Fix up CL.
[official-gcc.git] / gcc / var-tracking.c
blob7ebbd7fe67a9c76ea8042cbb49ba0903f6f0908a
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "varasm.h"
95 #include "stor-layout.h"
96 #include "pointer-set.h"
97 #include "hash-table.h"
98 #include "basic-block.h"
99 #include "tm_p.h"
100 #include "hard-reg-set.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "sbitmap.h"
105 #include "alloc-pool.h"
106 #include "fibheap.h"
107 #include "regs.h"
108 #include "expr.h"
109 #include "tree-pass.h"
110 #include "bitmap.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "target.h"
115 #include "params.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "recog.h"
119 #include "tm_p.h"
120 #include "alias.h"
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 typedef struct micro_operation_def
174 /* Type of micro operation. */
175 enum micro_operation_type type;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx insn;
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 } micro_operation;
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
214 return dv && !dv_is_decl_p (dv);
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
237 return dv;
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 typedef struct attrs_def
247 /* Pointer to next member of the list. */
248 struct attrs_def *next;
250 /* The rtx of register. */
251 rtx loc;
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 } *attrs;
260 /* Structure for chaining the locations. */
261 typedef struct location_chain_def
263 /* Next element in the chain. */
264 struct location_chain_def *next;
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
269 /* The "value" stored in this location. */
270 rtx set_src;
272 /* Initialized? */
273 enum var_init_status init;
274 } *location_chain;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 typedef struct loc_exp_dep_s
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep_s *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep_s **pprev;
291 } loc_exp_dep;
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 typedef struct expand_depth_struct
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 } expand_depth;
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
330 /* Structure describing one part of variable. */
331 typedef struct variable_part_def
333 /* Chain of locations of the part. */
334 location_chain loc_chain;
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
339 union variable_aux
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 } variable_part;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 typedef enum onepart_enum
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 } onepart_enum_t;
366 /* Structure describing where the variable is located. */
367 typedef struct variable_def
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
373 /* Reference count. */
374 int refcount;
376 /* Number of variable parts. */
377 char n_var_parts;
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
386 /* The variable parts. */
387 variable_part var_part[1];
388 } *variable;
389 typedef const struct variable_def *const_variable;
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
394 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
395 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
397 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
399 /* Access VAR's Ith part's offset, checking that it's not a one-part
400 variable. */
401 #define VAR_PART_OFFSET(var, i) __extension__ \
402 (*({ variable const __v = (var); \
403 gcc_checking_assert (!__v->onepart); \
404 &__v->var_part[(i)].aux.offset; }))
406 /* Access VAR's one-part auxiliary data, checking that it is a
407 one-part variable. */
408 #define VAR_LOC_1PAUX(var) __extension__ \
409 (*({ variable const __v = (var); \
410 gcc_checking_assert (__v->onepart); \
411 &__v->var_part[0].aux.onepaux; }))
413 #else
414 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
415 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
416 #endif
418 /* These are accessor macros for the one-part auxiliary data. When
419 convenient for users, they're guarded by tests that the data was
420 allocated. */
421 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
422 ? VAR_LOC_1PAUX (var)->backlinks \
423 : NULL)
424 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
425 ? &VAR_LOC_1PAUX (var)->backlinks \
426 : NULL)
427 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
428 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
429 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
430 ? &VAR_LOC_1PAUX (var)->deps \
431 : NULL)
435 typedef unsigned int dvuid;
437 /* Return the uid of DV. */
439 static inline dvuid
440 dv_uid (decl_or_value dv)
442 if (dv_is_value_p (dv))
443 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
444 else
445 return DECL_UID (dv_as_decl (dv));
448 /* Compute the hash from the uid. */
450 static inline hashval_t
451 dv_uid2hash (dvuid uid)
453 return uid;
456 /* The hash function for a mask table in a shared_htab chain. */
458 static inline hashval_t
459 dv_htab_hash (decl_or_value dv)
461 return dv_uid2hash (dv_uid (dv));
464 static void variable_htab_free (void *);
466 /* Variable hashtable helpers. */
468 struct variable_hasher
470 typedef variable_def value_type;
471 typedef void compare_type;
472 static inline hashval_t hash (const value_type *);
473 static inline bool equal (const value_type *, const compare_type *);
474 static inline void remove (value_type *);
477 /* The hash function for variable_htab, computes the hash value
478 from the declaration of variable X. */
480 inline hashval_t
481 variable_hasher::hash (const value_type *v)
483 return dv_htab_hash (v->dv);
486 /* Compare the declaration of variable X with declaration Y. */
488 inline bool
489 variable_hasher::equal (const value_type *v, const compare_type *y)
491 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
493 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
496 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
498 inline void
499 variable_hasher::remove (value_type *var)
501 variable_htab_free (var);
504 typedef hash_table <variable_hasher> variable_table_type;
505 typedef variable_table_type::iterator variable_iterator_type;
507 /* Structure for passing some other parameters to function
508 emit_note_insn_var_location. */
509 typedef struct emit_note_data_def
511 /* The instruction which the note will be emitted before/after. */
512 rtx insn;
514 /* Where the note will be emitted (before/after insn)? */
515 enum emit_note_where where;
517 /* The variables and values active at this point. */
518 variable_table_type vars;
519 } emit_note_data;
521 /* Structure holding a refcounted hash table. If refcount > 1,
522 it must be first unshared before modified. */
523 typedef struct shared_hash_def
525 /* Reference count. */
526 int refcount;
528 /* Actual hash table. */
529 variable_table_type htab;
530 } *shared_hash;
532 /* Structure holding the IN or OUT set for a basic block. */
533 typedef struct dataflow_set_def
535 /* Adjustment of stack offset. */
536 HOST_WIDE_INT stack_adjust;
538 /* Attributes for registers (lists of attrs). */
539 attrs regs[FIRST_PSEUDO_REGISTER];
541 /* Variable locations. */
542 shared_hash vars;
544 /* Vars that is being traversed. */
545 shared_hash traversed_vars;
546 } dataflow_set;
548 /* The structure (one for each basic block) containing the information
549 needed for variable tracking. */
550 typedef struct variable_tracking_info_def
552 /* The vector of micro operations. */
553 vec<micro_operation> mos;
555 /* The IN and OUT set for dataflow analysis. */
556 dataflow_set in;
557 dataflow_set out;
559 /* The permanent-in dataflow set for this block. This is used to
560 hold values for which we had to compute entry values. ??? This
561 should probably be dynamically allocated, to avoid using more
562 memory in non-debug builds. */
563 dataflow_set *permp;
565 /* Has the block been visited in DFS? */
566 bool visited;
568 /* Has the block been flooded in VTA? */
569 bool flooded;
571 } *variable_tracking_info;
573 /* Alloc pool for struct attrs_def. */
574 static alloc_pool attrs_pool;
576 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
577 static alloc_pool var_pool;
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static alloc_pool valvar_pool;
582 /* Alloc pool for struct location_chain_def. */
583 static alloc_pool loc_chain_pool;
585 /* Alloc pool for struct shared_hash_def. */
586 static alloc_pool shared_hash_pool;
588 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
589 static alloc_pool loc_exp_dep_pool;
591 /* Changed variables, notes will be emitted for them. */
592 static variable_table_type changed_variables;
594 /* Shall notes be emitted? */
595 static bool emit_notes;
597 /* Values whose dynamic location lists have gone empty, but whose
598 cselib location lists are still usable. Use this to hold the
599 current location, the backlinks, etc, during emit_notes. */
600 static variable_table_type dropped_values;
602 /* Empty shared hashtable. */
603 static shared_hash empty_shared_hash;
605 /* Scratch register bitmap used by cselib_expand_value_rtx. */
606 static bitmap scratch_regs = NULL;
608 #ifdef HAVE_window_save
609 typedef struct GTY(()) parm_reg {
610 rtx outgoing;
611 rtx incoming;
612 } parm_reg_t;
615 /* Vector of windowed parameter registers, if any. */
616 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
617 #endif
619 /* Variable used to tell whether cselib_process_insn called our hook. */
620 static bool cselib_hook_called;
622 /* Local function prototypes. */
623 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
624 HOST_WIDE_INT *);
625 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static bool vt_stack_adjustments (void);
629 static void init_attrs_list_set (attrs *);
630 static void attrs_list_clear (attrs *);
631 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
632 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
633 static void attrs_list_copy (attrs *, attrs);
634 static void attrs_list_union (attrs *, attrs);
636 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
637 variable var, enum var_init_status);
638 static void vars_copy (variable_table_type, variable_table_type);
639 static tree var_debug_decl (tree);
640 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
641 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
642 enum var_init_status, rtx);
643 static void var_reg_delete (dataflow_set *, rtx, bool);
644 static void var_regno_delete (dataflow_set *, int);
645 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
646 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
647 enum var_init_status, rtx);
648 static void var_mem_delete (dataflow_set *, rtx, bool);
650 static void dataflow_set_init (dataflow_set *);
651 static void dataflow_set_clear (dataflow_set *);
652 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
653 static int variable_union_info_cmp_pos (const void *, const void *);
654 static void dataflow_set_union (dataflow_set *, dataflow_set *);
655 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type);
656 static bool canon_value_cmp (rtx, rtx);
657 static int loc_cmp (rtx, rtx);
658 static bool variable_part_different_p (variable_part *, variable_part *);
659 static bool onepart_variable_different_p (variable, variable);
660 static bool variable_different_p (variable, variable);
661 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
662 static void dataflow_set_destroy (dataflow_set *);
664 static bool contains_symbol_ref (rtx);
665 static bool track_expr_p (tree, bool);
666 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
667 static int add_uses (rtx *, void *);
668 static void add_uses_1 (rtx *, void *);
669 static void add_stores (rtx, const_rtx, void *);
670 static bool compute_bb_dataflow (basic_block);
671 static bool vt_find_locations (void);
673 static void dump_attrs_list (attrs);
674 static void dump_var (variable);
675 static void dump_vars (variable_table_type);
676 static void dump_dataflow_set (dataflow_set *);
677 static void dump_dataflow_sets (void);
679 static void set_dv_changed (decl_or_value, bool);
680 static void variable_was_changed (variable, dataflow_set *);
681 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
682 decl_or_value, HOST_WIDE_INT,
683 enum var_init_status, rtx);
684 static void set_variable_part (dataflow_set *, rtx,
685 decl_or_value, HOST_WIDE_INT,
686 enum var_init_status, rtx, enum insert_option);
687 static variable_def **clobber_slot_part (dataflow_set *, rtx,
688 variable_def **, HOST_WIDE_INT, rtx);
689 static void clobber_variable_part (dataflow_set *, rtx,
690 decl_or_value, HOST_WIDE_INT, rtx);
691 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
692 HOST_WIDE_INT);
693 static void delete_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT);
695 static void emit_notes_in_bb (basic_block, dataflow_set *);
696 static void vt_emit_notes (void);
698 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
699 static void vt_add_function_parameters (void);
700 static bool vt_initialize (void);
701 static void vt_finalize (void);
703 /* Given a SET, calculate the amount of stack adjustment it contains
704 PRE- and POST-modifying stack pointer.
705 This function is similar to stack_adjust_offset. */
707 static void
708 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
709 HOST_WIDE_INT *post)
711 rtx src = SET_SRC (pattern);
712 rtx dest = SET_DEST (pattern);
713 enum rtx_code code;
715 if (dest == stack_pointer_rtx)
717 /* (set (reg sp) (plus (reg sp) (const_int))) */
718 code = GET_CODE (src);
719 if (! (code == PLUS || code == MINUS)
720 || XEXP (src, 0) != stack_pointer_rtx
721 || !CONST_INT_P (XEXP (src, 1)))
722 return;
724 if (code == MINUS)
725 *post += INTVAL (XEXP (src, 1));
726 else
727 *post -= INTVAL (XEXP (src, 1));
729 else if (MEM_P (dest))
731 /* (set (mem (pre_dec (reg sp))) (foo)) */
732 src = XEXP (dest, 0);
733 code = GET_CODE (src);
735 switch (code)
737 case PRE_MODIFY:
738 case POST_MODIFY:
739 if (XEXP (src, 0) == stack_pointer_rtx)
741 rtx val = XEXP (XEXP (src, 1), 1);
742 /* We handle only adjustments by constant amount. */
743 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
744 CONST_INT_P (val));
746 if (code == PRE_MODIFY)
747 *pre -= INTVAL (val);
748 else
749 *post -= INTVAL (val);
750 break;
752 return;
754 case PRE_DEC:
755 if (XEXP (src, 0) == stack_pointer_rtx)
757 *pre += GET_MODE_SIZE (GET_MODE (dest));
758 break;
760 return;
762 case POST_DEC:
763 if (XEXP (src, 0) == stack_pointer_rtx)
765 *post += GET_MODE_SIZE (GET_MODE (dest));
766 break;
768 return;
770 case PRE_INC:
771 if (XEXP (src, 0) == stack_pointer_rtx)
773 *pre -= GET_MODE_SIZE (GET_MODE (dest));
774 break;
776 return;
778 case POST_INC:
779 if (XEXP (src, 0) == stack_pointer_rtx)
781 *post -= GET_MODE_SIZE (GET_MODE (dest));
782 break;
784 return;
786 default:
787 return;
792 /* Given an INSN, calculate the amount of stack adjustment it contains
793 PRE- and POST-modifying stack pointer. */
795 static void
796 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
797 HOST_WIDE_INT *post)
799 rtx pattern;
801 *pre = 0;
802 *post = 0;
804 pattern = PATTERN (insn);
805 if (RTX_FRAME_RELATED_P (insn))
807 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
808 if (expr)
809 pattern = XEXP (expr, 0);
812 if (GET_CODE (pattern) == SET)
813 stack_adjust_offset_pre_post (pattern, pre, post);
814 else if (GET_CODE (pattern) == PARALLEL
815 || GET_CODE (pattern) == SEQUENCE)
817 int i;
819 /* There may be stack adjustments inside compound insns. Search
820 for them. */
821 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
822 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
823 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
827 /* Compute stack adjustments for all blocks by traversing DFS tree.
828 Return true when the adjustments on all incoming edges are consistent.
829 Heavily borrowed from pre_and_rev_post_order_compute. */
831 static bool
832 vt_stack_adjustments (void)
834 edge_iterator *stack;
835 int sp;
837 /* Initialize entry block. */
838 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
839 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust =
840 INCOMING_FRAME_SP_OFFSET;
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust =
842 INCOMING_FRAME_SP_OFFSET;
844 /* Allocate stack for back-tracking up CFG. */
845 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
846 sp = 0;
848 /* Push the first edge on to the stack. */
849 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
851 while (sp)
853 edge_iterator ei;
854 basic_block src;
855 basic_block dest;
857 /* Look at the edge on the top of the stack. */
858 ei = stack[sp - 1];
859 src = ei_edge (ei)->src;
860 dest = ei_edge (ei)->dest;
862 /* Check if the edge destination has been visited yet. */
863 if (!VTI (dest)->visited)
865 rtx insn;
866 HOST_WIDE_INT pre, post, offset;
867 VTI (dest)->visited = true;
868 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
870 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
871 for (insn = BB_HEAD (dest);
872 insn != NEXT_INSN (BB_END (dest));
873 insn = NEXT_INSN (insn))
874 if (INSN_P (insn))
876 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
877 offset += pre + post;
880 VTI (dest)->out.stack_adjust = offset;
882 if (EDGE_COUNT (dest->succs) > 0)
883 /* Since the DEST node has been visited for the first
884 time, check its successors. */
885 stack[sp++] = ei_start (dest->succs);
887 else
889 /* Check whether the adjustments on the edges are the same. */
890 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
892 free (stack);
893 return false;
896 if (! ei_one_before_end_p (ei))
897 /* Go to the next edge. */
898 ei_next (&stack[sp - 1]);
899 else
900 /* Return to previous level if there are no more edges. */
901 sp--;
905 free (stack);
906 return true;
909 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
910 hard_frame_pointer_rtx is being mapped to it and offset for it. */
911 static rtx cfa_base_rtx;
912 static HOST_WIDE_INT cfa_base_offset;
914 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
915 or hard_frame_pointer_rtx. */
917 static inline rtx
918 compute_cfa_pointer (HOST_WIDE_INT adjustment)
920 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
923 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
924 or -1 if the replacement shouldn't be done. */
925 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
927 /* Data for adjust_mems callback. */
929 struct adjust_mem_data
931 bool store;
932 enum machine_mode mem_mode;
933 HOST_WIDE_INT stack_adjust;
934 rtx side_effects;
937 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
938 transformation of wider mode arithmetics to narrower mode,
939 -1 if it is suitable and subexpressions shouldn't be
940 traversed and 0 if it is suitable and subexpressions should
941 be traversed. Called through for_each_rtx. */
943 static int
944 use_narrower_mode_test (rtx *loc, void *data)
946 rtx subreg = (rtx) data;
948 if (CONSTANT_P (*loc))
949 return -1;
950 switch (GET_CODE (*loc))
952 case REG:
953 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
954 return 1;
955 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
956 *loc, subreg_lowpart_offset (GET_MODE (subreg),
957 GET_MODE (*loc))))
958 return 1;
959 return -1;
960 case PLUS:
961 case MINUS:
962 case MULT:
963 return 0;
964 case ASHIFT:
965 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
966 return 1;
967 else
968 return -1;
969 default:
970 return 1;
974 /* Transform X into narrower mode MODE from wider mode WMODE. */
976 static rtx
977 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
979 rtx op0, op1;
980 if (CONSTANT_P (x))
981 return lowpart_subreg (mode, x, wmode);
982 switch (GET_CODE (x))
984 case REG:
985 return lowpart_subreg (mode, x, wmode);
986 case PLUS:
987 case MINUS:
988 case MULT:
989 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
990 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
991 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
992 case ASHIFT:
993 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
994 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
995 default:
996 gcc_unreachable ();
1000 /* Helper function for adjusting used MEMs. */
1002 static rtx
1003 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1005 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1006 rtx mem, addr = loc, tem;
1007 enum machine_mode mem_mode_save;
1008 bool store_save;
1009 switch (GET_CODE (loc))
1011 case REG:
1012 /* Don't do any sp or fp replacements outside of MEM addresses
1013 on the LHS. */
1014 if (amd->mem_mode == VOIDmode && amd->store)
1015 return loc;
1016 if (loc == stack_pointer_rtx
1017 && !frame_pointer_needed
1018 && cfa_base_rtx)
1019 return compute_cfa_pointer (amd->stack_adjust);
1020 else if (loc == hard_frame_pointer_rtx
1021 && frame_pointer_needed
1022 && hard_frame_pointer_adjustment != -1
1023 && cfa_base_rtx)
1024 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1025 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1026 return loc;
1027 case MEM:
1028 mem = loc;
1029 if (!amd->store)
1031 mem = targetm.delegitimize_address (mem);
1032 if (mem != loc && !MEM_P (mem))
1033 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1036 addr = XEXP (mem, 0);
1037 mem_mode_save = amd->mem_mode;
1038 amd->mem_mode = GET_MODE (mem);
1039 store_save = amd->store;
1040 amd->store = false;
1041 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1042 amd->store = store_save;
1043 amd->mem_mode = mem_mode_save;
1044 if (mem == loc)
1045 addr = targetm.delegitimize_address (addr);
1046 if (addr != XEXP (mem, 0))
1047 mem = replace_equiv_address_nv (mem, addr);
1048 if (!amd->store)
1049 mem = avoid_constant_pool_reference (mem);
1050 return mem;
1051 case PRE_INC:
1052 case PRE_DEC:
1053 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1054 gen_int_mode (GET_CODE (loc) == PRE_INC
1055 ? GET_MODE_SIZE (amd->mem_mode)
1056 : -GET_MODE_SIZE (amd->mem_mode),
1057 GET_MODE (loc)));
1058 case POST_INC:
1059 case POST_DEC:
1060 if (addr == loc)
1061 addr = XEXP (loc, 0);
1062 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1063 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1064 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1065 gen_int_mode ((GET_CODE (loc) == PRE_INC
1066 || GET_CODE (loc) == POST_INC)
1067 ? GET_MODE_SIZE (amd->mem_mode)
1068 : -GET_MODE_SIZE (amd->mem_mode),
1069 GET_MODE (loc)));
1070 amd->side_effects = alloc_EXPR_LIST (0,
1071 gen_rtx_SET (VOIDmode,
1072 XEXP (loc, 0),
1073 tem),
1074 amd->side_effects);
1075 return addr;
1076 case PRE_MODIFY:
1077 addr = XEXP (loc, 1);
1078 case POST_MODIFY:
1079 if (addr == loc)
1080 addr = XEXP (loc, 0);
1081 gcc_assert (amd->mem_mode != VOIDmode);
1082 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1083 amd->side_effects = alloc_EXPR_LIST (0,
1084 gen_rtx_SET (VOIDmode,
1085 XEXP (loc, 0),
1086 XEXP (loc, 1)),
1087 amd->side_effects);
1088 return addr;
1089 case SUBREG:
1090 /* First try without delegitimization of whole MEMs and
1091 avoid_constant_pool_reference, which is more likely to succeed. */
1092 store_save = amd->store;
1093 amd->store = true;
1094 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1095 data);
1096 amd->store = store_save;
1097 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1098 if (mem == SUBREG_REG (loc))
1100 tem = loc;
1101 goto finish_subreg;
1103 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1104 GET_MODE (SUBREG_REG (loc)),
1105 SUBREG_BYTE (loc));
1106 if (tem)
1107 goto finish_subreg;
1108 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1109 GET_MODE (SUBREG_REG (loc)),
1110 SUBREG_BYTE (loc));
1111 if (tem == NULL_RTX)
1112 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1113 finish_subreg:
1114 if (MAY_HAVE_DEBUG_INSNS
1115 && GET_CODE (tem) == SUBREG
1116 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1117 || GET_CODE (SUBREG_REG (tem)) == MINUS
1118 || GET_CODE (SUBREG_REG (tem)) == MULT
1119 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1120 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1121 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1122 && GET_MODE_SIZE (GET_MODE (tem))
1123 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1124 && subreg_lowpart_p (tem)
1125 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1126 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1127 GET_MODE (SUBREG_REG (tem)));
1128 return tem;
1129 case ASM_OPERANDS:
