hppa: Fix pr110279-1.c on hppa
[official-gcc.git] / gcc / ira-costs.cc
blobc3efd295e540655bb5bb12127c5ab5a5e4760c0a
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2023 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "regset.h"
34 #include "ira.h"
35 #include "ira-int.h"
36 #include "addresses.h"
37 #include "reload.h"
38 #include "print-rtl.h"
40 /* The flags is set up every time when we calculate pseudo register
41 classes through function ira_set_pseudo_classes. */
42 static bool pseudo_classes_defined_p = false;
44 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
45 static bool allocno_p;
47 /* Number of elements in array `costs'. */
48 static int cost_elements_num;
50 /* The `costs' struct records the cost of using hard registers of each
51 class considered for the calculation and of using memory for each
52 allocno or pseudo. */
53 struct costs
55 int mem_cost;
56 /* Costs for register classes start here. We process only some
57 allocno classes. */
58 int cost[1];
61 #define max_struct_costs_size \
62 (this_target_ira_int->x_max_struct_costs_size)
63 #define init_cost \
64 (this_target_ira_int->x_init_cost)
65 #define temp_costs \
66 (this_target_ira_int->x_temp_costs)
67 #define op_costs \
68 (this_target_ira_int->x_op_costs)
69 #define this_op_costs \
70 (this_target_ira_int->x_this_op_costs)
72 /* Costs of each class for each allocno or pseudo. */
73 static struct costs *costs;
75 /* Accumulated costs of each class for each allocno. */
76 static struct costs *total_allocno_costs;
78 /* It is the current size of struct costs. */
79 static size_t struct_costs_size;
81 /* Return pointer to structure containing costs of allocno or pseudo
82 with given NUM in array ARR. */
83 #define COSTS(arr, num) \
84 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
86 /* Return index in COSTS when processing reg with REGNO. */
87 #define COST_INDEX(regno) (allocno_p \
88 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
89 : (int) regno)
91 /* Record register class preferences of each allocno or pseudo. Null
92 value means no preferences. It happens on the 1st iteration of the
93 cost calculation. */
94 static enum reg_class *pref;
96 /* Allocated buffers for pref. */
97 static enum reg_class *pref_buffer;
99 /* Record allocno class of each allocno with the same regno. */
100 static enum reg_class *regno_aclass;
102 /* Record cost gains for not allocating a register with an invariant
103 equivalence. */
104 static int *regno_equiv_gains;
106 /* Execution frequency of the current insn. */
107 static int frequency;
111 /* Info about reg classes whose costs are calculated for a pseudo. */
112 struct cost_classes
114 /* Number of the cost classes in the subsequent array. */
115 int num;
116 /* Container of the cost classes. */
117 enum reg_class classes[N_REG_CLASSES];
118 /* Map reg class -> index of the reg class in the previous array.
119 -1 if it is not a cost class. */
120 int index[N_REG_CLASSES];
121 /* Map hard regno index of first class in array CLASSES containing
122 the hard regno, -1 otherwise. */
123 int hard_regno_index[FIRST_PSEUDO_REGISTER];
126 /* Types of pointers to the structure above. */
127 typedef struct cost_classes *cost_classes_t;
128 typedef const struct cost_classes *const_cost_classes_t;
130 /* Info about cost classes for each pseudo. */
131 static cost_classes_t *regno_cost_classes;
133 /* Helper for cost_classes hashing. */
135 struct cost_classes_hasher : pointer_hash <cost_classes>
137 static inline hashval_t hash (const cost_classes *);
138 static inline bool equal (const cost_classes *, const cost_classes *);
139 static inline void remove (cost_classes *);
142 /* Returns hash value for cost classes info HV. */
143 inline hashval_t
144 cost_classes_hasher::hash (const cost_classes *hv)
146 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
149 /* Compares cost classes info HV1 and HV2. */
150 inline bool
151 cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
153 return (hv1->num == hv2->num
154 && memcmp (hv1->classes, hv2->classes,
155 sizeof (enum reg_class) * hv1->num) == 0);
158 /* Delete cost classes info V from the hash table. */
159 inline void
160 cost_classes_hasher::remove (cost_classes *v)
162 ira_free (v);
165 /* Hash table of unique cost classes. */
166 static hash_table<cost_classes_hasher> *cost_classes_htab;
168 /* Map allocno class -> cost classes for pseudo of given allocno
169 class. */
170 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
172 /* Map mode -> cost classes for pseudo of give mode. */
173 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
175 /* Cost classes that include all classes in ira_important_classes. */
176 static cost_classes all_cost_classes;
178 /* Use the array of classes in CLASSES_PTR to fill out the rest of
179 the structure. */
180 static void
181 complete_cost_classes (cost_classes_t classes_ptr)
183 for (int i = 0; i < N_REG_CLASSES; i++)
184 classes_ptr->index[i] = -1;
185 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
186 classes_ptr->hard_regno_index[i] = -1;
187 for (int i = 0; i < classes_ptr->num; i++)
189 enum reg_class cl = classes_ptr->classes[i];
190 classes_ptr->index[cl] = i;
191 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
193 unsigned int hard_regno = ira_class_hard_regs[cl][j];
194 if (classes_ptr->hard_regno_index[hard_regno] < 0)
195 classes_ptr->hard_regno_index[hard_regno] = i;
200 /* Initialize info about the cost classes for each pseudo. */
201 static void
202 initiate_regno_cost_classes (void)
204 int size = sizeof (cost_classes_t) * max_reg_num ();
206 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
207 memset (regno_cost_classes, 0, size);
208 memset (cost_classes_aclass_cache, 0,
209 sizeof (cost_classes_t) * N_REG_CLASSES);
210 memset (cost_classes_mode_cache, 0,
211 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
212 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
213 all_cost_classes.num = ira_important_classes_num;
214 for (int i = 0; i < ira_important_classes_num; i++)
215 all_cost_classes.classes[i] = ira_important_classes[i];
216 complete_cost_classes (&all_cost_classes);
219 /* Create new cost classes from cost classes FROM and set up members
220 index and hard_regno_index. Return the new classes. The function
221 implements some common code of two functions
222 setup_regno_cost_classes_by_aclass and
223 setup_regno_cost_classes_by_mode. */
224 static cost_classes_t
225 setup_cost_classes (cost_classes_t from)
227 cost_classes_t classes_ptr;
229 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
230 classes_ptr->num = from->num;
231 for (int i = 0; i < from->num; i++)
232 classes_ptr->classes[i] = from->classes[i];
233 complete_cost_classes (classes_ptr);
234 return classes_ptr;
237 /* Return a version of FULL that only considers registers in REGS that are
238 valid for mode MODE. Both FULL and the returned class are globally
239 allocated. */
240 static cost_classes_t
241 restrict_cost_classes (cost_classes_t full, machine_mode mode,
242 const_hard_reg_set regs)
244 static struct cost_classes narrow;
245 int map[N_REG_CLASSES];
246 narrow.num = 0;
247 for (int i = 0; i < full->num; i++)
249 /* Assume that we'll drop the class. */
250 map[i] = -1;
252 /* Ignore classes that are too small for the mode. */
253 enum reg_class cl = full->classes[i];
254 if (!contains_reg_of_mode[cl][mode])
255 continue;
257 /* Calculate the set of registers in CL that belong to REGS and
258 are valid for MODE. */
259 HARD_REG_SET valid_for_cl = reg_class_contents[cl] & regs;
260 valid_for_cl &= ~(ira_prohibited_class_mode_regs[cl][mode]
261 | ira_no_alloc_regs);
262 if (hard_reg_set_empty_p (valid_for_cl))
263 continue;
265 /* Don't use this class if the set of valid registers is a subset
266 of an existing class. For example, suppose we have two classes
267 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
268 that the mode changes allowed by FR_REGS are not as general as
269 the mode changes allowed by GR_REGS.
271 In this situation, the mode changes for GR_AND_FR_REGS could
272 either be seen as the union or the intersection of the mode
273 changes allowed by the two subclasses. The justification for
274 the union-based definition would be that, if you want a mode
275 change that's only allowed by GR_REGS, you can pick a register
276 from the GR_REGS subclass. The justification for the
277 intersection-based definition would be that every register
278 from the class would allow the mode change.
