2015-11-18 Alan Modra <amodra@gmail.com>
[official-gcc.git] / gcc / fwprop.c
bloba500e18264c1b82399c931ca998d060e69c40ebf
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "emit-rtl.h"
32 #include "recog.h"
34 #include "sparseset.h"
35 #include "cfgrtl.h"
36 #include "cfgcleanup.h"
37 #include "cfgloop.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "rtl-iter.h"
43 /* This pass does simple forward propagation and simplification when an
44 operand of an insn can only come from a single def. This pass uses
45 df.c, so it is global. However, we only do limited analysis of
46 available expressions.
48 1) The pass tries to propagate the source of the def into the use,
49 and checks if the result is independent of the substituted value.
50 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
51 zero, independent of the source register.
53 In particular, we propagate constants into the use site. Sometimes
54 RTL expansion did not put the constant in the same insn on purpose,
55 to satisfy a predicate, and the result will fail to be recognized;
56 but this happens rarely and in this case we can still create a
57 REG_EQUAL note. For multi-word operations, this
59 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
60 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
61 (set (subreg:SI (reg:DI 122) 0)
62 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
63 (set (subreg:SI (reg:DI 122) 4)
64 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66 can be simplified to the much simpler
68 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
69 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71 This particular propagation is also effective at putting together
72 complex addressing modes. We are more aggressive inside MEMs, in
73 that all definitions are propagated if the use is in a MEM; if the
74 result is a valid memory address we check address_cost to decide
75 whether the substitution is worthwhile.
77 2) The pass propagates register copies. This is not as effective as
78 the copy propagation done by CSE's canon_reg, which works by walking
79 the instruction chain, it can help the other transformations.
81 We should consider removing this optimization, and instead reorder the
82 RTL passes, because GCSE does this transformation too. With some luck,
83 the CSE pass at the end of rest_of_handle_gcse could also go away.
85 3) The pass looks for paradoxical subregs that are actually unnecessary.
86 Things like this:
88 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
89 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
90 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
91 (subreg:SI (reg:QI 121) 0)))
93 are very common on machines that can only do word-sized operations.
94 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
95 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
96 we can replace the paradoxical subreg with simply (reg:WIDE M). The
97 above will simplify this to
99 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
100 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
101 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103 where the first two insns are now dead.
105 We used to use reaching definitions to find which uses have a
106 single reaching definition (sounds obvious...), but this is too
107 complex a problem in nasty testcases like PR33928. Now we use the
108 multiple definitions problem in df-problems.c. The similarity
109 between that problem and SSA form creation is taken further, in
110 that fwprop does a dominator walk to create its chains; however,
111 instead of creating a PHI function where multiple definitions meet
112 I just punt and record only singleton use-def chains, which is
113 all that is needed by fwprop. */
116 static int num_changes;
118 static vec<df_ref> use_def_ref;
119 static vec<df_ref> reg_defs;
120 static vec<df_ref> reg_defs_stack;
122 /* The MD bitmaps are trimmed to include only live registers to cut
123 memory usage on testcases like insn-recog.c. Track live registers
124 in the basic block and do not perform forward propagation if the
125 destination is a dead pseudo occurring in a note. */
126 static bitmap local_md;
127 static bitmap local_lr;
129 /* Return the only def in USE's use-def chain, or NULL if there is
130 more than one def in the chain. */
132 static inline df_ref
133 get_def_for_use (df_ref use)
135 return use_def_ref[DF_REF_ID (use)];
139 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
140 TOP_FLAG says which artificials uses should be used, when DEF_REC
141 is an artificial def vector. LOCAL_MD is modified as after a
142 df_md_simulate_* function; we do more or less the same processing
143 done there, so we do not use those functions. */
145 #define DF_MD_GEN_FLAGS \
146 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
148 static void
149 process_defs (df_ref def, int top_flag)
151 for (; def; def = DF_REF_NEXT_LOC (def))
153 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
154 unsigned int dregno;
156 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
157 continue;
159 dregno = DF_REF_REGNO (def);
160 if (curr_def)
161 reg_defs_stack.safe_push (curr_def);
162 else
164 /* Do not store anything if "transitioning" from NULL to NULL. But
165 otherwise, push a special entry on the stack to tell the
166 leave_block callback that the entry in reg_defs was NULL. */
167 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
169 else
170 reg_defs_stack.safe_push (def);
173 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
175 bitmap_set_bit (local_md, dregno);
176 reg_defs[dregno] = NULL;
178 else
180 bitmap_clear_bit (local_md, dregno);
181 reg_defs[dregno] = def;
187 /* Fill the use_def_ref vector with values for the uses in USE_REC,
188 taking reaching definitions info from LOCAL_MD and REG_DEFS.
