized_int_node);
2501 DECL_CONTEXT (fields[i]) = ret;
2502 if (i)
2503 DECL_CHAIN (fields[i - 1]) = fields[i];
2505 tree type_decl = build_decl (input_location, TYPE_DECL,
2506 get_identifier ("__asan_global"), ret);
2507 DECL_IGNORED_P (type_decl) = 1;
2508 DECL_ARTIFICIAL (type_decl) = 1;
2509 TYPE_FIELDS (ret) = fields[0];
2510 TYPE_NAME (ret) = type_decl;
2511 TYPE_STUB_DECL (ret) = type_decl;
2512 layout_type (ret);
2513 return ret;
2516 /* Create and return odr indicator symbol for DECL.
2517 TYPE is __asan_global struct type as returned by asan_global_struct. */
2519 static tree
2520 create_odr_indicator (tree decl, tree type)
2522 char *name;
2523 tree uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2524 tree decl_name
2525 = (HAS_DECL_ASSEMBLER_NAME_P (decl) ? DECL_ASSEMBLER_NAME (decl)
2526 : DECL_NAME (decl));
2527 /* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
2528 if (decl_name == NULL_TREE)
2529 return build_int_cst (uptr, 0);
2530 size_t len = strlen (IDENTIFIER_POINTER (decl_name)) + sizeof ("__odr_asan_");
2531 name = XALLOCAVEC (char, len);
2532 snprintf (name, len, "__odr_asan_%s", IDENTIFIER_POINTER (decl_name));
2533 #ifndef NO_DOT_IN_LABEL
2534 name[sizeof ("__odr_asan") - 1] = '.';
2535 #elif !defined(NO_DOLLAR_IN_LABEL)
2536 name[sizeof ("__odr_asan") - 1] = '$';
2537 #endif
2538 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (name),
2539 char_type_node);
2540 TREE_ADDRESSABLE (var) = 1;
2541 TREE_READONLY (var) = 0;
2542 TREE_THIS_VOLATILE (var) = 1;
2543 DECL_GIMPLE_REG_P (var) = 0;
2544 DECL_ARTIFICIAL (var) = 1;
2545 DECL_IGNORED_P (var) = 1;
2546 TREE_STATIC (var) = 1;
2547 TREE_PUBLIC (var) = 1;
2548 DECL_VISIBILITY (var) = DECL_VISIBILITY (decl);
2549 DECL_VISIBILITY_SPECIFIED (var) = DECL_VISIBILITY_SPECIFIED (decl);
2551 TREE_USED (var) = 1;
2552 tree ctor = build_constructor_va (TREE_TYPE (var), 1, NULL_TREE,
2553 build_int_cst (unsigned_type_node, 0));
2554 TREE_CONSTANT (ctor) = 1;
2555 TREE_STATIC (ctor) = 1;
2556 DECL_INITIAL (var) = ctor;
2557 DECL_ATTRIBUTES (var) = tree_cons (get_identifier ("asan odr indicator"),
2558 NULL, DECL_ATTRIBUTES (var));
2559 make_decl_rtl (var);
2560 varpool_node::finalize_decl (var);
2561 return fold_convert (uptr, build_fold_addr_expr (var));
2564 /* Return true if DECL, a global var, might be overridden and needs
2565 an additional odr indicator symbol. */
2567 static bool
2568 asan_needs_odr_indicator_p (tree decl)
2570 /* Don't emit ODR indicators for kernel because:
2571 a) Kernel is written in C thus doesn't need ODR indicators.
2572 b) Some kernel code may have assumptions about symbols containing specific
2573 patterns in their names. Since ODR indicators contain original names
2574 of symbols they are emitted for, these assumptions would be broken for
2575 ODR indicator symbols. */
2576 return (!(flag_sanitize & SANITIZE_KERNEL_ADDRESS)
2577 && !DECL_ARTIFICIAL (decl)
2578 && !DECL_WEAK (decl)
2579 && TREE_PUBLIC (decl));
2582 /* Append description of a single global DECL into vector V.