280 However, if we have a register that needs to be in GR_REGS,
281 using GR_AND_FR_REGS with the intersection-based definition
282 would be too pessimistic, since it would bring in restrictions
283 that only apply to FR_REGS. Conversely, if we have a register
284 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
285 union-based definition would lose the extra restrictions
286 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
287 for cases where GR_REGS and FP_REGS are both valid. */
288 int pos;
289 for (pos = 0; pos < narrow.num; ++pos)
291 enum reg_class cl2 = narrow.classes[pos];
292 if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
293 break;
295 map[i] = pos;
296 if (pos == narrow.num)
298 /* If several classes are equivalent, prefer to use the one
299 that was chosen as the allocno class. */
300 enum reg_class cl2 = ira_allocno_class_translate[cl];
301 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
302 cl = cl2;
303 narrow.classes[narrow.num++] = cl;
306 if (narrow.num == full->num)
307 return full;
309 cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
310 if (*slot == NULL)
312 cost_classes_t classes = setup_cost_classes (&narrow);
313 /* Map equivalent classes to the representative that we chose above. */
314 for (int i = 0; i < ira_important_classes_num; i++)
316 enum reg_class cl = ira_important_classes[i];
317 int index = full->index[cl];
318 if (index >= 0)
319 classes->index[cl] = map[index];
321 *slot = classes;
323 return *slot;
326 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
327 This function is used when we know an initial approximation of
328 allocno class of the pseudo already, e.g. on the second iteration
329 of class cost calculation or after class cost calculation in
330 register-pressure sensitive insn scheduling or register-pressure
331 sensitive loop-invariant motion. */
332 static void
333 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
335 static struct cost_classes classes;
336 cost_classes_t classes_ptr;
337 enum reg_class cl;
338 int i;
339 cost_classes **slot;
340 HARD_REG_SET temp, temp2;
341 bool exclude_p;
343 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
345 temp = reg_class_contents[aclass] & ~ira_no_alloc_regs;
346 /* We exclude classes from consideration which are subsets of
347 ACLASS only if ACLASS is an uniform class. */
348 exclude_p = ira_uniform_class_p[aclass];
349 classes.num = 0;
350 for (i = 0; i < ira_important_classes_num; i++)
352 cl = ira_important_classes[i];
353 if (exclude_p)
355 /* Exclude non-uniform classes which are subsets of
356 ACLASS. */
357 temp2 = reg_class_contents[cl] & ~ira_no_alloc_regs;
358 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
359 continue;
361 classes.classes[classes.num++] = cl;
363 slot = cost_classes_htab->find_slot (&classes, INSERT);
364 if (*slot == NULL)
366 classes_ptr = setup_cost_classes (&classes);
367 *slot = classes_ptr;
369 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
371 if (regno_reg_rtx[regno] != NULL_RTX)
373 /* Restrict the classes to those that are valid for REGNO's mode
374 (which might for example exclude singleton classes if the mode
375 requires two registers). Also restrict the classes to those that
376 are valid for subregs of REGNO. */
377 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
378 if (!valid_regs)
379 valid_regs = &reg_class_contents[ALL_REGS];
380 classes_ptr = restrict_cost_classes (classes_ptr,
381 PSEUDO_REGNO_MODE (regno),
382 *valid_regs);
384 regno_cost_classes[regno] = classes_ptr;
387 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
388 decrease number of cost classes for the pseudo, if hard registers
389 of some important classes cannot hold a value of MODE. So the
390 pseudo cannot get hard register of some important classes and cost
391 calculation for such important classes is only wasting CPU
392 time. */
393 static void
394 setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
396 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
397 regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
398 mode, *valid_regs);
399 else
401 if (cost_classes_mode_cache[mode] == NULL)
402 cost_classes_mode_cache[mode]
403 = restrict_cost_classes (&all_cost_classes, mode,
404 reg_class_contents[ALL_REGS]);
405 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
409 /* Finalize info about the cost classes for each pseudo. */
410 static void
411 finish_regno_cost_classes (void)
413 ira_free (regno_cost_classes);
414 delete cost_classes_htab;
415 cost_classes_htab = NULL;
420 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
421 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
422 be a pseudo register. */
423 static int
424 copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
425 secondary_reload_info *prev_sri)
427 secondary_reload_info sri;
428 reg_class_t secondary_class = NO_REGS;
430 /* If X is a SCRATCH, there is actually nothing to move since we are
431 assuming optimal allocation. */
432 if (GET_CODE (x) == SCRATCH)
433 return 0;
435 /* Get the class we will actually use for a reload. */
436 rclass = targetm.preferred_reload_class (x, rclass);
438 /* If we need a secondary reload for an intermediate, the cost is
439 that to load the input into the intermediate register, then to
440 copy it. */
441 sri.prev_sri = prev_sri;
442 sri.extra_cost = 0;
443 /* PR 68770: Secondary reload might examine the t_icode field. */
444 sri.t_icode = CODE_FOR_nothing;
446 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
448 if (secondary_class != NO_REGS)
450 ira_init_register_move_cost_if_necessary (mode);
451 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
452 + sri.extra_cost
453 + copy_cost (x, mode, secondary_class, to_p, &sri));
456 /* For memory, use the memory move cost, for (hard) registers, use
457 the cost to move between the register classes, and use 2 for
458 everything else (constants). */
459 if (MEM_P (x) || rclass == NO_REGS)
460 return sri.extra_cost
461 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
462 else if (REG_P (x))
464 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
466 ira_init_register_move_cost_if_necessary (mode);
467 return (sri.extra_cost
468 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
470 else
471 /* If this is a constant, we may eventually want to call rtx_cost
472 here. */
473 return sri.extra_cost + COSTS_N_INSNS (1);
478 /* Record the cost of using memory or hard registers of various
479 classes for the operands in INSN.
481 N_ALTS is the number of alternatives.
482 N_OPS is the number of operands.
483 OPS is an array of the operands.
484 MODES are the modes of the operands, in case any are VOIDmode.
485 CONSTRAINTS are the constraints to use for the operands. This array
486 is modified by this procedure.
488 This procedure works alternative by alternative. For each
489 alternative we assume that we will be able to allocate all allocnos
490 to their ideal register class and calculate the cost of using that
491 alternative. Then we compute, for each operand that is a
492 pseudo-register, the cost of having the allocno allocated to each
493 register class and using it in that alternative. To this cost is
494 added the cost of the alternative.
496 The cost of each class for this insn is its lowest cost among all
497 the alternatives. */
498 static void
499 record_reg_classes (int n_alts, int n_ops, rtx *ops,
500 machine_mode *modes, const char **constraints,
501 rtx_insn *insn, enum reg_class *pref)
503 int alt;
504 int i, j, k;
505 int insn_allows_mem[MAX_RECOG_OPERANDS];
506 move_table *move_in_cost, *move_out_cost;
507 short (*mem_cost)[2];
508 const char *p;
510 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
512 fprintf (ira_dump_file, " Processing insn %u", INSN_UID (insn));
513 if (INSN_CODE (insn) >= 0
514 && (p = get_insn_name (INSN_CODE (insn))) != NULL)
515 fprintf (ira_dump_file, " {%s}", p);
516 fprintf (ira_dump_file, " (freq=%d)\n",
517 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)));
518 dump_insn_slim (ira_dump_file, insn);
521 for (i = 0; i < n_ops; i++)
522 insn_allows_mem[i] = 0;
524 /* Process each alternative, each time minimizing an operand's cost
525 with the cost for each operand in that alternative. */
526 alternative_mask preferred = get_preferred_alternatives (insn);
527 for (alt = 0; alt < n_alts; alt++)
529 enum reg_class classes[MAX_RECOG_OPERANDS];
530 int allows_mem[MAX_RECOG_OPERANDS];
531 enum reg_class rclass;
532 int alt_fail = 0;
533 int alt_cost = 0, op_cost_add;
535 if (!TEST_BIT (preferred, alt))
537 for (i = 0; i < recog_data.n_operands; i++)
538 constraints[i] = skip_alternative (constraints[i]);
540 continue;
543 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
545 fprintf (ira_dump_file, " Alt %d:", alt);
546 for (i = 0; i < n_ops; i++)
548 p = constraints[i];
549 if (*p == '\0')
550 continue;
551 fprintf (ira_dump_file, " (%d) ", i);
552 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
553 fputc (*p, ira_dump_file);
555 fprintf (ira_dump_file, "\n");
558 for (i = 0; i < n_ops; i++)
560 unsigned char c;
561 const char *p = constraints[i];
562 rtx op = ops[i];
563 machine_mode mode = modes[i];
564 int allows_addr = 0;
565 int win = 0;
567 /* Initially show we know nothing about the register class. */
568 classes[i] = NO_REGS;
569 allows_mem[i] = 0;
571 /* If this operand has no constraints at all, we can
572 conclude nothing about it since anything is valid. */
573 if (*p == 0)
575 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
576 memset (this_op_costs[i], 0, struct_costs_size);
577 continue;
580 /* If this alternative is only relevant when this operand
581 matches a previous operand, we do different things
582 depending on whether this operand is a allocno-reg or not.
583 We must process any modifiers for the operand before we
584 can make this test. */
585 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
586 p++;
588 if (p[0] >= '0' && p[0] <= '0' + i)
590 /* Copy class and whether memory is allowed from the
591 matching alternative. Then perform any needed cost
592 computations and/or adjustments. */
593 j = p[0] - '0';
594 classes[i] = classes[j];
595 allows_mem[i] = allows_mem[j];
596 if (allows_mem[i])
597 insn_allows_mem[i] = 1;
599 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
601 /* If this matches the other operand, we have no
602 added cost and we win. */
603 if (rtx_equal_p (ops[j], op))
604 win = 1;
605 /* If we can put the other operand into a register,
606 add to the cost of this alternative the cost to
607 copy this operand to the register used for the
608 other operand. */
609 else if (classes[j] != NO_REGS)
611 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
612 win = 1;
615 else if (! REG_P (ops[j])
616 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
618 /* This op is an allocno but the one it matches is
619 not. */
621 /* If we can't put the other operand into a
622 register, this alternative can't be used. */
624 if (classes[j] == NO_REGS)
626 alt_fail = 1;
628 else
629 /* Otherwise, add to the cost of this alternative the cost
630 to copy the other operand to the hard register used for
631 this operand. */
633 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
636 else
638 /* The costs of this operand are not the same as the
639 other operand since move costs are not symmetric.