189 TOP_FLAG says which artificials uses should be used, when USE_REC
190 is an artificial use vector. */
192 static void
193 process_uses (df_ref use, int top_flag)
195 for (; use; use = DF_REF_NEXT_LOC (use))
196 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
198 unsigned int uregno = DF_REF_REGNO (use);
199 if (reg_defs[uregno]
200 && !bitmap_bit_p (local_md, uregno)
201 && bitmap_bit_p (local_lr, uregno))
202 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
206 class single_def_use_dom_walker : public dom_walker
208 public:
209 single_def_use_dom_walker (cdi_direction direction)
210 : dom_walker (direction) {}
211 virtual void before_dom_children (basic_block);
212 virtual void after_dom_children (basic_block);
215 void
216 single_def_use_dom_walker::before_dom_children (basic_block bb)
218 int bb_index = bb->index;
219 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
220 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
221 rtx_insn *insn;
223 bitmap_copy (local_md, &md_bb_info->in);
224 bitmap_copy (local_lr, &lr_bb_info->in);
226 /* Push a marker for the leave_block callback. */
227 reg_defs_stack.safe_push (NULL);
229 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
230 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
232 /* We don't call df_simulate_initialize_forwards, as it may overestimate
233 the live registers if there are unused artificial defs. We prefer
234 liveness to be underestimated. */
236 FOR_BB_INSNS (bb, insn)
237 if (INSN_P (insn))
239 unsigned int uid = INSN_UID (insn);
240 process_uses (DF_INSN_UID_USES (uid), 0);
241 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
242 process_defs (DF_INSN_UID_DEFS (uid), 0);
243 df_simulate_one_insn_forwards (bb, insn, local_lr);
246 process_uses (df_get_artificial_uses (bb_index), 0);
247 process_defs (df_get_artificial_defs (bb_index), 0);
250 /* Pop the definitions created in this basic block when leaving its
251 dominated parts. */
253 void
254 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
256 df_ref saved_def;
257 while ((saved_def = reg_defs_stack.pop ()) != NULL)
259 unsigned int dregno = DF_REF_REGNO (saved_def);
261 /* See also process_defs. */
262 if (saved_def == reg_defs[dregno])
263 reg_defs[dregno] = NULL;
264 else
265 reg_defs[dregno] = saved_def;
270 /* Build a vector holding the reaching definitions of uses reached by a
271 single dominating definition. */
273 static void
274 build_single_def_use_links (void)
276 /* We use the multiple definitions problem to compute our restricted
277 use-def chains. */
278 df_set_flags (DF_EQ_NOTES);
279 df_md_add_problem ();
280 df_note_add_problem ();
281 df_analyze ();
282 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
284 use_def_ref.create (DF_USES_TABLE_SIZE ());
285 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
287 reg_defs.create (max_reg_num ());
288 reg_defs.safe_grow_cleared (max_reg_num ());
290 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
291 local_md = BITMAP_ALLOC (NULL);
292 local_lr = BITMAP_ALLOC (NULL);
294 /* Walk the dominator tree looking for single reaching definitions
295 dominating the uses. This is similar to how SSA form is built. */
296 single_def_use_dom_walker (CDI_DOMINATORS)
297 .walk (cfun->cfg->x_entry_block_ptr);
299 BITMAP_FREE (local_lr);
300 BITMAP_FREE (local_md);
301 reg_defs.release ();
302 reg_defs_stack.release ();
306 /* Do not try to replace constant addresses or addresses of local and
307 argument slots. These MEM expressions are made only once and inserted
308 in many instructions, as well as being used to control symbol table
309 output. It is not safe to clobber them.
311 There are some uncommon cases where the address is already in a register
312 for some reason, but we cannot take advantage of that because we have
313 no easy way to unshare the MEM. In addition, looking up all stack
314 addresses is costly. */
316 static bool
317 can_simplify_addr (rtx addr)
319 rtx reg;
321 if (CONSTANT_ADDRESS_P (addr))
322 return false;
324 if (GET_CODE (addr) == PLUS)
325 reg = XEXP (addr, 0);
326 else
327 reg = addr;
329 return (!REG_P (reg)
330 || (REGNO (reg) != FRAME_POINTER_REGNUM
331 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
332 && REGNO (reg) != ARG_POINTER_REGNUM));
335 /* Returns a canonical version of X for the address, from the point of view,
336 that all multiplications are represented as MULT instead of the multiply
337 by a power of 2 being represented as ASHIFT.
339 Every ASHIFT we find has been made by simplify_gen_binary and was not
340 there before, so it is not shared. So we can do this in place. */
342 static void
343 canonicalize_address (rtx x)
345 for (;;)
346 switch (GET_CODE (x))
348 case ASHIFT:
349 if (CONST_INT_P (XEXP (x, 1))
350 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
351 && INTVAL (XEXP (x, 1)) >= 0)
353 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
354 PUT_CODE (x, MULT);
355 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
356 GET_MODE (x));
359 x = XEXP (x, 0);
360 break;
362 case PLUS:
363 if (GET_CODE (XEXP (x, 0)) == PLUS
364 || GET_CODE (XEXP (x, 0)) == ASHIFT
365 || GET_CODE (XEXP (x, 0)) == CONST)
366 canonicalize_address (XEXP (x, 0));
368 x = XEXP (x, 1);
369 break;
371 case CONST:
372 x = XEXP (x, 0);
373 break;
375 default:
376 return;
380 /* OLD is a memory address. Return whether it is good to use NEW instead,
381 for a memory access in the given MODE. */
383 static bool
384 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
385 addr_space_t as, bool speed)
387 int gain;
389 if (rtx_equal_p (old_rtx, new_rtx)
390 || !memory_address_addr_space_p (mode, new_rtx, as))
391 return false;
393 /* Copy propagation is always ok. */
394 if (REG_P (old_rtx) && REG_P (new_rtx))
395 return true;
397 /* Prefer the new address if it is less expensive. */
398 gain = (address_cost (old_rtx, mode, as, speed)
399 - address_cost (new_rtx, mode, as, speed));
401 /* If the addresses have equivalent cost, prefer the new address
402 if it has the highest `set_src_cost'. That has the potential of
403 eliminating the most insns without additional costs, and it
404 is the same that cse.c used to do. */
405 if (gain == 0)
406 gain = (set_src_cost (new_rtx, VOIDmode, speed)
407 - set_src_cost (old_rtx, VOIDmode, speed));
409 return (gain > 0);
413 /* Flags for the last parameter of propagate_rtx_1. */
415 enum {
416 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
417 if it is false, propagate_rtx_1 returns false if, for at least
418 one occurrence OLD, it failed to collapse the result to a constant.
