Concretize gimple_cond_set_{lhs|rhs}
[official-gcc.git] / gcc / tree-chrec.c
blobc78d9410429f391cdfba391888ccc0e070f7ce82
1 /* Chains of recurrences.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements operations on chains of recurrences. Chains
22 of recurrences are used for modeling evolution functions of scalar
23 variables.
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tree.h"
30 #include "tree-pretty-print.h"
31 #include "cfgloop.h"
32 #include "basic-block.h"
33 #include "gimple-expr.h"
34 #include "tree-ssa-loop-ivopts.h"
35 #include "tree-ssa-loop-niter.h"
36 #include "tree-chrec.h"
37 #include "dumpfile.h"
38 #include "params.h"
39 #include "tree-scalar-evolution.h"
41 /* Extended folder for chrecs. */
43 /* Determines whether CST is not a constant evolution. */
45 static inline bool
46 is_not_constant_evolution (const_tree cst)
48 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
51 /* Fold CODE for a polynomial function and a constant. */
53 static inline tree
54 chrec_fold_poly_cst (enum tree_code code,
55 tree type,
56 tree poly,
57 tree cst)
59 gcc_assert (poly);
60 gcc_assert (cst);
61 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
62 gcc_assert (!is_not_constant_evolution (cst));
63 gcc_assert (type == chrec_type (poly));
65 switch (code)
67 case PLUS_EXPR:
68 return build_polynomial_chrec
69 (CHREC_VARIABLE (poly),
70 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
71 CHREC_RIGHT (poly));
73 case MINUS_EXPR:
74 return build_polynomial_chrec
75 (CHREC_VARIABLE (poly),
76 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
77 CHREC_RIGHT (poly));
79 case MULT_EXPR:
80 return build_polynomial_chrec
81 (CHREC_VARIABLE (poly),
82 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
83 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
85 default:
86 return chrec_dont_know;
90 /* Fold the addition of two polynomial functions. */
92 static inline tree
93 chrec_fold_plus_poly_poly (enum tree_code code,
94 tree type,
95 tree poly0,
96 tree poly1)
98 tree left, right;
99 struct loop *loop0 = get_chrec_loop (poly0);
100 struct loop *loop1 = get_chrec_loop (poly1);
101 tree rtype = code == POINTER_PLUS_EXPR ? chrec_type (poly1) : type;
103 gcc_assert (poly0);
104 gcc_assert (poly1);
105 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
106 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
107 if (POINTER_TYPE_P (chrec_type (poly0)))
108 gcc_assert (ptrofftype_p (chrec_type (poly1)));
109 else
110 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
111 gcc_assert (type == chrec_type (poly0));
114 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
115 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
116 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
117 if (flow_loop_nested_p (loop0, loop1))
119 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
120 return build_polynomial_chrec
121 (CHREC_VARIABLE (poly1),
122 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
123 CHREC_RIGHT (poly1));
124 else
125 return build_polynomial_chrec
126 (CHREC_VARIABLE (poly1),
127 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
128 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
129 SCALAR_FLOAT_TYPE_P (type)
130 ? build_real (type, dconstm1)
131 : build_int_cst_type (type, -1)));
134 if (flow_loop_nested_p (loop1, loop0))
136 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
137 return build_polynomial_chrec
138 (CHREC_VARIABLE (poly0),
139 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
140 CHREC_RIGHT (poly0));
141 else
142 return build_polynomial_chrec
143 (CHREC_VARIABLE (poly0),
144 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
145 CHREC_RIGHT (poly0));
148 /* This function should never be called for chrecs of loops that
149 do not belong to the same loop nest. */
150 gcc_assert (loop0 == loop1);
152 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
154 left = chrec_fold_plus
155 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
156 right = chrec_fold_plus
157 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
159 else
161 left = chrec_fold_minus
162 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
163 right = chrec_fold_minus
164 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
167 if (chrec_zerop (right))
168 return left;
169 else
170 return build_polynomial_chrec
171 (CHREC_VARIABLE (poly0), left, right);
176 /* Fold the multiplication of two polynomial functions. */
178 static inline tree
179 chrec_fold_multiply_poly_poly (tree type,
180 tree poly0,
181 tree poly1)
183 tree t0, t1, t2;
184 int var;
185 struct loop *loop0 = get_chrec_loop (poly0);
186 struct loop *loop1 = get_chrec_loop (poly1);
188 gcc_assert (poly0);
189 gcc_assert (poly1);
190 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
191 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
192 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
193 gcc_assert (type == chrec_type (poly0));