1130 /* Don't do any replacements in second and following
1131 ASM_OPERANDS of inline-asm with multiple sets.
1132 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1133 and ASM_OPERANDS_LABEL_VEC need to be equal between
1134 all the ASM_OPERANDs in the insn and adjust_insn will
1135 fix this up. */
1136 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1137 return loc;
1138 break;
1139 default:
1140 break;
1142 return NULL_RTX;
1145 /* Helper function for replacement of uses. */
1147 static void
1148 adjust_mem_uses (rtx *x, void *data)
1150 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1151 if (new_x != *x)
1152 validate_change (NULL_RTX, x, new_x, true);
1155 /* Helper function for replacement of stores. */
1157 static void
1158 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1160 if (MEM_P (loc))
1162 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1163 adjust_mems, data);
1164 if (new_dest != SET_DEST (expr))
1166 rtx xexpr = CONST_CAST_RTX (expr);
1167 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1172 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1173 replace them with their value in the insn and add the side-effects
1174 as other sets to the insn. */
1176 static void
1177 adjust_insn (basic_block bb, rtx insn)
1179 struct adjust_mem_data amd;
1180 rtx set;
1182 #ifdef HAVE_window_save
1183 /* If the target machine has an explicit window save instruction, the
1184 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1185 if (RTX_FRAME_RELATED_P (insn)
1186 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1188 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1189 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1190 parm_reg_t *p;
1192 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1194 XVECEXP (rtl, 0, i * 2)
1195 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1196 /* Do not clobber the attached DECL, but only the REG. */
1197 XVECEXP (rtl, 0, i * 2 + 1)
1198 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1199 gen_raw_REG (GET_MODE (p->outgoing),
1200 REGNO (p->outgoing)));
1203 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1204 return;
1206 #endif
1208 amd.mem_mode = VOIDmode;
1209 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1210 amd.side_effects = NULL_RTX;
1212 amd.store = true;
1213 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1215 amd.store = false;
1216 if (GET_CODE (PATTERN (insn)) == PARALLEL
1217 && asm_noperands (PATTERN (insn)) > 0
1218 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1220 rtx body, set0;
1221 int i;
1223 /* inline-asm with multiple sets is tiny bit more complicated,
1224 because the 3 vectors in ASM_OPERANDS need to be shared between
1225 all ASM_OPERANDS in the instruction. adjust_mems will
1226 not touch ASM_OPERANDS other than the first one, asm_noperands
1227 test above needs to be called before that (otherwise it would fail)
1228 and afterwards this code fixes it up. */
1229 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1230 body = PATTERN (insn);
1231 set0 = XVECEXP (body, 0, 0);
1232 gcc_checking_assert (GET_CODE (set0) == SET
1233 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1234 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1235 for (i = 1; i < XVECLEN (body, 0); i++)
1236 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1237 break;
1238 else
1240 set = XVECEXP (body, 0, i);
1241 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1242 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1243 == i);
1244 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1245 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1246 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1247 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1248 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1249 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1251 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1252 ASM_OPERANDS_INPUT_VEC (newsrc)
1253 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1254 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1255 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1256 ASM_OPERANDS_LABEL_VEC (newsrc)
1257 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1258 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1262 else
1263 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1265 /* For read-only MEMs containing some constant, prefer those
1266 constants. */
1267 set = single_set (insn);
1268 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1270 rtx note = find_reg_equal_equiv_note (insn);
1272 if (note && CONSTANT_P (XEXP (note, 0)))
1273 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1276 if (amd.side_effects)
1278 rtx *pat, new_pat, s;
1279 int i, oldn, newn;
1281 pat = &PATTERN (insn);
1282 if (GET_CODE (*pat) == COND_EXEC)
1283 pat = &COND_EXEC_CODE (*pat);
1284 if (GET_CODE (*pat) == PARALLEL)
1285 oldn = XVECLEN (*pat, 0);
1286 else
1287 oldn = 1;
1288 for (s = amd.side_effects, newn = 0; s; newn++)
1289 s = XEXP (s, 1);
1290 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1291 if (GET_CODE (*pat) == PARALLEL)
1292 for (i = 0; i < oldn; i++)
1293 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1294 else
1295 XVECEXP (new_pat, 0, 0) = *pat;
1296 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1297 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1298 free_EXPR_LIST_list (&amd.side_effects);
1299 validate_change (NULL_RTX, pat, new_pat, true);
1303 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1304 static inline rtx
1305 dv_as_rtx (decl_or_value dv)
1307 tree decl;
1309 if (dv_is_value_p (dv))
1310 return dv_as_value (dv);
1312 decl = dv_as_decl (dv);
1314 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1315 return DECL_RTL_KNOWN_SET (decl);
1318 /* Return nonzero if a decl_or_value must not have more than one
1319 variable part. The returned value discriminates among various
1320 kinds of one-part DVs ccording to enum onepart_enum. */
1321 static inline onepart_enum_t
1322 dv_onepart_p (decl_or_value dv)
1324 tree decl;
1326 if (!MAY_HAVE_DEBUG_INSNS)
1327 return NOT_ONEPART;
1329 if (dv_is_value_p (dv))
1330 return ONEPART_VALUE;
1332 decl = dv_as_decl (dv);
1334 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1335 return ONEPART_DEXPR;
1337 if (target_for_debug_bind (decl) != NULL_TREE)
1338 return ONEPART_VDECL;
1340 return NOT_ONEPART;
1343 /* Return the variable pool to be used for a dv of type ONEPART. */
1344 static inline alloc_pool
1345 onepart_pool (onepart_enum_t onepart)
1347 return onepart ? valvar_pool : var_pool;
1350 /* Build a decl_or_value out of a decl. */
1351 static inline decl_or_value
1352 dv_from_decl (tree decl)
1354 decl_or_value dv;
1355 dv = decl;
1356 gcc_checking_assert (dv_is_decl_p (dv));
1357 return dv;
1360 /* Build a decl_or_value out of a value. */
1361 static inline decl_or_value
1362 dv_from_value (rtx value)
1364 decl_or_value dv;
1365 dv = value;
1366 gcc_checking_assert (dv_is_value_p (dv));
1367 return dv;
1370 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1371 static inline decl_or_value
1372 dv_from_rtx (rtx x)
1374 decl_or_value dv;
1376 switch (GET_CODE (x))
1378 case DEBUG_EXPR:
1379 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1380 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1381 break;
1383 case VALUE:
1384 dv = dv_from_value (x);
1385 break;
1387 default:
1388 gcc_unreachable ();
1391 return dv;
1394 extern void debug_dv (decl_or_value dv);
1396 DEBUG_FUNCTION void
1397 debug_dv (decl_or_value dv)
1399 if (dv_is_value_p (dv))
1400 debug_rtx (dv_as_value (dv));
1401 else
1402 debug_generic_stmt (dv_as_decl (dv));
1405 static void loc_exp_dep_clear (variable var);
1407 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1409 static void
1410 variable_htab_free (void *elem)
1412 int i;
1413 variable var = (variable) elem;
1414 location_chain node, next;
1416 gcc_checking_assert (var->refcount > 0);
1418 var->refcount--;
1419 if (var->refcount > 0)
1420 return;
1422 for (i = 0; i < var->n_var_parts; i++)
1424 for (node = var->var_part[i].loc_chain; node; node = next)
1426 next = node->next;
1427 pool_free (loc_chain_pool, node);
1429 var->var_part[i].loc_chain = NULL;
1431 if (var->onepart && VAR_LOC_1PAUX (var))
1433 loc_exp_dep_clear (var);
1434 if (VAR_LOC_DEP_LST (var))
1435 VAR_LOC_DEP_LST (var)->pprev = NULL;
1436 XDELETE (VAR_LOC_1PAUX (var));
1437 /* These may be reused across functions, so reset
1438 e.g. NO_LOC_P. */
1439 if (var->onepart == ONEPART_DEXPR)
1440 set_dv_changed (var->dv, true);
1442 pool_free (onepart_pool (var->onepart), var);
1445 /* Initialize the set (array) SET of attrs to empty lists. */
1447 static void
1448 init_attrs_list_set (attrs *set)
1450 int i;
1452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1453 set[i] = NULL;
1456 /* Make the list *LISTP empty. */
1458 static void
1459 attrs_list_clear (attrs *listp)
1461 attrs list, next;
1463 for (list = *listp; list; list = next)
1465 next = list->next;
1466 pool_free (attrs_pool, list);
1468 *listp = NULL;
1471 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1473 static attrs
1474 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1476 for (; list; list = list->next)
1477 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1478 return list;
1479 return NULL;
1482 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1484 static void
1485 attrs_list_insert (attrs *listp, decl_or_value dv,
1486 HOST_WIDE_INT offset, rtx loc)
1488 attrs list;
1490 list = (attrs) pool_alloc (attrs_pool);
1491 list->loc = loc;
1492 list->dv = dv;
1493 list->offset = offset;
1494 list->next = *listp;
1495 *listp = list;
1498 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1500 static void
1501 attrs_list_copy (attrs *dstp, attrs src)
1503 attrs n;
1505 attrs_list_clear (dstp);
1506 for (; src; src = src->next)
1508 n = (attrs) pool_alloc (attrs_pool);
1509 n->loc = src->loc;
1510 n->dv = src->dv;
1511 n->offset = src->offset;
1512 n->next = *dstp;
1513 *dstp = n;
1517 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1519 static void
1520 attrs_list_union (attrs *dstp, attrs src)
1522 for (; src; src = src->next)
1524 if (!attrs_list_member (*dstp, src->dv, src->offset))
1525 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1529 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1530 *DSTP. */
1532 static void
1533 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1535 gcc_assert (!*dstp);
1536 for (; src; src = src->next)
1538 if (!dv_onepart_p (src->dv))
1539 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1541 for (src = src2; src; src = src->next)
1543 if (!dv_onepart_p (src->dv)
1544 && !attrs_list_member (*dstp, src->dv, src->offset))
1545 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1549 /* Shared hashtable support. */
1551 /* Return true if VARS is shared. */
1553 static inline bool
1554 shared_hash_shared (shared_hash vars)
1556 return vars->refcount > 1;
1559 /* Return the hash table for VARS. */
1561 static inline variable_table_type
1562 shared_hash_htab (shared_hash vars)
1564 return vars->htab;
1567 /* Return true if VAR is shared, or maybe because VARS is shared. */
1569 static inline bool
1570 shared_var_p (variable var, shared_hash vars)
1572 /* Don't count an entry in the changed_variables table as a duplicate. */
1573 return ((var->refcount > 1 + (int) var->in_changed_variables)
1574 || shared_hash_shared (vars));
1577 /* Copy variables into a new hash table. */
1579 static shared_hash
1580 shared_hash_unshare (shared_hash vars)
1582 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1583 gcc_assert (vars->refcount > 1);
1584 new_vars->refcount = 1;
1585 new_vars->htab.create (vars->htab.elements () + 3);
1586 vars_copy (new_vars->htab, vars->htab);
1587 vars->refcount--;
1588 return new_vars;
1591 /* Increment reference counter on VARS and return it. */
1593 static inline shared_hash
1594 shared_hash_copy (shared_hash vars)
1596 vars->refcount++;
1597 return vars;
1600 /* Decrement reference counter and destroy hash table if not shared
1601 anymore. */
1603 static void
1604 shared_hash_destroy (shared_hash vars)
1606 gcc_checking_assert (vars->refcount > 0);
1607 if (--vars->refcount == 0)
1609 vars->htab.dispose ();
1610 pool_free (shared_hash_pool, vars);
1614 /* Unshare *PVARS if shared and return slot for DV. If INS is
1615 INSERT, insert it if not already present. */
1617 static inline variable_def **
1618 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1619 hashval_t dvhash, enum insert_option ins)
1621 if (shared_hash_shared (*pvars))
1622 *pvars = shared_hash_unshare (*pvars);
1623 return shared_hash_htab (*pvars).find_slot_with_hash (dv, dvhash, ins);
1626 static inline variable_def **
1627 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1628 enum insert_option ins)
1630 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1633 /* Return slot for DV, if it is already present in the hash table.
1634 If it is not present, insert it only VARS is not shared, otherwise
1635 return NULL. */
1637 static inline variable_def **
1638 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1640 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash,
1641 shared_hash_shared (vars)
1642 ? NO_INSERT : INSERT);
1645 static inline variable_def **
1646 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1648 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1651 /* Return slot for DV only if it is already present in the hash table. */
1653 static inline variable_def **
1654 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1655 hashval_t dvhash)
1657 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash, NO_INSERT);
1660 static inline variable_def **
1661 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1663 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1666 /* Return variable for DV or NULL if not already present in the hash
1667 table. */
1669 static inline variable
1670 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1672 return shared_hash_htab (vars).find_with_hash (dv, dvhash);
1675 static inline variable
1676 shared_hash_find (shared_hash vars, decl_or_value dv)
1678 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1681 /* Return true if TVAL is better than CVAL as a canonival value. We
1682 choose lowest-numbered VALUEs, using the RTX address as a
1683 tie-breaker. The idea is to arrange them into a star topology,
1684 such that all of them are at most one step away from the canonical
1685 value, and the canonical value has backlinks to all of them, in
1686 addition to all the actual locations. We don't enforce this
1687 topology throughout the entire dataflow analysis, though.
1690 static inline bool
1691 canon_value_cmp (rtx tval, rtx cval)
1693 return !cval
1694 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1697 static bool dst_can_be_shared;
1699 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1701 static variable_def **
1702 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1703 enum var_init_status initialized)
1705 variable new_var;
1706 int i;
1708 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1709 new_var->dv = var->dv;
1710 new_var->refcount = 1;
1711 var->refcount--;
1712 new_var->n_var_parts = var->n_var_parts;
1713 new_var->onepart = var->onepart;
1714 new_var->in_changed_variables = false;
1716 if (! flag_var_tracking_uninit)
1717 initialized = VAR_INIT_STATUS_INITIALIZED;
1719 for (i = 0; i < var->n_var_parts; i++)
1721 location_chain node;
1722 location_chain *nextp;
1724 if (i == 0 && var->onepart)
1726 /* One-part auxiliary data is only used while emitting
1727 notes, so propagate it to the new variable in the active
1728 dataflow set. If we're not emitting notes, this will be
1729 a no-op. */
1730 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1731 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1732 VAR_LOC_1PAUX (var) = NULL;
1734 else
1735 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1736 nextp = &new_var->var_part[i].loc_chain;
1737 for (node = var->var_part[i].loc_chain; node; node = node->next)
1739 location_chain new_lc;
1741 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1742 new_lc->next = NULL;
1743 if (node->init > initialized)
1744 new_lc->init = node->init;
1745 else
1746 new_lc->init = initialized;
1747 if (node->set_src && !(MEM_P (node->set_src)))
1748 new_lc->set_src = node->set_src;
1749 else
1750 new_lc->set_src = NULL;
1751 new_lc->loc = node->loc;
1753 *nextp = new_lc;
1754 nextp = &new_lc->next;
1757 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1760 dst_can_be_shared = false;
1761 if (shared_hash_shared (set->vars))
1762 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1763 else if (set->traversed_vars && set->vars != set->traversed_vars)
1764 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1765 *slot = new_var;
1766 if (var->in_changed_variables)
1768 variable_def **cslot
1769 = changed_variables.find_slot_with_hash (var->dv,
1770 dv_htab_hash (var->dv), NO_INSERT);
1771 gcc_assert (*cslot == (void *) var);
1772 var->in_changed_variables = false;
1773 variable_htab_free (var);
1774 *cslot = new_var;
1775 new_var->in_changed_variables = true;
1777 return slot;
1780 /* Copy all variables from hash table SRC to hash table DST. */
1782 static void
1783 vars_copy (variable_table_type dst, variable_table_type src)
1785 variable_iterator_type hi;
1786 variable var;
1788 FOR_EACH_HASH_TABLE_ELEMENT (src, var, variable, hi)
1790 variable_def **dstp;
1791 var->refcount++;
1792 dstp = dst.find_slot_with_hash (var->dv, dv_htab_hash (var->dv), INSERT);
1793 *dstp = var;
1797 /* Map a decl to its main debug decl. */
1799 static inline tree
1800 var_debug_decl (tree decl)
1802 if (decl && TREE_CODE (decl) == VAR_DECL
1803 && DECL_HAS_DEBUG_EXPR_P (decl))
1805 tree debugdecl = DECL_DEBUG_EXPR (decl);
1806 if (DECL_P (debugdecl))
1807 decl = debugdecl;
1810 return decl;
1813 /* Set the register LOC to contain DV, OFFSET. */
1815 static void
1816 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1817 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1818 enum insert_option iopt)
1820 attrs node;
1821 bool decl_p = dv_is_decl_p (dv);
1823 if (decl_p)
1824 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1826 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1827 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1828 && node->offset == offset)
1829 break;
1830 if (!node)
1831 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1832 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1835 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1837 static void
1838 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1839 rtx set_src)
1841 tree decl = REG_EXPR (loc);
1842 HOST_WIDE_INT offset = REG_OFFSET (loc);
1844 var_reg_decl_set (set, loc, initialized,
1845 dv_from_decl (decl), offset, set_src, INSERT);
1848 static enum var_init_status
1849 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1851 variable var;
1852 int i;
1853 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1855 if (! flag_var_tracking_uninit)
1856 return VAR_INIT_STATUS_INITIALIZED;
1858 var = shared_hash_find (set->vars, dv);
1859 if (var)
1861 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1863 location_chain nextp;
1864 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1865 if (rtx_equal_p (nextp->loc, loc))
1867 ret_val = nextp->init;
1868 break;
1873 return ret_val;
1876 /* Delete current content of register LOC in dataflow set SET and set
1877 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1878 MODIFY is true, any other live copies of the same variable part are
1879 also deleted from the dataflow set, otherwise the variable part is
1880 assumed to be copied from another location holding the same
1881 part. */
1883 static void
1884 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1885 enum var_init_status initialized, rtx set_src)
1887 tree decl = REG_EXPR (loc);
1888 HOST_WIDE_INT offset = REG_OFFSET (loc);
1889 attrs node, next;
1890 attrs *nextp;
1892 decl = var_debug_decl (decl);
1894 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1895 initialized = get_init_value (set, loc, dv_from_decl (decl));
1897 nextp = &set->regs[REGNO (loc)];
1898 for (node = *nextp; node; node = next)
1900 next = node->next;
1901 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1903 delete_variable_part (set, node->loc, node->dv, node->offset);
1904 pool_free (attrs_pool, node);
1905 *nextp = next;
1907 else
1909 node->loc = loc;
1910 nextp = &node->next;
1913 if (modify)
1914 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1915 var_reg_set (set, loc, initialized, set_src);
1918 /* Delete the association of register LOC in dataflow set SET with any
1919 variables that aren't onepart. If CLOBBER is true, also delete any
1920 other live copies of the same variable part, and delete the
1921 association with onepart dvs too. */
1923 static void
1924 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1926 attrs *nextp = &set->regs[REGNO (loc)];
1927 attrs node, next;
1929 if (clobber)
1931 tree decl = REG_EXPR (loc);
1932 HOST_WIDE_INT offset = REG_OFFSET (loc);
1934 decl = var_debug_decl (decl);
1936 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1939 for (node = *nextp; node; node = next)
1941 next = node->next;
1942 if (clobber || !dv_onepart_p (node->dv))
1944 delete_variable_part (set, node->loc, node->dv, node->offset);
1945 pool_free (attrs_pool, node);
1946 *nextp = next;
1948 else
1949 nextp = &node->next;
1953 /* Delete content of register with number REGNO in dataflow set SET. */
1955 static void
1956 var_regno_delete (dataflow_set *set, int regno)
1958 attrs *reg = &set->regs[regno];
1959 attrs node, next;
1961 for (node = *reg; node; node = next)
1963 next = node->next;
1964 delete_variable_part (set, node->loc, node->dv, node->offset);
1965 pool_free (attrs_pool, node);
1967 *reg = NULL;
1970 /* Return true if I is the negated value of a power of two. */
1971 static bool
1972 negative_power_of_two_p (HOST_WIDE_INT i)
1974 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1975 return x == (x & -x);
1978 /* Strip constant offsets and alignments off of LOC. Return the base
1979 expression. */
1981 static rtx
1982 vt_get_canonicalize_base (rtx loc)
1984 while ((GET_CODE (loc) == PLUS
1985 || GET_CODE (loc) == AND)
1986 && GET_CODE (XEXP (loc, 1)) == CONST_INT
1987 && (GET_CODE (loc) != AND
1988 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
1989 loc = XEXP (loc, 0);
1991 return loc;
1994 /* This caches canonicalized addresses for VALUEs, computed using
1995 information in the global cselib table. */
1996 static struct pointer_map_t *global_get_addr_cache;
1998 /* This caches canonicalized addresses for VALUEs, computed using
1999 information from the global cache and information pertaining to a
2000 basic block being analyzed. */
2001 static struct pointer_map_t *local_get_addr_cache;
2003 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2005 /* Return the canonical address for LOC, that must be a VALUE, using a
2006 cached global equivalence or computing it and storing it in the
2007 global cache. */
2009 static rtx
2010 get_addr_from_global_cache (rtx const loc)
2012 rtx x;
2013 void **slot;
2015 gcc_checking_assert (GET_CODE (loc) == VALUE);
2017 slot = pointer_map_insert (global_get_addr_cache, loc);
2018 if (*slot)
2019 return (rtx)*slot;
2021 x = canon_rtx (get_addr (loc));
2023 /* Tentative, avoiding infinite recursion. */
2024 *slot = x;
2026 if (x != loc)
2028 rtx nx = vt_canonicalize_addr (NULL, x);
2029 if (nx != x)
2031 /* The table may have moved during recursion, recompute
2032 SLOT. */
2033 slot = pointer_map_contains (global_get_addr_cache, loc);
2034 *slot = x = nx;
2038 return x;
2041 /* Return the canonical address for LOC, that must be a VALUE, using a
2042 cached local equivalence or computing it and storing it in the
2043 local cache. */
2045 static rtx
2046 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2048 rtx x;
2049 void **slot;
2050 decl_or_value dv;
2051 variable var;
2052 location_chain l;
2054 gcc_checking_assert (GET_CODE (loc) == VALUE);
2056 slot = pointer_map_insert (local_get_addr_cache, loc);
2057 if (*slot)
2058 return (rtx)*slot;
2060 x = get_addr_from_global_cache (loc);
2062 /* Tentative, avoiding infinite recursion. */
2063 *slot = x;
2065 /* Recurse to cache local expansion of X, or if we need to search
2066 for a VALUE in the expansion. */
2067 if (x != loc)
2069 rtx nx = vt_canonicalize_addr (set, x);
2070 if (nx != x)
2072 slot = pointer_map_contains (local_get_addr_cache, loc);
2073 *slot = x = nx;
2075 return x;
2078 dv = dv_from_rtx (x);
2079 var = shared_hash_find (set->vars, dv);
2080 if (!var)
2081 return x;
2083 /* Look for an improved equivalent expression. */
2084 for (l = var->var_part[0].loc_chain; l; l = l->next)
2086 rtx base = vt_get_canonicalize_base (l->loc);
2087 if (GET_CODE (base) == VALUE
2088 && canon_value_cmp (base, loc))
2090 rtx nx = vt_canonicalize_addr (set, l->loc);
2091 if (x != nx)
2093 slot = pointer_map_contains (local_get_addr_cache, loc);
2094 *slot = x = nx;
2096 break;
2100 return x;
2103 /* Canonicalize LOC using equivalences from SET in addition to those
2104 in the cselib static table. It expects a VALUE-based expression,
2105 and it will only substitute VALUEs with other VALUEs or
2106 function-global equivalences, so that, if two addresses have base
2107 VALUEs that are locally or globally related in ways that
2108 memrefs_conflict_p cares about, they will both canonicalize to
2109 expressions that have the same base VALUE.
