compiler: Create dummy labels for blank labels.
[official-gcc.git] / gcc / go / gofrontend / gogo.cc
blobd521fb1e2b79549216ec8549596d0a2b2fb6f11a
1 // gogo.cc -- Go frontend parsed representation.
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
7 #include "go-system.h"
9 #include "filenames.h"
11 #include "go-c.h"
12 #include "go-dump.h"
13 #include "go-optimize.h"
14 #include "lex.h"
15 #include "types.h"
16 #include "statements.h"
17 #include "expressions.h"
18 #include "runtime.h"
19 #include "import.h"
20 #include "export.h"
21 #include "escape.h"
22 #include "backend.h"
23 #include "gogo.h"
25 // Class Gogo.
27 Gogo::Gogo(Backend* backend, Linemap* linemap, int, int pointer_size)
28 : backend_(backend),
29 linemap_(linemap),
30 package_(NULL),
31 functions_(),
32 globals_(new Bindings(NULL)),
33 file_block_names_(),
34 imports_(),
35 imported_unsafe_(false),
36 packages_(),
37 init_functions_(),
38 var_deps_(),
39 need_init_fn_(false),
40 init_fn_name_(),
41 imported_init_fns_(),
42 pkgpath_(),
43 pkgpath_symbol_(),
44 prefix_(),
45 zero_value_(NULL),
46 zero_value_size_(0),
47 zero_value_align_(0),
48 pkgpath_set_(false),
49 pkgpath_from_option_(false),
50 prefix_from_option_(false),
51 relative_import_path_(),
52 verify_types_(),
53 interface_types_(),
54 specific_type_functions_(),
55 specific_type_functions_are_written_(false),
56 named_types_are_converted_(false)
58 const Location loc = Linemap::predeclared_location();
60 Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
61 RUNTIME_TYPE_KIND_UINT8);
62 this->add_named_type(uint8_type);
63 this->add_named_type(Type::make_integer_type("uint16", true, 16,
64 RUNTIME_TYPE_KIND_UINT16));
65 this->add_named_type(Type::make_integer_type("uint32", true, 32,
66 RUNTIME_TYPE_KIND_UINT32));
67 this->add_named_type(Type::make_integer_type("uint64", true, 64,
68 RUNTIME_TYPE_KIND_UINT64));
70 this->add_named_type(Type::make_integer_type("int8", false, 8,
71 RUNTIME_TYPE_KIND_INT8));
72 this->add_named_type(Type::make_integer_type("int16", false, 16,
73 RUNTIME_TYPE_KIND_INT16));
74 Named_type* int32_type = Type::make_integer_type("int32", false, 32,
75 RUNTIME_TYPE_KIND_INT32);
76 this->add_named_type(int32_type);
77 this->add_named_type(Type::make_integer_type("int64", false, 64,
78 RUNTIME_TYPE_KIND_INT64));
80 this->add_named_type(Type::make_float_type("float32", 32,
81 RUNTIME_TYPE_KIND_FLOAT32));
82 this->add_named_type(Type::make_float_type("float64", 64,
83 RUNTIME_TYPE_KIND_FLOAT64));
85 this->add_named_type(Type::make_complex_type("complex64", 64,
86 RUNTIME_TYPE_KIND_COMPLEX64));
87 this->add_named_type(Type::make_complex_type("complex128", 128,
88 RUNTIME_TYPE_KIND_COMPLEX128));
90 int int_type_size = pointer_size;
91 if (int_type_size < 32)
92 int_type_size = 32;
93 this->add_named_type(Type::make_integer_type("uint", true,
94 int_type_size,
95 RUNTIME_TYPE_KIND_UINT));
96 Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
97 RUNTIME_TYPE_KIND_INT);
98 this->add_named_type(int_type);
100 this->add_named_type(Type::make_integer_type("uintptr", true,
101 pointer_size,
102 RUNTIME_TYPE_KIND_UINTPTR));
104 // "byte" is an alias for "uint8".
105 uint8_type->integer_type()->set_is_byte();
106 Named_object* byte_type = Named_object::make_type("byte", NULL, uint8_type,
107 loc);
108 this->add_named_type(byte_type->type_value());
110 // "rune" is an alias for "int32".
111 int32_type->integer_type()->set_is_rune();
112 Named_object* rune_type = Named_object::make_type("rune", NULL, int32_type,
113 loc);
114 this->add_named_type(rune_type->type_value());
116 this->add_named_type(Type::make_named_bool_type());
118 this->add_named_type(Type::make_named_string_type());
120 // "error" is interface { Error() string }.
122 Typed_identifier_list *methods = new Typed_identifier_list;
123 Typed_identifier_list *results = new Typed_identifier_list;
124 results->push_back(Typed_identifier("", Type::lookup_string_type(), loc));
125 Type *method_type = Type::make_function_type(NULL, NULL, results, loc);
126 methods->push_back(Typed_identifier("Error", method_type, loc));
127 Interface_type *error_iface = Type::make_interface_type(methods, loc);
128 error_iface->finalize_methods();
129 Named_type *error_type = Named_object::make_type("error", NULL, error_iface, loc)->type_value();
130 this->add_named_type(error_type);
133 this->globals_->add_constant(Typed_identifier("true",
134 Type::make_boolean_type(),
135 loc),
136 NULL,
137 Expression::make_boolean(true, loc),
139 this->globals_->add_constant(Typed_identifier("false",
140 Type::make_boolean_type(),
141 loc),
142 NULL,
143 Expression::make_boolean(false, loc),
146 this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
147 loc),
148 NULL,
149 Expression::make_nil(loc),
152 Type* abstract_int_type = Type::make_abstract_integer_type();
153 this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
154 loc),
155 NULL,
156 Expression::make_iota(),
159 Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
160 new_type->set_is_varargs();
161 new_type->set_is_builtin();
162 Node::Escape_states* new_escapes =
163 new Node::Escape_states(1, Node::ESCAPE_NONE);
164 new_type->set_parameter_escape_states(new_escapes);
165 new_type->set_has_escape_info();
166 this->globals_->add_function_declaration("new", NULL, new_type, loc);
168 Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
169 make_type->set_is_varargs();
170 make_type->set_is_builtin();
171 Node::Escape_states* make_escapes =
172 new Node::Escape_states(2, Node::ESCAPE_NONE);
173 make_type->set_parameter_escape_states(make_escapes);
174 make_type->set_has_escape_info();
175 this->globals_->add_function_declaration("make", NULL, make_type, loc);
177 Typed_identifier_list* len_result = new Typed_identifier_list();
178 len_result->push_back(Typed_identifier("", int_type, loc));
179 Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
180 loc);
181 len_type->set_is_builtin();
182 Node::Escape_states* len_escapes =
183 new Node::Escape_states(1, Node::ESCAPE_NONE);
184 len_type->set_parameter_escape_states(len_escapes);
185 len_type->set_has_escape_info();
186 this->globals_->add_function_declaration("len", NULL, len_type, loc);
188 Typed_identifier_list* cap_result = new Typed_identifier_list();
189 cap_result->push_back(Typed_identifier("", int_type, loc));
190 Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
191 loc);
192 cap_type->set_is_builtin();
193 Node::Escape_states* cap_escapes =
194 new Node::Escape_states(1, Node::ESCAPE_NONE);
195 cap_type->set_parameter_escape_states(cap_escapes);
196 cap_type->set_has_escape_info();
197 this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
199 Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
200 print_type->set_is_varargs();
201 print_type->set_is_builtin();
202 Node::Escape_states* print_escapes =
203 new Node::Escape_states(1, Node::ESCAPE_NONE);
204 print_type->set_parameter_escape_states(print_escapes);
205 print_type->set_has_escape_info();
206 this->globals_->add_function_declaration("print", NULL, print_type, loc);
208 print_type = Type::make_function_type(NULL, NULL, NULL, loc);
209 print_type->set_is_varargs();
210 print_type->set_is_builtin();
211 print_type->set_parameter_escape_states(print_escapes);
212 print_type->set_has_escape_info();
213 this->globals_->add_function_declaration("println", NULL, print_type, loc);
215 Type *empty = Type::make_empty_interface_type(loc);
216 Typed_identifier_list* panic_parms = new Typed_identifier_list();
217 panic_parms->push_back(Typed_identifier("e", empty, loc));
218 Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
219 NULL, loc);
220 panic_type->set_is_builtin();
221 Node::Escape_states* panic_escapes =
222 new Node::Escape_states(1, Node::ESCAPE_ARG);
223 panic_type->set_parameter_escape_states(panic_escapes);
224 panic_type->set_has_escape_info();
225 this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
227 Typed_identifier_list* recover_result = new Typed_identifier_list();
228 recover_result->push_back(Typed_identifier("", empty, loc));
229 Function_type* recover_type = Type::make_function_type(NULL, NULL,
230 recover_result,
231 loc);
232 recover_type->set_is_builtin();
233 this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
235 Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
236 close_type->set_is_varargs();
237 close_type->set_is_builtin();
238 Node::Escape_states* close_escapes =
239 new Node::Escape_states(1, Node::ESCAPE_NONE);
240 close_type->set_parameter_escape_states(close_escapes);
241 close_type->set_has_escape_info();
242 this->globals_->add_function_declaration("close", NULL, close_type, loc);
244 Typed_identifier_list* copy_result = new Typed_identifier_list();
245 copy_result->push_back(Typed_identifier("", int_type, loc));
246 Function_type* copy_type = Type::make_function_type(NULL, NULL,
247 copy_result, loc);
248 copy_type->set_is_varargs();
249 copy_type->set_is_builtin();
250 Node::Escape_states* copy_escapes =
251 new Node::Escape_states(2, Node::ESCAPE_NONE);
252 copy_type->set_parameter_escape_states(copy_escapes);
253 copy_type->set_has_escape_info();
254 this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
256 Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
257 append_type->set_is_varargs();
258 append_type->set_is_builtin();
259 Node::Escape_states* append_escapes = new Node::Escape_states;
260 append_escapes->push_back(Node::ESCAPE_ARG);
261 append_escapes->push_back(Node::ESCAPE_NONE);
262 append_type->set_parameter_escape_states(append_escapes);
263 append_type->set_has_escape_info();
264 this->globals_->add_function_declaration("append", NULL, append_type, loc);
266 Function_type* complex_type = Type::make_function_type(NULL, NULL, NULL, loc);
267 complex_type->set_is_varargs();
268 complex_type->set_is_builtin();
269 Node::Escape_states* complex_escapes =
270 new Node::Escape_states(2, Node::ESCAPE_NONE);
271 complex_type->set_parameter_escape_states(complex_escapes);
272 complex_type->set_has_escape_info();
273 this->globals_->add_function_declaration("complex", NULL, complex_type, loc);
275 Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
276 real_type->set_is_varargs();
277 real_type->set_is_builtin();
278 Node::Escape_states* real_escapes =
279 new Node::Escape_states(1, Node::ESCAPE_NONE);
280 real_type->set_parameter_escape_states(real_escapes);
281 real_type->set_has_escape_info();
282 this->globals_->add_function_declaration("real", NULL, real_type, loc);
284 Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
285 imag_type->set_is_varargs();
286 imag_type->set_is_builtin();
287 Node::Escape_states* imag_escapes =
288 new Node::Escape_states(1, Node::ESCAPE_NONE);
289 imag_type->set_parameter_escape_states(imag_escapes);
290 imag_type->set_has_escape_info();
291 this->globals_->add_function_declaration("imag", NULL, imag_type, loc);
293 Function_type* delete_type = Type::make_function_type(NULL, NULL, NULL, loc);
294 delete_type->set_is_varargs();
295 delete_type->set_is_builtin();
296 Node::Escape_states* delete_escapes =
297 new Node::Escape_states(2, Node::ESCAPE_NONE);
298 delete_type->set_parameter_escape_states(delete_escapes);
299 delete_type->set_has_escape_info();
300 this->globals_->add_function_declaration("delete", NULL, delete_type, loc);
303 // Convert a pkgpath into a string suitable for a symbol. Note that
304 // this transformation is convenient but imperfect. A -fgo-pkgpath
305 // option of a/b_c will conflict with a -fgo-pkgpath option of a_b/c,
306 // possibly leading to link time errors.
308 std::string
309 Gogo::pkgpath_for_symbol(const std::string& pkgpath)
311 std::string s = pkgpath;
312 for (size_t i = 0; i < s.length(); ++i)
314 char c = s[i];
315 if ((c >= 'a' && c <= 'z')
316 || (c >= 'A' && c <= 'Z')
317 || (c >= '0' && c <= '9'))
319 else
320 s[i] = '_';
322 return s;
325 // Get the package path to use for type reflection data. This should
326 // ideally be unique across the entire link.
328 const std::string&
329 Gogo::pkgpath() const
331 go_assert(this->pkgpath_set_);
332 return this->pkgpath_;
335 // Set the package path from the -fgo-pkgpath command line option.
337 void
338 Gogo::set_pkgpath(const std::string& arg)
340 go_assert(!this->pkgpath_set_);
341 this->pkgpath_ = arg;
342 this->pkgpath_set_ = true;
343 this->pkgpath_from_option_ = true;
346 // Get the package path to use for symbol names.
348 const std::string&
349 Gogo::pkgpath_symbol() const
351 go_assert(this->pkgpath_set_);
352 return this->pkgpath_symbol_;
355 // Set the unique prefix to use to determine the package path, from
356 // the -fgo-prefix command line option.
358 void
359 Gogo::set_prefix(const std::string& arg)
361 go_assert(!this->prefix_from_option_);
362 this->prefix_ = arg;
363 this->prefix_from_option_ = true;
366 // Munge name for use in an error message.
368 std::string
369 Gogo::message_name(const std::string& name)
371 return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
374 // Get the package name.
376 const std::string&
377 Gogo::package_name() const
379 go_assert(this->package_ != NULL);
380 return this->package_->package_name();
383 // Set the package name.
385 void
386 Gogo::set_package_name(const std::string& package_name,
387 Location location)
389 if (this->package_ != NULL)
391 if (this->package_->package_name() != package_name)
392 error_at(location, "expected package %<%s%>",
393 Gogo::message_name(this->package_->package_name()).c_str());
394 return;
397 // Now that we know the name of the package we are compiling, set
398 // the package path to use for reflect.Type.PkgPath and global
399 // symbol names.
400 if (this->pkgpath_set_)
401 this->pkgpath_symbol_ = Gogo::pkgpath_for_symbol(this->pkgpath_);
402 else
404 if (!this->prefix_from_option_ && package_name == "main")
406 this->pkgpath_ = package_name;
407 this->pkgpath_symbol_ = Gogo::pkgpath_for_symbol(package_name);
409 else
411 if (!this->prefix_from_option_)
412 this->prefix_ = "go";
413 this->pkgpath_ = this->prefix_ + '.' + package_name;
414 this->pkgpath_symbol_ = (Gogo::pkgpath_for_symbol(this->prefix_) + '.'
415 + Gogo::pkgpath_for_symbol(package_name));
417 this->pkgpath_set_ = true;
420 this->package_ = this->register_package(this->pkgpath_,
421 this->pkgpath_symbol_, location);
422 this->package_->set_package_name(package_name, location);
424 if (this->is_main_package())
426 // Declare "main" as a function which takes no parameters and
427 // returns no value.
428 Location uloc = Linemap::unknown_location();
429 this->declare_function(Gogo::pack_hidden_name("main", false),
430 Type::make_function_type (NULL, NULL, NULL, uloc),
431 uloc);
435 // Return whether this is the "main" package. This is not true if
436 // -fgo-pkgpath or -fgo-prefix was used.
438 bool
439 Gogo::is_main_package() const
441 return (this->package_name() == "main"
442 && !this->pkgpath_from_option_
443 && !this->prefix_from_option_);
446 // Import a package.
448 void
449 Gogo::import_package(const std::string& filename,
450 const std::string& local_name,
451 bool is_local_name_exported,
452 Location location)
454 if (filename.empty())
456 error_at(location, "import path is empty");
457 return;
460 const char *pf = filename.data();
461 const char *pend = pf + filename.length();
462 while (pf < pend)
464 unsigned int c;
465 int adv = Lex::fetch_char(pf, &c);
466 if (adv == 0)
468 error_at(location, "import path contains invalid UTF-8 sequence");
469 return;
471 if (c == '\0')
473 error_at(location, "import path contains NUL");
474 return;
476 if (c < 0x20 || c == 0x7f)
478 error_at(location, "import path contains control character");
479 return;
481 if (c == '\\')
483 error_at(location, "import path contains backslash; use slash");
484 return;
486 if (Lex::is_unicode_space(c))
488 error_at(location, "import path contains space character");
489 return;
491 if (c < 0x7f && strchr("!\"#$%&'()*,:;<=>?[]^`{|}", c) != NULL)
493 error_at(location, "import path contains invalid character '%c'", c);
494 return;
496 pf += adv;
499 if (IS_ABSOLUTE_PATH(filename.c_str()))
501 error_at(location, "import path cannot be absolute path");
502 return;
505 if (local_name == "init")
506 error_at(location, "cannot import package as init");
508 if (filename == "unsafe")
510 this->import_unsafe(local_name, is_local_name_exported, location);
511 return;
514 Imports::const_iterator p = this->imports_.find(filename);
515 if (p != this->imports_.end())
517 Package* package = p->second;
518 package->set_location(location);
519 package->set_is_imported();
520 std::string ln = local_name;
521 bool is_ln_exported = is_local_name_exported;
522 if (ln.empty())
524 ln = package->package_name();
525 go_assert(!ln.empty());
526 is_ln_exported = Lex::is_exported_name(ln);
528 if (ln == ".")
530 Bindings* bindings = package->bindings();
531 for (Bindings::const_declarations_iterator p =
532 bindings->begin_declarations();
533 p != bindings->end_declarations();
534 ++p)
535 this->add_dot_import_object(p->second);
537 else if (ln == "_")
538 package->set_uses_sink_alias();
539 else
541 ln = this->pack_hidden_name(ln, is_ln_exported);
542 this->package_->bindings()->add_package(ln, package);
544 return;
547 Import::Stream* stream = Import::open_package(filename, location,
548 this->relative_import_path_);
549 if (stream == NULL)
551 error_at(location, "import file %qs not found", filename.c_str());
552 return;
555 Import imp(stream, location);
556 imp.register_builtin_types(this);
557 Package* package = imp.import(this, local_name, is_local_name_exported);
558 if (package != NULL)
560 if (package->pkgpath() == this->pkgpath())
561 error_at(location,
562 ("imported package uses same package path as package "
563 "being compiled (see -fgo-pkgpath option)"));
565 this->imports_.insert(std::make_pair(filename, package));
566 package->set_is_imported();
569 delete stream;
572 // Add an import control function for an imported package to the list.
574 void
575 Gogo::add_import_init_fn(const std::string& package_name,
576 const std::string& init_name, int prio)
578 for (std::set<Import_init>::const_iterator p =
579 this->imported_init_fns_.begin();
580 p != this->imported_init_fns_.end();
581 ++p)
583 if (p->init_name() == init_name)
585 // If a test of package P1, built as part of package P1,
586 // imports package P2, and P2 imports P1 (perhaps
587 // indirectly), then we will see the same import name with
588 // different import priorities. That is OK, so don't give
589 // an error about it.
590 if (p->package_name() != package_name)
592 error("duplicate package initialization name %qs",
593 Gogo::message_name(init_name).c_str());
594 inform(UNKNOWN_LOCATION, "used by package %qs at priority %d",
595 Gogo::message_name(p->package_name()).c_str(),
596 p->priority());
597 inform(UNKNOWN_LOCATION, " and by package %qs at priority %d",
598 Gogo::message_name(package_name).c_str(), prio);
600 return;
604 this->imported_init_fns_.insert(Import_init(package_name, init_name,
605 prio));
608 // Return whether we are at the global binding level.
610 bool
611 Gogo::in_global_scope() const
613 return this->functions_.empty();
616 // Return the current binding contour.
618 Bindings*
619 Gogo::current_bindings()
621 if (!this->functions_.empty())
622 return this->functions_.back().blocks.back()->bindings();
623 else if (this->package_ != NULL)
624 return this->package_->bindings();
625 else
626 return this->globals_;
629 const Bindings*
630 Gogo::current_bindings() const
632 if (!this->functions_.empty())
633 return this->functions_.back().blocks.back()->bindings();
634 else if (this->package_ != NULL)
635 return this->package_->bindings();
636 else
637 return this->globals_;
640 // Return the special variable used as the zero value of types.
642 Named_object*
643 Gogo::zero_value(Type *type)
645 if (this->zero_value_ == NULL)
647 Location bloc = Linemap::predeclared_location();
649 // We will change the type later, when we know the size.
650 Type* byte_type = this->lookup_global("byte")->type_value();
652 Expression* zero = Expression::make_integer_ul(0, NULL, bloc);
653 Type* array_type = Type::make_array_type(byte_type, zero);
655 Variable* var = new Variable(array_type, NULL, true, false, false, bloc);
656 this->zero_value_ = Named_object::make_variable("go$zerovalue", NULL,
657 var);
660 // The zero value will be the maximum required size.
661 int64_t size;
662 bool ok = type->backend_type_size(this, &size);
663 if (!ok) {
664 go_assert(saw_errors());
665 size = 4;
667 if (size > this->zero_value_size_)
668 this->zero_value_size_ = size;
670 int64_t align;
671 ok = type->backend_type_align(this, &align);
672 if (!ok) {
673 go_assert(saw_errors());
674 align = 4;
676 if (align > this->zero_value_align_)
677 this->zero_value_align_ = align;
679 return this->zero_value_;
682 // Return whether V is the zero value variable.
684 bool
685 Gogo::is_zero_value(Variable* v) const
687 return this->zero_value_ != NULL && this->zero_value_->var_value() == v;
690 // Return the backend variable for the special zero value, or NULL if
691 // it is not needed.
693 Bvariable*
694 Gogo::backend_zero_value()
696 if (this->zero_value_ == NULL)
697 return NULL;
699 Type* byte_type = this->lookup_global("byte")->type_value();
700 Btype* bbtype_type = byte_type->get_backend(this);
702 Type* int_type = this->lookup_global("int")->type_value();
704 Expression* e = Expression::make_integer_int64(this->zero_value_size_,
705 int_type,
706 Linemap::unknown_location());
707 Translate_context context(this, NULL, NULL, NULL);
708 Bexpression* blength = e->get_backend(&context);
710 Btype* barray_type = this->backend()->array_type(bbtype_type, blength);
712 std::string zname = this->zero_value_->name();
713 Bvariable* zvar =
714 this->backend()->implicit_variable(zname, barray_type, false,
715 true, true, this->zero_value_align_);
716 this->backend()->implicit_variable_set_init(zvar, zname, barray_type,
717 false, true, true, NULL);
718 return zvar;
721 // Add statements to INIT_STMTS which run the initialization
722 // functions for imported packages. This is only used for the "main"
723 // package.
725 void
726 Gogo::init_imports(std::vector<Bstatement*>& init_stmts)
728 go_assert(this->is_main_package());
730 if (this->imported_init_fns_.empty())
731 return;
733 Location unknown_loc = Linemap::unknown_location();
734 Function_type* func_type =
735 Type::make_function_type(NULL, NULL, NULL, unknown_loc);
736 Btype* fntype = func_type->get_backend_fntype(this);
738 // We must call them in increasing priority order.
739 std::vector<Import_init> v;
740 for (std::set<Import_init>::const_iterator p =
741 this->imported_init_fns_.begin();
742 p != this->imported_init_fns_.end();
743 ++p)
744 v.push_back(*p);
745 std::sort(v.begin(), v.end());
747 // We build calls to the init functions, which take no arguments.
748 std::vector<Bexpression*> empty_args;
749 for (std::vector<Import_init>::const_iterator p = v.begin();
750 p != v.end();
751 ++p)
753 std::string user_name = p->package_name() + ".init";
754 const std::string& init_name(p->init_name());
756 Bfunction* pfunc = this->backend()->function(fntype, user_name, init_name,
757 true, true, true, false,
758 false, unknown_loc);
759 Bexpression* pfunc_code =
760 this->backend()->function_code_expression(pfunc, unknown_loc);
761 Bexpression* pfunc_call =
762 this->backend()->call_expression(pfunc_code, empty_args,
763 NULL, unknown_loc);
764 init_stmts.push_back(this->backend()->expression_statement(pfunc_call));
768 // Register global variables with the garbage collector. We need to
769 // register all variables which can hold a pointer value. They become
770 // roots during the mark phase. We build a struct that is easy to
771 // hook into a list of roots.
773 // struct __go_gc_root_list
774 // {
775 // struct __go_gc_root_list* __next;
776 // struct __go_gc_root
777 // {
778 // void* __decl;
779 // size_t __size;
780 // } __roots[];
781 // };
783 // The last entry in the roots array has a NULL decl field.
785 void
786 Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
787 std::vector<Bstatement*>& init_stmts)
789 if (var_gc.empty())
790 return;
792 Type* pvt = Type::make_pointer_type(Type::make_void_type());
793 Type* uint_type = Type::lookup_integer_type("uint");
794 Struct_type* root_type = Type::make_builtin_struct_type(2,
795 "__decl", pvt,
796 "__size", uint_type);
798 Location builtin_loc = Linemap::predeclared_location();
799 Expression* length = Expression::make_integer_ul(var_gc.size(), NULL,
800 builtin_loc);
802 Array_type* root_array_type = Type::make_array_type(root_type, length);
803 Type* ptdt = Type::make_type_descriptor_ptr_type();
804 Struct_type* root_list_type =
805 Type::make_builtin_struct_type(2,
806 "__next", ptdt,
807 "__roots", root_array_type);
809 // Build an initializer for the __roots array.
811 Expression_list* roots_init = new Expression_list();
813 size_t i = 0;
814 for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
815 p != var_gc.end();
816 ++p, ++i)
818 Expression_list* init = new Expression_list();
820 Location no_loc = (*p)->location();
821 Expression* decl = Expression::make_var_reference(*p, no_loc);
822 Expression* decl_addr =
823 Expression::make_unary(OPERATOR_AND, decl, no_loc);
824 init->push_back(decl_addr);
826 Expression* decl_size =
827 Expression::make_type_info(decl->type(), Expression::TYPE_INFO_SIZE);
828 init->push_back(decl_size);
830 Expression* root_ctor =
831 Expression::make_struct_composite_literal(root_type, init, no_loc);
832 roots_init->push_back(root_ctor);
835 // The list ends with a NULL entry.
837 Expression_list* null_init = new Expression_list();
838 Expression* nil = Expression::make_nil(builtin_loc);
839 null_init->push_back(nil);
841 Expression *zero = Expression::make_integer_ul(0, NULL, builtin_loc);
842 null_init->push_back(zero);
844 Expression* null_root_ctor =
845 Expression::make_struct_composite_literal(root_type, null_init,
846 builtin_loc);
847 roots_init->push_back(null_root_ctor);
849 // Build a constructor for the struct.
851 Expression_list* root_list_init = new Expression_list();
852 root_list_init->push_back(nil);
854 Expression* roots_ctor =
855 Expression::make_array_composite_literal(root_array_type, roots_init,
856 builtin_loc);
857 root_list_init->push_back(roots_ctor);
859 Expression* root_list_ctor =
860 Expression::make_struct_composite_literal(root_list_type, root_list_init,
861 builtin_loc);
863 Expression* root_addr = Expression::make_unary(OPERATOR_AND, root_list_ctor,
864 builtin_loc);
865 root_addr->unary_expression()->set_is_gc_root();
866 Expression* register_roots = Runtime::make_call(Runtime::REGISTER_GC_ROOTS,
867 builtin_loc, 1, root_addr);
869 Translate_context context(this, NULL, NULL, NULL);
870 Bexpression* bcall = register_roots->get_backend(&context);
871 init_stmts.push_back(this->backend()->expression_statement(bcall));
874 // Get the name to use for the import control function. If there is a
875 // global function or variable, then we know that that name must be
876 // unique in the link, and we use it as the basis for our name.
878 const std::string&
879 Gogo::get_init_fn_name()
881 if (this->init_fn_name_.empty())
883 go_assert(this->package_ != NULL);
884 if (this->is_main_package())
886 // Use a name which the runtime knows.
887 this->init_fn_name_ = "__go_init_main";
889 else
891 std::string s = this->pkgpath_symbol();
892 s.append("..import");
893 this->init_fn_name_ = s;
897 return this->init_fn_name_;
900 // Build the decl for the initialization function.
902 Named_object*
903 Gogo::initialization_function_decl()
905 std::string name = this->get_init_fn_name();
906 Location loc = this->package_->location();
908 Function_type* fntype = Type::make_function_type(NULL, NULL, NULL, loc);
909 Function* initfn = new Function(fntype, NULL, NULL, loc);
910 return Named_object::make_function(name, NULL, initfn);
913 // Create the magic initialization function. CODE_STMT is the
914 // code that it needs to run.