195 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
196 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
197 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
198 if (flow_loop_nested_p (loop0, loop1))
199 /* poly0 is a constant wrt. poly1. */
200 return build_polynomial_chrec
201 (CHREC_VARIABLE (poly1),
202 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
203 CHREC_RIGHT (poly1));
205 if (flow_loop_nested_p (loop1, loop0))
206 /* poly1 is a constant wrt. poly0. */
207 return build_polynomial_chrec
208 (CHREC_VARIABLE (poly0),
209 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
210 CHREC_RIGHT (poly0));
212 gcc_assert (loop0 == loop1);
214 /* poly0 and poly1 are two polynomials in the same variable,
215 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
217 /* "a*c". */
218 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
220 /* "a*d + b*c". */
221 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
222 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
223 CHREC_RIGHT (poly0),
224 CHREC_LEFT (poly1)));
225 /* "b*d". */
226 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
227 /* "a*d + b*c + b*d". */
228 t1 = chrec_fold_plus (type, t1, t2);
229 /* "2*b*d". */
230 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
231 ? build_real (type, dconst2)
232 : build_int_cst (type, 2), t2);
234 var = CHREC_VARIABLE (poly0);
235 return build_polynomial_chrec (var, t0,
236 build_polynomial_chrec (var, t1, t2));
239 /* When the operands are automatically_generated_chrec_p, the fold has
240 to respect the semantics of the operands. */
242 static inline tree
243 chrec_fold_automatically_generated_operands (tree op0,
244 tree op1)
246 if (op0 == chrec_dont_know
247 || op1 == chrec_dont_know)
248 return chrec_dont_know;
250 if (op0 == chrec_known
251 || op1 == chrec_known)
252 return chrec_known;
254 if (op0 == chrec_not_analyzed_yet
255 || op1 == chrec_not_analyzed_yet)
256 return chrec_not_analyzed_yet;
258 /* The default case produces a safe result. */
259 return chrec_dont_know;
262 /* Fold the addition of two chrecs. */
264 static tree
265 chrec_fold_plus_1 (enum tree_code code, tree type,
266 tree op0, tree op1)
268 if (automatically_generated_chrec_p (op0)
269 || automatically_generated_chrec_p (op1))
270 return chrec_fold_automatically_generated_operands (op0, op1);
272 switch (TREE_CODE (op0))
274 case POLYNOMIAL_CHREC:
275 gcc_checking_assert
276 (!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0)));
277 switch (TREE_CODE (op1))
279 case POLYNOMIAL_CHREC:
280 gcc_checking_assert
281 (!chrec_contains_symbols_defined_in_loop (op1,
282 CHREC_VARIABLE (op1)));
283 return chrec_fold_plus_poly_poly (code, type, op0, op1);
285 CASE_CONVERT:
286 if (tree_contains_chrecs (op1, NULL))
287 return chrec_dont_know;
289 default:
290 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
291 return build_polynomial_chrec
292 (CHREC_VARIABLE (op0),
293 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
294 CHREC_RIGHT (op0));
295 else
296 return build_polynomial_chrec
297 (CHREC_VARIABLE (op0),
298 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
299 CHREC_RIGHT (op0));
302 CASE_CONVERT:
303 if (tree_contains_chrecs (op0, NULL))
304 return chrec_dont_know;
306 default:
307 switch (TREE_CODE (op1))
309 case POLYNOMIAL_CHREC:
310 gcc_checking_assert
311 (!chrec_contains_symbols_defined_in_loop (op1,
312 CHREC_VARIABLE (op1)));
313 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
314 return build_polynomial_chrec
315 (CHREC_VARIABLE (op1),
316 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
317 CHREC_RIGHT (op1));
318 else
319 return build_polynomial_chrec
320 (CHREC_VARIABLE (op1),
321 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
322 chrec_fold_multiply (type, CHREC_RIGHT (op1),
323 SCALAR_FLOAT_TYPE_P (type)
324 ? build_real (type, dconstm1)
325 : build_int_cst_type (type, -1)));
327 CASE_CONVERT:
328 if (tree_contains_chrecs (op1, NULL))
329 return chrec_dont_know;
331 default:
333 int size = 0;
334 if ((tree_contains_chrecs (op0, &size)
335 || tree_contains_chrecs (op1, &size))
336 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
337 return build2 (code, type, op0, op1);
338 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
340 if (code == POINTER_PLUS_EXPR)
341 return fold_build_pointer_plus (fold_convert (type, op0),
342 op1);
343 else
344 return fold_build2 (code, type,
345 fold_convert (type, op0),
346 fold_convert (type, op1));
348 else
349 return chrec_dont_know;
355 /* Fold the addition of two chrecs. */
357 tree
358 chrec_fold_plus (tree type,
359 tree op0,
360 tree op1)
362 enum tree_code code;
363 if (automatically_generated_chrec_p (op0)
364 || automatically_generated_chrec_p (op1))
365 return chrec_fold_automatically_generated_operands (op0, op1);
367 if (integer_zerop (op0))
368 return chrec_convert (type, op1, NULL);
369 if (integer_zerop (op1))