640 Moreover, if we cannot tie them, this alternative
641 needs to do a copy, which is one insn. */
642 struct costs *pp = this_op_costs[i];
643 int *pp_costs = pp->cost;
644 cost_classes_t cost_classes_ptr
645 = regno_cost_classes[REGNO (op)];
646 enum reg_class *cost_classes = cost_classes_ptr->classes;
647 bool in_p = recog_data.operand_type[i] != OP_OUT;
648 bool out_p = recog_data.operand_type[i] != OP_IN;
649 enum reg_class op_class = classes[i];
651 ira_init_register_move_cost_if_necessary (mode);
652 if (! in_p)
654 ira_assert (out_p);
655 if (op_class == NO_REGS)
657 mem_cost = ira_memory_move_cost[mode];
658 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
660 rclass = cost_classes[k];
661 pp_costs[k] = mem_cost[rclass][0] * frequency;
664 else
666 move_out_cost = ira_may_move_out_cost[mode];
667 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
669 rclass = cost_classes[k];
670 pp_costs[k]
671 = move_out_cost[op_class][rclass] * frequency;
675 else if (! out_p)
677 ira_assert (in_p);
678 if (op_class == NO_REGS)
680 mem_cost = ira_memory_move_cost[mode];
681 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
683 rclass = cost_classes[k];
684 pp_costs[k] = mem_cost[rclass][1] * frequency;
687 else
689 move_in_cost = ira_may_move_in_cost[mode];
690 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
692 rclass = cost_classes[k];
693 pp_costs[k]
694 = move_in_cost[rclass][op_class] * frequency;
698 else
700 if (op_class == NO_REGS)
702 mem_cost = ira_memory_move_cost[mode];
703 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
705 rclass = cost_classes[k];
706 pp_costs[k] = ((mem_cost[rclass][0]
707 + mem_cost[rclass][1])
708 * frequency);
711 else
713 move_in_cost = ira_may_move_in_cost[mode];
714 move_out_cost = ira_may_move_out_cost[mode];
715 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
717 rclass = cost_classes[k];
718 pp_costs[k] = ((move_in_cost[rclass][op_class]
719 + move_out_cost[op_class][rclass])
720 * frequency);
725 /* If the alternative actually allows memory, make
726 things a bit cheaper since we won't need an extra
727 insn to load it. */
728 pp->mem_cost
729 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
730 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
731 - allows_mem[i]) * frequency;
733 /* If we have assigned a class to this allocno in
734 our first pass, add a cost to this alternative
735 corresponding to what we would add if this
736 allocno were not in the appropriate class. */
737 if (pref)
739 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
741 if (pref_class == NO_REGS)
742 alt_cost
743 += ((out_p
744 ? ira_memory_move_cost[mode][op_class][0] : 0)
745 + (in_p
746 ? ira_memory_move_cost[mode][op_class][1]
747 : 0));
748 else if (ira_reg_class_intersect
749 [pref_class][op_class] == NO_REGS)
750 alt_cost
751 += ira_register_move_cost[mode][pref_class][op_class];
753 if (REGNO (ops[i]) != REGNO (ops[j])
754 && ! find_reg_note (insn, REG_DEAD, op))
755 alt_cost += 2;
757 p++;
761 /* Scan all the constraint letters. See if the operand
762 matches any of the constraints. Collect the valid
763 register classes and see if this operand accepts
764 memory. */
765 while ((c = *p))
767 switch (c)
769 case '*':
770 /* Ignore the next letter for this pass. */
771 c = *++p;
772 break;
774 case '^':
775 alt_cost += 2;
776 break;
778 case '?':
779 alt_cost += 2;
780 break;
782 case 'g':
783 if (MEM_P (op)
784 || (CONSTANT_P (op)
785 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
786 win = 1;
787 insn_allows_mem[i] = allows_mem[i] = 1;
788 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
789 break;
791 default:
792 enum constraint_num cn = lookup_constraint (p);
793 enum reg_class cl;
794 switch (get_constraint_type (cn))
796 case CT_REGISTER:
797 cl = reg_class_for_constraint (cn);
798 if (cl != NO_REGS)
799 classes[i] = ira_reg_class_subunion[classes[i]][cl];
800 break;
802 case CT_CONST_INT:
803 if (CONST_INT_P (op)
804 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
805 win = 1;
806 break;
808 case CT_MEMORY:
809 case CT_RELAXED_MEMORY:
810 /* Every MEM can be reloaded to fit. */
811 insn_allows_mem[i] = allows_mem[i] = 1;
812 if (MEM_P (op))
813 win = 1;
814 break;
816 case CT_SPECIAL_MEMORY:
817 insn_allows_mem[i] = allows_mem[i] = 1;
818 if (MEM_P (extract_mem_from_operand (op))
819 && constraint_satisfied_p (op, cn))
820 win = 1;
821 break;
823 case CT_ADDRESS:
824 /* Every address can be reloaded to fit. */
825 allows_addr = 1;
826 if (address_operand (op, GET_MODE (op))
827 || constraint_satisfied_p (op, cn))
828 win = 1;
829 /* We know this operand is an address, so we
830 want it to be allocated to a hard register
831 that can be the base of an address,
832 i.e. BASE_REG_CLASS. */
833 classes[i]
834 = ira_reg_class_subunion[classes[i]]
835 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
836 ADDRESS, SCRATCH)];
837 break;
839 case CT_FIXED_FORM:
840 if (constraint_satisfied_p (op, cn))
841 win = 1;
842 break;
844 break;
846 p += CONSTRAINT_LEN (c, p);
847 if (c == ',')
848 break;
851 constraints[i] = p;
853 if (alt_fail)
854 break;
856 /* How we account for this operand now depends on whether it
857 is a pseudo register or not. If it is, we first check if
858 any register classes are valid. If not, we ignore this
859 alternative, since we want to assume that all allocnos get
860 allocated for register preferencing. If some register
861 class is valid, compute the costs of moving the allocno
862 into that class. */
863 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
865 if (classes[i] == NO_REGS && ! allows_mem[i])
867 /* We must always fail if the operand is a REG, but
868 we did not find a suitable class and memory is
869 not allowed.
871 Otherwise we may perform an uninitialized read
872 from this_op_costs after the `continue' statement
873 below. */
874 alt_fail = 1;
876 else
878 unsigned int regno = REGNO (op);
879 struct costs *pp = this_op_costs[i];
880 int *pp_costs = pp->cost;
881 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
882 enum reg_class *cost_classes = cost_classes_ptr->classes;
883 bool in_p = recog_data.operand_type[i] != OP_OUT;
884 bool out_p = recog_data.operand_type[i] != OP_IN;
885 enum reg_class op_class = classes[i];
887 ira_init_register_move_cost_if_necessary (mode);
888 if (! in_p)
890 ira_assert (out_p);
891 if (op_class == NO_REGS)
893 mem_cost = ira_memory_move_cost[mode];
894 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
896 rclass = cost_classes[k];
897 pp_costs[k] = mem_cost[rclass][0] * frequency;
900 else
902 move_out_cost = ira_may_move_out_cost[mode];
903 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
905 rclass = cost_classes[k];
906 pp_costs[k]
907 = move_out_cost[op_class][rclass] * frequency;
911 else if (! out_p)
913 ira_assert (in_p);
914 if (op_class == NO_REGS)
916 mem_cost = ira_memory_move_cost[mode];
917 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
919 rclass = cost_classes[k];
920 pp_costs[k] = mem_cost[rclass][1] * frequency;
923 else
925 move_in_cost = ira_may_move_in_cost[mode];
926 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
928 rclass = cost_classes[k];
929 pp_costs[k]
930 = move_in_cost[rclass][op_class] * frequency;
934 else
936 if (op_class == NO_REGS)
938 mem_cost = ira_memory_move_cost[mode];
939 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
941 rclass = cost_classes[k];
942 pp_costs[k] = ((mem_cost[rclass][0]
943 + mem_cost[rclass][1])
944 * frequency);
947 else
949 move_in_cost = ira_may_move_in_cost[mode];
950 move_out_cost = ira_may_move_out_cost[mode];
951 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
953 rclass = cost_classes[k];
954 pp_costs[k] = ((move_in_cost[rclass][op_class]
955 + move_out_cost[op_class][rclass])
956 * frequency);
961 if (op_class == NO_REGS)
962 /* Although we don't need insn to reload from
963 memory, still accessing memory is usually more
964 expensive than a register. */
965 pp->mem_cost = frequency;
966 else
967 /* If the alternative actually allows memory, make
968 things a bit cheaper since we won't need an
969 extra insn to load it. */
970 pp->mem_cost
971 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
972 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
973 - allows_mem[i]) * frequency;
974 /* If we have assigned a class to this allocno in
975 our first pass, add a cost to this alternative
976 corresponding to what we would add if this
977 allocno were not in the appropriate class. */
978 if (pref)
980 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
982 if (pref_class == NO_REGS)
984 if (op_class != NO_REGS)
985 alt_cost
986 += ((out_p
987 ? ira_memory_move_cost[mode][op_class][0]
988 : 0)
989 + (in_p
990 ? ira_memory_move_cost[mode][op_class][1]
991 : 0));
993 else if (op_class == NO_REGS)
994 alt_cost
995 += ((out_p
996 ? ira_memory_move_cost[mode][pref_class][1]
997 : 0)
998 + (in_p
999 ? ira_memory_move_cost[mode][pref_class][0]
1000 : 0));
1001 else if (ira_reg_class_intersect[pref_class][op_class]
1002 == NO_REGS)
1003 alt_cost += (ira_register_move_cost
1004 [mode][pref_class][op_class]);
1009 /* Otherwise, if this alternative wins, either because we
1010 have already determined that or if we have a hard
1011 register of the proper class, there is no cost for this
1012 alternative. */
1013 else if (win || (REG_P (op)
1014 && reg_fits_class_p (op, classes[i],
1015 0, GET_MODE (op))))
1018 /* If registers are valid, the cost of this alternative
1019 includes copying the object to and/or from a
1020 register. */
1021 else if (classes[i] != NO_REGS)
1023 if (recog_data.operand_type[i] != OP_OUT)
1024 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
1026 if (recog_data.operand_type[i] != OP_IN)
1027 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1029 /* The only other way this alternative can be used is if
1030 this is a constant that could be placed into memory. */
1031 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1032 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1033 else
1034 alt_fail = 1;
1036 if (alt_fail)
1037 break;
1040 if (alt_fail)
1042 /* The loop above might have exited early once the failure
1043 was seen. Skip over the constraints for the remaining
1044 operands. */
1045 i += 1;
1046 for (; i < n_ops; ++i)
1047 constraints[i] = skip_alternative (constraints[i]);
1048 continue;
1051 op_cost_add = alt_cost * frequency;
1052 /* Finally, update the costs with the information we've
1053 calculated about this alternative. */
1054 for (i = 0; i < n_ops; i++)
1055 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1057 int old_cost;
1058 bool cost_change_p = false;
1059 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1060 int *pp_costs = pp->cost, *qq_costs = qq->cost;
1061 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1062 cost_classes_t cost_classes_ptr
1063 = regno_cost_classes[REGNO (ops[i])];
1065 old_cost = pp->mem_cost;
1066 pp->mem_cost = MIN (old_cost,
1067 (qq->mem_cost + op_cost_add) * scale);
1069 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1070 && pp->mem_cost < old_cost)
1072 cost_change_p = true;
1073 fprintf (ira_dump_file, " op %d(r=%u) new costs MEM:%d",
1074 i, REGNO(ops[i]), pp->mem_cost);
1076 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1078 old_cost = pp_costs[k];
1079 pp_costs[k]
1080 = MIN (old_cost, (qq_costs[k] + op_cost_add) * scale);
1081 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1082 && pp_costs[k] < old_cost)
1084 if (!cost_change_p)
1085 fprintf (ira_dump_file, " op %d(r=%u) new costs",
1086 i, REGNO(ops[i]));
1087 cost_change_p = true;
1088 fprintf (ira_dump_file, " %s:%d",
1089 reg_class_names[cost_classes_ptr->classes[k]],
1090 pp_costs[k]);
1093 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1094 && cost_change_p)
1095 fprintf (ira_dump_file, "\n");
1099 if (allocno_p)
1100 for (i = 0; i < n_ops; i++)
1102 ira_allocno_t a;
1103 rtx op = ops[i];
1105 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1106 continue;
1107 a = ira_curr_regno_allocno_map [REGNO (op)];
1108 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1109 ALLOCNO_BAD_SPILL_P (a) = true;
1116 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1117 static inline bool
1118 ok_for_index_p_nonstrict (rtx reg)
1120 unsigned regno = REGNO (reg);
1122 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1125 /* A version of regno_ok_for_base_p for use here, when all
1126 pseudo-registers should count as OK. Arguments as for
1127 regno_ok_for_base_p. */
1128 static inline bool
1129 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1130 enum rtx_code outer_code, enum rtx_code index_code)
1132 unsigned regno = REGNO (reg);
1134 if (regno >= FIRST_PSEUDO_REGISTER)
1135 return true;
1136 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1139 /* Record the pseudo registers we must reload into hard registers in a
1140 subexpression of a memory address, X.