2583 TYPE is __asan_global struct type as returned by asan_global_struct. */
2585 static void
2586 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2588 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2589 unsigned HOST_WIDE_INT size;
2590 tree str_cst, module_name_cst, refdecl = decl;
2591 vec<constructor_elt, va_gc> *vinner = NULL;
2593 pretty_printer asan_pp, module_name_pp;
2595 if (DECL_NAME (decl))
2596 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2597 else
2598 pp_string (&asan_pp, "<unknown>");
2599 str_cst = asan_pp_string (&asan_pp);
2601 pp_string (&module_name_pp, main_input_filename);
2602 module_name_cst = asan_pp_string (&module_name_pp);
2604 if (asan_needs_local_alias (decl))
2606 char buf[20];
2607 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2608 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2609 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2610 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2611 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2612 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2613 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2614 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2615 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2616 TREE_STATIC (refdecl) = 1;
2617 TREE_PUBLIC (refdecl) = 0;
2618 TREE_USED (refdecl) = 1;
2619 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2622 tree odr_indicator_ptr
2623 = (asan_needs_odr_indicator_p (decl) ? create_odr_indicator (decl, type)
2624 : build_int_cst (uptr, 0));
2625 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2626 fold_convert (const_ptr_type_node,
2627 build_fold_addr_expr (refdecl)));
2628 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2629 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2630 size += asan_red_zone_size (size);
2631 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2632 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2633 fold_convert (const_ptr_type_node, str_cst));
2634 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2635 fold_convert (const_ptr_type_node, module_name_cst));
2636 varpool_node *vnode = varpool_node::get (decl);
2637 int has_dynamic_init = 0;
2638 /* FIXME: Enable initialization order fiasco detection in LTO mode once
2639 proper fix for PR 79061 will be applied. */
2640 if (!in_lto_p)
2641 has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2642 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2643 build_int_cst (uptr, has_dynamic_init));
2644 tree locptr = NULL_TREE;
2645 location_t loc = DECL_SOURCE_LOCATION (decl);
2646 expanded_location xloc = expand_location (loc);
2647 if (xloc.file != NULL)
2649 static int lasanloccnt = 0;
2650 char buf[25];
2651 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2652 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2653 ubsan_get_source_location_type ());
2654 TREE_STATIC (var) = 1;
2655 TREE_PUBLIC (var) = 0;
2656 DECL_ARTIFICIAL (var) = 1;
2657 DECL_IGNORED_P (var) = 1;
2658 pretty_printer filename_pp;
2659 pp_string (&filename_pp, xloc.file);
2660 tree str = asan_pp_string (&filename_pp);
2661 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2662 NULL_TREE, str, NULL_TREE,
2663 build_int_cst (unsigned_type_node,
2664 xloc.line), NULL_TREE,
2665 build_int_cst (unsigned_type_node,
2666 xloc.column));
2667 TREE_CONSTANT (ctor) = 1;
2668 TREE_STATIC (ctor) = 1;
2669 DECL_INITIAL (var) = ctor;
2670 varpool_node::finalize_decl (var);
2671 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2673 else
2674 locptr = build_int_cst (uptr, 0);
2675 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2676 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, odr_indicator_ptr);
2677 init = build_constructor (type, vinner);
2678 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2681 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2682 void
2683 initialize_sanitizer_builtins (void)
2685 tree decl;
2687 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2688 return;
2690 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2691 tree BT_FN_VOID_PTR
2692 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2693 tree BT_FN_VOID_CONST_PTR
2694 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2695 tree BT_FN_VOID_PTR_PTR
2696 = build_function_type_list (void_type_node, ptr_type_node,
2697 ptr_type_node, NULL_TREE);
2698 tree BT_FN_VOID_PTR_PTR_PTR
2699 = build_function_type_list (void_type_node, ptr_type_node,
2700 ptr_type_node, ptr_type_node, NULL_TREE);
2701 tree BT_FN_VOID_PTR_PTRMODE
2702 = build_function_type_list (void_type_node, ptr_type_node,
2703 pointer_sized_int_node, NULL_TREE);
2704 tree BT_FN_VOID_INT
2705 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2706 tree BT_FN_SIZE_CONST_PTR_INT
2707 = build_function_type_list (size_type_node, const_ptr_type_node,
2708 integer_type_node, NULL_TREE);
2709 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2710 tree BT_FN_IX_CONST_VPTR_INT[5];
2711 tree BT_FN_IX_VPTR_IX_INT[5];
2712 tree BT_FN_VOID_VPTR_IX_INT[5];
2713 tree vptr
2714 = build_pointer_type (build_qualified_type (void_type_node,
2715 TYPE_QUAL_VOLATILE));
2716 tree cvptr
2717 = build_pointer_type (build_qualified_type (void_type_node,
2718 TYPE_QUAL_VOLATILE
2719 |TYPE_QUAL_CONST));
2720 tree boolt
2721 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2722 int i;
