1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
4 Copyright (C) 2009-2015 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
27 /* Workaround for GMP 5.1.3 bug, see PR56019. */
33 #include <isl/union_map.h>
37 /* Since ISL-0.13, the extern is in val_gmp.h. */
38 #if !defined(HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE) && defined(__cplusplus)
41 #include <isl/val_gmp.h>
42 #if !defined(HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE) && defined(__cplusplus)
47 #include "coretypes.h"
52 #include "fold-const.h"
53 #include "gimple-iterator.h"
54 #include "tree-ssa-loop.h"
57 #include "tree-data-ref.h"
58 #include "graphite-poly.h"
61 /* XXX isl rewrite following comment */
62 /* Builds a linear expression, of dimension DIM, representing PDR's
65 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
67 For an array A[10][20] with two subscript locations s0 and s1, the
68 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
69 corresponds to a memory stride of 20.
71 OFFSET is a number of dimensions to prepend before the
72 subscript dimensions: s_0, s_1, ..., s_n.
74 Thus, the final linear expression has the following format:
75 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
76 where the expression itself is:
77 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
79 static isl_constraint
*
80 build_linearized_memory_access (isl_map
*map
, poly_dr_p pdr
)
82 isl_local_space
*ls
= isl_local_space_from_space (isl_map_get_space (map
));
83 isl_constraint
*res
= isl_equality_alloc (ls
);
84 isl_val
*size
= isl_val_int_from_ui (isl_map_get_ctx (map
), 1);
86 unsigned nsubs
= isl_set_dim (pdr
->subscript_sizes
, isl_dim_set
);
87 /* -1 for the already included L dimension. */
88 unsigned offset
= isl_map_dim (map
, isl_dim_out
) - 1 - nsubs
;
89 res
= isl_constraint_set_coefficient_si (res
, isl_dim_out
, offset
+ nsubs
, -1);
90 /* Go through all subscripts from last to first. The dimension "i=0"
91 is the alias set, ignore it. */
92 for (int i
= nsubs
- 1; i
>= 1; i
--)
95 res
= isl_constraint_set_coefficient_val (res
, isl_dim_out
, offset
+ i
,
97 isl_space
*dc
= isl_set_get_space (pdr
->subscript_sizes
);
98 extract_dim
= isl_aff_zero_on_domain (isl_local_space_from_space (dc
));
99 extract_dim
= isl_aff_set_coefficient_si (extract_dim
, isl_dim_in
, i
, 1);
100 isl_val
*max
= isl_set_max_val (pdr
->subscript_sizes
, extract_dim
);
101 isl_aff_free (extract_dim
);
103 /* The result is NULL in case of an error, the optimal value in case there
104 is one, negative infinity or infinity if the problem is unbounded and
105 NaN if the problem is empty. */
108 /* When one of the dimensions cannot be computed, we cannot build the size
109 of the array for any outer dimensions. */
110 if (!isl_val_is_int (max
))
115 size
= isl_val_mul (size
, max
);
123 /* Set STRIDE to the stride of PDR in memory by advancing by one in
124 the loop at DEPTH. */
127 pdr_stride_in_loop (mpz_t stride
, graphite_dim_t depth
, poly_dr_p pdr
)
129 poly_bb_p pbb
= PDR_PBB (pdr
);
134 isl_constraint
*lma
, *c
;
136 graphite_dim_t time_depth
;
139 /* XXX isl rewrite following comments. */
140 /* Builds a partial difference equations and inserts them
141 into pointset powerset polyhedron P. Polyhedron is assumed
142 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
144 TIME_DEPTH is the time dimension w.r.t. which we are
146 OFFSET represents the number of dimensions between
147 columns t_{time_depth} and t'_{time_depth}.
148 DIM_SCTR is the number of scattering dimensions. It is
149 essentially the dimensionality of the T vector.
151 The following equations are inserted into the polyhedron P:
154 | t_{time_depth-1} = t'_{time_depth-1}
155 | t_{time_depth} = t'_{time_depth} + 1
156 | t_{time_depth+1} = t'_{time_depth + 1}
158 | t_{dim_sctr} = t'_{dim_sctr}. */
160 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
161 This is the core part of this alogrithm, since this
162 constraint asks for the memory access stride (difference)
163 between two consecutive points in time dimensions. */
168 | t_{time_depth-1} = t'_{time_depth-1}
169 | t_{time_depth+1} = t'_{time_depth+1}
171 | t_{dim_sctr} = t'_{dim_sctr}
173 This means that all the time dimensions are equal except for
174 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
175 step. More to this: we should be careful not to add equalities
176 to the 'coupled' dimensions, which happens when the one dimension
177 is stripmined dimension, and the other dimension corresponds
178 to the point loop inside stripmined dimension. */
180 /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript]
181 ??? [P] not used for PDRs?