916 Named_object*
917 Gogo::create_initialization_function(Named_object* initfn,
918 Bstatement* code_stmt)
920 // Make sure that we thought we needed an initialization function,
921 // as otherwise we will not have reported it in the export data.
922 go_assert(this->is_main_package() || this->need_init_fn_);
924 if (initfn == NULL)
925 initfn = this->initialization_function_decl();
927 // Bind the initialization function code to a block.
928 Bfunction* fndecl = initfn->func_value()->get_or_make_decl(this, initfn);
929 Location pkg_loc = this->package_->location();
930 std::vector<Bvariable*> vars;
931 this->backend()->block(fndecl, NULL, vars, pkg_loc, pkg_loc);
933 if (!this->backend()->function_set_body(fndecl, code_stmt))
935 go_assert(saw_errors());
936 return NULL;
938 return initfn;
941 // Search for references to VAR in any statements or called functions.
943 class Find_var : public Traverse
945 public:
946 // A hash table we use to avoid looping. The index is the name of a
947 // named object. We only look through objects defined in this
948 // package.
949 typedef Unordered_set(const void*) Seen_objects;
951 Find_var(Named_object* var, Seen_objects* seen_objects)
952 : Traverse(traverse_expressions),
953 var_(var), seen_objects_(seen_objects), found_(false)
956 // Whether the variable was found.
957 bool
958 found() const
959 { return this->found_; }
962 expression(Expression**);
964 private:
965 // The variable we are looking for.
966 Named_object* var_;
967 // Names of objects we have already seen.
968 Seen_objects* seen_objects_;
969 // True if the variable was found.
970 bool found_;
973 // See if EXPR refers to VAR, looking through function calls and
974 // variable initializations.
977 Find_var::expression(Expression** pexpr)
979 Expression* e = *pexpr;
981 Var_expression* ve = e->var_expression();
982 if (ve != NULL)
984 Named_object* v = ve->named_object();
985 if (v == this->var_)
987 this->found_ = true;
988 return TRAVERSE_EXIT;
991 if (v->is_variable() && v->package() == NULL)
993 Expression* init = v->var_value()->init();
994 if (init != NULL)
996 std::pair<Seen_objects::iterator, bool> ins =
997 this->seen_objects_->insert(v);
998 if (ins.second)
1000 // This is the first time we have seen this name.
1001 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
1002 return TRAVERSE_EXIT;
1008 // We traverse the code of any function or bound method we see. Note that
1009 // this means that we will traverse the code of a function or bound method
1010 // whose address is taken even if it is not called.
1011 Func_expression* fe = e->func_expression();
1012 Bound_method_expression* bme = e->bound_method_expression();
1013 if (fe != NULL || bme != NULL)
1015 const Named_object* f = fe != NULL ? fe->named_object() : bme->function();
1016 if (f->is_function() && f->package() == NULL)
1018 std::pair<Seen_objects::iterator, bool> ins =
1019 this->seen_objects_->insert(f);
1020 if (ins.second)
1022 // This is the first time we have seen this name.
1023 if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
1024 return TRAVERSE_EXIT;
1029 Temporary_reference_expression* tre = e->temporary_reference_expression();
1030 if (tre != NULL)
1032 Temporary_statement* ts = tre->statement();
1033 Expression* init = ts->init();
1034 if (init != NULL)
1036 std::pair<Seen_objects::iterator, bool> ins =
1037 this->seen_objects_->insert(ts);
1038 if (ins.second)
1040 // This is the first time we have seen this temporary
1041 // statement.
1042 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
1043 return TRAVERSE_EXIT;
1048 return TRAVERSE_CONTINUE;
1051 // Return true if EXPR, PREINIT, or DEP refers to VAR.
1053 static bool
1054 expression_requires(Expression* expr, Block* preinit, Named_object* dep,
1055 Named_object* var)
1057 Find_var::Seen_objects seen_objects;
1058 Find_var find_var(var, &seen_objects);
1059 if (expr != NULL)
1060 Expression::traverse(&expr, &find_var);
1061 if (preinit != NULL)
1062 preinit->traverse(&find_var);
1063 if (dep != NULL)
1065 Expression* init = dep->var_value()->init();
1066 if (init != NULL)
1067 Expression::traverse(&init, &find_var);
1068 if (dep->var_value()->has_pre_init())
1069 dep->var_value()->preinit()->traverse(&find_var);
1072 return find_var.found();
1075 // Sort variable initializations. If the initialization expression
1076 // for variable A refers directly or indirectly to the initialization
1077 // expression for variable B, then we must initialize B before A.
1079 class Var_init
1081 public:
1082 Var_init()
1083 : var_(NULL), init_(NULL), dep_count_(0)
1086 Var_init(Named_object* var, Bstatement* init)
1087 : var_(var), init_(init), dep_count_(0)
1090 // Return the variable.
1091 Named_object*
1092 var() const
1093 { return this->var_; }
1095 // Return the initialization expression.
1096 Bstatement*
1097 init() const
1098 { return this->init_; }
1100 // Return the number of remaining dependencies.
1101 size_t
1102 dep_count() const
1103 { return this->dep_count_; }
1105 // Increment the number of dependencies.
1106 void
1107 add_dependency()
1108 { ++this->dep_count_; }
1110 // Decrement the number of dependencies.
1111 void
1112 remove_dependency()
1113 { --this->dep_count_; }
1115 private:
1116 // The variable being initialized.
1117 Named_object* var_;
1118 // The initialization statement.
1119 Bstatement* init_;
1120 // The number of initializations this is dependent on. A variable
1121 // initialization should not be emitted if any of its dependencies
1122 // have not yet been resolved.
1123 size_t dep_count_;
1126 // For comparing Var_init keys in a map.
1128 inline bool
1129 operator<(const Var_init& v1, const Var_init& v2)
1130 { return v1.var()->name() < v2.var()->name(); }
1132 typedef std::list<Var_init> Var_inits;
1134 // Sort the variable initializations. The rule we follow is that we
1135 // emit them in the order they appear in the array, except that if the
1136 // initialization expression for a variable V1 depends upon another
1137 // variable V2 then we initialize V1 after V2.
1139 static void
1140 sort_var_inits(Gogo* gogo, Var_inits* var_inits)
1142 if (var_inits->empty())
1143 return;
1145 typedef std::pair<Named_object*, Named_object*> No_no;
1146 typedef std::map<No_no, bool> Cache;
1147 Cache cache;
1149 // A mapping from a variable initialization to a set of
1150 // variable initializations that depend on it.
1151 typedef std::map<Var_init, std::set<Var_init*> > Init_deps;
1152 Init_deps init_deps;
1153 bool init_loop = false;
1154 for (Var_inits::iterator p1 = var_inits->begin();
1155 p1 != var_inits->end();
1156 ++p1)
1158 Named_object* var = p1->var();
1159 Expression* init = var->var_value()->init();
1160 Block* preinit = var->var_value()->preinit();
1161 Named_object* dep = gogo->var_depends_on(var->var_value());
1163 // Start walking through the list to see which variables VAR
1164 // needs to wait for.
1165 for (Var_inits::iterator p2 = var_inits->begin();
1166 p2 != var_inits->end();
1167 ++p2)
1169 if (var == p2->var())
1170 continue;
1172 Named_object* p2var = p2->var();
1173 No_no key(var, p2var);
1174 std::pair<Cache::iterator, bool> ins =
1175 cache.insert(std::make_pair(key, false));
1176 if (ins.second)
1177 ins.first->second = expression_requires(init, preinit, dep, p2var);
1178 if (ins.first->second)
1180 // VAR depends on P2VAR.
1181 init_deps[*p2].insert(&(*p1));
1182 p1->add_dependency();
1184 // Check for cycles.
1185 key = std::make_pair(p2var, var);
1186 ins = cache.insert(std::make_pair(key, false));
1187 if (ins.second)
1188 ins.first->second =
1189 expression_requires(p2var->var_value()->init(),
1190 p2var->var_value()->preinit(),
1191 gogo->var_depends_on(p2var->var_value()),
1192 var);
1193 if (ins.first->second)
1195 error_at(var->location(),
1196 ("initialization expressions for %qs and "
1197 "%qs depend upon each other"),
1198 var->message_name().c_str(),
1199 p2var->message_name().c_str());
1200 inform(p2->var()->location(), "%qs defined here",
1201 p2var->message_name().c_str());
1202 init_loop = true;
1203 break;
1209 // If there are no dependencies then the declaration order is sorted.
1210 if (!init_deps.empty() && !init_loop)
1212 // Otherwise, sort variable initializations by emitting all variables with
1213 // no dependencies in declaration order. VAR_INITS is already in
1214 // declaration order.
1215 Var_inits ready;
1216 while (!var_inits->empty())
1218 Var_inits::iterator v1;;
1219 for (v1 = var_inits->begin(); v1 != var_inits->end(); ++v1)
1221 if (v1->dep_count() == 0)
1222 break;
1224 go_assert(v1 != var_inits->end());
1226 // V1 either has no dependencies or its dependencies have already
1227 // been emitted, add it to READY next. When V1 is emitted, remove
1228 // a dependency from each V that depends on V1.
1229 ready.splice(ready.end(), *var_inits, v1);
1231 Init_deps::iterator p1 = init_deps.find(*v1);
1232 if (p1 != init_deps.end())
1234 std::set<Var_init*> resolved = p1->second;
1235 for (std::set<Var_init*>::iterator pv = resolved.begin();
1236 pv != resolved.end();
1237 ++pv)
1238 (*pv)->remove_dependency();
1239 init_deps.erase(p1);
1242 var_inits->swap(ready);
1243 go_assert(init_deps.empty());
1246 // VAR_INITS is in the correct order. For each VAR in VAR_INITS,
1247 // check for a loop of VAR on itself. We only do this if
1248 // INIT is not NULL and there is no dependency; when INIT is
1249 // NULL, it means that PREINIT sets VAR, which we will
1250 // interpret as a loop.
1251 for (Var_inits::const_iterator p = var_inits->begin();
1252 p != var_inits->end();
1253 ++p)
1255 Named_object* var = p->var();
1256 Expression* init = var->var_value()->init();
1257 Block* preinit = var->var_value()->preinit();
1258 Named_object* dep = gogo->var_depends_on(var->var_value());
1259 if (init != NULL && dep == NULL
1260 && expression_requires(init, preinit, NULL, var))
1261 error_at(var->location(),
1262 "initialization expression for %qs depends upon itself",
1263 var->message_name().c_str());
1267 // Write out the global definitions.
1269 void
1270 Gogo::write_globals()
1272 this->build_interface_method_tables();
1274 Bindings* bindings = this->current_bindings();
1276 for (Bindings::const_declarations_iterator p = bindings->begin_declarations();
1277 p != bindings->end_declarations();
1278 ++p)
1280 // If any function declarations needed a descriptor, make sure
1281 // we build it.
1282 Named_object* no = p->second;
1283 if (no->is_function_declaration())
1284 no->func_declaration_value()->build_backend_descriptor(this);
1287 // Lists of globally declared types, variables, constants, and functions
1288 // that must be defined.
1289 std::vector<Btype*> type_decls;
1290 std::vector<Bvariable*> var_decls;
1291 std::vector<Bexpression*> const_decls;
1292 std::vector<Bfunction*> func_decls;
1294 // The init function declaration, if necessary.
1295 Named_object* init_fndecl = NULL;
1297 std::vector<Bstatement*> init_stmts;
1298 std::vector<Bstatement*> var_init_stmts;
1300 if (this->is_main_package())
1301 this->init_imports(init_stmts);
1303 // A list of variable initializations.
1304 Var_inits var_inits;
1306 // A list of variables which need to be registered with the garbage
1307 // collector.
1308 size_t count_definitions = bindings->size_definitions();
1309 std::vector<Named_object*> var_gc;
1310 var_gc.reserve(count_definitions);
1312 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
1313 p != bindings->end_definitions();
1314 ++p)
1316 Named_object* no = *p;
1317 go_assert(!no->is_type_declaration() && !no->is_function_declaration());
1319 // There is nothing to do for a package.
1320 if (no->is_package())
1321 continue;
1323 // There is nothing to do for an object which was imported from
1324 // a different package into the global scope.
1325 if (no->package() != NULL)
1326 continue;
1328 // Skip blank named functions and constants.
1329 if ((no->is_function() && no->func_value()->is_sink())
1330 || (no->is_const() && no->const_value()->is_sink()))
1331 continue;
1333 // There is nothing useful we can output for constants which
1334 // have ideal or non-integral type.
1335 if (no->is_const())
1337 Type* type = no->const_value()->type();
1338 if (type == NULL)
1339 type = no->const_value()->expr()->type();
1340 if (type->is_abstract() || !type->is_numeric_type())
1341 continue;
1344 if (!no->is_variable())
1345 no->get_backend(this, const_decls, type_decls, func_decls);
1346 else
1348 Variable* var = no->var_value();
1349 Bvariable* bvar = no->get_backend_variable(this, NULL);
1350 var_decls.push_back(bvar);
1352 // Check for a sink variable, which may be used to run an
1353 // initializer purely for its side effects.
1354 bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
1356 Bstatement* var_init_stmt = NULL;
1357 if (!var->has_pre_init())
1359 // If the backend representation of the variable initializer is
1360 // constant, we can just set the initial value using
1361 // global_var_set_init instead of during the init() function.
1362 // The initializer is constant if it is the zero-value of the
1363 // variable's type or if the initial value is an immutable value
1364 // that is not copied to the heap.
1365 bool is_constant_initializer = false;
1366 if (var->init() == NULL)
1367 is_constant_initializer = true;
1368 else
1370 Type* var_type = var->type();
1371 Expression* init = var->init();
1372 Expression* init_cast =
1373 Expression::make_cast(var_type, init, var->location());
1374 is_constant_initializer =
1375 init_cast->is_immutable() && !var_type->has_pointer();
1378 // Non-constant variable initializations might need to create
1379 // temporary variables, which will need the initialization
1380 // function as context.
1381 if (!is_constant_initializer && init_fndecl == NULL)
1382 init_fndecl = this->initialization_function_decl();
1383 Bexpression* var_binit = var->get_init(this, init_fndecl);
1385 if (var_binit == NULL)
1387 else if (is_constant_initializer)
1389 if (expression_requires(var->init(), NULL,
1390 this->var_depends_on(var), no))
1391 error_at(no->location(),
1392 "initialization expression for %qs depends "
1393 "upon itself",
1394 no->message_name().c_str());
1395 this->backend()->global_variable_set_init(bvar, var_binit);
1397 else if (is_sink)
1398 var_init_stmt =
1399 this->backend()->expression_statement(var_binit);
1400 else
1402 Location loc = var->location();
1403 Bexpression* var_expr =
1404 this->backend()->var_expression(bvar, loc);
1405 var_init_stmt =
1406 this->backend()->assignment_statement(var_expr, var_binit,
1407 loc);
1410 else
1412 // We are going to create temporary variables which
1413 // means that we need an fndecl.
1414 if (init_fndecl == NULL)
1415 init_fndecl = this->initialization_function_decl();
1417 Bvariable* var_decl = is_sink ? NULL : bvar;
1418 var_init_stmt = var->get_init_block(this, init_fndecl, var_decl);
1421 if (var_init_stmt != NULL)
1423 if (var->init() == NULL && !var->has_pre_init())
1424 var_init_stmts.push_back(var_init_stmt);
1425 else
1426 var_inits.push_back(Var_init(no, var_init_stmt));
1428 else if (this->var_depends_on(var) != NULL)
1430 // This variable is initialized from something that is
1431 // not in its init or preinit. This variable needs to
1432 // participate in dependency analysis sorting, in case
1433 // some other variable depends on this one.
1434 Btype* btype = no->var_value()->type()->get_backend(this);
1435 Bexpression* zero = this->backend()->zero_expression(btype);
1436 Bstatement* zero_stmt =
1437 this->backend()->expression_statement(zero);
1438 var_inits.push_back(Var_init(no, zero_stmt));
1441 if (!is_sink && var->type()->has_pointer())
1442 var_gc.push_back(no);
1446 // Register global variables with the garbage collector.
1447 this->register_gc_vars(var_gc, init_stmts);
1449 // Simple variable initializations, after all variables are
1450 // registered.
1451 init_stmts.push_back(this->backend()->statement_list(var_init_stmts));
1453 // Complete variable initializations, first sorting them into a
1454 // workable order.
1455 if (!var_inits.empty())
1457 sort_var_inits(this, &var_inits);
1458 for (Var_inits::const_iterator p = var_inits.begin();
1459 p != var_inits.end();
1460 ++p)
1461 init_stmts.push_back(p->init());
1464 // After all the variables are initialized, call the init
1465 // functions if there are any. Init functions take no arguments, so
1466 // we pass in EMPTY_ARGS to call them.
1467 std::vector<Bexpression*> empty_args;
1468 for (std::vector<Named_object*>::const_iterator p =
1469 this->init_functions_.begin();
1470 p != this->init_functions_.end();
1471 ++p)
1473 Location func_loc = (*p)->location();
1474 Function* func = (*p)->func_value();
1475 Bfunction* initfn = func->get_or_make_decl(this, *p);
1476 Bexpression* func_code =
1477 this->backend()->function_code_expression(initfn, func_loc);
1478 Bexpression* call = this->backend()->call_expression(func_code,
1479 empty_args,
1480 NULL, func_loc);
1481 init_stmts.push_back(this->backend()->expression_statement(call));
1484 // Set up a magic function to do all the initialization actions.
1485 // This will be called if this package is imported.
1486 Bstatement* init_fncode = this->backend()->statement_list(init_stmts);
1487 if (this->need_init_fn_ || this->is_main_package())
1489 init_fndecl =
1490 this->create_initialization_function(init_fndecl, init_fncode);
1491 if (init_fndecl != NULL)
1492 func_decls.push_back(init_fndecl->func_value()->get_decl());
1495 // We should not have seen any new bindings created during the conversion.
1496 go_assert(count_definitions == this->current_bindings()->size_definitions());
1498 // Define all globally declared values.
1499 if (!saw_errors())
1500 this->backend()->write_global_definitions(type_decls, const_decls,
1501 func_decls, var_decls);
1504 // Return the current block.
1506 Block*
1507 Gogo::current_block()
1509 if (this->functions_.empty())
1510 return NULL;
1511 else
1512 return this->functions_.back().blocks.back();
1515 // Look up a name in the current binding contour. If PFUNCTION is not
1516 // NULL, set it to the function in which the name is defined, or NULL
1517 // if the name is defined in global scope.
1519 Named_object*
1520 Gogo::lookup(const std::string& name, Named_object** pfunction) const
1522 if (pfunction != NULL)
1523 *pfunction = NULL;
1525 if (Gogo::is_sink_name(name))
1526 return Named_object::make_sink();
1528 for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
1529 p != this->functions_.rend();
1530 ++p)
1532 Named_object* ret = p->blocks.back()->bindings()->lookup(name);
1533 if (ret != NULL)
1535 if (pfunction != NULL)
1536 *pfunction = p->function;
1537 return ret;
1541 if (this->package_ != NULL)
1543 Named_object* ret = this->package_->bindings()->lookup(name);
1544 if (ret != NULL)
1546 if (ret->package() != NULL)
1547 ret->package()->note_usage();
1548 return ret;
1552 // We do not look in the global namespace. If we did, the global
1553 // namespace would effectively hide names which were defined in
1554 // package scope which we have not yet seen. Instead,
1555 // define_global_names is called after parsing is over to connect
1556 // undefined names at package scope with names defined at global
1557 // scope.
1559 return NULL;
1562 // Look up a name in the current block, without searching enclosing
1563 // blocks.
1565 Named_object*
1566 Gogo::lookup_in_block(const std::string& name) const
1568 go_assert(!this->functions_.empty());
1569 go_assert(!this->functions_.back().blocks.empty());
1570 return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
1573 // Look up a name in the global namespace.
1575 Named_object*
1576 Gogo::lookup_global(const char* name) const
1578 return this->globals_->lookup(name);
1581 // Add an imported package.
1583 Package*
1584 Gogo::add_imported_package(const std::string& real_name,
1585 const std::string& alias_arg,
1586 bool is_alias_exported,
1587 const std::string& pkgpath,
1588 const std::string& pkgpath_symbol,
1589 Location location,
1590 bool* padd_to_globals)
1592 Package* ret = this->register_package(pkgpath, pkgpath_symbol, location);
1593 ret->set_package_name(real_name, location);
1595 *padd_to_globals = false;
1597 if (alias_arg == ".")
1598 *padd_to_globals = true;
1599 else if (alias_arg == "_")
1600 ret->set_uses_sink_alias();
1601 else
1603 std::string alias = alias_arg;
1604 if (alias.empty())
1606 alias = real_name;
1607 is_alias_exported = Lex::is_exported_name(alias);
1609 alias = this->pack_hidden_name(alias, is_alias_exported);
1610 Named_object* no = this->package_->bindings()->add_package(alias, ret);
1611 if (!no->is_package())
1612 return NULL;
1615 return ret;
1618 // Register a package. This package may or may not be imported. This
1619 // returns the Package structure for the package, creating if it
1620 // necessary. LOCATION is the location of the import statement that
1621 // led us to see this package. PKGPATH_SYMBOL is the symbol to use
1622 // for names in the package; it may be the empty string, in which case
1623 // we either get it later or make a guess when we need it.
1625 Package*
1626 Gogo::register_package(const std::string& pkgpath,
1627 const std::string& pkgpath_symbol, Location location)
1629 Package* package = NULL;
1630 std::pair<Packages::iterator, bool> ins =
1631 this->packages_.insert(std::make_pair(pkgpath, package));
1632 if (!ins.second)
1634 // We have seen this package name before.
1635 package = ins.first->second;
1636 go_assert(package != NULL && package->pkgpath() == pkgpath);
1637 if (!pkgpath_symbol.empty())
1638 package->set_pkgpath_symbol(pkgpath_symbol);
1639 if (Linemap::is_unknown_location(package->location()))
1640 package->set_location(location);
1642 else
1644 // First time we have seen this package name.
1645 package = new Package(pkgpath, pkgpath_symbol, location);
1646 go_assert(ins.first->second == NULL);
1647 ins.first->second = package;
1650 return package;
1653 // Start compiling a function.
1655 Named_object*
1656 Gogo::start_function(const std::string& name, Function_type* type,
1657 bool add_method_to_type, Location location)
1659 bool at_top_level = this->functions_.empty();
1661 Block* block = new Block(NULL, location);
1663 Named_object* enclosing = (at_top_level
1664 ? NULL
1665 : this->functions_.back().function);
1667 Function* function = new Function(type, enclosing, block, location);
1669 if (type->is_method())
1671 const Typed_identifier* receiver = type->receiver();
1672 Variable* this_param = new Variable(receiver->type(), NULL, false,
1673 true, true, location);
1674 std::string rname = receiver->name();
1675 if (rname.empty() || Gogo::is_sink_name(rname))
1677 // We need to give receivers a name since they wind up in
1678 // DECL_ARGUMENTS. FIXME.
1679 static unsigned int count;
1680 char buf[50];
1681 snprintf(buf, sizeof buf, "r.%u", count);
1682 ++count;
1683 rname = buf;
1685 block->bindings()->add_variable(rname, NULL, this_param);
1688 const Typed_identifier_list* parameters = type->parameters();
1689 bool is_varargs = type->is_varargs();
1690 if (parameters != NULL)
1692 for (Typed_identifier_list::const_iterator p = parameters->begin();
1693 p != parameters->end();
1694 ++p)
1696 Variable* param = new Variable(p->type(), NULL, false, true, false,
1697 p->location());
1698 if (is_varargs && p + 1 == parameters->end())
1699 param->set_is_varargs_parameter();
1701 std::string pname = p->name();
1702 if (pname.empty() || Gogo::is_sink_name(pname))
1704 // We need to give parameters a name since they wind up
1705 // in DECL_ARGUMENTS. FIXME.
1706 static unsigned int count;
1707 char buf[50];
1708 snprintf(buf, sizeof buf, "p.%u", count);
1709 ++count;
1710 pname = buf;
1712 block->bindings()->add_variable(pname, NULL, param);
1716 function->create_result_variables(this);
1718 const std::string* pname;
1719 std::string nested_name;
1720 bool is_init = false;
1721 if (Gogo::unpack_hidden_name(name) == "init" && !type->is_method())
1723 if ((type->parameters() != NULL && !type->parameters()->empty())
1724 || (type->results() != NULL && !type->results()->empty()))
1725 error_at(location,
1726 "func init must have no arguments and no return values");
1727 // There can be multiple "init" functions, so give them each a
1728 // different name.
1729 static int init_count;
1730 char buf[30];
1731 snprintf(buf, sizeof buf, ".$init%d", init_count);
1732 ++init_count;
1733 nested_name = buf;
1734 pname = &nested_name;
1735 is_init = true;
1737 else if (!name.empty())
1738 pname = &name;
1739 else
1741 // Invent a name for a nested function.
1742 static int nested_count;
1743 char buf[30];
1744 snprintf(buf, sizeof buf, ".$nested%d", nested_count);
1745 ++nested_count;
1746 nested_name = buf;
1747 pname = &nested_name;
1750 Named_object* ret;
1751 if (Gogo::is_sink_name(*pname))
1753 static int sink_count;
1754 char buf[30];
1755 snprintf(buf, sizeof buf, ".$sink%d", sink_count);
1756 ++sink_count;
1757 ret = this->package_->bindings()->add_function(buf, NULL, function);
1758 ret->func_value()->set_is_sink();
1760 else if (!type->is_method())
1762 ret = this->package_->bindings()->add_function(*pname, NULL, function);
1763 if (!ret->is_function() || ret->func_value() != function)
1765 // Redefinition error. Invent a name to avoid knockon
1766 // errors.
1767 static int redefinition_count;
1768 char buf[30];
1769 snprintf(buf, sizeof buf, ".$redefined%d", redefinition_count);
1770 ++redefinition_count;
1771 ret = this->package_->bindings()->add_function(buf, NULL, function);
1774 else
1776 if (!add_method_to_type)
1777 ret = Named_object::make_function(name, NULL, function);
1778 else
1780 go_assert(at_top_level);
1781 Type* rtype = type->receiver()->type();
1783 // We want to look through the pointer created by the
1784 // parser, without getting an error if the type is not yet
1785 // defined.
1786 if (rtype->classification() == Type::TYPE_POINTER)
1787 rtype = rtype->points_to();
1789 if (rtype->is_error_type())
1790 ret = Named_object::make_function(name, NULL, function);
1791 else if (rtype->named_type() != NULL)
1793 ret = rtype->named_type()->add_method(name, function);
1794 if (!ret->is_function())
1796 // Redefinition error.
1797 ret = Named_object::make_function(name, NULL, function);
1800 else if (rtype->forward_declaration_type() != NULL)
1802 Named_object* type_no =
1803 rtype->forward_declaration_type()->named_object();
1804 if (type_no->is_unknown())
1806 // If we are seeing methods it really must be a
1807 // type. Declare it as such. An alternative would
1808 // be to support lists of methods for unknown
1809 // expressions. Either way the error messages if
1810 // this is not a type are going to get confusing.
1811 Named_object* declared =
1812 this->declare_package_type(type_no->name(),
1813 type_no->location());
1814 go_assert(declared
1815 == type_no->unknown_value()->real_named_object());
1817 ret = rtype->forward_declaration_type()->add_method(name,
1818 function);
1820 else
1821 go_unreachable();
1823 this->package_->bindings()->add_method(ret);
1826 this->functions_.resize(this->functions_.size() + 1);
1827 Open_function& of(this->functions_.back());
1828 of.function = ret;
1829 of.blocks.push_back(block);
1831 if (is_init)
1833 this->init_functions_.push_back(ret);
1834 this->need_init_fn_ = true;
1837 return ret;
1840 // Finish compiling a function.
1842 void
1843 Gogo::finish_function(Location location)
1845 this->finish_block(location);
1846 go_assert(this->functions_.back().blocks.empty());
1847 this->functions_.pop_back();
1850 // Return the current function.
1852 Named_object*
1853 Gogo::current_function() const
1855 go_assert(!this->functions_.empty());
1856 return this->functions_.back().function;
1859 // Start a new block.
1861 void
1862 Gogo::start_block(Location location)
1864 go_assert(!this->functions_.empty());
1865 Block* block = new Block(this->current_block(), location);
1866 this->functions_.back().blocks.push_back(block);
1869 // Finish a block.