370 return chrec_convert (type, op0, NULL);
372 if (POINTER_TYPE_P (type))
373 code = POINTER_PLUS_EXPR;
374 else
375 code = PLUS_EXPR;
377 return chrec_fold_plus_1 (code, type, op0, op1);
380 /* Fold the subtraction of two chrecs. */
382 tree
383 chrec_fold_minus (tree type,
384 tree op0,
385 tree op1)
387 if (automatically_generated_chrec_p (op0)
388 || automatically_generated_chrec_p (op1))
389 return chrec_fold_automatically_generated_operands (op0, op1);
391 if (integer_zerop (op1))
392 return op0;
394 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
397 /* Fold the multiplication of two chrecs. */
399 tree
400 chrec_fold_multiply (tree type,
401 tree op0,
402 tree op1)
404 if (automatically_generated_chrec_p (op0)
405 || automatically_generated_chrec_p (op1))
406 return chrec_fold_automatically_generated_operands (op0, op1);
408 switch (TREE_CODE (op0))
410 case POLYNOMIAL_CHREC:
411 gcc_checking_assert
412 (!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0)));
413 switch (TREE_CODE (op1))
415 case POLYNOMIAL_CHREC:
416 gcc_checking_assert
417 (!chrec_contains_symbols_defined_in_loop (op1,
418 CHREC_VARIABLE (op1)));
419 return chrec_fold_multiply_poly_poly (type, op0, op1);
421 CASE_CONVERT:
422 if (tree_contains_chrecs (op1, NULL))
423 return chrec_dont_know;
425 default:
426 if (integer_onep (op1))
427 return op0;
428 if (integer_zerop (op1))
429 return build_int_cst (type, 0);
431 return build_polynomial_chrec
432 (CHREC_VARIABLE (op0),
433 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
434 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
437 CASE_CONVERT:
438 if (tree_contains_chrecs (op0, NULL))
439 return chrec_dont_know;
441 default:
442 if (integer_onep (op0))
443 return op1;
445 if (integer_zerop (op0))
446 return build_int_cst (type, 0);
448 switch (TREE_CODE (op1))
450 case POLYNOMIAL_CHREC:
451 gcc_checking_assert
452 (!chrec_contains_symbols_defined_in_loop (op1,
453 CHREC_VARIABLE (op1)));
454 return build_polynomial_chrec
455 (CHREC_VARIABLE (op1),
456 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
457 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
459 CASE_CONVERT:
460 if (tree_contains_chrecs (op1, NULL))
461 return chrec_dont_know;
463 default:
464 if (integer_onep (op1))
465 return op0;
466 if (integer_zerop (op1))
467 return build_int_cst (type, 0);
468 return fold_build2 (MULT_EXPR, type, op0, op1);
475 /* Operations. */
477 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
478 calculation overflows, otherwise return C(n,k) with type TYPE. */
480 static tree
481 tree_fold_binomial (tree type, tree n, unsigned int k)
483 bool overflow;
484 unsigned int i;
485 tree res;
487 /* Handle the most frequent cases. */
488 if (k == 0)
489 return build_int_cst (type, 1);
490 if (k == 1)
491 return fold_convert (type, n);
493 /* Check that k <= n. */
494 if (wi::ltu_p (n, k))
495 return NULL_TREE;
497 /* Denominator = 2. */
498 wide_int denom = wi::two (TYPE_PRECISION (TREE_TYPE (n)));
500 /* Index = Numerator-1. */
501 wide_int idx = wi::sub (n, 1);
503 /* Numerator = Numerator*Index = n*(n-1). */
504 wide_int num = wi::smul (n, idx, &overflow);
505 if (overflow)
506 return NULL_TREE;
508 for (i = 3; i <= k; i++)
510 /* Index--. */
511 --idx;
513 /* Numerator *= Index. */
514 num = wi::smul (num, idx, &overflow);
515 if (overflow)
516 return NULL_TREE;
518 /* Denominator *= i. */
519 denom *= i;
522 /* Result = Numerator / Denominator. */
523 wide_int di_res = wi::udiv_trunc (num, denom);
524 res = wide_int_to_tree (type, di_res);
525 return int_fits_type_p (res, type) ? res : NULL_TREE;
528 /* Helper function. Use the Newton's interpolating formula for
529 evaluating the value of the evolution function. */
531 static tree
532 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
534 tree arg0, arg1, binomial_n_k;
535 tree type = TREE_TYPE (chrec);
536 struct loop *var_loop = get_loop (cfun, var);
538 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
539 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
540 chrec = CHREC_LEFT (chrec);
542 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
543 && CHREC_VARIABLE (chrec) == var)
545 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
546 if (arg1 == chrec_dont_know)
547 return chrec_dont_know;
548 binomial_n_k = tree_fold_binomial (type, n, k);
549 if (!binomial_n_k)
550 return chrec_dont_know;
551 arg0 = fold_build2 (MULT_EXPR, type,
552 CHREC_LEFT (chrec), binomial_n_k);
553 return chrec_fold_plus (type, arg0, arg1);
556 binomial_n_k = tree_fold_binomial (type, n, k);
557 if (!binomial_n_k)
558 return chrec_dont_know;
560 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
563 /* Evaluates "CHREC (X)" when the varying variable is VAR.
564 Example: Given the following parameters,
566 var = 1
567 chrec = {3, +, 4}_1
568 x = 10
570 The result is given by the Newton's interpolating formula:
571 3 * \binom{10}{0} + 4 * \binom{10}{1}.