182 pdr->subscript_sizes: [a,S1..nb_subscript]
183 pbb->domain: [P1..nb_param,I1..nb_domain]
184 pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr]
185 [T] includes local vars (currently unused)
187 First we create [P,I] -> [T,a,S]. */
189 map
= isl_map_flat_range_product (isl_map_copy (pbb
->transformed
),
190 isl_map_copy (pdr
->accesses
));
191 /* Add a dimension for L: [P,I] -> [T,a,S,L].*/
192 map
= isl_map_add_dims (map
, isl_dim_out
, 1);
193 /* Build a constraint for "lma[S] - L == 0", effectively calculating
194 L in terms of subscripts. */
195 lma
= build_linearized_memory_access (map
, pdr
);
196 /* And add it to the map, so we now have:
197 [P,I] -> [T,a,S,L] : lma([S]) == L. */
198 map
= isl_map_add_constraint (map
, lma
);
200 /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */
201 map
= isl_map_flat_product (map
, isl_map_copy (map
));
203 /* Now add the equality T[time_depth] == T'[time_depth]+1. This will
204 force L' to be the linear address at T[time_depth] + 1. */
205 time_depth
= psct_dynamic_dim (pbb
, depth
);
206 /* Length of [a,S] plus [L] ... */
207 offset
= 1 + isl_map_dim (pdr
->accesses
, isl_dim_out
);
209 offset
+= isl_map_dim (pbb
->transformed
, isl_dim_out
);
211 c
= isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map
)));
212 c
= isl_constraint_set_coefficient_si (c
, isl_dim_out
, time_depth
, 1);
213 c
= isl_constraint_set_coefficient_si (c
, isl_dim_out
,
214 offset
+ time_depth
, -1);
215 c
= isl_constraint_set_constant_si (c
, 1);
216 map
= isl_map_add_constraint (map
, c
);
218 /* Now we equate most of the T/T' elements (making PITaSL nearly
219 the same is (PITaSL)', except for one dimension, namely for 'depth'
220 (an index into [I]), after translating to index into [T]. Take care
221 to not produce an empty map, which indicates we wanted to equate
222 two dimensions that are already coupled via the above time_depth
223 dimension. Happens with strip mining where several scatter dimension
224 are interdependend. */
226 nt
= pbb_nb_scattering_transform (pbb
) + pbb_nb_local_vars (pbb
);
227 for (i
= 0; i
< nt
; i
++)
230 isl_map
*temp
= isl_map_equate (isl_map_copy (map
),
232 isl_dim_out
, offset
+ i
);
233 if (isl_map_is_empty (temp
))
242 /* Now maximize the expression L' - L. */
243 set
= isl_map_range (map
);
244 dc
= isl_set_get_space (set
);
245 aff
= isl_aff_zero_on_domain (isl_local_space_from_space (dc
));
246 aff
= isl_aff_set_coefficient_si (aff
, isl_dim_in
, offset
- 1, -1);
247 aff
= isl_aff_set_coefficient_si (aff
, isl_dim_in
, offset
+ offset
- 1, 1);
248 islstride
= isl_set_max_val (set
, aff
);
249 isl_val_get_num_gmp (islstride
, stride
);
250 isl_val_free (islstride
);
254 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
256 gmp_fprintf (dump_file
, "\nStride in BB_%d, DR_%d, depth %d: %Zd ",
257 pbb_index (pbb
), PDR_ID (pdr
), (int) depth
, stride
);
261 /* Sets STRIDES to the sum of all the strides of the data references
262 accessed in LOOP at DEPTH. */
265 memory_strides_in_loop_1 (lst_p loop
, graphite_dim_t depth
, mpz_t strides
)
275 FOR_EACH_VEC_ELT (LST_SEQ (loop
), j
, l
)
277 memory_strides_in_loop_1 (l
, depth
, strides
);
279 FOR_EACH_VEC_ELT (PBB_DRS (LST_PBB (l
)), i
, pdr
)
281 pdr_stride_in_loop (s
, depth
, pdr
);
282 mpz_set_si (n
, PDR_NB_REFS (pdr
));
284 mpz_add (strides
, strides
, s
);
291 /* Sets STRIDES to the sum of all the strides of the data references
292 accessed in LOOP at DEPTH. */
295 memory_strides_in_loop (lst_p loop
, graphite_dim_t depth
, mpz_t strides
)
297 if (mpz_cmp_si (loop
->memory_strides
, -1) == 0)
299 mpz_set_si (strides
, 0);
300 memory_strides_in_loop_1 (loop
, depth
, strides
);
303 mpz_set (strides
, loop
->memory_strides
);
306 /* Return true when the interchange of loops LOOP1 and LOOP2 is
319 | for (i = 0; i < N; i++)
320 | for (j = 0; j < N; j++)
326 The data access A[j][i] is described like this:
334 | 0 0 0 0 -1 0 100 >= 0
335 | 0 0 0 0 0 -1 100 >= 0
337 The linearized memory access L to A[100][100] is:
342 TODO: the shown format is not valid as it does not show the fact
343 that the iteration domain "i j" is transformed using the scattering.