1142 If CONTEXT is 0, we are looking at the base part of an address,
1143 otherwise we are looking at the index part.
1145 MODE and AS are the mode and address space of the memory reference;
1146 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1147 These four arguments are passed down to base_reg_class.
1149 SCALE is twice the amount to multiply the cost by (it is twice so
1150 we can represent half-cost adjustments). */
1151 static void
1152 record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1153 int context, enum rtx_code outer_code,
1154 enum rtx_code index_code, int scale)
1156 enum rtx_code code = GET_CODE (x);
1157 enum reg_class rclass;
1159 if (context == 1)
1160 rclass = INDEX_REG_CLASS;
1161 else
1162 rclass = base_reg_class (mode, as, outer_code, index_code);
1164 switch (code)
1166 case CONST_INT:
1167 case CONST:
1168 case PC:
1169 case SYMBOL_REF:
1170 case LABEL_REF:
1171 return;
1173 case PLUS:
1174 /* When we have an address that is a sum, we must determine
1175 whether registers are "base" or "index" regs. If there is a
1176 sum of two registers, we must choose one to be the "base".
1177 Luckily, we can use the REG_POINTER to make a good choice
1178 most of the time. We only need to do this on machines that
1179 can have two registers in an address and where the base and
1180 index register classes are different.
1182 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1183 but that seems bogus since it should only be set when we are
1184 sure the register is being used as a pointer. */
1186 rtx arg0 = XEXP (x, 0);
1187 rtx arg1 = XEXP (x, 1);
1188 enum rtx_code code0 = GET_CODE (arg0);
1189 enum rtx_code code1 = GET_CODE (arg1);
1191 /* Look inside subregs. */
1192 if (code0 == SUBREG)
1193 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1194 if (code1 == SUBREG)
1195 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1197 /* If index registers do not appear, or coincide with base registers,
1198 just record registers in any non-constant operands. We
1199 assume here, as well as in the tests below, that all
1200 addresses are in canonical form. */
1201 if (MAX_REGS_PER_ADDRESS == 1
1202 || INDEX_REG_CLASS == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1204 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1205 if (! CONSTANT_P (arg1))
1206 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1209 /* If the second operand is a constant integer, it doesn't
1210 change what class the first operand must be. */
1211 else if (CONST_SCALAR_INT_P (arg1))
1212 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1213 /* If the second operand is a symbolic constant, the first
1214 operand must be an index register. */
1215 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1216 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1217 /* If both operands are registers but one is already a hard
1218 register of index or reg-base class, give the other the
1219 class that the hard register is not. */
1220 else if (code0 == REG && code1 == REG
1221 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1222 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1223 || ok_for_index_p_nonstrict (arg0)))
1224 record_address_regs (mode, as, arg1,
1225 ok_for_base_p_nonstrict (arg0, mode, as,
1226 PLUS, REG) ? 1 : 0,
1227 PLUS, REG, scale);
1228 else if (code0 == REG && code1 == REG
1229 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1230 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1231 || ok_for_index_p_nonstrict (arg1)))
1232 record_address_regs (mode, as, arg0,
1233 ok_for_base_p_nonstrict (arg1, mode, as,
1234 PLUS, REG) ? 1 : 0,
1235 PLUS, REG, scale);
1236 /* If one operand is known to be a pointer, it must be the
1237 base with the other operand the index. Likewise if the
1238 other operand is a MULT. */
1239 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1241 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1242 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1244 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1246 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1247 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1249 /* Otherwise, count equal chances that each might be a base or
1250 index register. This case should be rare. */
1251 else
1253 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1254 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1255 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1256 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1259 break;
1261 /* Double the importance of an allocno that is incremented or
1262 decremented, since it would take two extra insns if it ends
1263 up in the wrong place. */
1264 case POST_MODIFY:
1265 case PRE_MODIFY:
1266 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1267 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1268 if (REG_P (XEXP (XEXP (x, 1), 1)))
1269 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1270 2 * scale);
1271 break;
1273 case POST_INC:
1274 case PRE_INC:
1275 case POST_DEC:
1276 case PRE_DEC:
1277 /* Double the importance of an allocno that is incremented or
1278 decremented, since it would take two extra insns if it ends
1279 up in the wrong place. */
1280 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1281 break;
1283 case REG:
1285 struct costs *pp;
1286 int *pp_costs;
1287 enum reg_class i;
1288 int k, regno, add_cost;
1289 cost_classes_t cost_classes_ptr;
1290 enum reg_class *cost_classes;
1291 move_table *move_in_cost;
1293 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1294 break;
1296 regno = REGNO (x);
1297 if (allocno_p)
1298 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1299 pp = COSTS (costs, COST_INDEX (regno));
1300 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1301 if (INT_MAX - add_cost < pp->mem_cost)
1302 pp->mem_cost = INT_MAX;
1303 else
1304 pp->mem_cost += add_cost;
1305 cost_classes_ptr = regno_cost_classes[regno];
1306 cost_classes = cost_classes_ptr->classes;
1307 pp_costs = pp->cost;
1308 ira_init_register_move_cost_if_necessary (Pmode);
1309 move_in_cost = ira_may_move_in_cost[Pmode];
1310 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1312 i = cost_classes[k];
1313 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1314 if (INT_MAX - add_cost < pp_costs[k])
1315 pp_costs[k] = INT_MAX;
1316 else
1317 pp_costs[k] += add_cost;
1320 break;
1322 default:
1324 const char *fmt = GET_RTX_FORMAT (code);
1325 int i;
1326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1327 if (fmt[i] == 'e')
1328 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1329 scale);
1336 /* Calculate the costs of insn operands. */
1337 static void
1338 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1340 const char *constraints[MAX_RECOG_OPERANDS];
1341 machine_mode modes[MAX_RECOG_OPERANDS];
1342 rtx set;
1343 int i;
1345 if ((set = single_set (insn)) != NULL_RTX
1346 /* In rare cases the single set insn might have less 2 operands
1347 as the source can be a fixed special reg. */
1348 && recog_data.n_operands > 1
1349 && recog_data.operand[0] == SET_DEST (set)
1350 && recog_data.operand[1] == SET_SRC (set))
1352 int regno, other_regno;
1353 rtx dest = SET_DEST (set);
1354 rtx src = SET_SRC (set);
1356 if (GET_CODE (dest) == SUBREG
1357 && known_eq (GET_MODE_SIZE (GET_MODE (dest)),
1358 GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1359 dest = SUBREG_REG (dest);
1360 if (GET_CODE (src) == SUBREG
1361 && known_eq (GET_MODE_SIZE (GET_MODE (src)),
1362 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1363 src = SUBREG_REG (src);
1364 if (REG_P (src) && REG_P (dest)
1365 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1366 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1367 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1368 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1370 machine_mode mode = GET_MODE (SET_SRC (set)), cost_mode = mode;
1371 machine_mode hard_reg_mode = GET_MODE(regno_reg_rtx[other_regno]);
1372 poly_int64 pmode_size = GET_MODE_SIZE (mode);
1373 poly_int64 phard_reg_mode_size = GET_MODE_SIZE (hard_reg_mode);
1374 HOST_WIDE_INT mode_size, hard_reg_mode_size;
1375 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1376 enum reg_class *cost_classes = cost_classes_ptr->classes;
1377 reg_class_t rclass, hard_reg_class, bigger_hard_reg_class;
1378 int cost_factor = 1, cost, k;
1379 move_table *move_costs;
1380 bool dead_p = find_regno_note (insn, REG_DEAD, REGNO (src));
1382 hard_reg_class = REGNO_REG_CLASS (other_regno);
1383 bigger_hard_reg_class = ira_pressure_class_translate[hard_reg_class];
1384 /* Target code may return any cost for mode which does not fit the
1385 hard reg class (e.g. DImode for AREG on i386). Check this and use
1386 a bigger class to get the right cost. */
1387 if (bigger_hard_reg_class != NO_REGS
1388 && ! ira_hard_reg_in_set_p (other_regno, mode,
1389 reg_class_contents[hard_reg_class]))
1390 hard_reg_class = bigger_hard_reg_class;
1391 ira_init_register_move_cost_if_necessary (mode);
1392 ira_init_register_move_cost_if_necessary (hard_reg_mode);
1393 /* Use smaller movement cost for natural hard reg mode or its mode as
1394 operand. */
1395 if (pmode_size.is_constant (&mode_size)
1396 && phard_reg_mode_size.is_constant (&hard_reg_mode_size))
1398 /* Assume we are moving in the natural modes: */
1399 cost_factor = mode_size / hard_reg_mode_size;
1400 if (mode_size % hard_reg_mode_size != 0)
1401 cost_factor++;
1402 if (cost_factor
1403 * (ira_register_move_cost
1404 [hard_reg_mode][hard_reg_class][hard_reg_class])
1405 < (ira_register_move_cost
1406 [mode][hard_reg_class][hard_reg_class]))
1407 cost_mode = hard_reg_mode;
1408 else
1409 cost_factor = 1;
1411 move_costs = ira_register_move_cost[cost_mode];
1412 i = regno == (int) REGNO (src) ? 1 : 0;
1413 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1415 rclass = cost_classes[k];
1416 cost = (i == 0
1417 ? move_costs[hard_reg_class][rclass]
1418 : move_costs[rclass][hard_reg_class]);
1419 cost *= cost_factor;
1420 op_costs[i]->cost[k] = cost * frequency;
1421 /* If this insn is a single set copying operand 1 to
1422 operand 0 and one operand is an allocno with the
1423 other a hard reg or an allocno that prefers a hard
1424 register that is in its own register class then we
1425 may want to adjust the cost of that register class to
1428 Avoid the adjustment if the source does not die to
1429 avoid stressing of register allocator by preferencing
1430 two colliding registers into single class. */
1431 if (dead_p
1432 && TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1433 && (reg_class_size[(int) rclass]
1434 == (ira_reg_class_max_nregs
1435 [(int) rclass][(int) GET_MODE(src)])))
1437 if (reg_class_size[rclass] == 1)
1438 op_costs[i]->cost[k] = -frequency;
1439 else if (in_hard_reg_set_p (reg_class_contents[rclass],
1440 GET_MODE(src), other_regno))
1441 op_costs[i]->cost[k] = -frequency;
1444 op_costs[i]->mem_cost
1445 = ira_memory_move_cost[mode][hard_reg_class][i] * frequency;
1446 return;
1450 for (i = 0; i < recog_data.n_operands; i++)
1452 constraints[i] = recog_data.constraints[i];
1453 modes[i] = recog_data.operand_mode[i];
1456 /* If we get here, we are set up to record the costs of all the
1457 operands for this insn. Start by initializing the costs. Then
1458 handle any address registers. Finally record the desired classes
1459 for any allocnos, doing it twice if some pair of operands are
1460 commutative. */
1461 for (i = 0; i < recog_data.n_operands; i++)
1463 rtx op_mem = extract_mem_from_operand (recog_data.operand[i]);
1464 memcpy (op_costs[i], init_cost, struct_costs_size);
1466 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1467 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1469 if (MEM_P (op_mem))
1470 record_address_regs (GET_MODE (op_mem),
1471 MEM_ADDR_SPACE (op_mem),
1472 XEXP (op_mem, 0),
1473 0, MEM, SCRATCH, frequency * 2);
1474 else if (constraints[i][0] == 'p'
1475 || (insn_extra_address_constraint
1476 (lookup_constraint (constraints[i]))))
1477 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1478 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1479 frequency * 2);
1482 /* Check for commutative in a separate loop so everything will have
1483 been initialized. We must do this even if one operand is a
1484 constant--see addsi3 in m68k.md. */
1485 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1486 if (constraints[i][0] == '%')
1488 const char *xconstraints[MAX_RECOG_OPERANDS];
1489 int j;
1491 /* Handle commutative operands by swapping the
1492 constraints. We assume the modes are the same. */
1493 for (j = 0; j < recog_data.n_operands; j++)
1494 xconstraints[j] = constraints[j];
1496 xconstraints[i] = constraints[i+1];
1497 xconstraints[i+1] = constraints[i];
1498 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1499 recog_data.operand, modes,
1500 xconstraints, insn, pref);
1502 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1503 recog_data.operand, modes,
1504 constraints, insn, pref);
1509 /* Process one insn INSN. Scan it and record each time it would save
1510 code to put a certain allocnos in a certain class. Return the last
1511 insn processed, so that the scan can be continued from there. */
1512 static rtx_insn *
1513 scan_one_insn (rtx_insn *insn)
1515 enum rtx_code pat_code;
1516 rtx set, note;
1517 int i, k;
1518 bool counted_mem;
1520 if (!NONDEBUG_INSN_P (insn))
1521 return insn;
1523 pat_code = GET_CODE (PATTERN (insn));
1524 if (pat_code == ASM_INPUT)
1525 return insn;
1527 /* If INSN is a USE/CLOBBER of a pseudo in a mode M then go ahead
1528 and initialize the register move costs of mode M.