574 tree
575 chrec_apply (unsigned var,
576 tree chrec,
577 tree x)
579 tree type = chrec_type (chrec);
580 tree res = chrec_dont_know;
582 if (automatically_generated_chrec_p (chrec)
583 || automatically_generated_chrec_p (x)
585 /* When the symbols are defined in an outer loop, it is possible
586 to symbolically compute the apply, since the symbols are
587 constants with respect to the varying loop. */
588 || chrec_contains_symbols_defined_in_loop (chrec, var))
589 return chrec_dont_know;
591 if (dump_file && (dump_flags & TDF_SCEV))
592 fprintf (dump_file, "(chrec_apply \n");
594 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
595 x = build_real_from_int_cst (type, x);
597 switch (TREE_CODE (chrec))
599 case POLYNOMIAL_CHREC:
600 if (evolution_function_is_affine_p (chrec))
602 if (CHREC_VARIABLE (chrec) != var)
603 return build_polynomial_chrec
604 (CHREC_VARIABLE (chrec),
605 chrec_apply (var, CHREC_LEFT (chrec), x),
606 chrec_apply (var, CHREC_RIGHT (chrec), x));
608 /* "{a, +, b} (x)" -> "a + b*x". */
609 x = chrec_convert_rhs (type, x, NULL);
610 res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
611 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
613 else if (TREE_CODE (x) == INTEGER_CST
614 && tree_int_cst_sgn (x) == 1)
615 /* testsuite/.../ssa-chrec-38.c. */
616 res = chrec_evaluate (var, chrec, x, 0);
617 else
618 res = chrec_dont_know;
619 break;
621 CASE_CONVERT:
622 res = chrec_convert (TREE_TYPE (chrec),
623 chrec_apply (var, TREE_OPERAND (chrec, 0), x),
624 NULL);
625 break;
627 default:
628 res = chrec;
629 break;
632 if (dump_file && (dump_flags & TDF_SCEV))
634 fprintf (dump_file, " (varying_loop = %d\n", var);
635 fprintf (dump_file, ")\n (chrec = ");
636 print_generic_expr (dump_file, chrec, 0);
637 fprintf (dump_file, ")\n (x = ");
638 print_generic_expr (dump_file, x, 0);
639 fprintf (dump_file, ")\n (res = ");
640 print_generic_expr (dump_file, res, 0);
641 fprintf (dump_file, "))\n");
644 return res;
647 /* For a given CHREC and an induction variable map IV_MAP that maps
648 (loop->num, expr) for every loop number of the current_loops an
649 expression, calls chrec_apply when the expression is not NULL. */
651 tree
652 chrec_apply_map (tree chrec, vec<tree> iv_map)
654 int i;
655 tree expr;
657 FOR_EACH_VEC_ELT (iv_map, i, expr)
658 if (expr)
659 chrec = chrec_apply (i, chrec, expr);
661 return chrec;
664 /* Replaces the initial condition in CHREC with INIT_COND. */
666 tree
667 chrec_replace_initial_condition (tree chrec,
668 tree init_cond)
670 if (automatically_generated_chrec_p (chrec))
671 return chrec;
673 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
675 switch (TREE_CODE (chrec))
677 case POLYNOMIAL_CHREC:
678 return build_polynomial_chrec
679 (CHREC_VARIABLE (chrec),
680 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
681 CHREC_RIGHT (chrec));
683 default:
684 return init_cond;
688 /* Returns the initial condition of a given CHREC. */
690 tree
691 initial_condition (tree chrec)
693 if (automatically_generated_chrec_p (chrec))
694 return chrec;
696 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
697 return initial_condition (CHREC_LEFT (chrec));
698 else
699 return chrec;
702 /* Returns a univariate function that represents the evolution in
703 LOOP_NUM. Mask the evolution of any other loop. */
705 tree
706 hide_evolution_in_other_loops_than_loop (tree chrec,
707 unsigned loop_num)
709 struct loop *loop = get_loop (cfun, loop_num), *chloop;
710 if (automatically_generated_chrec_p (chrec))
711 return chrec;
713 switch (TREE_CODE (chrec))
715 case POLYNOMIAL_CHREC:
716 chloop = get_chrec_loop (chrec);
718 if (chloop == loop)
719 return build_polynomial_chrec
720 (loop_num,
721 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
722 loop_num),
723 CHREC_RIGHT (chrec));
725 else if (flow_loop_nested_p (chloop, loop))
726 /* There is no evolution in this loop. */
727 return initial_condition (chrec);
729 else
731 gcc_assert (flow_loop_nested_p (loop, chloop));
732 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
733 loop_num);
736 default:
737 return chrec;
741 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
742 true, otherwise returns the initial condition in LOOP_NUM. */
744 static tree
745 chrec_component_in_loop_num (tree chrec,
746 unsigned loop_num,
747 bool right)
749 tree component;
750 struct loop *loop = get_loop (cfun, loop_num), *chloop;
752 if (automatically_generated_chrec_p (chrec))
753 return chrec;
755 switch (TREE_CODE (chrec))
757 case POLYNOMIAL_CHREC:
758 chloop = get_chrec_loop (chrec);
760 if (chloop == loop)
762 if (right)
763 component = CHREC_RIGHT (chrec);
764 else
765 component = CHREC_LEFT (chrec);
767 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
768 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
769 return component;
771 else
772 return build_polynomial_chrec
773 (loop_num,
774 chrec_component_in_loop_num (CHREC_LEFT (chrec),
775 loop_num,
776 right),
777 component);
780 else if (flow_loop_nested_p (chloop, loop))
781 /* There is no evolution part in this loop. */
782 return NULL_TREE;
784 else
786 gcc_assert (flow_loop_nested_p (loop, chloop));
787 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