2723 for (i = 0; i < 5; i++)
2725 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2726 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2727 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2728 integer_type_node, integer_type_node,
2729 NULL_TREE);
2730 BT_FN_IX_CONST_VPTR_INT[i]
2731 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2732 BT_FN_IX_VPTR_IX_INT[i]
2733 = build_function_type_list (ix, vptr, ix, integer_type_node,
2734 NULL_TREE);
2735 BT_FN_VOID_VPTR_IX_INT[i]
2736 = build_function_type_list (void_type_node, vptr, ix,
2737 integer_type_node, NULL_TREE);
2739 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2740 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2741 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2742 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2743 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2744 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2745 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2746 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2747 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2748 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2749 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2750 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2751 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2752 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2753 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2754 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2755 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2756 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2757 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2758 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2759 #undef ATTR_NOTHROW_LEAF_LIST
2760 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2761 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2762 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2763 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2764 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2765 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2766 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2767 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2768 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2769 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2770 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2771 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2772 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2773 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2774 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2775 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2776 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2777 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2778 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2779 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2780 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2781 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2782 #undef DEF_BUILTIN_STUB
2783 #define DEF_BUILTIN_STUB(ENUM, NAME)
2784 #undef DEF_SANITIZER_BUILTIN
2785 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2786 do { \
2787 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2788 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2789 set_call_expr_flags (decl, ATTRS); \
2790 set_builtin_decl (ENUM, decl, true); \
2791 } while (0);
2793 #include "sanitizer.def"
2795 /* -fsanitize=object-size uses __builtin_object_size, but that might
2796 not be available for e.g. Fortran at this point. We use
2797 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
2798 if ((flag_sanitize & SANITIZE_OBJECT_SIZE)
2799 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
2800 DEF_SANITIZER_BUILTIN (BUILT_IN_OBJECT_SIZE, "object_size",
2801 BT_FN_SIZE_CONST_PTR_INT,
2802 ATTR_PURE_NOTHROW_LEAF_LIST)
2804 #undef DEF_SANITIZER_BUILTIN
2805 #undef DEF_BUILTIN_STUB
2808 /* Called via htab_traverse. Count number of emitted
2809 STRING_CSTs in the constant hash table. */
2812 count_string_csts (constant_descriptor_tree **slot,
2813 unsigned HOST_WIDE_INT *data)
2815 struct constant_descriptor_tree *desc = *slot;
2816 if (TREE_CODE (desc->value) == STRING_CST
2817 && TREE_ASM_WRITTEN (desc->value)
2818 && asan_protect_global (desc->value))
2819 ++*data;
2820 return 1;
2823 /* Helper structure to pass two parameters to
2824 add_string_csts. */
2826 struct asan_add_string_csts_data
2828 tree type;
2829 vec<constructor_elt, va_gc> *v;
2832 /* Called via hash_table::traverse. Call asan_add_global
2833 on emitted STRING_CSTs from the constant hash table. */
2836 add_string_csts (constant_descriptor_tree **slot,
2837 asan_add_string_csts_data *aascd)
2839 struct constant_descriptor_tree *desc = *slot;
2840 if (TREE_CODE (desc->value) == STRING_CST
2841 && TREE_ASM_WRITTEN (desc->value)
2842 && asan_protect_global (desc->value))
2844 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2845 aascd->type, aascd->v);
2847 return 1;
2850 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2851 invoke ggc_collect. */
2852 static GTY(()) tree asan_ctor_statements;
2854 /* Module-level instrumentation.
2855 - Insert __asan_init_vN() into the list of CTORs.
2856 - TODO: insert redzones around globals.
