2015-11-18 Alan Modra <amodra@gmail.com>
[official-gcc.git] / gcc / cse.c
blobcb78a95c0b85418fa1a13ea52e9dcc7eceb700bf
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34 #include "cfgrtl.h"
35 #include "cfganal.h"
36 #include "cfgcleanup.h"
37 #include "alias.h"
38 #include "toplev.h"
39 #include "params.h"
40 #include "rtlhooks-def.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43 #include "rtl-iter.h"
45 #ifndef LOAD_EXTEND_OP
46 #define LOAD_EXTEND_OP(M) UNKNOWN
47 #endif
49 /* The basic idea of common subexpression elimination is to go
50 through the code, keeping a record of expressions that would
51 have the same value at the current scan point, and replacing
52 expressions encountered with the cheapest equivalent expression.
54 It is too complicated to keep track of the different possibilities
55 when control paths merge in this code; so, at each label, we forget all
56 that is known and start fresh. This can be described as processing each
57 extended basic block separately. We have a separate pass to perform
58 global CSE.
60 Note CSE can turn a conditional or computed jump into a nop or
61 an unconditional jump. When this occurs we arrange to run the jump
62 optimizer after CSE to delete the unreachable code.
64 We use two data structures to record the equivalent expressions:
65 a hash table for most expressions, and a vector of "quantity
66 numbers" to record equivalent (pseudo) registers.
68 The use of the special data structure for registers is desirable
69 because it is faster. It is possible because registers references
70 contain a fairly small number, the register number, taken from
71 a contiguously allocated series, and two register references are
72 identical if they have the same number. General expressions
73 do not have any such thing, so the only way to retrieve the
74 information recorded on an expression other than a register
75 is to keep it in a hash table.
77 Registers and "quantity numbers":
79 At the start of each basic block, all of the (hardware and pseudo)
80 registers used in the function are given distinct quantity
81 numbers to indicate their contents. During scan, when the code
82 copies one register into another, we copy the quantity number.
83 When a register is loaded in any other way, we allocate a new
84 quantity number to describe the value generated by this operation.
85 `REG_QTY (N)' records what quantity register N is currently thought
86 of as containing.
88 All real quantity numbers are greater than or equal to zero.
89 If register N has not been assigned a quantity, `REG_QTY (N)' will
90 equal -N - 1, which is always negative.
92 Quantity numbers below zero do not exist and none of the `qty_table'
93 entries should be referenced with a negative index.
95 We also maintain a bidirectional chain of registers for each
96 quantity number. The `qty_table` members `first_reg' and `last_reg',
97 and `reg_eqv_table' members `next' and `prev' hold these chains.
99 The first register in a chain is the one whose lifespan is least local.
100 Among equals, it is the one that was seen first.
101 We replace any equivalent register with that one.
103 If two registers have the same quantity number, it must be true that
104 REG expressions with qty_table `mode' must be in the hash table for both
105 registers and must be in the same class.
107 The converse is not true. Since hard registers may be referenced in
108 any mode, two REG expressions might be equivalent in the hash table
109 but not have the same quantity number if the quantity number of one
110 of the registers is not the same mode as those expressions.
112 Constants and quantity numbers
114 When a quantity has a known constant value, that value is stored
115 in the appropriate qty_table `const_rtx'. This is in addition to
116 putting the constant in the hash table as is usual for non-regs.
118 Whether a reg or a constant is preferred is determined by the configuration
119 macro CONST_COSTS and will often depend on the constant value. In any
120 event, expressions containing constants can be simplified, by fold_rtx.
122 When a quantity has a known nearly constant value (such as an address
123 of a stack slot), that value is stored in the appropriate qty_table
124 `const_rtx'.
126 Integer constants don't have a machine mode. However, cse
127 determines the intended machine mode from the destination
128 of the instruction that moves the constant. The machine mode
129 is recorded in the hash table along with the actual RTL
130 constant expression so that different modes are kept separate.
132 Other expressions:
134 To record known equivalences among expressions in general
135 we use a hash table called `table'. It has a fixed number of buckets
136 that contain chains of `struct table_elt' elements for expressions.
137 These chains connect the elements whose expressions have the same
138 hash codes.
140 Other chains through the same elements connect the elements which
141 currently have equivalent values.
143 Register references in an expression are canonicalized before hashing
144 the expression. This is done using `reg_qty' and qty_table `first_reg'.
145 The hash code of a register reference is computed using the quantity
146 number, not the register number.
148 When the value of an expression changes, it is necessary to remove from the
149 hash table not just that expression but all expressions whose values
150 could be different as a result.
152 1. If the value changing is in memory, except in special cases
153 ANYTHING referring to memory could be changed. That is because
154 nobody knows where a pointer does not point.
155 The function `invalidate_memory' removes what is necessary.
157 The special cases are when the address is constant or is
158 a constant plus a fixed register such as the frame pointer
159 or a static chain pointer. When such addresses are stored in,
160 we can tell exactly which other such addresses must be invalidated
161 due to overlap. `invalidate' does this.
162 All expressions that refer to non-constant
163 memory addresses are also invalidated. `invalidate_memory' does this.
165 2. If the value changing is a register, all expressions
166 containing references to that register, and only those,
167 must be removed.
169 Because searching the entire hash table for expressions that contain
170 a register is very slow, we try to figure out when it isn't necessary.
171 Precisely, this is necessary only when expressions have been
172 entered in the hash table using this register, and then the value has
173 changed, and then another expression wants to be added to refer to
174 the register's new value. This sequence of circumstances is rare
175 within any one basic block.
177 `REG_TICK' and `REG_IN_TABLE', accessors for members of
178 cse_reg_info, are used to detect this case. REG_TICK (i) is
179 incremented whenever a value is stored in register i.
180 REG_IN_TABLE (i) holds -1 if no references to register i have been
181 entered in the table; otherwise, it contains the value REG_TICK (i)
182 had when the references were entered. If we want to enter a
183 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
184 remove old references. Until we want to enter a new entry, the
185 mere fact that the two vectors don't match makes the entries be
186 ignored if anyone tries to match them.
188 Registers themselves are entered in the hash table as well as in
189 the equivalent-register chains. However, `REG_TICK' and
190 `REG_IN_TABLE' do not apply to expressions which are simple
191 register references. These expressions are removed from the table
192 immediately when they become invalid, and this can be done even if
193 we do not immediately search for all the expressions that refer to
194 the register.
196 A CLOBBER rtx in an instruction invalidates its operand for further
197 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
198 invalidates everything that resides in memory.
200 Related expressions:
202 Constant expressions that differ only by an additive integer
203 are called related. When a constant expression is put in
204 the table, the related expression with no constant term
205 is also entered. These are made to point at each other
206 so that it is possible to find out if there exists any
207 register equivalent to an expression related to a given expression. */
209 /* Length of qty_table vector. We know in advance we will not need
210 a quantity number this big. */
212 static int max_qty;
214 /* Next quantity number to be allocated.
215 This is 1 + the largest number needed so far. */
217 static int next_qty;
219 /* Per-qty information tracking.
221 `first_reg' and `last_reg' track the head and tail of the
222 chain of registers which currently contain this quantity.
224 `mode' contains the machine mode of this quantity.
226 `const_rtx' holds the rtx of the constant value of this
227 quantity, if known. A summations of the frame/arg pointer
228 and a constant can also be entered here. When this holds
229 a known value, `const_insn' is the insn which stored the
230 constant value.
232 `comparison_{code,const,qty}' are used to track when a
233 comparison between a quantity and some constant or register has
234 been passed. In such a case, we know the results of the comparison
235 in case we see it again. These members record a comparison that
236 is known to be true. `comparison_code' holds the rtx code of such
237 a comparison, else it is set to UNKNOWN and the other two
238 comparison members are undefined. `comparison_const' holds
239 the constant being compared against, or zero if the comparison
240 is not against a constant. `comparison_qty' holds the quantity
241 being compared against when the result is known. If the comparison
242 is not with a register, `comparison_qty' is -1. */
244 struct qty_table_elem
246 rtx const_rtx;
247 rtx_insn *const_insn;
248 rtx comparison_const;
249 int comparison_qty;
250 unsigned int first_reg, last_reg;
251 /* The sizes of these fields should match the sizes of the
252 code and mode fields of struct rtx_def (see rtl.h). */
253 ENUM_BITFIELD(rtx_code) comparison_code : 16;
254 ENUM_BITFIELD(machine_mode) mode : 8;
257 /* The table of all qtys, indexed by qty number. */
258 static struct qty_table_elem *qty_table;
260 /* For machines that have a CC0, we do not record its value in the hash
261 table since its use is guaranteed to be the insn immediately following
262 its definition and any other insn is presumed to invalidate it.
264 Instead, we store below the current and last value assigned to CC0.
265 If it should happen to be a constant, it is stored in preference
266 to the actual assigned value. In case it is a constant, we store
267 the mode in which the constant should be interpreted. */
269 static rtx this_insn_cc0, prev_insn_cc0;
270 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
272 /* Insn being scanned. */
274 static rtx_insn *this_insn;
275 static bool optimize_this_for_speed_p;
277 /* Index by register number, gives the number of the next (or
278 previous) register in the chain of registers sharing the same
279 value.
281 Or -1 if this register is at the end of the chain.
283 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
285 /* Per-register equivalence chain. */
286 struct reg_eqv_elem
288 int next, prev;
291 /* The table of all register equivalence chains. */
292 static struct reg_eqv_elem *reg_eqv_table;
294 struct cse_reg_info
296 /* The timestamp at which this register is initialized. */
297 unsigned int timestamp;
299 /* The quantity number of the register's current contents. */
300 int reg_qty;
302 /* The number of times the register has been altered in the current
303 basic block. */
304 int reg_tick;
306 /* The REG_TICK value at which rtx's containing this register are
307 valid in the hash table. If this does not equal the current
308 reg_tick value, such expressions existing in the hash table are
309 invalid. */
310 int reg_in_table;
312 /* The SUBREG that was set when REG_TICK was last incremented. Set
313 to -1 if the last store was to the whole register, not a subreg. */
314 unsigned int subreg_ticked;
317 /* A table of cse_reg_info indexed by register numbers. */
318 static struct cse_reg_info *cse_reg_info_table;
320 /* The size of the above table. */
321 static unsigned int cse_reg_info_table_size;
323 /* The index of the first entry that has not been initialized. */
324 static unsigned int cse_reg_info_table_first_uninitialized;
326 /* The timestamp at the beginning of the current run of
327 cse_extended_basic_block. We increment this variable at the beginning of
328 the current run of cse_extended_basic_block. The timestamp field of a
329 cse_reg_info entry matches the value of this variable if and only
330 if the entry has been initialized during the current run of
331 cse_extended_basic_block. */
332 static unsigned int cse_reg_info_timestamp;
334 /* A HARD_REG_SET containing all the hard registers for which there is
335 currently a REG expression in the hash table. Note the difference
336 from the above variables, which indicate if the REG is mentioned in some
337 expression in the table. */
339 static HARD_REG_SET hard_regs_in_table;
341 /* True if CSE has altered the CFG. */
342 static bool cse_cfg_altered;
344 /* True if CSE has altered conditional jump insns in such a way
345 that jump optimization should be redone. */
346 static bool cse_jumps_altered;
348 /* True if we put a LABEL_REF into the hash table for an INSN
349 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
350 to put in the note. */
351 static bool recorded_label_ref;
353 /* canon_hash stores 1 in do_not_record
354 if it notices a reference to CC0, PC, or some other volatile
355 subexpression. */
357 static int do_not_record;
359 /* canon_hash stores 1 in hash_arg_in_memory
360 if it notices a reference to memory within the expression being hashed. */
362 static int hash_arg_in_memory;
364 /* The hash table contains buckets which are chains of `struct table_elt's,
365 each recording one expression's information.
366 That expression is in the `exp' field.
368 The canon_exp field contains a canonical (from the point of view of
369 alias analysis) version of the `exp' field.
371 Those elements with the same hash code are chained in both directions
372 through the `next_same_hash' and `prev_same_hash' fields.
374 Each set of expressions with equivalent values
375 are on a two-way chain through the `next_same_value'
376 and `prev_same_value' fields, and all point with
377 the `first_same_value' field at the first element in
378 that chain. The chain is in order of increasing cost.
379 Each element's cost value is in its `cost' field.
381 The `in_memory' field is nonzero for elements that
382 involve any reference to memory. These elements are removed
383 whenever a write is done to an unidentified location in memory.
384 To be safe, we assume that a memory address is unidentified unless
385 the address is either a symbol constant or a constant plus
386 the frame pointer or argument pointer.
388 The `related_value' field is used to connect related expressions
389 (that differ by adding an integer).
390 The related expressions are chained in a circular fashion.
391 `related_value' is zero for expressions for which this
392 chain is not useful.
394 The `cost' field stores the cost of this element's expression.
395 The `regcost' field stores the value returned by approx_reg_cost for
396 this element's expression.
398 The `is_const' flag is set if the element is a constant (including
399 a fixed address).
401 The `flag' field is used as a temporary during some search routines.
403 The `mode' field is usually the same as GET_MODE (`exp'), but
404 if `exp' is a CONST_INT and has no machine mode then the `mode'
405 field is the mode it was being used as. Each constant is
406 recorded separately for each mode it is used with. */
408 struct table_elt
410 rtx exp;
411 rtx canon_exp;
412 struct table_elt *next_same_hash;
413 struct table_elt *prev_same_hash;
414 struct table_elt *next_same_value;
415 struct table_elt *prev_same_value;
416 struct table_elt *first_same_value;
417 struct table_elt *related_value;
418 int cost;
419 int regcost;
420 /* The size of this field should match the size
421 of the mode field of struct rtx_def (see rtl.h). */
422 ENUM_BITFIELD(machine_mode) mode : 8;
423 char in_memory;
424 char is_const;
425 char flag;
428 /* We don't want a lot of buckets, because we rarely have very many
429 things stored in the hash table, and a lot of buckets slows
430 down a lot of loops that happen frequently. */
431 #define HASH_SHIFT 5
432 #define HASH_SIZE (1 << HASH_SHIFT)
433 #define HASH_MASK (HASH_SIZE - 1)
435 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
436 register (hard registers may require `do_not_record' to be set). */
438 #define HASH(X, M) \
439 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
440 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
441 : canon_hash (X, M)) & HASH_MASK)
443 /* Like HASH, but without side-effects. */
444 #define SAFE_HASH(X, M) \
445 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
446 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
447 : safe_hash (X, M)) & HASH_MASK)
449 /* Determine whether register number N is considered a fixed register for the
450 purpose of approximating register costs.
451 It is desirable to replace other regs with fixed regs, to reduce need for
452 non-fixed hard regs.
453 A reg wins if it is either the frame pointer or designated as fixed. */
454 #define FIXED_REGNO_P(N) \
455 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
456 || fixed_regs[N] || global_regs[N])
458 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
459 hard registers and pointers into the frame are the cheapest with a cost
460 of 0. Next come pseudos with a cost of one and other hard registers with
461 a cost of 2. Aside from these special cases, call `rtx_cost'. */
463 #define CHEAP_REGNO(N) \
464 (REGNO_PTR_FRAME_P (N) \
465 || (HARD_REGISTER_NUM_P (N) \
466 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
468 #define COST(X, MODE) \
469 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
470 #define COST_IN(X, MODE, OUTER, OPNO) \
471 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
473 /* Get the number of times this register has been updated in this
474 basic block. */
476 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
478 /* Get the point at which REG was recorded in the table. */
480 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
482 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
483 SUBREG). */
485 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
487 /* Get the quantity number for REG. */
489 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
491 /* Determine if the quantity number for register X represents a valid index
492 into the qty_table. */
494 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
496 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
498 #define CHEAPER(X, Y) \
499 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
501 static struct table_elt *table[HASH_SIZE];
503 /* Chain of `struct table_elt's made so far for this function
504 but currently removed from the table. */
506 static struct table_elt *free_element_chain;
508 /* Set to the cost of a constant pool reference if one was found for a
509 symbolic constant. If this was found, it means we should try to
510 convert constants into constant pool entries if they don't fit in
511 the insn. */
513 static int constant_pool_entries_cost;
514 static int constant_pool_entries_regcost;
516 /* Trace a patch through the CFG. */
518 struct branch_path
520 /* The basic block for this path entry. */
521 basic_block bb;
524 /* This data describes a block that will be processed by
525 cse_extended_basic_block. */
527 struct cse_basic_block_data
529 /* Total number of SETs in block. */
530 int nsets;
531 /* Size of current branch path, if any. */
532 int path_size;
533 /* Current path, indicating which basic_blocks will be processed. */
534 struct branch_path *path;
538 /* Pointers to the live in/live out bitmaps for the boundaries of the
539 current EBB. */
540 static bitmap cse_ebb_live_in, cse_ebb_live_out;
542 /* A simple bitmap to track which basic blocks have been visited
543 already as part of an already processed extended basic block. */
544 static sbitmap cse_visited_basic_blocks;
546 static bool fixed_base_plus_p (rtx x);
547 static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
548 static int preferable (int, int, int, int);
549 static void new_basic_block (void);
550 static void make_new_qty (unsigned int, machine_mode);
551 static void make_regs_eqv (unsigned int, unsigned int);
552 static void delete_reg_equiv (unsigned int);
553 static int mention_regs (rtx);
554 static int insert_regs (rtx, struct table_elt *, int);
555 static void remove_from_table (struct table_elt *, unsigned);
556 static void remove_pseudo_from_table (rtx, unsigned);
557 static struct table_elt *lookup (rtx, unsigned, machine_mode);
558 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
559 static rtx lookup_as_function (rtx, enum rtx_code);
560 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
561 machine_mode, int, int);
562 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
563 machine_mode);
564 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
565 static void invalidate (rtx, machine_mode);
566 static void remove_invalid_refs (unsigned int);
567 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
568 machine_mode);
569 static void rehash_using_reg (rtx);
570 static void invalidate_memory (void);
571 static void invalidate_for_call (void);
572 static rtx use_related_value (rtx, struct table_elt *);
574 static inline unsigned canon_hash (rtx, machine_mode);
575 static inline unsigned safe_hash (rtx, machine_mode);
576 static inline unsigned hash_rtx_string (const char *);
578 static rtx canon_reg (rtx, rtx_insn *);
579 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
580 machine_mode *,
581 machine_mode *);
582 static rtx fold_rtx (rtx, rtx_insn *);
583 static rtx equiv_constant (rtx);
584 static void record_jump_equiv (rtx_insn *, bool);
585 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
586 int);
587 static void cse_insn (rtx_insn *);
588 static void cse_prescan_path (struct cse_basic_block_data *);
589 static void invalidate_from_clobbers (rtx_insn *);
590 static void invalidate_from_sets_and_clobbers (rtx_insn *);
591 static rtx cse_process_notes (rtx, rtx, bool *);
592 static void cse_extended_basic_block (struct cse_basic_block_data *);
593 extern void dump_class (struct table_elt*);
594 static void get_cse_reg_info_1 (unsigned int regno);
595 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
597 static void flush_hash_table (void);
598 static bool insn_live_p (rtx_insn *, int *);
599 static bool set_live_p (rtx, rtx_insn *, int *);
600 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
601 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
602 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
603 bool);
606 #undef RTL_HOOKS_GEN_LOWPART
607 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
609 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
611 /* Nonzero if X has the form (PLUS frame-pointer integer). */
613 static bool
614 fixed_base_plus_p (rtx x)
616 switch (GET_CODE (x))
618 case REG:
619 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
620 return true;
621 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
622 return true;
623 return false;
625 case PLUS:
626 if (!CONST_INT_P (XEXP (x, 1)))
627 return false;
628 return fixed_base_plus_p (XEXP (x, 0));
630 default:
631 return false;
635 /* Dump the expressions in the equivalence class indicated by CLASSP.
636 This function is used only for debugging. */
637 DEBUG_FUNCTION void
638 dump_class (struct table_elt *classp)
640 struct table_elt *elt;
642 fprintf (stderr, "Equivalence chain for ");
643 print_rtl (stderr, classp->exp);
644 fprintf (stderr, ": \n");
646 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
648 print_rtl (stderr, elt->exp);
649 fprintf (stderr, "\n");
653 /* Return an estimate of the cost of the registers used in an rtx.
654 This is mostly the number of different REG expressions in the rtx;
655 however for some exceptions like fixed registers we use a cost of
656 0. If any other hard register reference occurs, return MAX_COST. */
658 static int
659 approx_reg_cost (const_rtx x)
661 int cost = 0;
662 subrtx_iterator::array_type array;
663 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
665 const_rtx x = *iter;
666 if (REG_P (x))
668 unsigned int regno = REGNO (x);
669 if (!CHEAP_REGNO (regno))
671 if (regno < FIRST_PSEUDO_REGISTER)
673 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
674 return MAX_COST;
675 cost += 2;
677 else
678 cost += 1;
682 return cost;
685 /* Return a negative value if an rtx A, whose costs are given by COST_A
686 and REGCOST_A, is more desirable than an rtx B.
687 Return a positive value if A is less desirable, or 0 if the two are
688 equally good. */
689 static int
690 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
692 /* First, get rid of cases involving expressions that are entirely
693 unwanted. */
694 if (cost_a != cost_b)
696 if (cost_a == MAX_COST)
697 return 1;
698 if (cost_b == MAX_COST)
699 return -1;
702 /* Avoid extending lifetimes of hardregs. */
703 if (regcost_a != regcost_b)
705 if (regcost_a == MAX_COST)
706 return 1;
707 if (regcost_b == MAX_COST)
708 return -1;
711 /* Normal operation costs take precedence. */
712 if (cost_a != cost_b)
713 return cost_a - cost_b;
714 /* Only if these are identical consider effects on register pressure. */
715 if (regcost_a != regcost_b)
716 return regcost_a - regcost_b;
717 return 0;
720 /* Internal function, to compute cost when X is not a register; called
721 from COST macro to keep it simple. */
723 static int
724 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
726 return ((GET_CODE (x) == SUBREG
727 && REG_P (SUBREG_REG (x))
728 && GET_MODE_CLASS (mode) == MODE_INT
729 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
730 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
731 && subreg_lowpart_p (x)
732 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (SUBREG_REG (x))))
734 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
738 /* Initialize CSE_REG_INFO_TABLE. */
740 static void
741 init_cse_reg_info (unsigned int nregs)
743 /* Do we need to grow the table? */
744 if (nregs > cse_reg_info_table_size)
746 unsigned int new_size;
748 if (cse_reg_info_table_size < 2048)
750 /* Compute a new size that is a power of 2 and no smaller
751 than the large of NREGS and 64. */
752 new_size = (cse_reg_info_table_size
753 ? cse_reg_info_table_size : 64);
755 while (new_size < nregs)
756 new_size *= 2;
758 else
760 /* If we need a big table, allocate just enough to hold
761 NREGS registers. */
762 new_size = nregs;
765 /* Reallocate the table with NEW_SIZE entries. */
766 free (cse_reg_info_table);
767 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
768 cse_reg_info_table_size = new_size;
769 cse_reg_info_table_first_uninitialized = 0;
772 /* Do we have all of the first NREGS entries initialized? */
773 if (cse_reg_info_table_first_uninitialized < nregs)
775 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
776 unsigned int i;
778 /* Put the old timestamp on newly allocated entries so that they
779 will all be considered out of date. We do not touch those
780 entries beyond the first NREGS entries to be nice to the
781 virtual memory. */
782 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
783 cse_reg_info_table[i].timestamp = old_timestamp;
785 cse_reg_info_table_first_uninitialized = nregs;
789 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
791 static void
792 get_cse_reg_info_1 (unsigned int regno)
794 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
795 entry will be considered to have been initialized. */
796 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
798 /* Initialize the rest of the entry. */
799 cse_reg_info_table[regno].reg_tick = 1;
800 cse_reg_info_table[regno].reg_in_table = -1;
801 cse_reg_info_table[regno].subreg_ticked = -1;
802 cse_reg_info_table[regno].reg_qty = -regno - 1;
805 /* Find a cse_reg_info entry for REGNO. */
807 static inline struct cse_reg_info *
808 get_cse_reg_info (unsigned int regno)
810 struct cse_reg_info *p = &cse_reg_info_table[regno];
812 /* If this entry has not been initialized, go ahead and initialize
813 it. */
814 if (p->timestamp != cse_reg_info_timestamp)
815 get_cse_reg_info_1 (regno);
817 return p;
820 /* Clear the hash table and initialize each register with its own quantity,
821 for a new basic block. */
823 static void
824 new_basic_block (void)
826 int i;
828 next_qty = 0;
830 /* Invalidate cse_reg_info_table. */
831 cse_reg_info_timestamp++;
833 /* Clear out hash table state for this pass. */
834 CLEAR_HARD_REG_SET (hard_regs_in_table);
836 /* The per-quantity values used to be initialized here, but it is
837 much faster to initialize each as it is made in `make_new_qty'. */
839 for (i = 0; i < HASH_SIZE; i++)
841 struct table_elt *first;
843 first = table[i];
844 if (first != NULL)
846 struct table_elt *last = first;
848 table[i] = NULL;
850 while (last->next_same_hash != NULL)
851 last = last->next_same_hash;
853 /* Now relink this hash entire chain into
854 the free element list. */
856 last->next_same_hash = free_element_chain;
857 free_element_chain = first;
861 prev_insn_cc0 = 0;
864 /* Say that register REG contains a quantity in mode MODE not in any
865 register before and initialize that quantity. */
867 static void
868 make_new_qty (unsigned int reg, machine_mode mode)
870 int q;
871 struct qty_table_elem *ent;
872 struct reg_eqv_elem *eqv;
874 gcc_assert (next_qty < max_qty);
876 q = REG_QTY (reg) = next_qty++;
877 ent = &qty_table[q];
878 ent->first_reg = reg;
879 ent->last_reg = reg;
880 ent->mode = mode;
881 ent->const_rtx = ent->const_insn = NULL;
882 ent->comparison_code = UNKNOWN;
884 eqv = &reg_eqv_table[reg];
885 eqv->next = eqv->prev = -1;
888 /* Make reg NEW equivalent to reg OLD.
889 OLD is not changing; NEW is. */
891 static void
892 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
894 unsigned int lastr, firstr;
895 int q = REG_QTY (old_reg);
896 struct qty_table_elem *ent;
898 ent = &qty_table[q];
900 /* Nothing should become eqv until it has a "non-invalid" qty number. */
901 gcc_assert (REGNO_QTY_VALID_P (old_reg));
903 REG_QTY (new_reg) = q;
904 firstr = ent->first_reg;
905 lastr = ent->last_reg;
907 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
908 hard regs. Among pseudos, if NEW will live longer than any other reg
909 of the same qty, and that is beyond the current basic block,
910 make it the new canonical replacement for this qty. */
911 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
912 /* Certain fixed registers might be of the class NO_REGS. This means
913 that not only can they not be allocated by the compiler, but
914 they cannot be used in substitutions or canonicalizations
915 either. */
916 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
917 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
918 || (new_reg >= FIRST_PSEUDO_REGISTER
919 && (firstr < FIRST_PSEUDO_REGISTER
920 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
921 && !bitmap_bit_p (cse_ebb_live_out, firstr))
922 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
923 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
925 reg_eqv_table[firstr].prev = new_reg;
926 reg_eqv_table[new_reg].next = firstr;
927 reg_eqv_table[new_reg].prev = -1;
928 ent->first_reg = new_reg;
930 else
932 /* If NEW is a hard reg (known to be non-fixed), insert at end.