1871 Block*
1872 Gogo::finish_block(Location location)
1874 go_assert(!this->functions_.empty());
1875 go_assert(!this->functions_.back().blocks.empty());
1876 Block* block = this->functions_.back().blocks.back();
1877 this->functions_.back().blocks.pop_back();
1878 block->set_end_location(location);
1879 return block;
1882 // Add an erroneous name.
1884 Named_object*
1885 Gogo::add_erroneous_name(const std::string& name)
1887 return this->package_->bindings()->add_erroneous_name(name);
1890 // Add an unknown name.
1892 Named_object*
1893 Gogo::add_unknown_name(const std::string& name, Location location)
1895 return this->package_->bindings()->add_unknown_name(name, location);
1898 // Declare a function.
1900 Named_object*
1901 Gogo::declare_function(const std::string& name, Function_type* type,
1902 Location location)
1904 if (!type->is_method())
1905 return this->current_bindings()->add_function_declaration(name, NULL, type,
1906 location);
1907 else
1909 // We don't bother to add this to the list of global
1910 // declarations.
1911 Type* rtype = type->receiver()->type();
1913 // We want to look through the pointer created by the
1914 // parser, without getting an error if the type is not yet
1915 // defined.
1916 if (rtype->classification() == Type::TYPE_POINTER)
1917 rtype = rtype->points_to();
1919 if (rtype->is_error_type())
1920 return NULL;
1921 else if (rtype->named_type() != NULL)
1922 return rtype->named_type()->add_method_declaration(name, NULL, type,
1923 location);
1924 else if (rtype->forward_declaration_type() != NULL)
1926 Forward_declaration_type* ftype = rtype->forward_declaration_type();
1927 return ftype->add_method_declaration(name, NULL, type, location);
1929 else
1930 go_unreachable();
1934 // Add a label definition.
1936 Label*
1937 Gogo::add_label_definition(const std::string& label_name,
1938 Location location)
1940 go_assert(!this->functions_.empty());
1941 Function* func = this->functions_.back().function->func_value();
1942 Label* label = func->add_label_definition(this, label_name, location);
1943 this->add_statement(Statement::make_label_statement(label, location));
1944 return label;
1947 // Add a label reference.
1949 Label*
1950 Gogo::add_label_reference(const std::string& label_name,
1951 Location location, bool issue_goto_errors)
1953 go_assert(!this->functions_.empty());
1954 Function* func = this->functions_.back().function->func_value();
1955 return func->add_label_reference(this, label_name, location,
1956 issue_goto_errors);
1959 // Add a function to the call graph.
1961 Node*
1962 Gogo::add_call_node(Named_object* function)
1964 Node* call = this->lookup_call_node(function);
1965 if (call == NULL)
1967 call = Node::make_call(function);
1968 this->call_graph_.insert(call);
1969 this->named_call_nodes_[function] = call;
1971 return call;
1974 // Find the call node that represents FUNCTION. Return NULL if it does not
1975 // exist.
1977 Node*
1978 Gogo::lookup_call_node(Named_object* function) const
1980 Named_escape_nodes::const_iterator p = this->named_call_nodes_.find(function);
1981 if (p == this->named_call_nodes_.end())
1982 return NULL;
1983 return p->second;
1986 // Add a connection node for OBJECT.
1988 Node*
1989 Gogo::add_connection_node(Named_object* object)
1991 Node* connection = this->lookup_connection_node(object);
1992 if (connection == NULL)
1994 connection = Node::make_connection(object, Node::ESCAPE_NONE);
1996 // Each global variable is a part of the global connection graph.
1997 if (object->is_variable()
1998 && object->var_value()->is_global())
2000 connection->connection_node()->set_escape_state(Node::ESCAPE_GLOBAL);
2001 this->global_connections_.insert(connection);
2004 // Each function declaration or definition is the root of its own
2005 // connection graph. This means closures will have their own
2006 // connection graph that objects in the enclosing function might
2007 // refer to.
2008 if (object->is_function() || object->is_function_declaration())
2009 this->connection_roots_.insert(connection);
2010 this->named_connection_nodes_[object] = connection;
2012 return connection;
2015 // Find the connection node for OBJECT. Return NULL if it does not exist.
2017 Node*
2018 Gogo::lookup_connection_node(Named_object* object) const
2020 Named_escape_nodes::const_iterator p =
2021 this->named_connection_nodes_.find(object);
2022 if (p == this->named_connection_nodes_.end())
2023 return NULL;
2024 return p->second;
2027 // Return the current binding state.
2029 Bindings_snapshot*
2030 Gogo::bindings_snapshot(Location location)
2032 return new Bindings_snapshot(this->current_block(), location);
2035 // Add a statement.
2037 void
2038 Gogo::add_statement(Statement* statement)
2040 go_assert(!this->functions_.empty()
2041 && !this->functions_.back().blocks.empty());
2042 this->functions_.back().blocks.back()->add_statement(statement);
2045 // Add a block.
2047 void
2048 Gogo::add_block(Block* block, Location location)
2050 go_assert(!this->functions_.empty()
2051 && !this->functions_.back().blocks.empty());
2052 Statement* statement = Statement::make_block_statement(block, location);
2053 this->functions_.back().blocks.back()->add_statement(statement);
2056 // Add a constant.
2058 Named_object*
2059 Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
2060 int iota_value)
2062 return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
2065 // Add a type.
2067 void
2068 Gogo::add_type(const std::string& name, Type* type, Location location)
2070 Named_object* no = this->current_bindings()->add_type(name, NULL, type,
2071 location);
2072 if (!this->in_global_scope() && no->is_type())
2074 Named_object* f = this->functions_.back().function;
2075 unsigned int index;
2076 if (f->is_function())
2077 index = f->func_value()->new_local_type_index();
2078 else
2079 index = 0;
2080 no->type_value()->set_in_function(f, index);
2084 // Add a named type.
2086 void
2087 Gogo::add_named_type(Named_type* type)
2089 go_assert(this->in_global_scope());
2090 this->current_bindings()->add_named_type(type);
2093 // Declare a type.
2095 Named_object*
2096 Gogo::declare_type(const std::string& name, Location location)
2098 Bindings* bindings = this->current_bindings();
2099 Named_object* no = bindings->add_type_declaration(name, NULL, location);
2100 if (!this->in_global_scope() && no->is_type_declaration())
2102 Named_object* f = this->functions_.back().function;
2103 unsigned int index;
2104 if (f->is_function())
2105 index = f->func_value()->new_local_type_index();
2106 else
2107 index = 0;
2108 no->type_declaration_value()->set_in_function(f, index);
2110 return no;
2113 // Declare a type at the package level.
2115 Named_object*
2116 Gogo::declare_package_type(const std::string& name, Location location)
2118 return this->package_->bindings()->add_type_declaration(name, NULL, location);
2121 // Declare a function at the package level.
2123 Named_object*
2124 Gogo::declare_package_function(const std::string& name, Function_type* type,
2125 Location location)
2127 return this->package_->bindings()->add_function_declaration(name, NULL, type,
2128 location);
2131 // Define a type which was already declared.
2133 void
2134 Gogo::define_type(Named_object* no, Named_type* type)
2136 this->current_bindings()->define_type(no, type);
2139 // Add a variable.
2141 Named_object*
2142 Gogo::add_variable(const std::string& name, Variable* variable)
2144 Named_object* no = this->current_bindings()->add_variable(name, NULL,
2145 variable);
2147 // In a function the middle-end wants to see a DECL_EXPR node.
2148 if (no != NULL
2149 && no->is_variable()
2150 && !no->var_value()->is_parameter()
2151 && !this->functions_.empty())
2152 this->add_statement(Statement::make_variable_declaration(no));
2154 return no;
2157 // Add a sink--a reference to the blank identifier _.
2159 Named_object*
2160 Gogo::add_sink()
2162 return Named_object::make_sink();
2165 // Add a named object for a dot import.
2167 void
2168 Gogo::add_dot_import_object(Named_object* no)
2170 // If the name already exists, then it was defined in some file seen
2171 // earlier. If the earlier name is just a declaration, don't add
2172 // this name, because that will cause the previous declaration to
2173 // merge to this imported name, which should not happen. Just add
2174 // this name to the list of file block names to get appropriate
2175 // errors if we see a later definition.
2176 Named_object* e = this->package_->bindings()->lookup(no->name());
2177 if (e != NULL && e->package() == NULL)
2179 if (e->is_unknown())
2180 e = e->resolve();
2181 if (e->package() == NULL
2182 && (e->is_type_declaration()
2183 || e->is_function_declaration()
2184 || e->is_unknown()))
2186 this->add_file_block_name(no->name(), no->location());
2187 return;
2191 this->current_bindings()->add_named_object(no);
2194 // Mark all local variables used. This is used when some types of
2195 // parse error occur.
2197 void
2198 Gogo::mark_locals_used()
2200 for (Open_functions::iterator pf = this->functions_.begin();
2201 pf != this->functions_.end();
2202 ++pf)
2204 for (std::vector<Block*>::iterator pb = pf->blocks.begin();
2205 pb != pf->blocks.end();
2206 ++pb)
2207 (*pb)->bindings()->mark_locals_used();
2211 // Record that we've seen an interface type.
2213 void
2214 Gogo::record_interface_type(Interface_type* itype)
2216 this->interface_types_.push_back(itype);
2219 // Return an erroneous name that indicates that an error has already
2220 // been reported.
2222 std::string
2223 Gogo::erroneous_name()
2225 static int erroneous_count;
2226 char name[50];
2227 snprintf(name, sizeof name, "$erroneous%d", erroneous_count);
2228 ++erroneous_count;
2229 return name;
2232 // Return whether a name is an erroneous name.
2234 bool
2235 Gogo::is_erroneous_name(const std::string& name)
2237 return name.compare(0, 10, "$erroneous") == 0;
2240 // Return a name for a thunk object.
2242 std::string
2243 Gogo::thunk_name()
2245 static int thunk_count;
2246 char thunk_name[50];
2247 snprintf(thunk_name, sizeof thunk_name, "$thunk%d", thunk_count);
2248 ++thunk_count;
2249 return thunk_name;
2252 // Return whether a function is a thunk.
2254 bool
2255 Gogo::is_thunk(const Named_object* no)
2257 return no->name().compare(0, 6, "$thunk") == 0;
2260 // Define the global names. We do this only after parsing all the
2261 // input files, because the program might define the global names
2262 // itself.
2264 void
2265 Gogo::define_global_names()
2267 for (Bindings::const_declarations_iterator p =
2268 this->globals_->begin_declarations();
2269 p != this->globals_->end_declarations();
2270 ++p)
2272 Named_object* global_no = p->second;
2273 std::string name(Gogo::pack_hidden_name(global_no->name(), false));
2274 Named_object* no = this->package_->bindings()->lookup(name);
2275 if (no == NULL)
2276 continue;
2277 no = no->resolve();
2278 if (no->is_type_declaration())
2280 if (global_no->is_type())
2282 if (no->type_declaration_value()->has_methods())
2283 error_at(no->location(),
2284 "may not define methods for global type");
2285 no->set_type_value(global_no->type_value());
2287 else
2289 error_at(no->location(), "expected type");
2290 Type* errtype = Type::make_error_type();
2291 Named_object* err =
2292 Named_object::make_type("erroneous_type", NULL, errtype,
2293 Linemap::predeclared_location());
2294 no->set_type_value(err->type_value());
2297 else if (no->is_unknown())
2298 no->unknown_value()->set_real_named_object(global_no);
2301 // Give an error if any name is defined in both the package block
2302 // and the file block. For example, this can happen if one file
2303 // imports "fmt" and another file defines a global variable fmt.
2304 for (Bindings::const_declarations_iterator p =
2305 this->package_->bindings()->begin_declarations();
2306 p != this->package_->bindings()->end_declarations();
2307 ++p)
2309 if (p->second->is_unknown()
2310 && p->second->unknown_value()->real_named_object() == NULL)
2312 // No point in warning about an undefined name, as we will
2313 // get other errors later anyhow.
2314 continue;
2316 File_block_names::const_iterator pf =
2317 this->file_block_names_.find(p->second->name());
2318 if (pf != this->file_block_names_.end())
2320 std::string n = p->second->message_name();
2321 error_at(p->second->location(),
2322 "%qs defined as both imported name and global name",
2323 n.c_str());
2324 inform(pf->second, "%qs imported here", n.c_str());
2327 // No package scope identifier may be named "init".
2328 if (!p->second->is_function()
2329 && Gogo::unpack_hidden_name(p->second->name()) == "init")
2331 error_at(p->second->location(),
2332 "cannot declare init - must be func");
2337 // Clear out names in file scope.
2339 void
2340 Gogo::clear_file_scope()
2342 this->package_->bindings()->clear_file_scope(this);
2344 // Warn about packages which were imported but not used.
2345 bool quiet = saw_errors();
2346 for (Packages::iterator p = this->packages_.begin();
2347 p != this->packages_.end();
2348 ++p)
2350 Package* package = p->second;
2351 if (package != this->package_
2352 && package->is_imported()
2353 && !package->used()
2354 && !package->uses_sink_alias()
2355 && !quiet)
2356 error_at(package->location(), "imported and not used: %s",
2357 Gogo::message_name(package->package_name()).c_str());
2358 package->clear_is_imported();
2359 package->clear_uses_sink_alias();
2360 package->clear_used();
2364 // Queue up a type specific function for later writing. These are
2365 // written out in write_specific_type_functions, called after the
2366 // parse tree is lowered.
2368 void
2369 Gogo::queue_specific_type_function(Type* type, Named_type* name,
2370 const std::string& hash_name,
2371 Function_type* hash_fntype,
2372 const std::string& equal_name,
2373 Function_type* equal_fntype)
2375 go_assert(!this->specific_type_functions_are_written_);
2376 go_assert(!this->in_global_scope());
2377 Specific_type_function* tsf = new Specific_type_function(type, name,
2378 hash_name,
2379 hash_fntype,
2380 equal_name,
2381 equal_fntype);
2382 this->specific_type_functions_.push_back(tsf);
2385 // Look for types which need specific hash or equality functions.
2387 class Specific_type_functions : public Traverse
2389 public:
2390 Specific_type_functions(Gogo* gogo)
2391 : Traverse(traverse_types),
2392 gogo_(gogo)
2396 type(Type*);
2398 private:
2399 Gogo* gogo_;
2403 Specific_type_functions::type(Type* t)
2405 Named_object* hash_fn;
2406 Named_object* equal_fn;
2407 switch (t->classification())
2409 case Type::TYPE_NAMED:
2411 Named_type* nt = t->named_type();
2412 if (!t->compare_is_identity(this->gogo_) && t->is_comparable())
2413 t->type_functions(this->gogo_, nt, NULL, NULL, &hash_fn, &equal_fn);
2415 // If this is a struct type, we don't want to make functions
2416 // for the unnamed struct.
2417 Type* rt = nt->real_type();
2418 if (rt->struct_type() == NULL)
2420 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
2421 return TRAVERSE_EXIT;
2423 else
2425 // If this type is defined in another package, then we don't
2426 // need to worry about the unexported fields.
2427 bool is_defined_elsewhere = nt->named_object()->package() != NULL;
2428 const Struct_field_list* fields = rt->struct_type()->fields();
2429 for (Struct_field_list::const_iterator p = fields->begin();
2430 p != fields->end();
2431 ++p)
2433 if (is_defined_elsewhere
2434 && Gogo::is_hidden_name(p->field_name()))
2435 continue;
2436 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
2437 return TRAVERSE_EXIT;
2441 return TRAVERSE_SKIP_COMPONENTS;
2444 case Type::TYPE_STRUCT:
2445 case Type::TYPE_ARRAY:
2446 if (!t->compare_is_identity(this->gogo_) && t->is_comparable())
2447 t->type_functions(this->gogo_, NULL, NULL, NULL, &hash_fn, &equal_fn);
2448 break;
2450 default:
2451 break;
2454 return TRAVERSE_CONTINUE;
2457 // Write out type specific functions.
2459 void
2460 Gogo::write_specific_type_functions()
2462 Specific_type_functions stf(this);
2463 this->traverse(&stf);
2465 while (!this->specific_type_functions_.empty())
2467 Specific_type_function* tsf = this->specific_type_functions_.back();
2468 this->specific_type_functions_.pop_back();
2469 tsf->type->write_specific_type_functions(this, tsf->name,
2470 tsf->hash_name,
2471 tsf->hash_fntype,
2472 tsf->equal_name,
2473 tsf->equal_fntype);
2474 delete tsf;
2476 this->specific_type_functions_are_written_ = true;
2479 // Traverse the tree.
2481 void
2482 Gogo::traverse(Traverse* traverse)
2484 // Traverse the current package first for consistency. The other
2485 // packages will only contain imported types, constants, and
2486 // declarations.
2487 if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
2488 return;
2489 for (Packages::const_iterator p = this->packages_.begin();
2490 p != this->packages_.end();
2491 ++p)
2493 if (p->second != this->package_)
2495 if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
2496 break;
2501 // Add a type to verify. This is used for types of sink variables, in
2502 // order to give appropriate error messages.
2504 void
2505 Gogo::add_type_to_verify(Type* type)
2507 this->verify_types_.push_back(type);
2510 // Traversal class used to verify types.
2512 class Verify_types : public Traverse
2514 public:
2515 Verify_types()
2516 : Traverse(traverse_types)
2520 type(Type*);
2523 // Verify that a type is correct.
2526 Verify_types::type(Type* t)
2528 if (!t->verify())
2529 return TRAVERSE_SKIP_COMPONENTS;
2530 return TRAVERSE_CONTINUE;
2533 // Verify that all types are correct.
2535 void
2536 Gogo::verify_types()
2538 Verify_types traverse;
2539 this->traverse(&traverse);
2541 for (std::vector<Type*>::iterator p = this->verify_types_.begin();
2542 p != this->verify_types_.end();
2543 ++p)
2544 (*p)->verify();
2545 this->verify_types_.clear();
2548 // Traversal class used to lower parse tree.
2550 class Lower_parse_tree : public Traverse
2552 public:
2553 Lower_parse_tree(Gogo* gogo, Named_object* function)
2554 : Traverse(traverse_variables
2555 | traverse_constants
2556 | traverse_functions
2557 | traverse_statements
2558 | traverse_expressions),
2559 gogo_(gogo), function_(function), iota_value_(-1), inserter_()
2562 void
2563 set_inserter(const Statement_inserter* inserter)
2564 { this->inserter_ = *inserter; }
2567 variable(Named_object*);
2570 constant(Named_object*, bool);
2573 function(Named_object*);
2576 statement(Block*, size_t* pindex, Statement*);
2579 expression(Expression**);
2581 private:
2582 // General IR.
2583 Gogo* gogo_;
2584 // The function we are traversing.
2585 Named_object* function_;
2586 // Value to use for the predeclared constant iota.
2587 int iota_value_;
2588 // Current statement inserter for use by expressions.
2589 Statement_inserter inserter_;
2592 // Lower variables.
2595 Lower_parse_tree::variable(Named_object* no)
2597 if (!no->is_variable())
2598 return TRAVERSE_CONTINUE;
2600 if (no->is_variable() && no->var_value()->is_global())
2602 // Global variables can have loops in their initialization
2603 // expressions. This is handled in lower_init_expression.
2604 no->var_value()->lower_init_expression(this->gogo_, this->function_,
2605 &this->inserter_);
2606 return TRAVERSE_CONTINUE;
2609 // This is a local variable. We are going to return
2610 // TRAVERSE_SKIP_COMPONENTS here because we want to traverse the
2611 // initialization expression when we reach the variable declaration
2612 // statement. However, that means that we need to traverse the type
2613 // ourselves.
2614 if (no->var_value()->has_type())
2616 Type* type = no->var_value()->type();
2617 if (type != NULL)
2619 if (Type::traverse(type, this) == TRAVERSE_EXIT)
2620 return TRAVERSE_EXIT;
2623 go_assert(!no->var_value()->has_pre_init());
2625 return TRAVERSE_SKIP_COMPONENTS;
2628 // Lower constants. We handle constants specially so that we can set
2629 // the right value for the predeclared constant iota. This works in
2630 // conjunction with the way we lower Const_expression objects.
2633 Lower_parse_tree::constant(Named_object* no, bool)
2635 Named_constant* nc = no->const_value();
2637 // Don't get into trouble if the constant's initializer expression
2638 // refers to the constant itself.
2639 if (nc->lowering())
2640 return TRAVERSE_CONTINUE;
2641 nc->set_lowering();
2643 go_assert(this->iota_value_ == -1);
2644 this->iota_value_ = nc->iota_value();
2645 nc->traverse_expression(this);
2646 this->iota_value_ = -1;
2648 nc->clear_lowering();
2650 // We will traverse the expression a second time, but that will be
2651 // fast.
2653 return TRAVERSE_CONTINUE;
2656 // Lower the body of a function, and set the closure type. Record the
2657 // function while lowering it, so that we can pass it down when
2658 // lowering an expression.
2661 Lower_parse_tree::function(Named_object* no)
2663 no->func_value()->set_closure_type();
2665 go_assert(this->function_ == NULL);
2666 this->function_ = no;
2667 int t = no->func_value()->traverse(this);
2668 this->function_ = NULL;
2670 if (t == TRAVERSE_EXIT)
2671 return t;
2672 return TRAVERSE_SKIP_COMPONENTS;
2675 // Lower statement parse trees.
2678 Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
2680 // Because we explicitly traverse the statement's contents
2681 // ourselves, we want to skip block statements here. There is
2682 // nothing to lower in a block statement.
2683 if (sorig->is_block_statement())
2684 return TRAVERSE_CONTINUE;
2686 Statement_inserter hold_inserter(this->inserter_);
2687 this->inserter_ = Statement_inserter(block, pindex);
2689 // Lower the expressions first.
2690 int t = sorig->traverse_contents(this);
2691 if (t == TRAVERSE_EXIT)
2693 this->inserter_ = hold_inserter;
2694 return t;
2697 // Keep lowering until nothing changes.
2698 Statement* s = sorig;
2699 while (true)
2701 Statement* snew = s->lower(this->gogo_, this->function_, block,
2702 &this->inserter_);
2703 if (snew == s)
2704 break;
2705 s = snew;
2706 t = s->traverse_contents(this);
2707 if (t == TRAVERSE_EXIT)
2709 this->inserter_ = hold_inserter;
2710 return t;
2714 if (s != sorig)
2715 block->replace_statement(*pindex, s);
2717 this->inserter_ = hold_inserter;
2718 return TRAVERSE_SKIP_COMPONENTS;
2721 // Lower expression parse trees.
2724 Lower_parse_tree::expression(Expression** pexpr)
2726 // We have to lower all subexpressions first, so that we can get
2727 // their type if necessary. This is awkward, because we don't have
2728 // a postorder traversal pass.
2729 if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
2730 return TRAVERSE_EXIT;
2731 // Keep lowering until nothing changes.
2732 while (true)
2734 Expression* e = *pexpr;
2735 Expression* enew = e->lower(this->gogo_, this->function_,
2736 &this->inserter_, this->iota_value_);
2737 if (enew == e)
2738 break;
2739 if (enew->traverse_subexpressions(this) == TRAVERSE_EXIT)
2740 return TRAVERSE_EXIT;
2741 *pexpr = enew;
2743 return TRAVERSE_SKIP_COMPONENTS;
2746 // Lower the parse tree. This is called after the parse is complete,
2747 // when all names should be resolved.
2749 void
2750 Gogo::lower_parse_tree()
2752 Lower_parse_tree lower_parse_tree(this, NULL);
2753 this->traverse(&lower_parse_tree);
2756 // Lower a block.
2758 void
2759 Gogo::lower_block(Named_object* function, Block* block)
2761 Lower_parse_tree lower_parse_tree(this, function);
2762 block->traverse(&lower_parse_tree);
2765 // Lower an expression. INSERTER may be NULL, in which case the
2766 // expression had better not need to create any temporaries.
2768 void
2769 Gogo::lower_expression(Named_object* function, Statement_inserter* inserter,
2770 Expression** pexpr)
2772 Lower_parse_tree lower_parse_tree(this, function);
2773 if (inserter != NULL)
2774 lower_parse_tree.set_inserter(inserter);
2775 lower_parse_tree.expression(pexpr);
2778 // Lower a constant. This is called when lowering a reference to a
2779 // constant. We have to make sure that the constant has already been
2780 // lowered.
2782 void
2783 Gogo::lower_constant(Named_object* no)
2785 go_assert(no->is_const());
2786 Lower_parse_tree lower(this, NULL);
2787 lower.constant(no, false);
2790 // Traverse the tree to create function descriptors as needed.
2792 class Create_function_descriptors : public Traverse
2794 public:
2795 Create_function_descriptors(Gogo* gogo)
2796 : Traverse(traverse_functions | traverse_expressions),
2797 gogo_(gogo)
2801 function(Named_object*);
2804 expression(Expression**);
2806 private:
2807 Gogo* gogo_;
2810 // Create a descriptor for every top-level exported function.
2813 Create_function_descriptors::function(Named_object* no)
2815 if (no->is_function()
2816 && no->func_value()->enclosing() == NULL
2817 && !no->func_value()->is_method()
2818 && !Gogo::is_hidden_name(no->name())
2819 && !Gogo::is_thunk(no))
2820 no->func_value()->descriptor(this->gogo_, no);
2822 return TRAVERSE_CONTINUE;
2825 // If we see a function referenced in any way other than calling it,
2826 // create a descriptor for it.
2829 Create_function_descriptors::expression(Expression** pexpr)
2831 Expression* expr = *pexpr;
2833 Func_expression* fe = expr->func_expression();
2834 if (fe != NULL)
2836 // We would not get here for a call to this function, so this is
2837 // a reference to a function other than calling it. We need a
2838 // descriptor.
2839 if (fe->closure() != NULL)
2840 return TRAVERSE_CONTINUE;
2841 Named_object* no = fe->named_object();
2842 if (no->is_function() && !no->func_value()->is_method())
2843 no->func_value()->descriptor(this->gogo_, no);
2844 else if (no->is_function_declaration()
2845 && !no->func_declaration_value()->type()->is_method()
2846 && !Linemap::is_predeclared_location(no->location()))
2847 no->func_declaration_value()->descriptor(this->gogo_, no);
2848 return TRAVERSE_CONTINUE;
2851 Bound_method_expression* bme = expr->bound_method_expression();
2852 if (bme != NULL)
2854 // We would not get here for a call to this method, so this is a
2855 // method value. We need to create a thunk.
2856 Bound_method_expression::create_thunk(this->gogo_, bme->method(),
2857 bme->function());
2858 return TRAVERSE_CONTINUE;
2861 Interface_field_reference_expression* ifre =
2862 expr->interface_field_reference_expression();
2863 if (ifre != NULL)
2865 // We would not get here for a call to this interface method, so
2866 // this is a method value. We need to create a thunk.
2867 Interface_type* type = ifre->expr()->type()->interface_type();
2868 if (type != NULL)
2869 Interface_field_reference_expression::create_thunk(this->gogo_, type,
2870 ifre->name());
2871 return TRAVERSE_CONTINUE;
2874 Call_expression* ce = expr->call_expression();
2875 if (ce != NULL)
2877 Expression* fn = ce->fn();
2878 if (fn->func_expression() != NULL
2879 || fn->bound_method_expression() != NULL
2880 || fn->interface_field_reference_expression() != NULL)
2882 // Traverse the arguments but not the function.
2883 Expression_list* args = ce->args();
2884 if (args != NULL)
2886 if (args->traverse(this) == TRAVERSE_EXIT)
2887 return TRAVERSE_EXIT;
2889 return TRAVERSE_SKIP_COMPONENTS;
2893 return TRAVERSE_CONTINUE;
2896 // Create function descriptors as needed. We need a function
2897 // descriptor for all exported functions and for all functions that
2898 // are referenced without being called.
2900 void
2901 Gogo::create_function_descriptors()
2903 // Create a function descriptor for any exported function that is
2904 // declared in this package. This is so that we have a descriptor
2905 // for functions written in assembly. Gather the descriptors first
2906 // so that we don't add declarations while looping over them.
2907 std::vector<Named_object*> fndecls;
2908 Bindings* b = this->package_->bindings();
2909 for (Bindings::const_declarations_iterator p = b->begin_declarations();
2910 p != b->end_declarations();
2911 ++p)
2913 Named_object* no = p->second;
2914 if (no->is_function_declaration()
2915 && !no->func_declaration_value()->type()->is_method()
2916 && !Linemap::is_predeclared_location(no->location())
2917 && !Gogo::is_hidden_name(no->name()))
2918 fndecls.push_back(no);
2920 for (std::vector<Named_object*>::const_iterator p = fndecls.begin();
2921 p != fndecls.end();
2922 ++p)
2923 (*p)->func_declaration_value()->descriptor(this, *p);
2924 fndecls.clear();
2926 Create_function_descriptors cfd(this);
2927 this->traverse(&cfd);
2930 // Look for interface types to finalize methods of inherited
2931 // interfaces.