2859 void
2860 asan_finish_file (void)
2862 varpool_node *vnode;
2863 unsigned HOST_WIDE_INT gcount = 0;
2865 if (shadow_ptr_types[0] == NULL_TREE)
2866 asan_init_shadow_ptr_types ();
2867 /* Avoid instrumenting code in the asan ctors/dtors.
2868 We don't need to insert padding after the description strings,
2869 nor after .LASAN* array. */
2870 flag_sanitize &= ~SANITIZE_ADDRESS;
2872 /* For user-space we want asan constructors to run first.
2873 Linux kernel does not support priorities other than default, and the only
2874 other user of constructors is coverage. So we run with the default
2875 priority. */
2876 int priority = flag_sanitize & SANITIZE_USER_ADDRESS
2877 ? MAX_RESERVED_INIT_PRIORITY - 1 : DEFAULT_INIT_PRIORITY;
2879 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2881 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2882 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2883 fn = builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK);
2884 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2886 FOR_EACH_DEFINED_VARIABLE (vnode)
2887 if (TREE_ASM_WRITTEN (vnode->decl)
2888 && asan_protect_global (vnode->decl))
2889 ++gcount;
2890 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2891 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2892 (&gcount);
2893 if (gcount)
2895 tree type = asan_global_struct (), var, ctor;
2896 tree dtor_statements = NULL_TREE;
2897 vec<constructor_elt, va_gc> *v;
2898 char buf[20];
2900 type = build_array_type_nelts (type, gcount);
2901 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2902 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2903 type);
2904 TREE_STATIC (var) = 1;
2905 TREE_PUBLIC (var) = 0;
2906 DECL_ARTIFICIAL (var) = 1;
2907 DECL_IGNORED_P (var) = 1;
2908 vec_alloc (v, gcount);
2909 FOR_EACH_DEFINED_VARIABLE (vnode)
2910 if (TREE_ASM_WRITTEN (vnode->decl)
2911 && asan_protect_global (vnode->decl))
2912 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2913 struct asan_add_string_csts_data aascd;
2914 aascd.type = TREE_TYPE (type);
2915 aascd.v = v;
2916 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2917 (&aascd);
2918 ctor = build_constructor (type, v);
2919 TREE_CONSTANT (ctor) = 1;
2920 TREE_STATIC (ctor) = 1;
2921 DECL_INITIAL (var) = ctor;
2922 varpool_node::finalize_decl (var);
2924 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2925 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2926 append_to_statement_list (build_call_expr (fn, 2,
2927 build_fold_addr_expr (var),
2928 gcount_tree),
2929 &asan_ctor_statements);
2931 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2932 append_to_statement_list (build_call_expr (fn, 2,
2933 build_fold_addr_expr (var),
2934 gcount_tree),
2935 &dtor_statements);
2936 cgraph_build_static_cdtor ('D', dtor_statements, priority);
2938 if (asan_ctor_statements)
2939 cgraph_build_static_cdtor ('I', asan_ctor_statements, priority);
2940 flag_sanitize |= SANITIZE_ADDRESS;
2943 /* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
2944 on SHADOW address. Newly added statements will be added to ITER with
2945 given location LOC. We mark SIZE bytes in shadow memory, where
2946 LAST_CHUNK_SIZE is greater than zero in situation where we are at the
2947 end of a variable. */
2949 static void
2950 asan_store_shadow_bytes (gimple_stmt_iterator *iter, location_t loc,
2951 tree shadow,
2952 unsigned HOST_WIDE_INT base_addr_offset,
2953 bool is_clobber, unsigned size,
2954 unsigned last_chunk_size)
2956 tree shadow_ptr_type;
2958 switch (size)
2960 case 1:
2961 shadow_ptr_type = shadow_ptr_types[0];
2962 break;
2963 case 2:
2964 shadow_ptr_type = shadow_ptr_types[1];
2965 break;
2966 case 4:
2967 shadow_ptr_type = shadow_ptr_types[2];
2968 break;
2969 default:
2970 gcc_unreachable ();
2973 unsigned char c = (char) is_clobber ? ASAN_STACK_MAGIC_USE_AFTER_SCOPE : 0;