933 Otherwise, insert before any non-fixed hard regs that are at the
934 end. Registers of class NO_REGS cannot be used as an
935 equivalent for anything. */
936 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
937 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
938 && new_reg >= FIRST_PSEUDO_REGISTER)
939 lastr = reg_eqv_table[lastr].prev;
940 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
941 if (reg_eqv_table[lastr].next >= 0)
942 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
943 else
944 qty_table[q].last_reg = new_reg;
945 reg_eqv_table[lastr].next = new_reg;
946 reg_eqv_table[new_reg].prev = lastr;
950 /* Remove REG from its equivalence class. */
952 static void
953 delete_reg_equiv (unsigned int reg)
955 struct qty_table_elem *ent;
956 int q = REG_QTY (reg);
957 int p, n;
959 /* If invalid, do nothing. */
960 if (! REGNO_QTY_VALID_P (reg))
961 return;
963 ent = &qty_table[q];
965 p = reg_eqv_table[reg].prev;
966 n = reg_eqv_table[reg].next;
968 if (n != -1)
969 reg_eqv_table[n].prev = p;
970 else
971 ent->last_reg = p;
972 if (p != -1)
973 reg_eqv_table[p].next = n;
974 else
975 ent->first_reg = n;
977 REG_QTY (reg) = -reg - 1;
980 /* Remove any invalid expressions from the hash table
981 that refer to any of the registers contained in expression X.
983 Make sure that newly inserted references to those registers
984 as subexpressions will be considered valid.
986 mention_regs is not called when a register itself
987 is being stored in the table.
989 Return 1 if we have done something that may have changed the hash code
990 of X. */
992 static int
993 mention_regs (rtx x)
995 enum rtx_code code;
996 int i, j;
997 const char *fmt;
998 int changed = 0;
1000 if (x == 0)
1001 return 0;
1003 code = GET_CODE (x);
1004 if (code == REG)
1006 unsigned int regno = REGNO (x);
1007 unsigned int endregno = END_REGNO (x);
1008 unsigned int i;
1010 for (i = regno; i < endregno; i++)
1012 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1013 remove_invalid_refs (i);
1015 REG_IN_TABLE (i) = REG_TICK (i);
1016 SUBREG_TICKED (i) = -1;
1019 return 0;
1022 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1023 pseudo if they don't use overlapping words. We handle only pseudos
1024 here for simplicity. */
1025 if (code == SUBREG && REG_P (SUBREG_REG (x))
1026 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1028 unsigned int i = REGNO (SUBREG_REG (x));
1030 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1032 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1033 the last store to this register really stored into this
1034 subreg, then remove the memory of this subreg.
1035 Otherwise, remove any memory of the entire register and
1036 all its subregs from the table. */
1037 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1038 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1039 remove_invalid_refs (i);
1040 else
1041 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1044 REG_IN_TABLE (i) = REG_TICK (i);
1045 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1046 return 0;
1049 /* If X is a comparison or a COMPARE and either operand is a register
1050 that does not have a quantity, give it one. This is so that a later
1051 call to record_jump_equiv won't cause X to be assigned a different
1052 hash code and not found in the table after that call.
1054 It is not necessary to do this here, since rehash_using_reg can
1055 fix up the table later, but doing this here eliminates the need to
1056 call that expensive function in the most common case where the only
1057 use of the register is in the comparison. */
1059 if (code == COMPARE || COMPARISON_P (x))
1061 if (REG_P (XEXP (x, 0))
1062 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1063 if (insert_regs (XEXP (x, 0), NULL, 0))
1065 rehash_using_reg (XEXP (x, 0));
1066 changed = 1;
1069 if (REG_P (XEXP (x, 1))
1070 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1071 if (insert_regs (XEXP (x, 1), NULL, 0))
1073 rehash_using_reg (XEXP (x, 1));
1074 changed = 1;
1078 fmt = GET_RTX_FORMAT (code);
1079 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1080 if (fmt[i] == 'e')
1081 changed |= mention_regs (XEXP (x, i));
1082 else if (fmt[i] == 'E')
1083 for (j = 0; j < XVECLEN (x, i); j++)
1084 changed |= mention_regs (XVECEXP (x, i, j));
1086 return changed;
1089 /* Update the register quantities for inserting X into the hash table
1090 with a value equivalent to CLASSP.
1091 (If the class does not contain a REG, it is irrelevant.)
1092 If MODIFIED is nonzero, X is a destination; it is being modified.
1093 Note that delete_reg_equiv should be called on a register
1094 before insert_regs is done on that register with MODIFIED != 0.
1096 Nonzero value means that elements of reg_qty have changed
1097 so X's hash code may be different. */
1099 static int
1100 insert_regs (rtx x, struct table_elt *classp, int modified)
1102 if (REG_P (x))
1104 unsigned int regno = REGNO (x);
1105 int qty_valid;
1107 /* If REGNO is in the equivalence table already but is of the
1108 wrong mode for that equivalence, don't do anything here. */
1110 qty_valid = REGNO_QTY_VALID_P (regno);
1111 if (qty_valid)
1113 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1115 if (ent->mode != GET_MODE (x))
1116 return 0;
1119 if (modified || ! qty_valid)
1121 if (classp)
1122 for (classp = classp->first_same_value;
1123 classp != 0;
1124 classp = classp->next_same_value)
1125 if (REG_P (classp->exp)
1126 && GET_MODE (classp->exp) == GET_MODE (x))
1128 unsigned c_regno = REGNO (classp->exp);
1130 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1132 /* Suppose that 5 is hard reg and 100 and 101 are
1133 pseudos. Consider
1135 (set (reg:si 100) (reg:si 5))
1136 (set (reg:si 5) (reg:si 100))
1137 (set (reg:di 101) (reg:di 5))
1139 We would now set REG_QTY (101) = REG_QTY (5), but the
1140 entry for 5 is in SImode. When we use this later in
1141 copy propagation, we get the register in wrong mode. */
1142 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1143 continue;
1145 make_regs_eqv (regno, c_regno);
1146 return 1;
1149 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1150 than REG_IN_TABLE to find out if there was only a single preceding
1151 invalidation - for the SUBREG - or another one, which would be
1152 for the full register. However, if we find here that REG_TICK
1153 indicates that the register is invalid, it means that it has
1154 been invalidated in a separate operation. The SUBREG might be used
1155 now (then this is a recursive call), or we might use the full REG
1156 now and a SUBREG of it later. So bump up REG_TICK so that
1157 mention_regs will do the right thing. */
1158 if (! modified
1159 && REG_IN_TABLE (regno) >= 0
1160 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1161 REG_TICK (regno)++;
1162 make_new_qty (regno, GET_MODE (x));
1163 return 1;
1166 return 0;
1169 /* If X is a SUBREG, we will likely be inserting the inner register in the
1170 table. If that register doesn't have an assigned quantity number at
1171 this point but does later, the insertion that we will be doing now will
1172 not be accessible because its hash code will have changed. So assign
1173 a quantity number now. */
1175 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1176 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1178 insert_regs (SUBREG_REG (x), NULL, 0);
1179 mention_regs (x);
1180 return 1;
1182 else
1183 return mention_regs (x);
1187 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1188 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1189 CST is equal to an anchor. */
1191 static bool
1192 compute_const_anchors (rtx cst,
1193 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1194 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1196 HOST_WIDE_INT n = INTVAL (cst);
1198 *lower_base = n & ~(targetm.const_anchor - 1);
1199 if (*lower_base == n)
1200 return false;
1202 *upper_base =
1203 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1204 *upper_offs = n - *upper_base;
1205 *lower_offs = n - *lower_base;
1206 return true;
1209 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1211 static void
1212 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1213 machine_mode mode)
1215 struct table_elt *elt;
1216 unsigned hash;
1217 rtx anchor_exp;
1218 rtx exp;
1220 anchor_exp = GEN_INT (anchor);
1221 hash = HASH (anchor_exp, mode);
1222 elt = lookup (anchor_exp, hash, mode);
1223 if (!elt)
1224 elt = insert (anchor_exp, NULL, hash, mode);
1226 exp = plus_constant (mode, reg, offs);
1227 /* REG has just been inserted and the hash codes recomputed. */
1228 mention_regs (exp);
1229 hash = HASH (exp, mode);
1231 /* Use the cost of the register rather than the whole expression. When
1232 looking up constant anchors we will further offset the corresponding
1233 expression therefore it does not make sense to prefer REGs over
1234 reg-immediate additions. Prefer instead the oldest expression. Also
1235 don't prefer pseudos over hard regs so that we derive constants in
1236 argument registers from other argument registers rather than from the
1237 original pseudo that was used to synthesize the constant. */
1238 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
1241 /* The constant CST is equivalent to the register REG. Create
1242 equivalences between the two anchors of CST and the corresponding
1243 register-offset expressions using REG. */
1245 static void
1246 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1248 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1250 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1251 &upper_base, &upper_offs))
1252 return;
1254 /* Ignore anchors of value 0. Constants accessible from zero are
1255 simple. */
1256 if (lower_base != 0)
1257 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1259 if (upper_base != 0)
1260 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1263 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1264 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1265 valid expression. Return the cheapest and oldest of such expressions. In
1266 *OLD, return how old the resulting expression is compared to the other
1267 equivalent expressions. */
1269 static rtx
1270 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1271 unsigned *old)
1273 struct table_elt *elt;
1274 unsigned idx;
1275 struct table_elt *match_elt;
1276 rtx match;
1278 /* Find the cheapest and *oldest* expression to maximize the chance of
1279 reusing the same pseudo. */
1281 match_elt = NULL;
1282 match = NULL_RTX;
1283 for (elt = anchor_elt->first_same_value, idx = 0;
1284 elt;
1285 elt = elt->next_same_value, idx++)
1287 if (match_elt && CHEAPER (match_elt, elt))
1288 return match;
1290 if (REG_P (elt->exp)
1291 || (GET_CODE (elt->exp) == PLUS
1292 && REG_P (XEXP (elt->exp, 0))
1293 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1295 rtx x;
1297 /* Ignore expressions that are no longer valid. */
1298 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1299 continue;
1301 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1302 if (REG_P (x)
1303 || (GET_CODE (x) == PLUS
1304 && IN_RANGE (INTVAL (XEXP (x, 1)),
1305 -targetm.const_anchor,
1306 targetm.const_anchor - 1)))
1308 match = x;
1309 match_elt = elt;
1310 *old = idx;
1315 return match;
1318 /* Try to express the constant SRC_CONST using a register+offset expression
1319 derived from a constant anchor. Return it if successful or NULL_RTX,
1320 otherwise. */
1322 static rtx
1323 try_const_anchors (rtx src_const, machine_mode mode)
1325 struct table_elt *lower_elt, *upper_elt;
1326 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1327 rtx lower_anchor_rtx, upper_anchor_rtx;
1328 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1329 unsigned lower_old, upper_old;
1331 /* CONST_INT is used for CC modes, but we should leave those alone. */
1332 if (GET_MODE_CLASS (mode) == MODE_CC)
1333 return NULL_RTX;
1335 gcc_assert (SCALAR_INT_MODE_P (mode));
1336 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1337 &upper_base, &upper_offs))
1338 return NULL_RTX;
1340 lower_anchor_rtx = GEN_INT (lower_base);
1341 upper_anchor_rtx = GEN_INT (upper_base);
1342 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1343 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1345 if (lower_elt)
1346 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1347 if (upper_elt)
1348 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1350 if (!lower_exp)
1351 return upper_exp;
1352 if (!upper_exp)
1353 return lower_exp;
1355 /* Return the older expression. */
1356 return (upper_old > lower_old ? upper_exp : lower_exp);
1359 /* Look in or update the hash table. */
1361 /* Remove table element ELT from use in the table.
1362 HASH is its hash code, made using the HASH macro.
1363 It's an argument because often that is known in advance
1364 and we save much time not recomputing it. */
1366 static void
1367 remove_from_table (struct table_elt *elt, unsigned int hash)
1369 if (elt == 0)
1370 return;
1372 /* Mark this element as removed. See cse_insn. */
1373 elt->first_same_value = 0;
1375 /* Remove the table element from its equivalence class. */
1378 struct table_elt *prev = elt->prev_same_value;
1379 struct table_elt *next = elt->next_same_value;
1381 if (next)
1382 next->prev_same_value = prev;
1384 if (prev)
1385 prev->next_same_value = next;
1386 else
1388 struct table_elt *newfirst = next;
1389 while (next)
1391 next->first_same_value = newfirst;
1392 next = next->next_same_value;
1397 /* Remove the table element from its hash bucket. */
1400 struct table_elt *prev = elt->prev_same_hash;
1401 struct table_elt *next = elt->next_same_hash;
1403 if (next)
1404 next->prev_same_hash = prev;
1406 if (prev)
1407 prev->next_same_hash = next;
1408 else if (table[hash] == elt)
1409 table[hash] = next;
1410 else
1412 /* This entry is not in the proper hash bucket. This can happen
1413 when two classes were merged by `merge_equiv_classes'. Search
1414 for the hash bucket that it heads. This happens only very
1415 rarely, so the cost is acceptable. */
1416 for (hash = 0; hash < HASH_SIZE; hash++)
1417 if (table[hash] == elt)
1418 table[hash] = next;
1422 /* Remove the table element from its related-value circular chain. */
1424 if (elt->related_value != 0 && elt->related_value != elt)
1426 struct table_elt *p = elt->related_value;
1428 while (p->related_value != elt)
1429 p = p->related_value;
1430 p->related_value = elt->related_value;
1431 if (p->related_value == p)
1432 p->related_value = 0;
1435 /* Now add it to the free element chain. */
1436 elt->next_same_hash = free_element_chain;
1437 free_element_chain = elt;
1440 /* Same as above, but X is a pseudo-register. */
1442 static void
1443 remove_pseudo_from_table (rtx x, unsigned int hash)
1445 struct table_elt *elt;
1447 /* Because a pseudo-register can be referenced in more than one
1448 mode, we might have to remove more than one table entry. */
1449 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1450 remove_from_table (elt, hash);
1453 /* Look up X in the hash table and return its table element,
1454 or 0 if X is not in the table.
1456 MODE is the machine-mode of X, or if X is an integer constant
1457 with VOIDmode then MODE is the mode with which X will be used.
1459 Here we are satisfied to find an expression whose tree structure
1460 looks like X. */
1462 static struct table_elt *
1463 lookup (rtx x, unsigned int hash, machine_mode mode)
1465 struct table_elt *p;
1467 for (p = table[hash]; p; p = p->next_same_hash)
1468 if (mode == p->mode && ((x == p->exp && REG_P (x))
1469 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1470 return p;
1472 return 0;
1475 /* Like `lookup' but don't care whether the table element uses invalid regs.
1476 Also ignore discrepancies in the machine mode of a register. */
1478 static struct table_elt *
1479 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1481 struct table_elt *p;
1483 if (REG_P (x))
1485 unsigned int regno = REGNO (x);
1487 /* Don't check the machine mode when comparing registers;
1488 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1489 for (p = table[hash]; p; p = p->next_same_hash)
1490 if (REG_P (p->exp)
1491 && REGNO (p->exp) == regno)
1492 return p;
1494 else
1496 for (p = table[hash]; p; p = p->next_same_hash)
1497 if (mode == p->mode
1498 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1499 return p;
1502 return 0;
1505 /* Look for an expression equivalent to X and with code CODE.
1506 If one is found, return that expression. */
1508 static rtx
1509 lookup_as_function (rtx x, enum rtx_code code)
1511 struct table_elt *p
1512 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1514 if (p == 0)
1515 return 0;
1517 for (p = p->first_same_value; p; p = p->next_same_value)
1518 if (GET_CODE (p->exp) == code
1519 /* Make sure this is a valid entry in the table. */
1520 && exp_equiv_p (p->exp, p->exp, 1, false))
1521 return p->exp;
1523 return 0;
1526 /* Insert X in the hash table, assuming HASH is its hash code and
1527 CLASSP is an element of the class it should go in (or 0 if a new
1528 class should be made). COST is the code of X and reg_cost is the
1529 cost of registers in X. It is inserted at the proper position to
1530 keep the class in the order cheapest first.
1532 MODE is the machine-mode of X, or if X is an integer constant
1533 with VOIDmode then MODE is the mode with which X will be used.
1535 For elements of equal cheapness, the most recent one
1536 goes in front, except that the first element in the list
1537 remains first unless a cheaper element is added. The order of
1538 pseudo-registers does not matter, as canon_reg will be called to
1539 find the cheapest when a register is retrieved from the table.
1541 The in_memory field in the hash table element is set to 0.
1542 The caller must set it nonzero if appropriate.
1544 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1545 and if insert_regs returns a nonzero value
1546 you must then recompute its hash code before calling here.
1548 If necessary, update table showing constant values of quantities. */
1550 static struct table_elt *
1551 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1552 machine_mode mode, int cost, int reg_cost)
1554 struct table_elt *elt;
1556 /* If X is a register and we haven't made a quantity for it,
1557 something is wrong. */
1558 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1560 /* If X is a hard register, show it is being put in the table. */
1561 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1562 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1564 /* Put an element for X into the right hash bucket. */
1566 elt = free_element_chain;
1567 if (elt)
1568 free_element_chain = elt->next_same_hash;
1569 else
1570 elt = XNEW (struct table_elt);
1572 elt->exp = x;
1573 elt->canon_exp = NULL_RTX;
1574 elt->cost = cost;
1575 elt->regcost = reg_cost;
1576 elt->next_same_value = 0;
1577 elt->prev_same_value = 0;
1578 elt->next_same_hash = table[hash];
1579 elt->prev_same_hash = 0;
1580 elt->related_value = 0;
1581 elt->in_memory = 0;
1582 elt->mode = mode;
1583 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1585 if (table[hash])
1586 table[hash]->prev_same_hash = elt;
1587 table[hash] = elt;
1589 /* Put it into the proper value-class. */
1590 if (classp)
1592 classp = classp->first_same_value;
1593 if (CHEAPER (elt, classp))
1594 /* Insert at the head of the class. */
1596 struct table_elt *p;
1597 elt->next_same_value = classp;
1598 classp->prev_same_value = elt;
1599 elt->first_same_value = elt;
1601 for (p = classp; p; p = p->next_same_value)
1602 p->first_same_value = elt;
1604 else
1606 /* Insert not at head of the class. */
1607 /* Put it after the last element cheaper than X. */
1608 struct table_elt *p, *next;
1610 for (p = classp;
1611 (next = p->next_same_value) && CHEAPER (next, elt);
1612 p = next)
1615 /* Put it after P and before NEXT. */
1616 elt->next_same_value = next;
1617 if (next)
1618 next->prev_same_value = elt;
1620 elt->prev_same_value = p;
1621 p->next_same_value = elt;
1622 elt->first_same_value = classp;
1625 else
1626 elt->first_same_value = elt;
1628 /* If this is a constant being set equivalent to a register or a register
1629 being set equivalent to a constant, note the constant equivalence.
1631 If this is a constant, it cannot be equivalent to a different constant,
1632 and a constant is the only thing that can be cheaper than a register. So
1633 we know the register is the head of the class (before the constant was
1634 inserted).
1636 If this is a register that is not already known equivalent to a
1637 constant, we must check the entire class.
1639 If this is a register that is already known equivalent to an insn,
1640 update the qtys `const_insn' to show that `this_insn' is the latest
1641 insn making that quantity equivalent to the constant. */
1643 if (elt->is_const && classp && REG_P (classp->exp)
1644 && !REG_P (x))
1646 int exp_q = REG_QTY (REGNO (classp->exp));
1647 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1649 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1650 exp_ent->const_insn = this_insn;
1653 else if (REG_P (x)
1654 && classp
1655 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1656 && ! elt->is_const)
1658 struct table_elt *p;
1660 for (p = classp; p != 0; p = p->next_same_value)
1662 if (p->is_const && !REG_P (p->exp))
1664 int x_q = REG_QTY (REGNO (x));
1665 struct qty_table_elem *x_ent = &qty_table[x_q];
1667 x_ent->const_rtx
1668 = gen_lowpart (GET_MODE (x), p->exp);
1669 x_ent->const_insn = this_insn;
1670 break;
1675 else if (REG_P (x)
1676 && qty_table[REG_QTY (REGNO (x))].const_rtx
1677 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1678 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1680 /* If this is a constant with symbolic value,
1681 and it has a term with an explicit integer value,
1682 link it up with related expressions. */
1683 if (GET_CODE (x) == CONST)
1685 rtx subexp = get_related_value (x);
1686 unsigned subhash;
1687 struct table_elt *subelt, *subelt_prev;
1689 if (subexp != 0)
1691 /* Get the integer-free subexpression in the hash table. */
1692 subhash = SAFE_HASH (subexp, mode);
1693 subelt = lookup (subexp, subhash, mode);
1694 if (subelt == 0)
1695 subelt = insert (subexp, NULL, subhash, mode);
1696 /* Initialize SUBELT's circular chain if it has none. */
1697 if (subelt->related_value == 0)
1698 subelt->related_value = subelt;
1699 /* Find the element in the circular chain that precedes SUBELT. */
1700 subelt_prev = subelt;
1701 while (subelt_prev->related_value != subelt)
1702 subelt_prev = subelt_prev->related_value;
1703 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1704 This way the element that follows SUBELT is the oldest one. */
1705 elt->related_value = subelt_prev->related_value;
1706 subelt_prev->related_value = elt;
1710 return elt;
1713 /* Wrap insert_with_costs by passing the default costs. */
1715 static struct table_elt *
1716 insert (rtx x, struct table_elt *classp, unsigned int hash,
1717 machine_mode mode)
1719 return insert_with_costs (x, classp, hash, mode,
1720 COST (x, mode), approx_reg_cost (x));
1724 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1725 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1726 the two classes equivalent.
1728 CLASS1 will be the surviving class; CLASS2 should not be used after this
1729 call.
1731 Any invalid entries in CLASS2 will not be copied. */
1733 static void
1734 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1736 struct table_elt *elt, *next, *new_elt;
1738 /* Ensure we start with the head of the classes. */
1739 class1 = class1->first_same_value;
1740 class2 = class2->first_same_value;
1742 /* If they were already equal, forget it. */
1743 if (class1 == class2)
1744 return;
1746 for (elt = class2; elt; elt = next)
1748 unsigned int hash;
1749 rtx exp = elt->exp;
1750 machine_mode mode = elt->mode;
1752 next = elt->next_same_value;
1754 /* Remove old entry, make a new one in CLASS1's class.
1755 Don't do this for invalid entries as we cannot find their
1756 hash code (it also isn't necessary). */
1757 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1759 bool need_rehash = false;
1761 hash_arg_in_memory = 0;
1762 hash = HASH (exp, mode);
1764 if (REG_P (exp))
1766 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1767 delete_reg_equiv (REGNO (exp));
1770 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1771 remove_pseudo_from_table (exp, hash);
1772 else
1773 remove_from_table (elt, hash);
1775 if (insert_regs (exp, class1, 0) || need_rehash)
1777 rehash_using_reg (exp);
1778 hash = HASH (exp, mode);
1780 new_elt = insert (exp, class1, hash, mode);
1781 new_elt->in_memory = hash_arg_in_memory;
1782 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1783 new_elt->cost = MAX_COST;
1788 /* Flush the entire hash table. */
1790 static void
1791 flush_hash_table (void)
1793 int i;
1794 struct table_elt *p;
1796 for (i = 0; i < HASH_SIZE; i++)
1797 for (p = table[i]; p; p = table[i])
1799 /* Note that invalidate can remove elements
1800 after P in the current hash chain. */
1801 if (REG_P (p->exp))
1802 invalidate (p->exp, VOIDmode);
1803 else
1804 remove_from_table (p, i);
1808 /* Check whether an anti dependence exists between X and EXP. MODE and
1809 ADDR are as for canon_anti_dependence. */
1811 static bool
1812 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1814 subrtx_iterator::array_type array;
1815 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1817 const_rtx x = *iter;
1818 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1819 return true;
1821 return false;
1824 /* Remove from the hash table, or mark as invalid, all expressions whose
1825 values could be altered by storing in X. X is a register, a subreg, or
1826 a memory reference with nonvarying address (because, when a memory
1827 reference with a varying address is stored in, all memory references are
1828 removed by invalidate_memory so specific invalidation is superfluous).
1829 FULL_MODE, if not VOIDmode, indicates that this much should be
1830 invalidated instead of just the amount indicated by the mode of X. This
1831 is only used for bitfield stores into memory.
1833 A nonvarying address may be just a register or just a symbol reference,
1834 or it may be either of those plus a numeric offset. */
1836 static void
1837 invalidate (rtx x, machine_mode full_mode)
1839 int i;
1840 struct table_elt *p;
1841 rtx addr;
1843 switch (GET_CODE (x))
1845 case REG:
1847 /* If X is a register, dependencies on its contents are recorded
1848 through the qty number mechanism. Just change the qty number of
1849 the register, mark it as invalid for expressions that refer to it,
1850 and remove it itself. */
1851 unsigned int regno = REGNO (x);
1852 unsigned int hash = HASH (x, GET_MODE (x));
1854 /* Remove REGNO from any quantity list it might be on and indicate
1855 that its value might have changed. If it is a pseudo, remove its
1856 entry from the hash table.