419 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
420 collapse to zero if replacing (reg:M B) with (reg:M A).
422 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
423 propagate_rtx_1 just tries to make cheaper and valid memory
424 addresses. */
425 PR_CAN_APPEAR = 1,
427 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
428 outside memory addresses. This is needed because propagate_rtx_1 does
429 not do any analysis on memory; thus it is very conservative and in general
430 it will fail if non-read-only MEMs are found in the source expression.
432 PR_HANDLE_MEM is set when the source of the propagation was not
433 another MEM. Then, it is safe not to treat non-read-only MEMs as
434 ``opaque'' objects. */
435 PR_HANDLE_MEM = 2,
437 /* Set when costs should be optimized for speed. */
438 PR_OPTIMIZE_FOR_SPEED = 4
442 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
443 resulting expression. Replace *PX with a new RTL expression if an
444 occurrence of OLD was found.
446 This is only a wrapper around simplify-rtx.c: do not add any pattern
447 matching code here. (The sole exception is the handling of LO_SUM, but
448 that is because there is no simplify_gen_* function for LO_SUM). */
450 static bool
451 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
453 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
454 enum rtx_code code = GET_CODE (x);
455 machine_mode mode = GET_MODE (x);
456 machine_mode op_mode;
457 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
458 bool valid_ops = true;
460 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
462 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
463 they have side effects or not). */
464 *px = (side_effects_p (x)
465 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
466 : gen_rtx_SCRATCH (GET_MODE (x)));
467 return false;
470 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
471 address, and we are *not* inside one. */
472 if (x == old_rtx)
474 *px = new_rtx;
475 return can_appear;
478 /* If this is an expression, try recursive substitution. */
479 switch (GET_RTX_CLASS (code))
481 case RTX_UNARY:
482 op0 = XEXP (x, 0);
483 op_mode = GET_MODE (op0);
484 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
485 if (op0 == XEXP (x, 0))
486 return true;
487 tem = simplify_gen_unary (code, mode, op0, op_mode);
488 break;
490 case RTX_BIN_ARITH:
491 case RTX_COMM_ARITH:
492 op0 = XEXP (x, 0);
493 op1 = XEXP (x, 1);
494 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
495 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
496 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
497 return true;
498 tem = simplify_gen_binary (code, mode, op0, op1);
499 break;
501 case RTX_COMPARE:
502 case RTX_COMM_COMPARE:
503 op0 = XEXP (x, 0);
504 op1 = XEXP (x, 1);
505 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
506 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
507 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
508 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
509 return true;
510 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
511 break;
513 case RTX_TERNARY:
514 case RTX_BITFIELD_OPS:
515 op0 = XEXP (x, 0);
516 op1 = XEXP (x, 1);
517 op2 = XEXP (x, 2);
518 op_mode = GET_MODE (op0);
519 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
520 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
521 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
522 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
523 return true;
524 if (op_mode == VOIDmode)
525 op_mode = GET_MODE (op0);
526 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
527 break;
529 case RTX_EXTRA:
530 /* The only case we try to handle is a SUBREG. */
531 if (code == SUBREG)
533 op0 = XEXP (x, 0);
534 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
535 if (op0 == XEXP (x, 0))
536 return true;
537 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
538 SUBREG_BYTE (x));
540 break;
542 case RTX_OBJ:
543 if (code == MEM && x != new_rtx)
545 rtx new_op0;
546 op0 = XEXP (x, 0);
548 /* There are some addresses that we cannot work on. */
549 if (!can_simplify_addr (op0))
550 return true;
552 op0 = new_op0 = targetm.delegitimize_address (op0);
553 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
554 flags | PR_CAN_APPEAR);
556 /* Dismiss transformation that we do not want to carry on. */
557 if (!valid_ops
558 || new_op0 == op0
559 || !(GET_MODE (new_op0) == GET_MODE (op0)
560 || GET_MODE (new_op0) == VOIDmode))
561 return true;
563 canonicalize_address (new_op0);
565 /* Copy propagations are always ok. Otherwise check the costs. */
566 if (!(REG_P (old_rtx) && REG_P (new_rtx))
567 && !should_replace_address (op0, new_op0, GET_MODE (x),
568 MEM_ADDR_SPACE (x),
569 flags & PR_OPTIMIZE_FOR_SPEED))
570 return true;
572 tem = replace_equiv_address_nv (x, new_op0);