788 loop_num,
789 right);
792 default:
793 if (right)
794 return NULL_TREE;
795 else
796 return chrec;
800 /* Returns the evolution part in LOOP_NUM. Example: the call
801 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
802 {1, +, 2}_1 */
804 tree
805 evolution_part_in_loop_num (tree chrec,
806 unsigned loop_num)
808 return chrec_component_in_loop_num (chrec, loop_num, true);
811 /* Returns the initial condition in LOOP_NUM. Example: the call
812 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
813 {0, +, 1}_1 */
815 tree
816 initial_condition_in_loop_num (tree chrec,
817 unsigned loop_num)
819 return chrec_component_in_loop_num (chrec, loop_num, false);
822 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
823 This function is essentially used for setting the evolution to
824 chrec_dont_know, for example after having determined that it is
825 impossible to say how many times a loop will execute. */
827 tree
828 reset_evolution_in_loop (unsigned loop_num,
829 tree chrec,
830 tree new_evol)
832 struct loop *loop = get_loop (cfun, loop_num);
834 if (POINTER_TYPE_P (chrec_type (chrec)))
835 gcc_assert (ptrofftype_p (chrec_type (new_evol)));
836 else
837 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
839 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
840 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
842 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
843 new_evol);
844 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
845 new_evol);
846 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
847 CHREC_VAR (chrec), left, right);
850 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
851 && CHREC_VARIABLE (chrec) == loop_num)
852 chrec = CHREC_LEFT (chrec);
854 return build_polynomial_chrec (loop_num, chrec, new_evol);
857 /* Merges two evolution functions that were found by following two
858 alternate paths of a conditional expression. */
860 tree
861 chrec_merge (tree chrec1,
862 tree chrec2)
864 if (chrec1 == chrec_dont_know
865 || chrec2 == chrec_dont_know)
866 return chrec_dont_know;
868 if (chrec1 == chrec_known
869 || chrec2 == chrec_known)
870 return chrec_known;
872 if (chrec1 == chrec_not_analyzed_yet)
873 return chrec2;
874 if (chrec2 == chrec_not_analyzed_yet)
875 return chrec1;
877 if (eq_evolutions_p (chrec1, chrec2))
878 return chrec1;
880 return chrec_dont_know;
885 /* Observers. */
887 /* Helper function for is_multivariate_chrec. */
889 static bool
890 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
892 if (chrec == NULL_TREE)
893 return false;
895 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
897 if (CHREC_VARIABLE (chrec) != rec_var)
898 return true;
899 else
900 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
901 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
903 else
904 return false;
907 /* Determine whether the given chrec is multivariate or not. */
909 bool
910 is_multivariate_chrec (const_tree chrec)
912 if (chrec == NULL_TREE)
913 return false;
915 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
916 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
917 CHREC_VARIABLE (chrec))
918 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
919 CHREC_VARIABLE (chrec)));
920 else
921 return false;
924 /* Determines whether the chrec contains symbolic names or not. */
926 bool
927 chrec_contains_symbols (const_tree chrec)
929 int i, n;
931 if (chrec == NULL_TREE)
932 return false;
934 if (TREE_CODE (chrec) == SSA_NAME
935 || TREE_CODE (chrec) == VAR_DECL
936 || TREE_CODE (chrec) == PARM_DECL
937 || TREE_CODE (chrec) == FUNCTION_DECL
938 || TREE_CODE (chrec) == LABEL_DECL
939 || TREE_CODE (chrec) == RESULT_DECL
940 || TREE_CODE (chrec) == FIELD_DECL)
941 return true;
943 n = TREE_OPERAND_LENGTH (chrec);
944 for (i = 0; i < n; i++)
945 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
946 return true;
947 return false;
950 /* Determines whether the chrec contains undetermined coefficients. */
952 bool
953 chrec_contains_undetermined (const_tree chrec)
955 int i, n;
957 if (chrec == chrec_dont_know)
958 return true;
960 if (chrec == NULL_TREE)
961 return false;
963 n = TREE_OPERAND_LENGTH (chrec);
964 for (i = 0; i < n; i++)
965 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
966 return true;
967 return false;
970 /* Determines whether the tree EXPR contains chrecs, and increment
971 SIZE if it is not a NULL pointer by an estimation of the depth of
972 the tree. */
974 bool
975 tree_contains_chrecs (const_tree expr, int *size)
977 int i, n;
979 if (expr == NULL_TREE)
980 return false;
982 if (size)
983 (*size)++;
985 if (tree_is_chrec (expr))
986 return true;
988 n = TREE_OPERAND_LENGTH (expr);
989 for (i = 0; i < n; i++)
990 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
991 return true;
992 return false;
995 /* Recursive helper function. */
997 static bool
998 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
1000 if (evolution_function_is_constant_p (chrec))
1001 return true;
1003 if (TREE_CODE (chrec) == SSA_NAME
1004 && (loopnum == 0
1005 || expr_invariant_in_loop_p (get_loop (cfun, loopnum), chrec)))
1006 return true;
1008 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