1858 For a hard register, we do the first two actions above for any
1859 additional hard registers corresponding to X. Then, if any of these
1860 registers are in the table, we must remove any REG entries that
1861 overlap these registers. */
1863 delete_reg_equiv (regno);
1864 REG_TICK (regno)++;
1865 SUBREG_TICKED (regno) = -1;
1867 if (regno >= FIRST_PSEUDO_REGISTER)
1868 remove_pseudo_from_table (x, hash);
1869 else
1871 HOST_WIDE_INT in_table
1872 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1873 unsigned int endregno = END_REGNO (x);
1874 unsigned int tregno, tendregno, rn;
1875 struct table_elt *p, *next;
1877 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1879 for (rn = regno + 1; rn < endregno; rn++)
1881 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1882 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1883 delete_reg_equiv (rn);
1884 REG_TICK (rn)++;
1885 SUBREG_TICKED (rn) = -1;
1888 if (in_table)
1889 for (hash = 0; hash < HASH_SIZE; hash++)
1890 for (p = table[hash]; p; p = next)
1892 next = p->next_same_hash;
1894 if (!REG_P (p->exp)
1895 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1896 continue;
1898 tregno = REGNO (p->exp);
1899 tendregno = END_REGNO (p->exp);
1900 if (tendregno > regno && tregno < endregno)
1901 remove_from_table (p, hash);
1905 return;
1907 case SUBREG:
1908 invalidate (SUBREG_REG (x), VOIDmode);
1909 return;
1911 case PARALLEL:
1912 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1913 invalidate (XVECEXP (x, 0, i), VOIDmode);
1914 return;
1916 case EXPR_LIST:
1917 /* This is part of a disjoint return value; extract the location in
1918 question ignoring the offset. */
1919 invalidate (XEXP (x, 0), VOIDmode);
1920 return;
1922 case MEM:
1923 addr = canon_rtx (get_addr (XEXP (x, 0)));
1924 /* Calculate the canonical version of X here so that
1925 true_dependence doesn't generate new RTL for X on each call. */
1926 x = canon_rtx (x);
1928 /* Remove all hash table elements that refer to overlapping pieces of
1929 memory. */
1930 if (full_mode == VOIDmode)
1931 full_mode = GET_MODE (x);
1933 for (i = 0; i < HASH_SIZE; i++)
1935 struct table_elt *next;
1937 for (p = table[i]; p; p = next)
1939 next = p->next_same_hash;
1940 if (p->in_memory)
1942 /* Just canonicalize the expression once;
1943 otherwise each time we call invalidate
1944 true_dependence will canonicalize the
1945 expression again. */
1946 if (!p->canon_exp)
1947 p->canon_exp = canon_rtx (p->exp);
1948 if (check_dependence (p->canon_exp, x, full_mode, addr))
1949 remove_from_table (p, i);
1953 return;
1955 default:
1956 gcc_unreachable ();
1960 /* Invalidate DEST. Used when DEST is not going to be added
1961 into the hash table for some reason, e.g. do_not_record
1962 flagged on it. */
1964 static void
1965 invalidate_dest (rtx dest)
1967 if (REG_P (dest)
1968 || GET_CODE (dest) == SUBREG
1969 || MEM_P (dest))
1970 invalidate (dest, VOIDmode);
1971 else if (GET_CODE (dest) == STRICT_LOW_PART
1972 || GET_CODE (dest) == ZERO_EXTRACT)
1973 invalidate (XEXP (dest, 0), GET_MODE (dest));
1976 /* Remove all expressions that refer to register REGNO,
1977 since they are already invalid, and we are about to
1978 mark that register valid again and don't want the old
1979 expressions to reappear as valid. */
1981 static void
1982 remove_invalid_refs (unsigned int regno)
1984 unsigned int i;
1985 struct table_elt *p, *next;
1987 for (i = 0; i < HASH_SIZE; i++)
1988 for (p = table[i]; p; p = next)
1990 next = p->next_same_hash;
1991 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
1992 remove_from_table (p, i);
1996 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1997 and mode MODE. */
1998 static void
1999 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2000 machine_mode mode)
2002 unsigned int i;
2003 struct table_elt *p, *next;
2004 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2006 for (i = 0; i < HASH_SIZE; i++)
2007 for (p = table[i]; p; p = next)
2009 rtx exp = p->exp;
2010 next = p->next_same_hash;
2012 if (!REG_P (exp)
2013 && (GET_CODE (exp) != SUBREG
2014 || !REG_P (SUBREG_REG (exp))
2015 || REGNO (SUBREG_REG (exp)) != regno
2016 || (((SUBREG_BYTE (exp)
2017 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2018 && SUBREG_BYTE (exp) <= end))
2019 && refers_to_regno_p (regno, p->exp))
2020 remove_from_table (p, i);
2024 /* Recompute the hash codes of any valid entries in the hash table that
2025 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2027 This is called when we make a jump equivalence. */
2029 static void
2030 rehash_using_reg (rtx x)
2032 unsigned int i;
2033 struct table_elt *p, *next;
2034 unsigned hash;
2036 if (GET_CODE (x) == SUBREG)
2037 x = SUBREG_REG (x);
2039 /* If X is not a register or if the register is known not to be in any
2040 valid entries in the table, we have no work to do. */
2042 if (!REG_P (x)
2043 || REG_IN_TABLE (REGNO (x)) < 0
2044 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2045 return;
2047 /* Scan all hash chains looking for valid entries that mention X.
2048 If we find one and it is in the wrong hash chain, move it. */
2050 for (i = 0; i < HASH_SIZE; i++)
2051 for (p = table[i]; p; p = next)
2053 next = p->next_same_hash;
2054 if (reg_mentioned_p (x, p->exp)
2055 && exp_equiv_p (p->exp, p->exp, 1, false)
2056 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2058 if (p->next_same_hash)
2059 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2061 if (p->prev_same_hash)
2062 p->prev_same_hash->next_same_hash = p->next_same_hash;
2063 else
2064 table[i] = p->next_same_hash;
2066 p->next_same_hash = table[hash];
2067 p->prev_same_hash = 0;
2068 if (table[hash])
2069 table[hash]->prev_same_hash = p;
2070 table[hash] = p;
2075 /* Remove from the hash table any expression that is a call-clobbered
2076 register. Also update their TICK values. */
2078 static void
2079 invalidate_for_call (void)
2081 unsigned int regno, endregno;
2082 unsigned int i;
2083 unsigned hash;
2084 struct table_elt *p, *next;
2085 int in_table = 0;
2086 hard_reg_set_iterator hrsi;
2088 /* Go through all the hard registers. For each that is clobbered in
2089 a CALL_INSN, remove the register from quantity chains and update
2090 reg_tick if defined. Also see if any of these registers is currently
2091 in the table. */
2092 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2094 delete_reg_equiv (regno);
2095 if (REG_TICK (regno) >= 0)
2097 REG_TICK (regno)++;
2098 SUBREG_TICKED (regno) = -1;
2100 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2103 /* In the case where we have no call-clobbered hard registers in the
2104 table, we are done. Otherwise, scan the table and remove any
2105 entry that overlaps a call-clobbered register. */
2107 if (in_table)
2108 for (hash = 0; hash < HASH_SIZE; hash++)
2109 for (p = table[hash]; p; p = next)
2111 next = p->next_same_hash;
2113 if (!REG_P (p->exp)
2114 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2115 continue;
2117 regno = REGNO (p->exp);
2118 endregno = END_REGNO (p->exp);
2120 for (i = regno; i < endregno; i++)
2121 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2123 remove_from_table (p, hash);
2124 break;
2129 /* Given an expression X of type CONST,
2130 and ELT which is its table entry (or 0 if it
2131 is not in the hash table),
2132 return an alternate expression for X as a register plus integer.
2133 If none can be found, return 0. */
2135 static rtx
2136 use_related_value (rtx x, struct table_elt *elt)
2138 struct table_elt *relt = 0;
2139 struct table_elt *p, *q;
2140 HOST_WIDE_INT offset;
2142 /* First, is there anything related known?
2143 If we have a table element, we can tell from that.
2144 Otherwise, must look it up. */
2146 if (elt != 0 && elt->related_value != 0)
2147 relt = elt;
2148 else if (elt == 0 && GET_CODE (x) == CONST)
2150 rtx subexp = get_related_value (x);
2151 if (subexp != 0)
2152 relt = lookup (subexp,
2153 SAFE_HASH (subexp, GET_MODE (subexp)),
2154 GET_MODE (subexp));
2157 if (relt == 0)
2158 return 0;
2160 /* Search all related table entries for one that has an
2161 equivalent register. */
2163 p = relt;
2164 while (1)
2166 /* This loop is strange in that it is executed in two different cases.
2167 The first is when X is already in the table. Then it is searching
2168 the RELATED_VALUE list of X's class (RELT). The second case is when
2169 X is not in the table. Then RELT points to a class for the related
2170 value.
2172 Ensure that, whatever case we are in, that we ignore classes that have
2173 the same value as X. */
2175 if (rtx_equal_p (x, p->exp))
2176 q = 0;
2177 else
2178 for (q = p->first_same_value; q; q = q->next_same_value)
2179 if (REG_P (q->exp))
2180 break;
2182 if (q)
2183 break;
2185 p = p->related_value;
2187 /* We went all the way around, so there is nothing to be found.
2188 Alternatively, perhaps RELT was in the table for some other reason
2189 and it has no related values recorded. */
2190 if (p == relt || p == 0)
2191 break;
2194 if (q == 0)
2195 return 0;
2197 offset = (get_integer_term (x) - get_integer_term (p->exp));
2198 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2199 return plus_constant (q->mode, q->exp, offset);
2203 /* Hash a string. Just add its bytes up. */
2204 static inline unsigned
2205 hash_rtx_string (const char *ps)
2207 unsigned hash = 0;
2208 const unsigned char *p = (const unsigned char *) ps;
2210 if (p)
2211 while (*p)
2212 hash += *p++;
2214 return hash;
2217 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2218 When the callback returns true, we continue with the new rtx. */
2220 unsigned
2221 hash_rtx_cb (const_rtx x, machine_mode mode,
2222 int *do_not_record_p, int *hash_arg_in_memory_p,
2223 bool have_reg_qty, hash_rtx_callback_function cb)
2225 int i, j;
2226 unsigned hash = 0;
2227 enum rtx_code code;
2228 const char *fmt;
2229 machine_mode newmode;
2230 rtx newx;
2232 /* Used to turn recursion into iteration. We can't rely on GCC's
2233 tail-recursion elimination since we need to keep accumulating values
2234 in HASH. */
2235 repeat:
2236 if (x == 0)
2237 return hash;
2239 /* Invoke the callback first. */
2240 if (cb != NULL
2241 && ((*cb) (x, mode, &newx, &newmode)))
2243 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2244 hash_arg_in_memory_p, have_reg_qty, cb);
2245 return hash;
2248 code = GET_CODE (x);
2249 switch (code)
2251 case REG:
2253 unsigned int regno = REGNO (x);
2255 if (do_not_record_p && !reload_completed)
2257 /* On some machines, we can't record any non-fixed hard register,
2258 because extending its life will cause reload problems. We
2259 consider ap, fp, sp, gp to be fixed for this purpose.
2261 We also consider CCmode registers to be fixed for this purpose;
2262 failure to do so leads to failure to simplify 0<100 type of
2263 conditionals.
2265 On all machines, we can't record any global registers.
2266 Nor should we record any register that is in a small
2267 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2268 bool record;
2270 if (regno >= FIRST_PSEUDO_REGISTER)
2271 record = true;
2272 else if (x == frame_pointer_rtx
2273 || x == hard_frame_pointer_rtx
2274 || x == arg_pointer_rtx
2275 || x == stack_pointer_rtx
2276 || x == pic_offset_table_rtx)
2277 record = true;
2278 else if (global_regs[regno])
2279 record = false;
2280 else if (fixed_regs[regno])
2281 record = true;
2282 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2283 record = true;
2284 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2285 record = false;
2286 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2287 record = false;
2288 else
2289 record = true;
2291 if (!record)
2293 *do_not_record_p = 1;
2294 return 0;
2298 hash += ((unsigned int) REG << 7);
2299 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2300 return hash;
2303 /* We handle SUBREG of a REG specially because the underlying
2304 reg changes its hash value with every value change; we don't
2305 want to have to forget unrelated subregs when one subreg changes. */
2306 case SUBREG:
2308 if (REG_P (SUBREG_REG (x)))
2310 hash += (((unsigned int) SUBREG << 7)
2311 + REGNO (SUBREG_REG (x))
2312 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2313 return hash;
2315 break;
2318 case CONST_INT:
2319 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2320 + (unsigned int) INTVAL (x));
2321 return hash;
2323 case CONST_WIDE_INT:
2324 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2325 hash += CONST_WIDE_INT_ELT (x, i);
2326 return hash;
2328 case CONST_DOUBLE:
2329 /* This is like the general case, except that it only counts
2330 the integers representing the constant. */
2331 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2332 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2333 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2334 + (unsigned int) CONST_DOUBLE_HIGH (x));
2335 else
2336 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2337 return hash;
2339 case CONST_FIXED:
2340 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2341 hash += fixed_hash (CONST_FIXED_VALUE (x));
2342 return hash;
2344 case CONST_VECTOR:
2346 int units;
2347 rtx elt;
2349 units = CONST_VECTOR_NUNITS (x);
2351 for (i = 0; i < units; ++i)
2353 elt = CONST_VECTOR_ELT (x, i);
2354 hash += hash_rtx_cb (elt, GET_MODE (elt),
2355 do_not_record_p, hash_arg_in_memory_p,
2356 have_reg_qty, cb);
2359 return hash;
2362 /* Assume there is only one rtx object for any given label. */
2363 case LABEL_REF:
2364 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2365 differences and differences between each stage's debugging dumps. */
2366 hash += (((unsigned int) LABEL_REF << 7)
2367 + CODE_LABEL_NUMBER (LABEL_REF_LABEL (x)));
2368 return hash;
2370 case SYMBOL_REF:
2372 /* Don't hash on the symbol's address to avoid bootstrap differences.
2373 Different hash values may cause expressions to be recorded in
2374 different orders and thus different registers to be used in the
2375 final assembler. This also avoids differences in the dump files
2376 between various stages. */
2377 unsigned int h = 0;
2378 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2380 while (*p)
2381 h += (h << 7) + *p++; /* ??? revisit */
2383 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2384 return hash;
2387 case MEM:
2388 /* We don't record if marked volatile or if BLKmode since we don't
2389 know the size of the move. */
2390 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2392 *do_not_record_p = 1;
2393 return 0;
2395 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2396 *hash_arg_in_memory_p = 1;
2398 /* Now that we have already found this special case,
2399 might as well speed it up as much as possible. */
2400 hash += (unsigned) MEM;
2401 x = XEXP (x, 0);
2402 goto repeat;
2404 case USE:
2405 /* A USE that mentions non-volatile memory needs special
2406 handling since the MEM may be BLKmode which normally
2407 prevents an entry from being made. Pure calls are
2408 marked by a USE which mentions BLKmode memory.
2409 See calls.c:emit_call_1. */
2410 if (MEM_P (XEXP (x, 0))
2411 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2413 hash += (unsigned) USE;
2414 x = XEXP (x, 0);
2416 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2417 *hash_arg_in_memory_p = 1;
2419 /* Now that we have already found this special case,
2420 might as well speed it up as much as possible. */
2421 hash += (unsigned) MEM;
2422 x = XEXP (x, 0);
2423 goto repeat;
2425 break;
2427 case PRE_DEC:
2428 case PRE_INC:
2429 case POST_DEC:
2430 case POST_INC:
2431 case PRE_MODIFY:
2432 case POST_MODIFY:
2433 case PC:
2434 case CC0:
2435 case CALL:
2436 case UNSPEC_VOLATILE:
2437 if (do_not_record_p) {
2438 *do_not_record_p = 1;
2439 return 0;
2441 else
2442 return hash;
2443 break;
2445 case ASM_OPERANDS:
2446 if (do_not_record_p && MEM_VOLATILE_P (x))
2448 *do_not_record_p = 1;
2449 return 0;
2451 else
2453 /* We don't want to take the filename and line into account. */
2454 hash += (unsigned) code + (unsigned) GET_MODE (x)
2455 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2456 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2457 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2459 if (ASM_OPERANDS_INPUT_LENGTH (x))
2461 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2463 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2464 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2465 do_not_record_p, hash_arg_in_memory_p,
2466 have_reg_qty, cb)
2467 + hash_rtx_string
2468 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2471 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2472 x = ASM_OPERANDS_INPUT (x, 0);
2473 mode = GET_MODE (x);
2474 goto repeat;
2477 return hash;
2479 break;
2481 default:
2482 break;
2485 i = GET_RTX_LENGTH (code) - 1;
2486 hash += (unsigned) code + (unsigned) GET_MODE (x);
2487 fmt = GET_RTX_FORMAT (code);
2488 for (; i >= 0; i--)
2490 switch (fmt[i])
2492 case 'e':
2493 /* If we are about to do the last recursive call
2494 needed at this level, change it into iteration.
2495 This function is called enough to be worth it. */
2496 if (i == 0)
2498 x = XEXP (x, i);
2499 goto repeat;
2502 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2503 hash_arg_in_memory_p,
2504 have_reg_qty, cb);
2505 break;
2507 case 'E':
2508 for (j = 0; j < XVECLEN (x, i); j++)
2509 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2510 hash_arg_in_memory_p,
2511 have_reg_qty, cb);
2512 break;
2514 case 's':
2515 hash += hash_rtx_string (XSTR (x, i));
2516 break;
2518 case 'i':
2519 hash += (unsigned int) XINT (x, i);
2520 break;
2522 case '0': case 't':
2523 /* Unused. */
2524 break;
2526 default:
2527 gcc_unreachable ();
2531 return hash;
2534 /* Hash an rtx. We are careful to make sure the value is never negative.
2535 Equivalent registers hash identically.
2536 MODE is used in hashing for CONST_INTs only;
2537 otherwise the mode of X is used.
2539 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2541 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2542 a MEM rtx which does not have the MEM_READONLY_P flag set.
2544 Note that cse_insn knows that the hash code of a MEM expression
2545 is just (int) MEM plus the hash code of the address. */
2547 unsigned
2548 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2549 int *hash_arg_in_memory_p, bool have_reg_qty)
2551 return hash_rtx_cb (x, mode, do_not_record_p,
2552 hash_arg_in_memory_p, have_reg_qty, NULL);
2555 /* Hash an rtx X for cse via hash_rtx.
2556 Stores 1 in do_not_record if any subexpression is volatile.
2557 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2558 does not have the MEM_READONLY_P flag set. */
2560 static inline unsigned
2561 canon_hash (rtx x, machine_mode mode)
2563 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2566 /* Like canon_hash but with no side effects, i.e. do_not_record
2567 and hash_arg_in_memory are not changed. */
2569 static inline unsigned
2570 safe_hash (rtx x, machine_mode mode)
2572 int dummy_do_not_record;
2573 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2576 /* Return 1 iff X and Y would canonicalize into the same thing,
2577 without actually constructing the canonicalization of either one.
2578 If VALIDATE is nonzero,
2579 we assume X is an expression being processed from the rtl
2580 and Y was found in the hash table. We check register refs
2581 in Y for being marked as valid.
2583 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2586 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2588 int i, j;
2589 enum rtx_code code;
2590 const char *fmt;
2592 /* Note: it is incorrect to assume an expression is equivalent to itself
2593 if VALIDATE is nonzero. */
2594 if (x == y && !validate)
2595 return 1;
2597 if (x == 0 || y == 0)
2598 return x == y;
2600 code = GET_CODE (x);
2601 if (code != GET_CODE (y))
2602 return 0;
2604 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2605 if (GET_MODE (x) != GET_MODE (y))
2606 return 0;
2608 /* MEMs referring to different address space are not equivalent. */
2609 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2610 return 0;
2612 switch (code)
2614 case PC:
2615 case CC0:
2616 CASE_CONST_UNIQUE:
2617 return x == y;
2619 case LABEL_REF:
2620 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
2622 case SYMBOL_REF:
2623 return XSTR (x, 0) == XSTR (y, 0);
2625 case REG:
2626 if (for_gcse)
2627 return REGNO (x) == REGNO (y);
2628 else
2630 unsigned int regno = REGNO (y);
2631 unsigned int i;
2632 unsigned int endregno = END_REGNO (y);
2634 /* If the quantities are not the same, the expressions are not
2635 equivalent. If there are and we are not to validate, they
2636 are equivalent. Otherwise, ensure all regs are up-to-date. */
2638 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2639 return 0;
2641 if (! validate)
2642 return 1;
2644 for (i = regno; i < endregno; i++)
2645 if (REG_IN_TABLE (i) != REG_TICK (i))
2646 return 0;
2648 return 1;
2651 case MEM:
2652 if (for_gcse)
2654 /* A volatile mem should not be considered equivalent to any
2655 other. */
2656 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2657 return 0;
2659 /* Can't merge two expressions in different alias sets, since we
2660 can decide that the expression is transparent in a block when
2661 it isn't, due to it being set with the different alias set.
2663 Also, can't merge two expressions with different MEM_ATTRS.
2664 They could e.g. be two different entities allocated into the
2665 same space on the stack (see e.g. PR25130). In that case, the
2666 MEM addresses can be the same, even though the two MEMs are
2667 absolutely not equivalent.
2669 But because really all MEM attributes should be the same for
2670 equivalent MEMs, we just use the invariant that MEMs that have
2671 the same attributes share the same mem_attrs data structure. */
2672 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2673 return 0;
2675 /* If we are handling exceptions, we cannot consider two expressions
2676 with different trapping status as equivalent, because simple_mem
2677 might accept one and reject the other. */
2678 if (cfun->can_throw_non_call_exceptions
2679 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2680 return 0;
2682 break;
2684 /* For commutative operations, check both orders. */
2685 case PLUS:
2686 case MULT:
2687 case AND:
2688 case IOR:
2689 case XOR:
2690 case NE:
2691 case EQ:
2692 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2693 validate, for_gcse)
2694 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2695 validate, for_gcse))
2696 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2697 validate, for_gcse)
2698 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2699 validate, for_gcse)));
2701 case ASM_OPERANDS:
2702 /* We don't use the generic code below because we want to
2703 disregard filename and line numbers. */
2705 /* A volatile asm isn't equivalent to any other. */
2706 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2707 return 0;
2709 if (GET_MODE (x) != GET_MODE (y)
2710 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2711 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2712 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2713 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2714 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2715 return 0;
2717 if (ASM_OPERANDS_INPUT_LENGTH (x))
2719 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2720 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2721 ASM_OPERANDS_INPUT (y, i),
2722 validate, for_gcse)
2723 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2724 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2725 return 0;
2728 return 1;
2730 default:
2731 break;
2734 /* Compare the elements. If any pair of corresponding elements
2735 fail to match, return 0 for the whole thing. */
2737 fmt = GET_RTX_FORMAT (code);
2738 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2740 switch (fmt[i])
2742 case 'e':
2743 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2744 validate, for_gcse))
2745 return 0;
2746 break;
2748 case 'E':
2749 if (XVECLEN (x, i) != XVECLEN (y, i))
2750 return 0;
2751 for (j = 0; j < XVECLEN (x, i); j++)
2752 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2753 validate, for_gcse))
2754 return 0;
2755 break;
2757 case 's':
2758 if (strcmp (XSTR (x, i), XSTR (y, i)))
2759 return 0;
2760 break;
2762 case 'i':
2763 if (XINT (x, i) != XINT (y, i))
2764 return 0;
2765 break;
2767 case 'w':
2768 if (XWINT (x, i) != XWINT (y, i))
2769 return 0;
2770 break;
2772 case '0':
2773 case 't':
2774 break;
2776 default:
2777 gcc_unreachable ();
2781 return 1;
2784 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2785 the result if necessary. INSN is as for canon_reg. */
2787 static void
2788 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2790 if (*xloc)
2792 rtx new_rtx = canon_reg (*xloc, insn);
2794 /* If replacing pseudo with hard reg or vice versa, ensure the
2795 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2796 gcc_assert (insn && new_rtx);
2797 validate_change (insn, xloc, new_rtx, 1);
2801 /* Canonicalize an expression:
2802 replace each register reference inside it
2803 with the "oldest" equivalent register.
2805 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2806 after we make our substitution. The calls are made with IN_GROUP nonzero
2807 so apply_change_group must be called upon the outermost return from this
2808 function (unless INSN is zero). The result of apply_change_group can
2809 generally be discarded since the changes we are making are optional. */
2811 static rtx
2812 canon_reg (rtx x, rtx_insn *insn)
2814 int i;
2815 enum rtx_code code;
2816 const char *fmt;
2818 if (x == 0)
2819 return x;
2821 code = GET_CODE (x);
2822 switch (code)
2824 case PC:
2825 case CC0:
2826 case CONST:
2827 CASE_CONST_ANY:
2828 case SYMBOL_REF:
2829 case LABEL_REF:
2830 case ADDR_VEC:
2831 case ADDR_DIFF_VEC:
2832 return x;
2834 case REG:
2836 int first;
2837 int q;
2838 struct qty_table_elem *ent;
2840 /* Never replace a hard reg, because hard regs can appear
2841 in more than one machine mode, and we must preserve the mode
2842 of each occurrence. Also, some hard regs appear in
2843 MEMs that are shared and mustn't be altered. Don't try to
2844 replace any reg that maps to a reg of class NO_REGS. */
2845 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2846 || ! REGNO_QTY_VALID_P (REGNO (x)))
2847 return x;
2849 q = REG_QTY (REGNO (x));
2850 ent = &qty_table[q];
2851 first = ent->first_reg;
2852 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2853 : REGNO_REG_CLASS (first) == NO_REGS ? x
2854 : gen_rtx_REG (ent->mode, first));
2857 default:
2858 break;
2861 fmt = GET_RTX_FORMAT (code);
2862 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2864 int j;
2866 if (fmt[i] == 'e')
2867 validate_canon_reg (&XEXP (x, i), insn);
2868 else if (fmt[i] == 'E')
2869 for (j = 0; j < XVECLEN (x, i); j++)
2870 validate_canon_reg (&XVECEXP (x, i, j), insn);
2873 return x;
2876 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2877 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2878 what values are being compared.
2880 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2881 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2882 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2883 compared to produce cc0.
2885 The return value is the comparison operator and is either the code of
2886 A or the code corresponding to the inverse of the comparison. */
2888 static enum rtx_code
2889 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2890 machine_mode *pmode1, machine_mode *pmode2)
2892 rtx arg1, arg2;
2893 hash_set<rtx> *visited = NULL;
2894 /* Set nonzero when we find something of interest. */
2895 rtx x = NULL;
2897 arg1 = *parg1, arg2 = *parg2;
2899 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2901 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2903 int reverse_code = 0;
2904 struct table_elt *p = 0;
2906 /* Remember state from previous iteration. */
2907 if (x)
2909 if (!visited)
2910 visited = new hash_set<rtx>;
2911 visited->add (x);
2912 x = 0;
2915 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2916 On machines with CC0, this is the only case that can occur, since
2917 fold_rtx will return the COMPARE or item being compared with zero
2918 when given CC0. */
2920 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2921 x = arg1;
2923 /* If ARG1 is a comparison operator and CODE is testing for
2924 STORE_FLAG_VALUE, get the inner arguments. */
2926 else if (COMPARISON_P (arg1))
2928 #ifdef FLOAT_STORE_FLAG_VALUE
2929 REAL_VALUE_TYPE fsfv;
2930 #endif
2932 if (code == NE
2933 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2934 && code == LT && STORE_FLAG_VALUE == -1)
2935 #ifdef FLOAT_STORE_FLAG_VALUE
2936 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2937 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2938 REAL_VALUE_NEGATIVE (fsfv)))
2939 #endif
2941 x = arg1;
2942 else if (code == EQ
2943 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2944 && code == GE && STORE_FLAG_VALUE == -1)
2945 #ifdef FLOAT_STORE_FLAG_VALUE
2946 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2947 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2948 REAL_VALUE_NEGATIVE (fsfv)))
2949 #endif
2951 x = arg1, reverse_code = 1;
2954 /* ??? We could also check for
2956 (ne (and (eq (...) (const_int 1))) (const_int 0))
2958 and related forms, but let's wait until we see them occurring. */
2960 if (x == 0)
2961 /* Look up ARG1 in the hash table and see if it has an equivalence
2962 that lets us see what is being compared. */
2963 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2964 if (p)
2966 p = p->first_same_value;
2968 /* If what we compare is already known to be constant, that is as
2969 good as it gets.