345 Next, to measure the impact of iterating once in loop "i", we build
346 a maximization problem: first, we add to DR accesses the dimensions
347 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
348 L1 and L2 are the linearized memory access functions.
350 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
351 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
352 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
353 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
354 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
355 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
356 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
357 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
358 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
360 Then, we generate the polyhedron P2 by interchanging the dimensions
361 (s0, s2), (s1, s3), (L1, L2), (k, i)
363 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
364 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
365 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
366 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
367 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
368 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
369 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
370 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
371 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
373 then we add to P2 the equality k = i + 1:
375 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
377 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
379 Similarly, to determine the impact of one iteration on loop "j", we
380 interchange (k, j), we add "k = j + 1", and we compute D2 the
381 maximal value of the difference.
383 Finally, the profitability test is D1 < D2: if in the outer loop
384 the strides are smaller than in the inner loop, then it is
385 profitable to interchange the loops at DEPTH1 and DEPTH2. */
388 lst_interchange_profitable_p (lst_p nest
, int depth1
, int depth2
)
393 gcc_assert (depth1
< depth2
);
398 memory_strides_in_loop (nest
, depth1
, d1
);
399 memory_strides_in_loop (nest
, depth2
, d2
);
401 res
= mpz_cmp (d1
, d2
) < 0;
409 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
410 scattering and assigns the resulting polyhedron to the transformed
414 pbb_interchange_loop_depths (graphite_dim_t depth1
, graphite_dim_t depth2
,
418 unsigned dim1
= psct_dynamic_dim (pbb
, depth1
);
419 unsigned dim2
= psct_dynamic_dim (pbb
, depth2
);
420 isl_space
*d
= isl_map_get_space (pbb
->transformed
);
421 isl_space
*d1
= isl_space_range (d
);
422 unsigned n
= isl_space_dim (d1
, isl_dim_out
);
423 isl_space
*d2
= isl_space_add_dims (d1
, isl_dim_in
, n
);
424 isl_map
*x
= isl_map_universe (d2
);
426 x
= isl_map_equate (x
, isl_dim_in
, dim1
, isl_dim_out
, dim2
);
427 x
= isl_map_equate (x
, isl_dim_in
, dim2
, isl_dim_out
, dim1
);
429 for (i
= 0; i
< n
; i
++)
430 if (i
!= dim1
&& i
!= dim2
)
431 x
= isl_map_equate (x
, isl_dim_in
, i
, isl_dim_out
, i
);
433 pbb
->transformed
= isl_map_apply_range (pbb
->transformed
, x
);
436 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
437 the statements below LST. */
440 lst_apply_interchange (lst_p lst
, int depth1
, int depth2
)
445 if (LST_LOOP_P (lst
))
450 FOR_EACH_VEC_ELT (LST_SEQ (lst
), i
, l
)
451 lst_apply_interchange (l
, depth1
, depth2
);
454 pbb_interchange_loop_depths (depth1
, depth2
, LST_PBB (lst
));
457 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
458 perfect: i.e. there are no sequence of statements. */
461 lst_perfectly_nested_p (lst_p loop1
, lst_p loop2
)
466 if (!LST_LOOP_P (loop1
))
469 return LST_SEQ (loop1
).length () == 1
470 && lst_perfectly_nested_p (LST_SEQ (loop1
)[0], loop2
);
473 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
474 nest. To continue the naming tradition, this function is called