2111 The use of VALUEs as canonical base addresses enables the canonical
2112 RTXs to remain unchanged globally, if they resolve to a constant,
2113 or throughout a basic block otherwise, so that they can be cached
2114 and the cache needs not be invalidated when REGs, MEMs or such
2115 change. */
2117 static rtx
2118 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2120 HOST_WIDE_INT ofst = 0;
2121 enum machine_mode mode = GET_MODE (oloc);
2122 rtx loc = oloc;
2123 rtx x;
2124 bool retry = true;
2126 while (retry)
2128 while (GET_CODE (loc) == PLUS
2129 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2131 ofst += INTVAL (XEXP (loc, 1));
2132 loc = XEXP (loc, 0);
2135 /* Alignment operations can't normally be combined, so just
2136 canonicalize the base and we're done. We'll normally have
2137 only one stack alignment anyway. */
2138 if (GET_CODE (loc) == AND
2139 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2140 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2142 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2143 if (x != XEXP (loc, 0))
2144 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2145 retry = false;
2148 if (GET_CODE (loc) == VALUE)
2150 if (set)
2151 loc = get_addr_from_local_cache (set, loc);
2152 else
2153 loc = get_addr_from_global_cache (loc);
2155 /* Consolidate plus_constants. */
2156 while (ofst && GET_CODE (loc) == PLUS
2157 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2159 ofst += INTVAL (XEXP (loc, 1));
2160 loc = XEXP (loc, 0);
2163 retry = false;
2165 else
2167 x = canon_rtx (loc);
2168 if (retry)
2169 retry = (x != loc);
2170 loc = x;
2174 /* Add OFST back in. */
2175 if (ofst)
2177 /* Don't build new RTL if we can help it. */
2178 if (GET_CODE (oloc) == PLUS
2179 && XEXP (oloc, 0) == loc
2180 && INTVAL (XEXP (oloc, 1)) == ofst)
2181 return oloc;
2183 loc = plus_constant (mode, loc, ofst);
2186 return loc;
2189 /* Return true iff there's a true dependence between MLOC and LOC.
2190 MADDR must be a canonicalized version of MLOC's address. */
2192 static inline bool
2193 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2195 if (GET_CODE (loc) != MEM)
2196 return false;
2198 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2199 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2200 return false;
2202 return true;
2205 /* Hold parameters for the hashtab traversal function
2206 drop_overlapping_mem_locs, see below. */
2208 struct overlapping_mems
2210 dataflow_set *set;
2211 rtx loc, addr;
2214 /* Remove all MEMs that overlap with COMS->LOC from the location list
2215 of a hash table entry for a value. COMS->ADDR must be a
2216 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2217 canonicalized itself. */
2220 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2222 dataflow_set *set = coms->set;
2223 rtx mloc = coms->loc, addr = coms->addr;
2224 variable var = *slot;
2226 if (var->onepart == ONEPART_VALUE)
2228 location_chain loc, *locp;
2229 bool changed = false;
2230 rtx cur_loc;
2232 gcc_assert (var->n_var_parts == 1);
2234 if (shared_var_p (var, set->vars))
2236 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2237 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2238 break;
2240 if (!loc)
2241 return 1;
2243 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2244 var = *slot;
2245 gcc_assert (var->n_var_parts == 1);
2248 if (VAR_LOC_1PAUX (var))
2249 cur_loc = VAR_LOC_FROM (var);
2250 else
2251 cur_loc = var->var_part[0].cur_loc;
2253 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2254 loc; loc = *locp)
2256 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2258 locp = &loc->next;
2259 continue;
2262 *locp = loc->next;
2263 /* If we have deleted the location which was last emitted
2264 we have to emit new location so add the variable to set
2265 of changed variables. */
2266 if (cur_loc == loc->loc)
2268 changed = true;
2269 var->var_part[0].cur_loc = NULL;
2270 if (VAR_LOC_1PAUX (var))
2271 VAR_LOC_FROM (var) = NULL;
2273 pool_free (loc_chain_pool, loc);
2276 if (!var->var_part[0].loc_chain)
2278 var->n_var_parts--;
2279 changed = true;
2281 if (changed)
2282 variable_was_changed (var, set);
2285 return 1;
2288 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2290 static void
2291 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2293 struct overlapping_mems coms;
2295 gcc_checking_assert (GET_CODE (loc) == MEM);
2297 coms.set = set;
2298 coms.loc = canon_rtx (loc);
2299 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2301 set->traversed_vars = set->vars;
2302 shared_hash_htab (set->vars)
2303 .traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2304 set->traversed_vars = NULL;
2307 /* Set the location of DV, OFFSET as the MEM LOC. */
2309 static void
2310 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2311 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2312 enum insert_option iopt)
2314 if (dv_is_decl_p (dv))
2315 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2317 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2320 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2321 SET to LOC.
2322 Adjust the address first if it is stack pointer based. */
2324 static void
2325 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2326 rtx set_src)
2328 tree decl = MEM_EXPR (loc);
2329 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2331 var_mem_decl_set (set, loc, initialized,
2332 dv_from_decl (decl), offset, set_src, INSERT);
2335 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2336 dataflow set SET to LOC. If MODIFY is true, any other live copies
2337 of the same variable part are also deleted from the dataflow set,
2338 otherwise the variable part is assumed to be copied from another
2339 location holding the same part.
2340 Adjust the address first if it is stack pointer based. */
2342 static void
2343 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2344 enum var_init_status initialized, rtx set_src)
2346 tree decl = MEM_EXPR (loc);
2347 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2349 clobber_overlapping_mems (set, loc);
2350 decl = var_debug_decl (decl);
2352 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2353 initialized = get_init_value (set, loc, dv_from_decl (decl));
2355 if (modify)
2356 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2357 var_mem_set (set, loc, initialized, set_src);
2360 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2361 true, also delete any other live copies of the same variable part.
2362 Adjust the address first if it is stack pointer based. */
2364 static void
2365 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2367 tree decl = MEM_EXPR (loc);
2368 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2370 clobber_overlapping_mems (set, loc);
2371 decl = var_debug_decl (decl);
2372 if (clobber)
2373 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2374 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2377 /* Return true if LOC should not be expanded for location expressions,
2378 or used in them. */
2380 static inline bool
2381 unsuitable_loc (rtx loc)
2383 switch (GET_CODE (loc))
2385 case PC:
2386 case SCRATCH:
2387 case CC0:
2388 case ASM_INPUT:
2389 case ASM_OPERANDS:
2390 return true;
2392 default:
2393 return false;
2397 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2398 bound to it. */
2400 static inline void
2401 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2403 if (REG_P (loc))
2405 if (modified)
2406 var_regno_delete (set, REGNO (loc));
2407 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2408 dv_from_value (val), 0, NULL_RTX, INSERT);
2410 else if (MEM_P (loc))
2412 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2414 if (modified)
2415 clobber_overlapping_mems (set, loc);
2417 if (l && GET_CODE (l->loc) == VALUE)
2418 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2420 /* If this MEM is a global constant, we don't need it in the
2421 dynamic tables. ??? We should test this before emitting the
2422 micro-op in the first place. */
2423 while (l)
2424 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2425 break;
2426 else
2427 l = l->next;
2429 if (!l)
2430 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2431 dv_from_value (val), 0, NULL_RTX, INSERT);
2433 else
2435 /* Other kinds of equivalences are necessarily static, at least
2436 so long as we do not perform substitutions while merging
2437 expressions. */
2438 gcc_unreachable ();
2439 set_variable_part (set, loc, dv_from_value (val), 0,
2440 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2444 /* Bind a value to a location it was just stored in. If MODIFIED
2445 holds, assume the location was modified, detaching it from any
2446 values bound to it. */
2448 static void
2449 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2451 cselib_val *v = CSELIB_VAL_PTR (val);
2453 gcc_assert (cselib_preserved_value_p (v));
2455 if (dump_file)
2457 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2458 print_inline_rtx (dump_file, loc, 0);
2459 fprintf (dump_file, " evaluates to ");
2460 print_inline_rtx (dump_file, val, 0);
2461 if (v->locs)
2463 struct elt_loc_list *l;
2464 for (l = v->locs; l; l = l->next)
2466 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2467 print_inline_rtx (dump_file, l->loc, 0);
2470 fprintf (dump_file, "\n");
2473 gcc_checking_assert (!unsuitable_loc (loc));
2475 val_bind (set, val, loc, modified);
2478 /* Clear (canonical address) slots that reference X. */
2480 static bool
2481 local_get_addr_clear_given_value (const void *v ATTRIBUTE_UNUSED,
2482 void **slot, void *x)
2484 if (vt_get_canonicalize_base ((rtx)*slot) == x)
2485 *slot = NULL;
2486 return true;
2489 /* Reset this node, detaching all its equivalences. Return the slot
2490 in the variable hash table that holds dv, if there is one. */
2492 static void
2493 val_reset (dataflow_set *set, decl_or_value dv)
2495 variable var = shared_hash_find (set->vars, dv) ;
2496 location_chain node;
2497 rtx cval;
2499 if (!var || !var->n_var_parts)
2500 return;
2502 gcc_assert (var->n_var_parts == 1);
2504 if (var->onepart == ONEPART_VALUE)
2506 rtx x = dv_as_value (dv);
2507 void **slot;
2509 /* Relationships in the global cache don't change, so reset the
2510 local cache entry only. */
2511 slot = pointer_map_contains (local_get_addr_cache, x);
2512 if (slot)
2514 /* If the value resolved back to itself, odds are that other
2515 values may have cached it too. These entries now refer
2516 to the old X, so detach them too. Entries that used the
2517 old X but resolved to something else remain ok as long as
2518 that something else isn't also reset. */
2519 if (*slot == x)
2520 pointer_map_traverse (local_get_addr_cache,
2521 local_get_addr_clear_given_value, x);
2522 *slot = NULL;
2526 cval = NULL;
2527 for (node = var->var_part[0].loc_chain; node; node = node->next)
2528 if (GET_CODE (node->loc) == VALUE
2529 && canon_value_cmp (node->loc, cval))
2530 cval = node->loc;
2532 for (node = var->var_part[0].loc_chain; node; node = node->next)
2533 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2535 /* Redirect the equivalence link to the new canonical
2536 value, or simply remove it if it would point at
2537 itself. */
2538 if (cval)
2539 set_variable_part (set, cval, dv_from_value (node->loc),
2540 0, node->init, node->set_src, NO_INSERT);
2541 delete_variable_part (set, dv_as_value (dv),
2542 dv_from_value (node->loc), 0);
2545 if (cval)
2547 decl_or_value cdv = dv_from_value (cval);
2549 /* Keep the remaining values connected, accummulating links
2550 in the canonical value. */
2551 for (node = var->var_part[0].loc_chain; node; node = node->next)
2553 if (node->loc == cval)
2554 continue;
2555 else if (GET_CODE (node->loc) == REG)
2556 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2557 node->set_src, NO_INSERT);
2558 else if (GET_CODE (node->loc) == MEM)
2559 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2560 node->set_src, NO_INSERT);
2561 else
2562 set_variable_part (set, node->loc, cdv, 0,
2563 node->init, node->set_src, NO_INSERT);
2567 /* We remove this last, to make sure that the canonical value is not
2568 removed to the point of requiring reinsertion. */
2569 if (cval)
2570 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2572 clobber_variable_part (set, NULL, dv, 0, NULL);
2575 /* Find the values in a given location and map the val to another
2576 value, if it is unique, or add the location as one holding the
2577 value. */
2579 static void
2580 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2582 decl_or_value dv = dv_from_value (val);
2584 if (dump_file && (dump_flags & TDF_DETAILS))
2586 if (insn)
2587 fprintf (dump_file, "%i: ", INSN_UID (insn));
2588 else
2589 fprintf (dump_file, "head: ");
2590 print_inline_rtx (dump_file, val, 0);
2591 fputs (" is at ", dump_file);
2592 print_inline_rtx (dump_file, loc, 0);
2593 fputc ('\n', dump_file);
2596 val_reset (set, dv);
2598 gcc_checking_assert (!unsuitable_loc (loc));
2600 if (REG_P (loc))
2602 attrs node, found = NULL;
2604 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2605 if (dv_is_value_p (node->dv)
2606 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2608 found = node;
2610 /* Map incoming equivalences. ??? Wouldn't it be nice if
2611 we just started sharing the location lists? Maybe a
2612 circular list ending at the value itself or some
2613 such. */
2614 set_variable_part (set, dv_as_value (node->dv),
2615 dv_from_value (val), node->offset,
2616 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2617 set_variable_part (set, val, node->dv, node->offset,
2618 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2621 /* If we didn't find any equivalence, we need to remember that
2622 this value is held in the named register. */
2623 if (found)
2624 return;
2626 /* ??? Attempt to find and merge equivalent MEMs or other
2627 expressions too. */
2629 val_bind (set, val, loc, false);
2632 /* Initialize dataflow set SET to be empty.
2633 VARS_SIZE is the initial size of hash table VARS. */
2635 static void
2636 dataflow_set_init (dataflow_set *set)
2638 init_attrs_list_set (set->regs);
2639 set->vars = shared_hash_copy (empty_shared_hash);
2640 set->stack_adjust = 0;
2641 set->traversed_vars = NULL;
2644 /* Delete the contents of dataflow set SET. */
2646 static void
2647 dataflow_set_clear (dataflow_set *set)
2649 int i;
2651 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2652 attrs_list_clear (&set->regs[i]);
2654 shared_hash_destroy (set->vars);
2655 set->vars = shared_hash_copy (empty_shared_hash);
2658 /* Copy the contents of dataflow set SRC to DST. */
2660 static void
2661 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2663 int i;
2665 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2666 attrs_list_copy (&dst->regs[i], src->regs[i]);
2668 shared_hash_destroy (dst->vars);
2669 dst->vars = shared_hash_copy (src->vars);
2670 dst->stack_adjust = src->stack_adjust;
2673 /* Information for merging lists of locations for a given offset of variable.
2675 struct variable_union_info
2677 /* Node of the location chain. */
2678 location_chain lc;
2680 /* The sum of positions in the input chains. */
2681 int pos;
2683 /* The position in the chain of DST dataflow set. */
2684 int pos_dst;
2687 /* Buffer for location list sorting and its allocated size. */
2688 static struct variable_union_info *vui_vec;
2689 static int vui_allocated;
2691 /* Compare function for qsort, order the structures by POS element. */
2693 static int
2694 variable_union_info_cmp_pos (const void *n1, const void *n2)
2696 const struct variable_union_info *const i1 =
2697 (const struct variable_union_info *) n1;
2698 const struct variable_union_info *const i2 =
2699 ( const struct variable_union_info *) n2;
2701 if (i1->pos != i2->pos)
2702 return i1->pos - i2->pos;
2704 return (i1->pos_dst - i2->pos_dst);
2707 /* Compute union of location parts of variable *SLOT and the same variable
2708 from hash table DATA. Compute "sorted" union of the location chains
2709 for common offsets, i.e. the locations of a variable part are sorted by
2710 a priority where the priority is the sum of the positions in the 2 chains
2711 (if a location is only in one list the position in the second list is
2712 defined to be larger than the length of the chains).
2713 When we are updating the location parts the newest location is in the
2714 beginning of the chain, so when we do the described "sorted" union
2715 we keep the newest locations in the beginning. */
2717 static int
2718 variable_union (variable src, dataflow_set *set)
2720 variable dst;
2721 variable_def **dstp;
2722 int i, j, k;
2724 dstp = shared_hash_find_slot (set->vars, src->dv);
2725 if (!dstp || !*dstp)
2727 src->refcount++;
2729 dst_can_be_shared = false;
2730 if (!dstp)
2731 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2733 *dstp = src;
2735 /* Continue traversing the hash table. */
2736 return 1;
2738 else
2739 dst = *dstp;
2741 gcc_assert (src->n_var_parts);
2742 gcc_checking_assert (src->onepart == dst->onepart);
2744 /* We can combine one-part variables very efficiently, because their
2745 entries are in canonical order. */
2746 if (src->onepart)
2748 location_chain *nodep, dnode, snode;
2750 gcc_assert (src->n_var_parts == 1
2751 && dst->n_var_parts == 1);
2753 snode = src->var_part[0].loc_chain;
2754 gcc_assert (snode);
2756 restart_onepart_unshared:
2757 nodep = &dst->var_part[0].loc_chain;
2758 dnode = *nodep;
2759 gcc_assert (dnode);
2761 while (snode)
2763 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2765 if (r > 0)
2767 location_chain nnode;
2769 if (shared_var_p (dst, set->vars))
2771 dstp = unshare_variable (set, dstp, dst,
2772 VAR_INIT_STATUS_INITIALIZED);
2773 dst = *dstp;
2774 goto restart_onepart_unshared;
2777 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2778 nnode->loc = snode->loc;
2779 nnode->init = snode->init;
2780 if (!snode->set_src || MEM_P (snode->set_src))
2781 nnode->set_src = NULL;
2782 else
2783 nnode->set_src = snode->set_src;
2784 nnode->next = dnode;
2785 dnode = nnode;
2787 else if (r == 0)
2788 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2790 if (r >= 0)
2791 snode = snode->next;
2793 nodep = &dnode->next;
2794 dnode = *nodep;
2797 return 1;
2800 gcc_checking_assert (!src->onepart);
2802 /* Count the number of location parts, result is K. */
2803 for (i = 0, j = 0, k = 0;
2804 i < src->n_var_parts && j < dst->n_var_parts; k++)
2806 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2808 i++;
2809 j++;
2811 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2812 i++;
2813 else
2814 j++;
2816 k += src->n_var_parts - i;
2817 k += dst->n_var_parts - j;
2819 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2820 thus there are at most MAX_VAR_PARTS different offsets. */
2821 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2823 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2825 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2826 dst = *dstp;
2829 i = src->n_var_parts - 1;
2830 j = dst->n_var_parts - 1;
2831 dst->n_var_parts = k;
2833 for (k--; k >= 0; k--)
2835 location_chain node, node2;
2837 if (i >= 0 && j >= 0
2838 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2840 /* Compute the "sorted" union of the chains, i.e. the locations which
2841 are in both chains go first, they are sorted by the sum of
2842 positions in the chains. */
2843 int dst_l, src_l;
2844 int ii, jj, n;
2845 struct variable_union_info *vui;
2847 /* If DST is shared compare the location chains.