2974 unsigned HOST_WIDE_INT val = 0;
2975 unsigned last_pos = size;
2976 if (last_chunk_size && !is_clobber)
2977 last_pos = BYTES_BIG_ENDIAN ? 0 : size - 1;
2978 for (unsigned i = 0; i < size; ++i)
2980 unsigned char shadow_c = c;
2981 if (i == last_pos)
2982 shadow_c = last_chunk_size;
2983 val |= (unsigned HOST_WIDE_INT) shadow_c << (BITS_PER_UNIT * i);
2986 /* Handle last chunk in unpoisoning. */
2987 tree magic = build_int_cst (TREE_TYPE (shadow_ptr_type), val);
2989 tree dest = build2 (MEM_REF, TREE_TYPE (shadow_ptr_type), shadow,
2990 build_int_cst (shadow_ptr_type, base_addr_offset));
2992 gimple *g = gimple_build_assign (dest, magic);
2993 gimple_set_location (g, loc);
2994 gsi_insert_after (iter, g, GSI_NEW_STMT);
2997 /* Expand the ASAN_MARK builtins. */
2999 bool
3000 asan_expand_mark_ifn (gimple_stmt_iterator *iter)
3002 gimple *g = gsi_stmt (*iter);
3003 location_t loc = gimple_location (g);
3004 HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (g, 0));
3005 bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON;
3007 tree base = gimple_call_arg (g, 1);
3008 gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR);
3009 tree decl = TREE_OPERAND (base, 0);
3011 /* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
3012 if (TREE_CODE (decl) == COMPONENT_REF
3013 && DECL_NONLOCAL_FRAME (TREE_OPERAND (decl, 0)))
3014 decl = TREE_OPERAND (decl, 0);
3016 gcc_checking_assert (TREE_CODE (decl) == VAR_DECL);
3018 if (is_poison)
3020 if (asan_handled_variables == NULL)
3021 asan_handled_variables = new hash_set<tree> (16);
3022 asan_handled_variables->add (decl);
3024 tree len = gimple_call_arg (g, 2);
3026 gcc_assert (tree_fits_shwi_p (len));
3027 unsigned HOST_WIDE_INT size_in_bytes = tree_to_shwi (len);
3028 gcc_assert (size_in_bytes);
3030 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3031 NOP_EXPR, base);
3032 gimple_set_location (g, loc);
3033 gsi_replace (iter, g, false);
3034 tree base_addr = gimple_assign_lhs (g);
3036 /* Generate direct emission if size_in_bytes is small. */
3037 if (size_in_bytes <= ASAN_PARAM_USE_AFTER_SCOPE_DIRECT_EMISSION_THRESHOLD)
3039 unsigned HOST_WIDE_INT shadow_size = shadow_mem_size (size_in_bytes);
3041 tree shadow = build_shadow_mem_access (iter, loc, base_addr,
3042 shadow_ptr_types[0], true);
3044 for (unsigned HOST_WIDE_INT offset = 0; offset < shadow_size;)
3046 unsigned size = 1;
3047 if (shadow_size - offset >= 4)
3048 size = 4;
3049 else if (shadow_size - offset >= 2)
3050 size = 2;
3052 unsigned HOST_WIDE_INT last_chunk_size = 0;
3053 unsigned HOST_WIDE_INT s = (offset + size) * ASAN_SHADOW_GRANULARITY;
3054 if (s > size_in_bytes)
3055 last_chunk_size = ASAN_SHADOW_GRANULARITY - (s - size_in_bytes);
3057 asan_store_shadow_bytes (iter, loc, shadow, offset, is_poison,
3058 size, last_chunk_size);
3059 offset += size;
3062 else
3064 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3065 NOP_EXPR, len);
3066 gimple_set_location (g, loc);
3067 gsi_insert_before (iter, g, GSI_SAME_STMT);
3068 tree sz_arg = gimple_assign_lhs (g);
3070 tree fun
3071 = builtin_decl_implicit (is_poison ? BUILT_IN_ASAN_POISON_STACK_MEMORY
3072 : BUILT_IN_ASAN_UNPOISON_STACK_MEMORY);
3073 g = gimple_build_call (fun, 2, base_addr, sz_arg);
3074 gimple_set_location (g, loc);
3075 gsi_insert_after (iter, g, GSI_NEW_STMT);
3078 return false;
3081 /* Expand the ASAN_{LOAD,STORE} builtins. */
3083 bool
3084 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
3086 gimple *g = gsi_stmt (*iter);
3087 location_t loc = gimple_location (g);
3088 bool recover_p;
3089 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3090 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3091 else
3092 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3094 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
3095 gcc_assert (flags < ASAN_CHECK_LAST);
3096 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