575 else if (code == LO_SUM)
577 op0 = XEXP (x, 0);
578 op1 = XEXP (x, 1);
580 /* The only simplification we do attempts to remove references to op0
581 or make it constant -- in both cases, op0's invalidity will not
582 make the result invalid. */
583 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
584 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
585 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
586 return true;
588 /* (lo_sum (high x) x) -> x */
589 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
590 tem = op1;
591 else
592 tem = gen_rtx_LO_SUM (mode, op0, op1);
594 /* OP1 is likely not a legitimate address, otherwise there would have
595 been no LO_SUM. We want it to disappear if it is invalid, return
596 false in that case. */
597 return memory_address_p (mode, tem);
600 else if (code == REG)
602 if (rtx_equal_p (x, old_rtx))
604 *px = new_rtx;
605 return can_appear;
608 break;
610 default:
611 break;
614 /* No change, no trouble. */
615 if (tem == NULL_RTX)
616 return true;
618 *px = tem;
620 /* The replacement we made so far is valid, if all of the recursive
621 replacements were valid, or we could simplify everything to
622 a constant. */
623 return valid_ops || can_appear || CONSTANT_P (tem);
627 /* Return true if X constains a non-constant mem. */
629 static bool
630 varying_mem_p (const_rtx x)
632 subrtx_iterator::array_type array;
633 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
634 if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
635 return true;
636 return false;
640 /* Replace all occurrences of OLD in X with NEW and try to simplify the
641 resulting expression (in mode MODE). Return a new expression if it is
642 a constant, otherwise X.
644 Simplifications where occurrences of NEW collapse to a constant are always
645 accepted. All simplifications are accepted if NEW is a pseudo too.
646 Otherwise, we accept simplifications that have a lower or equal cost. */
648 static rtx
649 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
650 bool speed)
652 rtx tem;
653 bool collapsed;
654 int flags;
656 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
657 return NULL_RTX;
659 flags = 0;
660 if (REG_P (new_rtx)
661 || CONSTANT_P (new_rtx)
662 || (GET_CODE (new_rtx) == SUBREG
663 && REG_P (SUBREG_REG (new_rtx))
664 && (GET_MODE_SIZE (mode)
665 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
666 flags |= PR_CAN_APPEAR;
667 if (!varying_mem_p (new_rtx))
668 flags |= PR_HANDLE_MEM;
670 if (speed)
671 flags |= PR_OPTIMIZE_FOR_SPEED;
673 tem = x;
674 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
675 if (tem == x || !collapsed)
676 return NULL_RTX;
678 /* gen_lowpart_common will not be able to process VOIDmode entities other
679 than CONST_INTs. */
680 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
681 return NULL_RTX;
683 if (GET_MODE (tem) == VOIDmode)
684 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
685 else
686 gcc_assert (GET_MODE (tem) == mode);
688 return tem;
694 /* Return true if the register from reference REF is killed
695 between FROM to (but not including) TO. */
697 static bool
698 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
700 rtx_insn *insn;
702 for (insn = from; insn != to; insn = NEXT_INSN (insn))
704 df_ref def;
705 if (!INSN_P (insn))
706 continue;
708 FOR_EACH_INSN_DEF (def, insn)
709 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
710 return true;
712 return false;
716 /* Check if the given DEF is available in INSN. This would require full
717 computation of available expressions; we check only restricted conditions:
718 - if DEF is the sole definition of its register, go ahead;
719 - in the same basic block, we check for no definitions killing the
720 definition of DEF_INSN;
721 - if USE's basic block has DEF's basic block as the sole predecessor,
722 we check if the definition is killed after DEF_INSN or before
723 TARGET_INSN insn, in their respective basic blocks. */
724 static bool
725 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
727 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
728 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
729 int regno;
730 df_ref def;
732 /* We used to have a def reaching a use that is _before_ the def,
733 with the def not dominating the use even though the use and def
734 are in the same basic block, when a register may be used
735 uninitialized in a loop. This should not happen anymore since
736 we do not use reaching definitions, but still we test for such
737 cases and assume that DEF is not available. */
738 if (def_bb == target_bb
739 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
740 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
741 return true;
743 /* Check if the reg in USE has only one definition. We already
744 know that this definition reaches use, or we wouldn't be here.