2848 If they are different we will modify the chain in DST with
2849 high probability so make a copy of DST. */
2850 if (shared_var_p (dst, set->vars))
2852 for (node = src->var_part[i].loc_chain,
2853 node2 = dst->var_part[j].loc_chain; node && node2;
2854 node = node->next, node2 = node2->next)
2856 if (!((REG_P (node2->loc)
2857 && REG_P (node->loc)
2858 && REGNO (node2->loc) == REGNO (node->loc))
2859 || rtx_equal_p (node2->loc, node->loc)))
2861 if (node2->init < node->init)
2862 node2->init = node->init;
2863 break;
2866 if (node || node2)
2868 dstp = unshare_variable (set, dstp, dst,
2869 VAR_INIT_STATUS_UNKNOWN);
2870 dst = (variable)*dstp;
2874 src_l = 0;
2875 for (node = src->var_part[i].loc_chain; node; node = node->next)
2876 src_l++;
2877 dst_l = 0;
2878 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2879 dst_l++;
2881 if (dst_l == 1)
2883 /* The most common case, much simpler, no qsort is needed. */
2884 location_chain dstnode = dst->var_part[j].loc_chain;
2885 dst->var_part[k].loc_chain = dstnode;
2886 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2887 node2 = dstnode;
2888 for (node = src->var_part[i].loc_chain; node; node = node->next)
2889 if (!((REG_P (dstnode->loc)
2890 && REG_P (node->loc)
2891 && REGNO (dstnode->loc) == REGNO (node->loc))
2892 || rtx_equal_p (dstnode->loc, node->loc)))
2894 location_chain new_node;
2896 /* Copy the location from SRC. */
2897 new_node = (location_chain) pool_alloc (loc_chain_pool);
2898 new_node->loc = node->loc;
2899 new_node->init = node->init;
2900 if (!node->set_src || MEM_P (node->set_src))
2901 new_node->set_src = NULL;
2902 else
2903 new_node->set_src = node->set_src;
2904 node2->next = new_node;
2905 node2 = new_node;
2907 node2->next = NULL;
2909 else
2911 if (src_l + dst_l > vui_allocated)
2913 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2914 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2915 vui_allocated);
2917 vui = vui_vec;
2919 /* Fill in the locations from DST. */
2920 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2921 node = node->next, jj++)
2923 vui[jj].lc = node;
2924 vui[jj].pos_dst = jj;
2926 /* Pos plus value larger than a sum of 2 valid positions. */
2927 vui[jj].pos = jj + src_l + dst_l;
2930 /* Fill in the locations from SRC. */
2931 n = dst_l;
2932 for (node = src->var_part[i].loc_chain, ii = 0; node;
2933 node = node->next, ii++)
2935 /* Find location from NODE. */
2936 for (jj = 0; jj < dst_l; jj++)
2938 if ((REG_P (vui[jj].lc->loc)
2939 && REG_P (node->loc)
2940 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2941 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2943 vui[jj].pos = jj + ii;
2944 break;
2947 if (jj >= dst_l) /* The location has not been found. */
2949 location_chain new_node;
2951 /* Copy the location from SRC. */
2952 new_node = (location_chain) pool_alloc (loc_chain_pool);
2953 new_node->loc = node->loc;
2954 new_node->init = node->init;
2955 if (!node->set_src || MEM_P (node->set_src))
2956 new_node->set_src = NULL;
2957 else
2958 new_node->set_src = node->set_src;
2959 vui[n].lc = new_node;
2960 vui[n].pos_dst = src_l + dst_l;
2961 vui[n].pos = ii + src_l + dst_l;
2962 n++;
2966 if (dst_l == 2)
2968 /* Special case still very common case. For dst_l == 2
2969 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2970 vui[i].pos == i + src_l + dst_l. */
2971 if (vui[0].pos > vui[1].pos)
2973 /* Order should be 1, 0, 2... */
2974 dst->var_part[k].loc_chain = vui[1].lc;
2975 vui[1].lc->next = vui[0].lc;
2976 if (n >= 3)
2978 vui[0].lc->next = vui[2].lc;
2979 vui[n - 1].lc->next = NULL;
2981 else
2982 vui[0].lc->next = NULL;
2983 ii = 3;
2985 else
2987 dst->var_part[k].loc_chain = vui[0].lc;
2988 if (n >= 3 && vui[2].pos < vui[1].pos)
2990 /* Order should be 0, 2, 1, 3... */
2991 vui[0].lc->next = vui[2].lc;
2992 vui[2].lc->next = vui[1].lc;
2993 if (n >= 4)
2995 vui[1].lc->next = vui[3].lc;
2996 vui[n - 1].lc->next = NULL;
2998 else
2999 vui[1].lc->next = NULL;
3000 ii = 4;
3002 else
3004 /* Order should be 0, 1, 2... */
3005 ii = 1;
3006 vui[n - 1].lc->next = NULL;
3009 for (; ii < n; ii++)
3010 vui[ii - 1].lc->next = vui[ii].lc;
3012 else
3014 qsort (vui, n, sizeof (struct variable_union_info),
3015 variable_union_info_cmp_pos);
3017 /* Reconnect the nodes in sorted order. */
3018 for (ii = 1; ii < n; ii++)
3019 vui[ii - 1].lc->next = vui[ii].lc;
3020 vui[n - 1].lc->next = NULL;
3021 dst->var_part[k].loc_chain = vui[0].lc;
3024 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3026 i--;
3027 j--;
3029 else if ((i >= 0 && j >= 0
3030 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3031 || i < 0)
3033 dst->var_part[k] = dst->var_part[j];
3034 j--;
3036 else if ((i >= 0 && j >= 0
3037 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3038 || j < 0)
3040 location_chain *nextp;
3042 /* Copy the chain from SRC. */
3043 nextp = &dst->var_part[k].loc_chain;
3044 for (node = src->var_part[i].loc_chain; node; node = node->next)
3046 location_chain new_lc;
3048 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3049 new_lc->next = NULL;
3050 new_lc->init = node->init;
3051 if (!node->set_src || MEM_P (node->set_src))
3052 new_lc->set_src = NULL;
3053 else
3054 new_lc->set_src = node->set_src;
3055 new_lc->loc = node->loc;
3057 *nextp = new_lc;
3058 nextp = &new_lc->next;
3061 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3062 i--;
3064 dst->var_part[k].cur_loc = NULL;
3067 if (flag_var_tracking_uninit)
3068 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3070 location_chain node, node2;
3071 for (node = src->var_part[i].loc_chain; node; node = node->next)
3072 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3073 if (rtx_equal_p (node->loc, node2->loc))
3075 if (node->init > node2->init)
3076 node2->init = node->init;
3080 /* Continue traversing the hash table. */
3081 return 1;
3084 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3086 static void
3087 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3089 int i;
3091 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3092 attrs_list_union (&dst->regs[i], src->regs[i]);
3094 if (dst->vars == empty_shared_hash)
3096 shared_hash_destroy (dst->vars);
3097 dst->vars = shared_hash_copy (src->vars);
3099 else
3101 variable_iterator_type hi;
3102 variable var;
3104 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (src->vars),
3105 var, variable, hi)
3106 variable_union (var, dst);
3110 /* Whether the value is currently being expanded. */
3111 #define VALUE_RECURSED_INTO(x) \
3112 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3114 /* Whether no expansion was found, saving useless lookups.
3115 It must only be set when VALUE_CHANGED is clear. */
3116 #define NO_LOC_P(x) \
3117 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3119 /* Whether cur_loc in the value needs to be (re)computed. */
3120 #define VALUE_CHANGED(x) \
3121 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3122 /* Whether cur_loc in the decl needs to be (re)computed. */
3123 #define DECL_CHANGED(x) TREE_VISITED (x)
3125 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3126 user DECLs, this means they're in changed_variables. Values and
3127 debug exprs may be left with this flag set if no user variable
3128 requires them to be evaluated. */
3130 static inline void
3131 set_dv_changed (decl_or_value dv, bool newv)
3133 switch (dv_onepart_p (dv))
3135 case ONEPART_VALUE:
3136 if (newv)
3137 NO_LOC_P (dv_as_value (dv)) = false;
3138 VALUE_CHANGED (dv_as_value (dv)) = newv;
3139 break;
3141 case ONEPART_DEXPR:
3142 if (newv)
3143 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3144 /* Fall through... */
3146 default:
3147 DECL_CHANGED (dv_as_decl (dv)) = newv;
3148 break;
3152 /* Return true if DV needs to have its cur_loc recomputed. */
3154 static inline bool
3155 dv_changed_p (decl_or_value dv)
3157 return (dv_is_value_p (dv)
3158 ? VALUE_CHANGED (dv_as_value (dv))
3159 : DECL_CHANGED (dv_as_decl (dv)));
3162 /* Return a location list node whose loc is rtx_equal to LOC, in the
3163 location list of a one-part variable or value VAR, or in that of
3164 any values recursively mentioned in the location lists. VARS must
3165 be in star-canonical form. */
3167 static location_chain
3168 find_loc_in_1pdv (rtx loc, variable var, variable_table_type vars)
3170 location_chain node;
3171 enum rtx_code loc_code;
3173 if (!var)
3174 return NULL;
3176 gcc_checking_assert (var->onepart);
3178 if (!var->n_var_parts)
3179 return NULL;
3181 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3183 loc_code = GET_CODE (loc);
3184 for (node = var->var_part[0].loc_chain; node; node = node->next)
3186 decl_or_value dv;
3187 variable rvar;
3189 if (GET_CODE (node->loc) != loc_code)
3191 if (GET_CODE (node->loc) != VALUE)
3192 continue;
3194 else if (loc == node->loc)
3195 return node;
3196 else if (loc_code != VALUE)
3198 if (rtx_equal_p (loc, node->loc))
3199 return node;
3200 continue;
3203 /* Since we're in star-canonical form, we don't need to visit
3204 non-canonical nodes: one-part variables and non-canonical
3205 values would only point back to the canonical node. */
3206 if (dv_is_value_p (var->dv)
3207 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3209 /* Skip all subsequent VALUEs. */
3210 while (node->next && GET_CODE (node->next->loc) == VALUE)
3212 node = node->next;
3213 gcc_checking_assert (!canon_value_cmp (node->loc,
3214 dv_as_value (var->dv)));
3215 if (loc == node->loc)
3216 return node;
3218 continue;
3221 gcc_checking_assert (node == var->var_part[0].loc_chain);
3222 gcc_checking_assert (!node->next);
3224 dv = dv_from_value (node->loc);
3225 rvar = vars.find_with_hash (dv, dv_htab_hash (dv));
3226 return find_loc_in_1pdv (loc, rvar, vars);
3229 /* ??? Gotta look in cselib_val locations too. */
3231 return NULL;
3234 /* Hash table iteration argument passed to variable_merge. */
3235 struct dfset_merge
3237 /* The set in which the merge is to be inserted. */
3238 dataflow_set *dst;
3239 /* The set that we're iterating in. */
3240 dataflow_set *cur;
3241 /* The set that may contain the other dv we are to merge with. */
3242 dataflow_set *src;
3243 /* Number of onepart dvs in src. */
3244 int src_onepart_cnt;
3247 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3248 loc_cmp order, and it is maintained as such. */
3250 static void
3251 insert_into_intersection (location_chain *nodep, rtx loc,
3252 enum var_init_status status)
3254 location_chain node;
3255 int r;
3257 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3258 if ((r = loc_cmp (node->loc, loc)) == 0)
3260 node->init = MIN (node->init, status);
3261 return;
3263 else if (r > 0)
3264 break;
3266 node = (location_chain) pool_alloc (loc_chain_pool);
3268 node->loc = loc;
3269 node->set_src = NULL;
3270 node->init = status;
3271 node->next = *nodep;
3272 *nodep = node;
3275 /* Insert in DEST the intersection of the locations present in both
3276 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3277 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3278 DSM->dst. */
3280 static void
3281 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3282 location_chain s1node, variable s2var)
3284 dataflow_set *s1set = dsm->cur;
3285 dataflow_set *s2set = dsm->src;
3286 location_chain found;
3288 if (s2var)
3290 location_chain s2node;
3292 gcc_checking_assert (s2var->onepart);
3294 if (s2var->n_var_parts)
3296 s2node = s2var->var_part[0].loc_chain;
3298 for (; s1node && s2node;
3299 s1node = s1node->next, s2node = s2node->next)
3300 if (s1node->loc != s2node->loc)
3301 break;
3302 else if (s1node->loc == val)
3303 continue;
3304 else
3305 insert_into_intersection (dest, s1node->loc,
3306 MIN (s1node->init, s2node->init));
3310 for (; s1node; s1node = s1node->next)
3312 if (s1node->loc == val)
3313 continue;
3315 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3316 shared_hash_htab (s2set->vars))))
3318 insert_into_intersection (dest, s1node->loc,
3319 MIN (s1node->init, found->init));
3320 continue;
3323 if (GET_CODE (s1node->loc) == VALUE
3324 && !VALUE_RECURSED_INTO (s1node->loc))
3326 decl_or_value dv = dv_from_value (s1node->loc);
3327 variable svar = shared_hash_find (s1set->vars, dv);
3328 if (svar)
3330 if (svar->n_var_parts == 1)
3332 VALUE_RECURSED_INTO (s1node->loc) = true;
3333 intersect_loc_chains (val, dest, dsm,
3334 svar->var_part[0].loc_chain,
3335 s2var);
3336 VALUE_RECURSED_INTO (s1node->loc) = false;
3341 /* ??? gotta look in cselib_val locations too. */
3343 /* ??? if the location is equivalent to any location in src,
3344 searched recursively
3346 add to dst the values needed to represent the equivalence
3348 telling whether locations S is equivalent to another dv's
3349 location list:
3351 for each location D in the list
3353 if S and D satisfy rtx_equal_p, then it is present
3355 else if D is a value, recurse without cycles
3357 else if S and D have the same CODE and MODE
3359 for each operand oS and the corresponding oD
3361 if oS and oD are not equivalent, then S an D are not equivalent
3363 else if they are RTX vectors
3365 if any vector oS element is not equivalent to its respective oD,
3366 then S and D are not equivalent
3374 /* Return -1 if X should be before Y in a location list for a 1-part
3375 variable, 1 if Y should be before X, and 0 if they're equivalent
3376 and should not appear in the list. */
3378 static int
3379 loc_cmp (rtx x, rtx y)
3381 int i, j, r;
3382 RTX_CODE code = GET_CODE (x);
3383 const char *fmt;
3385 if (x == y)
3386 return 0;
3388 if (REG_P (x))
3390 if (!REG_P (y))
3391 return -1;
3392 gcc_assert (GET_MODE (x) == GET_MODE (y));
3393 if (REGNO (x) == REGNO (y))
3394 return 0;
3395 else if (REGNO (x) < REGNO (y))
3396 return -1;
3397 else
3398 return 1;
3401 if (REG_P (y))
3402 return 1;
3404 if (MEM_P (x))
3406 if (!MEM_P (y))
3407 return -1;
3408 gcc_assert (GET_MODE (x) == GET_MODE (y));
3409 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3412 if (MEM_P (y))
3413 return 1;
3415 if (GET_CODE (x) == VALUE)
3417 if (GET_CODE (y) != VALUE)
3418 return -1;
3419 /* Don't assert the modes are the same, that is true only
3420 when not recursing. (subreg:QI (value:SI 1:1) 0)
3421 and (subreg:QI (value:DI 2:2) 0) can be compared,
3422 even when the modes are different. */
3423 if (canon_value_cmp (x, y))
3424 return -1;
3425 else
3426 return 1;
3429 if (GET_CODE (y) == VALUE)
3430 return 1;
3432 /* Entry value is the least preferable kind of expression. */
3433 if (GET_CODE (x) == ENTRY_VALUE)
3435 if (GET_CODE (y) != ENTRY_VALUE)
3436 return 1;
3437 gcc_assert (GET_MODE (x) == GET_MODE (y));
3438 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3441 if (GET_CODE (y) == ENTRY_VALUE)
3442 return -1;
3444 if (GET_CODE (x) == GET_CODE (y))
3445 /* Compare operands below. */;
3446 else if (GET_CODE (x) < GET_CODE (y))
3447 return -1;
3448 else
3449 return 1;
3451 gcc_assert (GET_MODE (x) == GET_MODE (y));
3453 if (GET_CODE (x) == DEBUG_EXPR)
3455 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3456 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3457 return -1;
3458 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3459 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3460 return 1;
3463 fmt = GET_RTX_FORMAT (code);
3464 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3465 switch (fmt[i])
3467 case 'w':
3468 if (XWINT (x, i) == XWINT (y, i))
3469 break;
3470 else if (XWINT (x, i) < XWINT (y, i))
3471 return -1;
3472 else
3473 return 1;
3475 case 'n':
3476 case 'i':
3477 if (XINT (x, i) == XINT (y, i))
3478 break;
3479 else if (XINT (x, i) < XINT (y, i))
3480 return -1;
3481 else
3482 return 1;
3484 case 'V':
3485 case 'E':
3486 /* Compare the vector length first. */
3487 if (XVECLEN (x, i) == XVECLEN (y, i))
3488 /* Compare the vectors elements. */;
3489 else if (XVECLEN (x, i) < XVECLEN (y, i))
3490 return -1;
3491 else
3492 return 1;
3494 for (j = 0; j < XVECLEN (x, i); j++)
3495 if ((r = loc_cmp (XVECEXP (x, i, j),
3496 XVECEXP (y, i, j))))
3497 return r;
3498 break;
3500 case 'e':
3501 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3502 return r;
3503 break;
3505 case 'S':
3506 case 's':
3507 if (XSTR (x, i) == XSTR (y, i))
3508 break;
3509 if (!XSTR (x, i))
3510 return -1;
3511 if (!XSTR (y, i))
3512 return 1;
3513 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3514 break;
3515 else if (r < 0)
3516 return -1;
3517 else
3518 return 1;
3520 case 'u':
3521 /* These are just backpointers, so they don't matter. */
3522 break;
3524 case '0':
3525 case 't':
3526 break;
3528 /* It is believed that rtx's at this level will never
3529 contain anything but integers and other rtx's,
3530 except for within LABEL_REFs and SYMBOL_REFs. */
3531 default:
3532 gcc_unreachable ();
3535 return 0;
3538 #if ENABLE_CHECKING
3539 /* Check the order of entries in one-part variables. */
3542 canonicalize_loc_order_check (variable_def **slot,
3543 dataflow_set *data ATTRIBUTE_UNUSED)
3545 variable var = *slot;
3546 location_chain node, next;
3548 #ifdef ENABLE_RTL_CHECKING
3549 int i;
3550 for (i = 0; i < var->n_var_parts; i++)
3551 gcc_assert (var->var_part[0].cur_loc == NULL);
3552 gcc_assert (!var->in_changed_variables);
3553 #endif
3555 if (!var->onepart)
3556 return 1;
3558 gcc_assert (var->n_var_parts == 1);
3559 node = var->var_part[0].loc_chain;
3560 gcc_assert (node);
3562 while ((next = node->next))
3564 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3565 node = next;
3568 return 1;
3570 #endif
3572 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3573 more likely to be chosen as canonical for an equivalence set.