2933 class Finalize_methods : public Traverse
2935 public:
2936 Finalize_methods(Gogo* gogo)
2937 : Traverse(traverse_types),
2938 gogo_(gogo)
2942 type(Type*);
2944 private:
2945 Gogo* gogo_;
2948 // Finalize the methods of an interface type.
2951 Finalize_methods::type(Type* t)
2953 // Check the classification so that we don't finalize the methods
2954 // twice for a named interface type.
2955 switch (t->classification())
2957 case Type::TYPE_INTERFACE:
2958 t->interface_type()->finalize_methods();
2959 break;
2961 case Type::TYPE_NAMED:
2963 // We have to finalize the methods of the real type first.
2964 // But if the real type is a struct type, then we only want to
2965 // finalize the methods of the field types, not of the struct
2966 // type itself. We don't want to add methods to the struct,
2967 // since it has a name.
2968 Named_type* nt = t->named_type();
2969 Type* rt = nt->real_type();
2970 if (rt->classification() != Type::TYPE_STRUCT)
2972 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
2973 return TRAVERSE_EXIT;
2975 else
2977 if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
2978 return TRAVERSE_EXIT;
2981 nt->finalize_methods(this->gogo_);
2983 // If this type is defined in a different package, then finalize the
2984 // types of all the methods, since we won't see them otherwise.
2985 if (nt->named_object()->package() != NULL && nt->has_any_methods())
2987 const Methods* methods = nt->methods();
2988 for (Methods::const_iterator p = methods->begin();
2989 p != methods->end();
2990 ++p)
2992 if (Type::traverse(p->second->type(), this) == TRAVERSE_EXIT)
2993 return TRAVERSE_EXIT;
2997 // Finalize the types of all methods that are declared but not
2998 // defined, since we won't see the declarations otherwise.
2999 if (nt->named_object()->package() == NULL
3000 && nt->local_methods() != NULL)
3002 const Bindings* methods = nt->local_methods();
3003 for (Bindings::const_declarations_iterator p =
3004 methods->begin_declarations();
3005 p != methods->end_declarations();
3006 p++)
3008 if (p->second->is_function_declaration())
3010 Type* mt = p->second->func_declaration_value()->type();
3011 if (Type::traverse(mt, this) == TRAVERSE_EXIT)
3012 return TRAVERSE_EXIT;
3017 return TRAVERSE_SKIP_COMPONENTS;
3020 case Type::TYPE_STRUCT:
3021 // Traverse the field types first in case there is an embedded
3022 // field with methods that the struct should inherit.
3023 if (t->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
3024 return TRAVERSE_EXIT;
3025 t->struct_type()->finalize_methods(this->gogo_);
3026 return TRAVERSE_SKIP_COMPONENTS;
3028 default:
3029 break;
3032 return TRAVERSE_CONTINUE;
3035 // Finalize method lists and build stub methods for types.
3037 void
3038 Gogo::finalize_methods()
3040 Finalize_methods finalize(this);
3041 this->traverse(&finalize);
3044 // Set types for unspecified variables and constants.
3046 void
3047 Gogo::determine_types()
3049 Bindings* bindings = this->current_bindings();
3050 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
3051 p != bindings->end_definitions();
3052 ++p)
3054 if ((*p)->is_function())
3055 (*p)->func_value()->determine_types();
3056 else if ((*p)->is_variable())
3057 (*p)->var_value()->determine_type();
3058 else if ((*p)->is_const())
3059 (*p)->const_value()->determine_type();
3061 // See if a variable requires us to build an initialization
3062 // function. We know that we will see all global variables
3063 // here.
3064 if (!this->need_init_fn_ && (*p)->is_variable())
3066 Variable* variable = (*p)->var_value();
3068 // If this is a global variable which requires runtime
3069 // initialization, we need an initialization function.
3070 if (!variable->is_global())
3072 else if (variable->init() == NULL)
3074 else if (variable->type()->interface_type() != NULL)
3075 this->need_init_fn_ = true;
3076 else if (variable->init()->is_constant())
3078 else if (!variable->init()->is_composite_literal())
3079 this->need_init_fn_ = true;
3080 else if (variable->init()->is_nonconstant_composite_literal())
3081 this->need_init_fn_ = true;
3083 // If this is a global variable which holds a pointer value,
3084 // then we need an initialization function to register it as a
3085 // GC root.
3086 if (variable->is_global() && variable->type()->has_pointer())
3087 this->need_init_fn_ = true;
3091 // Determine the types of constants in packages.
3092 for (Packages::const_iterator p = this->packages_.begin();
3093 p != this->packages_.end();
3094 ++p)
3095 p->second->determine_types();
3098 // Traversal class used for type checking.
3100 class Check_types_traverse : public Traverse
3102 public:
3103 Check_types_traverse(Gogo* gogo)
3104 : Traverse(traverse_variables
3105 | traverse_constants
3106 | traverse_functions
3107 | traverse_statements
3108 | traverse_expressions),
3109 gogo_(gogo)
3113 variable(Named_object*);
3116 constant(Named_object*, bool);
3119 function(Named_object*);
3122 statement(Block*, size_t* pindex, Statement*);
3125 expression(Expression**);
3127 private:
3128 // General IR.
3129 Gogo* gogo_;
3132 // Check that a variable initializer has the right type.
3135 Check_types_traverse::variable(Named_object* named_object)
3137 if (named_object->is_variable())
3139 Variable* var = named_object->var_value();
3141 // Give error if variable type is not defined.
3142 var->type()->base();
3144 Expression* init = var->init();
3145 std::string reason;
3146 if (init != NULL
3147 && !Type::are_assignable(var->type(), init->type(), &reason))
3149 if (reason.empty())
3150 error_at(var->location(), "incompatible type in initialization");
3151 else
3152 error_at(var->location(),
3153 "incompatible type in initialization (%s)",
3154 reason.c_str());
3155 var->clear_init();
3157 else if (!var->is_used()
3158 && !var->is_global()
3159 && !var->is_parameter()
3160 && !var->is_receiver()
3161 && !var->type()->is_error()
3162 && (init == NULL || !init->is_error_expression())
3163 && !Lex::is_invalid_identifier(named_object->name()))
3164 error_at(var->location(), "%qs declared and not used",
3165 named_object->message_name().c_str());
3167 return TRAVERSE_CONTINUE;
3170 // Check that a constant initializer has the right type.
3173 Check_types_traverse::constant(Named_object* named_object, bool)
3175 Named_constant* constant = named_object->const_value();
3176 Type* ctype = constant->type();
3177 if (ctype->integer_type() == NULL
3178 && ctype->float_type() == NULL
3179 && ctype->complex_type() == NULL
3180 && !ctype->is_boolean_type()
3181 && !ctype->is_string_type())
3183 if (ctype->is_nil_type())
3184 error_at(constant->location(), "const initializer cannot be nil");
3185 else if (!ctype->is_error())
3186 error_at(constant->location(), "invalid constant type");
3187 constant->set_error();
3189 else if (!constant->expr()->is_constant())
3191 error_at(constant->expr()->location(), "expression is not constant");
3192 constant->set_error();
3194 else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
3195 NULL))
3197 error_at(constant->location(),
3198 "initialization expression has wrong type");
3199 constant->set_error();
3201 return TRAVERSE_CONTINUE;
3204 // There are no types to check in a function, but this is where we
3205 // issue warnings about labels which are defined but not referenced.
3208 Check_types_traverse::function(Named_object* no)
3210 no->func_value()->check_labels();
3211 return TRAVERSE_CONTINUE;
3214 // Check that types are valid in a statement.
3217 Check_types_traverse::statement(Block*, size_t*, Statement* s)
3219 s->check_types(this->gogo_);
3220 return TRAVERSE_CONTINUE;
3223 // Check that types are valid in an expression.
3226 Check_types_traverse::expression(Expression** expr)
3228 (*expr)->check_types(this->gogo_);
3229 return TRAVERSE_CONTINUE;
3232 // Check that types are valid.
3234 void
3235 Gogo::check_types()
3237 Check_types_traverse traverse(this);
3238 this->traverse(&traverse);
3241 // Check the types in a single block.
3243 void
3244 Gogo::check_types_in_block(Block* block)
3246 Check_types_traverse traverse(this);
3247 block->traverse(&traverse);
3250 // A traversal class used to find a single shortcut operator within an
3251 // expression.
3253 class Find_shortcut : public Traverse
3255 public:
3256 Find_shortcut()
3257 : Traverse(traverse_blocks
3258 | traverse_statements
3259 | traverse_expressions),
3260 found_(NULL)
3263 // A pointer to the expression which was found, or NULL if none was
3264 // found.
3265 Expression**
3266 found() const
3267 { return this->found_; }
3269 protected:
3271 block(Block*)
3272 { return TRAVERSE_SKIP_COMPONENTS; }
3275 statement(Block*, size_t*, Statement*)
3276 { return TRAVERSE_SKIP_COMPONENTS; }
3279 expression(Expression**);
3281 private:
3282 Expression** found_;
3285 // Find a shortcut expression.
3288 Find_shortcut::expression(Expression** pexpr)
3290 Expression* expr = *pexpr;
3291 Binary_expression* be = expr->binary_expression();
3292 if (be == NULL)
3293 return TRAVERSE_CONTINUE;
3294 Operator op = be->op();
3295 if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
3296 return TRAVERSE_CONTINUE;
3297 go_assert(this->found_ == NULL);
3298 this->found_ = pexpr;
3299 return TRAVERSE_EXIT;
3302 // A traversal class used to turn shortcut operators into explicit if
3303 // statements.
3305 class Shortcuts : public Traverse
3307 public:
3308 Shortcuts(Gogo* gogo)
3309 : Traverse(traverse_variables
3310 | traverse_statements),
3311 gogo_(gogo)
3314 protected:
3316 variable(Named_object*);
3319 statement(Block*, size_t*, Statement*);
3321 private:
3322 // Convert a shortcut operator.
3323 Statement*
3324 convert_shortcut(Block* enclosing, Expression** pshortcut);
3326 // The IR.
3327 Gogo* gogo_;
3330 // Remove shortcut operators in a single statement.
3333 Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
3335 // FIXME: This approach doesn't work for switch statements, because
3336 // we add the new statements before the whole switch when we need to
3337 // instead add them just before the switch expression. The right
3338 // fix is probably to lower switch statements with nonconstant cases
3339 // to a series of conditionals.
3340 if (s->switch_statement() != NULL)
3341 return TRAVERSE_CONTINUE;
3343 while (true)
3345 Find_shortcut find_shortcut;
3347 // If S is a variable declaration, then ordinary traversal won't
3348 // do anything. We want to explicitly traverse the
3349 // initialization expression if there is one.
3350 Variable_declaration_statement* vds = s->variable_declaration_statement();
3351 Expression* init = NULL;
3352 if (vds == NULL)
3353 s->traverse_contents(&find_shortcut);
3354 else
3356 init = vds->var()->var_value()->init();
3357 if (init == NULL)
3358 return TRAVERSE_CONTINUE;
3359 init->traverse(&init, &find_shortcut);
3361 Expression** pshortcut = find_shortcut.found();
3362 if (pshortcut == NULL)
3363 return TRAVERSE_CONTINUE;
3365 Statement* snew = this->convert_shortcut(block, pshortcut);
3366 block->insert_statement_before(*pindex, snew);
3367 ++*pindex;
3369 if (pshortcut == &init)
3370 vds->var()->var_value()->set_init(init);
3374 // Remove shortcut operators in the initializer of a global variable.
3377 Shortcuts::variable(Named_object* no)
3379 if (no->is_result_variable())
3380 return TRAVERSE_CONTINUE;
3381 Variable* var = no->var_value();
3382 Expression* init = var->init();
3383 if (!var->is_global() || init == NULL)
3384 return TRAVERSE_CONTINUE;
3386 while (true)
3388 Find_shortcut find_shortcut;
3389 init->traverse(&init, &find_shortcut);
3390 Expression** pshortcut = find_shortcut.found();
3391 if (pshortcut == NULL)
3392 return TRAVERSE_CONTINUE;
3394 Statement* snew = this->convert_shortcut(NULL, pshortcut);
3395 var->add_preinit_statement(this->gogo_, snew);
3396 if (pshortcut == &init)
3397 var->set_init(init);
3401 // Given an expression which uses a shortcut operator, return a
3402 // statement which implements it, and update *PSHORTCUT accordingly.
3404 Statement*
3405 Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
3407 Binary_expression* shortcut = (*pshortcut)->binary_expression();
3408 Expression* left = shortcut->left();
3409 Expression* right = shortcut->right();
3410 Location loc = shortcut->location();
3412 Block* retblock = new Block(enclosing, loc);
3413 retblock->set_end_location(loc);
3415 Temporary_statement* ts = Statement::make_temporary(shortcut->type(),
3416 left, loc);
3417 retblock->add_statement(ts);
3419 Block* block = new Block(retblock, loc);
3420 block->set_end_location(loc);
3421 Expression* tmpref = Expression::make_temporary_reference(ts, loc);
3422 Statement* assign = Statement::make_assignment(tmpref, right, loc);
3423 block->add_statement(assign);
3425 Expression* cond = Expression::make_temporary_reference(ts, loc);
3426 if (shortcut->binary_expression()->op() == OPERATOR_OROR)
3427 cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
3429 Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
3430 loc);
3431 retblock->add_statement(if_statement);
3433 *pshortcut = Expression::make_temporary_reference(ts, loc);
3435 delete shortcut;
3437 // Now convert any shortcut operators in LEFT and RIGHT.
3438 Shortcuts shortcuts(this->gogo_);
3439 retblock->traverse(&shortcuts);
3441 return Statement::make_block_statement(retblock, loc);
3444 // Turn shortcut operators into explicit if statements. Doing this
3445 // considerably simplifies the order of evaluation rules.
3447 void
3448 Gogo::remove_shortcuts()
3450 Shortcuts shortcuts(this);
3451 this->traverse(&shortcuts);
3454 // A traversal class which finds all the expressions which must be
3455 // evaluated in order within a statement or larger expression. This
3456 // is used to implement the rules about order of evaluation.
3458 class Find_eval_ordering : public Traverse
3460 private:
3461 typedef std::vector<Expression**> Expression_pointers;
3463 public:
3464 Find_eval_ordering()
3465 : Traverse(traverse_blocks
3466 | traverse_statements
3467 | traverse_expressions),
3468 exprs_()
3471 size_t
3472 size() const
3473 { return this->exprs_.size(); }
3475 typedef Expression_pointers::const_iterator const_iterator;
3477 const_iterator
3478 begin() const
3479 { return this->exprs_.begin(); }
3481 const_iterator
3482 end() const
3483 { return this->exprs_.end(); }
3485 protected:
3487 block(Block*)
3488 { return TRAVERSE_SKIP_COMPONENTS; }
3491 statement(Block*, size_t*, Statement*)
3492 { return TRAVERSE_SKIP_COMPONENTS; }
3495 expression(Expression**);
3497 private:
3498 // A list of pointers to expressions with side-effects.
3499 Expression_pointers exprs_;
3502 // If an expression must be evaluated in order, put it on the list.
3505 Find_eval_ordering::expression(Expression** expression_pointer)
3507 // We have to look at subexpressions before this one.
3508 if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
3509 return TRAVERSE_EXIT;
3510 if ((*expression_pointer)->must_eval_in_order())
3511 this->exprs_.push_back(expression_pointer);
3512 return TRAVERSE_SKIP_COMPONENTS;
3515 // A traversal class for ordering evaluations.
3517 class Order_eval : public Traverse
3519 public:
3520 Order_eval(Gogo* gogo)
3521 : Traverse(traverse_variables
3522 | traverse_statements),
3523 gogo_(gogo)
3527 variable(Named_object*);
3530 statement(Block*, size_t*, Statement*);
3532 private:
3533 // The IR.
3534 Gogo* gogo_;
3537 // Implement the order of evaluation rules for a statement.
3540 Order_eval::statement(Block* block, size_t* pindex, Statement* s)
3542 // FIXME: This approach doesn't work for switch statements, because
3543 // we add the new statements before the whole switch when we need to
3544 // instead add them just before the switch expression. The right
3545 // fix is probably to lower switch statements with nonconstant cases
3546 // to a series of conditionals.
3547 if (s->switch_statement() != NULL)
3548 return TRAVERSE_CONTINUE;
3550 Find_eval_ordering find_eval_ordering;
3552 // If S is a variable declaration, then ordinary traversal won't do
3553 // anything. We want to explicitly traverse the initialization
3554 // expression if there is one.
3555 Variable_declaration_statement* vds = s->variable_declaration_statement();
3556 Expression* init = NULL;
3557 Expression* orig_init = NULL;
3558 if (vds == NULL)
3559 s->traverse_contents(&find_eval_ordering);
3560 else
3562 init = vds->var()->var_value()->init();
3563 if (init == NULL)
3564 return TRAVERSE_CONTINUE;
3565 orig_init = init;
3567 // It might seem that this could be
3568 // init->traverse_subexpressions. Unfortunately that can fail
3569 // in a case like
3570 // var err os.Error
3571 // newvar, err := call(arg())
3572 // Here newvar will have an init of call result 0 of
3573 // call(arg()). If we only traverse subexpressions, we will
3574 // only find arg(), and we won't bother to move anything out.
3575 // Then we get to the assignment to err, we will traverse the
3576 // whole statement, and this time we will find both call() and
3577 // arg(), and so we will move them out. This will cause them to
3578 // be put into temporary variables before the assignment to err
3579 // but after the declaration of newvar. To avoid that problem,
3580 // we traverse the entire expression here.
3581 Expression::traverse(&init, &find_eval_ordering);
3584 size_t c = find_eval_ordering.size();
3585 if (c == 0)
3586 return TRAVERSE_CONTINUE;
3588 // If there is only one expression with a side-effect, we can
3589 // usually leave it in place.
3590 if (c == 1)
3592 switch (s->classification())
3594 case Statement::STATEMENT_ASSIGNMENT:
3595 // For an assignment statement, we need to evaluate an
3596 // expression on the right hand side before we evaluate any
3597 // index expression on the left hand side, so for that case
3598 // we always move the expression. Otherwise we mishandle
3599 // m[0] = len(m) where m is a map.
3600 break;
3602 case Statement::STATEMENT_EXPRESSION:
3604 // If this is a call statement that doesn't return any
3605 // values, it will not have been counted as a value to
3606 // move. We need to move any subexpressions in case they
3607 // are themselves call statements that require passing a
3608 // closure.
3609 Expression* expr = s->expression_statement()->expr();
3610 if (expr->call_expression() != NULL
3611 && expr->call_expression()->result_count() == 0)
3612 break;
3613 return TRAVERSE_CONTINUE;
3616 default:
3617 // We can leave the expression in place.
3618 return TRAVERSE_CONTINUE;
3622 bool is_thunk = s->thunk_statement() != NULL;
3623 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
3624 p != find_eval_ordering.end();
3625 ++p)
3627 Expression** pexpr = *p;
3629 // The last expression in a thunk will be the call passed to go
3630 // or defer, which we must not evaluate early.
3631 if (is_thunk && p + 1 == find_eval_ordering.end())
3632 break;
3634 Location loc = (*pexpr)->location();
3635 Statement* s;
3636 if ((*pexpr)->call_expression() == NULL
3637 || (*pexpr)->call_expression()->result_count() < 2)
3639 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
3640 loc);
3641 s = ts;
3642 *pexpr = Expression::make_temporary_reference(ts, loc);
3644 else
3646 // A call expression which returns multiple results needs to
3647 // be handled specially. We can't create a temporary
3648 // because there is no type to give it. Any actual uses of
3649 // the values will be done via Call_result_expressions.
3650 s = Statement::make_statement(*pexpr, true);
3653 block->insert_statement_before(*pindex, s);
3654 ++*pindex;
3657 if (init != orig_init)
3658 vds->var()->var_value()->set_init(init);
3660 return TRAVERSE_CONTINUE;
3663 // Implement the order of evaluation rules for the initializer of a
3664 // global variable.
3667 Order_eval::variable(Named_object* no)
3669 if (no->is_result_variable())
3670 return TRAVERSE_CONTINUE;
3671 Variable* var = no->var_value();
3672 Expression* init = var->init();
3673 if (!var->is_global() || init == NULL)
3674 return TRAVERSE_CONTINUE;
3676 Find_eval_ordering find_eval_ordering;
3677 Expression::traverse(&init, &find_eval_ordering);
3679 if (find_eval_ordering.size() <= 1)
3681 // If there is only one expression with a side-effect, we can
3682 // leave it in place.
3683 return TRAVERSE_SKIP_COMPONENTS;
3686 Expression* orig_init = init;
3688 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
3689 p != find_eval_ordering.end();
3690 ++p)
3692 Expression** pexpr = *p;
3693 Location loc = (*pexpr)->location();
3694 Statement* s;
3695 if ((*pexpr)->call_expression() == NULL
3696 || (*pexpr)->call_expression()->result_count() < 2)
3698 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
3699 loc);
3700 s = ts;
3701 *pexpr = Expression::make_temporary_reference(ts, loc);
3703 else
3705 // A call expression which returns multiple results needs to
3706 // be handled specially.
3707 s = Statement::make_statement(*pexpr, true);
3709 var->add_preinit_statement(this->gogo_, s);
3712 if (init != orig_init)
3713 var->set_init(init);
3715 return TRAVERSE_SKIP_COMPONENTS;
3718 // Use temporary variables to implement the order of evaluation rules.
3720 void
3721 Gogo::order_evaluations()
3723 Order_eval order_eval(this);
3724 this->traverse(&order_eval);
3727 // Traversal to flatten parse tree after order of evaluation rules are applied.
3729 class Flatten : public Traverse
3731 public:
3732 Flatten(Gogo* gogo, Named_object* function)
3733 : Traverse(traverse_variables
3734 | traverse_functions
3735 | traverse_statements
3736 | traverse_expressions),
3737 gogo_(gogo), function_(function), inserter_()
3740 void
3741 set_inserter(const Statement_inserter* inserter)
3742 { this->inserter_ = *inserter; }
3745 variable(Named_object*);
3748 function(Named_object*);
3751 statement(Block*, size_t* pindex, Statement*);
3754 expression(Expression**);
3756 private:
3757 // General IR.
3758 Gogo* gogo_;
3759 // The function we are traversing.
3760 Named_object* function_;
3761 // Current statement inserter for use by expressions.
3762 Statement_inserter inserter_;
3765 // Flatten variables.
3768 Flatten::variable(Named_object* no)
3770 if (!no->is_variable())
3771 return TRAVERSE_CONTINUE;
3773 if (no->is_variable() && no->var_value()->is_global())
3775 // Global variables can have loops in their initialization
3776 // expressions. This is handled in flatten_init_expression.
3777 no->var_value()->flatten_init_expression(this->gogo_, this->function_,
3778 &this->inserter_);
3779 return TRAVERSE_CONTINUE;
3782 go_assert(!no->var_value()->has_pre_init());
3784 return TRAVERSE_SKIP_COMPONENTS;
3787 // Flatten the body of a function. Record the function while flattening it,
3788 // so that we can pass it down when flattening an expression.
3791 Flatten::function(Named_object* no)
3793 go_assert(this->function_ == NULL);
3794 this->function_ = no;
3795 int t = no->func_value()->traverse(this);
3796 this->function_ = NULL;
3798 if (t == TRAVERSE_EXIT)
3799 return t;
3800 return TRAVERSE_SKIP_COMPONENTS;
3803 // Flatten statement parse trees.
3806 Flatten::statement(Block* block, size_t* pindex, Statement* sorig)
3808 // Because we explicitly traverse the statement's contents
3809 // ourselves, we want to skip block statements here. There is
3810 // nothing to flatten in a block statement.
3811 if (sorig->is_block_statement())
3812 return TRAVERSE_CONTINUE;
3814 Statement_inserter hold_inserter(this->inserter_);
3815 this->inserter_ = Statement_inserter(block, pindex);
3817 // Flatten the expressions first.
3818 int t = sorig->traverse_contents(this);
3819 if (t == TRAVERSE_EXIT)
3821 this->inserter_ = hold_inserter;
3822 return t;
3825 // Keep flattening until nothing changes.
3826 Statement* s = sorig;
3827 while (true)
3829 Statement* snew = s->flatten(this->gogo_, this->function_, block,
3830 &this->inserter_);
3831 if (snew == s)
3832 break;
3833 s = snew;
3834 t = s->traverse_contents(this);
3835 if (t == TRAVERSE_EXIT)
3837 this->inserter_ = hold_inserter;
3838 return t;
3842 if (s != sorig)
3843 block->replace_statement(*pindex, s);
3845 this->inserter_ = hold_inserter;
3846 return TRAVERSE_SKIP_COMPONENTS;
3849 // Flatten expression parse trees.
3852 Flatten::expression(Expression** pexpr)
3854 // Keep flattening until nothing changes.
3855 while (true)
3857 Expression* e = *pexpr;
3858 if (e->traverse_subexpressions(this) == TRAVERSE_EXIT)
3859 return TRAVERSE_EXIT;
3861 Expression* enew = e->flatten(this->gogo_, this->function_,
3862 &this->inserter_);
3863 if (enew == e)
3864 break;
3865 *pexpr = enew;
3867 return TRAVERSE_SKIP_COMPONENTS;
3870 // Flatten a block.
3872 void
3873 Gogo::flatten_block(Named_object* function, Block* block)
3875 Flatten flatten(this, function);
3876 block->traverse(&flatten);
3879 // Flatten an expression. INSERTER may be NULL, in which case the
3880 // expression had better not need to create any temporaries.
3882 void
3883 Gogo::flatten_expression(Named_object* function, Statement_inserter* inserter,
3884 Expression** pexpr)
3886 Flatten flatten(this, function);
3887 if (inserter != NULL)
3888 flatten.set_inserter(inserter);
3889 flatten.expression(pexpr);
3892 void
3893 Gogo::flatten()
3895 Flatten flatten(this, NULL);
3896 this->traverse(&flatten);
3899 // Traversal to convert calls to the predeclared recover function to
3900 // pass in an argument indicating whether it can recover from a panic
3901 // or not.
3903 class Convert_recover : public Traverse
3905 public:
3906 Convert_recover(Named_object* arg)
3907 : Traverse(traverse_expressions),
3908 arg_(arg)
3911 protected:
3913 expression(Expression**);
3915 private:
3916 // The argument to pass to the function.
3917 Named_object* arg_;
3920 // Convert calls to recover.
3923 Convert_recover::expression(Expression** pp)
3925 Call_expression* ce = (*pp)->call_expression();
3926 if (ce != NULL && ce->is_recover_call())
3927 ce->set_recover_arg(Expression::make_var_reference(this->arg_,
3928 ce->location()));
3929 return TRAVERSE_CONTINUE;
3932 // Traversal for build_recover_thunks.
3934 class Build_recover_thunks : public Traverse
3936 public:
3937 Build_recover_thunks(Gogo* gogo)
3938 : Traverse(traverse_functions),
3939 gogo_(gogo)
3943 function(Named_object*);
3945 private:
3946 Expression*
3947 can_recover_arg(Location);
3949 // General IR.
3950 Gogo* gogo_;
3953 // If this function calls recover, turn it into a thunk.
3956 Build_recover_thunks::function(Named_object* orig_no)
3958 Function* orig_func = orig_no->func_value();
3959 if (!orig_func->calls_recover()
3960 || orig_func->is_recover_thunk()
3961 || orig_func->has_recover_thunk())
3962 return TRAVERSE_CONTINUE;
3964 Gogo* gogo = this->gogo_;
3965 Location location = orig_func->location();
3967 static int count;
3968 char buf[50];
3970 Function_type* orig_fntype = orig_func->type();
3971 Typed_identifier_list* new_params = new Typed_identifier_list();
3972 std::string receiver_name;
3973 if (orig_fntype->is_method())
3975 const Typed_identifier* receiver = orig_fntype->receiver();
3976 snprintf(buf, sizeof buf, "rt.%u", count);
3977 ++count;
3978 receiver_name = buf;
3979 new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
3980 receiver->location()));
3982 const Typed_identifier_list* orig_params = orig_fntype->parameters();
3983 if (orig_params != NULL && !orig_params->empty())
3985 for (Typed_identifier_list::const_iterator p = orig_params->begin();
3986 p != orig_params->end();
3987 ++p)
3989 snprintf(buf, sizeof buf, "pt.%u", count);
3990 ++count;
3991 new_params->push_back(Typed_identifier(buf, p->type(),
3992 p->location()));
3995 snprintf(buf, sizeof buf, "pr.%u", count);
3996 ++count;
3997 std::string can_recover_name = buf;
3998 new_params->push_back(Typed_identifier(can_recover_name,
3999 Type::lookup_bool_type(),
4000 orig_fntype->location()));
4002 const Typed_identifier_list* orig_results = orig_fntype->results();
4003 Typed_identifier_list* new_results;
4004 if (orig_results == NULL || orig_results->empty())
4005 new_results = NULL;
4006 else
4008 new_results = new Typed_identifier_list();
4009 for (Typed_identifier_list::const_iterator p = orig_results->begin();
4010 p != orig_results->end();
4011 ++p)
4012 new_results->push_back(Typed_identifier("", p->type(), p->location()));
4015 Function_type *new_fntype = Type::make_function_type(NULL, new_params,
4016 new_results,
4017 orig_fntype->location());
4018 if (orig_fntype->is_varargs())
4019 new_fntype->set_is_varargs();
4021 std::string name = orig_no->name();
4022 if (orig_fntype->is_method())
4023 name += "$" + orig_fntype->receiver()->type()->mangled_name(gogo);
4024 name += "$recover";
4025 Named_object *new_no = gogo->start_function(name, new_fntype, false,
4026 location);
4027 Function *new_func = new_no->func_value();
4028 if (orig_func->enclosing() != NULL)
4029 new_func->set_enclosing(orig_func->enclosing());
4031 // We build the code for the original function attached to the new
4032 // function, and then swap the original and new function bodies.