745 However, this is invalid for hard registers because if they are
746 live at the beginning of the function it does not mean that we
747 have an uninitialized access. */
748 regno = DF_REF_REGNO (use);
749 def = DF_REG_DEF_CHAIN (regno);
750 if (def
751 && DF_REF_NEXT_REG (def) == NULL
752 && regno >= FIRST_PSEUDO_REGISTER)
753 return false;
755 /* Check locally if we are in the same basic block. */
756 if (def_bb == target_bb)
757 return local_ref_killed_between_p (use, def_insn, target_insn);
759 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
760 if (single_pred_p (target_bb)
761 && single_pred (target_bb) == def_bb)
763 df_ref x;
765 /* See if USE is killed between DEF_INSN and the last insn in the
766 basic block containing DEF_INSN. */
767 x = df_bb_regno_last_def_find (def_bb, regno);
768 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
769 return true;
771 /* See if USE is killed between TARGET_INSN and the first insn in the
772 basic block containing TARGET_INSN. */
773 x = df_bb_regno_first_def_find (target_bb, regno);
774 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
775 return true;
777 return false;
780 /* Otherwise assume the worst case. */
781 return true;
785 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
786 would require full computation of available expressions;
787 we check only restricted conditions, see use_killed_between. */
788 static bool
789 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
791 df_ref use;
792 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
793 rtx def_set = single_set (def_insn);
794 rtx_insn *next;
796 gcc_assert (def_set);
798 /* If target_insn comes right after def_insn, which is very common
799 for addresses, we can use a quicker test. Ignore debug insns
800 other than target insns for this. */
801 next = NEXT_INSN (def_insn);
802 while (next && next != target_insn && DEBUG_INSN_P (next))
803 next = NEXT_INSN (next);
804 if (next == target_insn && REG_P (SET_DEST (def_set)))
806 rtx def_reg = SET_DEST (def_set);
808 /* If the insn uses the reg that it defines, the substitution is
809 invalid. */
810 FOR_EACH_INSN_INFO_USE (use, insn_info)
811 if (rtx_equal_p (DF_REF_REG (use), def_reg))
812 return false;
813 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
814 if (rtx_equal_p (DF_REF_REG (use), def_reg))
815 return false;
817 else
819 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
821 /* Look at all the uses of DEF_INSN, and see if they are not
822 killed between DEF_INSN and TARGET_INSN. */
823 FOR_EACH_INSN_INFO_USE (use, insn_info)
825 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
826 return false;
827 if (use_killed_between (use, def_insn, target_insn))
828 return false;
830 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
832 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
833 return false;
834 if (use_killed_between (use, def_insn, target_insn))
835 return false;
839 return true;
843 static df_ref *active_defs;
844 static sparseset active_defs_check;
846 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
847 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
848 too, for checking purposes. */
850 static void
851 register_active_defs (df_ref use)
853 for (; use; use = DF_REF_NEXT_LOC (use))
855 df_ref def = get_def_for_use (use);
856 int regno = DF_REF_REGNO (use);
858 if (flag_checking)
859 sparseset_set_bit (active_defs_check, regno);
860 active_defs[regno] = def;
865 /* Build the use->def links that we use to update the dataflow info
866 for new uses. Note that building the links is very cheap and if
867 it were done earlier, they could be used to rule out invalid
868 propagations (in addition to what is done in all_uses_available_at).
869 I'm not doing this yet, though. */
871 static void
872 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
874 if (flag_checking)
875 sparseset_clear (active_defs_check);
876 register_active_defs (DF_INSN_USES (def_insn));
877 register_active_defs (DF_INSN_USES (insn));
878 register_active_defs (DF_INSN_EQ_USES (insn));
882 /* Update the USE_DEF_REF array for the given use, using the active definitions
883 in the ACTIVE_DEFS array to match pseudos to their def. */
885 static inline void
886 update_uses (df_ref use)
888 for (; use; use = DF_REF_NEXT_LOC (use))
890 int regno = DF_REF_REGNO (use);
892 /* Set up the use-def chain. */
893 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
894 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
896 gcc_checking_assert (sparseset_bit_p (active_defs_check, regno));
897 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
902 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
903 uses if NOTES_ONLY is true. */
905 static void
906 update_df (rtx_insn *insn, rtx note)
908 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
910 if (note)
912 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
913 df_notes_rescan (insn);
915 else
917 df_uses_create (&PATTERN (insn), insn, 0);
918 df_insn_rescan (insn);
919 update_uses (DF_INSN_INFO_USES (insn_info));
922 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
926 /* Try substituting NEW into LOC, which originated from forward propagation
927 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
928 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
929 new insn is not recognized. Return whether the substitution was
930 performed. */
932 static bool
933 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
934 bool set_reg_equal)
936 rtx_insn *insn = DF_REF_INSN (use);
937 rtx set = single_set (insn);
938 rtx note = NULL_RTX;
939 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
940 int old_cost = 0;
941 bool ok;