3574 Ensure less likely values can reach more likely neighbors, making
3575 the connections bidirectional. */
3578 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3580 variable var = *slot;
3581 decl_or_value dv = var->dv;
3582 rtx val;
3583 location_chain node;
3585 if (!dv_is_value_p (dv))
3586 return 1;
3588 gcc_checking_assert (var->n_var_parts == 1);
3590 val = dv_as_value (dv);
3592 for (node = var->var_part[0].loc_chain; node; node = node->next)
3593 if (GET_CODE (node->loc) == VALUE)
3595 if (canon_value_cmp (node->loc, val))
3596 VALUE_RECURSED_INTO (val) = true;
3597 else
3599 decl_or_value odv = dv_from_value (node->loc);
3600 variable_def **oslot;
3601 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3603 set_slot_part (set, val, oslot, odv, 0,
3604 node->init, NULL_RTX);
3606 VALUE_RECURSED_INTO (node->loc) = true;
3610 return 1;
3613 /* Remove redundant entries from equivalence lists in onepart
3614 variables, canonicalizing equivalence sets into star shapes. */
3617 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3619 variable var = *slot;
3620 decl_or_value dv = var->dv;
3621 location_chain node;
3622 decl_or_value cdv;
3623 rtx val, cval;
3624 variable_def **cslot;
3625 bool has_value;
3626 bool has_marks;
3628 if (!var->onepart)
3629 return 1;
3631 gcc_checking_assert (var->n_var_parts == 1);
3633 if (dv_is_value_p (dv))
3635 cval = dv_as_value (dv);
3636 if (!VALUE_RECURSED_INTO (cval))
3637 return 1;
3638 VALUE_RECURSED_INTO (cval) = false;
3640 else
3641 cval = NULL_RTX;
3643 restart:
3644 val = cval;
3645 has_value = false;
3646 has_marks = false;
3648 gcc_assert (var->n_var_parts == 1);
3650 for (node = var->var_part[0].loc_chain; node; node = node->next)
3651 if (GET_CODE (node->loc) == VALUE)
3653 has_value = true;
3654 if (VALUE_RECURSED_INTO (node->loc))
3655 has_marks = true;
3656 if (canon_value_cmp (node->loc, cval))
3657 cval = node->loc;
3660 if (!has_value)
3661 return 1;
3663 if (cval == val)
3665 if (!has_marks || dv_is_decl_p (dv))
3666 return 1;
3668 /* Keep it marked so that we revisit it, either after visiting a
3669 child node, or after visiting a new parent that might be
3670 found out. */
3671 VALUE_RECURSED_INTO (val) = true;
3673 for (node = var->var_part[0].loc_chain; node; node = node->next)
3674 if (GET_CODE (node->loc) == VALUE
3675 && VALUE_RECURSED_INTO (node->loc))
3677 cval = node->loc;
3678 restart_with_cval:
3679 VALUE_RECURSED_INTO (cval) = false;
3680 dv = dv_from_value (cval);
3681 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3682 if (!slot)
3684 gcc_assert (dv_is_decl_p (var->dv));
3685 /* The canonical value was reset and dropped.
3686 Remove it. */
3687 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3688 return 1;
3690 var = *slot;
3691 gcc_assert (dv_is_value_p (var->dv));
3692 if (var->n_var_parts == 0)
3693 return 1;
3694 gcc_assert (var->n_var_parts == 1);
3695 goto restart;
3698 VALUE_RECURSED_INTO (val) = false;
3700 return 1;
3703 /* Push values to the canonical one. */
3704 cdv = dv_from_value (cval);
3705 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3707 for (node = var->var_part[0].loc_chain; node; node = node->next)
3708 if (node->loc != cval)
3710 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3711 node->init, NULL_RTX);
3712 if (GET_CODE (node->loc) == VALUE)
3714 decl_or_value ndv = dv_from_value (node->loc);
3716 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3717 NO_INSERT);
3719 if (canon_value_cmp (node->loc, val))
3721 /* If it could have been a local minimum, it's not any more,
3722 since it's now neighbor to cval, so it may have to push
3723 to it. Conversely, if it wouldn't have prevailed over
3724 val, then whatever mark it has is fine: if it was to
3725 push, it will now push to a more canonical node, but if
3726 it wasn't, then it has already pushed any values it might
3727 have to. */
3728 VALUE_RECURSED_INTO (node->loc) = true;
3729 /* Make sure we visit node->loc by ensuring we cval is
3730 visited too. */
3731 VALUE_RECURSED_INTO (cval) = true;
3733 else if (!VALUE_RECURSED_INTO (node->loc))
3734 /* If we have no need to "recurse" into this node, it's
3735 already "canonicalized", so drop the link to the old
3736 parent. */
3737 clobber_variable_part (set, cval, ndv, 0, NULL);
3739 else if (GET_CODE (node->loc) == REG)
3741 attrs list = set->regs[REGNO (node->loc)], *listp;
3743 /* Change an existing attribute referring to dv so that it
3744 refers to cdv, removing any duplicate this might
3745 introduce, and checking that no previous duplicates
3746 existed, all in a single pass. */
3748 while (list)
3750 if (list->offset == 0
3751 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3752 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3753 break;
3755 list = list->next;
3758 gcc_assert (list);
3759 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3761 list->dv = cdv;
3762 for (listp = &list->next; (list = *listp); listp = &list->next)
3764 if (list->offset)
3765 continue;
3767 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3769 *listp = list->next;
3770 pool_free (attrs_pool, list);
3771 list = *listp;
3772 break;
3775 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3778 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3780 for (listp = &list->next; (list = *listp); listp = &list->next)
3782 if (list->offset)
3783 continue;
3785 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3787 *listp = list->next;
3788 pool_free (attrs_pool, list);
3789 list = *listp;
3790 break;
3793 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3796 else
3797 gcc_unreachable ();
3799 #if ENABLE_CHECKING
3800 while (list)
3802 if (list->offset == 0
3803 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3804 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3805 gcc_unreachable ();
3807 list = list->next;
3809 #endif
3813 if (val)
3814 set_slot_part (set, val, cslot, cdv, 0,
3815 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3817 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3819 /* Variable may have been unshared. */
3820 var = *slot;
3821 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3822 && var->var_part[0].loc_chain->next == NULL);
3824 if (VALUE_RECURSED_INTO (cval))
3825 goto restart_with_cval;
3827 return 1;
3830 /* Bind one-part variables to the canonical value in an equivalence
3831 set. Not doing this causes dataflow convergence failure in rare
3832 circumstances, see PR42873. Unfortunately we can't do this
3833 efficiently as part of canonicalize_values_star, since we may not
3834 have determined or even seen the canonical value of a set when we
3835 get to a variable that references another member of the set. */
3838 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3840 variable var = *slot;
3841 decl_or_value dv = var->dv;
3842 location_chain node;
3843 rtx cval;
3844 decl_or_value cdv;
3845 variable_def **cslot;
3846 variable cvar;
3847 location_chain cnode;
3849 if (!var->onepart || var->onepart == ONEPART_VALUE)
3850 return 1;
3852 gcc_assert (var->n_var_parts == 1);
3854 node = var->var_part[0].loc_chain;
3856 if (GET_CODE (node->loc) != VALUE)
3857 return 1;
3859 gcc_assert (!node->next);
3860 cval = node->loc;
3862 /* Push values to the canonical one. */
3863 cdv = dv_from_value (cval);
3864 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3865 if (!cslot)
3866 return 1;
3867 cvar = *cslot;
3868 gcc_assert (cvar->n_var_parts == 1);
3870 cnode = cvar->var_part[0].loc_chain;
3872 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3873 that are not “more canonical” than it. */
3874 if (GET_CODE (cnode->loc) != VALUE
3875 || !canon_value_cmp (cnode->loc, cval))
3876 return 1;
3878 /* CVAL was found to be non-canonical. Change the variable to point
3879 to the canonical VALUE. */
3880 gcc_assert (!cnode->next);
3881 cval = cnode->loc;
3883 slot = set_slot_part (set, cval, slot, dv, 0,
3884 node->init, node->set_src);
3885 clobber_slot_part (set, cval, slot, 0, node->set_src);
3887 return 1;
3890 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3891 corresponding entry in DSM->src. Multi-part variables are combined
3892 with variable_union, whereas onepart dvs are combined with
3893 intersection. */
3895 static int
3896 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3898 dataflow_set *dst = dsm->dst;
3899 variable_def **dstslot;
3900 variable s2var, dvar = NULL;
3901 decl_or_value dv = s1var->dv;
3902 onepart_enum_t onepart = s1var->onepart;
3903 rtx val;
3904 hashval_t dvhash;
3905 location_chain node, *nodep;
3907 /* If the incoming onepart variable has an empty location list, then
3908 the intersection will be just as empty. For other variables,
3909 it's always union. */
3910 gcc_checking_assert (s1var->n_var_parts
3911 && s1var->var_part[0].loc_chain);
3913 if (!onepart)
3914 return variable_union (s1var, dst);
3916 gcc_checking_assert (s1var->n_var_parts == 1);
3918 dvhash = dv_htab_hash (dv);
3919 if (dv_is_value_p (dv))
3920 val = dv_as_value (dv);
3921 else
3922 val = NULL;
3924 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3925 if (!s2var)
3927 dst_can_be_shared = false;
3928 return 1;
3931 dsm->src_onepart_cnt--;
3932 gcc_assert (s2var->var_part[0].loc_chain
3933 && s2var->onepart == onepart
3934 && s2var->n_var_parts == 1);
3936 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3937 if (dstslot)
3939 dvar = *dstslot;
3940 gcc_assert (dvar->refcount == 1
3941 && dvar->onepart == onepart
3942 && dvar->n_var_parts == 1);
3943 nodep = &dvar->var_part[0].loc_chain;
3945 else
3947 nodep = &node;
3948 node = NULL;
3951 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3953 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3954 dvhash, INSERT);
3955 *dstslot = dvar = s2var;
3956 dvar->refcount++;
3958 else
3960 dst_can_be_shared = false;
3962 intersect_loc_chains (val, nodep, dsm,
3963 s1var->var_part[0].loc_chain, s2var);
3965 if (!dstslot)
3967 if (node)
3969 dvar = (variable) pool_alloc (onepart_pool (onepart));
3970 dvar->dv = dv;
3971 dvar->refcount = 1;
3972 dvar->n_var_parts = 1;
3973 dvar->onepart = onepart;
3974 dvar->in_changed_variables = false;
3975 dvar->var_part[0].loc_chain = node;
3976 dvar->var_part[0].cur_loc = NULL;
3977 if (onepart)
3978 VAR_LOC_1PAUX (dvar) = NULL;
3979 else
3980 VAR_PART_OFFSET (dvar, 0) = 0;
3982 dstslot
3983 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3984 INSERT);
3985 gcc_assert (!*dstslot);
3986 *dstslot = dvar;
3988 else
3989 return 1;
3993 nodep = &dvar->var_part[0].loc_chain;
3994 while ((node = *nodep))
3996 location_chain *nextp = &node->next;
3998 if (GET_CODE (node->loc) == REG)
4000 attrs list;
4002 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4003 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4004 && dv_is_value_p (list->dv))
4005 break;
4007 if (!list)
4008 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4009 dv, 0, node->loc);
4010 /* If this value became canonical for another value that had
4011 this register, we want to leave it alone. */
4012 else if (dv_as_value (list->dv) != val)
4014 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4015 dstslot, dv, 0,
4016 node->init, NULL_RTX);
4017 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4019 /* Since nextp points into the removed node, we can't
4020 use it. The pointer to the next node moved to nodep.
4021 However, if the variable we're walking is unshared
4022 during our walk, we'll keep walking the location list
4023 of the previously-shared variable, in which case the
4024 node won't have been removed, and we'll want to skip
4025 it. That's why we test *nodep here. */
4026 if (*nodep != node)
4027 nextp = nodep;
4030 else
4031 /* Canonicalization puts registers first, so we don't have to
4032 walk it all. */
4033 break;
4034 nodep = nextp;
4037 if (dvar != *dstslot)
4038 dvar = *dstslot;
4039 nodep = &dvar->var_part[0].loc_chain;
4041 if (val)
4043 /* Mark all referenced nodes for canonicalization, and make sure
4044 we have mutual equivalence links. */
4045 VALUE_RECURSED_INTO (val) = true;
4046 for (node = *nodep; node; node = node->next)
4047 if (GET_CODE (node->loc) == VALUE)
4049 VALUE_RECURSED_INTO (node->loc) = true;
4050 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4051 node->init, NULL, INSERT);
4054 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4055 gcc_assert (*dstslot == dvar);
4056 canonicalize_values_star (dstslot, dst);
4057 gcc_checking_assert (dstslot
4058 == shared_hash_find_slot_noinsert_1 (dst->vars,
4059 dv, dvhash));
4060 dvar = *dstslot;
4062 else
4064 bool has_value = false, has_other = false;
4066 /* If we have one value and anything else, we're going to
4067 canonicalize this, so make sure all values have an entry in
4068 the table and are marked for canonicalization. */
4069 for (node = *nodep; node; node = node->next)
4071 if (GET_CODE (node->loc) == VALUE)
4073 /* If this was marked during register canonicalization,
4074 we know we have to canonicalize values. */
4075 if (has_value)
4076 has_other = true;
4077 has_value = true;
4078 if (has_other)
4079 break;
4081 else
4083 has_other = true;
4084 if (has_value)
4085 break;
4089 if (has_value && has_other)
4091 for (node = *nodep; node; node = node->next)
4093 if (GET_CODE (node->loc) == VALUE)
4095 decl_or_value dv = dv_from_value (node->loc);
4096 variable_def **slot = NULL;
4098 if (shared_hash_shared (dst->vars))
4099 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4100 if (!slot)
4101 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4102 INSERT);
4103 if (!*slot)
4105 variable var = (variable) pool_alloc (onepart_pool
4106 (ONEPART_VALUE));
4107 var->dv = dv;
4108 var->refcount = 1;
4109 var->n_var_parts = 1;
4110 var->onepart = ONEPART_VALUE;
4111 var->in_changed_variables = false;
4112 var->var_part[0].loc_chain = NULL;
4113 var->var_part[0].cur_loc = NULL;
4114 VAR_LOC_1PAUX (var) = NULL;
4115 *slot = var;
4118 VALUE_RECURSED_INTO (node->loc) = true;
4122 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4123 gcc_assert (*dstslot == dvar);
4124 canonicalize_values_star (dstslot, dst);
4125 gcc_checking_assert (dstslot
4126 == shared_hash_find_slot_noinsert_1 (dst->vars,
4127 dv, dvhash));
4128 dvar = *dstslot;
4132 if (!onepart_variable_different_p (dvar, s2var))
4134 variable_htab_free (dvar);
4135 *dstslot = dvar = s2var;
4136 dvar->refcount++;
4138 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4140 variable_htab_free (dvar);
4141 *dstslot = dvar = s1var;
4142 dvar->refcount++;
4143 dst_can_be_shared = false;
4145 else
4146 dst_can_be_shared = false;
4148 return 1;
4151 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4152 multi-part variable. Unions of multi-part variables and
4153 intersections of one-part ones will be handled in
4154 variable_merge_over_cur(). */
4156 static int
4157 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4159 dataflow_set *dst = dsm->dst;
4160 decl_or_value dv = s2var->dv;
4162 if (!s2var->onepart)
4164 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4165 *dstp = s2var;
4166 s2var->refcount++;
4167 return 1;
4170 dsm->src_onepart_cnt++;
4171 return 1;
4174 /* Combine dataflow set information from SRC2 into DST, using PDST
4175 to carry over information across passes. */
4177 static void
4178 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4180 dataflow_set cur = *dst;
4181 dataflow_set *src1 = &cur;
4182 struct dfset_merge dsm;
4183 int i;
4184 size_t src1_elems, src2_elems;
4185 variable_iterator_type hi;
4186 variable var;
4188 src1_elems = shared_hash_htab (src1->vars).elements ();
4189 src2_elems = shared_hash_htab (src2->vars).elements ();
4190 dataflow_set_init (dst);
4191 dst->stack_adjust = cur.stack_adjust;
4192 shared_hash_destroy (dst->vars);
4193 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4194 dst->vars->refcount = 1;
4195 dst->vars->htab.create (MAX (src1_elems, src2_elems));
4197 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4198 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4200 dsm.dst = dst;
4201 dsm.src = src2;
4202 dsm.cur = src1;
4203 dsm.src_onepart_cnt = 0;
4205 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.src->vars),
4206 var, variable, hi)
4207 variable_merge_over_src (var, &dsm);
4208 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.cur->vars),
4209 var, variable, hi)
4210 variable_merge_over_cur (var, &dsm);
4212 if (dsm.src_onepart_cnt)
4213 dst_can_be_shared = false;
4215 dataflow_set_destroy (src1);
4218 /* Mark register equivalences. */
4220 static void
4221 dataflow_set_equiv_regs (dataflow_set *set)
4223 int i;
4224 attrs list, *listp;
4226 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4228 rtx canon[NUM_MACHINE_MODES];
4230 /* If the list is empty or one entry, no need to canonicalize
4231 anything. */
4232 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4233 continue;
4235 memset (canon, 0, sizeof (canon));
4237 for (list = set->regs[i]; list; list = list->next)
4238 if (list->offset == 0 && dv_is_value_p (list->dv))
4240 rtx val = dv_as_value (list->dv);
4241 rtx *cvalp = &canon[(int)GET_MODE (val)];
4242 rtx cval = *cvalp;
4244 if (canon_value_cmp (val, cval))
4245 *cvalp = val;
4248 for (list = set->regs[i]; list; list = list->next)
4249 if (list->offset == 0 && dv_onepart_p (list->dv))
4251 rtx cval = canon[(int)GET_MODE (list->loc)];
4253 if (!cval)
4254 continue;
4256 if (dv_is_value_p (list->dv))
4258 rtx val = dv_as_value (list->dv);
4260 if (val == cval)
4261 continue;
4263 VALUE_RECURSED_INTO (val) = true;
4264 set_variable_part (set, val, dv_from_value (cval), 0,
4265 VAR_INIT_STATUS_INITIALIZED,
4266 NULL, NO_INSERT);
4269 VALUE_RECURSED_INTO (cval) = true;
4270 set_variable_part (set, cval, list->dv, 0,
4271 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4274 for (listp = &set->regs[i]; (list = *listp);
4275 listp = list ? &list->next : listp)
4276 if (list->offset == 0 && dv_onepart_p (list->dv))
4278 rtx cval = canon[(int)GET_MODE (list->loc)];
4279 variable_def **slot;
4281 if (!cval)
4282 continue;
4284 if (dv_is_value_p (list->dv))
4286 rtx val = dv_as_value (list->dv);
4287 if (!VALUE_RECURSED_INTO (val))
4288 continue;
4291 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4292 canonicalize_values_star (slot, set);
4293 if (*listp != list)
4294 list = NULL;
4299 /* Remove any redundant values in the location list of VAR, which must
4300 be unshared and 1-part. */
4302 static void
4303 remove_duplicate_values (variable var)
4305 location_chain node, *nodep;
4307 gcc_assert (var->onepart);
4308 gcc_assert (var->n_var_parts == 1);
4309 gcc_assert (var->refcount == 1);
4311 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4313 if (GET_CODE (node->loc) == VALUE)
4315 if (VALUE_RECURSED_INTO (node->loc))
4317 /* Remove duplicate value node. */
4318 *nodep = node->next;
4319 pool_free (loc_chain_pool, node);
4320 continue;
4322 else
4323 VALUE_RECURSED_INTO (node->loc) = true;
4325 nodep = &node->next;
4328 for (node = var->var_part[0].loc_chain; node; node = node->next)
4329 if (GET_CODE (node->loc) == VALUE)
4331 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4332 VALUE_RECURSED_INTO (node->loc) = false;
4337 /* Hash table iteration argument passed to variable_post_merge. */
4338 struct dfset_post_merge
4340 /* The new input set for the current block. */
4341 dataflow_set *set;