4033 // This means that existing references to the original function will
4034 // then refer to the new function. That makes this code a little
4035 // confusing, in that the reference to NEW_NO really refers to the
4036 // other function, not the one we are building.
4038 Expression* closure = NULL;
4039 if (orig_func->needs_closure())
4041 // For the new function we are creating, declare a new parameter
4042 // variable NEW_CLOSURE_NO and set it to be the closure variable
4043 // of the function. This will be set to the closure value
4044 // passed in by the caller. Then pass a reference to this
4045 // variable as the closure value when calling the original
4046 // function. In other words, simply pass the closure value
4047 // through the thunk we are creating.
4048 Named_object* orig_closure_no = orig_func->closure_var();
4049 Variable* orig_closure_var = orig_closure_no->var_value();
4050 Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
4051 false, false, location);
4052 new_var->set_is_closure();
4053 snprintf(buf, sizeof buf, "closure.%u", count);
4054 ++count;
4055 Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
4056 new_var);
4057 new_func->set_closure_var(new_closure_no);
4058 closure = Expression::make_var_reference(new_closure_no, location);
4061 Expression* fn = Expression::make_func_reference(new_no, closure, location);
4063 Expression_list* args = new Expression_list();
4064 if (new_params != NULL)
4066 // Note that we skip the last parameter, which is the boolean
4067 // indicating whether recover can succed.
4068 for (Typed_identifier_list::const_iterator p = new_params->begin();
4069 p + 1 != new_params->end();
4070 ++p)
4072 Named_object* p_no = gogo->lookup(p->name(), NULL);
4073 go_assert(p_no != NULL
4074 && p_no->is_variable()
4075 && p_no->var_value()->is_parameter());
4076 args->push_back(Expression::make_var_reference(p_no, location));
4079 args->push_back(this->can_recover_arg(location));
4081 gogo->start_block(location);
4083 Call_expression* call = Expression::make_call(fn, args, false, location);
4085 // Any varargs call has already been lowered.
4086 call->set_varargs_are_lowered();
4088 Statement* s = Statement::make_return_from_call(call, location);
4089 s->determine_types();
4090 gogo->add_statement(s);
4092 Block* b = gogo->finish_block(location);
4094 gogo->add_block(b, location);
4096 // Lower the call in case it returns multiple results.
4097 gogo->lower_block(new_no, b);
4099 gogo->finish_function(location);
4101 // Swap the function bodies and types.
4102 new_func->swap_for_recover(orig_func);
4103 orig_func->set_is_recover_thunk();
4104 new_func->set_calls_recover();
4105 new_func->set_has_recover_thunk();
4107 Bindings* orig_bindings = orig_func->block()->bindings();
4108 Bindings* new_bindings = new_func->block()->bindings();
4109 if (orig_fntype->is_method())
4111 // We changed the receiver to be a regular parameter. We have
4112 // to update the binding accordingly in both functions.
4113 Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
4114 go_assert(orig_rec_no != NULL
4115 && orig_rec_no->is_variable()
4116 && !orig_rec_no->var_value()->is_receiver());
4117 orig_rec_no->var_value()->set_is_receiver();
4119 std::string new_receiver_name(orig_fntype->receiver()->name());
4120 if (new_receiver_name.empty())
4122 // Find the receiver. It was named "r.NNN" in
4123 // Gogo::start_function.
4124 for (Bindings::const_definitions_iterator p =
4125 new_bindings->begin_definitions();
4126 p != new_bindings->end_definitions();
4127 ++p)
4129 const std::string& pname((*p)->name());
4130 if (pname[0] == 'r' && pname[1] == '.')
4132 new_receiver_name = pname;
4133 break;
4136 go_assert(!new_receiver_name.empty());
4138 Named_object* new_rec_no = new_bindings->lookup_local(new_receiver_name);
4139 if (new_rec_no == NULL)
4140 go_assert(saw_errors());
4141 else
4143 go_assert(new_rec_no->is_variable()
4144 && new_rec_no->var_value()->is_receiver());
4145 new_rec_no->var_value()->set_is_not_receiver();
4149 // Because we flipped blocks but not types, the can_recover
4150 // parameter appears in the (now) old bindings as a parameter.
4151 // Change it to a local variable, whereupon it will be discarded.
4152 Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
4153 go_assert(can_recover_no != NULL
4154 && can_recover_no->is_variable()
4155 && can_recover_no->var_value()->is_parameter());
4156 orig_bindings->remove_binding(can_recover_no);
4158 // Add the can_recover argument to the (now) new bindings, and
4159 // attach it to any recover statements.
4160 Variable* can_recover_var = new Variable(Type::lookup_bool_type(), NULL,
4161 false, true, false, location);
4162 can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
4163 can_recover_var);
4164 Convert_recover convert_recover(can_recover_no);
4165 new_func->traverse(&convert_recover);
4167 // Update the function pointers in any named results.
4168 new_func->update_result_variables();
4169 orig_func->update_result_variables();
4171 return TRAVERSE_CONTINUE;
4174 // Return the expression to pass for the .can_recover parameter to the
4175 // new function. This indicates whether a call to recover may return
4176 // non-nil. The expression is
4177 // __go_can_recover(__builtin_return_address()).
4179 Expression*
4180 Build_recover_thunks::can_recover_arg(Location location)
4182 static Named_object* builtin_return_address;
4183 if (builtin_return_address == NULL)
4185 const Location bloc = Linemap::predeclared_location();
4187 Typed_identifier_list* param_types = new Typed_identifier_list();
4188 Type* uint_type = Type::lookup_integer_type("uint");
4189 param_types->push_back(Typed_identifier("l", uint_type, bloc));
4191 Typed_identifier_list* return_types = new Typed_identifier_list();
4192 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
4193 return_types->push_back(Typed_identifier("", voidptr_type, bloc));
4195 Function_type* fntype = Type::make_function_type(NULL, param_types,
4196 return_types, bloc);
4197 builtin_return_address =
4198 Named_object::make_function_declaration("__builtin_return_address",
4199 NULL, fntype, bloc);
4200 const char* n = "__builtin_return_address";
4201 builtin_return_address->func_declaration_value()->set_asm_name(n);
4204 static Named_object* can_recover;
4205 if (can_recover == NULL)
4207 const Location bloc = Linemap::predeclared_location();
4208 Typed_identifier_list* param_types = new Typed_identifier_list();
4209 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
4210 param_types->push_back(Typed_identifier("a", voidptr_type, bloc));
4211 Type* boolean_type = Type::lookup_bool_type();
4212 Typed_identifier_list* results = new Typed_identifier_list();
4213 results->push_back(Typed_identifier("", boolean_type, bloc));
4214 Function_type* fntype = Type::make_function_type(NULL, param_types,
4215 results, bloc);
4216 can_recover = Named_object::make_function_declaration("__go_can_recover",
4217 NULL, fntype,
4218 bloc);
4219 can_recover->func_declaration_value()->set_asm_name("__go_can_recover");
4222 Expression* fn = Expression::make_func_reference(builtin_return_address,
4223 NULL, location);
4225 Expression* zexpr = Expression::make_integer_ul(0, NULL, location);
4226 Expression_list *args = new Expression_list();
4227 args->push_back(zexpr);
4229 Expression* call = Expression::make_call(fn, args, false, location);
4231 args = new Expression_list();
4232 args->push_back(call);
4234 fn = Expression::make_func_reference(can_recover, NULL, location);
4235 return Expression::make_call(fn, args, false, location);
4238 // Build thunks for functions which call recover. We build a new
4239 // function with an extra parameter, which is whether a call to
4240 // recover can succeed. We then move the body of this function to
4241 // that one. We then turn this function into a thunk which calls the
4242 // new one, passing the value of
4243 // __go_can_recover(__builtin_return_address()). The function will be
4244 // marked as not splitting the stack. This will cooperate with the
4245 // implementation of defer to make recover do the right thing.
4247 void
4248 Gogo::build_recover_thunks()
4250 Build_recover_thunks build_recover_thunks(this);
4251 this->traverse(&build_recover_thunks);
4254 // Build a call to the runtime error function.
4256 Expression*
4257 Gogo::runtime_error(int code, Location location)
4259 Type* int32_type = Type::lookup_integer_type("int32");
4260 Expression* code_expr = Expression::make_integer_ul(code, int32_type,
4261 location);
4262 return Runtime::make_call(Runtime::RUNTIME_ERROR, location, 1, code_expr);
4265 // Look for named types to see whether we need to create an interface
4266 // method table.
4268 class Build_method_tables : public Traverse
4270 public:
4271 Build_method_tables(Gogo* gogo,
4272 const std::vector<Interface_type*>& interfaces)
4273 : Traverse(traverse_types),
4274 gogo_(gogo), interfaces_(interfaces)
4278 type(Type*);
4280 private:
4281 // The IR.
4282 Gogo* gogo_;
4283 // A list of locally defined interfaces which have hidden methods.
4284 const std::vector<Interface_type*>& interfaces_;
4287 // Build all required interface method tables for types. We need to
4288 // ensure that we have an interface method table for every interface
4289 // which has a hidden method, for every named type which implements
4290 // that interface. Normally we can just build interface method tables
4291 // as we need them. However, in some cases we can require an
4292 // interface method table for an interface defined in a different
4293 // package for a type defined in that package. If that interface and
4294 // type both use a hidden method, that is OK. However, we will not be
4295 // able to build that interface method table when we need it, because
4296 // the type's hidden method will be static. So we have to build it
4297 // here, and just refer it from other packages as needed.
4299 void
4300 Gogo::build_interface_method_tables()
4302 if (saw_errors())
4303 return;
4305 std::vector<Interface_type*> hidden_interfaces;
4306 hidden_interfaces.reserve(this->interface_types_.size());
4307 for (std::vector<Interface_type*>::const_iterator pi =
4308 this->interface_types_.begin();
4309 pi != this->interface_types_.end();
4310 ++pi)
4312 const Typed_identifier_list* methods = (*pi)->methods();
4313 if (methods == NULL)
4314 continue;
4315 for (Typed_identifier_list::const_iterator pm = methods->begin();
4316 pm != methods->end();
4317 ++pm)
4319 if (Gogo::is_hidden_name(pm->name()))
4321 hidden_interfaces.push_back(*pi);
4322 break;
4327 if (!hidden_interfaces.empty())
4329 // Now traverse the tree looking for all named types.
4330 Build_method_tables bmt(this, hidden_interfaces);
4331 this->traverse(&bmt);
4334 // We no longer need the list of interfaces.
4336 this->interface_types_.clear();
4339 // This is called for each type. For a named type, for each of the
4340 // interfaces with hidden methods that it implements, create the
4341 // method table.
4344 Build_method_tables::type(Type* type)
4346 Named_type* nt = type->named_type();
4347 Struct_type* st = type->struct_type();
4348 if (nt != NULL || st != NULL)
4350 Translate_context context(this->gogo_, NULL, NULL, NULL);
4351 for (std::vector<Interface_type*>::const_iterator p =
4352 this->interfaces_.begin();
4353 p != this->interfaces_.end();
4354 ++p)
4356 // We ask whether a pointer to the named type implements the
4357 // interface, because a pointer can implement more methods
4358 // than a value.
4359 if (nt != NULL)
4361 if ((*p)->implements_interface(Type::make_pointer_type(nt),
4362 NULL))
4364 nt->interface_method_table(*p, false)->get_backend(&context);
4365 nt->interface_method_table(*p, true)->get_backend(&context);
4368 else
4370 if ((*p)->implements_interface(Type::make_pointer_type(st),
4371 NULL))
4373 st->interface_method_table(*p, false)->get_backend(&context);
4374 st->interface_method_table(*p, true)->get_backend(&context);
4379 return TRAVERSE_CONTINUE;
4382 // Return an expression which allocates memory to hold values of type TYPE.
4384 Expression*
4385 Gogo::allocate_memory(Type* type, Location location)
4387 Expression* td = Expression::make_type_descriptor(type, location);
4388 Expression* size =
4389 Expression::make_type_info(type, Expression::TYPE_INFO_SIZE);
4390 return Runtime::make_call(Runtime::NEW, location, 2, td, size);
4393 // Traversal class used to check for return statements.
4395 class Check_return_statements_traverse : public Traverse
4397 public:
4398 Check_return_statements_traverse()
4399 : Traverse(traverse_functions)
4403 function(Named_object*);
4406 // Check that a function has a return statement if it needs one.
4409 Check_return_statements_traverse::function(Named_object* no)
4411 Function* func = no->func_value();
4412 const Function_type* fntype = func->type();
4413 const Typed_identifier_list* results = fntype->results();
4415 // We only need a return statement if there is a return value.
4416 if (results == NULL || results->empty())
4417 return TRAVERSE_CONTINUE;
4419 if (func->block()->may_fall_through())
4420 error_at(func->block()->end_location(),
4421 "missing return at end of function");
4423 return TRAVERSE_CONTINUE;
4426 // Check return statements.
4428 void
4429 Gogo::check_return_statements()
4431 Check_return_statements_traverse traverse;
4432 this->traverse(&traverse);
4435 // Work out the package priority. It is one more than the maximum
4436 // priority of an imported package.
4439 Gogo::package_priority() const
4441 int priority = 0;
4442 for (Packages::const_iterator p = this->packages_.begin();
4443 p != this->packages_.end();
4444 ++p)
4445 if (p->second->priority() > priority)
4446 priority = p->second->priority();
4447 return priority + 1;
4450 // Export identifiers as requested.
4452 void
4453 Gogo::do_exports()
4455 // For now we always stream to a section. Later we may want to
4456 // support streaming to a separate file.
4457 Stream_to_section stream;
4459 // Write out either the prefix or pkgpath depending on how we were
4460 // invoked.
4461 std::string prefix;
4462 std::string pkgpath;
4463 if (this->pkgpath_from_option_)
4464 pkgpath = this->pkgpath_;
4465 else if (this->prefix_from_option_)
4466 prefix = this->prefix_;
4467 else if (this->is_main_package())
4468 pkgpath = "main";
4469 else
4470 prefix = "go";
4472 Export exp(&stream);
4473 exp.register_builtin_types(this);
4474 exp.export_globals(this->package_name(),
4475 prefix,
4476 pkgpath,
4477 this->package_priority(),
4478 this->packages_,
4479 this->imports_,
4480 (this->need_init_fn_ && !this->is_main_package()
4481 ? this->get_init_fn_name()
4482 : ""),
4483 this->imported_init_fns_,
4484 this->package_->bindings());
4487 // Find the blocks in order to convert named types defined in blocks.
4489 class Convert_named_types : public Traverse
4491 public:
4492 Convert_named_types(Gogo* gogo)
4493 : Traverse(traverse_blocks),
4494 gogo_(gogo)
4497 protected:
4499 block(Block* block);
4501 private:
4502 Gogo* gogo_;
4506 Convert_named_types::block(Block* block)
4508 this->gogo_->convert_named_types_in_bindings(block->bindings());
4509 return TRAVERSE_CONTINUE;
4512 // Convert all named types to the backend representation. Since named
4513 // types can refer to other types, this needs to be done in the right
4514 // sequence, which is handled by Named_type::convert. Here we arrange
4515 // to call that for each named type.
4517 void
4518 Gogo::convert_named_types()
4520 this->convert_named_types_in_bindings(this->globals_);
4521 for (Packages::iterator p = this->packages_.begin();
4522 p != this->packages_.end();
4523 ++p)
4525 Package* package = p->second;
4526 this->convert_named_types_in_bindings(package->bindings());
4529 Convert_named_types cnt(this);
4530 this->traverse(&cnt);
4532 // Make all the builtin named types used for type descriptors, and
4533 // then convert them. They will only be written out if they are
4534 // needed.
4535 Type::make_type_descriptor_type();
4536 Type::make_type_descriptor_ptr_type();
4537 Function_type::make_function_type_descriptor_type();
4538 Pointer_type::make_pointer_type_descriptor_type();
4539 Struct_type::make_struct_type_descriptor_type();
4540 Array_type::make_array_type_descriptor_type();
4541 Array_type::make_slice_type_descriptor_type();
4542 Map_type::make_map_type_descriptor_type();
4543 Map_type::make_map_descriptor_type();
4544 Channel_type::make_chan_type_descriptor_type();
4545 Interface_type::make_interface_type_descriptor_type();
4546 Expression::make_func_descriptor_type();
4547 Type::convert_builtin_named_types(this);
4549 Runtime::convert_types(this);
4551 this->named_types_are_converted_ = true;
4554 // Convert all names types in a set of bindings.
4556 void
4557 Gogo::convert_named_types_in_bindings(Bindings* bindings)
4559 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
4560 p != bindings->end_definitions();
4561 ++p)
4563 if ((*p)->is_type())
4564 (*p)->type_value()->convert(this);
4568 // Class Function.
4570 Function::Function(Function_type* type, Named_object* enclosing, Block* block,
4571 Location location)
4572 : type_(type), enclosing_(enclosing), results_(NULL),
4573 closure_var_(NULL), block_(block), location_(location), labels_(),
4574 local_type_count_(0), descriptor_(NULL), fndecl_(NULL), defer_stack_(NULL),
4575 is_sink_(false), results_are_named_(false), nointerface_(false),
4576 is_unnamed_type_stub_method_(false), calls_recover_(false),
4577 is_recover_thunk_(false), has_recover_thunk_(false),
4578 calls_defer_retaddr_(false), is_type_specific_function_(false),
4579 in_unique_section_(false)
4583 // Create the named result variables.
4585 void
4586 Function::create_result_variables(Gogo* gogo)
4588 const Typed_identifier_list* results = this->type_->results();
4589 if (results == NULL || results->empty())
4590 return;
4592 if (!results->front().name().empty())
4593 this->results_are_named_ = true;
4595 this->results_ = new Results();
4596 this->results_->reserve(results->size());
4598 Block* block = this->block_;
4599 int index = 0;
4600 for (Typed_identifier_list::const_iterator p = results->begin();
4601 p != results->end();
4602 ++p, ++index)
4604 std::string name = p->name();
4605 if (name.empty() || Gogo::is_sink_name(name))
4607 static int result_counter;
4608 char buf[100];
4609 snprintf(buf, sizeof buf, "$ret%d", result_counter);
4610 ++result_counter;
4611 name = gogo->pack_hidden_name(buf, false);
4613 Result_variable* result = new Result_variable(p->type(), this, index,
4614 p->location());
4615 Named_object* no = block->bindings()->add_result_variable(name, result);
4616 if (no->is_result_variable())
4617 this->results_->push_back(no);
4618 else
4620 static int dummy_result_count;
4621 char buf[100];
4622 snprintf(buf, sizeof buf, "$dret%d", dummy_result_count);
4623 ++dummy_result_count;
4624 name = gogo->pack_hidden_name(buf, false);
4625 no = block->bindings()->add_result_variable(name, result);
4626 go_assert(no->is_result_variable());
4627 this->results_->push_back(no);
4632 // Update the named result variables when cloning a function which
4633 // calls recover.
4635 void
4636 Function::update_result_variables()
4638 if (this->results_ == NULL)
4639 return;
4641 for (Results::iterator p = this->results_->begin();
4642 p != this->results_->end();
4643 ++p)
4644 (*p)->result_var_value()->set_function(this);
4647 // Return the closure variable, creating it if necessary.
4649 Named_object*
4650 Function::closure_var()
4652 if (this->closure_var_ == NULL)
4654 go_assert(this->descriptor_ == NULL);
4655 // We don't know the type of the variable yet. We add fields as
4656 // we find them.
4657 Location loc = this->type_->location();
4658 Struct_field_list* sfl = new Struct_field_list;
4659 Type* struct_type = Type::make_struct_type(sfl, loc);
4660 Variable* var = new Variable(Type::make_pointer_type(struct_type),
4661 NULL, false, false, false, loc);
4662 var->set_is_used();
4663 var->set_is_closure();
4664 this->closure_var_ = Named_object::make_variable("$closure", NULL, var);
4665 // Note that the new variable is not in any binding contour.
4667 return this->closure_var_;
4670 // Set the type of the closure variable.
4672 void
4673 Function::set_closure_type()
4675 if (this->closure_var_ == NULL)
4676 return;
4677 Named_object* closure = this->closure_var_;
4678 Struct_type* st = closure->var_value()->type()->deref()->struct_type();
4680 // The first field of a closure is always a pointer to the function
4681 // code.
4682 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
4683 st->push_field(Struct_field(Typed_identifier(".$f", voidptr_type,
4684 this->location_)));
4686 unsigned int index = 1;
4687 for (Closure_fields::const_iterator p = this->closure_fields_.begin();
4688 p != this->closure_fields_.end();
4689 ++p, ++index)
4691 Named_object* no = p->first;
4692 char buf[20];
4693 snprintf(buf, sizeof buf, "%u", index);
4694 std::string n = no->name() + buf;
4695 Type* var_type;
4696 if (no->is_variable())
4697 var_type = no->var_value()->type();
4698 else
4699 var_type = no->result_var_value()->type();
4700 Type* field_type = Type::make_pointer_type(var_type);
4701 st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
4705 // Return whether this function is a method.
4707 bool
4708 Function::is_method() const
4710 return this->type_->is_method();
4713 // Add a label definition.
4715 Label*
4716 Function::add_label_definition(Gogo* gogo, const std::string& label_name,
4717 Location location)
4719 Label* lnull = NULL;
4720 std::pair<Labels::iterator, bool> ins =
4721 this->labels_.insert(std::make_pair(label_name, lnull));
4722 Label* label;
4723 if (label_name == "_")
4725 label = Label::create_dummy_label();
4726 if (ins.second)
4727 ins.first->second = label;
4729 else if (ins.second)
4731 // This is a new label.
4732 label = new Label(label_name);
4733 ins.first->second = label;
4735 else
4737 // The label was already in the hash table.
4738 label = ins.first->second;
4739 if (label->is_defined())
4741 error_at(location, "label %qs already defined",
4742 Gogo::message_name(label_name).c_str());
4743 inform(label->location(), "previous definition of %qs was here",
4744 Gogo::message_name(label_name).c_str());
4745 return new Label(label_name);
4749 label->define(location, gogo->bindings_snapshot(location));
4751 // Issue any errors appropriate for any previous goto's to this
4752 // label.
4753 const std::vector<Bindings_snapshot*>& refs(label->refs());
4754 for (std::vector<Bindings_snapshot*>::const_iterator p = refs.begin();
4755 p != refs.end();
4756 ++p)
4757 (*p)->check_goto_to(gogo->current_block());
4758 label->clear_refs();
4760 return label;
4763 // Add a reference to a label.
4765 Label*
4766 Function::add_label_reference(Gogo* gogo, const std::string& label_name,
4767 Location location, bool issue_goto_errors)
4769 Label* lnull = NULL;
4770 std::pair<Labels::iterator, bool> ins =
4771 this->labels_.insert(std::make_pair(label_name, lnull));
4772 Label* label;
4773 if (!ins.second)
4775 // The label was already in the hash table.
4776 label = ins.first->second;
4778 else
4780 go_assert(ins.first->second == NULL);
4781 label = new Label(label_name);
4782 ins.first->second = label;
4785 label->set_is_used();
4787 if (issue_goto_errors)
4789 Bindings_snapshot* snapshot = label->snapshot();
4790 if (snapshot != NULL)
4791 snapshot->check_goto_from(gogo->current_block(), location);
4792 else
4793 label->add_snapshot_ref(gogo->bindings_snapshot(location));
4796 return label;
4799 // Warn about labels that are defined but not used.
4801 void
4802 Function::check_labels() const
4804 for (Labels::const_iterator p = this->labels_.begin();
4805 p != this->labels_.end();
4806 p++)
4808 Label* label = p->second;
4809 if (!label->is_used())
4810 error_at(label->location(), "label %qs defined and not used",
4811 Gogo::message_name(label->name()).c_str());
4815 // Swap one function with another. This is used when building the
4816 // thunk we use to call a function which calls recover. It may not
4817 // work for any other case.
4819 void
4820 Function::swap_for_recover(Function *x)
4822 go_assert(this->enclosing_ == x->enclosing_);
4823 std::swap(this->results_, x->results_);
4824 std::swap(this->closure_var_, x->closure_var_);
4825 std::swap(this->block_, x->block_);
4826 go_assert(this->location_ == x->location_);
4827 go_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
4828 go_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
4831 // Traverse the tree.
4834 Function::traverse(Traverse* traverse)
4836 unsigned int traverse_mask = traverse->traverse_mask();
4838 if ((traverse_mask
4839 & (Traverse::traverse_types | Traverse::traverse_expressions))
4840 != 0)
4842 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
4843 return TRAVERSE_EXIT;
4846 // FIXME: We should check traverse_functions here if nested
4847 // functions are stored in block bindings.
4848 if (this->block_ != NULL
4849 && (traverse_mask
4850 & (Traverse::traverse_variables
4851 | Traverse::traverse_constants
4852 | Traverse::traverse_blocks
4853 | Traverse::traverse_statements
4854 | Traverse::traverse_expressions
4855 | Traverse::traverse_types)) != 0)
4857 if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
4858 return TRAVERSE_EXIT;
4861 return TRAVERSE_CONTINUE;
4864 // Work out types for unspecified variables and constants.
4866 void
4867 Function::determine_types()
4869 if (this->block_ != NULL)
4870 this->block_->determine_types();
4873 // Return the function descriptor, the value you get when you refer to
4874 // the function in Go code without calling it.
4876 Expression*
4877 Function::descriptor(Gogo*, Named_object* no)
4879 go_assert(!this->is_method());
4880 go_assert(this->closure_var_ == NULL);
4881 if (this->descriptor_ == NULL)
4882 this->descriptor_ = Expression::make_func_descriptor(no);
4883 return this->descriptor_;
4886 // Get a pointer to the variable representing the defer stack for this
4887 // function, making it if necessary. The value of the variable is set
4888 // by the runtime routines to true if the function is returning,
4889 // rather than panicing through. A pointer to this variable is used
4890 // as a marker for the functions on the defer stack associated with
4891 // this function. A function-specific variable permits inlining a
4892 // function which uses defer.
4894 Expression*
4895 Function::defer_stack(Location location)
4897 if (this->defer_stack_ == NULL)
4899 Type* t = Type::lookup_bool_type();
4900 Expression* n = Expression::make_boolean(false, location);
4901 this->defer_stack_ = Statement::make_temporary(t, n, location);
4902 this->defer_stack_->set_is_address_taken();
4904 Expression* ref = Expression::make_temporary_reference(this->defer_stack_,
4905 location);
4906 return Expression::make_unary(OPERATOR_AND, ref, location);
4909 // Export the function.
4911 void
4912 Function::export_func(Export* exp, const std::string& name) const
4914 Function::export_func_with_type(exp, name, this->type_);
4917 // Export a function with a type.