2970 We need to break the loop in this case, because otherwise we
2971 can have an infinite loop when looking at a reg that is known
2972 to be a constant which is the same as a comparison of a reg
2973 against zero which appears later in the insn stream, which in
2974 turn is constant and the same as the comparison of the first reg
2975 against zero... */
2976 if (p->is_const)
2977 break;
2980 for (; p; p = p->next_same_value)
2982 machine_mode inner_mode = GET_MODE (p->exp);
2983 #ifdef FLOAT_STORE_FLAG_VALUE
2984 REAL_VALUE_TYPE fsfv;
2985 #endif
2987 /* If the entry isn't valid, skip it. */
2988 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2989 continue;
2991 /* If it's a comparison we've used before, skip it. */
2992 if (visited && visited->contains (p->exp))
2993 continue;
2995 if (GET_CODE (p->exp) == COMPARE
2996 /* Another possibility is that this machine has a compare insn
2997 that includes the comparison code. In that case, ARG1 would
2998 be equivalent to a comparison operation that would set ARG1 to
2999 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3000 ORIG_CODE is the actual comparison being done; if it is an EQ,
3001 we must reverse ORIG_CODE. On machine with a negative value
3002 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3003 || ((code == NE
3004 || (code == LT
3005 && val_signbit_known_set_p (inner_mode,
3006 STORE_FLAG_VALUE))
3007 #ifdef FLOAT_STORE_FLAG_VALUE
3008 || (code == LT
3009 && SCALAR_FLOAT_MODE_P (inner_mode)
3010 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3011 REAL_VALUE_NEGATIVE (fsfv)))
3012 #endif
3014 && COMPARISON_P (p->exp)))
3016 x = p->exp;
3017 break;
3019 else if ((code == EQ
3020 || (code == GE
3021 && val_signbit_known_set_p (inner_mode,
3022 STORE_FLAG_VALUE))
3023 #ifdef FLOAT_STORE_FLAG_VALUE
3024 || (code == GE
3025 && SCALAR_FLOAT_MODE_P (inner_mode)
3026 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3027 REAL_VALUE_NEGATIVE (fsfv)))
3028 #endif
3030 && COMPARISON_P (p->exp))
3032 reverse_code = 1;
3033 x = p->exp;
3034 break;
3037 /* If this non-trapping address, e.g. fp + constant, the
3038 equivalent is a better operand since it may let us predict
3039 the value of the comparison. */
3040 else if (!rtx_addr_can_trap_p (p->exp))
3042 arg1 = p->exp;
3043 continue;
3047 /* If we didn't find a useful equivalence for ARG1, we are done.
3048 Otherwise, set up for the next iteration. */
3049 if (x == 0)
3050 break;
3052 /* If we need to reverse the comparison, make sure that is
3053 possible -- we can't necessarily infer the value of GE from LT
3054 with floating-point operands. */
3055 if (reverse_code)
3057 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3058 if (reversed == UNKNOWN)
3059 break;
3060 else
3061 code = reversed;
3063 else if (COMPARISON_P (x))
3064 code = GET_CODE (x);
3065 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3068 /* Return our results. Return the modes from before fold_rtx
3069 because fold_rtx might produce const_int, and then it's too late. */
3070 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3071 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3073 if (visited)
3074 delete visited;
3075 return code;
3078 /* If X is a nontrivial arithmetic operation on an argument for which
3079 a constant value can be determined, return the result of operating
3080 on that value, as a constant. Otherwise, return X, possibly with
3081 one or more operands changed to a forward-propagated constant.
3083 If X is a register whose contents are known, we do NOT return
3084 those contents here; equiv_constant is called to perform that task.
3085 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3087 INSN is the insn that we may be modifying. If it is 0, make a copy
3088 of X before modifying it. */
3090 static rtx
3091 fold_rtx (rtx x, rtx_insn *insn)
3093 enum rtx_code code;
3094 machine_mode mode;
3095 const char *fmt;
3096 int i;
3097 rtx new_rtx = 0;
3098 int changed = 0;
3100 /* Operands of X. */
3101 /* Workaround -Wmaybe-uninitialized false positive during
3102 profiledbootstrap by initializing them. */
3103 rtx folded_arg0 = NULL_RTX;
3104 rtx folded_arg1 = NULL_RTX;
3106 /* Constant equivalents of first three operands of X;
3107 0 when no such equivalent is known. */
3108 rtx const_arg0;
3109 rtx const_arg1;
3110 rtx const_arg2;
3112 /* The mode of the first operand of X. We need this for sign and zero
3113 extends. */
3114 machine_mode mode_arg0;
3116 if (x == 0)
3117 return x;
3119 /* Try to perform some initial simplifications on X. */
3120 code = GET_CODE (x);
3121 switch (code)
3123 case MEM:
3124 case SUBREG:
3125 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3126 than it would in other contexts. Basically its mode does not
3127 signify the size of the object read. That information is carried
3128 by size operand. If we happen to have a MEM of the appropriate
3129 mode in our tables with a constant value we could simplify the
3130 extraction incorrectly if we allowed substitution of that value
3131 for the MEM. */
3132 case ZERO_EXTRACT:
3133 case SIGN_EXTRACT:
3134 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3135 return new_rtx;
3136 return x;
3138 case CONST:
3139 CASE_CONST_ANY:
3140 case SYMBOL_REF:
3141 case LABEL_REF:
3142 case REG:
3143 case PC:
3144 /* No use simplifying an EXPR_LIST
3145 since they are used only for lists of args
3146 in a function call's REG_EQUAL note. */
3147 case EXPR_LIST:
3148 return x;
3150 case CC0:
3151 return prev_insn_cc0;
3153 case ASM_OPERANDS:
3154 if (insn)
3156 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3157 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3158 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3160 return x;
3162 case CALL:
3163 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3164 return x;
3165 break;
3167 /* Anything else goes through the loop below. */
3168 default:
3169 break;
3172 mode = GET_MODE (x);
3173 const_arg0 = 0;
3174 const_arg1 = 0;
3175 const_arg2 = 0;
3176 mode_arg0 = VOIDmode;
3178 /* Try folding our operands.
3179 Then see which ones have constant values known. */
3181 fmt = GET_RTX_FORMAT (code);
3182 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3183 if (fmt[i] == 'e')
3185 rtx folded_arg = XEXP (x, i), const_arg;
3186 machine_mode mode_arg = GET_MODE (folded_arg);
3188 switch (GET_CODE (folded_arg))
3190 case MEM:
3191 case REG:
3192 case SUBREG:
3193 const_arg = equiv_constant (folded_arg);
3194 break;
3196 case CONST:
3197 CASE_CONST_ANY:
3198 case SYMBOL_REF:
3199 case LABEL_REF:
3200 const_arg = folded_arg;
3201 break;
3203 case CC0:
3204 /* The cc0-user and cc0-setter may be in different blocks if
3205 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3206 will have been cleared as we exited the block with the
3207 setter.
3209 While we could potentially track cc0 in this case, it just
3210 doesn't seem to be worth it given that cc0 targets are not
3211 terribly common or important these days and trapping math
3212 is rarely used. The combination of those two conditions
3213 necessary to trip this situation is exceedingly rare in the
3214 real world. */
3215 if (!prev_insn_cc0)
3217 const_arg = NULL_RTX;
3219 else
3221 folded_arg = prev_insn_cc0;
3222 mode_arg = prev_insn_cc0_mode;
3223 const_arg = equiv_constant (folded_arg);
3225 break;
3227 default:
3228 folded_arg = fold_rtx (folded_arg, insn);
3229 const_arg = equiv_constant (folded_arg);
3230 break;
3233 /* For the first three operands, see if the operand
3234 is constant or equivalent to a constant. */
3235 switch (i)
3237 case 0:
3238 folded_arg0 = folded_arg;
3239 const_arg0 = const_arg;
3240 mode_arg0 = mode_arg;
3241 break;
3242 case 1:
3243 folded_arg1 = folded_arg;
3244 const_arg1 = const_arg;
3245 break;
3246 case 2:
3247 const_arg2 = const_arg;
3248 break;
3251 /* Pick the least expensive of the argument and an equivalent constant
3252 argument. */
3253 if (const_arg != 0
3254 && const_arg != folded_arg
3255 && (COST_IN (const_arg, mode_arg, code, i)
3256 <= COST_IN (folded_arg, mode_arg, code, i))
3258 /* It's not safe to substitute the operand of a conversion
3259 operator with a constant, as the conversion's identity
3260 depends upon the mode of its operand. This optimization
3261 is handled by the call to simplify_unary_operation. */
3262 && (GET_RTX_CLASS (code) != RTX_UNARY
3263 || GET_MODE (const_arg) == mode_arg0
3264 || (code != ZERO_EXTEND
3265 && code != SIGN_EXTEND
3266 && code != TRUNCATE
3267 && code != FLOAT_TRUNCATE
3268 && code != FLOAT_EXTEND
3269 && code != FLOAT
3270 && code != FIX
3271 && code != UNSIGNED_FLOAT
3272 && code != UNSIGNED_FIX)))
3273 folded_arg = const_arg;
3275 if (folded_arg == XEXP (x, i))
3276 continue;
3278 if (insn == NULL_RTX && !changed)
3279 x = copy_rtx (x);
3280 changed = 1;
3281 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3284 if (changed)
3286 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3287 consistent with the order in X. */
3288 if (canonicalize_change_group (insn, x))
3290 std::swap (const_arg0, const_arg1);
3291 std::swap (folded_arg0, folded_arg1);
3294 apply_change_group ();
3297 /* If X is an arithmetic operation, see if we can simplify it. */
3299 switch (GET_RTX_CLASS (code))
3301 case RTX_UNARY:
3303 /* We can't simplify extension ops unless we know the
3304 original mode. */
3305 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3306 && mode_arg0 == VOIDmode)
3307 break;
3309 new_rtx = simplify_unary_operation (code, mode,
3310 const_arg0 ? const_arg0 : folded_arg0,
3311 mode_arg0);
3313 break;
3315 case RTX_COMPARE:
3316 case RTX_COMM_COMPARE:
3317 /* See what items are actually being compared and set FOLDED_ARG[01]
3318 to those values and CODE to the actual comparison code. If any are
3319 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3320 do anything if both operands are already known to be constant. */
3322 /* ??? Vector mode comparisons are not supported yet. */
3323 if (VECTOR_MODE_P (mode))
3324 break;
3326 if (const_arg0 == 0 || const_arg1 == 0)
3328 struct table_elt *p0, *p1;
3329 rtx true_rtx, false_rtx;
3330 machine_mode mode_arg1;
3332 if (SCALAR_FLOAT_MODE_P (mode))
3334 #ifdef FLOAT_STORE_FLAG_VALUE
3335 true_rtx = (const_double_from_real_value
3336 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3337 #else
3338 true_rtx = NULL_RTX;
3339 #endif
3340 false_rtx = CONST0_RTX (mode);
3342 else
3344 true_rtx = const_true_rtx;
3345 false_rtx = const0_rtx;
3348 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3349 &mode_arg0, &mode_arg1);
3351 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3352 what kinds of things are being compared, so we can't do
3353 anything with this comparison. */
3355 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3356 break;
3358 const_arg0 = equiv_constant (folded_arg0);
3359 const_arg1 = equiv_constant (folded_arg1);
3361 /* If we do not now have two constants being compared, see
3362 if we can nevertheless deduce some things about the
3363 comparison. */
3364 if (const_arg0 == 0 || const_arg1 == 0)
3366 if (const_arg1 != NULL)
3368 rtx cheapest_simplification;
3369 int cheapest_cost;
3370 rtx simp_result;
3371 struct table_elt *p;
3373 /* See if we can find an equivalent of folded_arg0
3374 that gets us a cheaper expression, possibly a
3375 constant through simplifications. */
3376 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3377 mode_arg0);
3379 if (p != NULL)
3381 cheapest_simplification = x;
3382 cheapest_cost = COST (x, mode);
3384 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3386 int cost;
3388 /* If the entry isn't valid, skip it. */
3389 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3390 continue;
3392 /* Try to simplify using this equivalence. */
3393 simp_result
3394 = simplify_relational_operation (code, mode,
3395 mode_arg0,
3396 p->exp,
3397 const_arg1);
3399 if (simp_result == NULL)
3400 continue;
3402 cost = COST (simp_result, mode);
3403 if (cost < cheapest_cost)
3405 cheapest_cost = cost;
3406 cheapest_simplification = simp_result;
3410 /* If we have a cheaper expression now, use that
3411 and try folding it further, from the top. */
3412 if (cheapest_simplification != x)
3413 return fold_rtx (copy_rtx (cheapest_simplification),
3414 insn);
3418 /* See if the two operands are the same. */
3420 if ((REG_P (folded_arg0)
3421 && REG_P (folded_arg1)
3422 && (REG_QTY (REGNO (folded_arg0))
3423 == REG_QTY (REGNO (folded_arg1))))
3424 || ((p0 = lookup (folded_arg0,
3425 SAFE_HASH (folded_arg0, mode_arg0),
3426 mode_arg0))
3427 && (p1 = lookup (folded_arg1,
3428 SAFE_HASH (folded_arg1, mode_arg0),
3429 mode_arg0))
3430 && p0->first_same_value == p1->first_same_value))
3431 folded_arg1 = folded_arg0;
3433 /* If FOLDED_ARG0 is a register, see if the comparison we are
3434 doing now is either the same as we did before or the reverse
3435 (we only check the reverse if not floating-point). */
3436 else if (REG_P (folded_arg0))
3438 int qty = REG_QTY (REGNO (folded_arg0));
3440 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3442 struct qty_table_elem *ent = &qty_table[qty];
3444 if ((comparison_dominates_p (ent->comparison_code, code)
3445 || (! FLOAT_MODE_P (mode_arg0)
3446 && comparison_dominates_p (ent->comparison_code,
3447 reverse_condition (code))))
3448 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3449 || (const_arg1
3450 && rtx_equal_p (ent->comparison_const,
3451 const_arg1))
3452 || (REG_P (folded_arg1)
3453 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3455 if (comparison_dominates_p (ent->comparison_code, code))
3457 if (true_rtx)
3458 return true_rtx;
3459 else
3460 break;
3462 else
3463 return false_rtx;
3470 /* If we are comparing against zero, see if the first operand is
3471 equivalent to an IOR with a constant. If so, we may be able to
3472 determine the result of this comparison. */
3473 if (const_arg1 == const0_rtx && !const_arg0)
3475 rtx y = lookup_as_function (folded_arg0, IOR);
3476 rtx inner_const;
3478 if (y != 0
3479 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3480 && CONST_INT_P (inner_const)
3481 && INTVAL (inner_const) != 0)
3482 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3486 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3487 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3488 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3489 op0, op1);
3491 break;
3493 case RTX_BIN_ARITH:
3494 case RTX_COMM_ARITH:
3495 switch (code)
3497 case PLUS:
3498 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3499 with that LABEL_REF as its second operand. If so, the result is
3500 the first operand of that MINUS. This handles switches with an
3501 ADDR_DIFF_VEC table. */
3502 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3504 rtx y
3505 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3506 : lookup_as_function (folded_arg0, MINUS);
3508 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3509 && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg1))
3510 return XEXP (y, 0);
3512 /* Now try for a CONST of a MINUS like the above. */
3513 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3514 : lookup_as_function (folded_arg0, CONST))) != 0
3515 && GET_CODE (XEXP (y, 0)) == MINUS
3516 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3517 && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg1))
3518 return XEXP (XEXP (y, 0), 0);
3521 /* Likewise if the operands are in the other order. */
3522 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3524 rtx y
3525 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3526 : lookup_as_function (folded_arg1, MINUS);
3528 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3529 && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg0))
3530 return XEXP (y, 0);
3532 /* Now try for a CONST of a MINUS like the above. */
3533 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3534 : lookup_as_function (folded_arg1, CONST))) != 0
3535 && GET_CODE (XEXP (y, 0)) == MINUS
3536 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3537 && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg0))
3538 return XEXP (XEXP (y, 0), 0);
3541 /* If second operand is a register equivalent to a negative
3542 CONST_INT, see if we can find a register equivalent to the
3543 positive constant. Make a MINUS if so. Don't do this for
3544 a non-negative constant since we might then alternate between
3545 choosing positive and negative constants. Having the positive
3546 constant previously-used is the more common case. Be sure
3547 the resulting constant is non-negative; if const_arg1 were
3548 the smallest negative number this would overflow: depending
3549 on the mode, this would either just be the same value (and
3550 hence not save anything) or be incorrect. */
3551 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3552 && INTVAL (const_arg1) < 0
3553 /* This used to test
3555 -INTVAL (const_arg1) >= 0
3557 But The Sun V5.0 compilers mis-compiled that test. So
3558 instead we test for the problematic value in a more direct
3559 manner and hope the Sun compilers get it correct. */
3560 && INTVAL (const_arg1) !=
3561 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3562 && REG_P (folded_arg1))
3564 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3565 struct table_elt *p
3566 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3568 if (p)
3569 for (p = p->first_same_value; p; p = p->next_same_value)
3570 if (REG_P (p->exp))
3571 return simplify_gen_binary (MINUS, mode, folded_arg0,
3572 canon_reg (p->exp, NULL));
3574 goto from_plus;
3576 case MINUS:
3577 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3578 If so, produce (PLUS Z C2-C). */
3579 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3581 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3582 if (y && CONST_INT_P (XEXP (y, 1)))
3583 return fold_rtx (plus_constant (mode, copy_rtx (y),
3584 -INTVAL (const_arg1)),
3585 NULL);
3588 /* Fall through. */
3590 from_plus:
3591 case SMIN: case SMAX: case UMIN: case UMAX:
3592 case IOR: case AND: case XOR:
3593 case MULT:
3594 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3595 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3596 is known to be of similar form, we may be able to replace the
3597 operation with a combined operation. This may eliminate the
3598 intermediate operation if every use is simplified in this way.
3599 Note that the similar optimization done by combine.c only works
3600 if the intermediate operation's result has only one reference. */
3602 if (REG_P (folded_arg0)
3603 && const_arg1 && CONST_INT_P (const_arg1))
3605 int is_shift
3606 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3607 rtx y, inner_const, new_const;
3608 rtx canon_const_arg1 = const_arg1;
3609 enum rtx_code associate_code;
3611 if (is_shift
3612 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3613 || INTVAL (const_arg1) < 0))
3615 if (SHIFT_COUNT_TRUNCATED)
3616 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3617 & (GET_MODE_BITSIZE (mode)
3618 - 1));
3619 else
3620 break;
3623 y = lookup_as_function (folded_arg0, code);
3624 if (y == 0)
3625 break;
3627 /* If we have compiled a statement like
3628 "if (x == (x & mask1))", and now are looking at
3629 "x & mask2", we will have a case where the first operand
3630 of Y is the same as our first operand. Unless we detect
3631 this case, an infinite loop will result. */
3632 if (XEXP (y, 0) == folded_arg0)
3633 break;
3635 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3636 if (!inner_const || !CONST_INT_P (inner_const))
3637 break;
3639 /* Don't associate these operations if they are a PLUS with the
3640 same constant and it is a power of two. These might be doable
3641 with a pre- or post-increment. Similarly for two subtracts of
3642 identical powers of two with post decrement. */
3644 if (code == PLUS && const_arg1 == inner_const
3645 && ((HAVE_PRE_INCREMENT
3646 && exact_log2 (INTVAL (const_arg1)) >= 0)
3647 || (HAVE_POST_INCREMENT
3648 && exact_log2 (INTVAL (const_arg1)) >= 0)
3649 || (HAVE_PRE_DECREMENT
3650 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3651 || (HAVE_POST_DECREMENT
3652 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3653 break;
3655 /* ??? Vector mode shifts by scalar
3656 shift operand are not supported yet. */
3657 if (is_shift && VECTOR_MODE_P (mode))
3658 break;
3660 if (is_shift
3661 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3662 || INTVAL (inner_const) < 0))
3664 if (SHIFT_COUNT_TRUNCATED)
3665 inner_const = GEN_INT (INTVAL (inner_const)
3666 & (GET_MODE_BITSIZE (mode) - 1));
3667 else
3668 break;
3671 /* Compute the code used to compose the constants. For example,
3672 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3674 associate_code = (is_shift || code == MINUS ? PLUS : code);
3676 new_const = simplify_binary_operation (associate_code, mode,
3677 canon_const_arg1,
3678 inner_const);
3680 if (new_const == 0)
3681 break;
3683 /* If we are associating shift operations, don't let this
3684 produce a shift of the size of the object or larger.
3685 This could occur when we follow a sign-extend by a right
3686 shift on a machine that does a sign-extend as a pair
3687 of shifts. */
3689 if (is_shift
3690 && CONST_INT_P (new_const)
3691 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3693 /* As an exception, we can turn an ASHIFTRT of this
3694 form into a shift of the number of bits - 1. */
3695 if (code == ASHIFTRT)
3696 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3697 else if (!side_effects_p (XEXP (y, 0)))
3698 return CONST0_RTX (mode);
3699 else
3700 break;
3703 y = copy_rtx (XEXP (y, 0));
3705 /* If Y contains our first operand (the most common way this
3706 can happen is if Y is a MEM), we would do into an infinite
3707 loop if we tried to fold it. So don't in that case. */
3709 if (! reg_mentioned_p (folded_arg0, y))
3710 y = fold_rtx (y, insn);
3712 return simplify_gen_binary (code, mode, y, new_const);
3714 break;
3716 case DIV: case UDIV:
3717 /* ??? The associative optimization performed immediately above is
3718 also possible for DIV and UDIV using associate_code of MULT.
3719 However, we would need extra code to verify that the
3720 multiplication does not overflow, that is, there is no overflow
3721 in the calculation of new_const. */
3722 break;
3724 default:
3725 break;
3728 new_rtx = simplify_binary_operation (code, mode,
3729 const_arg0 ? const_arg0 : folded_arg0,
3730 const_arg1 ? const_arg1 : folded_arg1);
3731 break;
3733 case RTX_OBJ:
3734 /* (lo_sum (high X) X) is simply X. */
3735 if (code == LO_SUM && const_arg0 != 0
3736 && GET_CODE (const_arg0) == HIGH
3737 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3738 return const_arg1;
3739 break;
3741 case RTX_TERNARY:
3742 case RTX_BITFIELD_OPS:
3743 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3744 const_arg0 ? const_arg0 : folded_arg0,
3745 const_arg1 ? const_arg1 : folded_arg1,
3746 const_arg2 ? const_arg2 : XEXP (x, 2));
3747 break;
3749 default:
3750 break;
3753 return new_rtx ? new_rtx : x;
3756 /* Return a constant value currently equivalent to X.
3757 Return 0 if we don't know one. */
3759 static rtx
3760 equiv_constant (rtx x)
3762 if (REG_P (x)
3763 && REGNO_QTY_VALID_P (REGNO (x)))
3765 int x_q = REG_QTY (REGNO (x));
3766 struct qty_table_elem *x_ent = &qty_table[x_q];
3768 if (x_ent->const_rtx)
3769 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3772 if (x == 0 || CONSTANT_P (x))
3773 return x;
3775 if (GET_CODE (x) == SUBREG)
3777 machine_mode mode = GET_MODE (x);
3778 machine_mode imode = GET_MODE (SUBREG_REG (x));
3779 rtx new_rtx;
3781 /* See if we previously assigned a constant value to this SUBREG. */
3782 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3783 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3784 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3785 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3786 return new_rtx;
3788 /* If we didn't and if doing so makes sense, see if we previously
3789 assigned a constant value to the enclosing word mode SUBREG. */
3790 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3791 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3793 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3794 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3796 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3797 new_rtx = lookup_as_function (y, CONST_INT);
3798 if (new_rtx)
3799 return gen_lowpart (mode, new_rtx);
3803 /* Otherwise see if we already have a constant for the inner REG,
3804 and if that is enough to calculate an equivalent constant for
3805 the subreg. Note that the upper bits of paradoxical subregs
3806 are undefined, so they cannot be said to equal anything. */
3807 if (REG_P (SUBREG_REG (x))
3808 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3809 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3810 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3812 return 0;
3815 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3816 the hash table in case its value was seen before. */
3818 if (MEM_P (x))
3820 struct table_elt *elt;
3822 x = avoid_constant_pool_reference (x);
3823 if (CONSTANT_P (x))
3824 return x;
3826 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3827 if (elt == 0)
3828 return 0;
3830 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3831 if (elt->is_const && CONSTANT_P (elt->exp))
3832 return elt->exp;
3835 return 0;
3838 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3839 "taken" branch.
3841 In certain cases, this can cause us to add an equivalence. For example,
3842 if we are following the taken case of
3843 if (i == 2)
3844 we can add the fact that `i' and '2' are now equivalent.
3846 In any case, we can record that this comparison was passed. If the same
3847 comparison is seen later, we will know its value. */
3849 static void
3850 record_jump_equiv (rtx_insn *insn, bool taken)
3852 int cond_known_true;
3853 rtx op0, op1;
3854 rtx set;
3855 machine_mode mode, mode0, mode1;
3856 int reversed_nonequality = 0;
3857 enum rtx_code code;
3859 /* Ensure this is the right kind of insn. */
3860 gcc_assert (any_condjump_p (insn));
3862 set = pc_set (insn);
3864 /* See if this jump condition is known true or false. */
3865 if (taken)
3866 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3867 else
3868 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3870 /* Get the type of comparison being done and the operands being compared.