3097 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
3098 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
3100 tree base = gimple_call_arg (g, 1);
3101 tree len = gimple_call_arg (g, 2);
3102 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
3104 HOST_WIDE_INT size_in_bytes
3105 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
3107 if (use_calls)
3109 /* Instrument using callbacks. */
3110 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3111 NOP_EXPR, base);
3112 gimple_set_location (g, loc);
3113 gsi_insert_before (iter, g, GSI_SAME_STMT);
3114 tree base_addr = gimple_assign_lhs (g);
3116 int nargs;
3117 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
3118 if (nargs == 1)
3119 g = gimple_build_call (fun, 1, base_addr);
3120 else
3122 gcc_assert (nargs == 2);
3123 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3124 NOP_EXPR, len);
3125 gimple_set_location (g, loc);
3126 gsi_insert_before (iter, g, GSI_SAME_STMT);
3127 tree sz_arg = gimple_assign_lhs (g);
3128 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
3130 gimple_set_location (g, loc);
3131 gsi_replace (iter, g, false);
3132 return false;
3135 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
3137 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
3138 tree shadow_type = TREE_TYPE (shadow_ptr_type);
3140 gimple_stmt_iterator gsi = *iter;
3142 if (!is_non_zero_len)
3144 /* So, the length of the memory area to asan-protect is
3145 non-constant. Let's guard the generated instrumentation code
3146 like:
3148 if (len != 0)
3150 //asan instrumentation code goes here.
3152 // falltrough instructions, starting with *ITER. */
3154 g = gimple_build_cond (NE_EXPR,
3155 len,
3156 build_int_cst (TREE_TYPE (len), 0),
3157 NULL_TREE, NULL_TREE);
3158 gimple_set_location (g, loc);
3160 basic_block then_bb, fallthrough_bb;
3161 insert_if_then_before_iter (as_a <gcond *> (g), iter,
3162 /*then_more_likely_p=*/true,
3163 &then_bb, &fallthrough_bb);
3164 /* Note that fallthrough_bb starts with the statement that was
3165 pointed to by ITER. */
3167 /* The 'then block' of the 'if (len != 0) condition is where
3168 we'll generate the asan instrumentation code now. */
3169 gsi = gsi_last_bb (then_bb);
3172 /* Get an iterator on the point where we can add the condition
3173 statement for the instrumentation. */
3174 basic_block then_bb, else_bb;
3175 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
3176 /*then_more_likely_p=*/false,
3177 /*create_then_fallthru_edge*/recover_p,
3178 &then_bb,
3179 &else_bb);
3181 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3182 NOP_EXPR, base);
3183 gimple_set_location (g, loc);
3184 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
3185 tree base_addr = gimple_assign_lhs (g);
3187 tree t = NULL_TREE;
3188 if (real_size_in_bytes >= 8)
3190 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
3191 shadow_ptr_type);
3192 t = shadow;
3194 else
3196 /* Slow path for 1, 2 and 4 byte accesses. */
3197 /* Test (shadow != 0)
3198 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
3199 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
3200 shadow_ptr_type);
3201 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3202 gimple_seq seq = NULL;
3203 gimple_seq_add_stmt (&seq, shadow_test);
3204 /* Aligned (>= 8 bytes) can test just
3205 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
3206 to be 0. */
3207 if (align < 8)
3209 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3210 base_addr, 7));
3211 gimple_seq_add_stmt (&seq,
3212 build_type_cast (shadow_type,
3213 gimple_seq_last (seq)));
3214 if (real_size_in_bytes > 1)
3215 gimple_seq_add_stmt (&seq,
3216 build_assign (PLUS_EXPR,
3217 gimple_seq_last (seq),
3218 real_size_in_bytes - 1));
3219 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
3221 else
3222 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