943 update_df_init (def_insn, insn);
945 /* forward_propagate_subreg may be operating on an instruction with
946 multiple sets. If so, assume the cost of the new instruction is
947 not greater than the old one. */
948 if (set)
949 old_cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
950 if (dump_file)
952 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
953 print_inline_rtx (dump_file, *loc, 2);
954 fprintf (dump_file, "\n with ");
955 print_inline_rtx (dump_file, new_rtx, 2);
956 fprintf (dump_file, "\n");
959 validate_unshare_change (insn, loc, new_rtx, true);
960 if (!verify_changes (0))
962 if (dump_file)
963 fprintf (dump_file, "Changes to insn %d not recognized\n",
964 INSN_UID (insn));
965 ok = false;
968 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
969 && set
970 && (set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed)
971 > old_cost))
973 if (dump_file)
974 fprintf (dump_file, "Changes to insn %d not profitable\n",
975 INSN_UID (insn));
976 ok = false;
979 else
981 if (dump_file)
982 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
983 ok = true;
986 if (ok)
988 confirm_change_group ();
989 num_changes++;
991 else
993 cancel_changes (0);
995 /* Can also record a simplified value in a REG_EQUAL note,
996 making a new one if one does not already exist. */
997 if (set_reg_equal)
999 if (dump_file)
1000 fprintf (dump_file, " Setting REG_EQUAL note\n");
1002 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1006 if ((ok || note) && !CONSTANT_P (new_rtx))
1007 update_df (insn, note);
1009 return ok;
1012 /* For the given single_set INSN, containing SRC known to be a
1013 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1014 is redundant due to the register being set by a LOAD_EXTEND_OP
1015 load from memory. */
1017 static bool
1018 free_load_extend (rtx src, rtx_insn *insn)
1020 rtx reg;
1021 df_ref def, use;
1023 reg = XEXP (src, 0);
1024 #ifdef LOAD_EXTEND_OP
1025 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1026 #endif
1027 return false;
1029 FOR_EACH_INSN_USE (use, insn)
1030 if (!DF_REF_IS_ARTIFICIAL (use)
1031 && DF_REF_TYPE (use) == DF_REF_REG_USE
1032 && DF_REF_REG (use) == reg)
1033 break;
1034 if (!use)
1035 return false;
1037 def = get_def_for_use (use);
1038 if (!def)
1039 return false;
1041 if (DF_REF_IS_ARTIFICIAL (def))
1042 return false;
1044 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1046 rtx patt = PATTERN (DF_REF_INSN (def));
1048 if (GET_CODE (patt) == SET
1049 && GET_CODE (SET_SRC (patt)) == MEM
1050 && rtx_equal_p (SET_DEST (patt), reg))
1051 return true;
1053 return false;
1056 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1058 static bool
1059 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1061 rtx use_reg = DF_REF_REG (use);
1062 rtx_insn *use_insn;
1063 rtx src;
1065 /* Only consider subregs... */
1066 machine_mode use_mode = GET_MODE (use_reg);
1067 if (GET_CODE (use_reg) != SUBREG
1068 || !REG_P (SET_DEST (def_set)))
1069 return false;
1071 /* If this is a paradoxical SUBREG... */
1072 if (GET_MODE_SIZE (use_mode)
1073 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1075 /* If this is a paradoxical SUBREG, we have no idea what value the
1076 extra bits would have. However, if the operand is equivalent to
1077 a SUBREG whose operand is the same as our mode, and all the modes
1078 are within a word, we can just use the inner operand because
1079 these SUBREGs just say how to treat the register. */
1080 use_insn = DF_REF_INSN (use);
1081 src = SET_SRC (def_set);
1082 if (GET_CODE (src) == SUBREG
1083 && REG_P (SUBREG_REG (src))
1084 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1085 && GET_MODE (SUBREG_REG (src)) == use_mode
1086 && subreg_lowpart_p (src)
1087 && all_uses_available_at (def_insn, use_insn))
1088 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1089 def_insn, false);
1092 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1093 is the low part of the reg being extended then just use the inner
1094 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1095 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1096 or due to the operation being a no-op when applied to registers.
1097 For example, if we have:
1099 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1100 B: (... (subreg:SI (reg:DI X)) ...)
1102 and mode_rep_extended says that Y is already sign-extended,
1103 the backend will typically allow A to be combined with the
1104 definition of Y or, failing that, allow A to be deleted after
1105 reload through register tying. Introducing more uses of Y
1106 prevents both optimisations. */
1107 else if (subreg_lowpart_p (use_reg))
1109 use_insn = DF_REF_INSN (use);
1110 src = SET_SRC (def_set);
1111 if ((GET_CODE (src) == ZERO_EXTEND
1112 || GET_CODE (src) == SIGN_EXTEND)
1113 && REG_P (XEXP (src, 0))
1114 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1115 && GET_MODE (XEXP (src, 0)) == use_mode
1116 && !free_load_extend (src, def_insn)
1117 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1118 != (int) GET_CODE (src))
1119 && all_uses_available_at (def_insn, use_insn))
1120 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1121 def_insn, false);
1124 return false;
1127 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1129 static bool
1130 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1132 rtx_insn *use_insn = DF_REF_INSN (use);
1133 rtx src, use_pat, asm_operands, new_rtx, *loc;
1134 int speed_p, i;
1135 df_ref uses;
1137 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1139 src = SET_SRC (def_set);
1140 use_pat = PATTERN (use_insn);
1142 /* In __asm don't replace if src might need more registers than
1143 reg, as that could increase register pressure on the __asm. */