3871 If we had to reverse a non-equality condition, record that fact so we
3872 know that it isn't valid for floating-point. */
3873 code = GET_CODE (XEXP (SET_SRC (set), 0));
3874 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3875 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3877 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3878 if (! cond_known_true)
3880 code = reversed_comparison_code_parts (code, op0, op1, insn);
3882 /* Don't remember if we can't find the inverse. */
3883 if (code == UNKNOWN)
3884 return;
3887 /* The mode is the mode of the non-constant. */
3888 mode = mode0;
3889 if (mode1 != VOIDmode)
3890 mode = mode1;
3892 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3895 /* Yet another form of subreg creation. In this case, we want something in
3896 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3898 static rtx
3899 record_jump_cond_subreg (machine_mode mode, rtx op)
3901 machine_mode op_mode = GET_MODE (op);
3902 if (op_mode == mode || op_mode == VOIDmode)
3903 return op;
3904 return lowpart_subreg (mode, op, op_mode);
3907 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3908 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3909 Make any useful entries we can with that information. Called from
3910 above function and called recursively. */
3912 static void
3913 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3914 rtx op1, int reversed_nonequality)
3916 unsigned op0_hash, op1_hash;
3917 int op0_in_memory, op1_in_memory;
3918 struct table_elt *op0_elt, *op1_elt;
3920 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3921 we know that they are also equal in the smaller mode (this is also
3922 true for all smaller modes whether or not there is a SUBREG, but
3923 is not worth testing for with no SUBREG). */
3925 /* Note that GET_MODE (op0) may not equal MODE. */
3926 if (code == EQ && paradoxical_subreg_p (op0))
3928 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3929 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3930 if (tem)
3931 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3932 reversed_nonequality);
3935 if (code == EQ && paradoxical_subreg_p (op1))
3937 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3938 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3939 if (tem)
3940 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3941 reversed_nonequality);
3944 /* Similarly, if this is an NE comparison, and either is a SUBREG
3945 making a smaller mode, we know the whole thing is also NE. */
3947 /* Note that GET_MODE (op0) may not equal MODE;
3948 if we test MODE instead, we can get an infinite recursion
3949 alternating between two modes each wider than MODE. */
3951 if (code == NE && GET_CODE (op0) == SUBREG
3952 && subreg_lowpart_p (op0)
3953 && (GET_MODE_SIZE (GET_MODE (op0))
3954 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3956 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3957 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3958 if (tem)
3959 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3960 reversed_nonequality);
3963 if (code == NE && GET_CODE (op1) == SUBREG
3964 && subreg_lowpart_p (op1)
3965 && (GET_MODE_SIZE (GET_MODE (op1))
3966 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3968 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3969 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3970 if (tem)
3971 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3972 reversed_nonequality);
3975 /* Hash both operands. */
3977 do_not_record = 0;
3978 hash_arg_in_memory = 0;
3979 op0_hash = HASH (op0, mode);
3980 op0_in_memory = hash_arg_in_memory;
3982 if (do_not_record)
3983 return;
3985 do_not_record = 0;
3986 hash_arg_in_memory = 0;
3987 op1_hash = HASH (op1, mode);
3988 op1_in_memory = hash_arg_in_memory;
3990 if (do_not_record)
3991 return;
3993 /* Look up both operands. */
3994 op0_elt = lookup (op0, op0_hash, mode);
3995 op1_elt = lookup (op1, op1_hash, mode);
3997 /* If both operands are already equivalent or if they are not in the
3998 table but are identical, do nothing. */
3999 if ((op0_elt != 0 && op1_elt != 0
4000 && op0_elt->first_same_value == op1_elt->first_same_value)
4001 || op0 == op1 || rtx_equal_p (op0, op1))
4002 return;
4004 /* If we aren't setting two things equal all we can do is save this
4005 comparison. Similarly if this is floating-point. In the latter
4006 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4007 If we record the equality, we might inadvertently delete code
4008 whose intent was to change -0 to +0. */
4010 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4012 struct qty_table_elem *ent;
4013 int qty;
4015 /* If we reversed a floating-point comparison, if OP0 is not a
4016 register, or if OP1 is neither a register or constant, we can't
4017 do anything. */
4019 if (!REG_P (op1))
4020 op1 = equiv_constant (op1);
4022 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4023 || !REG_P (op0) || op1 == 0)
4024 return;
4026 /* Put OP0 in the hash table if it isn't already. This gives it a
4027 new quantity number. */
4028 if (op0_elt == 0)
4030 if (insert_regs (op0, NULL, 0))
4032 rehash_using_reg (op0);
4033 op0_hash = HASH (op0, mode);
4035 /* If OP0 is contained in OP1, this changes its hash code
4036 as well. Faster to rehash than to check, except
4037 for the simple case of a constant. */
4038 if (! CONSTANT_P (op1))
4039 op1_hash = HASH (op1,mode);
4042 op0_elt = insert (op0, NULL, op0_hash, mode);
4043 op0_elt->in_memory = op0_in_memory;
4046 qty = REG_QTY (REGNO (op0));
4047 ent = &qty_table[qty];
4049 ent->comparison_code = code;
4050 if (REG_P (op1))
4052 /* Look it up again--in case op0 and op1 are the same. */
4053 op1_elt = lookup (op1, op1_hash, mode);
4055 /* Put OP1 in the hash table so it gets a new quantity number. */
4056 if (op1_elt == 0)
4058 if (insert_regs (op1, NULL, 0))
4060 rehash_using_reg (op1);
4061 op1_hash = HASH (op1, mode);
4064 op1_elt = insert (op1, NULL, op1_hash, mode);
4065 op1_elt->in_memory = op1_in_memory;
4068 ent->comparison_const = NULL_RTX;
4069 ent->comparison_qty = REG_QTY (REGNO (op1));
4071 else
4073 ent->comparison_const = op1;
4074 ent->comparison_qty = -1;
4077 return;
4080 /* If either side is still missing an equivalence, make it now,
4081 then merge the equivalences. */
4083 if (op0_elt == 0)
4085 if (insert_regs (op0, NULL, 0))
4087 rehash_using_reg (op0);
4088 op0_hash = HASH (op0, mode);
4091 op0_elt = insert (op0, NULL, op0_hash, mode);
4092 op0_elt->in_memory = op0_in_memory;
4095 if (op1_elt == 0)
4097 if (insert_regs (op1, NULL, 0))
4099 rehash_using_reg (op1);
4100 op1_hash = HASH (op1, mode);
4103 op1_elt = insert (op1, NULL, op1_hash, mode);
4104 op1_elt->in_memory = op1_in_memory;
4107 merge_equiv_classes (op0_elt, op1_elt);
4110 /* CSE processing for one instruction.
4112 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4113 but the few that "leak through" are cleaned up by cse_insn, and complex
4114 addressing modes are often formed here.
4116 The main function is cse_insn, and between here and that function
4117 a couple of helper functions is defined to keep the size of cse_insn
4118 within reasonable proportions.
4120 Data is shared between the main and helper functions via STRUCT SET,
4121 that contains all data related for every set in the instruction that
4122 is being processed.
4124 Note that cse_main processes all sets in the instruction. Most
4125 passes in GCC only process simple SET insns or single_set insns, but
4126 CSE processes insns with multiple sets as well. */
4128 /* Data on one SET contained in the instruction. */
4130 struct set
4132 /* The SET rtx itself. */
4133 rtx rtl;
4134 /* The SET_SRC of the rtx (the original value, if it is changing). */
4135 rtx src;
4136 /* The hash-table element for the SET_SRC of the SET. */
4137 struct table_elt *src_elt;
4138 /* Hash value for the SET_SRC. */
4139 unsigned src_hash;
4140 /* Hash value for the SET_DEST. */
4141 unsigned dest_hash;
4142 /* The SET_DEST, with SUBREG, etc., stripped. */
4143 rtx inner_dest;
4144 /* Nonzero if the SET_SRC is in memory. */
4145 char src_in_memory;
4146 /* Nonzero if the SET_SRC contains something
4147 whose value cannot be predicted and understood. */
4148 char src_volatile;
4149 /* Original machine mode, in case it becomes a CONST_INT.
4150 The size of this field should match the size of the mode
4151 field of struct rtx_def (see rtl.h). */
4152 ENUM_BITFIELD(machine_mode) mode : 8;
4153 /* A constant equivalent for SET_SRC, if any. */
4154 rtx src_const;
4155 /* Hash value of constant equivalent for SET_SRC. */
4156 unsigned src_const_hash;
4157 /* Table entry for constant equivalent for SET_SRC, if any. */
4158 struct table_elt *src_const_elt;
4159 /* Table entry for the destination address. */
4160 struct table_elt *dest_addr_elt;
4163 /* Special handling for (set REG0 REG1) where REG0 is the
4164 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4165 be used in the sequel, so (if easily done) change this insn to
4166 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4167 that computed their value. Then REG1 will become a dead store
4168 and won't cloud the situation for later optimizations.
4170 Do not make this change if REG1 is a hard register, because it will
4171 then be used in the sequel and we may be changing a two-operand insn
4172 into a three-operand insn.
4174 This is the last transformation that cse_insn will try to do. */
4176 static void
4177 try_back_substitute_reg (rtx set, rtx_insn *insn)
4179 rtx dest = SET_DEST (set);
4180 rtx src = SET_SRC (set);
4182 if (REG_P (dest)
4183 && REG_P (src) && ! HARD_REGISTER_P (src)
4184 && REGNO_QTY_VALID_P (REGNO (src)))
4186 int src_q = REG_QTY (REGNO (src));
4187 struct qty_table_elem *src_ent = &qty_table[src_q];
4189 if (src_ent->first_reg == REGNO (dest))
4191 /* Scan for the previous nonnote insn, but stop at a basic
4192 block boundary. */
4193 rtx_insn *prev = insn;
4194 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4197 prev = PREV_INSN (prev);
4199 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4201 /* Do not swap the registers around if the previous instruction
4202 attaches a REG_EQUIV note to REG1.
4204 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4205 from the pseudo that originally shadowed an incoming argument
4206 to another register. Some uses of REG_EQUIV might rely on it
4207 being attached to REG1 rather than REG2.
4209 This section previously turned the REG_EQUIV into a REG_EQUAL
4210 note. We cannot do that because REG_EQUIV may provide an
4211 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4212 if (NONJUMP_INSN_P (prev)
4213 && GET_CODE (PATTERN (prev)) == SET
4214 && SET_DEST (PATTERN (prev)) == src
4215 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4217 rtx note;
4219 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4220 validate_change (insn, &SET_DEST (set), src, 1);
4221 validate_change (insn, &SET_SRC (set), dest, 1);
4222 apply_change_group ();
4224 /* If INSN has a REG_EQUAL note, and this note mentions
4225 REG0, then we must delete it, because the value in
4226 REG0 has changed. If the note's value is REG1, we must
4227 also delete it because that is now this insn's dest. */
4228 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4229 if (note != 0
4230 && (reg_mentioned_p (dest, XEXP (note, 0))
4231 || rtx_equal_p (src, XEXP (note, 0))))
4232 remove_note (insn, note);
4238 /* Record all the SETs in this instruction into SETS_PTR,
4239 and return the number of recorded sets. */
4240 static int
4241 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4243 struct set *sets = *psets;
4244 int n_sets = 0;
4245 rtx x = PATTERN (insn);
4247 if (GET_CODE (x) == SET)
4249 /* Ignore SETs that are unconditional jumps.
4250 They never need cse processing, so this does not hurt.
4251 The reason is not efficiency but rather
4252 so that we can test at the end for instructions
4253 that have been simplified to unconditional jumps
4254 and not be misled by unchanged instructions
4255 that were unconditional jumps to begin with. */
4256 if (SET_DEST (x) == pc_rtx
4257 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4259 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4260 The hard function value register is used only once, to copy to
4261 someplace else, so it isn't worth cse'ing. */
4262 else if (GET_CODE (SET_SRC (x)) == CALL)
4264 else
4265 sets[n_sets++].rtl = x;
4267 else if (GET_CODE (x) == PARALLEL)
4269 int i, lim = XVECLEN (x, 0);
4271 /* Go over the expressions of the PARALLEL in forward order, to
4272 put them in the same order in the SETS array. */
4273 for (i = 0; i < lim; i++)
4275 rtx y = XVECEXP (x, 0, i);
4276 if (GET_CODE (y) == SET)
4278 /* As above, we ignore unconditional jumps and call-insns and
4279 ignore the result of apply_change_group. */
4280 if (SET_DEST (y) == pc_rtx
4281 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4283 else if (GET_CODE (SET_SRC (y)) == CALL)
4285 else
4286 sets[n_sets++].rtl = y;
4291 return n_sets;
4294 /* Where possible, substitute every register reference in the N_SETS
4295 number of SETS in INSN with the canonical register.
4297 Register canonicalization propagatest the earliest register (i.e.
4298 one that is set before INSN) with the same value. This is a very
4299 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4300 to RTL. For instance, a CONST for an address is usually expanded
4301 multiple times to loads into different registers, thus creating many
4302 subexpressions of the form:
4304 (set (reg1) (some_const))
4305 (set (mem (... reg1 ...) (thing)))
4306 (set (reg2) (some_const))
4307 (set (mem (... reg2 ...) (thing)))
4309 After canonicalizing, the code takes the following form:
4311 (set (reg1) (some_const))
4312 (set (mem (... reg1 ...) (thing)))
4313 (set (reg2) (some_const))
4314 (set (mem (... reg1 ...) (thing)))
4316 The set to reg2 is now trivially dead, and the memory reference (or
4317 address, or whatever) may be a candidate for further CSEing.
4319 In this function, the result of apply_change_group can be ignored;
4320 see canon_reg. */
4322 static void
4323 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4325 struct set *sets = *psets;
4326 rtx tem;
4327 rtx x = PATTERN (insn);
4328 int i;
4330 if (CALL_P (insn))
4332 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4333 if (GET_CODE (XEXP (tem, 0)) != SET)
4334 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4337 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4339 canon_reg (SET_SRC (x), insn);
4340 apply_change_group ();
4341 fold_rtx (SET_SRC (x), insn);
4343 else if (GET_CODE (x) == CLOBBER)
4345 /* If we clobber memory, canon the address.
4346 This does nothing when a register is clobbered
4347 because we have already invalidated the reg. */
4348 if (MEM_P (XEXP (x, 0)))
4349 canon_reg (XEXP (x, 0), insn);
4351 else if (GET_CODE (x) == USE
4352 && ! (REG_P (XEXP (x, 0))
4353 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4354 /* Canonicalize a USE of a pseudo register or memory location. */
4355 canon_reg (x, insn);
4356 else if (GET_CODE (x) == ASM_OPERANDS)
4358 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4360 rtx input = ASM_OPERANDS_INPUT (x, i);
4361 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4363 input = canon_reg (input, insn);
4364 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4368 else if (GET_CODE (x) == CALL)
4370 canon_reg (x, insn);
4371 apply_change_group ();
4372 fold_rtx (x, insn);
4374 else if (DEBUG_INSN_P (insn))
4375 canon_reg (PATTERN (insn), insn);
4376 else if (GET_CODE (x) == PARALLEL)
4378 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4380 rtx y = XVECEXP (x, 0, i);
4381 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4383 canon_reg (SET_SRC (y), insn);
4384 apply_change_group ();
4385 fold_rtx (SET_SRC (y), insn);
4387 else if (GET_CODE (y) == CLOBBER)
4389 if (MEM_P (XEXP (y, 0)))
4390 canon_reg (XEXP (y, 0), insn);
4392 else if (GET_CODE (y) == USE
4393 && ! (REG_P (XEXP (y, 0))
4394 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4395 canon_reg (y, insn);
4396 else if (GET_CODE (y) == CALL)
4398 canon_reg (y, insn);
4399 apply_change_group ();
4400 fold_rtx (y, insn);
4405 if (n_sets == 1 && REG_NOTES (insn) != 0
4406 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4408 /* We potentially will process this insn many times. Therefore,
4409 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4410 unique set in INSN.
4412 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4413 because cse_insn handles those specially. */
4414 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4415 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4416 remove_note (insn, tem);
4417 else
4419 canon_reg (XEXP (tem, 0), insn);
4420 apply_change_group ();
4421 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4422 df_notes_rescan (insn);
4426 /* Canonicalize sources and addresses of destinations.
4427 We do this in a separate pass to avoid problems when a MATCH_DUP is
4428 present in the insn pattern. In that case, we want to ensure that
4429 we don't break the duplicate nature of the pattern. So we will replace
4430 both operands at the same time. Otherwise, we would fail to find an
4431 equivalent substitution in the loop calling validate_change below.
4433 We used to suppress canonicalization of DEST if it appears in SRC,
4434 but we don't do this any more. */
4436 for (i = 0; i < n_sets; i++)
4438 rtx dest = SET_DEST (sets[i].rtl);
4439 rtx src = SET_SRC (sets[i].rtl);
4440 rtx new_rtx = canon_reg (src, insn);
4442 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4444 if (GET_CODE (dest) == ZERO_EXTRACT)
4446 validate_change (insn, &XEXP (dest, 1),
4447 canon_reg (XEXP (dest, 1), insn), 1);
4448 validate_change (insn, &XEXP (dest, 2),
4449 canon_reg (XEXP (dest, 2), insn), 1);
4452 while (GET_CODE (dest) == SUBREG
4453 || GET_CODE (dest) == ZERO_EXTRACT
4454 || GET_CODE (dest) == STRICT_LOW_PART)
4455 dest = XEXP (dest, 0);
4457 if (MEM_P (dest))
4458 canon_reg (dest, insn);
4461 /* Now that we have done all the replacements, we can apply the change
4462 group and see if they all work. Note that this will cause some
4463 canonicalizations that would have worked individually not to be applied
4464 because some other canonicalization didn't work, but this should not
4465 occur often.
4467 The result of apply_change_group can be ignored; see canon_reg. */
4469 apply_change_group ();
4472 /* Main function of CSE.
4473 First simplify sources and addresses of all assignments
4474 in the instruction, using previously-computed equivalents values.
4475 Then install the new sources and destinations in the table
4476 of available values. */
4478 static void
4479 cse_insn (rtx_insn *insn)
4481 rtx x = PATTERN (insn);
4482 int i;
4483 rtx tem;
4484 int n_sets = 0;
4486 rtx src_eqv = 0;
4487 struct table_elt *src_eqv_elt = 0;
4488 int src_eqv_volatile = 0;
4489 int src_eqv_in_memory = 0;
4490 unsigned src_eqv_hash = 0;
4492 struct set *sets = (struct set *) 0;
4494 if (GET_CODE (x) == SET)
4495 sets = XALLOCA (struct set);
4496 else if (GET_CODE (x) == PARALLEL)
4497 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4499 this_insn = insn;
4500 /* Records what this insn does to set CC0. */
4501 this_insn_cc0 = 0;
4502 this_insn_cc0_mode = VOIDmode;
4504 /* Find all regs explicitly clobbered in this insn,
4505 to ensure they are not replaced with any other regs
4506 elsewhere in this insn. */
4507 invalidate_from_sets_and_clobbers (insn);
4509 /* Record all the SETs in this instruction. */
4510 n_sets = find_sets_in_insn (insn, &sets);
4512 /* Substitute the canonical register where possible. */
4513 canonicalize_insn (insn, &sets, n_sets);
4515 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4516 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4517 latter condition is necessary because SRC_EQV is handled specially for
4518 this case, and if it isn't set, then there will be no equivalence
4519 for the destination. */
4520 if (n_sets == 1 && REG_NOTES (insn) != 0
4521 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4524 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4525 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4526 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4527 src_eqv = copy_rtx (XEXP (tem, 0));
4528 /* If DEST is of the form ZERO_EXTACT, as in:
4529 (set (zero_extract:SI (reg:SI 119)
4530 (const_int 16 [0x10])
4531 (const_int 16 [0x10]))
4532 (const_int 51154 [0xc7d2]))
4533 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4534 point. Note that this is different from SRC_EQV. We can however
4535 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4536 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
4537 && CONST_INT_P (XEXP (tem, 0))
4538 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4539 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4541 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
4542 rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4543 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
4544 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
4545 HOST_WIDE_INT mask;
4546 unsigned int shift;
4547 if (BITS_BIG_ENDIAN)
4548 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
4549 - INTVAL (pos) - INTVAL (width);
4550 else
4551 shift = INTVAL (pos);
4552 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
4553 mask = ~(HOST_WIDE_INT) 0;
4554 else
4555 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
4556 val = (val >> shift) & mask;
4557 src_eqv = GEN_INT (val);
4561 /* Set sets[i].src_elt to the class each source belongs to.
4562 Detect assignments from or to volatile things
4563 and set set[i] to zero so they will be ignored
4564 in the rest of this function.
4566 Nothing in this loop changes the hash table or the register chains. */
4568 for (i = 0; i < n_sets; i++)
4570 bool repeat = false;
4571 rtx src, dest;
4572 rtx src_folded;
4573 struct table_elt *elt = 0, *p;
4574 machine_mode mode;
4575 rtx src_eqv_here;
4576 rtx src_const = 0;
4577 rtx src_related = 0;
4578 bool src_related_is_const_anchor = false;
4579 struct table_elt *src_const_elt = 0;
4580 int src_cost = MAX_COST;
4581 int src_eqv_cost = MAX_COST;
4582 int src_folded_cost = MAX_COST;
4583 int src_related_cost = MAX_COST;
4584 int src_elt_cost = MAX_COST;
4585 int src_regcost = MAX_COST;
4586 int src_eqv_regcost = MAX_COST;
4587 int src_folded_regcost = MAX_COST;
4588 int src_related_regcost = MAX_COST;
4589 int src_elt_regcost = MAX_COST;
4590 /* Set nonzero if we need to call force_const_mem on with the
4591 contents of src_folded before using it. */
4592 int src_folded_force_flag = 0;
4594 dest = SET_DEST (sets[i].rtl);
4595 src = SET_SRC (sets[i].rtl);
4597 /* If SRC is a constant that has no machine mode,
4598 hash it with the destination's machine mode.
4599 This way we can keep different modes separate. */
4601 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4602 sets[i].mode = mode;
4604 if (src_eqv)
4606 machine_mode eqvmode = mode;
4607 if (GET_CODE (dest) == STRICT_LOW_PART)
4608 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4609 do_not_record = 0;
4610 hash_arg_in_memory = 0;
4611 src_eqv_hash = HASH (src_eqv, eqvmode);
4613 /* Find the equivalence class for the equivalent expression. */
4615 if (!do_not_record)
4616 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4618 src_eqv_volatile = do_not_record;
4619 src_eqv_in_memory = hash_arg_in_memory;
4622 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4623 value of the INNER register, not the destination. So it is not
4624 a valid substitution for the source. But save it for later. */
4625 if (GET_CODE (dest) == STRICT_LOW_PART)
4626 src_eqv_here = 0;
4627 else
4628 src_eqv_here = src_eqv;
4630 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4631 simplified result, which may not necessarily be valid. */
4632 src_folded = fold_rtx (src, insn);
4634 #if 0
4635 /* ??? This caused bad code to be generated for the m68k port with -O2.
4636 Suppose src is (CONST_INT -1), and that after truncation src_folded
4637 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4638 At the end we will add src and src_const to the same equivalence
4639 class. We now have 3 and -1 on the same equivalence class. This
4640 causes later instructions to be mis-optimized. */
4641 /* If storing a constant in a bitfield, pre-truncate the constant
4642 so we will be able to record it later. */
4643 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4645 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4647 if (CONST_INT_P (src)
4648 && CONST_INT_P (width)
4649 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4650 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4651 src_folded
4652 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4653 << INTVAL (width)) - 1));
4655 #endif
4657 /* Compute SRC's hash code, and also notice if it
4658 should not be recorded at all. In that case,
4659 prevent any further processing of this assignment. */
4660 do_not_record = 0;
4661 hash_arg_in_memory = 0;
4663 sets[i].src = src;
4664 sets[i].src_hash = HASH (src, mode);
4665 sets[i].src_volatile = do_not_record;
4666 sets[i].src_in_memory = hash_arg_in_memory;
4668 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4669 a pseudo, do not record SRC. Using SRC as a replacement for
4670 anything else will be incorrect in that situation. Note that
4671 this usually occurs only for stack slots, in which case all the
4672 RTL would be referring to SRC, so we don't lose any optimization
4673 opportunities by not having SRC in the hash table. */
4675 if (MEM_P (src)
4676 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4677 && REG_P (dest)
4678 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4679 sets[i].src_volatile = 1;
4681 else if (GET_CODE (src) == ASM_OPERANDS
4682 && GET_CODE (x) == PARALLEL)
4684 /* Do not record result of a non-volatile inline asm with
4685 more than one result. */
4686 if (n_sets > 1)
4687 sets[i].src_volatile = 1;
4689 int j, lim = XVECLEN (x, 0);
4690 for (j = 0; j < lim; j++)
4692 rtx y = XVECEXP (x, 0, j);
4693 /* And do not record result of a non-volatile inline asm
4694 with "memory" clobber. */
4695 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4697 sets[i].src_volatile = 1;
4698 break;
4703 #if 0
4704 /* It is no longer clear why we used to do this, but it doesn't
4705 appear to still be needed. So let's try without it since this
4706 code hurts cse'ing widened ops. */
4707 /* If source is a paradoxical subreg (such as QI treated as an SI),
4708 treat it as volatile. It may do the work of an SI in one context
4709 where the extra bits are not being used, but cannot replace an SI
4710 in general. */
4711 if (paradoxical_subreg_p (src))
4712 sets[i].src_volatile = 1;
4713 #endif
4715 /* Locate all possible equivalent forms for SRC. Try to replace
4716 SRC in the insn with each cheaper equivalent.
4718 We have the following types of equivalents: SRC itself, a folded
4719 version, a value given in a REG_EQUAL note, or a value related
4720 to a constant.
4722 Each of these equivalents may be part of an additional class
4723 of equivalents (if more than one is in the table, they must be in
4724 the same class; we check for this).
4726 If the source is volatile, we don't do any table lookups.
4728 We note any constant equivalent for possible later use in a
4729 REG_NOTE. */
4731 if (!sets[i].src_volatile)
4732 elt = lookup (src, sets[i].src_hash, mode);
4734 sets[i].src_elt = elt;
4736 if (elt && src_eqv_here && src_eqv_elt)
4738 if (elt->first_same_value != src_eqv_elt->first_same_value)
4740 /* The REG_EQUAL is indicating that two formerly distinct
4741 classes are now equivalent. So merge them. */
4742 merge_equiv_classes (elt, src_eqv_elt);
4743 src_eqv_hash = HASH (src_eqv, elt->mode);
4744 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4747 src_eqv_here = 0;
4750 else if (src_eqv_elt)
4751 elt = src_eqv_elt;
4753 /* Try to find a constant somewhere and record it in `src_const'.