1530 The pseudo may be related to another pseudo via a copy (implicit or
1531 explicit) and if there are no mode M uses/sets of the original
1532 pseudo, then we may leave the register move costs uninitialized for
1533 mode M. */
1534 if (pat_code == USE || pat_code == CLOBBER)
1536 rtx x = XEXP (PATTERN (insn), 0);
1537 if (GET_CODE (x) == REG
1538 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1539 && have_regs_of_mode[GET_MODE (x)])
1540 ira_init_register_move_cost_if_necessary (GET_MODE (x));
1541 return insn;
1544 counted_mem = false;
1545 set = single_set (insn);
1546 extract_insn (insn);
1548 /* If this insn loads a parameter from its stack slot, then it
1549 represents a savings, rather than a cost, if the parameter is
1550 stored in memory. Record this fact.
1552 Similarly if we're loading other constants from memory (constant
1553 pool, TOC references, small data areas, etc) and this is the only
1554 assignment to the destination pseudo.
1556 Don't do this if SET_SRC (set) isn't a general operand, if it is
1557 a memory requiring special instructions to load it, decreasing
1558 mem_cost might result in it being loaded using the specialized
1559 instruction into a register, then stored into stack and loaded
1560 again from the stack. See PR52208.
1562 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1563 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1564 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1565 && ((MEM_P (XEXP (note, 0))
1566 && !side_effects_p (SET_SRC (set)))
1567 || (CONSTANT_P (XEXP (note, 0))
1568 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1569 XEXP (note, 0))
1570 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1571 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set)))
1572 /* LRA does not use equiv with a symbol for PIC code. */
1573 && (! ira_use_lra_p || ! pic_offset_table_rtx
1574 || ! contains_symbol_ref_p (XEXP (note, 0))))
1576 enum reg_class cl = GENERAL_REGS;
1577 rtx reg = SET_DEST (set);
1578 int num = COST_INDEX (REGNO (reg));
1579 /* Costs for NO_REGS are used in cost calculation on the
1580 1st pass when the preferred register classes are not
1581 known yet. In this case we take the best scenario when
1582 mode can't be put into GENERAL_REGS. */
1583 if (!targetm.hard_regno_mode_ok (ira_class_hard_regs[cl][0],
1584 GET_MODE (reg)))
1585 cl = NO_REGS;
1587 COSTS (costs, num)->mem_cost
1588 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1589 record_address_regs (GET_MODE (SET_SRC (set)),
1590 MEM_ADDR_SPACE (SET_SRC (set)),
1591 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1592 frequency * 2);
1593 counted_mem = true;
1596 record_operand_costs (insn, pref);
1598 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1600 const char *p;
1601 fprintf (ira_dump_file, " Final costs after insn %u", INSN_UID (insn));
1602 if (INSN_CODE (insn) >= 0
1603 && (p = get_insn_name (INSN_CODE (insn))) != NULL)
1604 fprintf (ira_dump_file, " {%s}", p);
1605 fprintf (ira_dump_file, " (freq=%d)\n",
1606 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)));
1607 dump_insn_slim (ira_dump_file, insn);
1610 /* Now add the cost for each operand to the total costs for its
1611 allocno. */
1612 for (i = 0; i < recog_data.n_operands; i++)
1614 rtx op = recog_data.operand[i];
1616 if (GET_CODE (op) == SUBREG)
1617 op = SUBREG_REG (op);
1618 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1620 int regno = REGNO (op);
1621 struct costs *p = COSTS (costs, COST_INDEX (regno));
1622 struct costs *q = op_costs[i];
1623 int *p_costs = p->cost, *q_costs = q->cost;
1624 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1625 int add_cost = 0;
1627 /* If the already accounted for the memory "cost" above, don't
1628 do so again. */
1629 if (!counted_mem)
1631 add_cost = q->mem_cost;
1632 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1633 p->mem_cost = INT_MAX;
1634 else
1635 p->mem_cost += add_cost;
1637 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1639 fprintf (ira_dump_file, " op %d(r=%u) MEM:%d(+%d)",
1640 i, REGNO(op), p->mem_cost, add_cost);
1642 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1644 add_cost = q_costs[k];
1645 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1646 p_costs[k] = INT_MAX;
1647 else
1648 p_costs[k] += add_cost;
1649 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1651 fprintf (ira_dump_file, " %s:%d(+%d)",
1652 reg_class_names[cost_classes_ptr->classes[k]],
1653 p_costs[k], add_cost);
1656 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1657 fprintf (ira_dump_file, "\n");
1660 return insn;
1665 /* Print allocnos costs to the dump file. */
1666 static void
1667 print_allocno_costs (void)
1669 int k;
1670 ira_allocno_t a;
1671 ira_allocno_iterator ai;
1673 ira_assert (allocno_p);
1674 fprintf (ira_dump_file, "\n");
1675 FOR_EACH_ALLOCNO (a, ai)
1677 int i, rclass;
1678 basic_block bb;
1679 int regno = ALLOCNO_REGNO (a);
1680 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1681 enum reg_class *cost_classes = cost_classes_ptr->classes;
1683 i = ALLOCNO_NUM (a);
1684 fprintf (ira_dump_file, " a%d(r%d,", i, regno);
1685 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1686 fprintf (ira_dump_file, "b%d", bb->index);
1687 else
1688 fprintf (ira_dump_file, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1689 fprintf (ira_dump_file, ") costs:");
1690 for (k = 0; k < cost_classes_ptr->num; k++)
1692 rclass = cost_classes[k];
1693 fprintf (ira_dump_file, " %s:%d", reg_class_names[rclass],
1694 COSTS (costs, i)->cost[k]);
1695 if (flag_ira_region == IRA_REGION_ALL
1696 || flag_ira_region == IRA_REGION_MIXED)
1697 fprintf (ira_dump_file, ",%d",
1698 COSTS (total_allocno_costs, i)->cost[k]);
1700 fprintf (ira_dump_file, " MEM:%i", COSTS (costs, i)->mem_cost);
1701 if (flag_ira_region == IRA_REGION_ALL
1702 || flag_ira_region == IRA_REGION_MIXED)
1703 fprintf (ira_dump_file, ",%d",
1704 COSTS (total_allocno_costs, i)->mem_cost);
1705 fprintf (ira_dump_file, "\n");
1709 /* Print pseudo costs to the dump file. */
1710 static void
1711 print_pseudo_costs (void)
1713 int regno, k;
1714 int rclass;
1715 cost_classes_t cost_classes_ptr;
1716 enum reg_class *cost_classes;
1718 ira_assert (! allocno_p);
1719 fprintf (ira_dump_file, "\n");
1720 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1722 if (REG_N_REFS (regno) <= 0)
1723 continue;
1724 cost_classes_ptr = regno_cost_classes[regno];
1725 cost_classes = cost_classes_ptr->classes;
1726 fprintf (ira_dump_file, " r%d costs:", regno);
1727 for (k = 0; k < cost_classes_ptr->num; k++)
1729 rclass = cost_classes[k];
1730 fprintf (ira_dump_file, " %s:%d", reg_class_names[rclass],
1731 COSTS (costs, regno)->cost[k]);
1733 fprintf (ira_dump_file, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1737 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1738 costs. */
1739 static void
1740 process_bb_for_costs (basic_block bb)
1742 rtx_insn *insn;
1744 frequency = REG_FREQ_FROM_BB (bb);
1745 if (frequency == 0)
1746 frequency = 1;
1747 FOR_BB_INSNS (bb, insn)
1748 insn = scan_one_insn (insn);
1751 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1752 costs. */
1753 static void
1754 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1756 basic_block bb;
1758 bb = loop_tree_node->bb;
1759 if (bb != NULL)
1760 process_bb_for_costs (bb);
1763 /* Return true if all autoinc rtx in X change only a register and memory is
1764 valid. */
1765 static bool
1766 validate_autoinc_and_mem_addr_p (rtx x)
1768 enum rtx_code code = GET_CODE (x);
1769 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
1770 return REG_P (XEXP (x, 0));
1771 const char *fmt = GET_RTX_FORMAT (code);
1772 for (int i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1773 if (fmt[i] == 'e')
1775 if (!validate_autoinc_and_mem_addr_p (XEXP (x, i)))
1776 return false;
1778 else if (fmt[i] == 'E')
1780 for (int j = 0; j < XVECLEN (x, i); j++)
1781 if (!validate_autoinc_and_mem_addr_p (XVECEXP (x, i, j)))
1782 return false;
1784 /* Check memory after checking autoinc to guarantee that autoinc is already
1785 valid for machine-dependent code checking memory address. */
1786 return (!MEM_P (x)
1787 || memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
1788 MEM_ADDR_SPACE (x)));
1791 /* Check that reg REGNO can be changed by TO in INSN. Return true in case the
1792 result insn would be valid one. */
1793 static bool
1794 equiv_can_be_consumed_p (int regno, rtx to, rtx_insn *insn)
1796 validate_replace_src_group (regno_reg_rtx[regno], to, insn);
1797 /* We can change register to equivalent memory in autoinc rtl. Some code
1798 including verify_changes assumes that autoinc contains only a register.