4342 /* Pointer to the permanent input set for the current block, or
4343 NULL. */
4344 dataflow_set **permp;
4347 /* Create values for incoming expressions associated with one-part
4348 variables that don't have value numbers for them. */
4351 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4353 dataflow_set *set = dfpm->set;
4354 variable var = *slot;
4355 location_chain node;
4357 if (!var->onepart || !var->n_var_parts)
4358 return 1;
4360 gcc_assert (var->n_var_parts == 1);
4362 if (dv_is_decl_p (var->dv))
4364 bool check_dupes = false;
4366 restart:
4367 for (node = var->var_part[0].loc_chain; node; node = node->next)
4369 if (GET_CODE (node->loc) == VALUE)
4370 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4371 else if (GET_CODE (node->loc) == REG)
4373 attrs att, *attp, *curp = NULL;
4375 if (var->refcount != 1)
4377 slot = unshare_variable (set, slot, var,
4378 VAR_INIT_STATUS_INITIALIZED);
4379 var = *slot;
4380 goto restart;
4383 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4384 attp = &att->next)
4385 if (att->offset == 0
4386 && GET_MODE (att->loc) == GET_MODE (node->loc))
4388 if (dv_is_value_p (att->dv))
4390 rtx cval = dv_as_value (att->dv);
4391 node->loc = cval;
4392 check_dupes = true;
4393 break;
4395 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4396 curp = attp;
4399 if (!curp)
4401 curp = attp;
4402 while (*curp)
4403 if ((*curp)->offset == 0
4404 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4405 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4406 break;
4407 else
4408 curp = &(*curp)->next;
4409 gcc_assert (*curp);
4412 if (!att)
4414 decl_or_value cdv;
4415 rtx cval;
4417 if (!*dfpm->permp)
4419 *dfpm->permp = XNEW (dataflow_set);
4420 dataflow_set_init (*dfpm->permp);
4423 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4424 att; att = att->next)
4425 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4427 gcc_assert (att->offset == 0
4428 && dv_is_value_p (att->dv));
4429 val_reset (set, att->dv);
4430 break;
4433 if (att)
4435 cdv = att->dv;
4436 cval = dv_as_value (cdv);
4438 else
4440 /* Create a unique value to hold this register,
4441 that ought to be found and reused in
4442 subsequent rounds. */
4443 cselib_val *v;
4444 gcc_assert (!cselib_lookup (node->loc,
4445 GET_MODE (node->loc), 0,
4446 VOIDmode));
4447 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4448 VOIDmode);
4449 cselib_preserve_value (v);
4450 cselib_invalidate_rtx (node->loc);
4451 cval = v->val_rtx;
4452 cdv = dv_from_value (cval);
4453 if (dump_file)
4454 fprintf (dump_file,
4455 "Created new value %u:%u for reg %i\n",
4456 v->uid, v->hash, REGNO (node->loc));
4459 var_reg_decl_set (*dfpm->permp, node->loc,
4460 VAR_INIT_STATUS_INITIALIZED,
4461 cdv, 0, NULL, INSERT);
4463 node->loc = cval;
4464 check_dupes = true;
4467 /* Remove attribute referring to the decl, which now
4468 uses the value for the register, already existing or
4469 to be added when we bring perm in. */
4470 att = *curp;
4471 *curp = att->next;
4472 pool_free (attrs_pool, att);
4476 if (check_dupes)
4477 remove_duplicate_values (var);
4480 return 1;
4483 /* Reset values in the permanent set that are not associated with the
4484 chosen expression. */
4487 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4489 dataflow_set *set = dfpm->set;
4490 variable pvar = *pslot, var;
4491 location_chain pnode;
4492 decl_or_value dv;
4493 attrs att;
4495 gcc_assert (dv_is_value_p (pvar->dv)
4496 && pvar->n_var_parts == 1);
4497 pnode = pvar->var_part[0].loc_chain;
4498 gcc_assert (pnode
4499 && !pnode->next
4500 && REG_P (pnode->loc));
4502 dv = pvar->dv;
4504 var = shared_hash_find (set->vars, dv);
4505 if (var)
4507 /* Although variable_post_merge_new_vals may have made decls
4508 non-star-canonical, values that pre-existed in canonical form
4509 remain canonical, and newly-created values reference a single
4510 REG, so they are canonical as well. Since VAR has the
4511 location list for a VALUE, using find_loc_in_1pdv for it is
4512 fine, since VALUEs don't map back to DECLs. */
4513 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4514 return 1;
4515 val_reset (set, dv);
4518 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4519 if (att->offset == 0
4520 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4521 && dv_is_value_p (att->dv))
4522 break;
4524 /* If there is a value associated with this register already, create
4525 an equivalence. */
4526 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4528 rtx cval = dv_as_value (att->dv);
4529 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4530 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4531 NULL, INSERT);
4533 else if (!att)
4535 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4536 dv, 0, pnode->loc);
4537 variable_union (pvar, set);
4540 return 1;
4543 /* Just checking stuff and registering register attributes for
4544 now. */
4546 static void
4547 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4549 struct dfset_post_merge dfpm;
4551 dfpm.set = set;
4552 dfpm.permp = permp;
4554 shared_hash_htab (set->vars)
4555 .traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4556 if (*permp)
4557 shared_hash_htab ((*permp)->vars)
4558 .traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4559 shared_hash_htab (set->vars)
4560 .traverse <dataflow_set *, canonicalize_values_star> (set);
4561 shared_hash_htab (set->vars)
4562 .traverse <dataflow_set *, canonicalize_vars_star> (set);
4565 /* Return a node whose loc is a MEM that refers to EXPR in the
4566 location list of a one-part variable or value VAR, or in that of
4567 any values recursively mentioned in the location lists. */
4569 static location_chain
4570 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type vars)
4572 location_chain node;
4573 decl_or_value dv;
4574 variable var;
4575 location_chain where = NULL;
4577 if (!val)
4578 return NULL;
4580 gcc_assert (GET_CODE (val) == VALUE
4581 && !VALUE_RECURSED_INTO (val));
4583 dv = dv_from_value (val);
4584 var = vars.find_with_hash (dv, dv_htab_hash (dv));
4586 if (!var)
4587 return NULL;
4589 gcc_assert (var->onepart);
4591 if (!var->n_var_parts)
4592 return NULL;
4594 VALUE_RECURSED_INTO (val) = true;
4596 for (node = var->var_part[0].loc_chain; node; node = node->next)
4597 if (MEM_P (node->loc)
4598 && MEM_EXPR (node->loc) == expr
4599 && INT_MEM_OFFSET (node->loc) == 0)
4601 where = node;
4602 break;
4604 else if (GET_CODE (node->loc) == VALUE
4605 && !VALUE_RECURSED_INTO (node->loc)
4606 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4607 break;
4609 VALUE_RECURSED_INTO (val) = false;
4611 return where;
4614 /* Return TRUE if the value of MEM may vary across a call. */
4616 static bool
4617 mem_dies_at_call (rtx mem)
4619 tree expr = MEM_EXPR (mem);
4620 tree decl;
4622 if (!expr)
4623 return true;
4625 decl = get_base_address (expr);
4627 if (!decl)
4628 return true;
4630 if (!DECL_P (decl))
4631 return true;
4633 return (may_be_aliased (decl)
4634 || (!TREE_READONLY (decl) && is_global_var (decl)));
4637 /* Remove all MEMs from the location list of a hash table entry for a
4638 one-part variable, except those whose MEM attributes map back to
4639 the variable itself, directly or within a VALUE. */
4642 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4644 variable var = *slot;
4646 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4648 tree decl = dv_as_decl (var->dv);
4649 location_chain loc, *locp;
4650 bool changed = false;
4652 if (!var->n_var_parts)
4653 return 1;
4655 gcc_assert (var->n_var_parts == 1);
4657 if (shared_var_p (var, set->vars))
4659 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4661 /* We want to remove dying MEMs that doesn't refer to DECL. */
4662 if (GET_CODE (loc->loc) == MEM
4663 && (MEM_EXPR (loc->loc) != decl
4664 || INT_MEM_OFFSET (loc->loc) != 0)
4665 && !mem_dies_at_call (loc->loc))
4666 break;
4667 /* We want to move here MEMs that do refer to DECL. */
4668 else if (GET_CODE (loc->loc) == VALUE
4669 && find_mem_expr_in_1pdv (decl, loc->loc,
4670 shared_hash_htab (set->vars)))
4671 break;
4674 if (!loc)
4675 return 1;
4677 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4678 var = *slot;
4679 gcc_assert (var->n_var_parts == 1);
4682 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4683 loc; loc = *locp)
4685 rtx old_loc = loc->loc;
4686 if (GET_CODE (old_loc) == VALUE)
4688 location_chain mem_node
4689 = find_mem_expr_in_1pdv (decl, loc->loc,
4690 shared_hash_htab (set->vars));
4692 /* ??? This picks up only one out of multiple MEMs that
4693 refer to the same variable. Do we ever need to be
4694 concerned about dealing with more than one, or, given
4695 that they should all map to the same variable
4696 location, their addresses will have been merged and
4697 they will be regarded as equivalent? */
4698 if (mem_node)
4700 loc->loc = mem_node->loc;
4701 loc->set_src = mem_node->set_src;
4702 loc->init = MIN (loc->init, mem_node->init);
4706 if (GET_CODE (loc->loc) != MEM
4707 || (MEM_EXPR (loc->loc) == decl
4708 && INT_MEM_OFFSET (loc->loc) == 0)
4709 || !mem_dies_at_call (loc->loc))
4711 if (old_loc != loc->loc && emit_notes)
4713 if (old_loc == var->var_part[0].cur_loc)
4715 changed = true;
4716 var->var_part[0].cur_loc = NULL;
4719 locp = &loc->next;
4720 continue;
4723 if (emit_notes)
4725 if (old_loc == var->var_part[0].cur_loc)
4727 changed = true;
4728 var->var_part[0].cur_loc = NULL;
4731 *locp = loc->next;
4732 pool_free (loc_chain_pool, loc);
4735 if (!var->var_part[0].loc_chain)
4737 var->n_var_parts--;
4738 changed = true;
4740 if (changed)
4741 variable_was_changed (var, set);
4744 return 1;
4747 /* Remove all MEMs from the location list of a hash table entry for a
4748 value. */
4751 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4753 variable var = *slot;
4755 if (var->onepart == ONEPART_VALUE)
4757 location_chain loc, *locp;
4758 bool changed = false;
4759 rtx cur_loc;
4761 gcc_assert (var->n_var_parts == 1);
4763 if (shared_var_p (var, set->vars))
4765 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4766 if (GET_CODE (loc->loc) == MEM
4767 && mem_dies_at_call (loc->loc))
4768 break;
4770 if (!loc)
4771 return 1;
4773 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4774 var = *slot;
4775 gcc_assert (var->n_var_parts == 1);
4778 if (VAR_LOC_1PAUX (var))
4779 cur_loc = VAR_LOC_FROM (var);
4780 else
4781 cur_loc = var->var_part[0].cur_loc;
4783 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4784 loc; loc = *locp)
4786 if (GET_CODE (loc->loc) != MEM
4787 || !mem_dies_at_call (loc->loc))
4789 locp = &loc->next;
4790 continue;
4793 *locp = loc->next;
4794 /* If we have deleted the location which was last emitted
4795 we have to emit new location so add the variable to set
4796 of changed variables. */
4797 if (cur_loc == loc->loc)
4799 changed = true;
4800 var->var_part[0].cur_loc = NULL;
4801 if (VAR_LOC_1PAUX (var))
4802 VAR_LOC_FROM (var) = NULL;
4804 pool_free (loc_chain_pool, loc);
4807 if (!var->var_part[0].loc_chain)
4809 var->n_var_parts--;
4810 changed = true;
4812 if (changed)
4813 variable_was_changed (var, set);
4816 return 1;
4819 /* Remove all variable-location information about call-clobbered
4820 registers, as well as associations between MEMs and VALUEs. */
4822 static void
4823 dataflow_set_clear_at_call (dataflow_set *set)
4825 unsigned int r;
4826 hard_reg_set_iterator hrsi;
4828 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4829 var_regno_delete (set, r);
4831 if (MAY_HAVE_DEBUG_INSNS)
4833 set->traversed_vars = set->vars;
4834 shared_hash_htab (set->vars)
4835 .traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4836 set->traversed_vars = set->vars;
4837 shared_hash_htab (set->vars)
4838 .traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4839 set->traversed_vars = NULL;
4843 static bool
4844 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4846 location_chain lc1, lc2;
4848 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4850 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4852 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4854 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4855 break;
4857 if (rtx_equal_p (lc1->loc, lc2->loc))
4858 break;
4860 if (!lc2)
4861 return true;
4863 return false;
4866 /* Return true if one-part variables VAR1 and VAR2 are different.
4867 They must be in canonical order. */
4869 static bool
4870 onepart_variable_different_p (variable var1, variable var2)
4872 location_chain lc1, lc2;
4874 if (var1 == var2)
4875 return false;
4877 gcc_assert (var1->n_var_parts == 1
4878 && var2->n_var_parts == 1);
4880 lc1 = var1->var_part[0].loc_chain;
4881 lc2 = var2->var_part[0].loc_chain;
4883 gcc_assert (lc1 && lc2);
4885 while (lc1 && lc2)
4887 if (loc_cmp (lc1->loc, lc2->loc))
4888 return true;
4889 lc1 = lc1->next;
4890 lc2 = lc2->next;
4893 return lc1 != lc2;
4896 /* Return true if variables VAR1 and VAR2 are different. */
4898 static bool
4899 variable_different_p (variable var1, variable var2)
4901 int i;
4903 if (var1 == var2)
4904 return false;
4906 if (var1->onepart != var2->onepart)
4907 return true;
4909 if (var1->n_var_parts != var2->n_var_parts)
4910 return true;
4912 if (var1->onepart && var1->n_var_parts)
4914 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4915 && var1->n_var_parts == 1);
4916 /* One-part values have locations in a canonical order. */
4917 return onepart_variable_different_p (var1, var2);
4920 for (i = 0; i < var1->n_var_parts; i++)
4922 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4923 return true;
4924 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4925 return true;
4926 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4927 return true;
4929 return false;
4932 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4934 static bool
4935 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4937 variable_iterator_type hi;
4938 variable var1;
4940 if (old_set->vars == new_set->vars)
4941 return false;
4943 if (shared_hash_htab (old_set->vars).elements ()
4944 != shared_hash_htab (new_set->vars).elements ())
4945 return true;
4947 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (old_set->vars),
4948 var1, variable, hi)
4950 variable_table_type htab = shared_hash_htab (new_set->vars);
4951 variable var2 = htab.find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4952 if (!var2)
4954 if (dump_file && (dump_flags & TDF_DETAILS))
4956 fprintf (dump_file, "dataflow difference found: removal of:\n");
4957 dump_var (var1);
4959 return true;
4962 if (variable_different_p (var1, var2))
4964 if (dump_file && (dump_flags & TDF_DETAILS))
4966 fprintf (dump_file, "dataflow difference found: "
4967 "old and new follow:\n");
4968 dump_var (var1);
4969 dump_var (var2);
4971 return true;
4975 /* No need to traverse the second hashtab, if both have the same number
4976 of elements and the second one had all entries found in the first one,
4977 then it can't have any extra entries. */
4978 return false;
4981 /* Free the contents of dataflow set SET. */
4983 static void
4984 dataflow_set_destroy (dataflow_set *set)
4986 int i;
4988 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4989 attrs_list_clear (&set->regs[i]);
4991 shared_hash_destroy (set->vars);
4992 set->vars = NULL;
4995 /* Return true if RTL X contains a SYMBOL_REF. */
4997 static bool
4998 contains_symbol_ref (rtx x)
5000 const char *fmt;
5001 RTX_CODE code;
5002 int i;
5004 if (!x)
5005 return false;
5007 code = GET_CODE (x);
5008 if (code == SYMBOL_REF)
5009 return true;
5011 fmt = GET_RTX_FORMAT (code);
5012 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5014 if (fmt[i] == 'e')
5016 if (contains_symbol_ref (XEXP (x, i)))
5017 return true;
5019 else if (fmt[i] == 'E')
5021 int j;
5022 for (j = 0; j < XVECLEN (x, i); j++)
5023 if (contains_symbol_ref (XVECEXP (x, i, j)))
5024 return true;
5028 return false;
5031 /* Shall EXPR be tracked? */
5033 static bool
5034 track_expr_p (tree expr, bool need_rtl)
5036 rtx decl_rtl;
5037 tree realdecl;
5039 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5040 return DECL_RTL_SET_P (expr);
5042 /* If EXPR is not a parameter or a variable do not track it. */
5043 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5044 return 0;
5046 /* It also must have a name... */
5047 if (!DECL_NAME (expr) && need_rtl)
5048 return 0;
5050 /* ... and a RTL assigned to it. */
5051 decl_rtl = DECL_RTL_IF_SET (expr);
5052 if (!decl_rtl && need_rtl)
5053 return 0;
5055 /* If this expression is really a debug alias of some other declaration, we
5056 don't need to track this expression if the ultimate declaration is
5057 ignored. */
5058 realdecl = expr;
5059 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5061 realdecl = DECL_DEBUG_EXPR (realdecl);
5062 if (!DECL_P (realdecl))
5064 if (handled_component_p (realdecl)
5065 || (TREE_CODE (realdecl) == MEM_REF
5066 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5068 HOST_WIDE_INT bitsize, bitpos, maxsize;
5069 tree innerdecl
5070 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5071 &maxsize);
5072 if (!DECL_P (innerdecl)
5073 || DECL_IGNORED_P (innerdecl)
5074 || TREE_STATIC (innerdecl)
5075 || bitsize <= 0
5076 || bitpos + bitsize > 256
5077 || bitsize != maxsize)
5078 return 0;
5079 else
5080 realdecl = expr;
5082 else
5083 return 0;
5087 /* Do not track EXPR if REALDECL it should be ignored for debugging
5088 purposes. */
5089 if (DECL_IGNORED_P (realdecl))
5090 return 0;
5092 /* Do not track global variables until we are able to emit correct location
5093 list for them. */
5094 if (TREE_STATIC (realdecl))
5095 return 0;
5097 /* When the EXPR is a DECL for alias of some variable (see example)
5098 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5099 DECL_RTL contains SYMBOL_REF.
5101 Example:
5102 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5103 char **_dl_argv;
5105 if (decl_rtl && MEM_P (decl_rtl)
5106 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5107 return 0;
5109 /* If RTX is a memory it should not be very large (because it would be
5110 an array or struct). */
5111 if (decl_rtl && MEM_P (decl_rtl))
5113 /* Do not track structures and arrays. */
5114 if (GET_MODE (decl_rtl) == BLKmode
5115 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5116 return 0;
5117 if (MEM_SIZE_KNOWN_P (decl_rtl)
5118 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5119 return 0;
5122 DECL_CHANGED (expr) = 0;
5123 DECL_CHANGED (realdecl) = 0;
5124 return 1;
5127 /* Determine whether a given LOC refers to the same variable part as
5128 EXPR+OFFSET. */
5130 static bool
5131 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5133 tree expr2;
5134 HOST_WIDE_INT offset2;
5136 if (! DECL_P (expr))
5137 return false;
5139 if (REG_P (loc))
5141 expr2 = REG_EXPR (loc);
5142 offset2 = REG_OFFSET (loc);
5144 else if (MEM_P (loc))
5146 expr2 = MEM_EXPR (loc);
5147 offset2 = INT_MEM_OFFSET (loc);
5149 else
5150 return false;
5152 if (! expr2 || ! DECL_P (expr2))
5153 return false;
5155 expr = var_debug_decl (expr);
5156 expr2 = var_debug_decl (expr2);
5158 return (expr == expr2 && offset == offset2);
5161 /* LOC is a REG or MEM that we would like to track if possible.
5162 If EXPR is null, we don't know what expression LOC refers to,
5163 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5164 LOC is an lvalue register.