475 after perfect_nestify. NEST is set to the perfectly nested loop
476 that is created. BEFORE/AFTER are set to the loops distributed
477 before/after the loop NEST. */
480 lst_perfect_nestify (lst_p loop1
, lst_p loop2
, lst_p
*before
,
481 lst_p
*nest
, lst_p
*after
)
483 poly_bb_p first
, last
;
485 gcc_assert (loop1
&& loop2
487 && LST_LOOP_P (loop1
) && LST_LOOP_P (loop2
));
489 first
= LST_PBB (lst_find_first_pbb (loop2
));
490 last
= LST_PBB (lst_find_last_pbb (loop2
));
492 *before
= copy_lst (loop1
);
493 *nest
= copy_lst (loop1
);
494 *after
= copy_lst (loop1
);
496 lst_remove_all_before_including_pbb (*before
, first
, false);
497 lst_remove_all_before_including_pbb (*after
, last
, true);
499 lst_remove_all_before_excluding_pbb (*nest
, first
, true);
500 lst_remove_all_before_excluding_pbb (*nest
, last
, false);
502 if (lst_empty_p (*before
))
507 if (lst_empty_p (*after
))
512 if (lst_empty_p (*nest
))
519 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
520 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
524 lst_try_interchange_loops (scop_p scop
, lst_p loop1
, lst_p loop2
)
526 int depth1
= lst_depth (loop1
);
527 int depth2
= lst_depth (loop2
);
530 lst_p before
= NULL
, nest
= NULL
, after
= NULL
;
532 if (!lst_perfectly_nested_p (loop1
, loop2
))
533 lst_perfect_nestify (loop1
, loop2
, &before
, &nest
, &after
);
535 if (!lst_interchange_profitable_p (loop2
, depth1
, depth2
))
538 lst_apply_interchange (loop2
, depth1
, depth2
);
540 /* Sync the transformed LST information and the PBB scatterings
541 before using the scatterings in the data dependence analysis. */
542 if (before
|| nest
|| after
)
544 transformed
= lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop
), loop1
,
545 before
, nest
, after
);
546 lst_update_scattering (transformed
);
547 free_lst (transformed
);
550 if (graphite_legal_transform (scop
))
552 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
554 "Loops at depths %d and %d will be interchanged.\n",
557 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
558 lst_insert_in_sequence (before
, loop1
, true);
559 lst_insert_in_sequence (after
, loop1
, false);
563 lst_replace (loop1
, nest
);
570 /* Undo the transform. */
574 lst_apply_interchange (loop2
, depth2
, depth1
);
578 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
579 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
582 lst_interchange_select_inner (scop_p scop
, lst_p outer_father
, int outer
,
588 gcc_assert (outer_father
589 && LST_LOOP_P (outer_father
)
590 && LST_LOOP_P (LST_SEQ (outer_father
)[outer
])
592 && LST_LOOP_P (inner_father
));
594 loop1
= LST_SEQ (outer_father
)[outer
];
596 FOR_EACH_VEC_ELT (LST_SEQ (inner_father
), inner
, loop2
)
597 if (LST_LOOP_P (loop2
)
598 && (lst_try_interchange_loops (scop
, loop1
, loop2
)
599 || lst_interchange_select_inner (scop
, outer_father
, outer
, loop2
)))
605 /* Interchanges all the loops of LOOP and the loops of its body that
606 are considered profitable to interchange. Return the number of
607 interchanged loops. OUTER is the index in LST_SEQ (LOOP) that
608 points to the next outer loop to be considered for interchange. */
611 lst_interchange_select_outer (scop_p scop
, lst_p loop
, int outer
)
618 if (!loop
|| !LST_LOOP_P (loop
))
621 father
= LST_LOOP_FATHER (loop
);
624 while (lst_interchange_select_inner (scop
, father
, outer
, loop
))
627 loop
= LST_SEQ (father
)[outer
];
631 if (LST_LOOP_P (loop
))
632 FOR_EACH_VEC_ELT (LST_SEQ (loop
), i
, l
)
634 res
+= lst_interchange_select_outer (scop
, l
, i
);
639 /* Interchanges all the loop depths that are considered profitable for
640 SCOP. Return the number of interchanged loops. */
643 scop_do_interchange (scop_p scop
)
645 int res
= lst_interchange_select_outer
646 (scop
, SCOP_TRANSFORMED_SCHEDULE (scop
), 0);
648 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop
));
654 #endif /* HAVE_isl */