4919 void
4920 Function::export_func_with_type(Export* exp, const std::string& name,
4921 const Function_type* fntype)
4923 exp->write_c_string("func ");
4925 if (fntype->is_method())
4927 exp->write_c_string("(");
4928 const Typed_identifier* receiver = fntype->receiver();
4929 exp->write_name(receiver->name());
4931 if (fntype->has_escape_info())
4933 exp->write_c_string(" ");
4934 exp->write_escape(fntype->receiver_escape_state());
4937 exp->write_c_string(" ");
4938 exp->write_type(receiver->type());
4939 exp->write_c_string(") ");
4942 exp->write_string(name);
4944 exp->write_c_string(" (");
4945 const Typed_identifier_list* parameters = fntype->parameters();
4946 if (parameters != NULL)
4948 size_t i = 0;
4949 bool is_varargs = fntype->is_varargs();
4950 bool first = true;
4951 for (Typed_identifier_list::const_iterator p = parameters->begin();
4952 p != parameters->end();
4953 ++p, ++i)
4955 if (first)
4956 first = false;
4957 else
4958 exp->write_c_string(", ");
4959 exp->write_name(p->name());
4961 if (fntype->has_escape_info())
4963 exp->write_c_string(" ");
4964 exp->write_escape(fntype->parameter_escape_states()->at(i));
4967 exp->write_c_string(" ");
4968 if (!is_varargs || p + 1 != parameters->end())
4969 exp->write_type(p->type());
4970 else
4972 exp->write_c_string("...");
4973 exp->write_type(p->type()->array_type()->element_type());
4977 exp->write_c_string(")");
4979 const Typed_identifier_list* results = fntype->results();
4980 if (results != NULL)
4982 if (results->size() == 1 && results->begin()->name().empty())
4984 exp->write_c_string(" ");
4985 exp->write_type(results->begin()->type());
4987 else
4989 exp->write_c_string(" (");
4990 bool first = true;
4991 for (Typed_identifier_list::const_iterator p = results->begin();
4992 p != results->end();
4993 ++p)
4995 if (first)
4996 first = false;
4997 else
4998 exp->write_c_string(", ");
4999 exp->write_name(p->name());
5000 exp->write_c_string(" ");
5001 exp->write_type(p->type());
5003 exp->write_c_string(")");
5006 exp->write_c_string(";\n");
5009 // Import a function.
5011 void
5012 Function::import_func(Import* imp, std::string* pname,
5013 Typed_identifier** preceiver,
5014 Node::Escapement_lattice* rcvr_escape,
5015 Typed_identifier_list** pparameters,
5016 Node::Escape_states** pparam_escapes,
5017 Typed_identifier_list** presults,
5018 bool* is_varargs, bool* has_escape_info)
5020 *has_escape_info = false;
5022 imp->require_c_string("func ");
5024 *preceiver = NULL;
5025 *rcvr_escape = Node::ESCAPE_NONE;
5026 if (imp->peek_char() == '(')
5028 imp->require_c_string("(");
5029 std::string name = imp->read_name();
5031 if (imp->match_c_string(" <escape")){
5032 *has_escape_info = true;
5033 imp->require_c_string(" ");
5034 *rcvr_escape = imp->read_escape_info();
5037 imp->require_c_string(" ");
5038 Type* rtype = imp->read_type();
5039 *preceiver = new Typed_identifier(name, rtype, imp->location());
5040 imp->require_c_string(") ");
5043 *pname = imp->read_identifier();
5045 Typed_identifier_list* parameters;
5046 Node::Escape_states* param_escapes;
5047 *is_varargs = false;
5048 imp->require_c_string(" (");
5049 if (imp->peek_char() == ')')
5051 parameters = NULL;
5052 param_escapes = NULL;
5054 else
5056 parameters = new Typed_identifier_list();
5057 param_escapes = new Node::Escape_states();
5058 while (true)
5060 std::string name = imp->read_name();
5061 if (imp->match_c_string(" <escape")){
5062 *has_escape_info = true;
5063 imp->require_c_string(" ");
5064 param_escapes->push_back(imp->read_escape_info());
5067 imp->require_c_string(" ");
5069 if (imp->match_c_string("..."))
5071 imp->advance(3);
5072 *is_varargs = true;
5075 Type* ptype = imp->read_type();
5076 if (*is_varargs)
5077 ptype = Type::make_array_type(ptype, NULL);
5078 parameters->push_back(Typed_identifier(name, ptype,
5079 imp->location()));
5080 if (imp->peek_char() != ',')
5081 break;
5082 go_assert(!*is_varargs);
5083 imp->require_c_string(", ");
5086 imp->require_c_string(")");
5087 *pparameters = parameters;
5088 *pparam_escapes = param_escapes;
5090 Typed_identifier_list* results;
5091 if (imp->peek_char() != ' ')
5092 results = NULL;
5093 else
5095 results = new Typed_identifier_list();
5096 imp->require_c_string(" ");
5097 if (imp->peek_char() != '(')
5099 Type* rtype = imp->read_type();
5100 results->push_back(Typed_identifier("", rtype, imp->location()));
5102 else
5104 imp->require_c_string("(");
5105 while (true)
5107 std::string name = imp->read_name();
5108 imp->require_c_string(" ");
5109 Type* rtype = imp->read_type();
5110 results->push_back(Typed_identifier(name, rtype,
5111 imp->location()));
5112 if (imp->peek_char() != ',')
5113 break;
5114 imp->require_c_string(", ");
5116 imp->require_c_string(")");
5119 imp->require_c_string(";\n");
5120 *presults = results;
5123 // Get the backend representation.
5125 Bfunction*
5126 Function::get_or_make_decl(Gogo* gogo, Named_object* no)
5128 if (this->fndecl_ == NULL)
5130 std::string asm_name;
5131 bool is_visible = false;
5132 if (no->package() != NULL)
5134 else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
5136 else if (Gogo::unpack_hidden_name(no->name()) == "init"
5137 && !this->type_->is_method())
5139 else if (no->name() == gogo->get_init_fn_name())
5141 is_visible = true;
5142 asm_name = no->name();
5144 else if (Gogo::unpack_hidden_name(no->name()) == "main"
5145 && gogo->is_main_package())
5146 is_visible = true;
5147 // Methods have to be public even if they are hidden because
5148 // they can be pulled into type descriptors when using
5149 // anonymous fields.
5150 else if (!Gogo::is_hidden_name(no->name())
5151 || this->type_->is_method())
5153 if (!this->is_unnamed_type_stub_method_)
5154 is_visible = true;
5155 std::string pkgpath = gogo->pkgpath_symbol();
5156 if (this->type_->is_method()
5157 && Gogo::is_hidden_name(no->name())
5158 && Gogo::hidden_name_pkgpath(no->name()) != gogo->pkgpath())
5160 // This is a method we created for an unexported
5161 // method of an imported embedded type. We need to
5162 // use the pkgpath of the imported package to avoid
5163 // a possible name collision. See bug478 for a test
5164 // case.
5165 pkgpath = Gogo::hidden_name_pkgpath(no->name());
5166 pkgpath = Gogo::pkgpath_for_symbol(pkgpath);
5169 asm_name = pkgpath;
5170 asm_name.append(1, '.');
5171 asm_name.append(Gogo::unpack_hidden_name(no->name()));
5172 if (this->type_->is_method())
5174 asm_name.append(1, '.');
5175 Type* rtype = this->type_->receiver()->type();
5176 asm_name.append(rtype->mangled_name(gogo));
5180 // If a function calls the predeclared recover function, we
5181 // can't inline it, because recover behaves differently in a
5182 // function passed directly to defer. If this is a recover
5183 // thunk that we built to test whether a function can be
5184 // recovered, we can't inline it, because that will mess up
5185 // our return address comparison.
5186 bool is_inlinable = !(this->calls_recover_ || this->is_recover_thunk_);
5188 // If a function calls __go_set_defer_retaddr, then mark it as
5189 // uninlinable. This prevents the GCC backend from splitting
5190 // the function; splitting the function is a bad idea because we
5191 // want the return address label to be in the same function as
5192 // the call.
5193 if (this->calls_defer_retaddr_)
5194 is_inlinable = false;
5196 // If this is a thunk created to call a function which calls
5197 // the predeclared recover function, we need to disable
5198 // stack splitting for the thunk.
5199 bool disable_split_stack = this->is_recover_thunk_;
5201 // This should go into a unique section if that has been
5202 // requested elsewhere, or if this is a nointerface function.
5203 // We want to put a nointerface function into a unique section
5204 // because there is a good chance that the linker garbage
5205 // collection can discard it.
5206 bool in_unique_section = this->in_unique_section_ || this->nointerface_;
5208 Btype* functype = this->type_->get_backend_fntype(gogo);
5209 this->fndecl_ =
5210 gogo->backend()->function(functype, no->get_id(gogo), asm_name,
5211 is_visible, false, is_inlinable,
5212 disable_split_stack, in_unique_section,
5213 this->location());
5215 return this->fndecl_;
5218 // Get the backend representation.
5220 Bfunction*
5221 Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no)
5223 if (this->fndecl_ == NULL)
5225 // Let Go code use an asm declaration to pick up a builtin
5226 // function.
5227 if (!this->asm_name_.empty())
5229 Bfunction* builtin_decl =
5230 gogo->backend()->lookup_builtin(this->asm_name_);
5231 if (builtin_decl != NULL)
5233 this->fndecl_ = builtin_decl;
5234 return this->fndecl_;
5238 std::string asm_name;
5239 if (this->asm_name_.empty())
5241 asm_name = (no->package() == NULL
5242 ? gogo->pkgpath_symbol()
5243 : no->package()->pkgpath_symbol());
5244 asm_name.append(1, '.');
5245 asm_name.append(Gogo::unpack_hidden_name(no->name()));
5246 if (this->fntype_->is_method())
5248 asm_name.append(1, '.');
5249 Type* rtype = this->fntype_->receiver()->type();
5250 asm_name.append(rtype->mangled_name(gogo));
5254 Btype* functype = this->fntype_->get_backend_fntype(gogo);
5255 this->fndecl_ =
5256 gogo->backend()->function(functype, no->get_id(gogo), asm_name,
5257 true, true, true, false, false,
5258 this->location());
5261 return this->fndecl_;
5264 // Build the descriptor for a function declaration. This won't
5265 // necessarily happen if the package has just a declaration for the
5266 // function and no other reference to it, but we may still need the
5267 // descriptor for references from other packages.
5268 void
5269 Function_declaration::build_backend_descriptor(Gogo* gogo)
5271 if (this->descriptor_ != NULL)
5273 Translate_context context(gogo, NULL, NULL, NULL);
5274 this->descriptor_->get_backend(&context);
5278 // Return the function's decl after it has been built.
5280 Bfunction*
5281 Function::get_decl() const
5283 go_assert(this->fndecl_ != NULL);
5284 return this->fndecl_;
5287 // Build the backend representation for the function code.
5289 void
5290 Function::build(Gogo* gogo, Named_object* named_function)
5292 Translate_context context(gogo, named_function, NULL, NULL);
5294 // A list of parameter variables for this function.
5295 std::vector<Bvariable*> param_vars;
5297 // Variables that need to be declared for this function and their
5298 // initial values.
5299 std::vector<Bvariable*> vars;
5300 std::vector<Bexpression*> var_inits;
5301 for (Bindings::const_definitions_iterator p =
5302 this->block_->bindings()->begin_definitions();
5303 p != this->block_->bindings()->end_definitions();
5304 ++p)
5306 Location loc = (*p)->location();
5307 if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
5309 Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
5310 Bvariable* parm_bvar = bvar;
5312 // We always pass the receiver to a method as a pointer. If
5313 // the receiver is declared as a non-pointer type, then we
5314 // copy the value into a local variable.
5315 if ((*p)->var_value()->is_receiver()
5316 && (*p)->var_value()->type()->points_to() == NULL)
5318 std::string name = (*p)->name() + ".pointer";
5319 Type* var_type = (*p)->var_value()->type();
5320 Variable* parm_var =
5321 new Variable(Type::make_pointer_type(var_type), NULL, false,
5322 true, false, loc);
5323 Named_object* parm_no =
5324 Named_object::make_variable(name, NULL, parm_var);
5325 parm_bvar = parm_no->get_backend_variable(gogo, named_function);
5327 vars.push_back(bvar);
5328 Expression* parm_ref =
5329 Expression::make_var_reference(parm_no, loc);
5330 parm_ref = Expression::make_unary(OPERATOR_MULT, parm_ref, loc);
5331 if ((*p)->var_value()->is_in_heap())
5332 parm_ref = Expression::make_heap_expression(parm_ref, loc);
5333 var_inits.push_back(parm_ref->get_backend(&context));
5335 else if ((*p)->var_value()->is_in_heap())
5337 // If we take the address of a parameter, then we need
5338 // to copy it into the heap.
5339 std::string parm_name = (*p)->name() + ".param";
5340 Variable* parm_var = new Variable((*p)->var_value()->type(), NULL,
5341 false, true, false, loc);
5342 Named_object* parm_no =
5343 Named_object::make_variable(parm_name, NULL, parm_var);
5344 parm_bvar = parm_no->get_backend_variable(gogo, named_function);
5346 vars.push_back(bvar);
5347 Expression* var_ref =
5348 Expression::make_var_reference(parm_no, loc);
5349 var_ref = Expression::make_heap_expression(var_ref, loc);
5350 var_inits.push_back(var_ref->get_backend(&context));
5352 param_vars.push_back(parm_bvar);
5354 else if ((*p)->is_result_variable())
5356 Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
5358 Type* type = (*p)->result_var_value()->type();
5359 Bexpression* init;
5360 if (!(*p)->result_var_value()->is_in_heap())
5362 Btype* btype = type->get_backend(gogo);
5363 init = gogo->backend()->zero_expression(btype);
5365 else
5366 init = Expression::make_allocation(type,
5367 loc)->get_backend(&context);
5369 vars.push_back(bvar);
5370 var_inits.push_back(init);
5373 if (!gogo->backend()->function_set_parameters(this->fndecl_, param_vars))
5375 go_assert(saw_errors());
5376 return;
5379 // If we need a closure variable, make sure to create it.
5380 // It gets installed in the function as a side effect of creation.
5381 if (this->closure_var_ != NULL)
5383 go_assert(this->closure_var_->var_value()->is_closure());
5384 this->closure_var_->get_backend_variable(gogo, named_function);
5387 if (this->block_ != NULL)
5389 // Declare variables if necessary.
5390 Bblock* var_decls = NULL;
5392 Bstatement* defer_init = NULL;
5393 if (!vars.empty() || this->defer_stack_ != NULL)
5395 var_decls =
5396 gogo->backend()->block(this->fndecl_, NULL, vars,
5397 this->block_->start_location(),
5398 this->block_->end_location());
5400 if (this->defer_stack_ != NULL)
5402 Translate_context dcontext(gogo, named_function, this->block_,
5403 var_decls);
5404 defer_init = this->defer_stack_->get_backend(&dcontext);
5408 // Build the backend representation for all the statements in the
5409 // function.
5410 Translate_context context(gogo, named_function, NULL, NULL);
5411 Bblock* code_block = this->block_->get_backend(&context);
5413 // Initialize variables if necessary.
5414 std::vector<Bstatement*> init;
5415 go_assert(vars.size() == var_inits.size());
5416 for (size_t i = 0; i < vars.size(); ++i)
5418 Bstatement* init_stmt =
5419 gogo->backend()->init_statement(vars[i], var_inits[i]);
5420 init.push_back(init_stmt);
5422 if (defer_init != NULL)
5423 init.push_back(defer_init);
5424 Bstatement* var_init = gogo->backend()->statement_list(init);
5426 // Initialize all variables before executing this code block.
5427 Bstatement* code_stmt = gogo->backend()->block_statement(code_block);
5428 code_stmt = gogo->backend()->compound_statement(var_init, code_stmt);
5430 // If we have a defer stack, initialize it at the start of a
5431 // function.
5432 Bstatement* except = NULL;
5433 Bstatement* fini = NULL;
5434 if (defer_init != NULL)
5436 // Clean up the defer stack when we leave the function.
5437 this->build_defer_wrapper(gogo, named_function, &except, &fini);
5439 // Wrap the code for this function in an exception handler to handle
5440 // defer calls.
5441 code_stmt =
5442 gogo->backend()->exception_handler_statement(code_stmt,
5443 except, fini,
5444 this->location_);
5447 // Stick the code into the block we built for the receiver, if
5448 // we built one.
5449 if (var_decls != NULL)
5451 std::vector<Bstatement*> code_stmt_list(1, code_stmt);
5452 gogo->backend()->block_add_statements(var_decls, code_stmt_list);
5453 code_stmt = gogo->backend()->block_statement(var_decls);
5456 if (!gogo->backend()->function_set_body(this->fndecl_, code_stmt))
5458 go_assert(saw_errors());
5459 return;
5463 // If we created a descriptor for the function, make sure we emit it.
5464 if (this->descriptor_ != NULL)
5466 Translate_context context(gogo, NULL, NULL, NULL);
5467 this->descriptor_->get_backend(&context);
5471 // Build the wrappers around function code needed if the function has
5472 // any defer statements. This sets *EXCEPT to an exception handler
5473 // and *FINI to a finally handler.
5475 void
5476 Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
5477 Bstatement** except, Bstatement** fini)
5479 Location end_loc = this->block_->end_location();
5481 // Add an exception handler. This is used if a panic occurs. Its
5482 // purpose is to stop the stack unwinding if a deferred function
5483 // calls recover. There are more details in
5484 // libgo/runtime/go-unwind.c.
5486 std::vector<Bstatement*> stmts;
5487 Expression* call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
5488 this->defer_stack(end_loc));
5489 Translate_context context(gogo, named_function, NULL, NULL);
5490 Bexpression* defer = call->get_backend(&context);
5491 stmts.push_back(gogo->backend()->expression_statement(defer));
5493 Bstatement* ret_bstmt = this->return_value(gogo, named_function, end_loc);
5494 if (ret_bstmt != NULL)
5495 stmts.push_back(ret_bstmt);
5497 go_assert(*except == NULL);
5498 *except = gogo->backend()->statement_list(stmts);
5500 call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
5501 this->defer_stack(end_loc));
5502 defer = call->get_backend(&context);
5504 call = Runtime::make_call(Runtime::UNDEFER, end_loc, 1,
5505 this->defer_stack(end_loc));
5506 Bexpression* undefer = call->get_backend(&context);
5507 Bstatement* function_defer =
5508 gogo->backend()->function_defer_statement(this->fndecl_, undefer, defer,
5509 end_loc);
5510 stmts = std::vector<Bstatement*>(1, function_defer);
5511 if (this->type_->results() != NULL
5512 && !this->type_->results()->empty()
5513 && !this->type_->results()->front().name().empty())
5515 // If the result variables are named, and we are returning from
5516 // this function rather than panicing through it, we need to
5517 // return them again, because they might have been changed by a
5518 // defer function. The runtime routines set the defer_stack
5519 // variable to true if we are returning from this function.
5521 ret_bstmt = this->return_value(gogo, named_function, end_loc);
5522 Bexpression* nil = Expression::make_nil(end_loc)->get_backend(&context);
5523 Bexpression* ret =
5524 gogo->backend()->compound_expression(ret_bstmt, nil, end_loc);
5525 Expression* ref =
5526 Expression::make_temporary_reference(this->defer_stack_, end_loc);
5527 Bexpression* bref = ref->get_backend(&context);
5528 ret = gogo->backend()->conditional_expression(NULL, bref, ret, NULL,
5529 end_loc);
5530 stmts.push_back(gogo->backend()->expression_statement(ret));
5533 go_assert(*fini == NULL);
5534 *fini = gogo->backend()->statement_list(stmts);
5537 // Return the statement that assigns values to this function's result struct.
5539 Bstatement*
5540 Function::return_value(Gogo* gogo, Named_object* named_function,
5541 Location location) const
5543 const Typed_identifier_list* results = this->type_->results();
5544 if (results == NULL || results->empty())
5545 return NULL;
5547 go_assert(this->results_ != NULL);
5548 if (this->results_->size() != results->size())
5550 go_assert(saw_errors());
5551 return gogo->backend()->error_statement();
5554 std::vector<Bexpression*> vals(results->size());
5555 for (size_t i = 0; i < vals.size(); ++i)
5557 Named_object* no = (*this->results_)[i];
5558 Bvariable* bvar = no->get_backend_variable(gogo, named_function);
5559 Bexpression* val = gogo->backend()->var_expression(bvar, location);
5560 if (no->result_var_value()->is_in_heap())
5562 Btype* bt = no->result_var_value()->type()->get_backend(gogo);
5563 val = gogo->backend()->indirect_expression(bt, val, true, location);
5565 vals[i] = val;
5567 return gogo->backend()->return_statement(this->fndecl_, vals, location);
5570 // Class Block.
5572 Block::Block(Block* enclosing, Location location)
5573 : enclosing_(enclosing), statements_(),
5574 bindings_(new Bindings(enclosing == NULL
5575 ? NULL
5576 : enclosing->bindings())),
5577 start_location_(location),
5578 end_location_(UNKNOWN_LOCATION)
5582 // Add a statement to a block.
5584 void
5585 Block::add_statement(Statement* statement)
5587 this->statements_.push_back(statement);
5590 // Add a statement to the front of a block. This is slow but is only
5591 // used for reference counts of parameters.
5593 void
5594 Block::add_statement_at_front(Statement* statement)
5596 this->statements_.insert(this->statements_.begin(), statement);
5599 // Replace a statement in a block.
5601 void
5602 Block::replace_statement(size_t index, Statement* s)
5604 go_assert(index < this->statements_.size());
5605 this->statements_[index] = s;
5608 // Add a statement before another statement.
5610 void
5611 Block::insert_statement_before(size_t index, Statement* s)
5613 go_assert(index < this->statements_.size());
5614 this->statements_.insert(this->statements_.begin() + index, s);
5617 // Add a statement after another statement.
5619 void
5620 Block::insert_statement_after(size_t index, Statement* s)
5622 go_assert(index < this->statements_.size());
5623 this->statements_.insert(this->statements_.begin() + index + 1, s);
5626 // Traverse the tree.
5629 Block::traverse(Traverse* traverse)
5631 unsigned int traverse_mask = traverse->traverse_mask();
5633 if ((traverse_mask & Traverse::traverse_blocks) != 0)
5635 int t = traverse->block(this);
5636 if (t == TRAVERSE_EXIT)
5637 return TRAVERSE_EXIT;
5638 else if (t == TRAVERSE_SKIP_COMPONENTS)
5639 return TRAVERSE_CONTINUE;
5642 if ((traverse_mask
5643 & (Traverse::traverse_variables
5644 | Traverse::traverse_constants
5645 | Traverse::traverse_expressions
5646 | Traverse::traverse_types)) != 0)
5648 const unsigned int e_or_t = (Traverse::traverse_expressions
5649 | Traverse::traverse_types);
5650 const unsigned int e_or_t_or_s = (e_or_t
5651 | Traverse::traverse_statements);
5652 for (Bindings::const_definitions_iterator pb =
5653 this->bindings_->begin_definitions();
5654 pb != this->bindings_->end_definitions();
5655 ++pb)
5657 int t = TRAVERSE_CONTINUE;
5658 switch ((*pb)->classification())
5660 case Named_object::NAMED_OBJECT_CONST:
5661 if ((traverse_mask & Traverse::traverse_constants) != 0)
5662 t = traverse->constant(*pb, false);
5663 if (t == TRAVERSE_CONTINUE
5664 && (traverse_mask & e_or_t) != 0)
5666 Type* tc = (*pb)->const_value()->type();
5667 if (tc != NULL
5668 && Type::traverse(tc, traverse) == TRAVERSE_EXIT)
5669 return TRAVERSE_EXIT;
5670 t = (*pb)->const_value()->traverse_expression(traverse);
5672 break;
5674 case Named_object::NAMED_OBJECT_VAR:
5675 case Named_object::NAMED_OBJECT_RESULT_VAR:
5676 if ((traverse_mask & Traverse::traverse_variables) != 0)
5677 t = traverse->variable(*pb);
5678 if (t == TRAVERSE_CONTINUE
5679 && (traverse_mask & e_or_t) != 0)
5681 if ((*pb)->is_result_variable()
5682 || (*pb)->var_value()->has_type())
5684 Type* tv = ((*pb)->is_variable()
5685 ? (*pb)->var_value()->type()
5686 : (*pb)->result_var_value()->type());
5687 if (tv != NULL
5688 && Type::traverse(tv, traverse) == TRAVERSE_EXIT)
5689 return TRAVERSE_EXIT;
5692 if (t == TRAVERSE_CONTINUE
5693 && (traverse_mask & e_or_t_or_s) != 0
5694 && (*pb)->is_variable())
5695 t = (*pb)->var_value()->traverse_expression(traverse,
5696 traverse_mask);
5697 break;
5699 case Named_object::NAMED_OBJECT_FUNC:
5700 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
5701 go_unreachable();
5703 case Named_object::NAMED_OBJECT_TYPE:
5704 if ((traverse_mask & e_or_t) != 0)
5705 t = Type::traverse((*pb)->type_value(), traverse);
5706 break;
5708 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
5709 case Named_object::NAMED_OBJECT_UNKNOWN:
5710 case Named_object::NAMED_OBJECT_ERRONEOUS:
5711 break;
5713 case Named_object::NAMED_OBJECT_PACKAGE:
5714 case Named_object::NAMED_OBJECT_SINK:
5715 go_unreachable();
5717 default:
5718 go_unreachable();
5721 if (t == TRAVERSE_EXIT)
5722 return TRAVERSE_EXIT;
5726 // No point in checking traverse_mask here--if we got here we always
5727 // want to walk the statements. The traversal can insert new
5728 // statements before or after the current statement. Inserting
5729 // statements before the current statement requires updating I via
5730 // the pointer; those statements will not be traversed. Any new
5731 // statements inserted after the current statement will be traversed
5732 // in their turn.
5733 for (size_t i = 0; i < this->statements_.size(); ++i)
5735 if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
5736 return TRAVERSE_EXIT;
5739 return TRAVERSE_CONTINUE;
5742 // Work out types for unspecified variables and constants.
5744 void
5745 Block::determine_types()
5747 for (Bindings::const_definitions_iterator pb =
5748 this->bindings_->begin_definitions();
5749 pb != this->bindings_->end_definitions();
5750 ++pb)
5752 if ((*pb)->is_variable())
5753 (*pb)->var_value()->determine_type();
5754 else if ((*pb)->is_const())
5755 (*pb)->const_value()->determine_type();
5758 for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
5759 ps != this->statements_.end();
5760 ++ps)
5761 (*ps)->determine_types();
5764 // Return true if the statements in this block may fall through.
5766 bool
5767 Block::may_fall_through() const
5769 if (this->statements_.empty())
5770 return true;
5771 return this->statements_.back()->may_fall_through();
5774 // Convert a block to the backend representation.
5776 Bblock*
5777 Block::get_backend(Translate_context* context)
5779 Gogo* gogo = context->gogo();
5780 Named_object* function = context->function();
5781 std::vector<Bvariable*> vars;
5782 vars.reserve(this->bindings_->size_definitions());
5783 for (Bindings::const_definitions_iterator pv =
5784 this->bindings_->begin_definitions();
5785 pv != this->bindings_->end_definitions();
5786 ++pv)
5788 if ((*pv)->is_variable() && !(*pv)->var_value()->is_parameter())
5789 vars.push_back((*pv)->get_backend_variable(gogo, function));
5792 go_assert(function != NULL);
5793 Bfunction* bfunction =
5794 function->func_value()->get_or_make_decl(gogo, function);
5795 Bblock* ret = context->backend()->block(bfunction, context->bblock(),
5796 vars, this->start_location_,
5797 this->end_location_);
5799 Translate_context subcontext(gogo, function, this, ret);
5800 std::vector<Bstatement*> bstatements;
5801 bstatements.reserve(this->statements_.size());
5802 for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
5803 p != this->statements_.end();
5804 ++p)
5805 bstatements.push_back((*p)->get_backend(&subcontext));
5807 context->backend()->block_add_statements(ret, bstatements);
5809 return ret;
5812 // Class Bindings_snapshot.
5814 Bindings_snapshot::Bindings_snapshot(const Block* b, Location location)
5815 : block_(b), counts_(), location_(location)
5817 while (b != NULL)
5819 this->counts_.push_back(b->bindings()->size_definitions());
5820 b = b->enclosing();
5824 // Report errors appropriate for a goto from B to this.
5826 void
5827 Bindings_snapshot::check_goto_from(const Block* b, Location loc)
5829 size_t dummy;
5830 if (!this->check_goto_block(loc, b, this->block_, &dummy))
5831 return;
5832 this->check_goto_defs(loc, this->block_,
5833 this->block_->bindings()->size_definitions(),
5834 this->counts_[0]);
5837 // Report errors appropriate for a goto from this to B.
5839 void
5840 Bindings_snapshot::check_goto_to(const Block* b)
5842 size_t index;
5843 if (!this->check_goto_block(this->location_, this->block_, b, &index))
5844 return;
5845 this->check_goto_defs(this->location_, b, this->counts_[index],
5846 b->bindings()->size_definitions());
5849 // Report errors appropriate for a goto at LOC from BFROM to BTO.
5850 // Return true if all is well, false if we reported an error. If this
5851 // returns true, it sets *PINDEX to the number of blocks BTO is above
5852 // BFROM.