1144 uses = DF_INSN_USES (def_insn);
1145 if (uses && DF_REF_NEXT_LOC (uses))
1146 return false;
1148 update_df_init (def_insn, use_insn);
1149 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1150 asm_operands = NULL_RTX;
1151 switch (GET_CODE (use_pat))
1153 case ASM_OPERANDS:
1154 asm_operands = use_pat;
1155 break;
1156 case SET:
1157 if (MEM_P (SET_DEST (use_pat)))
1159 loc = &SET_DEST (use_pat);
1160 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1161 if (new_rtx)
1162 validate_unshare_change (use_insn, loc, new_rtx, true);
1164 asm_operands = SET_SRC (use_pat);
1165 break;
1166 case PARALLEL:
1167 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1168 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1170 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1172 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1173 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1174 src, speed_p);
1175 if (new_rtx)
1176 validate_unshare_change (use_insn, loc, new_rtx, true);
1178 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1180 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1181 asm_operands = XVECEXP (use_pat, 0, i);
1182 break;
1183 default:
1184 gcc_unreachable ();
1187 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1188 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1190 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1191 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1192 if (new_rtx)
1193 validate_unshare_change (use_insn, loc, new_rtx, true);
1196 if (num_changes_pending () == 0 || !apply_change_group ())
1197 return false;
1199 update_df (use_insn, NULL);
1200 num_changes++;
1201 return true;
1204 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1205 result. */
1207 static bool
1208 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1210 rtx_insn *use_insn = DF_REF_INSN (use);
1211 rtx use_set = single_set (use_insn);
1212 rtx src, reg, new_rtx, *loc;
1213 bool set_reg_equal;
1214 machine_mode mode;
1215 int asm_use = -1;
1217 if (INSN_CODE (use_insn) < 0)
1218 asm_use = asm_noperands (PATTERN (use_insn));
1220 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1221 return false;
1223 /* Do not propagate into PC, CC0, etc. */
1224 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1225 return false;
1227 /* If def and use are subreg, check if they match. */
1228 reg = DF_REF_REG (use);
1229 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1231 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1232 return false;
1234 /* Check if the def had a subreg, but the use has the whole reg. */
1235 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1236 return false;
1237 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1238 previous case, the optimization is possible and often useful indeed. */
1239 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1240 reg = SUBREG_REG (reg);
1242 /* Make sure that we can treat REG as having the same mode as the
1243 source of DEF_SET. */
1244 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1245 return false;
1247 /* Check if the substitution is valid (last, because it's the most
1248 expensive check!). */
1249 src = SET_SRC (def_set);
1250 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1251 return false;
1253 /* Check if the def is loading something from the constant pool; in this
1254 case we would undo optimization such as compress_float_constant.
1255 Still, we can set a REG_EQUAL note. */
1256 if (MEM_P (src) && MEM_READONLY_P (src))
1258 rtx x = avoid_constant_pool_reference (src);
1259 if (x != src && use_set)
1261 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1262 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1263 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1264 if (old_rtx != new_rtx)
1265 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1267 return false;
1270 if (asm_use >= 0)
1271 return forward_propagate_asm (use, def_insn, def_set, reg);
1273 /* Else try simplifying. */
1275 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1277 loc = &SET_DEST (use_set);
1278 set_reg_equal = false;
1280 else if (!use_set)
1282 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1283 set_reg_equal = false;
1285 else
1287 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1288 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1289 loc = &XEXP (note, 0);
1290 else
1291 loc = &SET_SRC (use_set);
1293 /* Do not replace an existing REG_EQUAL note if the insn is not
1294 recognized. Either we're already replacing in the note, or we'll
1295 separately try plugging the definition in the note and simplifying.
1296 And only install a REQ_EQUAL note when the destination is a REG
1297 that isn't mentioned in USE_SET, as the note would be invalid
1298 otherwise. We also don't want to install a note if we are merely
1299 propagating a pseudo since verifying that this pseudo isn't dead
1300 is a pain; moreover such a note won't help anything. */
1301 set_reg_equal = (note == NULL_RTX
1302 && REG_P (SET_DEST (use_set))
1303 && !REG_P (src)
1304 && !(GET_CODE (src) == SUBREG
1305 && REG_P (SUBREG_REG (src)))
1306 && !reg_mentioned_p (SET_DEST (use_set),
1307 SET_SRC (use_set)));
1310 if (GET_MODE (*loc) == VOIDmode)
1311 mode = GET_MODE (SET_DEST (use_set));
1312 else
1313 mode = GET_MODE (*loc);
1315 new_rtx = propagate_rtx (*loc, mode, reg, src,
1316 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1318 if (!new_rtx)
1319 return false;
1321 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1325 /* Given a use USE of an insn, if it has a single reaching
1326 definition, try to forward propagate it into that insn.