1010 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
1011 || flow_loop_nested_p (get_loop (cfun, loopnum),
1012 get_chrec_loop (chrec))
1013 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
1014 loopnum)
1015 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
1016 loopnum))
1017 return false;
1018 return true;
1021 switch (TREE_OPERAND_LENGTH (chrec))
1023 case 2:
1024 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
1025 loopnum))
1026 return false;
1028 case 1:
1029 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1030 loopnum))
1031 return false;
1032 return true;
1034 default:
1035 return false;
1038 return false;
1041 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1043 bool
1044 evolution_function_is_invariant_p (tree chrec, int loopnum)
1046 return evolution_function_is_invariant_rec_p (chrec, loopnum);
1049 /* Determine whether the given tree is an affine multivariate
1050 evolution. */
1052 bool
1053 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1055 if (chrec == NULL_TREE)
1056 return false;
1058 switch (TREE_CODE (chrec))
1060 case POLYNOMIAL_CHREC:
1061 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1063 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1064 return true;
1065 else
1067 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1068 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1069 != CHREC_VARIABLE (chrec)
1070 && evolution_function_is_affine_multivariate_p
1071 (CHREC_RIGHT (chrec), loopnum))
1072 return true;
1073 else
1074 return false;
1077 else
1079 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1080 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1081 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1082 && evolution_function_is_affine_multivariate_p
1083 (CHREC_LEFT (chrec), loopnum))
1084 return true;
1085 else
1086 return false;
1089 default:
1090 return false;
1094 /* Determine whether the given tree is a function in zero or one
1095 variables. */
1097 bool
1098 evolution_function_is_univariate_p (const_tree chrec)
1100 if (chrec == NULL_TREE)
1101 return true;
1103 switch (TREE_CODE (chrec))
1105 case POLYNOMIAL_CHREC:
1106 switch (TREE_CODE (CHREC_LEFT (chrec)))
1108 case POLYNOMIAL_CHREC:
1109 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1110 return false;
1111 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1112 return false;
1113 break;
1115 default:
1116 if (tree_contains_chrecs (CHREC_LEFT (chrec), NULL))
1117 return false;
1118 break;
1121 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1123 case POLYNOMIAL_CHREC:
1124 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1125 return false;
1126 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1127 return false;
1128 break;
1130 default:
1131 if (tree_contains_chrecs (CHREC_RIGHT (chrec), NULL))
1132 return false;
1133 break;
1136 default:
1137 return true;
1141 /* Returns the number of variables of CHREC. Example: the call
1142 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1144 unsigned
1145 nb_vars_in_chrec (tree chrec)
1147 if (chrec == NULL_TREE)
1148 return 0;
1150 switch (TREE_CODE (chrec))
1152 case POLYNOMIAL_CHREC:
1153 return 1 + nb_vars_in_chrec
1154 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1156 default:
1157 return 0;
1161 static tree chrec_convert_1 (tree, tree, gimple, bool);
1163 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1164 the scev corresponds to. AT_STMT is the statement at that the scev is
1165 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1166 the rules for overflow of the given language apply (e.g., that signed
1167 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1168 tests, but also to enforce that the result follows them. Returns true if the
1169 conversion succeeded, false otherwise. */
1171 bool
1172 convert_affine_scev (struct loop *loop, tree type,
1173 tree *base, tree *step, gimple at_stmt,
1174 bool use_overflow_semantics)
1176 tree ct = TREE_TYPE (*step);
1177 bool enforce_overflow_semantics;
1178 bool must_check_src_overflow, must_check_rslt_overflow;
1179 tree new_base, new_step;
1180 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1182 /* In general,
1183 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1184 but we must check some assumptions.
1186 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1187 of CT is smaller than the precision of TYPE. For example, when we
1188 cast unsigned char [254, +, 1] to unsigned, the values on left side
1189 are 254, 255, 0, 1, ..., but those on the right side are
1190 254, 255, 256, 257, ...
1191 2) In case that we must also preserve the fact that signed ivs do not
1192 overflow, we must additionally check that the new iv does not wrap.
1193 For example, unsigned char [125, +, 1] casted to signed char could
1194 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1195 which would confuse optimizers that assume that this does not
1196 happen. */
1197 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1199 enforce_overflow_semantics = (use_overflow_semantics
1200 && nowrap_type_p (type));
1201 if (enforce_overflow_semantics)
1203 /* We can avoid checking whether the result overflows in the following
1204 cases:
1206 -- must_check_src_overflow is true, and the range of TYPE is superset
1207 of the range of CT -- i.e., in all cases except if CT signed and
1208 TYPE unsigned.
1209 -- both CT and TYPE have the same precision and signedness, and we
1210 verify instead that the source does not overflow (this may be
1211 easier than verifying it for the result, as we may use the
1212 information about the semantics of overflow in CT). */
1213 if (must_check_src_overflow)
1215 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1216 must_check_rslt_overflow = true;
1217 else
1218 must_check_rslt_overflow = false;
1220 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1221 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1223 must_check_rslt_overflow = false;
1224 must_check_src_overflow = true;
1226 else
1227 must_check_rslt_overflow = true;
1229 else
1230 must_check_rslt_overflow = false;
1232 if (must_check_src_overflow
1233 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1234 use_overflow_semantics))
1235 return false;
1237 new_base = chrec_convert_1 (type, *base, at_stmt,
1238 use_overflow_semantics);
1239 /* The step must be sign extended, regardless of the signedness
1240 of CT and TYPE. This only needs to be handled specially when
1241 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1242 (with values 100, 99, 98, ...) from becoming signed or unsigned
1243 [100, +, 255] with values 100, 355, ...; the sign-extension is
1244 performed by default when CT is signed. */
1245 new_step = *step;
1246 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1248 tree signed_ct = build_nonstandard_integer_type (TYPE_PRECISION (ct), 0);
1249 new_step = chrec_convert_1 (signed_ct, new_step, at_stmt,
1250 use_overflow_semantics);
1252 new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
1254 if (automatically_generated_chrec_p (new_base)
1255 || automatically_generated_chrec_p (new_step))
1256 return false;
1258 if (must_check_rslt_overflow
1259 /* Note that in this case we cannot use the fact that signed variables
1260 do not overflow, as this is what we are verifying for the new iv. */
1261 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1262 return false;
1264 *base = new_base;
1265 *step = new_step;
1266 return true;
1270 /* Convert CHREC for the right hand side of a CHREC.
1271 The increment for a pointer type is always sizetype. */
1273 tree
1274 chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1276 if (POINTER_TYPE_P (type))
1277 type = sizetype;
1279 return chrec_convert (type, chrec, at_stmt);
1282 /* Convert CHREC to TYPE. When the analyzer knows the context in
1283 which the CHREC is built, it sets AT_STMT to the statement that
1284 contains the definition of the analyzed variable, otherwise the
1285 conversion is less accurate: the information is used for
1286 determining a more accurate estimation of the number of iterations.
1287 By default AT_STMT could be safely set to NULL_TREE.
1289 The following rule is always true: TREE_TYPE (chrec) ==
1290 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1291 An example of what could happen when adding two chrecs and the type
1292 of the CHREC_RIGHT is different than CHREC_LEFT is:
1294 {(uint) 0, +, (uchar) 10} +
1295 {(uint) 0, +, (uchar) 250}
1297 that would produce a wrong result if CHREC_RIGHT is not (uint):
1299 {(uint) 0, +, (uchar) 4}
1301 instead of
1303 {(uint) 0, +, (uint) 260}
1306 tree
1307 chrec_convert (tree type, tree chrec, gimple at_stmt)
1309 return chrec_convert_1 (type, chrec, at_stmt, true);
1312 /* Convert CHREC to TYPE. When the analyzer knows the context in
1313 which the CHREC is built, it sets AT_STMT to the statement that
1314 contains the definition of the analyzed variable, otherwise the
1315 conversion is less accurate: the information is used for
1316 determining a more accurate estimation of the number of iterations.
1317 By default AT_STMT could be safely set to NULL_TREE.
1319 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1320 the rules for overflow of the given language apply (e.g., that signed
1321 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1322 tests, but also to enforce that the result follows them. */
1324 static tree
1325 chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1326 bool use_overflow_semantics)
1328 tree ct, res;
1329 tree base, step;
1330 struct loop *loop;
1332 if (automatically_generated_chrec_p (chrec))
1333 return chrec;
1335 ct = chrec_type (chrec);
1336 if (ct == type)
1337 return chrec;
1339 if (!evolution_function_is_affine_p (chrec))
1340 goto keep_cast;
1342 loop = get_chrec_loop (chrec);
1343 base = CHREC_LEFT (chrec);
1344 step = CHREC_RIGHT (chrec);
1346 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1347 use_overflow_semantics))
1348 return build_polynomial_chrec (loop->num, base, step);
1350 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1351 keep_cast:
1352 /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1353 may be more expensive. We do want to perform this optimization here
1354 though for canonicalization reasons. */
1355 if (use_overflow_semantics
1356 && (TREE_CODE (chrec) == PLUS_EXPR
1357 || TREE_CODE (chrec) == MINUS_EXPR)
1358 && TREE_CODE (type) == INTEGER_TYPE
1359 && TREE_CODE (ct) == INTEGER_TYPE
1360 && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1361 && TYPE_OVERFLOW_UNDEFINED (ct))
1362 res = fold_build2 (TREE_CODE (chrec), type,
1363 fold_convert (type, TREE_OPERAND (chrec, 0)),
1364 fold_convert (type, TREE_OPERAND (chrec, 1)));
1365 /* Similar perform the trick that (signed char)((int)x + 2) can be
1366 narrowed to (signed char)((unsigned char)x + 2). */
1367 else if (use_overflow_semantics
1368 && TREE_CODE (chrec) == POLYNOMIAL_CHREC
1369 && TREE_CODE (ct) == INTEGER_TYPE
1370 && TREE_CODE (type) == INTEGER_TYPE
1371 && TYPE_OVERFLOW_UNDEFINED (type)
1372 && TYPE_PRECISION (type) < TYPE_PRECISION (ct))
1374 tree utype = unsigned_type_for (type);
1375 res = build_polynomial_chrec (CHREC_VARIABLE (chrec),
1376 fold_convert (utype,
1377 CHREC_LEFT (chrec)),
1378 fold_convert (utype,
1379 CHREC_RIGHT (chrec)));
1380 res = chrec_convert_1 (type, res, at_stmt, use_overflow_semantics);
1382 else
1383 res = fold_convert (type, chrec);
1385 /* Don't propagate overflows. */
1386 if (CONSTANT_CLASS_P (res))
1387 TREE_OVERFLOW (res) = 0;
1389 /* But reject constants that don't fit in their type after conversion.