3223 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
3224 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3225 gimple_seq_last (seq)));
3226 t = gimple_assign_lhs (gimple_seq_last (seq));
3227 gimple_seq_set_location (seq, loc);
3228 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3230 /* For non-constant, misaligned or otherwise weird access sizes,
3231 check first and last byte. */
3232 if (size_in_bytes == -1)
3234 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3235 MINUS_EXPR, len,
3236 build_int_cst (pointer_sized_int_node, 1));
3237 gimple_set_location (g, loc);
3238 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3239 tree last = gimple_assign_lhs (g);
3240 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3241 PLUS_EXPR, base_addr, last);
3242 gimple_set_location (g, loc);
3243 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3244 tree base_end_addr = gimple_assign_lhs (g);
3246 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
3247 shadow_ptr_type);
3248 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3249 gimple_seq seq = NULL;
3250 gimple_seq_add_stmt (&seq, shadow_test);
3251 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3252 base_end_addr, 7));
3253 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
3254 gimple_seq_last (seq)));
3255 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
3256 gimple_seq_last (seq),
3257 shadow));
3258 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3259 gimple_seq_last (seq)));
3260 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
3261 gimple_seq_last (seq)));
3262 t = gimple_assign_lhs (gimple_seq_last (seq));
3263 gimple_seq_set_location (seq, loc);
3264 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3268 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
3269 NULL_TREE, NULL_TREE);
3270 gimple_set_location (g, loc);
3271 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3273 /* Generate call to the run-time library (e.g. __asan_report_load8). */
3274 gsi = gsi_start_bb (then_bb);
3275 int nargs;
3276 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
3277 g = gimple_build_call (fun, nargs, base_addr, len);
3278 gimple_set_location (g, loc);
3279 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3281 gsi_remove (iter, true);
3282 *iter = gsi_start_bb (else_bb);
3284 return true;
3287 /* Create ASAN shadow variable for a VAR_DECL which has been rewritten
3288 into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
3290 static tree
3291 create_asan_shadow_var (tree var_decl,
3292 hash_map<tree, tree> &shadow_vars_mapping)
3294 tree *slot = shadow_vars_mapping.get (var_decl);
3295 if (slot == NULL)
3297 tree shadow_var = copy_node (var_decl);
3299 copy_body_data id;
3300 memset (&id, 0, sizeof (copy_body_data));
3301 id.src_fn = id.dst_fn = current_function_decl;
3302 copy_decl_for_dup_finish (&id, var_decl, shadow_var);
3304 DECL_ARTIFICIAL (shadow_var) = 1;
3305 DECL_IGNORED_P (shadow_var) = 1;
3306 DECL_SEEN_IN_BIND_EXPR_P (shadow_var) = 0;
3307 gimple_add_tmp_var (shadow_var);
3309 shadow_vars_mapping.put (var_decl, shadow_var);
3310 return shadow_var;
3312 else
3313 return *slot;
3316 /* Expand ASAN_POISON ifn. */
3318 bool
3319 asan_expand_poison_ifn (gimple_stmt_iterator *iter,
3320 bool *need_commit_edge_insert,
3321 hash_map<tree, tree> &shadow_vars_mapping)
3323 gimple *g = gsi_stmt (*iter);
3324 tree poisoned_var = gimple_call_lhs (g);
3325 if (!poisoned_var || has_zero_uses (poisoned_var))
3327 gsi_remove (iter, true);
3328 return true;
3331 if (SSA_NAME_VAR (poisoned_var) == NULL_TREE)
3332 SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var,
3333 create_tmp_var (TREE_TYPE (poisoned_var)));
3335 tree shadow_var = create_asan_shadow_var (SSA_NAME_VAR (poisoned_var),
3336 shadow_vars_mapping);
3338 bool recover_p;
3339 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3340 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3341 else