1327 Return true if cfg cleanup will be needed. */
1329 static bool
1330 forward_propagate_into (df_ref use)
1332 df_ref def;
1333 rtx_insn *def_insn, *use_insn;
1334 rtx def_set;
1335 rtx parent;
1337 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1338 return false;
1339 if (DF_REF_IS_ARTIFICIAL (use))
1340 return false;
1342 /* Only consider uses that have a single definition. */
1343 def = get_def_for_use (use);
1344 if (!def)
1345 return false;
1346 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1347 return false;
1348 if (DF_REF_IS_ARTIFICIAL (def))
1349 return false;
1351 /* Do not propagate loop invariant definitions inside the loop. */
1352 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1353 return false;
1355 /* Check if the use is still present in the insn! */
1356 use_insn = DF_REF_INSN (use);
1357 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1358 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1359 else
1360 parent = PATTERN (use_insn);
1362 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1363 return false;
1365 def_insn = DF_REF_INSN (def);
1366 if (multiple_sets (def_insn))
1367 return false;
1368 def_set = single_set (def_insn);
1369 if (!def_set)
1370 return false;
1372 /* Only try one kind of propagation. If two are possible, we'll
1373 do it on the following iterations. */
1374 if (forward_propagate_and_simplify (use, def_insn, def_set)
1375 || forward_propagate_subreg (use, def_insn, def_set))
1377 if (cfun->can_throw_non_call_exceptions
1378 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1379 && purge_dead_edges (DF_REF_BB (use)))
1380 return true;
1382 return false;
1386 static void
1387 fwprop_init (void)
1389 num_changes = 0;
1390 calculate_dominance_info (CDI_DOMINATORS);
1392 /* We do not always want to propagate into loops, so we have to find
1393 loops and be careful about them. Avoid CFG modifications so that
1394 we don't have to update dominance information afterwards for
1395 build_single_def_use_links. */
1396 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1398 build_single_def_use_links ();
1399 df_set_flags (DF_DEFER_INSN_RESCAN);
1401 active_defs = XNEWVEC (df_ref, max_reg_num ());
1402 if (flag_checking)
1403 active_defs_check = sparseset_alloc (max_reg_num ());
1406 static void
1407 fwprop_done (void)
1409 loop_optimizer_finalize ();
1411 use_def_ref.release ();
1412 free (active_defs);
1413 if (flag_checking)
1414 sparseset_free (active_defs_check);
1416 free_dominance_info (CDI_DOMINATORS);
1417 cleanup_cfg (0);
1418 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1420 if (dump_file)
1421 fprintf (dump_file,
1422 "\nNumber of successful forward propagations: %d\n\n",
1423 num_changes);
1427 /* Main entry point. */
1429 static bool
1430 gate_fwprop (void)
1432 return optimize > 0 && flag_forward_propagate;
1435 static unsigned int
1436 fwprop (void)
1438 unsigned i;
1439 bool need_cleanup = false;
1441 fwprop_init ();
1443 /* Go through all the uses. df_uses_create will create new ones at the
1444 end, and we'll go through them as well.
1446 Do not forward propagate addresses into loops until after unrolling.
1447 CSE did so because it was able to fix its own mess, but we are not. */
1449 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1451 df_ref use = DF_USES_GET (i);
1452 if (use)
1453 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1454 || DF_REF_BB (use)->loop_father == NULL
1455 /* The outer most loop is not really a loop. */
1456 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1457 need_cleanup |= forward_propagate_into (use);
1460 fwprop_done ();
1461 if (need_cleanup)
1462 cleanup_cfg (0);
1463 return 0;
1466 namespace {
1468 const pass_data pass_data_rtl_fwprop =
1470 RTL_PASS, /* type */
1471 "fwprop1", /* name */
1472 OPTGROUP_NONE, /* optinfo_flags */
1473 TV_FWPROP, /* tv_id */
1474 0, /* properties_required */
1475 0, /* properties_provided */
1476 0, /* properties_destroyed */
1477 0, /* todo_flags_start */
1478 TODO_df_finish, /* todo_flags_finish */
1481 class pass_rtl_fwprop : public rtl_opt_pass
1483 public:
1484 pass_rtl_fwprop (gcc::context *ctxt)
1485 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1488 /* opt_pass methods: */
1489 virtual bool gate (function *) { return gate_fwprop (); }
1490 virtual unsigned int execute (function *) { return fwprop (); }
1492 }; // class pass_rtl_fwprop
1494 } // anon namespace
1496 rtl_opt_pass *
1497 make_pass_rtl_fwprop (gcc::context *ctxt)
1499 return new pass_rtl_fwprop (ctxt);
1502 static unsigned int
1503 fwprop_addr (void)
1505 unsigned i;
1506 bool need_cleanup = false;
1508 fwprop_init ();
1510 /* Go through all the uses. df_uses_create will create new ones at the
1511 end, and we'll go through them as well. */
1512 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1514 df_ref use = DF_USES_GET (i);
1515 if (use)
1516 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1517 && DF_REF_BB (use)->loop_father != NULL
1518 /* The outer most loop is not really a loop. */
1519 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1520 need_cleanup |= forward_propagate_into (use);
1523 fwprop_done ();
1525 if (need_cleanup)
1526 cleanup_cfg (0);
1527 return 0;
1530 namespace {
1532 const pass_data pass_data_rtl_fwprop_addr =
1534 RTL_PASS, /* type */
1535 "fwprop2", /* name */
1536 OPTGROUP_NONE, /* optinfo_flags */
1537 TV_FWPROP, /* tv_id */
1538 0, /* properties_required */
1539 0, /* properties_provided */
1540 0, /* properties_destroyed */
1541 0, /* todo_flags_start */
1542 TODO_df_finish, /* todo_flags_finish */
1545 class pass_rtl_fwprop_addr : public rtl_opt_pass
1547 public:
1548 pass_rtl_fwprop_addr (gcc::context *ctxt)
1549 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1552 /* opt_pass methods: */
1553 virtual bool gate (function *) { return gate_fwprop (); }
1554 virtual unsigned int execute (function *) { return fwprop_addr (); }
1556 }; // class pass_rtl_fwprop_addr
1558 } // anon namespace
1560 rtl_opt_pass *
1561 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1563 return new pass_rtl_fwprop_addr (ctxt);