4754 Record its table element, if any, in `src_const_elt'. Look in
4755 any known equivalences first. (If the constant is not in the
4756 table, also set `sets[i].src_const_hash'). */
4757 if (elt)
4758 for (p = elt->first_same_value; p; p = p->next_same_value)
4759 if (p->is_const)
4761 src_const = p->exp;
4762 src_const_elt = elt;
4763 break;
4766 if (src_const == 0
4767 && (CONSTANT_P (src_folded)
4768 /* Consider (minus (label_ref L1) (label_ref L2)) as
4769 "constant" here so we will record it. This allows us
4770 to fold switch statements when an ADDR_DIFF_VEC is used. */
4771 || (GET_CODE (src_folded) == MINUS
4772 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4773 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4774 src_const = src_folded, src_const_elt = elt;
4775 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4776 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4778 /* If we don't know if the constant is in the table, get its
4779 hash code and look it up. */
4780 if (src_const && src_const_elt == 0)
4782 sets[i].src_const_hash = HASH (src_const, mode);
4783 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4786 sets[i].src_const = src_const;
4787 sets[i].src_const_elt = src_const_elt;
4789 /* If the constant and our source are both in the table, mark them as
4790 equivalent. Otherwise, if a constant is in the table but the source
4791 isn't, set ELT to it. */
4792 if (src_const_elt && elt
4793 && src_const_elt->first_same_value != elt->first_same_value)
4794 merge_equiv_classes (elt, src_const_elt);
4795 else if (src_const_elt && elt == 0)
4796 elt = src_const_elt;
4798 /* See if there is a register linearly related to a constant
4799 equivalent of SRC. */
4800 if (src_const
4801 && (GET_CODE (src_const) == CONST
4802 || (src_const_elt && src_const_elt->related_value != 0)))
4804 src_related = use_related_value (src_const, src_const_elt);
4805 if (src_related)
4807 struct table_elt *src_related_elt
4808 = lookup (src_related, HASH (src_related, mode), mode);
4809 if (src_related_elt && elt)
4811 if (elt->first_same_value
4812 != src_related_elt->first_same_value)
4813 /* This can occur when we previously saw a CONST
4814 involving a SYMBOL_REF and then see the SYMBOL_REF
4815 twice. Merge the involved classes. */
4816 merge_equiv_classes (elt, src_related_elt);
4818 src_related = 0;
4819 src_related_elt = 0;
4821 else if (src_related_elt && elt == 0)
4822 elt = src_related_elt;
4826 /* See if we have a CONST_INT that is already in a register in a
4827 wider mode. */
4829 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4830 && GET_MODE_CLASS (mode) == MODE_INT
4831 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4833 machine_mode wider_mode;
4835 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4836 wider_mode != VOIDmode
4837 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4838 && src_related == 0;
4839 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4841 struct table_elt *const_elt
4842 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4844 if (const_elt == 0)
4845 continue;
4847 for (const_elt = const_elt->first_same_value;
4848 const_elt; const_elt = const_elt->next_same_value)
4849 if (REG_P (const_elt->exp))
4851 src_related = gen_lowpart (mode, const_elt->exp);
4852 break;
4857 /* Another possibility is that we have an AND with a constant in
4858 a mode narrower than a word. If so, it might have been generated
4859 as part of an "if" which would narrow the AND. If we already
4860 have done the AND in a wider mode, we can use a SUBREG of that
4861 value. */
4863 if (flag_expensive_optimizations && ! src_related
4864 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4865 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4867 machine_mode tmode;
4868 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4870 for (tmode = GET_MODE_WIDER_MODE (mode);
4871 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4872 tmode = GET_MODE_WIDER_MODE (tmode))
4874 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4875 struct table_elt *larger_elt;
4877 if (inner)
4879 PUT_MODE (new_and, tmode);
4880 XEXP (new_and, 0) = inner;
4881 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4882 if (larger_elt == 0)
4883 continue;
4885 for (larger_elt = larger_elt->first_same_value;
4886 larger_elt; larger_elt = larger_elt->next_same_value)
4887 if (REG_P (larger_elt->exp))
4889 src_related
4890 = gen_lowpart (mode, larger_elt->exp);
4891 break;
4894 if (src_related)
4895 break;
4900 /* See if a MEM has already been loaded with a widening operation;
4901 if it has, we can use a subreg of that. Many CISC machines
4902 also have such operations, but this is only likely to be
4903 beneficial on these machines. */
4905 if (flag_expensive_optimizations && src_related == 0
4906 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4907 && GET_MODE_CLASS (mode) == MODE_INT
4908 && MEM_P (src) && ! do_not_record
4909 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4911 struct rtx_def memory_extend_buf;
4912 rtx memory_extend_rtx = &memory_extend_buf;
4913 machine_mode tmode;
4915 /* Set what we are trying to extend and the operation it might
4916 have been extended with. */
4917 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4918 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4919 XEXP (memory_extend_rtx, 0) = src;
4921 for (tmode = GET_MODE_WIDER_MODE (mode);
4922 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4923 tmode = GET_MODE_WIDER_MODE (tmode))
4925 struct table_elt *larger_elt;
4927 PUT_MODE (memory_extend_rtx, tmode);
4928 larger_elt = lookup (memory_extend_rtx,
4929 HASH (memory_extend_rtx, tmode), tmode);
4930 if (larger_elt == 0)
4931 continue;
4933 for (larger_elt = larger_elt->first_same_value;
4934 larger_elt; larger_elt = larger_elt->next_same_value)
4935 if (REG_P (larger_elt->exp))
4937 src_related = gen_lowpart (mode, larger_elt->exp);
4938 break;
4941 if (src_related)
4942 break;
4946 /* Try to express the constant using a register+offset expression
4947 derived from a constant anchor. */
4949 if (targetm.const_anchor
4950 && !src_related
4951 && src_const
4952 && GET_CODE (src_const) == CONST_INT)
4954 src_related = try_const_anchors (src_const, mode);
4955 src_related_is_const_anchor = src_related != NULL_RTX;
4959 if (src == src_folded)
4960 src_folded = 0;
4962 /* At this point, ELT, if nonzero, points to a class of expressions
4963 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4964 and SRC_RELATED, if nonzero, each contain additional equivalent
4965 expressions. Prune these latter expressions by deleting expressions
4966 already in the equivalence class.
4968 Check for an equivalent identical to the destination. If found,
4969 this is the preferred equivalent since it will likely lead to
4970 elimination of the insn. Indicate this by placing it in
4971 `src_related'. */
4973 if (elt)
4974 elt = elt->first_same_value;
4975 for (p = elt; p; p = p->next_same_value)
4977 enum rtx_code code = GET_CODE (p->exp);
4979 /* If the expression is not valid, ignore it. Then we do not
4980 have to check for validity below. In most cases, we can use
4981 `rtx_equal_p', since canonicalization has already been done. */
4982 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4983 continue;
4985 /* Also skip paradoxical subregs, unless that's what we're
4986 looking for. */
4987 if (paradoxical_subreg_p (p->exp)
4988 && ! (src != 0
4989 && GET_CODE (src) == SUBREG
4990 && GET_MODE (src) == GET_MODE (p->exp)
4991 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4992 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4993 continue;
4995 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4996 src = 0;
4997 else if (src_folded && GET_CODE (src_folded) == code
4998 && rtx_equal_p (src_folded, p->exp))
4999 src_folded = 0;
5000 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5001 && rtx_equal_p (src_eqv_here, p->exp))
5002 src_eqv_here = 0;
5003 else if (src_related && GET_CODE (src_related) == code
5004 && rtx_equal_p (src_related, p->exp))
5005 src_related = 0;
5007 /* This is the same as the destination of the insns, we want
5008 to prefer it. Copy it to src_related. The code below will
5009 then give it a negative cost. */
5010 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5011 src_related = dest;
5014 /* Find the cheapest valid equivalent, trying all the available
5015 possibilities. Prefer items not in the hash table to ones
5016 that are when they are equal cost. Note that we can never
5017 worsen an insn as the current contents will also succeed.
5018 If we find an equivalent identical to the destination, use it as best,
5019 since this insn will probably be eliminated in that case. */
5020 if (src)
5022 if (rtx_equal_p (src, dest))
5023 src_cost = src_regcost = -1;
5024 else
5026 src_cost = COST (src, mode);
5027 src_regcost = approx_reg_cost (src);
5031 if (src_eqv_here)
5033 if (rtx_equal_p (src_eqv_here, dest))
5034 src_eqv_cost = src_eqv_regcost = -1;
5035 else
5037 src_eqv_cost = COST (src_eqv_here, mode);
5038 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5042 if (src_folded)
5044 if (rtx_equal_p (src_folded, dest))
5045 src_folded_cost = src_folded_regcost = -1;
5046 else
5048 src_folded_cost = COST (src_folded, mode);
5049 src_folded_regcost = approx_reg_cost (src_folded);
5053 if (src_related)
5055 if (rtx_equal_p (src_related, dest))
5056 src_related_cost = src_related_regcost = -1;
5057 else
5059 src_related_cost = COST (src_related, mode);
5060 src_related_regcost = approx_reg_cost (src_related);
5062 /* If a const-anchor is used to synthesize a constant that
5063 normally requires multiple instructions then slightly prefer
5064 it over the original sequence. These instructions are likely
5065 to become redundant now. We can't compare against the cost
5066 of src_eqv_here because, on MIPS for example, multi-insn
5067 constants have zero cost; they are assumed to be hoisted from
5068 loops. */
5069 if (src_related_is_const_anchor
5070 && src_related_cost == src_cost
5071 && src_eqv_here)
5072 src_related_cost--;
5076 /* If this was an indirect jump insn, a known label will really be
5077 cheaper even though it looks more expensive. */
5078 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5079 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5081 /* Terminate loop when replacement made. This must terminate since
5082 the current contents will be tested and will always be valid. */
5083 while (1)
5085 rtx trial;
5087 /* Skip invalid entries. */
5088 while (elt && !REG_P (elt->exp)
5089 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5090 elt = elt->next_same_value;
5092 /* A paradoxical subreg would be bad here: it'll be the right
5093 size, but later may be adjusted so that the upper bits aren't
5094 what we want. So reject it. */
5095 if (elt != 0
5096 && paradoxical_subreg_p (elt->exp)
5097 /* It is okay, though, if the rtx we're trying to match
5098 will ignore any of the bits we can't predict. */
5099 && ! (src != 0
5100 && GET_CODE (src) == SUBREG
5101 && GET_MODE (src) == GET_MODE (elt->exp)
5102 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5103 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5105 elt = elt->next_same_value;
5106 continue;
5109 if (elt)
5111 src_elt_cost = elt->cost;
5112 src_elt_regcost = elt->regcost;
5115 /* Find cheapest and skip it for the next time. For items
5116 of equal cost, use this order:
5117 src_folded, src, src_eqv, src_related and hash table entry. */
5118 if (src_folded
5119 && preferable (src_folded_cost, src_folded_regcost,
5120 src_cost, src_regcost) <= 0
5121 && preferable (src_folded_cost, src_folded_regcost,
5122 src_eqv_cost, src_eqv_regcost) <= 0
5123 && preferable (src_folded_cost, src_folded_regcost,
5124 src_related_cost, src_related_regcost) <= 0
5125 && preferable (src_folded_cost, src_folded_regcost,
5126 src_elt_cost, src_elt_regcost) <= 0)
5128 trial = src_folded, src_folded_cost = MAX_COST;
5129 if (src_folded_force_flag)
5131 rtx forced = force_const_mem (mode, trial);
5132 if (forced)
5133 trial = forced;
5136 else if (src
5137 && preferable (src_cost, src_regcost,
5138 src_eqv_cost, src_eqv_regcost) <= 0
5139 && preferable (src_cost, src_regcost,
5140 src_related_cost, src_related_regcost) <= 0
5141 && preferable (src_cost, src_regcost,
5142 src_elt_cost, src_elt_regcost) <= 0)
5143 trial = src, src_cost = MAX_COST;
5144 else if (src_eqv_here
5145 && preferable (src_eqv_cost, src_eqv_regcost,
5146 src_related_cost, src_related_regcost) <= 0
5147 && preferable (src_eqv_cost, src_eqv_regcost,
5148 src_elt_cost, src_elt_regcost) <= 0)
5149 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5150 else if (src_related
5151 && preferable (src_related_cost, src_related_regcost,
5152 src_elt_cost, src_elt_regcost) <= 0)
5153 trial = src_related, src_related_cost = MAX_COST;
5154 else
5156 trial = elt->exp;
5157 elt = elt->next_same_value;
5158 src_elt_cost = MAX_COST;
5161 /* Avoid creation of overlapping memory moves. */
5162 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5164 rtx src, dest;
5166 /* BLKmode moves are not handled by cse anyway. */
5167 if (GET_MODE (trial) == BLKmode)
5168 break;
5170 src = canon_rtx (trial);
5171 dest = canon_rtx (SET_DEST (sets[i].rtl));
5173 if (!MEM_P (src) || !MEM_P (dest)
5174 || !nonoverlapping_memrefs_p (src, dest, false))
5175 break;
5178 /* Try to optimize
5179 (set (reg:M N) (const_int A))
5180 (set (reg:M2 O) (const_int B))
5181 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5182 (reg:M2 O)). */
5183 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5184 && CONST_INT_P (trial)
5185 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5186 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5187 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5188 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5189 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5190 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5191 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5192 <= HOST_BITS_PER_WIDE_INT))
5194 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5195 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5196 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5197 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5198 struct table_elt *dest_elt
5199 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5200 rtx dest_cst = NULL;
5202 if (dest_elt)
5203 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5204 if (p->is_const && CONST_INT_P (p->exp))
5206 dest_cst = p->exp;
5207 break;
5209 if (dest_cst)
5211 HOST_WIDE_INT val = INTVAL (dest_cst);
5212 HOST_WIDE_INT mask;
5213 unsigned int shift;
5214 if (BITS_BIG_ENDIAN)
5215 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5216 - INTVAL (pos) - INTVAL (width);
5217 else
5218 shift = INTVAL (pos);
5219 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5220 mask = ~(HOST_WIDE_INT) 0;
5221 else
5222 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5223 val &= ~(mask << shift);
5224 val |= (INTVAL (trial) & mask) << shift;
5225 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5226 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5227 dest_reg, 1);
5228 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5229 GEN_INT (val), 1);
5230 if (apply_change_group ())
5232 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5233 if (note)
5235 remove_note (insn, note);
5236 df_notes_rescan (insn);
5238 src_eqv = NULL_RTX;
5239 src_eqv_elt = NULL;
5240 src_eqv_volatile = 0;
5241 src_eqv_in_memory = 0;
5242 src_eqv_hash = 0;
5243 repeat = true;
5244 break;
5249 /* We don't normally have an insn matching (set (pc) (pc)), so
5250 check for this separately here. We will delete such an
5251 insn below.
5253 For other cases such as a table jump or conditional jump
5254 where we know the ultimate target, go ahead and replace the
5255 operand. While that may not make a valid insn, we will
5256 reemit the jump below (and also insert any necessary
5257 barriers). */
5258 if (n_sets == 1 && dest == pc_rtx
5259 && (trial == pc_rtx
5260 || (GET_CODE (trial) == LABEL_REF
5261 && ! condjump_p (insn))))
5263 /* Don't substitute non-local labels, this confuses CFG. */
5264 if (GET_CODE (trial) == LABEL_REF
5265 && LABEL_REF_NONLOCAL_P (trial))
5266 continue;
5268 SET_SRC (sets[i].rtl) = trial;
5269 cse_jumps_altered = true;
5270 break;
5273 /* Reject certain invalid forms of CONST that we create. */
5274 else if (CONSTANT_P (trial)
5275 && GET_CODE (trial) == CONST
5276 /* Reject cases that will cause decode_rtx_const to
5277 die. On the alpha when simplifying a switch, we
5278 get (const (truncate (minus (label_ref)
5279 (label_ref)))). */
5280 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5281 /* Likewise on IA-64, except without the
5282 truncate. */
5283 || (GET_CODE (XEXP (trial, 0)) == MINUS
5284 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5285 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5286 /* Do nothing for this case. */
5289 /* Look for a substitution that makes a valid insn. */
5290 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5291 trial, 0))
5293 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5295 /* The result of apply_change_group can be ignored; see
5296 canon_reg. */
5298 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5299 apply_change_group ();
5301 break;
5304 /* If we previously found constant pool entries for
5305 constants and this is a constant, try making a
5306 pool entry. Put it in src_folded unless we already have done
5307 this since that is where it likely came from. */
5309 else if (constant_pool_entries_cost
5310 && CONSTANT_P (trial)
5311 && (src_folded == 0
5312 || (!MEM_P (src_folded)
5313 && ! src_folded_force_flag))
5314 && GET_MODE_CLASS (mode) != MODE_CC
5315 && mode != VOIDmode)
5317 src_folded_force_flag = 1;
5318 src_folded = trial;
5319 src_folded_cost = constant_pool_entries_cost;
5320 src_folded_regcost = constant_pool_entries_regcost;
5324 /* If we changed the insn too much, handle this set from scratch. */
5325 if (repeat)
5327 i--;
5328 continue;
5331 src = SET_SRC (sets[i].rtl);
5333 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5334 However, there is an important exception: If both are registers
5335 that are not the head of their equivalence class, replace SET_SRC
5336 with the head of the class. If we do not do this, we will have
5337 both registers live over a portion of the basic block. This way,
5338 their lifetimes will likely abut instead of overlapping. */
5339 if (REG_P (dest)
5340 && REGNO_QTY_VALID_P (REGNO (dest)))
5342 int dest_q = REG_QTY (REGNO (dest));
5343 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5345 if (dest_ent->mode == GET_MODE (dest)
5346 && dest_ent->first_reg != REGNO (dest)
5347 && REG_P (src) && REGNO (src) == REGNO (dest)
5348 /* Don't do this if the original insn had a hard reg as
5349 SET_SRC or SET_DEST. */
5350 && (!REG_P (sets[i].src)
5351 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5352 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5353 /* We can't call canon_reg here because it won't do anything if
5354 SRC is a hard register. */
5356 int src_q = REG_QTY (REGNO (src));
5357 struct qty_table_elem *src_ent = &qty_table[src_q];
5358 int first = src_ent->first_reg;
5359 rtx new_src
5360 = (first >= FIRST_PSEUDO_REGISTER
5361 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5363 /* We must use validate-change even for this, because this
5364 might be a special no-op instruction, suitable only to
5365 tag notes onto. */
5366 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5368 src = new_src;
5369 /* If we had a constant that is cheaper than what we are now
5370 setting SRC to, use that constant. We ignored it when we
5371 thought we could make this into a no-op. */
5372 if (src_const && COST (src_const, mode) < COST (src, mode)
5373 && validate_change (insn, &SET_SRC (sets[i].rtl),
5374 src_const, 0))
5375 src = src_const;
5380 /* If we made a change, recompute SRC values. */
5381 if (src != sets[i].src)
5383 do_not_record = 0;
5384 hash_arg_in_memory = 0;
5385 sets[i].src = src;
5386 sets[i].src_hash = HASH (src, mode);
5387 sets[i].src_volatile = do_not_record;
5388 sets[i].src_in_memory = hash_arg_in_memory;
5389 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5392 /* If this is a single SET, we are setting a register, and we have an
5393 equivalent constant, we want to add a REG_EQUAL note if the constant
5394 is different from the source. We don't want to do it for a constant
5395 pseudo since verifying that this pseudo hasn't been eliminated is a
5396 pain; moreover such a note won't help anything.
5398 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5399 which can be created for a reference to a compile time computable
5400 entry in a jump table. */
5401 if (n_sets == 1
5402 && REG_P (dest)
5403 && src_const
5404 && !REG_P (src_const)
5405 && !(GET_CODE (src_const) == SUBREG
5406 && REG_P (SUBREG_REG (src_const)))
5407 && !(GET_CODE (src_const) == CONST
5408 && GET_CODE (XEXP (src_const, 0)) == MINUS
5409 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5410 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5411 && !rtx_equal_p (src, src_const))
5413 /* Make sure that the rtx is not shared. */
5414 src_const = copy_rtx (src_const);
5416 /* Record the actual constant value in a REG_EQUAL note,
5417 making a new one if one does not already exist. */
5418 set_unique_reg_note (insn, REG_EQUAL, src_const);
5419 df_notes_rescan (insn);
5422 /* Now deal with the destination. */
5423 do_not_record = 0;
5425 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5426 while (GET_CODE (dest) == SUBREG
5427 || GET_CODE (dest) == ZERO_EXTRACT
5428 || GET_CODE (dest) == STRICT_LOW_PART)
5429 dest = XEXP (dest, 0);
5431 sets[i].inner_dest = dest;
5433 if (MEM_P (dest))
5435 #ifdef PUSH_ROUNDING
5436 /* Stack pushes invalidate the stack pointer. */
5437 rtx addr = XEXP (dest, 0);
5438 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5439 && XEXP (addr, 0) == stack_pointer_rtx)
5440 invalidate (stack_pointer_rtx, VOIDmode);
5441 #endif
5442 dest = fold_rtx (dest, insn);
5445 /* Compute the hash code of the destination now,
5446 before the effects of this instruction are recorded,
5447 since the register values used in the address computation
5448 are those before this instruction. */
5449 sets[i].dest_hash = HASH (dest, mode);
5451 /* Don't enter a bit-field in the hash table
5452 because the value in it after the store
5453 may not equal what was stored, due to truncation. */
5455 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5457 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5459 if (src_const != 0 && CONST_INT_P (src_const)
5460 && CONST_INT_P (width)
5461 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5462 && ! (INTVAL (src_const)
5463 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5464 /* Exception: if the value is constant,
5465 and it won't be truncated, record it. */
5467 else
5469 /* This is chosen so that the destination will be invalidated
5470 but no new value will be recorded.
5471 We must invalidate because sometimes constant
5472 values can be recorded for bitfields. */
5473 sets[i].src_elt = 0;
5474 sets[i].src_volatile = 1;
5475 src_eqv = 0;
5476 src_eqv_elt = 0;
5480 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5481 the insn. */
5482 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5484 /* One less use of the label this insn used to jump to. */
5485 delete_insn_and_edges (insn);
5486 cse_jumps_altered = true;
5487 /* No more processing for this set. */
5488 sets[i].rtl = 0;
5491 /* If this SET is now setting PC to a label, we know it used to
5492 be a conditional or computed branch. */
5493 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5494 && !LABEL_REF_NONLOCAL_P (src))
5496 /* We reemit the jump in as many cases as possible just in
5497 case the form of an unconditional jump is significantly
5498 different than a computed jump or conditional jump.
5500 If this insn has multiple sets, then reemitting the
5501 jump is nontrivial. So instead we just force rerecognition
5502 and hope for the best. */
5503 if (n_sets == 1)
5505 rtx_jump_insn *new_rtx;
5506 rtx note;
5508 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5509 new_rtx = emit_jump_insn_before (seq, insn);
5510 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5511 LABEL_NUSES (XEXP (src, 0))++;
5513 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5514 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5515 if (note)
5517 XEXP (note, 1) = NULL_RTX;
5518 REG_NOTES (new_rtx) = note;
5521 delete_insn_and_edges (insn);
5522 insn = new_rtx;
5524 else
5525 INSN_CODE (insn) = -1;
5527 /* Do not bother deleting any unreachable code, let jump do it. */
5528 cse_jumps_altered = true;
5529 sets[i].rtl = 0;
5532 /* If destination is volatile, invalidate it and then do no further
5533 processing for this assignment. */
5535 else if (do_not_record)
5537 invalidate_dest (dest);
5538 sets[i].rtl = 0;
5541 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5543 do_not_record = 0;
5544 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5545 if (do_not_record)
5547 invalidate_dest (SET_DEST (sets[i].rtl));
5548 sets[i].rtl = 0;
5552 /* If setting CC0, record what it was set to, or a constant, if it
5553 is equivalent to a constant. If it is being set to a floating-point
5554 value, make a COMPARE with the appropriate constant of 0. If we
5555 don't do this, later code can interpret this as a test against
5556 const0_rtx, which can cause problems if we try to put it into an
5557 insn as a floating-point operand. */
5558 if (dest == cc0_rtx)
5560 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5561 this_insn_cc0_mode = mode;
5562 if (FLOAT_MODE_P (mode))
5563 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5564 CONST0_RTX (mode));
5568 /* Now enter all non-volatile source expressions in the hash table
5569 if they are not already present.
5570 Record their equivalence classes in src_elt.
5571 This way we can insert the corresponding destinations into
5572 the same classes even if the actual sources are no longer in them
5573 (having been invalidated). */
5575 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5576 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5578 struct table_elt *elt;
5579 struct table_elt *classp = sets[0].src_elt;
5580 rtx dest = SET_DEST (sets[0].rtl);
5581 machine_mode eqvmode = GET_MODE (dest);
5583 if (GET_CODE (dest) == STRICT_LOW_PART)
5585 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5586 classp = 0;
5588 if (insert_regs (src_eqv, classp, 0))
5590 rehash_using_reg (src_eqv);
5591 src_eqv_hash = HASH (src_eqv, eqvmode);
5593 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5594 elt->in_memory = src_eqv_in_memory;
5595 src_eqv_elt = elt;
5597 /* Check to see if src_eqv_elt is the same as a set source which
5598 does not yet have an elt, and if so set the elt of the set source
5599 to src_eqv_elt. */
5600 for (i = 0; i < n_sets; i++)
5601 if (sets[i].rtl && sets[i].src_elt == 0
5602 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5603 sets[i].src_elt = src_eqv_elt;
5606 for (i = 0; i < n_sets; i++)
5607 if (sets[i].rtl && ! sets[i].src_volatile
5608 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5610 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5612 /* REG_EQUAL in setting a STRICT_LOW_PART
5613 gives an equivalent for the entire destination register,
5614 not just for the subreg being stored in now.
5615 This is a more interesting equivalence, so we arrange later
5616 to treat the entire reg as the destination. */
5617 sets[i].src_elt = src_eqv_elt;
5618 sets[i].src_hash = src_eqv_hash;
5620 else
5622 /* Insert source and constant equivalent into hash table, if not
5623 already present. */
5624 struct table_elt *classp = src_eqv_elt;
5625 rtx src = sets[i].src;
5626 rtx dest = SET_DEST (sets[i].rtl);
5627 machine_mode mode
5628 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5630 /* It's possible that we have a source value known to be
5631 constant but don't have a REG_EQUAL note on the insn.
5632 Lack of a note will mean src_eqv_elt will be NULL. This
5633 can happen where we've generated a SUBREG to access a
5634 CONST_INT that is already in a register in a wider mode.
5635 Ensure that the source expression is put in the proper
5636 constant class. */
5637 if (!classp)
5638 classp = sets[i].src_const_elt;
5640 if (sets[i].src_elt == 0)
5642 struct table_elt *elt;
5644 /* Note that these insert_regs calls cannot remove
5645 any of the src_elt's, because they would have failed to
5646 match if not still valid. */
5647 if (insert_regs (src, classp, 0))
5649 rehash_using_reg (src);
5650 sets[i].src_hash = HASH (src, mode);
5652 elt = insert (src, classp, sets[i].src_hash, mode);
5653 elt->in_memory = sets[i].src_in_memory;
5654 /* If inline asm has any clobbers, ensure we only reuse
5655 existing inline asms and never try to put the ASM_OPERANDS
5656 into an insn that isn't inline asm. */
5657 if (GET_CODE (src) == ASM_OPERANDS
5658 && GET_CODE (x) == PARALLEL)
5659 elt->cost = MAX_COST;
5660 sets[i].src_elt = classp = elt;
5662 if (sets[i].src_const && sets[i].src_const_elt == 0
5663 && src != sets[i].src_const
5664 && ! rtx_equal_p (sets[i].src_const, src))
5665 sets[i].src_elt = insert (sets[i].src_const, classp,
5666 sets[i].src_const_hash, mode);
5669 else if (sets[i].src_elt == 0)
5670 /* If we did not insert the source into the hash table (e.g., it was
5671 volatile), note the equivalence class for the REG_EQUAL value, if any,
5672 so that the destination goes into that class. */
5673 sets[i].src_elt = src_eqv_elt;
5675 /* Record destination addresses in the hash table. This allows us to
5676 check if they are invalidated by other sets. */
5677 for (i = 0; i < n_sets; i++)
5679 if (sets[i].rtl)
5681 rtx x = sets[i].inner_dest;
5682 struct table_elt *elt;
5683 machine_mode mode;
5684 unsigned hash;
5686 if (MEM_P (x))
5688 x = XEXP (x, 0);
5689 mode = GET_MODE (x);
5690 hash = HASH (x, mode);
5691 elt = lookup (x, hash, mode);
5692 if (!elt)
5694 if (insert_regs (x, NULL, 0))
5696 rtx dest = SET_DEST (sets[i].rtl);
5698 rehash_using_reg (x);
5699 hash = HASH (x, mode);
5700 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5702 elt = insert (x, NULL, hash, mode);
5705 sets[i].dest_addr_elt = elt;
5707 else
5708 sets[i].dest_addr_elt = NULL;
5712 invalidate_from_clobbers (insn);
5714 /* Some registers are invalidated by subroutine calls. Memory is
5715 invalidated by non-constant calls. */
5717 if (CALL_P (insn))
5719 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5720 invalidate_memory ();
5721 invalidate_for_call ();
5724 /* Now invalidate everything set by this instruction.