1799 So check this first. */
1800 bool res = validate_autoinc_and_mem_addr_p (PATTERN (insn));
1801 if (res)
1802 res = verify_changes (0);
1803 cancel_changes (0);
1804 return res;
1807 /* Return true if X contains a pseudo with equivalence. In this case also
1808 return the pseudo through parameter REG. If the pseudo is a part of subreg,
1809 return the subreg through parameter SUBREG. */
1811 static bool
1812 get_equiv_regno (rtx x, int &regno, rtx &subreg)
1814 subreg = NULL_RTX;
1815 if (GET_CODE (x) == SUBREG)
1817 subreg = x;
1818 x = SUBREG_REG (x);
1820 if (REG_P (x)
1821 && (ira_reg_equiv[REGNO (x)].memory != NULL
1822 || ira_reg_equiv[REGNO (x)].invariant != NULL
1823 || ira_reg_equiv[REGNO (x)].constant != NULL))
1825 regno = REGNO (x);
1826 return true;
1828 RTX_CODE code = GET_CODE (x);
1829 const char *fmt = GET_RTX_FORMAT (code);
1831 for (int i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1832 if (fmt[i] == 'e')
1834 if (get_equiv_regno (XEXP (x, i), regno, subreg))
1835 return true;
1837 else if (fmt[i] == 'E')
1839 for (int j = 0; j < XVECLEN (x, i); j++)
1840 if (get_equiv_regno (XVECEXP (x, i, j), regno, subreg))
1841 return true;
1843 return false;
1846 /* A pass through the current function insns. Calculate costs of using
1847 equivalences for pseudos and store them in regno_equiv_gains. */
1849 static void
1850 calculate_equiv_gains (void)
1852 basic_block bb;
1853 int regno, freq, cost;
1854 rtx subreg;
1855 rtx_insn *insn;
1856 machine_mode mode;
1857 enum reg_class rclass;
1858 bitmap_head equiv_pseudos;
1860 ira_assert (allocno_p);
1861 bitmap_initialize (&equiv_pseudos, &reg_obstack);
1862 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1863 if (ira_reg_equiv[regno].init_insns != NULL
1864 && (ira_reg_equiv[regno].memory != NULL
1865 || ira_reg_equiv[regno].invariant != NULL
1866 || (ira_reg_equiv[regno].constant != NULL
1867 /* Ignore complicated constants which probably will be placed
1868 in memory: */
1869 && GET_CODE (ira_reg_equiv[regno].constant) != CONST_DOUBLE
1870 && GET_CODE (ira_reg_equiv[regno].constant) != CONST_VECTOR
1871 && GET_CODE (ira_reg_equiv[regno].constant) != LABEL_REF)))
1873 rtx_insn_list *x;
1874 for (x = ira_reg_equiv[regno].init_insns; x != NULL; x = x->next ())
1876 insn = x->insn ();
1877 rtx set = single_set (insn);
1879 if (set == NULL_RTX || SET_DEST (set) != regno_reg_rtx[regno])
1880 break;
1881 bb = BLOCK_FOR_INSN (insn);
1882 ira_curr_regno_allocno_map
1883 = ira_bb_nodes[bb->index].parent->regno_allocno_map;
1884 mode = PSEUDO_REGNO_MODE (regno);
1885 rclass = pref[COST_INDEX (regno)];
1886 ira_init_register_move_cost_if_necessary (mode);
1887 if (ira_reg_equiv[regno].memory != NULL)
1888 cost = ira_memory_move_cost[mode][rclass][1];
1889 else
1890 cost = ira_register_move_cost[mode][rclass][rclass];
1891 freq = REG_FREQ_FROM_BB (bb);
1892 regno_equiv_gains[regno] += cost * freq;
1894 if (x != NULL)
1895 /* We found complicated equiv or reverse equiv mem=reg. Ignore
1896 them. */
1897 regno_equiv_gains[regno] = 0;
1898 else
1899 bitmap_set_bit (&equiv_pseudos, regno);
1902 FOR_EACH_BB_FN (bb, cfun)
1904 freq = REG_FREQ_FROM_BB (bb);
1905 ira_curr_regno_allocno_map
1906 = ira_bb_nodes[bb->index].parent->regno_allocno_map;
1907 FOR_BB_INSNS (bb, insn)
1909 if (!NONDEBUG_INSN_P (insn)
1910 || !get_equiv_regno (PATTERN (insn), regno, subreg)
1911 || !bitmap_bit_p (&equiv_pseudos, regno))
1912 continue;
1913 rtx subst = ira_reg_equiv[regno].memory;
1915 if (subst == NULL)
1916 subst = ira_reg_equiv[regno].constant;
1917 if (subst == NULL)
1918 subst = ira_reg_equiv[regno].invariant;
1919 ira_assert (subst != NULL);
1920 mode = PSEUDO_REGNO_MODE (regno);
1921 ira_init_register_move_cost_if_necessary (mode);
1922 bool consumed_p = equiv_can_be_consumed_p (regno, subst, insn);
1924 rclass = pref[COST_INDEX (regno)];
1925 if (MEM_P (subst)
1926 /* If it is a change of constant into double for example, the
1927 result constant probably will be placed in memory. */
1928 || (subreg != NULL_RTX && !INTEGRAL_MODE_P (GET_MODE (subreg))))
1929 cost = ira_memory_move_cost[mode][rclass][1] + (consumed_p ? 0 : 1);
1930 else if (consumed_p)
1931 continue;
1932 else
1933 cost = ira_register_move_cost[mode][rclass][rclass];
1934 regno_equiv_gains[regno] -= cost * freq;
1937 bitmap_clear (&equiv_pseudos);
1940 /* Find costs of register classes and memory for allocnos or pseudos
1941 and their best costs. Set up preferred, alternative and allocno
1942 classes for pseudos. */
1943 static void
1944 find_costs_and_classes (void)
1946 int i, k, start, max_cost_classes_num;
1947 int pass;
1948 basic_block bb;
1949 enum reg_class *regno_best_class, new_class;
1951 init_recog ();
1952 regno_best_class
1953 = (enum reg_class *) ira_allocate (max_reg_num ()
1954 * sizeof (enum reg_class));
1955 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1956 regno_best_class[i] = NO_REGS;
1957 if (!resize_reg_info () && allocno_p
1958 && pseudo_classes_defined_p && flag_expensive_optimizations)
1960 ira_allocno_t a;
1961 ira_allocno_iterator ai;
1963 pref = pref_buffer;
1964 max_cost_classes_num = 1;
1965 FOR_EACH_ALLOCNO (a, ai)
1967 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1968 setup_regno_cost_classes_by_aclass
1969 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1970 max_cost_classes_num
1971 = MAX (max_cost_classes_num,
1972 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1974 start = 1;
1976 else
1978 pref = NULL;
1979 max_cost_classes_num = ira_important_classes_num;
1980 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1981 if (regno_reg_rtx[i] != NULL_RTX)
1982 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1983 else
1984 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1985 start = 0;
1987 if (allocno_p)
1988 /* Clear the flag for the next compiled function. */
1989 pseudo_classes_defined_p = false;
1990 /* Normally we scan the insns once and determine the best class to
1991 use for each allocno. However, if -fexpensive-optimizations are
1992 on, we do so twice, the second time using the tentative best
1993 classes to guide the selection. */
1994 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1996 if ((!allocno_p || internal_flag_ira_verbose > 0) && ira_dump_file)
1997 fprintf (ira_dump_file,
1998 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
2000 if (pass != start)
2002 max_cost_classes_num = 1;
2003 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2005 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
2006 max_cost_classes_num
2007 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
2011 struct_costs_size
2012 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
2013 /* Zero out our accumulation of the cost of each class for each
2014 allocno. */
2015 memset (costs, 0, cost_elements_num * struct_costs_size);
2017 if (allocno_p)
2019 /* Scan the instructions and record each time it would save code
2020 to put a certain allocno in a certain class. */
2021 ira_traverse_loop_tree (true, ira_loop_tree_root,
2022 process_bb_node_for_costs, NULL);
2024 memcpy (total_allocno_costs, costs,
2025 max_struct_costs_size * ira_allocnos_num);
2027 else
2029 basic_block bb;
2031 FOR_EACH_BB_FN (bb, cfun)
2032 process_bb_for_costs (bb);
2035 if (pass == 0)
2036 pref = pref_buffer;
2038 if (ira_use_lra_p && allocno_p && pass == 1)
2039 /* It is a pass through all insns. So do it once and only for RA (not
2040 for insn scheduler) when we already found preferable pseudo register
2041 classes on the previous pass. */
2042 calculate_equiv_gains ();
2044 /* Now for each allocno look at how desirable each class is and
2045 find which class is preferred. */
2046 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2048 ira_allocno_t a, parent_a;
2049 int rclass, a_num, parent_a_num, add_cost;
2050 ira_loop_tree_node_t parent;
2051 int best_cost, allocno_cost;
2052 enum reg_class best, alt_class;
2053 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
2054 enum reg_class *cost_classes;
2055 int *i_costs = temp_costs->cost;
2056 int i_mem_cost;
2057 int equiv_savings = regno_equiv_gains[i];
2059 if (! allocno_p)
2061 if (regno_reg_rtx[i] == NULL_RTX)
2062 continue;
2063 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
2064 i_mem_cost = temp_costs->mem_cost;
2065 cost_classes = cost_classes_ptr->classes;
2067 else
2069 if (ira_regno_allocno_map[i] == NULL)
2070 continue;
2071 memset (temp_costs, 0, struct_costs_size);
2072 i_mem_cost = 0;
2073 cost_classes = cost_classes_ptr->classes;
2074 /* Find cost of all allocnos with the same regno. */
2075 for (a = ira_regno_allocno_map[i];
2076 a != NULL;
2077 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2079 int *a_costs, *p_costs;
2081 a_num = ALLOCNO_NUM (a);
2082 if ((flag_ira_region == IRA_REGION_ALL
2083 || flag_ira_region == IRA_REGION_MIXED)
2084 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
2085 && (parent_a = parent->regno_allocno_map[i]) != NULL
2086 /* There are no caps yet. */
2087 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
2088 (a)->border_allocnos,
2089 ALLOCNO_NUM (a)))
2091 /* Propagate costs to upper levels in the region
2092 tree. */
2093 parent_a_num = ALLOCNO_NUM (parent_a);
2094 a_costs = COSTS (total_allocno_costs, a_num)->cost;
2095 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
2096 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
2098 add_cost = a_costs[k];
2099 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
2100 p_costs[k] = INT_MAX;
2101 else
2102 p_costs[k] += add_cost;
2104 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