5854 bool
5855 Bindings_snapshot::check_goto_block(Location loc, const Block* bfrom,
5856 const Block* bto, size_t* pindex)
5858 // It is an error if BTO is not either BFROM or above BFROM.
5859 size_t index = 0;
5860 for (const Block* pb = bfrom; pb != bto; pb = pb->enclosing(), ++index)
5862 if (pb == NULL)
5864 error_at(loc, "goto jumps into block");
5865 inform(bto->start_location(), "goto target block starts here");
5866 return false;
5869 *pindex = index;
5870 return true;
5873 // Report errors appropriate for a goto at LOC ending at BLOCK, where
5874 // CFROM is the number of names defined at the point of the goto and
5875 // CTO is the number of names defined at the point of the label.
5877 void
5878 Bindings_snapshot::check_goto_defs(Location loc, const Block* block,
5879 size_t cfrom, size_t cto)
5881 if (cfrom < cto)
5883 Bindings::const_definitions_iterator p =
5884 block->bindings()->begin_definitions();
5885 for (size_t i = 0; i < cfrom; ++i)
5887 go_assert(p != block->bindings()->end_definitions());
5888 ++p;
5890 go_assert(p != block->bindings()->end_definitions());
5892 std::string n = (*p)->message_name();
5893 error_at(loc, "goto jumps over declaration of %qs", n.c_str());
5894 inform((*p)->location(), "%qs defined here", n.c_str());
5898 // Class Function_declaration.
5900 // Return the function descriptor.
5902 Expression*
5903 Function_declaration::descriptor(Gogo*, Named_object* no)
5905 go_assert(!this->fntype_->is_method());
5906 if (this->descriptor_ == NULL)
5907 this->descriptor_ = Expression::make_func_descriptor(no);
5908 return this->descriptor_;
5911 // Class Variable.
5913 Variable::Variable(Type* type, Expression* init, bool is_global,
5914 bool is_parameter, bool is_receiver,
5915 Location location)
5916 : type_(type), init_(init), preinit_(NULL), location_(location),
5917 backend_(NULL), is_global_(is_global), is_parameter_(is_parameter),
5918 is_closure_(false), is_receiver_(is_receiver),
5919 is_varargs_parameter_(false), is_used_(false),
5920 is_address_taken_(false), is_non_escaping_address_taken_(false),
5921 seen_(false), init_is_lowered_(false), init_is_flattened_(false),
5922 type_from_init_tuple_(false), type_from_range_index_(false),
5923 type_from_range_value_(false), type_from_chan_element_(false),
5924 is_type_switch_var_(false), determined_type_(false),
5925 in_unique_section_(false), escapes_(true)
5927 go_assert(type != NULL || init != NULL);
5928 go_assert(!is_parameter || init == NULL);
5931 // Traverse the initializer expression.
5934 Variable::traverse_expression(Traverse* traverse, unsigned int traverse_mask)
5936 if (this->preinit_ != NULL)
5938 if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
5939 return TRAVERSE_EXIT;
5941 if (this->init_ != NULL
5942 && ((traverse_mask
5943 & (Traverse::traverse_expressions | Traverse::traverse_types))
5944 != 0))
5946 if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
5947 return TRAVERSE_EXIT;
5949 return TRAVERSE_CONTINUE;
5952 // Lower the initialization expression after parsing is complete.
5954 void
5955 Variable::lower_init_expression(Gogo* gogo, Named_object* function,
5956 Statement_inserter* inserter)
5958 Named_object* dep = gogo->var_depends_on(this);
5959 if (dep != NULL && dep->is_variable())
5960 dep->var_value()->lower_init_expression(gogo, function, inserter);
5962 if (this->init_ != NULL && !this->init_is_lowered_)
5964 if (this->seen_)
5966 // We will give an error elsewhere, this is just to prevent
5967 // an infinite loop.
5968 return;
5970 this->seen_ = true;
5972 Statement_inserter global_inserter;
5973 if (this->is_global_)
5975 global_inserter = Statement_inserter(gogo, this);
5976 inserter = &global_inserter;
5979 gogo->lower_expression(function, inserter, &this->init_);
5981 this->seen_ = false;
5983 this->init_is_lowered_ = true;
5987 // Flatten the initialization expression after ordering evaluations.
5989 void
5990 Variable::flatten_init_expression(Gogo* gogo, Named_object* function,
5991 Statement_inserter* inserter)
5993 Named_object* dep = gogo->var_depends_on(this);
5994 if (dep != NULL && dep->is_variable())
5995 dep->var_value()->flatten_init_expression(gogo, function, inserter);
5997 if (this->init_ != NULL && !this->init_is_flattened_)
5999 if (this->seen_)
6001 // We will give an error elsewhere, this is just to prevent
6002 // an infinite loop.
6003 return;
6005 this->seen_ = true;
6007 Statement_inserter global_inserter;
6008 if (this->is_global_)
6010 global_inserter = Statement_inserter(gogo, this);
6011 inserter = &global_inserter;
6014 gogo->flatten_expression(function, inserter, &this->init_);
6016 // If an interface conversion is needed, we need a temporary
6017 // variable.
6018 if (this->type_ != NULL
6019 && !Type::are_identical(this->type_, this->init_->type(), false,
6020 NULL)
6021 && this->init_->type()->interface_type() != NULL
6022 && !this->init_->is_variable())
6024 Temporary_statement* temp =
6025 Statement::make_temporary(NULL, this->init_, this->location_);
6026 inserter->insert(temp);
6027 this->init_ = Expression::make_temporary_reference(temp,
6028 this->location_);
6031 this->seen_ = false;
6032 this->init_is_flattened_ = true;
6036 // Get the preinit block.
6038 Block*
6039 Variable::preinit_block(Gogo* gogo)
6041 go_assert(this->is_global_);
6042 if (this->preinit_ == NULL)
6043 this->preinit_ = new Block(NULL, this->location());
6045 // If a global variable has a preinitialization statement, then we
6046 // need to have an initialization function.
6047 gogo->set_need_init_fn();
6049 return this->preinit_;
6052 // Add a statement to be run before the initialization expression.
6054 void
6055 Variable::add_preinit_statement(Gogo* gogo, Statement* s)
6057 Block* b = this->preinit_block(gogo);
6058 b->add_statement(s);
6059 b->set_end_location(s->location());
6062 // Whether this variable has a type.
6064 bool
6065 Variable::has_type() const
6067 if (this->type_ == NULL)
6068 return false;
6070 // A variable created in a type switch case nil does not actually
6071 // have a type yet. It will be changed to use the initializer's
6072 // type in determine_type.
6073 if (this->is_type_switch_var_
6074 && this->type_->is_nil_constant_as_type())
6075 return false;
6077 return true;
6080 // In an assignment which sets a variable to a tuple of EXPR, return
6081 // the type of the first element of the tuple.
6083 Type*
6084 Variable::type_from_tuple(Expression* expr, bool report_error) const
6086 if (expr->map_index_expression() != NULL)
6088 Map_type* mt = expr->map_index_expression()->get_map_type();
6089 if (mt == NULL)
6090 return Type::make_error_type();
6091 return mt->val_type();
6093 else if (expr->receive_expression() != NULL)
6095 Expression* channel = expr->receive_expression()->channel();
6096 Type* channel_type = channel->type();
6097 if (channel_type->channel_type() == NULL)
6098 return Type::make_error_type();
6099 return channel_type->channel_type()->element_type();
6101 else
6103 if (report_error)
6104 error_at(this->location(), "invalid tuple definition");
6105 return Type::make_error_type();
6109 // Given EXPR used in a range clause, return either the index type or
6110 // the value type of the range, depending upon GET_INDEX_TYPE.
6112 Type*
6113 Variable::type_from_range(Expression* expr, bool get_index_type,
6114 bool report_error) const
6116 Type* t = expr->type();
6117 if (t->array_type() != NULL
6118 || (t->points_to() != NULL
6119 && t->points_to()->array_type() != NULL
6120 && !t->points_to()->is_slice_type()))
6122 if (get_index_type)
6123 return Type::lookup_integer_type("int");
6124 else
6125 return t->deref()->array_type()->element_type();
6127 else if (t->is_string_type())
6129 if (get_index_type)
6130 return Type::lookup_integer_type("int");
6131 else
6132 return Type::lookup_integer_type("int32");
6134 else if (t->map_type() != NULL)
6136 if (get_index_type)
6137 return t->map_type()->key_type();
6138 else
6139 return t->map_type()->val_type();
6141 else if (t->channel_type() != NULL)
6143 if (get_index_type)
6144 return t->channel_type()->element_type();
6145 else
6147 if (report_error)
6148 error_at(this->location(),
6149 "invalid definition of value variable for channel range");
6150 return Type::make_error_type();
6153 else
6155 if (report_error)
6156 error_at(this->location(), "invalid type for range clause");
6157 return Type::make_error_type();
6161 // EXPR should be a channel. Return the channel's element type.
6163 Type*
6164 Variable::type_from_chan_element(Expression* expr, bool report_error) const
6166 Type* t = expr->type();
6167 if (t->channel_type() != NULL)
6168 return t->channel_type()->element_type();
6169 else
6171 if (report_error)
6172 error_at(this->location(), "expected channel");
6173 return Type::make_error_type();
6177 // Return the type of the Variable. This may be called before
6178 // Variable::determine_type is called, which means that we may need to
6179 // get the type from the initializer. FIXME: If we combine lowering
6180 // with type determination, then this should be unnecessary.
6182 Type*
6183 Variable::type()
6185 // A variable in a type switch with a nil case will have the wrong
6186 // type here. This gets fixed up in determine_type, below.
6187 Type* type = this->type_;
6188 Expression* init = this->init_;
6189 if (this->is_type_switch_var_
6190 && type != NULL
6191 && this->type_->is_nil_constant_as_type())
6193 Type_guard_expression* tge = this->init_->type_guard_expression();
6194 go_assert(tge != NULL);
6195 init = tge->expr();
6196 type = NULL;
6199 if (this->seen_)
6201 if (this->type_ == NULL || !this->type_->is_error_type())
6203 error_at(this->location_, "variable initializer refers to itself");
6204 this->type_ = Type::make_error_type();
6206 return this->type_;
6209 this->seen_ = true;
6211 if (type != NULL)
6213 else if (this->type_from_init_tuple_)
6214 type = this->type_from_tuple(init, false);
6215 else if (this->type_from_range_index_ || this->type_from_range_value_)
6216 type = this->type_from_range(init, this->type_from_range_index_, false);
6217 else if (this->type_from_chan_element_)
6218 type = this->type_from_chan_element(init, false);
6219 else
6221 go_assert(init != NULL);
6222 type = init->type();
6223 go_assert(type != NULL);
6225 // Variables should not have abstract types.
6226 if (type->is_abstract())
6227 type = type->make_non_abstract_type();
6229 if (type->is_void_type())
6230 type = Type::make_error_type();
6233 this->seen_ = false;
6235 return type;
6238 // Fetch the type from a const pointer, in which case it should have
6239 // been set already.
6241 Type*
6242 Variable::type() const
6244 go_assert(this->type_ != NULL);
6245 return this->type_;
6248 // Set the type if necessary.
6250 void
6251 Variable::determine_type()
6253 if (this->determined_type_)
6254 return;
6255 this->determined_type_ = true;
6257 if (this->preinit_ != NULL)
6258 this->preinit_->determine_types();
6260 // A variable in a type switch with a nil case will have the wrong
6261 // type here. It will have an initializer which is a type guard.
6262 // We want to initialize it to the value without the type guard, and
6263 // use the type of that value as well.
6264 if (this->is_type_switch_var_
6265 && this->type_ != NULL
6266 && this->type_->is_nil_constant_as_type())
6268 Type_guard_expression* tge = this->init_->type_guard_expression();
6269 go_assert(tge != NULL);
6270 this->type_ = NULL;
6271 this->init_ = tge->expr();
6274 if (this->init_ == NULL)
6275 go_assert(this->type_ != NULL && !this->type_->is_abstract());
6276 else if (this->type_from_init_tuple_)
6278 Expression *init = this->init_;
6279 init->determine_type_no_context();
6280 this->type_ = this->type_from_tuple(init, true);
6281 this->init_ = NULL;
6283 else if (this->type_from_range_index_ || this->type_from_range_value_)
6285 Expression* init = this->init_;
6286 init->determine_type_no_context();
6287 this->type_ = this->type_from_range(init, this->type_from_range_index_,
6288 true);
6289 this->init_ = NULL;
6291 else if (this->type_from_chan_element_)
6293 Expression* init = this->init_;
6294 init->determine_type_no_context();
6295 this->type_ = this->type_from_chan_element(init, true);
6296 this->init_ = NULL;
6298 else
6300 Type_context context(this->type_, false);
6301 this->init_->determine_type(&context);
6302 if (this->type_ == NULL)
6304 Type* type = this->init_->type();
6305 go_assert(type != NULL);
6306 if (type->is_abstract())
6307 type = type->make_non_abstract_type();
6309 if (type->is_void_type())
6311 error_at(this->location_, "variable has no type");
6312 type = Type::make_error_type();
6314 else if (type->is_nil_type())
6316 error_at(this->location_, "variable defined to nil type");
6317 type = Type::make_error_type();
6319 else if (type->is_call_multiple_result_type())
6321 error_at(this->location_,
6322 "single variable set to multiple-value function call");
6323 type = Type::make_error_type();
6326 this->type_ = type;
6331 // Get the initial value of a variable. This does not
6332 // consider whether the variable is in the heap--it returns the
6333 // initial value as though it were always stored in the stack.
6335 Bexpression*
6336 Variable::get_init(Gogo* gogo, Named_object* function)
6338 go_assert(this->preinit_ == NULL);
6339 Location loc = this->location();
6340 if (this->init_ == NULL)
6342 go_assert(!this->is_parameter_);
6343 if (this->is_global_ || this->is_in_heap())
6344 return NULL;
6345 Btype* btype = this->type()->get_backend(gogo);
6346 return gogo->backend()->zero_expression(btype);
6348 else
6350 Translate_context context(gogo, function, NULL, NULL);
6351 Expression* init = Expression::make_cast(this->type(), this->init_, loc);
6352 return init->get_backend(&context);
6356 // Get the initial value of a variable when a block is required.
6357 // VAR_DECL is the decl to set; it may be NULL for a sink variable.
6359 Bstatement*
6360 Variable::get_init_block(Gogo* gogo, Named_object* function,
6361 Bvariable* var_decl)
6363 go_assert(this->preinit_ != NULL);
6365 // We want to add the variable assignment to the end of the preinit
6366 // block.
6368 Translate_context context(gogo, function, NULL, NULL);
6369 Bblock* bblock = this->preinit_->get_backend(&context);
6371 // It's possible to have pre-init statements without an initializer
6372 // if the pre-init statements set the variable.
6373 Bstatement* decl_init = NULL;
6374 if (this->init_ != NULL)
6376 if (var_decl == NULL)
6378 Bexpression* init_bexpr = this->init_->get_backend(&context);
6379 decl_init = gogo->backend()->expression_statement(init_bexpr);
6381 else
6383 Location loc = this->location();
6384 Expression* val_expr =
6385 Expression::make_cast(this->type(), this->init_, loc);
6386 Bexpression* val = val_expr->get_backend(&context);
6387 Bexpression* var_ref = gogo->backend()->var_expression(var_decl, loc);
6388 decl_init = gogo->backend()->assignment_statement(var_ref, val, loc);
6391 Bstatement* block_stmt = gogo->backend()->block_statement(bblock);
6392 if (decl_init != NULL)
6393 block_stmt = gogo->backend()->compound_statement(block_stmt, decl_init);
6394 return block_stmt;
6397 // Export the variable
6399 void
6400 Variable::export_var(Export* exp, const std::string& name) const
6402 go_assert(this->is_global_);
6403 exp->write_c_string("var ");
6404 exp->write_string(name);
6405 exp->write_c_string(" ");
6406 exp->write_type(this->type());
6407 exp->write_c_string(";\n");
6410 // Import a variable.
6412 void
6413 Variable::import_var(Import* imp, std::string* pname, Type** ptype)
6415 imp->require_c_string("var ");
6416 *pname = imp->read_identifier();
6417 imp->require_c_string(" ");
6418 *ptype = imp->read_type();
6419 imp->require_c_string(";\n");
6422 // Convert a variable to the backend representation.
6424 Bvariable*
6425 Variable::get_backend_variable(Gogo* gogo, Named_object* function,
6426 const Package* package, const std::string& name)
6428 if (this->backend_ == NULL)
6430 Backend* backend = gogo->backend();
6431 Type* type = this->type_;
6432 if (type->is_error_type()
6433 || (type->is_undefined()
6434 && (!this->is_global_ || package == NULL)))
6435 this->backend_ = backend->error_variable();
6436 else
6438 bool is_parameter = this->is_parameter_;
6439 if (this->is_receiver_ && type->points_to() == NULL)
6440 is_parameter = false;
6441 if (this->is_in_heap())
6443 is_parameter = false;
6444 type = Type::make_pointer_type(type);
6447 std::string n = Gogo::unpack_hidden_name(name);
6448 Btype* btype = type->get_backend(gogo);
6450 Bvariable* bvar;
6451 if (gogo->is_zero_value(this))
6452 bvar = gogo->backend_zero_value();
6453 else if (this->is_global_)
6454 bvar = backend->global_variable((package == NULL
6455 ? gogo->package_name()
6456 : package->package_name()),
6457 (package == NULL
6458 ? gogo->pkgpath_symbol()
6459 : package->pkgpath_symbol()),
6461 btype,
6462 package != NULL,
6463 Gogo::is_hidden_name(name),
6464 this->in_unique_section_,
6465 this->location_);
6466 else if (function == NULL)
6468 go_assert(saw_errors());
6469 bvar = backend->error_variable();
6471 else
6473 Bfunction* bfunction = function->func_value()->get_decl();
6474 bool is_address_taken = (this->is_non_escaping_address_taken_
6475 && !this->is_in_heap());
6476 if (this->is_closure())
6477 bvar = backend->static_chain_variable(bfunction, n, btype,
6478 this->location_);
6479 else if (is_parameter)
6480 bvar = backend->parameter_variable(bfunction, n, btype,
6481 is_address_taken,
6482 this->location_);
6483 else
6484 bvar = backend->local_variable(bfunction, n, btype,
6485 is_address_taken,
6486 this->location_);
6488 this->backend_ = bvar;
6491 return this->backend_;
6494 // Class Result_variable.
6496 // Convert a result variable to the backend representation.
6498 Bvariable*
6499 Result_variable::get_backend_variable(Gogo* gogo, Named_object* function,
6500 const std::string& name)
6502 if (this->backend_ == NULL)
6504 Backend* backend = gogo->backend();
6505 Type* type = this->type_;
6506 if (type->is_error())
6507 this->backend_ = backend->error_variable();
6508 else
6510 if (this->is_in_heap())
6511 type = Type::make_pointer_type(type);
6512 Btype* btype = type->get_backend(gogo);
6513 Bfunction* bfunction = function->func_value()->get_decl();
6514 std::string n = Gogo::unpack_hidden_name(name);
6515 bool is_address_taken = (this->is_non_escaping_address_taken_
6516 && !this->is_in_heap());
6517 this->backend_ = backend->local_variable(bfunction, n, btype,
6518 is_address_taken,
6519 this->location_);
6522 return this->backend_;
6525 // Class Named_constant.
6527 // Traverse the initializer expression.
6530 Named_constant::traverse_expression(Traverse* traverse)
6532 return Expression::traverse(&this->expr_, traverse);
6535 // Determine the type of the constant.
6537 void
6538 Named_constant::determine_type()
6540 if (this->type_ != NULL)
6542 Type_context context(this->type_, false);
6543 this->expr_->determine_type(&context);
6545 else
6547 // A constant may have an abstract type.
6548 Type_context context(NULL, true);
6549 this->expr_->determine_type(&context);
6550 this->type_ = this->expr_->type();
6551 go_assert(this->type_ != NULL);
6555 // Indicate that we found and reported an error for this constant.
6557 void
6558 Named_constant::set_error()
6560 this->type_ = Type::make_error_type();
6561 this->expr_ = Expression::make_error(this->location_);
6564 // Export a constant.
6566 void
6567 Named_constant::export_const(Export* exp, const std::string& name) const
6569 exp->write_c_string("const ");
6570 exp->write_string(name);
6571 exp->write_c_string(" ");
6572 if (!this->type_->is_abstract())
6574 exp->write_type(this->type_);
6575 exp->write_c_string(" ");
6577 exp->write_c_string("= ");
6578 this->expr()->export_expression(exp);
6579 exp->write_c_string(";\n");
6582 // Import a constant.
6584 void
6585 Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
6586 Expression** pexpr)
6588 imp->require_c_string("const ");
6589 *pname = imp->read_identifier();
6590 imp->require_c_string(" ");
6591 if (imp->peek_char() == '=')
6592 *ptype = NULL;
6593 else
6595 *ptype = imp->read_type();
6596 imp->require_c_string(" ");
6598 imp->require_c_string("= ");
6599 *pexpr = Expression::import_expression(imp);
6600 imp->require_c_string(";\n");
6603 // Get the backend representation.
6605 Bexpression*
6606 Named_constant::get_backend(Gogo* gogo, Named_object* const_no)
6608 if (this->bconst_ == NULL)
6610 Translate_context subcontext(gogo, NULL, NULL, NULL);
6611 Type* type = this->type();
6612 Location loc = this->location();
6614 Expression* const_ref = Expression::make_const_reference(const_no, loc);
6615 Bexpression* const_decl = const_ref->get_backend(&subcontext);
6616 if (type != NULL && type->is_numeric_type())
6618 Btype* btype = type->get_backend(gogo);
6619 std::string name = const_no->get_id(gogo);
6620 const_decl =
6621 gogo->backend()->named_constant_expression(btype, name,
6622 const_decl, loc);
6624 this->bconst_ = const_decl;
6626 return this->bconst_;
6629 // Add a method.
6631 Named_object*
6632 Type_declaration::add_method(const std::string& name, Function* function)
6634 Named_object* ret = Named_object::make_function(name, NULL, function);
6635 this->methods_.push_back(ret);
6636 return ret;
6639 // Add a method declaration.
6641 Named_object*
6642 Type_declaration::add_method_declaration(const std::string& name,
6643 Package* package,
6644 Function_type* type,
6645 Location location)
6647 Named_object* ret = Named_object::make_function_declaration(name, package,
6648 type, location);
6649 this->methods_.push_back(ret);
6650 return ret;
6653 // Return whether any methods ere defined.
6655 bool
6656 Type_declaration::has_methods() const
6658 return !this->methods_.empty();
6661 // Define methods for the real type.
6663 void
6664 Type_declaration::define_methods(Named_type* nt)
6666 for (std::vector<Named_object*>::const_iterator p = this->methods_.begin();
6667 p != this->methods_.end();
6668 ++p)
6669 nt->add_existing_method(*p);
6672 // We are using the type. Return true if we should issue a warning.
6674 bool
6675 Type_declaration::using_type()
6677 bool ret = !this->issued_warning_;
6678 this->issued_warning_ = true;
6679 return ret;
6682 // Class Unknown_name.
6684 // Set the real named object.
6686 void
6687 Unknown_name::set_real_named_object(Named_object* no)
6689 go_assert(this->real_named_object_ == NULL);
6690 go_assert(!no->is_unknown());
6691 this->real_named_object_ = no;
6694 // Class Named_object.
6696 Named_object::Named_object(const std::string& name,
6697 const Package* package,
6698 Classification classification)
6699 : name_(name), package_(package), classification_(classification)
6701 if (Gogo::is_sink_name(name))
6702 go_assert(classification == NAMED_OBJECT_SINK);
6705 // Make an unknown name. This is used by the parser. The name must
6706 // be resolved later. Unknown names are only added in the current
6707 // package.
6709 Named_object*
6710 Named_object::make_unknown_name(const std::string& name,
6711 Location location)
6713 Named_object* named_object = new Named_object(name, NULL,
6714 NAMED_OBJECT_UNKNOWN);
6715 Unknown_name* value = new Unknown_name(location);
6716 named_object->u_.unknown_value = value;
6717 return named_object;
6720 // Make a constant.
6722 Named_object*
6723 Named_object::make_constant(const Typed_identifier& tid,
6724 const Package* package, Expression* expr,
6725 int iota_value)
6727 Named_object* named_object = new Named_object(tid.name(), package,
6728 NAMED_OBJECT_CONST);
6729 Named_constant* named_constant = new Named_constant(tid.type(), expr,
6730 iota_value,
6731 tid.location());
6732 named_object->u_.const_value = named_constant;
6733 return named_object;
6736 // Make a named type.
6738 Named_object*
6739 Named_object::make_type(const std::string& name, const Package* package,
6740 Type* type, Location location)
6742 Named_object* named_object = new Named_object(name, package,
6743 NAMED_OBJECT_TYPE);
6744 Named_type* named_type = Type::make_named_type(named_object, type, location);
6745 named_object->u_.type_value = named_type;
6746 return named_object;
6749 // Make a type declaration.
6751 Named_object*
6752 Named_object::make_type_declaration(const std::string& name,
6753 const Package* package,
6754 Location location)
6756 Named_object* named_object = new Named_object(name, package,
6757 NAMED_OBJECT_TYPE_DECLARATION);
6758 Type_declaration* type_declaration = new Type_declaration(location);
6759 named_object->u_.type_declaration = type_declaration;
6760 return named_object;
6763 // Make a variable.
6765 Named_object*
6766 Named_object::make_variable(const std::string& name, const Package* package,
6767 Variable* variable)
6769 Named_object* named_object = new Named_object(name, package,
6770 NAMED_OBJECT_VAR);
6771 named_object->u_.var_value = variable;
6772 return named_object;
6775 // Make a result variable.
6777 Named_object*
6778 Named_object::make_result_variable(const std::string& name,
6779 Result_variable* result)
6781 Named_object* named_object = new Named_object(name, NULL,
6782 NAMED_OBJECT_RESULT_VAR);
6783 named_object->u_.result_var_value = result;
6784 return named_object;
6787 // Make a sink. This is used for the special blank identifier _.
6789 Named_object*
6790 Named_object::make_sink()
6792 return new Named_object("_", NULL, NAMED_OBJECT_SINK);
6795 // Make a named function.
6797 Named_object*
6798 Named_object::make_function(const std::string& name, const Package* package,
6799 Function* function)
6801 Named_object* named_object = new Named_object(name, package,
6802 NAMED_OBJECT_FUNC);
6803 named_object->u_.func_value = function;
6804 return named_object;
6807 // Make a function declaration.
6809 Named_object*
6810 Named_object::make_function_declaration(const std::string& name,
6811 const Package* package,
6812 Function_type* fntype,
6813 Location location)
6815 Named_object* named_object = new Named_object(name, package,
6816 NAMED_OBJECT_FUNC_DECLARATION);
6817 Function_declaration *func_decl = new Function_declaration(fntype, location);
6818 named_object->u_.func_declaration_value = func_decl;
6819 return named_object;
6822 // Make a package.
6824 Named_object*
6825 Named_object::make_package(const std::string& alias, Package* package)
6827 Named_object* named_object = new Named_object(alias, NULL,
6828 NAMED_OBJECT_PACKAGE);
6829 named_object->u_.package_value = package;
6830 return named_object;
6833 // Return the name to use in an error message.
6835 std::string
6836 Named_object::message_name() const
6838 if (this->package_ == NULL)
6839 return Gogo::message_name(this->name_);
6840 std::string ret;
6841 if (this->package_->has_package_name())
6842 ret = this->package_->package_name();
6843 else
6844 ret = this->package_->pkgpath();
6845 ret = Gogo::message_name(ret);
6846 ret += '.';
6847 ret += Gogo::message_name(this->name_);
6848 return ret;
6851 // Set the type when a declaration is defined.
6853 void
6854 Named_object::set_type_value(Named_type* named_type)
6856 go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
6857 Type_declaration* td = this->u_.type_declaration;
6858 td->define_methods(named_type);
6859 unsigned int index;
6860 Named_object* in_function = td->in_function(&index);
6861 if (in_function != NULL)
6862 named_type->set_in_function(in_function, index);
6863 delete td;
6864 this->classification_ = NAMED_OBJECT_TYPE;
6865 this->u_.type_value = named_type;
6868 // Define a function which was previously declared.
6870 void
6871 Named_object::set_function_value(Function* function)
6873 go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
6874 if (this->func_declaration_value()->has_descriptor())
6876 Expression* descriptor =
6877 this->func_declaration_value()->descriptor(NULL, NULL);
6878 function->set_descriptor(descriptor);
6880 this->classification_ = NAMED_OBJECT_FUNC;
6881 // FIXME: We should free the old value.