5166 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5167 is something we can track. When returning true, store the mode of
5168 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5169 from EXPR in *OFFSET_OUT (if nonnull). */
5171 static bool
5172 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5173 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5175 enum machine_mode mode;
5177 if (expr == NULL || !track_expr_p (expr, true))
5178 return false;
5180 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5181 whole subreg, but only the old inner part is really relevant. */
5182 mode = GET_MODE (loc);
5183 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5185 enum machine_mode pseudo_mode;
5187 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5188 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5190 offset += byte_lowpart_offset (pseudo_mode, mode);
5191 mode = pseudo_mode;
5195 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5196 Do the same if we are storing to a register and EXPR occupies
5197 the whole of register LOC; in that case, the whole of EXPR is
5198 being changed. We exclude complex modes from the second case
5199 because the real and imaginary parts are represented as separate
5200 pseudo registers, even if the whole complex value fits into one
5201 hard register. */
5202 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5203 || (store_reg_p
5204 && !COMPLEX_MODE_P (DECL_MODE (expr))
5205 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5206 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5208 mode = DECL_MODE (expr);
5209 offset = 0;
5212 if (offset < 0 || offset >= MAX_VAR_PARTS)
5213 return false;
5215 if (mode_out)
5216 *mode_out = mode;
5217 if (offset_out)
5218 *offset_out = offset;
5219 return true;
5222 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5223 want to track. When returning nonnull, make sure that the attributes
5224 on the returned value are updated. */
5226 static rtx
5227 var_lowpart (enum machine_mode mode, rtx loc)
5229 unsigned int offset, reg_offset, regno;
5231 if (GET_MODE (loc) == mode)
5232 return loc;
5234 if (!REG_P (loc) && !MEM_P (loc))
5235 return NULL;
5237 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5239 if (MEM_P (loc))
5240 return adjust_address_nv (loc, mode, offset);
5242 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5243 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5244 reg_offset, mode);
5245 return gen_rtx_REG_offset (loc, mode, regno, offset);
5248 /* Carry information about uses and stores while walking rtx. */
5250 struct count_use_info
5252 /* The insn where the RTX is. */
5253 rtx insn;
5255 /* The basic block where insn is. */
5256 basic_block bb;
5258 /* The array of n_sets sets in the insn, as determined by cselib. */
5259 struct cselib_set *sets;
5260 int n_sets;
5262 /* True if we're counting stores, false otherwise. */
5263 bool store_p;
5266 /* Find a VALUE corresponding to X. */
5268 static inline cselib_val *
5269 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5271 int i;
5273 if (cui->sets)
5275 /* This is called after uses are set up and before stores are
5276 processed by cselib, so it's safe to look up srcs, but not
5277 dsts. So we look up expressions that appear in srcs or in
5278 dest expressions, but we search the sets array for dests of
5279 stores. */
5280 if (cui->store_p)
5282 /* Some targets represent memset and memcpy patterns
5283 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5284 (set (mem:BLK ...) (const_int ...)) or
5285 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5286 in that case, otherwise we end up with mode mismatches. */
5287 if (mode == BLKmode && MEM_P (x))
5288 return NULL;
5289 for (i = 0; i < cui->n_sets; i++)
5290 if (cui->sets[i].dest == x)
5291 return cui->sets[i].src_elt;
5293 else
5294 return cselib_lookup (x, mode, 0, VOIDmode);
5297 return NULL;
5300 /* Replace all registers and addresses in an expression with VALUE
5301 expressions that map back to them, unless the expression is a
5302 register. If no mapping is or can be performed, returns NULL. */
5304 static rtx
5305 replace_expr_with_values (rtx loc)
5307 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5308 return NULL;
5309 else if (MEM_P (loc))
5311 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5312 get_address_mode (loc), 0,
5313 GET_MODE (loc));
5314 if (addr)
5315 return replace_equiv_address_nv (loc, addr->val_rtx);
5316 else
5317 return NULL;
5319 else
5320 return cselib_subst_to_values (loc, VOIDmode);
5323 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5324 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5325 RTX. */
5327 static int
5328 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5330 rtx loc = *x;
5332 return GET_CODE (loc) == DEBUG_EXPR;
5335 /* Determine what kind of micro operation to choose for a USE. Return
5336 MO_CLOBBER if no micro operation is to be generated. */
5338 static enum micro_operation_type
5339 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5341 tree expr;
5343 if (cui && cui->sets)
5345 if (GET_CODE (loc) == VAR_LOCATION)
5347 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5349 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5350 if (! VAR_LOC_UNKNOWN_P (ploc))
5352 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5353 VOIDmode);
5355 /* ??? flag_float_store and volatile mems are never
5356 given values, but we could in theory use them for
5357 locations. */
5358 gcc_assert (val || 1);
5360 return MO_VAL_LOC;
5362 else
5363 return MO_CLOBBER;
5366 if (REG_P (loc) || MEM_P (loc))
5368 if (modep)
5369 *modep = GET_MODE (loc);
5370 if (cui->store_p)
5372 if (REG_P (loc)
5373 || (find_use_val (loc, GET_MODE (loc), cui)
5374 && cselib_lookup (XEXP (loc, 0),
5375 get_address_mode (loc), 0,
5376 GET_MODE (loc))))
5377 return MO_VAL_SET;
5379 else
5381 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5383 if (val && !cselib_preserved_value_p (val))
5384 return MO_VAL_USE;
5389 if (REG_P (loc))
5391 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5393 if (loc == cfa_base_rtx)
5394 return MO_CLOBBER;
5395 expr = REG_EXPR (loc);
5397 if (!expr)
5398 return MO_USE_NO_VAR;
5399 else if (target_for_debug_bind (var_debug_decl (expr)))
5400 return MO_CLOBBER;
5401 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5402 false, modep, NULL))
5403 return MO_USE;
5404 else
5405 return MO_USE_NO_VAR;
5407 else if (MEM_P (loc))
5409 expr = MEM_EXPR (loc);
5411 if (!expr)
5412 return MO_CLOBBER;
5413 else if (target_for_debug_bind (var_debug_decl (expr)))
5414 return MO_CLOBBER;
5415 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5416 false, modep, NULL)
5417 /* Multi-part variables shouldn't refer to one-part
5418 variable names such as VALUEs (never happens) or
5419 DEBUG_EXPRs (only happens in the presence of debug
5420 insns). */
5421 && (!MAY_HAVE_DEBUG_INSNS
5422 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5423 return MO_USE;
5424 else
5425 return MO_CLOBBER;
5428 return MO_CLOBBER;
5431 /* Log to OUT information about micro-operation MOPT involving X in
5432 INSN of BB. */
5434 static inline void
5435 log_op_type (rtx x, basic_block bb, rtx insn,
5436 enum micro_operation_type mopt, FILE *out)
5438 fprintf (out, "bb %i op %i insn %i %s ",
5439 bb->index, VTI (bb)->mos.length (),
5440 INSN_UID (insn), micro_operation_type_name[mopt]);
5441 print_inline_rtx (out, x, 2);
5442 fputc ('\n', out);
5445 /* Tell whether the CONCAT used to holds a VALUE and its location
5446 needs value resolution, i.e., an attempt of mapping the location
5447 back to other incoming values. */
5448 #define VAL_NEEDS_RESOLUTION(x) \
5449 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5450 /* Whether the location in the CONCAT is a tracked expression, that
5451 should also be handled like a MO_USE. */
5452 #define VAL_HOLDS_TRACK_EXPR(x) \
5453 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5454 /* Whether the location in the CONCAT should be handled like a MO_COPY
5455 as well. */
5456 #define VAL_EXPR_IS_COPIED(x) \
5457 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5458 /* Whether the location in the CONCAT should be handled like a
5459 MO_CLOBBER as well. */
5460 #define VAL_EXPR_IS_CLOBBERED(x) \
5461 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5463 /* All preserved VALUEs. */
5464 static vec<rtx> preserved_values;
5466 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5468 static void
5469 preserve_value (cselib_val *val)
5471 cselib_preserve_value (val);
5472 preserved_values.safe_push (val->val_rtx);
5475 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5476 any rtxes not suitable for CONST use not replaced by VALUEs
5477 are discovered. */
5479 static int
5480 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5482 if (*x == NULL_RTX)
5483 return 0;
5485 switch (GET_CODE (*x))
5487 case REG:
5488 case DEBUG_EXPR:
5489 case PC:
5490 case SCRATCH:
5491 case CC0:
5492 case ASM_INPUT:
5493 case ASM_OPERANDS:
5494 return 1;
5495 case MEM:
5496 return !MEM_READONLY_P (*x);
5497 default:
5498 return 0;
5502 /* Add uses (register and memory references) LOC which will be tracked
5503 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5505 static int
5506 add_uses (rtx *ploc, void *data)
5508 rtx loc = *ploc;
5509 enum machine_mode mode = VOIDmode;
5510 struct count_use_info *cui = (struct count_use_info *)data;
5511 enum micro_operation_type type = use_type (loc, cui, &mode);
5513 if (type != MO_CLOBBER)
5515 basic_block bb = cui->bb;
5516 micro_operation mo;
5518 mo.type = type;
5519 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5520 mo.insn = cui->insn;
5522 if (type == MO_VAL_LOC)
5524 rtx oloc = loc;
5525 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5526 cselib_val *val;
5528 gcc_assert (cui->sets);
5530 if (MEM_P (vloc)
5531 && !REG_P (XEXP (vloc, 0))
5532 && !MEM_P (XEXP (vloc, 0)))
5534 rtx mloc = vloc;
5535 enum machine_mode address_mode = get_address_mode (mloc);
5536 cselib_val *val
5537 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5538 GET_MODE (mloc));
5540 if (val && !cselib_preserved_value_p (val))
5541 preserve_value (val);
5544 if (CONSTANT_P (vloc)
5545 && (GET_CODE (vloc) != CONST
5546 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5547 /* For constants don't look up any value. */;
5548 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5549 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5551 enum machine_mode mode2;
5552 enum micro_operation_type type2;
5553 rtx nloc = NULL;
5554 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5556 if (resolvable)
5557 nloc = replace_expr_with_values (vloc);
5559 if (nloc)
5561 oloc = shallow_copy_rtx (oloc);
5562 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5565 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5567 type2 = use_type (vloc, 0, &mode2);
5569 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5570 || type2 == MO_CLOBBER);
5572 if (type2 == MO_CLOBBER
5573 && !cselib_preserved_value_p (val))
5575 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5576 preserve_value (val);
5579 else if (!VAR_LOC_UNKNOWN_P (vloc))
5581 oloc = shallow_copy_rtx (oloc);
5582 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5585 mo.u.loc = oloc;
5587 else if (type == MO_VAL_USE)
5589 enum machine_mode mode2 = VOIDmode;
5590 enum micro_operation_type type2;
5591 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5592 rtx vloc, oloc = loc, nloc;
5594 gcc_assert (cui->sets);
5596 if (MEM_P (oloc)
5597 && !REG_P (XEXP (oloc, 0))
5598 && !MEM_P (XEXP (oloc, 0)))
5600 rtx mloc = oloc;
5601 enum machine_mode address_mode = get_address_mode (mloc);
5602 cselib_val *val
5603 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5604 GET_MODE (mloc));
5606 if (val && !cselib_preserved_value_p (val))
5607 preserve_value (val);
5610 type2 = use_type (loc, 0, &mode2);
5612 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5613 || type2 == MO_CLOBBER);
5615 if (type2 == MO_USE)
5616 vloc = var_lowpart (mode2, loc);
5617 else
5618 vloc = oloc;
5620 /* The loc of a MO_VAL_USE may have two forms:
5622 (concat val src): val is at src, a value-based
5623 representation.
5625 (concat (concat val use) src): same as above, with use as
5626 the MO_USE tracked value, if it differs from src.
5630 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5631 nloc = replace_expr_with_values (loc);
5632 if (!nloc)
5633 nloc = oloc;
5635 if (vloc != nloc)
5636 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5637 else
5638 oloc = val->val_rtx;
5640 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5642 if (type2 == MO_USE)
5643 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5644 if (!cselib_preserved_value_p (val))
5646 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5647 preserve_value (val);
5650 else
5651 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5653 if (dump_file && (dump_flags & TDF_DETAILS))
5654 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5655 VTI (bb)->mos.safe_push (mo);
5658 return 0;
5661 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5663 static void
5664 add_uses_1 (rtx *x, void *cui)
5666 for_each_rtx (x, add_uses, cui);
5669 /* This is the value used during expansion of locations. We want it
5670 to be unbounded, so that variables expanded deep in a recursion
5671 nest are fully evaluated, so that their values are cached
5672 correctly. We avoid recursion cycles through other means, and we
5673 don't unshare RTL, so excess complexity is not a problem. */
5674 #define EXPR_DEPTH (INT_MAX)
5675 /* We use this to keep too-complex expressions from being emitted as
5676 location notes, and then to debug information. Users can trade
5677 compile time for ridiculously complex expressions, although they're
5678 seldom useful, and they may often have to be discarded as not
5679 representable anyway. */
5680 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5682 /* Attempt to reverse the EXPR operation in the debug info and record
5683 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5684 no longer live we can express its value as VAL - 6. */
5686 static void
5687 reverse_op (rtx val, const_rtx expr, rtx insn)
5689 rtx src, arg, ret;
5690 cselib_val *v;
5691 struct elt_loc_list *l;
5692 enum rtx_code code;
5693 int count;
5695 if (GET_CODE (expr) != SET)
5696 return;
5698 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5699 return;
5701 src = SET_SRC (expr);
5702 switch (GET_CODE (src))
5704 case PLUS:
5705 case MINUS:
5706 case XOR:
5707 case NOT:
5708 case NEG:
5709 if (!REG_P (XEXP (src, 0)))
5710 return;
5711 break;
5712 case SIGN_EXTEND:
5713 case ZERO_EXTEND:
5714 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5715 return;
5716 break;
5717 default:
5718 return;
5721 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5722 return;
5724 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5725 if (!v || !cselib_preserved_value_p (v))
5726 return;
5728 /* Use canonical V to avoid creating multiple redundant expressions
5729 for different VALUES equivalent to V. */
5730 v = canonical_cselib_val (v);
5732 /* Adding a reverse op isn't useful if V already has an always valid
5733 location. Ignore ENTRY_VALUE, while it is always constant, we should
5734 prefer non-ENTRY_VALUE locations whenever possible. */
5735 for (l = v->locs, count = 0; l; l = l->next, count++)
5736 if (CONSTANT_P (l->loc)
5737 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5738 return;
5739 /* Avoid creating too large locs lists. */
5740 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5741 return;
5743 switch (GET_CODE (src))
5745 case NOT:
5746 case NEG:
5747 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5748 return;
5749 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5750 break;
5751 case SIGN_EXTEND:
5752 case ZERO_EXTEND:
5753 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5754 break;
5755 case XOR:
5756 code = XOR;
5757 goto binary;
5758 case PLUS:
5759 code = MINUS;
5760 goto binary;
5761 case MINUS:
5762 code = PLUS;
5763 goto binary;
5764 binary:
5765 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5766 return;
5767 arg = XEXP (src, 1);
5768 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5770 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5771 if (arg == NULL_RTX)
5772 return;
5773 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5774 return;
5776 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5777 if (ret == val)
5778 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5779 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5780 breaks a lot of routines during var-tracking. */
5781 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5782 break;
5783 default:
5784 gcc_unreachable ();
5787 cselib_add_permanent_equiv (v, ret, insn);
5790 /* Add stores (register and memory references) LOC which will be tracked
5791 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5792 CUIP->insn is instruction which the LOC is part of. */
5794 static void
5795 add_stores (rtx loc, const_rtx expr, void *cuip)
5797 enum machine_mode mode = VOIDmode, mode2;
5798 struct count_use_info *cui = (struct count_use_info *)cuip;
5799 basic_block bb = cui->bb;
5800 micro_operation mo;
5801 rtx oloc = loc, nloc, src = NULL;
5802 enum micro_operation_type type = use_type (loc, cui, &mode);
5803 bool track_p = false;
5804 cselib_val *v;
5805 bool resolve, preserve;
5807 if (type == MO_CLOBBER)
5808 return;
5810 mode2 = mode;
5812 if (REG_P (loc))
5814 gcc_assert (loc != cfa_base_rtx);
5815 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5816 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5817 || GET_CODE (expr) == CLOBBER)
5819 mo.type = MO_CLOBBER;
5820 mo.u.loc = loc;
5821 if (GET_CODE (expr) == SET
5822 && SET_DEST (expr) == loc
5823 && !unsuitable_loc (SET_SRC (expr))
5824 && find_use_val (loc, mode, cui))
5826 gcc_checking_assert (type == MO_VAL_SET);
5827 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5830 else
5832 if (GET_CODE (expr) == SET
5833 && SET_DEST (expr) == loc
5834 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5835 src = var_lowpart (mode2, SET_SRC (expr));
5836 loc = var_lowpart (mode2, loc);
5838 if (src == NULL)
5840 mo.type = MO_SET;
5841 mo.u.loc = loc;
5843 else
5845 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5846 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5848 /* If this is an instruction copying (part of) a parameter
5849 passed by invisible reference to its register location,
5850 pretend it's a SET so that the initial memory location
5851 is discarded, as the parameter register can be reused
5852 for other purposes and we do not track locations based
5853 on generic registers. */
5854 if (MEM_P (src)
5855 && REG_EXPR (loc)
5856 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5857 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5858 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5859 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5860 != arg_pointer_rtx)
5861 mo.type = MO_SET;
5862 else
5863 mo.type = MO_COPY;
5865 else
5866 mo.type = MO_SET;
5867 mo.u.loc = xexpr;
5870 mo.insn = cui->insn;
5872 else if (MEM_P (loc)
5873 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5874 || cui->sets))
5876 if (MEM_P (loc) && type == MO_VAL_SET
5877 && !REG_P (XEXP (loc, 0))
5878 && !MEM_P (XEXP (loc, 0)))
5880 rtx mloc = loc;
5881 enum machine_mode address_mode = get_address_mode (mloc);
5882 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5883 address_mode, 0,
5884 GET_MODE (mloc));
5886 if (val && !cselib_preserved_value_p (val))
5887 preserve_value (val);
5890 if (GET_CODE (expr) == CLOBBER || !track_p)
5892 mo.type = MO_CLOBBER;
5893 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5895 else
5897 if (GET_CODE (expr) == SET
5898 && SET_DEST (expr) == loc
5899 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5900 src = var_lowpart (mode2, SET_SRC (expr));
5901 loc = var_lowpart (mode2, loc);
5903 if (src == NULL)
5905 mo.type = MO_SET;
5906 mo.u.loc = loc;
5908 else
5910 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5911 if (same_variable_part_p (SET_SRC (xexpr),
5912 MEM_EXPR (loc),
5913 INT_MEM_OFFSET (loc)))
5914 mo.type = MO_COPY;
5915 else
5916 mo.type = MO_SET;
5917 mo.u.loc = xexpr;
5920 mo.insn = cui->insn;
5922 else
5923 return;
5925 if (type != MO_VAL_SET)
5926 goto log_and_return;
5928 v = find_use_val (oloc, mode, cui);
5930 if (!v)
5931 goto log_and_return;
5933 resolve = preserve = !cselib_preserved_value_p (v);
5935 if (loc == stack_pointer_rtx
5936 && hard_frame_pointer_adjustment != -1
5937 && preserve)
5938 cselib_set_value_sp_based (v);
5940 nloc = replace_expr_with_values (oloc);
5941 if (nloc)
5942 oloc = nloc;
5944 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5946 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5948 gcc_assert (oval != v);
5949 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5951 if (oval && !cselib_preserved_value_p (oval))
5953 micro_operation moa;
5955 preserve_value (oval);
5957 moa.type = MO_VAL_USE;
5958 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5959 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5960 moa.insn = cui->insn;
5962 if (dump_file && (dump_flags & TDF_DETAILS))
5963 log_op_type (moa.u.loc, cui->bb, cui->insn,
5964 moa.type, dump_file);
5965 VTI (bb)->mos.safe_push (moa);
5968 resolve = false;
5970 else if (resolve && GET_CODE (mo.u.loc) == SET)
5972 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
5973 nloc = replace_expr_with_values (SET_SRC (expr));
5974 else
5975 nloc = NULL_RTX;
5977 /* Avoid the mode mismatch between oexpr and expr. */
5978 if (!nloc && mode != mode2)
5980 nloc = SET_SRC (expr);
5981 gcc_assert (oloc == SET_DEST (expr));
5984 if (nloc && nloc != SET_SRC (mo.u.loc))
5985 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
5986 else
5988 if (oloc == SET_DEST (mo.u.loc))
5989 /* No point in duplicating. */
5990 oloc = mo.u.loc;
5991 if (!REG_P (SET_SRC (mo.u.loc)))
5992 resolve = false;
5995 else if (!resolve)
5997 if (GET_CODE (mo.u.loc) == SET
5998 && oloc == SET_DEST (mo.u.loc))
5999 /* No point in duplicating. */
6000 oloc = mo.u.loc;
6002 else
6003 resolve = false;
6005 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6007 if (mo.u.loc != oloc)
6008 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6010 /* The loc of a MO_VAL_SET may have various forms:
6012 (concat val dst): dst now holds val
6014 (concat val (set dst src)): dst now holds val, copied from src
6016 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6017 after replacing mems and non-top-level regs with values.
6019 (concat (concat val dstv) (set dst src)): dst now holds val,
6020 copied from src. dstv is a value-based representation of dst, if
6021 it differs from dst. If resolution is needed, src is a REG, and
6022 its mode is the same as that of val.
6024 (concat (concat val (set dstv srcv)) (set dst src)): src
6025 copied to dst, holding val. dstv and srcv are value-based
6026 representations of dst and src, respectively.