3342 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3343 tree size = DECL_SIZE_UNIT (shadow_var);
3344 gimple *poison_call
3345 = gimple_build_call_internal (IFN_ASAN_MARK, 3,
3346 build_int_cst (integer_type_node,
3347 ASAN_MARK_POISON),
3348 build_fold_addr_expr (shadow_var), size);
3350 gimple *use;
3351 imm_use_iterator imm_iter;
3352 FOR_EACH_IMM_USE_STMT (use, imm_iter, poisoned_var)
3354 if (is_gimple_debug (use))
3355 continue;
3357 int nargs;
3358 bool store_p = gimple_call_internal_p (use, IFN_ASAN_POISON_USE);
3359 tree fun = report_error_func (store_p, recover_p, tree_to_uhwi (size),
3360 &nargs);
3362 gcall *call = gimple_build_call (fun, 1,
3363 build_fold_addr_expr (shadow_var));
3364 gimple_set_location (call, gimple_location (use));
3365 gimple *call_to_insert = call;
3367 /* The USE can be a gimple PHI node. If so, insert the call on
3368 all edges leading to the PHI node. */
3369 if (is_a <gphi *> (use))
3371 gphi *phi = dyn_cast<gphi *> (use);
3372 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
3373 if (gimple_phi_arg_def (phi, i) == poisoned_var)
3375 edge e = gimple_phi_arg_edge (phi, i);
3377 if (call_to_insert == NULL)
3378 call_to_insert = gimple_copy (call);
3380 gsi_insert_seq_on_edge (e, call_to_insert);
3381 *need_commit_edge_insert = true;
3382 call_to_insert = NULL;
3385 else
3387 gimple_stmt_iterator gsi = gsi_for_stmt (use);
3388 if (store_p)
3389 gsi_replace (&gsi, call, true);
3390 else
3391 gsi_insert_before (&gsi, call, GSI_NEW_STMT);
3395 SSA_NAME_IS_DEFAULT_DEF (poisoned_var) = true;
3396 SSA_NAME_DEF_STMT (poisoned_var) = gimple_build_nop ();
3397 gsi_replace (iter, poison_call, false);
3399 return true;
3402 /* Instrument the current function. */
3404 static unsigned int
3405 asan_instrument (void)
3407 if (shadow_ptr_types[0] == NULL_TREE)
3408 asan_init_shadow_ptr_types ();
3409 transform_statements ();
3410 last_alloca_addr = NULL_TREE;
3411 return 0;
3414 static bool
3415 gate_asan (void)
3417 return sanitize_flags_p (SANITIZE_ADDRESS);
3420 namespace {
3422 const pass_data pass_data_asan =
3424 GIMPLE_PASS, /* type */
3425 "asan", /* name */
3426 OPTGROUP_NONE, /* optinfo_flags */
3427 TV_NONE, /* tv_id */
3428 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3429 0, /* properties_provided */
3430 0, /* properties_destroyed */
3431 0, /* todo_flags_start */
3432 TODO_update_ssa, /* todo_flags_finish */
3435 class pass_asan : public gimple_opt_pass
3437 public:
3438 pass_asan (gcc::context *ctxt)
3439 : gimple_opt_pass (pass_data_asan, ctxt)
3442 /* opt_pass methods: */
3443 opt_pass * clone () { return new pass_asan (m_ctxt); }
3444 virtual bool gate (function *) { return gate_asan (); }
3445 virtual unsigned int execute (function *) { return asan_instrument (); }
3447 }; // class pass_asan
3449 } // anon namespace
3451 gimple_opt_pass *
3452 make_pass_asan (gcc::context *ctxt)
3454 return new pass_asan (ctxt);
3457 namespace {
3459 const pass_data pass_data_asan_O0 =
3461 GIMPLE_PASS, /* type */
3462 "asan0", /* name */
3463 OPTGROUP_NONE, /* optinfo_flags */
3464 TV_NONE, /* tv_id */
3465 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3466 0, /* properties_provided */
3467 0, /* properties_destroyed */
3468 0, /* todo_flags_start */
3469 TODO_update_ssa, /* todo_flags_finish */
3472 class pass_asan_O0 : public gimple_opt_pass
3474 public:
3475 pass_asan_O0 (gcc::context *ctxt)
3476 : gimple_opt_pass (pass_data_asan_O0, ctxt)
3479 /* opt_pass methods: */
3480 virtual bool gate (function *) { return !optimize && gate_asan (); }
3481 virtual unsigned int execute (function *) { return asan_instrument (); }
3483 }; // class pass_asan_O0
3485 } // anon namespace
3487 gimple_opt_pass *
3488 make_pass_asan_O0 (gcc::context *ctxt)
3490 return new pass_asan_O0 (ctxt);
3493 #include "gt-asan.h"