2105 if (add_cost > 0
2106 && (INT_MAX - add_cost
2107 < COSTS (total_allocno_costs,
2108 parent_a_num)->mem_cost))
2109 COSTS (total_allocno_costs, parent_a_num)->mem_cost
2110 = INT_MAX;
2111 else
2112 COSTS (total_allocno_costs, parent_a_num)->mem_cost
2113 += add_cost;
2115 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
2116 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
2118 a_costs = COSTS (costs, a_num)->cost;
2119 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
2121 add_cost = a_costs[k];
2122 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
2123 i_costs[k] = INT_MAX;
2124 else
2125 i_costs[k] += add_cost;
2127 add_cost = COSTS (costs, a_num)->mem_cost;
2128 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
2129 i_mem_cost = INT_MAX;
2130 else
2131 i_mem_cost += add_cost;
2134 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
2135 i_mem_cost = 0;
2136 else if (ira_use_lra_p)
2138 if (equiv_savings > 0)
2140 i_mem_cost = 0;
2141 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
2142 fprintf (ira_dump_file,
2143 " Use MEM for r%d as the equiv savings is %d\n",
2144 i, equiv_savings);
2147 else if (equiv_savings < 0)
2148 i_mem_cost = -equiv_savings;
2149 else if (equiv_savings > 0)
2151 i_mem_cost = 0;
2152 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
2153 i_costs[k] += equiv_savings;
2156 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
2157 best = ALL_REGS;
2158 alt_class = NO_REGS;
2159 /* Find best common class for all allocnos with the same
2160 regno. */
2161 for (k = 0; k < cost_classes_ptr->num; k++)
2163 rclass = cost_classes[k];
2164 if (i_costs[k] < best_cost)
2166 best_cost = i_costs[k];
2167 best = (enum reg_class) rclass;
2169 else if (i_costs[k] == best_cost)
2170 best = ira_reg_class_subunion[best][rclass];
2171 if (pass == flag_expensive_optimizations
2172 /* We still prefer registers to memory even at this
2173 stage if their costs are the same. We will make
2174 a final decision during assigning hard registers
2175 when we have all info including more accurate
2176 costs which might be affected by assigning hard
2177 registers to other pseudos because the pseudos
2178 involved in moves can be coalesced. */
2179 && i_costs[k] <= i_mem_cost
2180 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
2181 > reg_class_size[alt_class]))
2182 alt_class = reg_class_subunion[alt_class][rclass];
2184 alt_class = ira_allocno_class_translate[alt_class];
2185 if (best_cost > i_mem_cost
2186 && ! non_spilled_static_chain_regno_p (i))
2187 regno_aclass[i] = NO_REGS;
2188 else if (!optimize && !targetm.class_likely_spilled_p (best))
2189 /* Registers in the alternative class are likely to need
2190 longer or slower sequences than registers in the best class.
2191 When optimizing we make some effort to use the best class
2192 over the alternative class where possible, but at -O0 we
2193 effectively give the alternative class equal weight.
2194 We then run the risk of using slower alternative registers
2195 when plenty of registers from the best class are still free.
2196 This is especially true because live ranges tend to be very
2197 short in -O0 code and so register pressure tends to be low.
2199 Avoid that by ignoring the alternative class if the best
2200 class has plenty of registers.
2202 The union class arrays give important classes and only
2203 part of it are allocno classes. So translate them into
2204 allocno classes. */
2205 regno_aclass[i] = ira_allocno_class_translate[best];
2206 else
2208 /* Make the common class the biggest class of best and
2209 alt_class. Translate the common class into an
2210 allocno class too. */
2211 regno_aclass[i] = (ira_allocno_class_translate
2212 [ira_reg_class_superunion[best][alt_class]]);
2213 ira_assert (regno_aclass[i] != NO_REGS
2214 && ira_reg_allocno_class_p[regno_aclass[i]]);
2216 if (pic_offset_table_rtx != NULL
2217 && i == (int) REGNO (pic_offset_table_rtx))
2219 /* For some targets, integer pseudos can be assigned to fp
2220 regs. As we don't want reload pic offset table pseudo, we
2221 should avoid using non-integer regs. */
2222 regno_aclass[i]
2223 = ira_reg_class_intersect[regno_aclass[i]][GENERAL_REGS];
2224 alt_class = ira_reg_class_intersect[alt_class][GENERAL_REGS];
2226 if ((new_class
2227 = (reg_class) (targetm.ira_change_pseudo_allocno_class
2228 (i, regno_aclass[i], best))) != regno_aclass[i])
2230 regno_aclass[i] = new_class;
2231 if (hard_reg_set_subset_p (reg_class_contents[new_class],
2232 reg_class_contents[best]))
2233 best = new_class;
2234 if (hard_reg_set_subset_p (reg_class_contents[new_class],
2235 reg_class_contents[alt_class]))
2236 alt_class = new_class;
2238 if (pass == flag_expensive_optimizations)
2240 if (best_cost > i_mem_cost
2241 /* Do not assign NO_REGS to static chain pointer
2242 pseudo when non-local goto is used. */
2243 && ! non_spilled_static_chain_regno_p (i))
2244 best = alt_class = NO_REGS;
2245 else if (best == alt_class)
2246 alt_class = NO_REGS;
2247 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
2248 if ((!allocno_p || internal_flag_ira_verbose > 2)
2249 && ira_dump_file != NULL)
2250 fprintf (ira_dump_file,
2251 " r%d: preferred %s, alternative %s, allocno %s\n",
2252 i, reg_class_names[best], reg_class_names[alt_class],
2253 reg_class_names[regno_aclass[i]]);
2255 regno_best_class[i] = best;
2256 if (! allocno_p)
2258 pref[i] = (best_cost > i_mem_cost
2259 && ! non_spilled_static_chain_regno_p (i)
2260 ? NO_REGS : best);
2261 continue;
2263 for (a = ira_regno_allocno_map[i];
2264 a != NULL;
2265 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2267 enum reg_class aclass = regno_aclass[i];
2268 int a_num = ALLOCNO_NUM (a);
2269 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
2270 int *a_costs = COSTS (costs, a_num)->cost;
2272 if (aclass == NO_REGS)
2273 best = NO_REGS;
2274 else
2276 /* Finding best class which is subset of the common
2277 class. */
2278 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
2279 allocno_cost = best_cost;
2280 best = ALL_REGS;
2281 for (k = 0; k < cost_classes_ptr->num; k++)
2283 rclass = cost_classes[k];
2284 if (! ira_class_subset_p[rclass][aclass])
2285 continue;
2286 if (total_a_costs[k] < best_cost)
2288 best_cost = total_a_costs[k];
2289 allocno_cost = a_costs[k];
2290 best = (enum reg_class) rclass;
2292 else if (total_a_costs[k] == best_cost)
2294 best = ira_reg_class_subunion[best][rclass];
2295 allocno_cost = MAX (allocno_cost, a_costs[k]);
2298 ALLOCNO_CLASS_COST (a) = allocno_cost;
2300 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL
2301 && (pass == 0 || pref[a_num] != best))
2303 fprintf (ira_dump_file, " a%d (r%d,", a_num, i);
2304 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
2305 fprintf (ira_dump_file, "b%d", bb->index);
2306 else
2307 fprintf (ira_dump_file, "l%d",
2308 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
2309 fprintf (ira_dump_file, ") best %s, allocno %s\n",
2310 reg_class_names[best],
2311 reg_class_names[aclass]);
2313 pref[a_num] = best;
2314 if (pass == flag_expensive_optimizations && best != aclass
2315 && ira_class_hard_regs_num[best] > 0
2316 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
2317 >= ira_class_hard_regs_num[best]))
2319 int ind = cost_classes_ptr->index[aclass];
2321 ira_assert (ind >= 0);
2322 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
2323 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
2324 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
2325 / (ira_register_move_cost
2326 [ALLOCNO_MODE (a)][best][aclass]));
2327 for (k = 0; k < cost_classes_ptr->num; k++)
2328 if (ira_class_subset_p[cost_classes[k]][best])
2329 a_costs[k] = a_costs[ind];
2334 if (internal_flag_ira_verbose > 4 && ira_dump_file)
2336 if (allocno_p)
2337 print_allocno_costs ();
2338 else
2339 print_pseudo_costs ();
2340 fprintf (ira_dump_file,"\n");
2343 ira_free (regno_best_class);
2348 /* Process moves involving hard regs to modify allocno hard register
2349 costs. We can do this only after determining allocno class. If a
2350 hard register forms a register class, then moves with the hard
2351 register are already taken into account in class costs for the
2352 allocno. */
2353 static void
2354 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
2356 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
2357 bool to_p;
2358 ira_allocno_t a, curr_a;
2359 ira_loop_tree_node_t curr_loop_tree_node;
2360 enum reg_class rclass;
2361 basic_block bb;
2362 rtx_insn *insn;
2363 rtx set, src, dst;
2365 bb = loop_tree_node->bb;
2366 if (bb == NULL)
2367 return;
2368 freq = REG_FREQ_FROM_BB (bb);
2369 if (freq == 0)
2370 freq = 1;
2371 FOR_BB_INSNS (bb, insn)
2373 if (!NONDEBUG_INSN_P (insn))
2374 continue;
2375 set = single_set (insn);
2376 if (set == NULL_RTX)
2377 continue;
2378 dst = SET_DEST (set);
2379 src = SET_SRC (set);
2380 if (! REG_P (dst) || ! REG_P (src))
2381 continue;
2382 dst_regno = REGNO (dst);
2383 src_regno = REGNO (src);
2384 if (dst_regno >= FIRST_PSEUDO_REGISTER
2385 && src_regno < FIRST_PSEUDO_REGISTER)
2387 hard_regno = src_regno;
2388 a = ira_curr_regno_allocno_map[dst_regno];
2389 to_p = true;
2391 else if (src_regno >= FIRST_PSEUDO_REGISTER
2392 && dst_regno < FIRST_PSEUDO_REGISTER)
2394 hard_regno = dst_regno;
2395 a = ira_curr_regno_allocno_map[src_regno];
2396 to_p = false;
2398 else
2399 continue;
2400 if (reg_class_size[(int) REGNO_REG_CLASS (hard_regno)]
2401 == (ira_reg_class_max_nregs
2402 [REGNO_REG_CLASS (hard_regno)][(int) ALLOCNO_MODE(a)]))
2403 /* If the class can provide only one hard reg to the allocno,