5725 If a SUBREG or other funny destination is being set,
5726 sets[i].rtl is still nonzero, so here we invalidate the reg
5727 a part of which is being set. */
5729 for (i = 0; i < n_sets; i++)
5730 if (sets[i].rtl)
5732 /* We can't use the inner dest, because the mode associated with
5733 a ZERO_EXTRACT is significant. */
5734 rtx dest = SET_DEST (sets[i].rtl);
5736 /* Needed for registers to remove the register from its
5737 previous quantity's chain.
5738 Needed for memory if this is a nonvarying address, unless
5739 we have just done an invalidate_memory that covers even those. */
5740 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5741 invalidate (dest, VOIDmode);
5742 else if (MEM_P (dest))
5743 invalidate (dest, VOIDmode);
5744 else if (GET_CODE (dest) == STRICT_LOW_PART
5745 || GET_CODE (dest) == ZERO_EXTRACT)
5746 invalidate (XEXP (dest, 0), GET_MODE (dest));
5749 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5750 the regs restored by the longjmp come from a later time
5751 than the setjmp. */
5752 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5754 flush_hash_table ();
5755 goto done;
5758 /* Make sure registers mentioned in destinations
5759 are safe for use in an expression to be inserted.
5760 This removes from the hash table
5761 any invalid entry that refers to one of these registers.
5763 We don't care about the return value from mention_regs because
5764 we are going to hash the SET_DEST values unconditionally. */
5766 for (i = 0; i < n_sets; i++)
5768 if (sets[i].rtl)
5770 rtx x = SET_DEST (sets[i].rtl);
5772 if (!REG_P (x))
5773 mention_regs (x);
5774 else
5776 /* We used to rely on all references to a register becoming
5777 inaccessible when a register changes to a new quantity,
5778 since that changes the hash code. However, that is not
5779 safe, since after HASH_SIZE new quantities we get a
5780 hash 'collision' of a register with its own invalid
5781 entries. And since SUBREGs have been changed not to
5782 change their hash code with the hash code of the register,
5783 it wouldn't work any longer at all. So we have to check
5784 for any invalid references lying around now.
5785 This code is similar to the REG case in mention_regs,
5786 but it knows that reg_tick has been incremented, and
5787 it leaves reg_in_table as -1 . */
5788 unsigned int regno = REGNO (x);
5789 unsigned int endregno = END_REGNO (x);
5790 unsigned int i;
5792 for (i = regno; i < endregno; i++)
5794 if (REG_IN_TABLE (i) >= 0)
5796 remove_invalid_refs (i);
5797 REG_IN_TABLE (i) = -1;
5804 /* We may have just removed some of the src_elt's from the hash table.
5805 So replace each one with the current head of the same class.
5806 Also check if destination addresses have been removed. */
5808 for (i = 0; i < n_sets; i++)
5809 if (sets[i].rtl)
5811 if (sets[i].dest_addr_elt
5812 && sets[i].dest_addr_elt->first_same_value == 0)
5814 /* The elt was removed, which means this destination is not
5815 valid after this instruction. */
5816 sets[i].rtl = NULL_RTX;
5818 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5819 /* If elt was removed, find current head of same class,
5820 or 0 if nothing remains of that class. */
5822 struct table_elt *elt = sets[i].src_elt;
5824 while (elt && elt->prev_same_value)
5825 elt = elt->prev_same_value;
5827 while (elt && elt->first_same_value == 0)
5828 elt = elt->next_same_value;
5829 sets[i].src_elt = elt ? elt->first_same_value : 0;
5833 /* Now insert the destinations into their equivalence classes. */
5835 for (i = 0; i < n_sets; i++)
5836 if (sets[i].rtl)
5838 rtx dest = SET_DEST (sets[i].rtl);
5839 struct table_elt *elt;
5841 /* Don't record value if we are not supposed to risk allocating
5842 floating-point values in registers that might be wider than
5843 memory. */
5844 if ((flag_float_store
5845 && MEM_P (dest)
5846 && FLOAT_MODE_P (GET_MODE (dest)))
5847 /* Don't record BLKmode values, because we don't know the
5848 size of it, and can't be sure that other BLKmode values
5849 have the same or smaller size. */
5850 || GET_MODE (dest) == BLKmode
5851 /* If we didn't put a REG_EQUAL value or a source into the hash
5852 table, there is no point is recording DEST. */
5853 || sets[i].src_elt == 0
5854 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5855 or SIGN_EXTEND, don't record DEST since it can cause
5856 some tracking to be wrong.
5858 ??? Think about this more later. */
5859 || (paradoxical_subreg_p (dest)
5860 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5861 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5862 continue;
5864 /* STRICT_LOW_PART isn't part of the value BEING set,
5865 and neither is the SUBREG inside it.
5866 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5867 if (GET_CODE (dest) == STRICT_LOW_PART)
5868 dest = SUBREG_REG (XEXP (dest, 0));
5870 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5871 /* Registers must also be inserted into chains for quantities. */
5872 if (insert_regs (dest, sets[i].src_elt, 1))
5874 /* If `insert_regs' changes something, the hash code must be
5875 recalculated. */
5876 rehash_using_reg (dest);
5877 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5880 elt = insert (dest, sets[i].src_elt,
5881 sets[i].dest_hash, GET_MODE (dest));
5883 /* If this is a constant, insert the constant anchors with the
5884 equivalent register-offset expressions using register DEST. */
5885 if (targetm.const_anchor
5886 && REG_P (dest)
5887 && SCALAR_INT_MODE_P (GET_MODE (dest))
5888 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5889 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5891 elt->in_memory = (MEM_P (sets[i].inner_dest)
5892 && !MEM_READONLY_P (sets[i].inner_dest));
5894 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5895 narrower than M2, and both M1 and M2 are the same number of words,
5896 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5897 make that equivalence as well.
5899 However, BAR may have equivalences for which gen_lowpart
5900 will produce a simpler value than gen_lowpart applied to
5901 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5902 BAR's equivalences. If we don't get a simplified form, make
5903 the SUBREG. It will not be used in an equivalence, but will
5904 cause two similar assignments to be detected.
5906 Note the loop below will find SUBREG_REG (DEST) since we have
5907 already entered SRC and DEST of the SET in the table. */
5909 if (GET_CODE (dest) == SUBREG
5910 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5911 / UNITS_PER_WORD)
5912 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5913 && (GET_MODE_SIZE (GET_MODE (dest))
5914 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5915 && sets[i].src_elt != 0)
5917 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5918 struct table_elt *elt, *classp = 0;
5920 for (elt = sets[i].src_elt->first_same_value; elt;
5921 elt = elt->next_same_value)
5923 rtx new_src = 0;
5924 unsigned src_hash;
5925 struct table_elt *src_elt;
5926 int byte = 0;
5928 /* Ignore invalid entries. */
5929 if (!REG_P (elt->exp)
5930 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5931 continue;
5933 /* We may have already been playing subreg games. If the
5934 mode is already correct for the destination, use it. */
5935 if (GET_MODE (elt->exp) == new_mode)
5936 new_src = elt->exp;
5937 else
5939 /* Calculate big endian correction for the SUBREG_BYTE.
5940 We have already checked that M1 (GET_MODE (dest))
5941 is not narrower than M2 (new_mode). */
5942 if (BYTES_BIG_ENDIAN)
5943 byte = (GET_MODE_SIZE (GET_MODE (dest))
5944 - GET_MODE_SIZE (new_mode));
5946 new_src = simplify_gen_subreg (new_mode, elt->exp,
5947 GET_MODE (dest), byte);
5950 /* The call to simplify_gen_subreg fails if the value
5951 is VOIDmode, yet we can't do any simplification, e.g.
5952 for EXPR_LISTs denoting function call results.
5953 It is invalid to construct a SUBREG with a VOIDmode
5954 SUBREG_REG, hence a zero new_src means we can't do
5955 this substitution. */
5956 if (! new_src)
5957 continue;
5959 src_hash = HASH (new_src, new_mode);
5960 src_elt = lookup (new_src, src_hash, new_mode);
5962 /* Put the new source in the hash table is if isn't
5963 already. */
5964 if (src_elt == 0)
5966 if (insert_regs (new_src, classp, 0))
5968 rehash_using_reg (new_src);
5969 src_hash = HASH (new_src, new_mode);
5971 src_elt = insert (new_src, classp, src_hash, new_mode);
5972 src_elt->in_memory = elt->in_memory;
5973 if (GET_CODE (new_src) == ASM_OPERANDS
5974 && elt->cost == MAX_COST)
5975 src_elt->cost = MAX_COST;
5977 else if (classp && classp != src_elt->first_same_value)
5978 /* Show that two things that we've seen before are
5979 actually the same. */
5980 merge_equiv_classes (src_elt, classp);
5982 classp = src_elt->first_same_value;
5983 /* Ignore invalid entries. */
5984 while (classp
5985 && !REG_P (classp->exp)
5986 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5987 classp = classp->next_same_value;
5992 /* Special handling for (set REG0 REG1) where REG0 is the
5993 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5994 be used in the sequel, so (if easily done) change this insn to
5995 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5996 that computed their value. Then REG1 will become a dead store
5997 and won't cloud the situation for later optimizations.
5999 Do not make this change if REG1 is a hard register, because it will
6000 then be used in the sequel and we may be changing a two-operand insn
6001 into a three-operand insn.
6003 Also do not do this if we are operating on a copy of INSN. */
6005 if (n_sets == 1 && sets[0].rtl)
6006 try_back_substitute_reg (sets[0].rtl, insn);
6008 done:;
6011 /* Remove from the hash table all expressions that reference memory. */
6013 static void
6014 invalidate_memory (void)
6016 int i;
6017 struct table_elt *p, *next;
6019 for (i = 0; i < HASH_SIZE; i++)
6020 for (p = table[i]; p; p = next)
6022 next = p->next_same_hash;
6023 if (p->in_memory)
6024 remove_from_table (p, i);
6028 /* Perform invalidation on the basis of everything about INSN,
6029 except for invalidating the actual places that are SET in it.
6030 This includes the places CLOBBERed, and anything that might
6031 alias with something that is SET or CLOBBERed. */
6033 static void
6034 invalidate_from_clobbers (rtx_insn *insn)
6036 rtx x = PATTERN (insn);
6038 if (GET_CODE (x) == CLOBBER)
6040 rtx ref = XEXP (x, 0);
6041 if (ref)
6043 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6044 || MEM_P (ref))
6045 invalidate (ref, VOIDmode);
6046 else if (GET_CODE (ref) == STRICT_LOW_PART
6047 || GET_CODE (ref) == ZERO_EXTRACT)
6048 invalidate (XEXP (ref, 0), GET_MODE (ref));
6051 else if (GET_CODE (x) == PARALLEL)
6053 int i;
6054 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6056 rtx y = XVECEXP (x, 0, i);
6057 if (GET_CODE (y) == CLOBBER)
6059 rtx ref = XEXP (y, 0);
6060 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6061 || MEM_P (ref))
6062 invalidate (ref, VOIDmode);
6063 else if (GET_CODE (ref) == STRICT_LOW_PART
6064 || GET_CODE (ref) == ZERO_EXTRACT)
6065 invalidate (XEXP (ref, 0), GET_MODE (ref));
6071 /* Perform invalidation on the basis of everything about INSN.
6072 This includes the places CLOBBERed, and anything that might
6073 alias with something that is SET or CLOBBERed. */
6075 static void
6076 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6078 rtx tem;
6079 rtx x = PATTERN (insn);
6081 if (CALL_P (insn))
6083 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6084 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6085 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6088 /* Ensure we invalidate the destination register of a CALL insn.
6089 This is necessary for machines where this register is a fixed_reg,
6090 because no other code would invalidate it. */
6091 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6092 invalidate (SET_DEST (x), VOIDmode);
6094 else if (GET_CODE (x) == PARALLEL)
6096 int i;
6098 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6100 rtx y = XVECEXP (x, 0, i);
6101 if (GET_CODE (y) == CLOBBER)
6103 rtx clobbered = XEXP (y, 0);
6105 if (REG_P (clobbered)
6106 || GET_CODE (clobbered) == SUBREG)
6107 invalidate (clobbered, VOIDmode);
6108 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6109 || GET_CODE (clobbered) == ZERO_EXTRACT)
6110 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6112 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6113 invalidate (SET_DEST (y), VOIDmode);
6118 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6119 and replace any registers in them with either an equivalent constant
6120 or the canonical form of the register. If we are inside an address,
6121 only do this if the address remains valid.
6123 OBJECT is 0 except when within a MEM in which case it is the MEM.
6125 Return the replacement for X. */
6127 static rtx
6128 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6130 enum rtx_code code = GET_CODE (x);
6131 const char *fmt = GET_RTX_FORMAT (code);
6132 int i;
6134 switch (code)
6136 case CONST:
6137 case SYMBOL_REF:
6138 case LABEL_REF:
6139 CASE_CONST_ANY:
6140 case PC:
6141 case CC0:
6142 case LO_SUM:
6143 return x;
6145 case MEM:
6146 validate_change (x, &XEXP (x, 0),
6147 cse_process_notes (XEXP (x, 0), x, changed), 0);
6148 return x;
6150 case EXPR_LIST:
6151 if (REG_NOTE_KIND (x) == REG_EQUAL)
6152 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6153 /* Fall through. */
6155 case INSN_LIST:
6156 case INT_LIST:
6157 if (XEXP (x, 1))
6158 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6159 return x;
6161 case SIGN_EXTEND:
6162 case ZERO_EXTEND:
6163 case SUBREG:
6165 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6166 /* We don't substitute VOIDmode constants into these rtx,
6167 since they would impede folding. */
6168 if (GET_MODE (new_rtx) != VOIDmode)
6169 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6170 return x;
6173 case UNSIGNED_FLOAT:
6175 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6176 /* We don't substitute negative VOIDmode constants into these rtx,
6177 since they would impede folding. */
6178 if (GET_MODE (new_rtx) != VOIDmode
6179 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6180 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6181 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6182 return x;
6185 case REG:
6186 i = REG_QTY (REGNO (x));
6188 /* Return a constant or a constant register. */
6189 if (REGNO_QTY_VALID_P (REGNO (x)))
6191 struct qty_table_elem *ent = &qty_table[i];
6193 if (ent->const_rtx != NULL_RTX
6194 && (CONSTANT_P (ent->const_rtx)
6195 || REG_P (ent->const_rtx)))
6197 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6198 if (new_rtx)
6199 return copy_rtx (new_rtx);
6203 /* Otherwise, canonicalize this register. */
6204 return canon_reg (x, NULL);
6206 default:
6207 break;
6210 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6211 if (fmt[i] == 'e')
6212 validate_change (object, &XEXP (x, i),
6213 cse_process_notes (XEXP (x, i), object, changed), 0);
6215 return x;
6218 static rtx
6219 cse_process_notes (rtx x, rtx object, bool *changed)
6221 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6222 if (new_rtx != x)
6223 *changed = true;
6224 return new_rtx;
6228 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6230 DATA is a pointer to a struct cse_basic_block_data, that is used to
6231 describe the path.
6232 It is filled with a queue of basic blocks, starting with FIRST_BB
6233 and following a trace through the CFG.
6235 If all paths starting at FIRST_BB have been followed, or no new path
6236 starting at FIRST_BB can be constructed, this function returns FALSE.
6237 Otherwise, DATA->path is filled and the function returns TRUE indicating
6238 that a path to follow was found.
6240 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6241 block in the path will be FIRST_BB. */
6243 static bool
6244 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6245 int follow_jumps)
6247 basic_block bb;
6248 edge e;
6249 int path_size;
6251 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6253 /* See if there is a previous path. */
6254 path_size = data->path_size;
6256 /* There is a previous path. Make sure it started with FIRST_BB. */
6257 if (path_size)
6258 gcc_assert (data->path[0].bb == first_bb);
6260 /* There was only one basic block in the last path. Clear the path and
6261 return, so that paths starting at another basic block can be tried. */
6262 if (path_size == 1)
6264 path_size = 0;
6265 goto done;
6268 /* If the path was empty from the beginning, construct a new path. */
6269 if (path_size == 0)
6270 data->path[path_size++].bb = first_bb;
6271 else
6273 /* Otherwise, path_size must be equal to or greater than 2, because
6274 a previous path exists that is at least two basic blocks long.
6276 Update the previous branch path, if any. If the last branch was
6277 previously along the branch edge, take the fallthrough edge now. */
6278 while (path_size >= 2)
6280 basic_block last_bb_in_path, previous_bb_in_path;
6281 edge e;
6283 --path_size;
6284 last_bb_in_path = data->path[path_size].bb;
6285 previous_bb_in_path = data->path[path_size - 1].bb;
6287 /* If we previously followed a path along the branch edge, try
6288 the fallthru edge now. */
6289 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6290 && any_condjump_p (BB_END (previous_bb_in_path))
6291 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6292 && e == BRANCH_EDGE (previous_bb_in_path))
6294 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6295 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6296 && single_pred_p (bb)
6297 /* We used to assert here that we would only see blocks
6298 that we have not visited yet. But we may end up
6299 visiting basic blocks twice if the CFG has changed
6300 in this run of cse_main, because when the CFG changes
6301 the topological sort of the CFG also changes. A basic
6302 blocks that previously had more than two predecessors
6303 may now have a single predecessor, and become part of
6304 a path that starts at another basic block.
6306 We still want to visit each basic block only once, so
6307 halt the path here if we have already visited BB. */
6308 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6310 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6311 data->path[path_size++].bb = bb;
6312 break;
6316 data->path[path_size].bb = NULL;
6319 /* If only one block remains in the path, bail. */
6320 if (path_size == 1)
6322 path_size = 0;
6323 goto done;
6327 /* Extend the path if possible. */
6328 if (follow_jumps)
6330 bb = data->path[path_size - 1].bb;
6331 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6333 if (single_succ_p (bb))
6334 e = single_succ_edge (bb);
6335 else if (EDGE_COUNT (bb->succs) == 2
6336 && any_condjump_p (BB_END (bb)))
6338 /* First try to follow the branch. If that doesn't lead
6339 to a useful path, follow the fallthru edge. */
6340 e = BRANCH_EDGE (bb);
6341 if (!single_pred_p (e->dest))
6342 e = FALLTHRU_EDGE (bb);
6344 else
6345 e = NULL;
6347 if (e
6348 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6349 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6350 && single_pred_p (e->dest)
6351 /* Avoid visiting basic blocks twice. The large comment
6352 above explains why this can happen. */
6353 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6355 basic_block bb2 = e->dest;
6356 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6357 data->path[path_size++].bb = bb2;
6358 bb = bb2;
6360 else
6361 bb = NULL;
6365 done:
6366 data->path_size = path_size;
6367 return path_size != 0;
6370 /* Dump the path in DATA to file F. NSETS is the number of sets
6371 in the path. */
6373 static void
6374 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6376 int path_entry;
6378 fprintf (f, ";; Following path with %d sets: ", nsets);
6379 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6380 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6381 fputc ('\n', dump_file);
6382 fflush (f);
6386 /* Return true if BB has exception handling successor edges. */
6388 static bool
6389 have_eh_succ_edges (basic_block bb)
6391 edge e;
6392 edge_iterator ei;
6394 FOR_EACH_EDGE (e, ei, bb->succs)
6395 if (e->flags & EDGE_EH)
6396 return true;
6398 return false;
6402 /* Scan to the end of the path described by DATA. Return an estimate of
6403 the total number of SETs of all insns in the path. */
6405 static void
6406 cse_prescan_path (struct cse_basic_block_data *data)
6408 int nsets = 0;
6409 int path_size = data->path_size;
6410 int path_entry;
6412 /* Scan to end of each basic block in the path. */
6413 for (path_entry = 0; path_entry < path_size; path_entry++)
6415 basic_block bb;
6416 rtx_insn *insn;
6418 bb = data->path[path_entry].bb;
6420 FOR_BB_INSNS (bb, insn)
6422 if (!INSN_P (insn))
6423 continue;
6425 /* A PARALLEL can have lots of SETs in it,
6426 especially if it is really an ASM_OPERANDS. */
6427 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6428 nsets += XVECLEN (PATTERN (insn), 0);
6429 else
6430 nsets += 1;
6434 data->nsets = nsets;
6437 /* Return true if the pattern of INSN uses a LABEL_REF for which
6438 there isn't a REG_LABEL_OPERAND note. */
6440 static bool
6441 check_for_label_ref (rtx_insn *insn)
6443 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6444 note for it, we must rerun jump since it needs to place the note. If
6445 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6446 don't do this since no REG_LABEL_OPERAND will be added. */
6447 subrtx_iterator::array_type array;
6448 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6450 const_rtx x = *iter;
6451 if (GET_CODE (x) == LABEL_REF
6452 && !LABEL_REF_NONLOCAL_P (x)
6453 && (!JUMP_P (insn)
6454 || !label_is_jump_target_p (LABEL_REF_LABEL (x), insn))
6455 && LABEL_P (LABEL_REF_LABEL (x))
6456 && INSN_UID (LABEL_REF_LABEL (x)) != 0
6457 && !find_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x)))
6458 return true;
6460 return false;
6463 /* Process a single extended basic block described by EBB_DATA. */
6465 static void
6466 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6468 int path_size = ebb_data->path_size;
6469 int path_entry;
6470 int num_insns = 0;
6472 /* Allocate the space needed by qty_table. */
6473 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6475 new_basic_block ();
6476 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6477 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6478 for (path_entry = 0; path_entry < path_size; path_entry++)
6480 basic_block bb;
6481 rtx_insn *insn;
6483 bb = ebb_data->path[path_entry].bb;
6485 /* Invalidate recorded information for eh regs if there is an EH
6486 edge pointing to that bb. */
6487 if (bb_has_eh_pred (bb))
6489 df_ref def;
6491 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6492 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6493 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6496 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6497 FOR_BB_INSNS (bb, insn)
6499 /* If we have processed 1,000 insns, flush the hash table to
6500 avoid extreme quadratic behavior. We must not include NOTEs
6501 in the count since there may be more of them when generating
6502 debugging information. If we clear the table at different
6503 times, code generated with -g -O might be different than code
6504 generated with -O but not -g.
6506 FIXME: This is a real kludge and needs to be done some other
6507 way. */
6508 if (NONDEBUG_INSN_P (insn)
6509 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6511 flush_hash_table ();
6512 num_insns = 0;
6515 if (INSN_P (insn))
6517 /* Process notes first so we have all notes in canonical forms
6518 when looking for duplicate operations. */
6519 if (REG_NOTES (insn))
6521 bool changed = false;
6522 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6523 NULL_RTX, &changed);
6524 if (changed)
6525 df_notes_rescan (insn);
6528 cse_insn (insn);
6530 /* If we haven't already found an insn where we added a LABEL_REF,
6531 check this one. */
6532 if (INSN_P (insn) && !recorded_label_ref
6533 && check_for_label_ref (insn))
6534 recorded_label_ref = true;
6536 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6538 /* If the previous insn sets CC0 and this insn no
6539 longer references CC0, delete the previous insn.
6540 Here we use fact that nothing expects CC0 to be
6541 valid over an insn, which is true until the final
6542 pass. */
6543 rtx_insn *prev_insn;
6544 rtx tem;
6546 prev_insn = prev_nonnote_nondebug_insn (insn);
6547 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6548 && (tem = single_set (prev_insn)) != NULL_RTX
6549 && SET_DEST (tem) == cc0_rtx
6550 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6551 delete_insn (prev_insn);
6553 /* If this insn is not the last insn in the basic
6554 block, it will be PREV_INSN(insn) in the next
6555 iteration. If we recorded any CC0-related
6556 information for this insn, remember it. */
6557 if (insn != BB_END (bb))
6559 prev_insn_cc0 = this_insn_cc0;
6560 prev_insn_cc0_mode = this_insn_cc0_mode;
6566 /* With non-call exceptions, we are not always able to update
6567 the CFG properly inside cse_insn. So clean up possibly
6568 redundant EH edges here. */
6569 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6570 cse_cfg_altered |= purge_dead_edges (bb);
6572 /* If we changed a conditional jump, we may have terminated
6573 the path we are following. Check that by verifying that
6574 the edge we would take still exists. If the edge does
6575 not exist anymore, purge the remainder of the path.
6576 Note that this will cause us to return to the caller. */
6577 if (path_entry < path_size - 1)
6579 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6580 if (!find_edge (bb, next_bb))
6584 path_size--;
6586 /* If we truncate the path, we must also reset the
6587 visited bit on the remaining blocks in the path,
6588 or we will never visit them at all. */
6589 bitmap_clear_bit (cse_visited_basic_blocks,
6590 ebb_data->path[path_size].bb->index);
6591 ebb_data->path[path_size].bb = NULL;
6593 while (path_size - 1 != path_entry);
6594 ebb_data->path_size = path_size;
6598 /* If this is a conditional jump insn, record any known
6599 equivalences due to the condition being tested. */
6600 insn = BB_END (bb);
6601 if (path_entry < path_size - 1
6602 && JUMP_P (insn)
6603 && single_set (insn)
6604 && any_condjump_p (insn))
6606 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6607 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6608 record_jump_equiv (insn, taken);
6611 /* Clear the CC0-tracking related insns, they can't provide
6612 useful information across basic block boundaries. */
6613 prev_insn_cc0 = 0;
6616 gcc_assert (next_qty <= max_qty);
6618 free (qty_table);
6622 /* Perform cse on the instructions of a function.
6623 F is the first instruction.
6624 NREGS is one plus the highest pseudo-reg number used in the instruction.
6626 Return 2 if jump optimizations should be redone due to simplifications
6627 in conditional jump instructions.
6628 Return 1 if the CFG should be cleaned up because it has been modified.
6629 Return 0 otherwise. */
6631 static int
6632 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6634 struct cse_basic_block_data ebb_data;
6635 basic_block bb;
6636 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6637 int i, n_blocks;
6639 df_set_flags (DF_LR_RUN_DCE);
6640 df_note_add_problem ();
6641 df_analyze ();
6642 df_set_flags (DF_DEFER_INSN_RESCAN);
6644 reg_scan (get_insns (), max_reg_num ());
6645 init_cse_reg_info (nregs);
6647 ebb_data.path = XNEWVEC (struct branch_path,
6648 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6650 cse_cfg_altered = false;
6651 cse_jumps_altered = false;
6652 recorded_label_ref = false;
6653 constant_pool_entries_cost = 0;
6654 constant_pool_entries_regcost = 0;
6655 ebb_data.path_size = 0;
6656 ebb_data.nsets = 0;
6657 rtl_hooks = cse_rtl_hooks;
6659 init_recog ();
6660 init_alias_analysis ();
6662 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6664 /* Set up the table of already visited basic blocks. */
6665 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6666 bitmap_clear (cse_visited_basic_blocks);
6668 /* Loop over basic blocks in reverse completion order (RPO),
6669 excluding the ENTRY and EXIT blocks. */
6670 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6671 i = 0;
6672 while (i < n_blocks)
6674 /* Find the first block in the RPO queue that we have not yet
6675 processed before. */
6678 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6680 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6681 && i < n_blocks);
6683 /* Find all paths starting with BB, and process them. */
6684 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6686 /* Pre-scan the path. */
6687 cse_prescan_path (&ebb_data);
6689 /* If this basic block has no sets, skip it. */
6690 if (ebb_data.nsets == 0)
6691 continue;
6693 /* Get a reasonable estimate for the maximum number of qty's
6694 needed for this path. For this, we take the number of sets
6695 and multiply that by MAX_RECOG_OPERANDS. */
6696 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6698 /* Dump the path we're about to process. */
6699 if (dump_file)
6700 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6702 cse_extended_basic_block (&ebb_data);
6706 /* Clean up. */
6707 end_alias_analysis ();
6708 free (reg_eqv_table);
6709 free (ebb_data.path);
6710 sbitmap_free (cse_visited_basic_blocks);
6711 free (rc_order);
6712 rtl_hooks = general_rtl_hooks;
6714 if (cse_jumps_altered || recorded_label_ref)
6715 return 2;
6716 else if (cse_cfg_altered)
6717 return 1;
6718 else
6719 return 0;
6722 /* Count the number of times registers are used (not set) in X.