1390 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1391 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1392 and can cause problems later when computing niters of loops. Note
1393 that we don't do the check before converting because we don't want
1394 to reject conversions of negative chrecs to unsigned types. */
1395 if (TREE_CODE (res) == INTEGER_CST
1396 && TREE_CODE (type) == INTEGER_TYPE
1397 && !int_fits_type_p (res, type))
1398 res = chrec_dont_know;
1400 return res;
1403 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1404 chrec if something else than what chrec_convert would do happens, NULL_TREE
1405 otherwise. */
1407 tree
1408 chrec_convert_aggressive (tree type, tree chrec)
1410 tree inner_type, left, right, lc, rc, rtype;
1412 if (automatically_generated_chrec_p (chrec)
1413 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1414 return NULL_TREE;
1416 inner_type = TREE_TYPE (chrec);
1417 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1418 return NULL_TREE;
1420 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1422 left = CHREC_LEFT (chrec);
1423 right = CHREC_RIGHT (chrec);
1424 lc = chrec_convert_aggressive (type, left);
1425 if (!lc)
1426 lc = chrec_convert (type, left, NULL);
1427 rc = chrec_convert_aggressive (rtype, right);
1428 if (!rc)
1429 rc = chrec_convert (rtype, right, NULL);
1431 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1434 /* Returns true when CHREC0 == CHREC1. */
1436 bool
1437 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1439 if (chrec0 == NULL_TREE
1440 || chrec1 == NULL_TREE
1441 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1442 return false;
1444 if (chrec0 == chrec1)
1445 return true;
1447 switch (TREE_CODE (chrec0))
1449 case INTEGER_CST:
1450 return operand_equal_p (chrec0, chrec1, 0);
1452 case POLYNOMIAL_CHREC:
1453 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1454 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1455 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1457 case PLUS_EXPR:
1458 case MULT_EXPR:
1459 case MINUS_EXPR:
1460 case POINTER_PLUS_EXPR:
1461 return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
1462 TREE_OPERAND (chrec1, 0))
1463 && eq_evolutions_p (TREE_OPERAND (chrec0, 1),
1464 TREE_OPERAND (chrec1, 1));
1466 default:
1467 return false;
1471 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1472 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1473 which of these cases happens. */
1475 enum ev_direction
1476 scev_direction (const_tree chrec)
1478 const_tree step;
1480 if (!evolution_function_is_affine_p (chrec))
1481 return EV_DIR_UNKNOWN;
1483 step = CHREC_RIGHT (chrec);
1484 if (TREE_CODE (step) != INTEGER_CST)
1485 return EV_DIR_UNKNOWN;
1487 if (tree_int_cst_sign_bit (step))
1488 return EV_DIR_DECREASES;
1489 else
1490 return EV_DIR_GROWS;
1493 /* Iterates over all the components of SCEV, and calls CBCK. */
1495 void
1496 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1498 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1500 case 3:
1501 for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1503 case 2:
1504 for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1506 case 1:
1507 for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1509 default:
1510 cbck (scev, data);
1511 break;
1515 /* Returns true when the operation can be part of a linear
1516 expression. */
1518 static inline bool
1519 operator_is_linear (tree scev)
1521 switch (TREE_CODE (scev))
1523 case INTEGER_CST:
1524 case POLYNOMIAL_CHREC:
1525 case PLUS_EXPR:
1526 case POINTER_PLUS_EXPR:
1527 case MULT_EXPR:
1528 case MINUS_EXPR:
1529 case NEGATE_EXPR:
1530 case SSA_NAME:
1531 case NON_LVALUE_EXPR:
1532 case BIT_NOT_EXPR:
1533 CASE_CONVERT:
1534 return true;
1536 default:
1537 return false;
1541 /* Return true when SCEV is a linear expression. Linear expressions
1542 can contain additions, substractions and multiplications.
1543 Multiplications are restricted to constant scaling: "cst * x". */
1545 bool
1546 scev_is_linear_expression (tree scev)
1548 if (scev == NULL
1549 || !operator_is_linear (scev))
1550 return false;
1552 if (TREE_CODE (scev) == MULT_EXPR)
1553 return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1554 && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1556 if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1557 && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
1558 return false;
1560 switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1562 case 3:
1563 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1564 && scev_is_linear_expression (TREE_OPERAND (scev, 1))
1565 && scev_is_linear_expression (TREE_OPERAND (scev, 2));
1567 case 2:
1568 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1569 && scev_is_linear_expression (TREE_OPERAND (scev, 1));
1571 case 1:
1572 return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1574 case 0:
1575 return true;
1577 default:
1578 return false;
1582 /* Determines whether the expression CHREC contains only interger consts
1583 in the right parts. */
1585 bool
1586 evolution_function_right_is_integer_cst (const_tree chrec)
1588 if (chrec == NULL_TREE)
1589 return false;
1591 switch (TREE_CODE (chrec))
1593 case INTEGER_CST:
1594 return true;
1596 case POLYNOMIAL_CHREC:
1597 return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1598 && (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1599 || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1601 CASE_CONVERT:
1602 return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1604 default:
1605 return false;