2404 we processed the insn record_operand_costs already and we
2405 actually updated the hard reg cost there. */
2406 continue;
2407 rclass = ALLOCNO_CLASS (a);
2408 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2409 continue;
2410 i = ira_class_hard_reg_index[rclass][hard_regno];
2411 if (i < 0)
2412 continue;
2413 a_regno = ALLOCNO_REGNO (a);
2414 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2415 curr_loop_tree_node != NULL;
2416 curr_loop_tree_node = curr_loop_tree_node->parent)
2417 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2418 ira_add_allocno_pref (curr_a, hard_regno, freq);
2420 int cost;
2421 enum reg_class hard_reg_class;
2422 machine_mode mode;
2424 mode = ALLOCNO_MODE (a);
2425 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2426 ira_init_register_move_cost_if_necessary (mode);
2427 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2428 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2429 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2430 ALLOCNO_CLASS_COST (a));
2431 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2432 rclass, 0);
2433 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2434 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2435 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2436 ALLOCNO_HARD_REG_COSTS (a)[i]);
2441 /* After we find hard register and memory costs for allocnos, define
2442 its class and modify hard register cost because insns moving
2443 allocno to/from hard registers. */
2444 static void
2445 setup_allocno_class_and_costs (void)
2447 int i, j, n, regno, hard_regno, num;
2448 int *reg_costs;
2449 enum reg_class aclass, rclass;
2450 ira_allocno_t a;
2451 ira_allocno_iterator ai;
2452 cost_classes_t cost_classes_ptr;
2454 ira_assert (allocno_p);
2455 FOR_EACH_ALLOCNO (a, ai)
2457 i = ALLOCNO_NUM (a);
2458 regno = ALLOCNO_REGNO (a);
2459 aclass = regno_aclass[regno];
2460 cost_classes_ptr = regno_cost_classes[regno];
2461 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2462 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2463 ira_set_allocno_class (a, aclass);
2464 if (aclass == NO_REGS)
2465 continue;
2466 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2468 n = ira_class_hard_regs_num[aclass];
2469 ALLOCNO_HARD_REG_COSTS (a)
2470 = reg_costs = ira_allocate_cost_vector (aclass);
2471 for (j = n - 1; j >= 0; j--)
2473 hard_regno = ira_class_hard_regs[aclass][j];
2474 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2475 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2476 else
2478 rclass = REGNO_REG_CLASS (hard_regno);
2479 num = cost_classes_ptr->index[rclass];
2480 if (num < 0)
2482 num = cost_classes_ptr->hard_regno_index[hard_regno];
2483 ira_assert (num >= 0);
2485 reg_costs[j] = COSTS (costs, i)->cost[num];
2490 if (optimize)
2491 ira_traverse_loop_tree (true, ira_loop_tree_root,
2492 process_bb_node_for_hard_reg_moves, NULL);
2497 /* Function called once during compiler work. */
2498 void
2499 ira_init_costs_once (void)
2501 int i;
2503 init_cost = NULL;
2504 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2506 op_costs[i] = NULL;
2507 this_op_costs[i] = NULL;
2509 temp_costs = NULL;
2512 /* Free allocated temporary cost vectors. */
2513 void
2514 target_ira_int::free_ira_costs ()
2516 int i;
2518 free (x_init_cost);
2519 x_init_cost = NULL;
2520 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2522 free (x_op_costs[i]);
2523 free (x_this_op_costs[i]);
2524 x_op_costs[i] = x_this_op_costs[i] = NULL;
2526 free (x_temp_costs);
2527 x_temp_costs = NULL;
2530 /* This is called each time register related information is
2531 changed. */
2532 void
2533 ira_init_costs (void)
2535 int i;
2537 this_target_ira_int->free_ira_costs ();
2538 max_struct_costs_size
2539 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2540 /* Don't use ira_allocate because vectors live through several IRA
2541 calls. */
2542 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2543 init_cost->mem_cost = 1000000;
2544 for (i = 0; i < ira_important_classes_num; i++)
2545 init_cost->cost[i] = 1000000;
2546 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2548 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2549 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2551 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2556 /* Common initialization function for ira_costs and
2557 ira_set_pseudo_classes. */
2558 static void
2559 init_costs (void)
2561 init_subregs_of_mode ();
2562 costs = (struct costs *) ira_allocate (max_struct_costs_size
2563 * cost_elements_num);
2564 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2565 * cost_elements_num);
2566 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2567 * max_reg_num ());
2568 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2569 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2572 /* Common finalization function for ira_costs and
2573 ira_set_pseudo_classes. */
2574 static void
2575 finish_costs (void)
2577 finish_subregs_of_mode ();
2578 ira_free (regno_equiv_gains);
2579 ira_free (regno_aclass);
2580 ira_free (pref_buffer);
2581 ira_free (costs);
2584 /* Entry function which defines register class, memory and hard
2585 register costs for each allocno. */
2586 void
2587 ira_costs (void)
2589 allocno_p = true;
2590 cost_elements_num = ira_allocnos_num;
2591 init_costs ();
2592 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2593 * ira_allocnos_num);
2594 initiate_regno_cost_classes ();
2595 if (!ira_use_lra_p)
2596 /* Process equivs in reload to update costs through hook
2597 ira_adjust_equiv_reg_cost. */
2598 calculate_elim_costs_all_insns ();
2599 find_costs_and_classes ();
2600 setup_allocno_class_and_costs ();
2601 finish_regno_cost_classes ();
2602 finish_costs ();
2603 ira_free (total_allocno_costs);
2606 /* Entry function which defines classes for pseudos.
2607 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2608 void
2609 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2611 FILE *saved_file = ira_dump_file;
2612 allocno_p = false;
2613 internal_flag_ira_verbose = flag_ira_verbose;
2614 ira_dump_file = dump_file;
2615 cost_elements_num = max_reg_num ();
2616 init_costs ();
2617 initiate_regno_cost_classes ();
2618 find_costs_and_classes ();
2619 finish_regno_cost_classes ();
2620 if (define_pseudo_classes)
2621 pseudo_classes_defined_p = true;
2623 finish_costs ();
2624 ira_dump_file = saved_file;
2629 /* Change hard register costs for allocnos which lives through
2630 function calls. This is called only when we found all intersected
2631 calls during building allocno live ranges. */
2632 void
2633 ira_tune_allocno_costs (void)
2635 int j, n, regno;
2636 int cost, min_cost, *reg_costs;
2637 enum reg_class aclass;
2638 machine_mode mode;
2639 ira_allocno_t a;
2640 ira_allocno_iterator ai;
2641 ira_allocno_object_iterator oi;
2642 ira_object_t obj;
2643 bool skip_p;
2645 FOR_EACH_ALLOCNO (a, ai)
2647 aclass = ALLOCNO_CLASS (a);
2648 if (aclass == NO_REGS)
2649 continue;
2650 mode = ALLOCNO_MODE (a);
2651 n = ira_class_hard_regs_num[aclass];
2652 min_cost = INT_MAX;
2653 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2654 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2656 ira_allocate_and_set_costs
2657 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2658 ALLOCNO_CLASS_COST (a));
2659 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2660 for (j = n - 1; j >= 0; j--)
2662 regno = ira_class_hard_regs[aclass][j];
2663 skip_p = false;
2664 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2666 if (ira_hard_reg_set_intersection_p (regno, mode,
2667 OBJECT_CONFLICT_HARD_REGS
2668 (obj)))
2670 skip_p = true;
2671 break;
2674 if (skip_p)
2675 continue;
2676 cost = 0;
2677 if (ira_need_caller_save_p (a, regno))
2678 cost += ira_caller_save_cost (a);
2679 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2681 auto rclass = REGNO_REG_CLASS (regno);
2682 cost += ((ira_memory_move_cost[mode][rclass][0]
2683 + ira_memory_move_cost[mode][rclass][1])
2684 * ALLOCNO_FREQ (a)
2685 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2687 #endif
2688 if (INT_MAX - cost < reg_costs[j])
2689 reg_costs[j] = INT_MAX;
2690 else
2691 reg_costs[j] += cost;
2692 if (min_cost > reg_costs[j])
2693 min_cost = reg_costs[j];
2696 if (min_cost != INT_MAX)
2697 ALLOCNO_CLASS_COST (a) = min_cost;
2699 /* Some targets allow pseudos to be allocated to unaligned sequences
2700 of hard registers. However, selecting an unaligned sequence can
2701 unnecessarily restrict later allocations. So increase the cost of
2702 unaligned hard regs to encourage the use of aligned hard regs. */
2704 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2706 if (nregs > 1)
2708 ira_allocate_and_set_costs
2709 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2710 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2711 for (j = n - 1; j >= 0; j--)
2713 regno = ira_non_ordered_class_hard_regs[aclass][j];
2714 if ((regno % nregs) != 0)
2716 int index = ira_class_hard_reg_index[aclass][regno];
2717 ira_assert (index != -1);
2718 reg_costs[index] += ALLOCNO_FREQ (a);
2726 /* A hook from the reload pass. Add COST to the estimated gain for eliminating
2727 REGNO with its equivalence. If COST is zero, record that no such
2728 elimination is possible. */
2730 void
2731 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2733 ira_assert (!ira_use_lra_p);
2734 if (cost == 0)
2735 regno_equiv_gains[regno] = 0;
2736 else
2737 regno_equiv_gains[regno] += cost;
2740 void
2741 ira_costs_cc_finalize (void)
2743 this_target_ira_int->free_ira_costs ();