6882 this->u_.func_value = function;
6885 // Declare an unknown object as a type declaration.
6887 void
6888 Named_object::declare_as_type()
6890 go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
6891 Unknown_name* unk = this->u_.unknown_value;
6892 this->classification_ = NAMED_OBJECT_TYPE_DECLARATION;
6893 this->u_.type_declaration = new Type_declaration(unk->location());
6894 delete unk;
6897 // Return the location of a named object.
6899 Location
6900 Named_object::location() const
6902 switch (this->classification_)
6904 default:
6905 case NAMED_OBJECT_UNINITIALIZED:
6906 go_unreachable();
6908 case NAMED_OBJECT_ERRONEOUS:
6909 return Linemap::unknown_location();
6911 case NAMED_OBJECT_UNKNOWN:
6912 return this->unknown_value()->location();
6914 case NAMED_OBJECT_CONST:
6915 return this->const_value()->location();
6917 case NAMED_OBJECT_TYPE:
6918 return this->type_value()->location();
6920 case NAMED_OBJECT_TYPE_DECLARATION:
6921 return this->type_declaration_value()->location();
6923 case NAMED_OBJECT_VAR:
6924 return this->var_value()->location();
6926 case NAMED_OBJECT_RESULT_VAR:
6927 return this->result_var_value()->location();
6929 case NAMED_OBJECT_SINK:
6930 go_unreachable();
6932 case NAMED_OBJECT_FUNC:
6933 return this->func_value()->location();
6935 case NAMED_OBJECT_FUNC_DECLARATION:
6936 return this->func_declaration_value()->location();
6938 case NAMED_OBJECT_PACKAGE:
6939 return this->package_value()->location();
6943 // Export a named object.
6945 void
6946 Named_object::export_named_object(Export* exp) const
6948 switch (this->classification_)
6950 default:
6951 case NAMED_OBJECT_UNINITIALIZED:
6952 case NAMED_OBJECT_UNKNOWN:
6953 go_unreachable();
6955 case NAMED_OBJECT_ERRONEOUS:
6956 break;
6958 case NAMED_OBJECT_CONST:
6959 this->const_value()->export_const(exp, this->name_);
6960 break;
6962 case NAMED_OBJECT_TYPE:
6963 this->type_value()->export_named_type(exp, this->name_);
6964 break;
6966 case NAMED_OBJECT_TYPE_DECLARATION:
6967 error_at(this->type_declaration_value()->location(),
6968 "attempt to export %<%s%> which was declared but not defined",
6969 this->message_name().c_str());
6970 break;
6972 case NAMED_OBJECT_FUNC_DECLARATION:
6973 this->func_declaration_value()->export_func(exp, this->name_);
6974 break;
6976 case NAMED_OBJECT_VAR:
6977 this->var_value()->export_var(exp, this->name_);
6978 break;
6980 case NAMED_OBJECT_RESULT_VAR:
6981 case NAMED_OBJECT_SINK:
6982 go_unreachable();
6984 case NAMED_OBJECT_FUNC:
6985 this->func_value()->export_func(exp, this->name_);
6986 break;
6990 // Convert a variable to the backend representation.
6992 Bvariable*
6993 Named_object::get_backend_variable(Gogo* gogo, Named_object* function)
6995 if (this->classification_ == NAMED_OBJECT_VAR)
6996 return this->var_value()->get_backend_variable(gogo, function,
6997 this->package_, this->name_);
6998 else if (this->classification_ == NAMED_OBJECT_RESULT_VAR)
6999 return this->result_var_value()->get_backend_variable(gogo, function,
7000 this->name_);
7001 else
7002 go_unreachable();
7006 // Return the external identifier for this object.
7008 std::string
7009 Named_object::get_id(Gogo* gogo)
7011 go_assert(!this->is_variable() && !this->is_result_variable());
7012 std::string decl_name;
7013 if (this->is_function_declaration()
7014 && !this->func_declaration_value()->asm_name().empty())
7015 decl_name = this->func_declaration_value()->asm_name();
7016 else if (this->is_type()
7017 && Linemap::is_predeclared_location(this->type_value()->location()))
7019 // We don't need the package name for builtin types.
7020 decl_name = Gogo::unpack_hidden_name(this->name_);
7022 else
7024 std::string package_name;
7025 if (this->package_ == NULL)
7026 package_name = gogo->package_name();
7027 else
7028 package_name = this->package_->package_name();
7030 // Note that this will be misleading if this is an unexported
7031 // method generated for an embedded imported type. In that case
7032 // the unexported method should have the package name of the
7033 // package from which it is imported, but we are going to give
7034 // it our package name. Fixing this would require knowing the
7035 // package name, but we only know the package path. It might be
7036 // better to use package paths here anyhow. This doesn't affect
7037 // the assembler code, because we always set that name in
7038 // Function::get_or_make_decl anyhow. FIXME.
7040 decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
7042 Function_type* fntype;
7043 if (this->is_function())
7044 fntype = this->func_value()->type();
7045 else if (this->is_function_declaration())
7046 fntype = this->func_declaration_value()->type();
7047 else
7048 fntype = NULL;
7049 if (fntype != NULL && fntype->is_method())
7051 decl_name.push_back('.');
7052 decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
7055 if (this->is_type())
7057 unsigned int index;
7058 const Named_object* in_function = this->type_value()->in_function(&index);
7059 if (in_function != NULL)
7061 decl_name += '$' + Gogo::unpack_hidden_name(in_function->name());
7062 if (index > 0)
7064 char buf[30];
7065 snprintf(buf, sizeof buf, "%u", index);
7066 decl_name += '$';
7067 decl_name += buf;
7071 return decl_name;
7074 // Get the backend representation for this named object.
7076 void
7077 Named_object::get_backend(Gogo* gogo, std::vector<Bexpression*>& const_decls,
7078 std::vector<Btype*>& type_decls,
7079 std::vector<Bfunction*>& func_decls)
7081 switch (this->classification_)
7083 case NAMED_OBJECT_CONST:
7084 if (!Gogo::is_erroneous_name(this->name_))
7085 const_decls.push_back(this->u_.const_value->get_backend(gogo, this));
7086 break;
7088 case NAMED_OBJECT_TYPE:
7090 Named_type* named_type = this->u_.type_value;
7091 if (!Gogo::is_erroneous_name(this->name_))
7092 type_decls.push_back(named_type->get_backend(gogo));
7094 // We need to produce a type descriptor for every named
7095 // type, and for a pointer to every named type, since
7096 // other files or packages might refer to them. We need
7097 // to do this even for hidden types, because they might
7098 // still be returned by some function. Simply calling the
7099 // type_descriptor method is enough to create the type
7100 // descriptor, even though we don't do anything with it.
7101 if (this->package_ == NULL)
7103 named_type->
7104 type_descriptor_pointer(gogo, Linemap::predeclared_location());
7105 named_type->gc_symbol_pointer(gogo);
7106 Type* pn = Type::make_pointer_type(named_type);
7107 pn->type_descriptor_pointer(gogo, Linemap::predeclared_location());
7108 pn->gc_symbol_pointer(gogo);
7111 break;
7113 case NAMED_OBJECT_TYPE_DECLARATION:
7114 error("reference to undefined type %qs",
7115 this->message_name().c_str());
7116 return;
7118 case NAMED_OBJECT_VAR:
7119 case NAMED_OBJECT_RESULT_VAR:
7120 case NAMED_OBJECT_SINK:
7121 go_unreachable();
7123 case NAMED_OBJECT_FUNC:
7125 Function* func = this->u_.func_value;
7126 if (!Gogo::is_erroneous_name(this->name_))
7127 func_decls.push_back(func->get_or_make_decl(gogo, this));
7129 if (func->block() != NULL)
7130 func->build(gogo, this);
7132 break;
7134 case NAMED_OBJECT_ERRONEOUS:
7135 break;
7137 default:
7138 go_unreachable();
7142 // Class Bindings.
7144 Bindings::Bindings(Bindings* enclosing)
7145 : enclosing_(enclosing), named_objects_(), bindings_()
7149 // Clear imports.
7151 void
7152 Bindings::clear_file_scope(Gogo* gogo)
7154 Contour::iterator p = this->bindings_.begin();
7155 while (p != this->bindings_.end())
7157 bool keep;
7158 if (p->second->package() != NULL)
7159 keep = false;
7160 else if (p->second->is_package())
7161 keep = false;
7162 else if (p->second->is_function()
7163 && !p->second->func_value()->type()->is_method()
7164 && Gogo::unpack_hidden_name(p->second->name()) == "init")
7165 keep = false;
7166 else
7167 keep = true;
7169 if (keep)
7170 ++p;
7171 else
7173 gogo->add_file_block_name(p->second->name(), p->second->location());
7174 p = this->bindings_.erase(p);
7179 // Look up a symbol.
7181 Named_object*
7182 Bindings::lookup(const std::string& name) const
7184 Contour::const_iterator p = this->bindings_.find(name);
7185 if (p != this->bindings_.end())
7186 return p->second->resolve();
7187 else if (this->enclosing_ != NULL)
7188 return this->enclosing_->lookup(name);
7189 else
7190 return NULL;
7193 // Look up a symbol locally.
7195 Named_object*
7196 Bindings::lookup_local(const std::string& name) const
7198 Contour::const_iterator p = this->bindings_.find(name);
7199 if (p == this->bindings_.end())
7200 return NULL;
7201 return p->second;
7204 // Remove an object from a set of bindings. This is used for a
7205 // special case in thunks for functions which call recover.
7207 void
7208 Bindings::remove_binding(Named_object* no)
7210 Contour::iterator pb = this->bindings_.find(no->name());
7211 go_assert(pb != this->bindings_.end());
7212 this->bindings_.erase(pb);
7213 for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
7214 pn != this->named_objects_.end();
7215 ++pn)
7217 if (*pn == no)
7219 this->named_objects_.erase(pn);
7220 return;
7223 go_unreachable();
7226 // Add a method to the list of objects. This is not added to the
7227 // lookup table. This is so that we have a single list of objects
7228 // declared at the top level, which we walk through when it's time to
7229 // convert to trees.
7231 void
7232 Bindings::add_method(Named_object* method)
7234 this->named_objects_.push_back(method);
7237 // Add a generic Named_object to a Contour.
7239 Named_object*
7240 Bindings::add_named_object_to_contour(Contour* contour,
7241 Named_object* named_object)
7243 go_assert(named_object == named_object->resolve());
7244 const std::string& name(named_object->name());
7245 go_assert(!Gogo::is_sink_name(name));
7247 std::pair<Contour::iterator, bool> ins =
7248 contour->insert(std::make_pair(name, named_object));
7249 if (!ins.second)
7251 // The name was already there.
7252 if (named_object->package() != NULL
7253 && ins.first->second->package() == named_object->package()
7254 && (ins.first->second->classification()
7255 == named_object->classification()))
7257 // This is a second import of the same object.
7258 return ins.first->second;
7260 ins.first->second = this->new_definition(ins.first->second,
7261 named_object);
7262 return ins.first->second;
7264 else
7266 // Don't push declarations on the list. We push them on when
7267 // and if we find the definitions. That way we genericize the
7268 // functions in order.
7269 if (!named_object->is_type_declaration()
7270 && !named_object->is_function_declaration()
7271 && !named_object->is_unknown())
7272 this->named_objects_.push_back(named_object);
7273 return named_object;
7277 // We had an existing named object OLD_OBJECT, and we've seen a new
7278 // one NEW_OBJECT with the same name. FIXME: This does not free the
7279 // new object when we don't need it.
7281 Named_object*
7282 Bindings::new_definition(Named_object* old_object, Named_object* new_object)
7284 if (new_object->is_erroneous() && !old_object->is_erroneous())
7285 return new_object;
7287 std::string reason;
7288 switch (old_object->classification())
7290 default:
7291 case Named_object::NAMED_OBJECT_UNINITIALIZED:
7292 go_unreachable();
7294 case Named_object::NAMED_OBJECT_ERRONEOUS:
7295 return old_object;
7297 case Named_object::NAMED_OBJECT_UNKNOWN:
7299 Named_object* real = old_object->unknown_value()->real_named_object();
7300 if (real != NULL)
7301 return this->new_definition(real, new_object);
7302 go_assert(!new_object->is_unknown());
7303 old_object->unknown_value()->set_real_named_object(new_object);
7304 if (!new_object->is_type_declaration()
7305 && !new_object->is_function_declaration())
7306 this->named_objects_.push_back(new_object);
7307 return new_object;
7310 case Named_object::NAMED_OBJECT_CONST:
7311 break;
7313 case Named_object::NAMED_OBJECT_TYPE:
7314 if (new_object->is_type_declaration())
7315 return old_object;
7316 break;
7318 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
7319 if (new_object->is_type_declaration())
7320 return old_object;
7321 if (new_object->is_type())
7323 old_object->set_type_value(new_object->type_value());
7324 new_object->type_value()->set_named_object(old_object);
7325 this->named_objects_.push_back(old_object);
7326 return old_object;
7328 break;
7330 case Named_object::NAMED_OBJECT_VAR:
7331 case Named_object::NAMED_OBJECT_RESULT_VAR:
7332 // We have already given an error in the parser for cases where
7333 // one parameter or result variable redeclares another one.
7334 if ((new_object->is_variable()
7335 && new_object->var_value()->is_parameter())
7336 || new_object->is_result_variable())
7337 return old_object;
7338 break;
7340 case Named_object::NAMED_OBJECT_SINK:
7341 go_unreachable();
7343 case Named_object::NAMED_OBJECT_FUNC:
7344 if (new_object->is_function_declaration())
7346 if (!new_object->func_declaration_value()->asm_name().empty())
7347 sorry("__asm__ for function definitions");
7348 Function_type* old_type = old_object->func_value()->type();
7349 Function_type* new_type =
7350 new_object->func_declaration_value()->type();
7351 if (old_type->is_valid_redeclaration(new_type, &reason))
7352 return old_object;
7354 break;
7356 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
7358 Function_type* old_type = old_object->func_declaration_value()->type();
7359 if (new_object->is_function_declaration())
7361 Function_type* new_type =
7362 new_object->func_declaration_value()->type();
7363 if (old_type->is_valid_redeclaration(new_type, &reason))
7364 return old_object;
7366 if (new_object->is_function())
7368 Function_type* new_type = new_object->func_value()->type();
7369 if (old_type->is_valid_redeclaration(new_type, &reason))
7371 if (!old_object->func_declaration_value()->asm_name().empty())
7372 sorry("__asm__ for function definitions");
7373 old_object->set_function_value(new_object->func_value());
7374 this->named_objects_.push_back(old_object);
7375 return old_object;
7379 break;
7381 case Named_object::NAMED_OBJECT_PACKAGE:
7382 break;
7385 std::string n = old_object->message_name();
7386 if (reason.empty())
7387 error_at(new_object->location(), "redefinition of %qs", n.c_str());
7388 else
7389 error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
7390 reason.c_str());
7392 inform(old_object->location(), "previous definition of %qs was here",
7393 n.c_str());
7395 return old_object;
7398 // Add a named type.
7400 Named_object*
7401 Bindings::add_named_type(Named_type* named_type)
7403 return this->add_named_object(named_type->named_object());
7406 // Add a function.
7408 Named_object*
7409 Bindings::add_function(const std::string& name, const Package* package,
7410 Function* function)
7412 return this->add_named_object(Named_object::make_function(name, package,
7413 function));
7416 // Add a function declaration.
7418 Named_object*
7419 Bindings::add_function_declaration(const std::string& name,
7420 const Package* package,
7421 Function_type* type,
7422 Location location)
7424 Named_object* no = Named_object::make_function_declaration(name, package,
7425 type, location);
7426 return this->add_named_object(no);
7429 // Define a type which was previously declared.
7431 void
7432 Bindings::define_type(Named_object* no, Named_type* type)
7434 no->set_type_value(type);
7435 this->named_objects_.push_back(no);
7438 // Mark all local variables as used. This is used for some types of
7439 // parse error.
7441 void
7442 Bindings::mark_locals_used()
7444 for (std::vector<Named_object*>::iterator p = this->named_objects_.begin();
7445 p != this->named_objects_.end();
7446 ++p)
7447 if ((*p)->is_variable())
7448 (*p)->var_value()->set_is_used();
7451 // Traverse bindings.
7454 Bindings::traverse(Traverse* traverse, bool is_global)
7456 unsigned int traverse_mask = traverse->traverse_mask();
7458 // We don't use an iterator because we permit the traversal to add
7459 // new global objects.
7460 const unsigned int e_or_t = (Traverse::traverse_expressions
7461 | Traverse::traverse_types);
7462 const unsigned int e_or_t_or_s = (e_or_t
7463 | Traverse::traverse_statements);
7464 for (size_t i = 0; i < this->named_objects_.size(); ++i)
7466 Named_object* p = this->named_objects_[i];
7467 int t = TRAVERSE_CONTINUE;
7468 switch (p->classification())
7470 case Named_object::NAMED_OBJECT_CONST:
7471 if ((traverse_mask & Traverse::traverse_constants) != 0)
7472 t = traverse->constant(p, is_global);
7473 if (t == TRAVERSE_CONTINUE
7474 && (traverse_mask & e_or_t) != 0)
7476 Type* tc = p->const_value()->type();
7477 if (tc != NULL
7478 && Type::traverse(tc, traverse) == TRAVERSE_EXIT)
7479 return TRAVERSE_EXIT;
7480 t = p->const_value()->traverse_expression(traverse);
7482 break;
7484 case Named_object::NAMED_OBJECT_VAR:
7485 case Named_object::NAMED_OBJECT_RESULT_VAR:
7486 if ((traverse_mask & Traverse::traverse_variables) != 0)
7487 t = traverse->variable(p);
7488 if (t == TRAVERSE_CONTINUE
7489 && (traverse_mask & e_or_t) != 0)
7491 if (p->is_result_variable()
7492 || p->var_value()->has_type())
7494 Type* tv = (p->is_variable()
7495 ? p->var_value()->type()
7496 : p->result_var_value()->type());
7497 if (tv != NULL
7498 && Type::traverse(tv, traverse) == TRAVERSE_EXIT)
7499 return TRAVERSE_EXIT;
7502 if (t == TRAVERSE_CONTINUE
7503 && (traverse_mask & e_or_t_or_s) != 0
7504 && p->is_variable())
7505 t = p->var_value()->traverse_expression(traverse, traverse_mask);
7506 break;
7508 case Named_object::NAMED_OBJECT_FUNC:
7509 if ((traverse_mask & Traverse::traverse_functions) != 0)
7510 t = traverse->function(p);
7512 if (t == TRAVERSE_CONTINUE
7513 && (traverse_mask
7514 & (Traverse::traverse_variables
7515 | Traverse::traverse_constants
7516 | Traverse::traverse_functions
7517 | Traverse::traverse_blocks
7518 | Traverse::traverse_statements
7519 | Traverse::traverse_expressions
7520 | Traverse::traverse_types)) != 0)
7521 t = p->func_value()->traverse(traverse);
7522 break;
7524 case Named_object::NAMED_OBJECT_PACKAGE:
7525 // These are traversed in Gogo::traverse.
7526 go_assert(is_global);
7527 break;
7529 case Named_object::NAMED_OBJECT_TYPE:
7530 if ((traverse_mask & e_or_t) != 0)
7531 t = Type::traverse(p->type_value(), traverse);
7532 break;
7534 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
7535 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
7536 case Named_object::NAMED_OBJECT_UNKNOWN:
7537 case Named_object::NAMED_OBJECT_ERRONEOUS:
7538 break;
7540 case Named_object::NAMED_OBJECT_SINK:
7541 default:
7542 go_unreachable();
7545 if (t == TRAVERSE_EXIT)
7546 return TRAVERSE_EXIT;
7549 // If we need to traverse types, check the function declarations,
7550 // which have types. Also check any methods of a type declaration.
7551 if ((traverse_mask & e_or_t) != 0)
7553 for (Bindings::const_declarations_iterator p =
7554 this->begin_declarations();
7555 p != this->end_declarations();
7556 ++p)
7558 if (p->second->is_function_declaration())
7560 if (Type::traverse(p->second->func_declaration_value()->type(),
7561 traverse)
7562 == TRAVERSE_EXIT)
7563 return TRAVERSE_EXIT;
7565 else if (p->second->is_type_declaration())
7567 const std::vector<Named_object*>* methods =
7568 p->second->type_declaration_value()->methods();
7569 for (std::vector<Named_object*>::const_iterator pm =
7570 methods->begin();
7571 pm != methods->end();
7572 pm++)
7574 Named_object* no = *pm;
7575 Type *t;
7576 if (no->is_function())
7577 t = no->func_value()->type();
7578 else if (no->is_function_declaration())
7579 t = no->func_declaration_value()->type();
7580 else
7581 continue;
7582 if (Type::traverse(t, traverse) == TRAVERSE_EXIT)
7583 return TRAVERSE_EXIT;
7589 return TRAVERSE_CONTINUE;
7592 // Class Label.
7594 // Clear any references to this label.
7596 void
7597 Label::clear_refs()
7599 for (std::vector<Bindings_snapshot*>::iterator p = this->refs_.begin();
7600 p != this->refs_.end();
7601 ++p)
7602 delete *p;
7603 this->refs_.clear();
7606 // Get the backend representation for a label.
7608 Blabel*
7609 Label::get_backend_label(Translate_context* context)
7611 if (this->blabel_ == NULL)
7613 Function* function = context->function()->func_value();
7614 Bfunction* bfunction = function->get_decl();
7615 this->blabel_ = context->backend()->label(bfunction, this->name_,
7616 this->location_);
7618 return this->blabel_;
7621 // Return an expression for the address of this label.
7623 Bexpression*
7624 Label::get_addr(Translate_context* context, Location location)
7626 Blabel* label = this->get_backend_label(context);
7627 return context->backend()->label_address(label, location);
7630 // Return the dummy label that represents any instance of the blank label.
7632 Label*
7633 Label::create_dummy_label()
7635 static Label* dummy_label;
7636 if (dummy_label == NULL)
7638 dummy_label = new Label("_");
7639 dummy_label->set_is_used();
7641 return dummy_label;
7644 // Class Unnamed_label.
7646 // Get the backend representation for an unnamed label.
7648 Blabel*
7649 Unnamed_label::get_blabel(Translate_context* context)
7651 if (this->blabel_ == NULL)
7653 Function* function = context->function()->func_value();
7654 Bfunction* bfunction = function->get_decl();
7655 this->blabel_ = context->backend()->label(bfunction, "",
7656 this->location_);
7658 return this->blabel_;
7661 // Return a statement which defines this unnamed label.
7663 Bstatement*
7664 Unnamed_label::get_definition(Translate_context* context)
7666 Blabel* blabel = this->get_blabel(context);
7667 return context->backend()->label_definition_statement(blabel);
7670 // Return a goto statement to this unnamed label.
7672 Bstatement*
7673 Unnamed_label::get_goto(Translate_context* context, Location location)
7675 Blabel* blabel = this->get_blabel(context);
7676 return context->backend()->goto_statement(blabel, location);
7679 // Class Package.
7681 Package::Package(const std::string& pkgpath,
7682 const std::string& pkgpath_symbol, Location location)
7683 : pkgpath_(pkgpath), pkgpath_symbol_(pkgpath_symbol),
7684 package_name_(), bindings_(new Bindings(NULL)), priority_(0),
7685 location_(location), used_(false), is_imported_(false),
7686 uses_sink_alias_(false)
7688 go_assert(!pkgpath.empty());
7692 // Set the package name.
7694 void
7695 Package::set_package_name(const std::string& package_name, Location location)
7697 go_assert(!package_name.empty());
7698 if (this->package_name_.empty())
7699 this->package_name_ = package_name;
7700 else if (this->package_name_ != package_name)
7701 error_at(location,
7702 "saw two different packages with the same package path %s: %s, %s",
7703 this->pkgpath_.c_str(), this->package_name_.c_str(),
7704 package_name.c_str());
7707 // Return the pkgpath symbol, which is a prefix for symbols defined in
7708 // this package.
7710 std::string
7711 Package::pkgpath_symbol() const
7713 if (this->pkgpath_symbol_.empty())
7714 return Gogo::pkgpath_for_symbol(this->pkgpath_);
7715 return this->pkgpath_symbol_;
7718 // Set the package path symbol.
7720 void
7721 Package::set_pkgpath_symbol(const std::string& pkgpath_symbol)
7723 go_assert(!pkgpath_symbol.empty());
7724 if (this->pkgpath_symbol_.empty())
7725 this->pkgpath_symbol_ = pkgpath_symbol;
7726 else
7727 go_assert(this->pkgpath_symbol_ == pkgpath_symbol);
7730 // Set the priority. We may see multiple priorities for an imported
7731 // package; we want to use the largest one.
7733 void
7734 Package::set_priority(int priority)
7736 if (priority > this->priority_)
7737 this->priority_ = priority;
7740 // Forget a given usage. If forgetting this usage means this package becomes
7741 // unused, report that error.
7743 void
7744 Package::forget_usage(Expression* usage) const
7746 if (this->fake_uses_.empty())
7747 return;
7749 std::set<Expression*>::iterator p = this->fake_uses_.find(usage);
7750 go_assert(p != this->fake_uses_.end());
7751 this->fake_uses_.erase(p);
7753 if (this->fake_uses_.empty())
7754 error_at(this->location(), "imported and not used: %s",
7755 Gogo::message_name(this->package_name()).c_str());
7758 // Clear the used field for the next file. If the only usages of this package
7759 // are possibly fake, keep the fake usages for lowering.
7761 void
7762 Package::clear_used()
7764 if (this->used_ > this->fake_uses_.size())
7765 this->fake_uses_.clear();
7767 this->used_ = 0;
7770 // Determine types of constants. Everything else in a package
7771 // (variables, function declarations) should already have a fixed
7772 // type. Constants may have abstract types.
7774 void
7775 Package::determine_types()
7777 Bindings* bindings = this->bindings_;
7778 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
7779 p != bindings->end_definitions();
7780 ++p)
7782 if ((*p)->is_const())
7783 (*p)->const_value()->determine_type();
7787 // Class Traverse.
7789 // Destructor.
7791 Traverse::~Traverse()
7793 if (this->types_seen_ != NULL)
7794 delete this->types_seen_;
7795 if (this->expressions_seen_ != NULL)
7796 delete this->expressions_seen_;
7799 // Record that we are looking at a type, and return true if we have
7800 // already seen it.
7802 bool
7803 Traverse::remember_type(const Type* type)
7805 if (type->is_error_type())
7806 return true;
7807 go_assert((this->traverse_mask() & traverse_types) != 0
7808 || (this->traverse_mask() & traverse_expressions) != 0);
7809 // We mostly only have to remember named types. But it turns out
7810 // that an interface type can refer to itself without using a name
7811 // by relying on interface inheritance, as in
7812 // type I interface { F() interface{I} }
7813 if (type->classification() != Type::TYPE_NAMED
7814 && type->classification() != Type::TYPE_INTERFACE)
7815 return false;
7816 if (this->types_seen_ == NULL)
7817 this->types_seen_ = new Types_seen();
7818 std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
7819 return !ins.second;
7822 // Record that we are looking at an expression, and return true if we
7823 // have already seen it.
7825 bool
7826 Traverse::remember_expression(const Expression* expression)
7828 go_assert((this->traverse_mask() & traverse_types) != 0
7829 || (this->traverse_mask() & traverse_expressions) != 0);
7830 if (this->expressions_seen_ == NULL)
7831 this->expressions_seen_ = new Expressions_seen();
7832 std::pair<Expressions_seen::iterator, bool> ins =
7833 this->expressions_seen_->insert(expression);
7834 return !ins.second;
7837 // The default versions of these functions should never be called: the
7838 // traversal mask indicates which functions may be called.
7841 Traverse::variable(Named_object*)
7843 go_unreachable();
7847 Traverse::constant(Named_object*, bool)
7849 go_unreachable();
7853 Traverse::function(Named_object*)
7855 go_unreachable();
7859 Traverse::block(Block*)
7861 go_unreachable();
7865 Traverse::statement(Block*, size_t*, Statement*)
7867 go_unreachable();
7871 Traverse::expression(Expression**)
7873 go_unreachable();
7877 Traverse::type(Type*)
7879 go_unreachable();
7882 // Class Statement_inserter.
7884 void
7885 Statement_inserter::insert(Statement* s)
7887 if (this->block_ != NULL)
7889 go_assert(this->pindex_ != NULL);
7890 this->block_->insert_statement_before(*this->pindex_, s);
7891 ++*this->pindex_;
7893 else if (this->var_ != NULL)
7894 this->var_->add_preinit_statement(this->gogo_, s);
7895 else
7896 go_assert(saw_errors());