6723 COUNTS is an array in which we accumulate the count, INCR is how much
6724 we count each register usage.
6726 Don't count a usage of DEST, which is the SET_DEST of a SET which
6727 contains X in its SET_SRC. This is because such a SET does not
6728 modify the liveness of DEST.
6729 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6730 We must then count uses of a SET_DEST regardless, because the insn can't be
6731 deleted here. */
6733 static void
6734 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6736 enum rtx_code code;
6737 rtx note;
6738 const char *fmt;
6739 int i, j;
6741 if (x == 0)
6742 return;
6744 switch (code = GET_CODE (x))
6746 case REG:
6747 if (x != dest)
6748 counts[REGNO (x)] += incr;
6749 return;
6751 case PC:
6752 case CC0:
6753 case CONST:
6754 CASE_CONST_ANY:
6755 case SYMBOL_REF:
6756 case LABEL_REF:
6757 return;
6759 case CLOBBER:
6760 /* If we are clobbering a MEM, mark any registers inside the address
6761 as being used. */
6762 if (MEM_P (XEXP (x, 0)))
6763 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6764 return;
6766 case SET:
6767 /* Unless we are setting a REG, count everything in SET_DEST. */
6768 if (!REG_P (SET_DEST (x)))
6769 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6770 count_reg_usage (SET_SRC (x), counts,
6771 dest ? dest : SET_DEST (x),
6772 incr);
6773 return;
6775 case DEBUG_INSN:
6776 return;
6778 case CALL_INSN:
6779 case INSN:
6780 case JUMP_INSN:
6781 /* We expect dest to be NULL_RTX here. If the insn may throw,
6782 or if it cannot be deleted due to side-effects, mark this fact
6783 by setting DEST to pc_rtx. */
6784 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6785 || side_effects_p (PATTERN (x)))
6786 dest = pc_rtx;
6787 if (code == CALL_INSN)
6788 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6789 count_reg_usage (PATTERN (x), counts, dest, incr);
6791 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6792 use them. */
6794 note = find_reg_equal_equiv_note (x);
6795 if (note)
6797 rtx eqv = XEXP (note, 0);
6799 if (GET_CODE (eqv) == EXPR_LIST)
6800 /* This REG_EQUAL note describes the result of a function call.
6801 Process all the arguments. */
6804 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6805 eqv = XEXP (eqv, 1);
6807 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6808 else
6809 count_reg_usage (eqv, counts, dest, incr);
6811 return;
6813 case EXPR_LIST:
6814 if (REG_NOTE_KIND (x) == REG_EQUAL
6815 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6816 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6817 involving registers in the address. */
6818 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6819 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6821 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6822 return;
6824 case ASM_OPERANDS:
6825 /* Iterate over just the inputs, not the constraints as well. */
6826 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6827 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6828 return;
6830 case INSN_LIST:
6831 case INT_LIST:
6832 gcc_unreachable ();
6834 default:
6835 break;
6838 fmt = GET_RTX_FORMAT (code);
6839 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6841 if (fmt[i] == 'e')
6842 count_reg_usage (XEXP (x, i), counts, dest, incr);
6843 else if (fmt[i] == 'E')
6844 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6845 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6849 /* Return true if X is a dead register. */
6851 static inline int
6852 is_dead_reg (const_rtx x, int *counts)
6854 return (REG_P (x)
6855 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6856 && counts[REGNO (x)] == 0);
6859 /* Return true if set is live. */
6860 static bool
6861 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6862 int *counts)
6864 rtx_insn *tem;
6866 if (set_noop_p (set))
6869 else if (GET_CODE (SET_DEST (set)) == CC0
6870 && !side_effects_p (SET_SRC (set))
6871 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6872 || !INSN_P (tem)
6873 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6874 return false;
6875 else if (!is_dead_reg (SET_DEST (set), counts)
6876 || side_effects_p (SET_SRC (set)))
6877 return true;
6878 return false;
6881 /* Return true if insn is live. */
6883 static bool
6884 insn_live_p (rtx_insn *insn, int *counts)
6886 int i;
6887 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6888 return true;
6889 else if (GET_CODE (PATTERN (insn)) == SET)
6890 return set_live_p (PATTERN (insn), insn, counts);
6891 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6893 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6895 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6897 if (GET_CODE (elt) == SET)
6899 if (set_live_p (elt, insn, counts))
6900 return true;
6902 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6903 return true;
6905 return false;
6907 else if (DEBUG_INSN_P (insn))
6909 rtx_insn *next;
6911 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6912 if (NOTE_P (next))
6913 continue;
6914 else if (!DEBUG_INSN_P (next))
6915 return true;
6916 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6917 return false;
6919 return true;
6921 else
6922 return true;
6925 /* Count the number of stores into pseudo. Callback for note_stores. */
6927 static void
6928 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6930 int *counts = (int *) data;
6931 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6932 counts[REGNO (x)]++;
6935 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
6936 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
6937 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
6938 Set *SEEN_REPL to true if we see a dead register that does have
6939 a replacement. */
6941 static bool
6942 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
6943 bool *seen_repl)
6945 subrtx_iterator::array_type array;
6946 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
6948 const_rtx x = *iter;
6949 if (is_dead_reg (x, counts))
6951 if (replacements && replacements[REGNO (x)] != NULL_RTX)
6952 *seen_repl = true;
6953 else
6954 return true;
6957 return false;
6960 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6961 Callback for simplify_replace_fn_rtx. */
6963 static rtx
6964 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6966 rtx *replacements = (rtx *) data;
6968 if (REG_P (x)
6969 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6970 && replacements[REGNO (x)] != NULL_RTX)
6972 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6973 return replacements[REGNO (x)];
6974 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6975 GET_MODE (replacements[REGNO (x)]));
6977 return NULL_RTX;
6980 /* Scan all the insns and delete any that are dead; i.e., they store a register
6981 that is never used or they copy a register to itself.
6983 This is used to remove insns made obviously dead by cse, loop or other
6984 optimizations. It improves the heuristics in loop since it won't try to
6985 move dead invariants out of loops or make givs for dead quantities. The
6986 remaining passes of the compilation are also sped up. */
6989 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
6991 int *counts;
6992 rtx_insn *insn, *prev;
6993 rtx *replacements = NULL;
6994 int ndead = 0;
6996 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6997 /* First count the number of times each register is used. */
6998 if (MAY_HAVE_DEBUG_INSNS)
7000 counts = XCNEWVEC (int, nreg * 3);
7001 for (insn = insns; insn; insn = NEXT_INSN (insn))
7002 if (DEBUG_INSN_P (insn))
7003 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7004 NULL_RTX, 1);
7005 else if (INSN_P (insn))
7007 count_reg_usage (insn, counts, NULL_RTX, 1);
7008 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
7010 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7011 First one counts how many times each pseudo is used outside
7012 of debug insns, second counts how many times each pseudo is
7013 used in debug insns and third counts how many times a pseudo
7014 is stored. */
7016 else
7018 counts = XCNEWVEC (int, nreg);
7019 for (insn = insns; insn; insn = NEXT_INSN (insn))
7020 if (INSN_P (insn))
7021 count_reg_usage (insn, counts, NULL_RTX, 1);
7022 /* If no debug insns can be present, COUNTS is just an array
7023 which counts how many times each pseudo is used. */
7025 /* Pseudo PIC register should be considered as used due to possible
7026 new usages generated. */
7027 if (!reload_completed
7028 && pic_offset_table_rtx
7029 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7030 counts[REGNO (pic_offset_table_rtx)]++;
7031 /* Go from the last insn to the first and delete insns that only set unused
7032 registers or copy a register to itself. As we delete an insn, remove
7033 usage counts for registers it uses.
7035 The first jump optimization pass may leave a real insn as the last
7036 insn in the function. We must not skip that insn or we may end
7037 up deleting code that is not really dead.
7039 If some otherwise unused register is only used in DEBUG_INSNs,
7040 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7041 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7042 has been created for the unused register, replace it with
7043 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7044 for (insn = get_last_insn (); insn; insn = prev)
7046 int live_insn = 0;
7048 prev = PREV_INSN (insn);
7049 if (!INSN_P (insn))
7050 continue;
7052 live_insn = insn_live_p (insn, counts);
7054 /* If this is a dead insn, delete it and show registers in it aren't
7055 being used. */
7057 if (! live_insn && dbg_cnt (delete_trivial_dead))
7059 if (DEBUG_INSN_P (insn))
7060 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7061 NULL_RTX, -1);
7062 else
7064 rtx set;
7065 if (MAY_HAVE_DEBUG_INSNS
7066 && (set = single_set (insn)) != NULL_RTX
7067 && is_dead_reg (SET_DEST (set), counts)
7068 /* Used at least once in some DEBUG_INSN. */
7069 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7070 /* And set exactly once. */
7071 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7072 && !side_effects_p (SET_SRC (set))
7073 && asm_noperands (PATTERN (insn)) < 0)
7075 rtx dval, bind_var_loc;
7076 rtx_insn *bind;
7078 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7079 dval = make_debug_expr_from_rtl (SET_DEST (set));
7081 /* Emit a debug bind insn before the insn in which
7082 reg dies. */
7083 bind_var_loc =
7084 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7085 DEBUG_EXPR_TREE_DECL (dval),
7086 SET_SRC (set),
7087 VAR_INIT_STATUS_INITIALIZED);
7088 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7090 bind = emit_debug_insn_before (bind_var_loc, insn);
7091 df_insn_rescan (bind);
7093 if (replacements == NULL)
7094 replacements = XCNEWVEC (rtx, nreg);
7095 replacements[REGNO (SET_DEST (set))] = dval;
7098 count_reg_usage (insn, counts, NULL_RTX, -1);
7099 ndead++;
7101 delete_insn_and_edges (insn);
7105 if (MAY_HAVE_DEBUG_INSNS)
7107 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7108 if (DEBUG_INSN_P (insn))
7110 /* If this debug insn references a dead register that wasn't replaced
7111 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7112 bool seen_repl = false;
7113 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7114 counts, replacements, &seen_repl))
7116 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7117 df_insn_rescan (insn);
7119 else if (seen_repl)
7121 INSN_VAR_LOCATION_LOC (insn)
7122 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7123 NULL_RTX, replace_dead_reg,
7124 replacements);
7125 df_insn_rescan (insn);
7128 free (replacements);
7131 if (dump_file && ndead)
7132 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7133 ndead);
7134 /* Clean up. */
7135 free (counts);
7136 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7137 return ndead;
7140 /* If LOC contains references to NEWREG in a different mode, change them
7141 to use NEWREG instead. */
7143 static void
7144 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7145 rtx *loc, rtx_insn *insn, rtx newreg)
7147 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7149 rtx *loc = *iter;
7150 rtx x = *loc;
7151 if (x
7152 && REG_P (x)
7153 && REGNO (x) == REGNO (newreg)
7154 && GET_MODE (x) != GET_MODE (newreg))
7156 validate_change (insn, loc, newreg, 1);
7157 iter.skip_subrtxes ();
7162 /* Change the mode of any reference to the register REGNO (NEWREG) to
7163 GET_MODE (NEWREG) in INSN. */
7165 static void
7166 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7168 int success;
7170 if (!INSN_P (insn))
7171 return;
7173 subrtx_ptr_iterator::array_type array;
7174 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7175 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7177 /* If the following assertion was triggered, there is most probably
7178 something wrong with the cc_modes_compatible back end function.
7179 CC modes only can be considered compatible if the insn - with the mode
7180 replaced by any of the compatible modes - can still be recognized. */
7181 success = apply_change_group ();
7182 gcc_assert (success);
7185 /* Change the mode of any reference to the register REGNO (NEWREG) to
7186 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7187 any instruction which modifies NEWREG. */
7189 static void
7190 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7192 rtx_insn *insn;
7194 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7196 if (! INSN_P (insn))
7197 continue;
7199 if (reg_set_p (newreg, insn))
7200 return;
7202 cse_change_cc_mode_insn (insn, newreg);
7206 /* BB is a basic block which finishes with CC_REG as a condition code
7207 register which is set to CC_SRC. Look through the successors of BB
7208 to find blocks which have a single predecessor (i.e., this one),
7209 and look through those blocks for an assignment to CC_REG which is
7210 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7211 permitted to change the mode of CC_SRC to a compatible mode. This
7212 returns VOIDmode if no equivalent assignments were found.
7213 Otherwise it returns the mode which CC_SRC should wind up with.
7214 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7215 but is passed unmodified down to recursive calls in order to prevent
7216 endless recursion.
7218 The main complexity in this function is handling the mode issues.
7219 We may have more than one duplicate which we can eliminate, and we
7220 try to find a mode which will work for multiple duplicates. */
7222 static machine_mode
7223 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7224 bool can_change_mode)
7226 bool found_equiv;
7227 machine_mode mode;
7228 unsigned int insn_count;
7229 edge e;
7230 rtx_insn *insns[2];
7231 machine_mode modes[2];
7232 rtx_insn *last_insns[2];
7233 unsigned int i;
7234 rtx newreg;
7235 edge_iterator ei;
7237 /* We expect to have two successors. Look at both before picking
7238 the final mode for the comparison. If we have more successors
7239 (i.e., some sort of table jump, although that seems unlikely),
7240 then we require all beyond the first two to use the same
7241 mode. */
7243 found_equiv = false;
7244 mode = GET_MODE (cc_src);
7245 insn_count = 0;
7246 FOR_EACH_EDGE (e, ei, bb->succs)
7248 rtx_insn *insn;
7249 rtx_insn *end;
7251 if (e->flags & EDGE_COMPLEX)
7252 continue;
7254 if (EDGE_COUNT (e->dest->preds) != 1
7255 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7256 /* Avoid endless recursion on unreachable blocks. */
7257 || e->dest == orig_bb)
7258 continue;
7260 end = NEXT_INSN (BB_END (e->dest));
7261 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7263 rtx set;
7265 if (! INSN_P (insn))
7266 continue;
7268 /* If CC_SRC is modified, we have to stop looking for
7269 something which uses it. */
7270 if (modified_in_p (cc_src, insn))
7271 break;
7273 /* Check whether INSN sets CC_REG to CC_SRC. */
7274 set = single_set (insn);
7275 if (set
7276 && REG_P (SET_DEST (set))
7277 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7279 bool found;
7280 machine_mode set_mode;
7281 machine_mode comp_mode;
7283 found = false;
7284 set_mode = GET_MODE (SET_SRC (set));
7285 comp_mode = set_mode;
7286 if (rtx_equal_p (cc_src, SET_SRC (set)))
7287 found = true;
7288 else if (GET_CODE (cc_src) == COMPARE
7289 && GET_CODE (SET_SRC (set)) == COMPARE
7290 && mode != set_mode
7291 && rtx_equal_p (XEXP (cc_src, 0),
7292 XEXP (SET_SRC (set), 0))
7293 && rtx_equal_p (XEXP (cc_src, 1),
7294 XEXP (SET_SRC (set), 1)))
7297 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7298 if (comp_mode != VOIDmode
7299 && (can_change_mode || comp_mode == mode))
7300 found = true;
7303 if (found)
7305 found_equiv = true;
7306 if (insn_count < ARRAY_SIZE (insns))
7308 insns[insn_count] = insn;
7309 modes[insn_count] = set_mode;
7310 last_insns[insn_count] = end;
7311 ++insn_count;
7313 if (mode != comp_mode)
7315 gcc_assert (can_change_mode);
7316 mode = comp_mode;
7318 /* The modified insn will be re-recognized later. */
7319 PUT_MODE (cc_src, mode);
7322 else
7324 if (set_mode != mode)
7326 /* We found a matching expression in the
7327 wrong mode, but we don't have room to
7328 store it in the array. Punt. This case
7329 should be rare. */
7330 break;
7332 /* INSN sets CC_REG to a value equal to CC_SRC
7333 with the right mode. We can simply delete
7334 it. */
7335 delete_insn (insn);
7338 /* We found an instruction to delete. Keep looking,
7339 in the hopes of finding a three-way jump. */
7340 continue;
7343 /* We found an instruction which sets the condition
7344 code, so don't look any farther. */
7345 break;
7348 /* If INSN sets CC_REG in some other way, don't look any
7349 farther. */
7350 if (reg_set_p (cc_reg, insn))
7351 break;
7354 /* If we fell off the bottom of the block, we can keep looking
7355 through successors. We pass CAN_CHANGE_MODE as false because
7356 we aren't prepared to handle compatibility between the
7357 further blocks and this block. */
7358 if (insn == end)
7360 machine_mode submode;
7362 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7363 if (submode != VOIDmode)
7365 gcc_assert (submode == mode);
7366 found_equiv = true;
7367 can_change_mode = false;
7372 if (! found_equiv)
7373 return VOIDmode;
7375 /* Now INSN_COUNT is the number of instructions we found which set
7376 CC_REG to a value equivalent to CC_SRC. The instructions are in
7377 INSNS. The modes used by those instructions are in MODES. */
7379 newreg = NULL_RTX;
7380 for (i = 0; i < insn_count; ++i)
7382 if (modes[i] != mode)
7384 /* We need to change the mode of CC_REG in INSNS[i] and
7385 subsequent instructions. */
7386 if (! newreg)
7388 if (GET_MODE (cc_reg) == mode)
7389 newreg = cc_reg;
7390 else
7391 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7393 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7394 newreg);
7397 delete_insn_and_edges (insns[i]);
7400 return mode;
7403 /* If we have a fixed condition code register (or two), walk through
7404 the instructions and try to eliminate duplicate assignments. */
7406 static void
7407 cse_condition_code_reg (void)
7409 unsigned int cc_regno_1;
7410 unsigned int cc_regno_2;
7411 rtx cc_reg_1;
7412 rtx cc_reg_2;
7413 basic_block bb;
7415 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7416 return;
7418 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7419 if (cc_regno_2 != INVALID_REGNUM)
7420 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7421 else
7422 cc_reg_2 = NULL_RTX;
7424 FOR_EACH_BB_FN (bb, cfun)
7426 rtx_insn *last_insn;
7427 rtx cc_reg;
7428 rtx_insn *insn;
7429 rtx_insn *cc_src_insn;
7430 rtx cc_src;
7431 machine_mode mode;
7432 machine_mode orig_mode;
7434 /* Look for blocks which end with a conditional jump based on a
7435 condition code register. Then look for the instruction which
7436 sets the condition code register. Then look through the
7437 successor blocks for instructions which set the condition
7438 code register to the same value. There are other possible
7439 uses of the condition code register, but these are by far the
7440 most common and the ones which we are most likely to be able
7441 to optimize. */
7443 last_insn = BB_END (bb);
7444 if (!JUMP_P (last_insn))
7445 continue;
7447 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7448 cc_reg = cc_reg_1;
7449 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7450 cc_reg = cc_reg_2;
7451 else
7452 continue;
7454 cc_src_insn = NULL;
7455 cc_src = NULL_RTX;
7456 for (insn = PREV_INSN (last_insn);
7457 insn && insn != PREV_INSN (BB_HEAD (bb));
7458 insn = PREV_INSN (insn))
7460 rtx set;
7462 if (! INSN_P (insn))
7463 continue;
7464 set = single_set (insn);
7465 if (set
7466 && REG_P (SET_DEST (set))
7467 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7469 cc_src_insn = insn;
7470 cc_src = SET_SRC (set);
7471 break;
7473 else if (reg_set_p (cc_reg, insn))
7474 break;
7477 if (! cc_src_insn)
7478 continue;
7480 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7481 continue;
7483 /* Now CC_REG is a condition code register used for a
7484 conditional jump at the end of the block, and CC_SRC, in
7485 CC_SRC_INSN, is the value to which that condition code
7486 register is set, and CC_SRC is still meaningful at the end of
7487 the basic block. */
7489 orig_mode = GET_MODE (cc_src);
7490 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7491 if (mode != VOIDmode)
7493 gcc_assert (mode == GET_MODE (cc_src));
7494 if (mode != orig_mode)
7496 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7498 cse_change_cc_mode_insn (cc_src_insn, newreg);
7500 /* Do the same in the following insns that use the
7501 current value of CC_REG within BB. */
7502 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7503 NEXT_INSN (last_insn),
7504 newreg);
7511 /* Perform common subexpression elimination. Nonzero value from
7512 `cse_main' means that jumps were simplified and some code may now
7513 be unreachable, so do jump optimization again. */
7514 static unsigned int
7515 rest_of_handle_cse (void)
7517 int tem;
7519 if (dump_file)
7520 dump_flow_info (dump_file, dump_flags);
7522 tem = cse_main (get_insns (), max_reg_num ());
7524 /* If we are not running more CSE passes, then we are no longer
7525 expecting CSE to be run. But always rerun it in a cheap mode. */
7526 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7528 if (tem == 2)
7530 timevar_push (TV_JUMP);
7531 rebuild_jump_labels (get_insns ());
7532 cleanup_cfg (CLEANUP_CFG_CHANGED);
7533 timevar_pop (TV_JUMP);
7535 else if (tem == 1 || optimize > 1)
7536 cleanup_cfg (0);
7538 return 0;
7541 namespace {
7543 const pass_data pass_data_cse =
7545 RTL_PASS, /* type */
7546 "cse1", /* name */
7547 OPTGROUP_NONE, /* optinfo_flags */
7548 TV_CSE, /* tv_id */
7549 0, /* properties_required */
7550 0, /* properties_provided */
7551 0, /* properties_destroyed */
7552 0, /* todo_flags_start */
7553 TODO_df_finish, /* todo_flags_finish */
7556 class pass_cse : public rtl_opt_pass
7558 public:
7559 pass_cse (gcc::context *ctxt)
7560 : rtl_opt_pass (pass_data_cse, ctxt)
7563 /* opt_pass methods: */
7564 virtual bool gate (function *) { return optimize > 0; }
7565 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7567 }; // class pass_cse
7569 } // anon namespace
7571 rtl_opt_pass *
7572 make_pass_cse (gcc::context *ctxt)
7574 return new pass_cse (ctxt);
7578 /* Run second CSE pass after loop optimizations. */
7579 static unsigned int
7580 rest_of_handle_cse2 (void)
7582 int tem;
7584 if (dump_file)
7585 dump_flow_info (dump_file, dump_flags);
7587 tem = cse_main (get_insns (), max_reg_num ());
7589 /* Run a pass to eliminate duplicated assignments to condition code
7590 registers. We have to run this after bypass_jumps, because it
7591 makes it harder for that pass to determine whether a jump can be
7592 bypassed safely. */
7593 cse_condition_code_reg ();
7595 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7597 if (tem == 2)
7599 timevar_push (TV_JUMP);
7600 rebuild_jump_labels (get_insns ());
7601 cleanup_cfg (CLEANUP_CFG_CHANGED);
7602 timevar_pop (TV_JUMP);
7604 else if (tem == 1)
7605 cleanup_cfg (0);
7607 cse_not_expected = 1;
7608 return 0;
7612 namespace {
7614 const pass_data pass_data_cse2 =
7616 RTL_PASS, /* type */
7617 "cse2", /* name */
7618 OPTGROUP_NONE, /* optinfo_flags */
7619 TV_CSE2, /* tv_id */
7620 0, /* properties_required */
7621 0, /* properties_provided */
7622 0, /* properties_destroyed */
7623 0, /* todo_flags_start */
7624 TODO_df_finish, /* todo_flags_finish */
7627 class pass_cse2 : public rtl_opt_pass
7629 public:
7630 pass_cse2 (gcc::context *ctxt)
7631 : rtl_opt_pass (pass_data_cse2, ctxt)
7634 /* opt_pass methods: */
7635 virtual bool gate (function *)
7637 return optimize > 0 && flag_rerun_cse_after_loop;
7640 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7642 }; // class pass_cse2
7644 } // anon namespace
7646 rtl_opt_pass *
7647 make_pass_cse2 (gcc::context *ctxt)
7649 return new pass_cse2 (ctxt);
7652 /* Run second CSE pass after loop optimizations. */
7653 static unsigned int
7654 rest_of_handle_cse_after_global_opts (void)
7656 int save_cfj;
7657 int tem;
7659 /* We only want to do local CSE, so don't follow jumps. */
7660 save_cfj = flag_cse_follow_jumps;
7661 flag_cse_follow_jumps = 0;
7663 rebuild_jump_labels (get_insns ());
7664 tem = cse_main (get_insns (), max_reg_num ());
7665 purge_all_dead_edges ();
7666 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7668 cse_not_expected = !flag_rerun_cse_after_loop;
7670 /* If cse altered any jumps, rerun jump opts to clean things up. */
7671 if (tem == 2)
7673 timevar_push (TV_JUMP);
7674 rebuild_jump_labels (get_insns ());
7675 cleanup_cfg (CLEANUP_CFG_CHANGED);
7676 timevar_pop (TV_JUMP);
7678 else if (tem == 1)
7679 cleanup_cfg (0);
7681 flag_cse_follow_jumps = save_cfj;
7682 return 0;
7685 namespace {
7687 const pass_data pass_data_cse_after_global_opts =
7689 RTL_PASS, /* type */
7690 "cse_local", /* name */
7691 OPTGROUP_NONE, /* optinfo_flags */
7692 TV_CSE, /* tv_id */
7693 0, /* properties_required */
7694 0, /* properties_provided */
7695 0, /* properties_destroyed */
7696 0, /* todo_flags_start */
7697 TODO_df_finish, /* todo_flags_finish */
7700 class pass_cse_after_global_opts : public rtl_opt_pass
7702 public:
7703 pass_cse_after_global_opts (gcc::context *ctxt)
7704 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7707 /* opt_pass methods: */
7708 virtual bool gate (function *)
7710 return optimize > 0 && flag_rerun_cse_after_global_opts;
7713 virtual unsigned int execute (function *)
7715 return rest_of_handle_cse_after_global_opts ();
7718 }; // class pass_cse_after_global_opts
7720 } // anon namespace
7722 rtl_opt_pass *
7723 make_pass_cse_after_global_opts (gcc::context *ctxt)
7725 return new pass_cse_after_global_opts (ctxt);