6030 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6031 reverse_op (v->val_rtx, expr, cui->insn);
6033 mo.u.loc = loc;
6035 if (track_p)
6036 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6037 if (preserve)
6039 VAL_NEEDS_RESOLUTION (loc) = resolve;
6040 preserve_value (v);
6042 if (mo.type == MO_CLOBBER)
6043 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6044 if (mo.type == MO_COPY)
6045 VAL_EXPR_IS_COPIED (loc) = 1;
6047 mo.type = MO_VAL_SET;
6049 log_and_return:
6050 if (dump_file && (dump_flags & TDF_DETAILS))
6051 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6052 VTI (bb)->mos.safe_push (mo);
6055 /* Arguments to the call. */
6056 static rtx call_arguments;
6058 /* Compute call_arguments. */
6060 static void
6061 prepare_call_arguments (basic_block bb, rtx insn)
6063 rtx link, x, call;
6064 rtx prev, cur, next;
6065 rtx this_arg = NULL_RTX;
6066 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6067 tree obj_type_ref = NULL_TREE;
6068 CUMULATIVE_ARGS args_so_far_v;
6069 cumulative_args_t args_so_far;
6071 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6072 args_so_far = pack_cumulative_args (&args_so_far_v);
6073 call = get_call_rtx_from (insn);
6074 if (call)
6076 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6078 rtx symbol = XEXP (XEXP (call, 0), 0);
6079 if (SYMBOL_REF_DECL (symbol))
6080 fndecl = SYMBOL_REF_DECL (symbol);
6082 if (fndecl == NULL_TREE)
6083 fndecl = MEM_EXPR (XEXP (call, 0));
6084 if (fndecl
6085 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6086 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6087 fndecl = NULL_TREE;
6088 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6089 type = TREE_TYPE (fndecl);
6090 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6092 if (TREE_CODE (fndecl) == INDIRECT_REF
6093 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6094 obj_type_ref = TREE_OPERAND (fndecl, 0);
6095 fndecl = NULL_TREE;
6097 if (type)
6099 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6100 t = TREE_CHAIN (t))
6101 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6102 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6103 break;
6104 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6105 type = NULL;
6106 else
6108 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6109 link = CALL_INSN_FUNCTION_USAGE (insn);
6110 #ifndef PCC_STATIC_STRUCT_RETURN
6111 if (aggregate_value_p (TREE_TYPE (type), type)
6112 && targetm.calls.struct_value_rtx (type, 0) == 0)
6114 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6115 enum machine_mode mode = TYPE_MODE (struct_addr);
6116 rtx reg;
6117 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6118 nargs + 1);
6119 reg = targetm.calls.function_arg (args_so_far, mode,
6120 struct_addr, true);
6121 targetm.calls.function_arg_advance (args_so_far, mode,
6122 struct_addr, true);
6123 if (reg == NULL_RTX)
6125 for (; link; link = XEXP (link, 1))
6126 if (GET_CODE (XEXP (link, 0)) == USE
6127 && MEM_P (XEXP (XEXP (link, 0), 0)))
6129 link = XEXP (link, 1);
6130 break;
6134 else
6135 #endif
6136 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6137 nargs);
6138 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6140 enum machine_mode mode;
6141 t = TYPE_ARG_TYPES (type);
6142 mode = TYPE_MODE (TREE_VALUE (t));
6143 this_arg = targetm.calls.function_arg (args_so_far, mode,
6144 TREE_VALUE (t), true);
6145 if (this_arg && !REG_P (this_arg))
6146 this_arg = NULL_RTX;
6147 else if (this_arg == NULL_RTX)
6149 for (; link; link = XEXP (link, 1))
6150 if (GET_CODE (XEXP (link, 0)) == USE
6151 && MEM_P (XEXP (XEXP (link, 0), 0)))
6153 this_arg = XEXP (XEXP (link, 0), 0);
6154 break;
6161 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6163 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6164 if (GET_CODE (XEXP (link, 0)) == USE)
6166 rtx item = NULL_RTX;
6167 x = XEXP (XEXP (link, 0), 0);
6168 if (GET_MODE (link) == VOIDmode
6169 || GET_MODE (link) == BLKmode
6170 || (GET_MODE (link) != GET_MODE (x)
6171 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6172 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6173 /* Can't do anything for these, if the original type mode
6174 isn't known or can't be converted. */;
6175 else if (REG_P (x))
6177 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6178 if (val && cselib_preserved_value_p (val))
6179 item = val->val_rtx;
6180 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6182 enum machine_mode mode = GET_MODE (x);
6184 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6185 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6187 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6189 if (reg == NULL_RTX || !REG_P (reg))
6190 continue;
6191 val = cselib_lookup (reg, mode, 0, VOIDmode);
6192 if (val && cselib_preserved_value_p (val))
6194 item = val->val_rtx;
6195 break;
6200 else if (MEM_P (x))
6202 rtx mem = x;
6203 cselib_val *val;
6205 if (!frame_pointer_needed)
6207 struct adjust_mem_data amd;
6208 amd.mem_mode = VOIDmode;
6209 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6210 amd.side_effects = NULL_RTX;
6211 amd.store = true;
6212 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6213 &amd);
6214 gcc_assert (amd.side_effects == NULL_RTX);
6216 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6217 if (val && cselib_preserved_value_p (val))
6218 item = val->val_rtx;
6219 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6221 /* For non-integer stack argument see also if they weren't
6222 initialized by integers. */
6223 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6224 if (imode != GET_MODE (mem) && imode != BLKmode)
6226 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6227 imode, 0, VOIDmode);
6228 if (val && cselib_preserved_value_p (val))
6229 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6230 imode);
6234 if (item)
6236 rtx x2 = x;
6237 if (GET_MODE (item) != GET_MODE (link))
6238 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6239 if (GET_MODE (x2) != GET_MODE (link))
6240 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6241 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6242 call_arguments
6243 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6245 if (t && t != void_list_node)
6247 tree argtype = TREE_VALUE (t);
6248 enum machine_mode mode = TYPE_MODE (argtype);
6249 rtx reg;
6250 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6252 argtype = build_pointer_type (argtype);
6253 mode = TYPE_MODE (argtype);
6255 reg = targetm.calls.function_arg (args_so_far, mode,
6256 argtype, true);
6257 if (TREE_CODE (argtype) == REFERENCE_TYPE
6258 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6259 && reg
6260 && REG_P (reg)
6261 && GET_MODE (reg) == mode
6262 && GET_MODE_CLASS (mode) == MODE_INT
6263 && REG_P (x)
6264 && REGNO (x) == REGNO (reg)
6265 && GET_MODE (x) == mode
6266 && item)
6268 enum machine_mode indmode
6269 = TYPE_MODE (TREE_TYPE (argtype));
6270 rtx mem = gen_rtx_MEM (indmode, x);
6271 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6272 if (val && cselib_preserved_value_p (val))
6274 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6275 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6276 call_arguments);
6278 else
6280 struct elt_loc_list *l;
6281 tree initial;
6283 /* Try harder, when passing address of a constant
6284 pool integer it can be easily read back. */
6285 item = XEXP (item, 1);
6286 if (GET_CODE (item) == SUBREG)
6287 item = SUBREG_REG (item);
6288 gcc_assert (GET_CODE (item) == VALUE);
6289 val = CSELIB_VAL_PTR (item);
6290 for (l = val->locs; l; l = l->next)
6291 if (GET_CODE (l->loc) == SYMBOL_REF
6292 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6293 && SYMBOL_REF_DECL (l->loc)
6294 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6296 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6297 if (tree_fits_shwi_p (initial))
6299 item = GEN_INT (tree_to_shwi (initial));
6300 item = gen_rtx_CONCAT (indmode, mem, item);
6301 call_arguments
6302 = gen_rtx_EXPR_LIST (VOIDmode, item,
6303 call_arguments);
6305 break;
6309 targetm.calls.function_arg_advance (args_so_far, mode,
6310 argtype, true);
6311 t = TREE_CHAIN (t);
6315 /* Add debug arguments. */
6316 if (fndecl
6317 && TREE_CODE (fndecl) == FUNCTION_DECL
6318 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6320 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6321 if (debug_args)
6323 unsigned int ix;
6324 tree param;
6325 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6327 rtx item;
6328 tree dtemp = (**debug_args)[ix + 1];
6329 enum machine_mode mode = DECL_MODE (dtemp);
6330 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6331 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6332 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6333 call_arguments);
6338 /* Reverse call_arguments chain. */
6339 prev = NULL_RTX;
6340 for (cur = call_arguments; cur; cur = next)
6342 next = XEXP (cur, 1);
6343 XEXP (cur, 1) = prev;
6344 prev = cur;
6346 call_arguments = prev;
6348 x = get_call_rtx_from (insn);
6349 if (x)
6351 x = XEXP (XEXP (x, 0), 0);
6352 if (GET_CODE (x) == SYMBOL_REF)
6353 /* Don't record anything. */;
6354 else if (CONSTANT_P (x))
6356 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6357 pc_rtx, x);
6358 call_arguments
6359 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6361 else
6363 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6364 if (val && cselib_preserved_value_p (val))
6366 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6367 call_arguments
6368 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6372 if (this_arg)
6374 enum machine_mode mode
6375 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6376 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6377 HOST_WIDE_INT token
6378 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6379 if (token)
6380 clobbered = plus_constant (mode, clobbered,
6381 token * GET_MODE_SIZE (mode));
6382 clobbered = gen_rtx_MEM (mode, clobbered);
6383 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6384 call_arguments
6385 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6389 /* Callback for cselib_record_sets_hook, that records as micro
6390 operations uses and stores in an insn after cselib_record_sets has
6391 analyzed the sets in an insn, but before it modifies the stored
6392 values in the internal tables, unless cselib_record_sets doesn't
6393 call it directly (perhaps because we're not doing cselib in the
6394 first place, in which case sets and n_sets will be 0). */
6396 static void
6397 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
6399 basic_block bb = BLOCK_FOR_INSN (insn);
6400 int n1, n2;
6401 struct count_use_info cui;
6402 micro_operation *mos;
6404 cselib_hook_called = true;
6406 cui.insn = insn;
6407 cui.bb = bb;
6408 cui.sets = sets;
6409 cui.n_sets = n_sets;
6411 n1 = VTI (bb)->mos.length ();
6412 cui.store_p = false;
6413 note_uses (&PATTERN (insn), add_uses_1, &cui);
6414 n2 = VTI (bb)->mos.length () - 1;
6415 mos = VTI (bb)->mos.address ();
6417 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6418 MO_VAL_LOC last. */
6419 while (n1 < n2)
6421 while (n1 < n2 && mos[n1].type == MO_USE)
6422 n1++;
6423 while (n1 < n2 && mos[n2].type != MO_USE)
6424 n2--;
6425 if (n1 < n2)
6427 micro_operation sw;
6429 sw = mos[n1];
6430 mos[n1] = mos[n2];
6431 mos[n2] = sw;
6435 n2 = VTI (bb)->mos.length () - 1;
6436 while (n1 < n2)
6438 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6439 n1++;
6440 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6441 n2--;
6442 if (n1 < n2)
6444 micro_operation sw;
6446 sw = mos[n1];
6447 mos[n1] = mos[n2];
6448 mos[n2] = sw;
6452 if (CALL_P (insn))
6454 micro_operation mo;
6456 mo.type = MO_CALL;
6457 mo.insn = insn;
6458 mo.u.loc = call_arguments;
6459 call_arguments = NULL_RTX;
6461 if (dump_file && (dump_flags & TDF_DETAILS))
6462 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6463 VTI (bb)->mos.safe_push (mo);
6466 n1 = VTI (bb)->mos.length ();
6467 /* This will record NEXT_INSN (insn), such that we can
6468 insert notes before it without worrying about any
6469 notes that MO_USEs might emit after the insn. */
6470 cui.store_p = true;
6471 note_stores (PATTERN (insn), add_stores, &cui);
6472 n2 = VTI (bb)->mos.length () - 1;
6473 mos = VTI (bb)->mos.address ();
6475 /* Order the MO_VAL_USEs first (note_stores does nothing
6476 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6477 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6478 while (n1 < n2)
6480 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6481 n1++;
6482 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6483 n2--;
6484 if (n1 < n2)
6486 micro_operation sw;
6488 sw = mos[n1];
6489 mos[n1] = mos[n2];
6490 mos[n2] = sw;
6494 n2 = VTI (bb)->mos.length () - 1;
6495 while (n1 < n2)
6497 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6498 n1++;
6499 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6500 n2--;
6501 if (n1 < n2)
6503 micro_operation sw;
6505 sw = mos[n1];
6506 mos[n1] = mos[n2];
6507 mos[n2] = sw;
6512 static enum var_init_status
6513 find_src_status (dataflow_set *in, rtx src)
6515 tree decl = NULL_TREE;
6516 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6518 if (! flag_var_tracking_uninit)
6519 status = VAR_INIT_STATUS_INITIALIZED;
6521 if (src && REG_P (src))
6522 decl = var_debug_decl (REG_EXPR (src));
6523 else if (src && MEM_P (src))
6524 decl = var_debug_decl (MEM_EXPR (src));
6526 if (src && decl)
6527 status = get_init_value (in, src, dv_from_decl (decl));
6529 return status;
6532 /* SRC is the source of an assignment. Use SET to try to find what
6533 was ultimately assigned to SRC. Return that value if known,
6534 otherwise return SRC itself. */
6536 static rtx
6537 find_src_set_src (dataflow_set *set, rtx src)
6539 tree decl = NULL_TREE; /* The variable being copied around. */
6540 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6541 variable var;
6542 location_chain nextp;
6543 int i;
6544 bool found;
6546 if (src && REG_P (src))
6547 decl = var_debug_decl (REG_EXPR (src));
6548 else if (src && MEM_P (src))
6549 decl = var_debug_decl (MEM_EXPR (src));
6551 if (src && decl)
6553 decl_or_value dv = dv_from_decl (decl);
6555 var = shared_hash_find (set->vars, dv);
6556 if (var)
6558 found = false;
6559 for (i = 0; i < var->n_var_parts && !found; i++)
6560 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6561 nextp = nextp->next)
6562 if (rtx_equal_p (nextp->loc, src))
6564 set_src = nextp->set_src;
6565 found = true;
6571 return set_src;
6574 /* Compute the changes of variable locations in the basic block BB. */
6576 static bool
6577 compute_bb_dataflow (basic_block bb)
6579 unsigned int i;
6580 micro_operation *mo;
6581 bool changed;
6582 dataflow_set old_out;
6583 dataflow_set *in = &VTI (bb)->in;
6584 dataflow_set *out = &VTI (bb)->out;
6586 dataflow_set_init (&old_out);
6587 dataflow_set_copy (&old_out, out);
6588 dataflow_set_copy (out, in);
6590 if (MAY_HAVE_DEBUG_INSNS)
6591 local_get_addr_cache = pointer_map_create ();
6593 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6595 rtx insn = mo->insn;
6597 switch (mo->type)
6599 case MO_CALL:
6600 dataflow_set_clear_at_call (out);
6601 break;
6603 case MO_USE:
6605 rtx loc = mo->u.loc;
6607 if (REG_P (loc))
6608 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6609 else if (MEM_P (loc))
6610 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6612 break;
6614 case MO_VAL_LOC:
6616 rtx loc = mo->u.loc;
6617 rtx val, vloc;
6618 tree var;
6620 if (GET_CODE (loc) == CONCAT)
6622 val = XEXP (loc, 0);
6623 vloc = XEXP (loc, 1);
6625 else
6627 val = NULL_RTX;
6628 vloc = loc;
6631 var = PAT_VAR_LOCATION_DECL (vloc);
6633 clobber_variable_part (out, NULL_RTX,
6634 dv_from_decl (var), 0, NULL_RTX);
6635 if (val)
6637 if (VAL_NEEDS_RESOLUTION (loc))
6638 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6639 set_variable_part (out, val, dv_from_decl (var), 0,
6640 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6641 INSERT);
6643 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6644 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6645 dv_from_decl (var), 0,
6646 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6647 INSERT);
6649 break;
6651 case MO_VAL_USE:
6653 rtx loc = mo->u.loc;
6654 rtx val, vloc, uloc;
6656 vloc = uloc = XEXP (loc, 1);
6657 val = XEXP (loc, 0);
6659 if (GET_CODE (val) == CONCAT)
6661 uloc = XEXP (val, 1);
6662 val = XEXP (val, 0);
6665 if (VAL_NEEDS_RESOLUTION (loc))
6666 val_resolve (out, val, vloc, insn);
6667 else
6668 val_store (out, val, uloc, insn, false);
6670 if (VAL_HOLDS_TRACK_EXPR (loc))
6672 if (GET_CODE (uloc) == REG)
6673 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6674 NULL);
6675 else if (GET_CODE (uloc) == MEM)
6676 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6677 NULL);
6680 break;
6682 case MO_VAL_SET:
6684 rtx loc = mo->u.loc;
6685 rtx val, vloc, uloc;
6686 rtx dstv, srcv;
6688 vloc = loc;
6689 uloc = XEXP (vloc, 1);
6690 val = XEXP (vloc, 0);
6691 vloc = uloc;
6693 if (GET_CODE (uloc) == SET)
6695 dstv = SET_DEST (uloc);
6696 srcv = SET_SRC (uloc);
6698 else
6700 dstv = uloc;
6701 srcv = NULL;
6704 if (GET_CODE (val) == CONCAT)
6706 dstv = vloc = XEXP (val, 1);
6707 val = XEXP (val, 0);
6710 if (GET_CODE (vloc) == SET)
6712 srcv = SET_SRC (vloc);
6714 gcc_assert (val != srcv);
6715 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6717 dstv = vloc = SET_DEST (vloc);
6719 if (VAL_NEEDS_RESOLUTION (loc))
6720 val_resolve (out, val, srcv, insn);
6722 else if (VAL_NEEDS_RESOLUTION (loc))
6724 gcc_assert (GET_CODE (uloc) == SET
6725 && GET_CODE (SET_SRC (uloc)) == REG);
6726 val_resolve (out, val, SET_SRC (uloc), insn);
6729 if (VAL_HOLDS_TRACK_EXPR (loc))
6731 if (VAL_EXPR_IS_CLOBBERED (loc))
6733 if (REG_P (uloc))
6734 var_reg_delete (out, uloc, true);
6735 else if (MEM_P (uloc))
6737 gcc_assert (MEM_P (dstv));
6738 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6739 var_mem_delete (out, dstv, true);
6742 else
6744 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6745 rtx src = NULL, dst = uloc;
6746 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6748 if (GET_CODE (uloc) == SET)
6750 src = SET_SRC (uloc);
6751 dst = SET_DEST (uloc);
6754 if (copied_p)
6756 if (flag_var_tracking_uninit)
6758 status = find_src_status (in, src);
6760 if (status == VAR_INIT_STATUS_UNKNOWN)
6761 status = find_src_status (out, src);
6764 src = find_src_set_src (in, src);
6767 if (REG_P (dst))
6768 var_reg_delete_and_set (out, dst, !copied_p,
6769 status, srcv);
6770 else if (MEM_P (dst))
6772 gcc_assert (MEM_P (dstv));
6773 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6774 var_mem_delete_and_set (out, dstv, !copied_p,
6775 status, srcv);
6779 else if (REG_P (uloc))
6780 var_regno_delete (out, REGNO (uloc));
6781 else if (MEM_P (uloc))
6783 gcc_checking_assert (GET_CODE (vloc) == MEM);
6784 gcc_checking_assert (dstv == vloc);
6785 if (dstv != vloc)
6786 clobber_overlapping_mems (out, vloc);
6789 val_store (out, val, dstv, insn, true);
6791 break;
6793 case MO_SET:
6795 rtx loc = mo->u.loc;
6796 rtx set_src = NULL;
6798 if (GET_CODE (loc) == SET)
6800 set_src = SET_SRC (loc);
6801 loc = SET_DEST (loc);
6804 if (REG_P (loc))
6805 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6806 set_src);
6807 else if (MEM_P (loc))
6808 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6809 set_src);
6811 break;
6813 case MO_COPY:
6815 rtx loc = mo->u.loc;
6816 enum var_init_status src_status;
6817 rtx set_src = NULL;
6819 if (GET_CODE (loc) == SET)
6821 set_src = SET_SRC (loc);
6822 loc = SET_DEST (loc);
6825 if (! flag_var_tracking_uninit)
6826 src_status = VAR_INIT_STATUS_INITIALIZED;
6827 else
6829 src_status = find_src_status (in, set_src);
6831 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6832 src_status = find_src_status (out, set_src);
6835 set_src = find_src_set_src (in, set_src);
6837 if (REG_P (loc))
6838 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6839 else if (MEM_P (loc))
6840 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6842 break;
6844 case MO_USE_NO_VAR:
6846 rtx loc = mo->u.loc;
6848 if (REG_P (loc))
6849 var_reg_delete (out, loc, false);
6850 else if (MEM_P (loc))
6851 var_mem_delete (out, loc, false);
6853 break;
6855 case MO_CLOBBER:
6857 rtx loc = mo->u.loc;
6859 if (REG_P (loc))
6860 var_reg_delete (out, loc, true);
6861 else if (MEM_P (loc))
6862 var_mem_delete (out, loc, true);
6864 break;
6866 case MO_ADJUST:
6867 out->stack_adjust += mo->u.adjust;
6868 break;
6872 if (MAY_HAVE_DEBUG_INSNS)
6874 pointer_map_destroy (local_get_addr_cache);
6875 local_get_addr_cache = NULL;
6877 dataflow_set_equiv_regs (out);
6878 shared_hash_htab (out->vars)
6879 .traverse <dataflow_set *, canonicalize_values_mark> (out);
6880 shared_hash_htab (out->vars)
6881 .traverse <dataflow_set *, canonicalize_values_star> (out);
6882 #if ENABLE_CHECKING
6883 shared_hash_htab (out->vars)
6884 .traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6885 #endif
6887 changed = dataflow_set_different (&old_out, out);
6888 dataflow_set_destroy (&old_out);
6889 return changed;
6892 /* Find the locations of variables in the whole function. */
6894 static bool
6895 vt_find_locations (void)
6897 fibheap_t worklist, pending, fibheap_swap;
6898 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6899 basic_block bb;
6900 edge e;
6901 int *bb_order;
6902 int *rc_order;
6903 int i;
6904 int htabsz = 0;
6905 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6906 bool success = true;
6908 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6909 /* Compute reverse completion order of depth first search of the CFG
6910 so that the data-flow runs faster. */
6911 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6912 bb_order = XNEWVEC (int, last_basic_block);
6913 pre_and_rev_post_order_compute (NULL, rc_order, false);
6914 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6915 bb_order[rc_order[i]] = i;
6916 free (rc_order);
6918 worklist = fibheap_new ();
6919 pending = fibheap_new ();
6920 visited = sbitmap_alloc (last_basic_block);
6921 in_worklist = sbitmap_alloc (last_basic_block);
6922 in_pending = sbitmap_alloc (last_basic_block);
6923 bitmap_clear (in_worklist);
6925 FOR_EACH_BB (bb)
6926 fibheap_insert (pending, bb_order[bb->index], bb);
6927 bitmap_ones (in_pending);
6929 while (success && !fibheap_empty (pending))
6931 fibheap_swap = pending;
6932 pending = worklist;
6933 worklist = fibheap_swap;
6934 sbitmap_swap = in_pending;
6935 in_pending = in_worklist;
6936 in_worklist = sbitmap_swap;
6938 bitmap_clear (visited);
6940 while (!fibheap_empty (worklist))
6942 bb = (basic_block) fibheap_extract_min (worklist);
6943 bitmap_clear_bit (in_worklist, bb->index);
6944 gcc_assert (!bitmap_bit_p (visited, bb->index));
6945 if (!bitmap_bit_p (visited, bb->index))
6947 bool changed;
6948 edge_iterator ei;
6949 int oldinsz, oldoutsz;
6951 bitmap_set_bit (visited, bb->index);
6953 if (VTI (bb)->in.vars)
6955 htabsz
6956 -= shared_hash_htab (VTI (bb)->in.vars).size ()
6957 + shared_hash_htab (VTI (bb)->out.vars).size ();
6958 oldinsz = shared_hash_htab (VTI (bb)->in.vars).elements ();
6959 oldoutsz = shared_hash_htab (VTI (bb)->out.vars).elements ();
6961 else
6962 oldinsz = oldoutsz = 0;
6964 if (MAY_HAVE_DEBUG_INSNS)
6966 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6967 bool first = true, adjust = false;
6969 /* Calculate the IN set as the intersection of
6970 predecessor OUT sets. */
6972 dataflow_set_clear (in);
6973 dst_can_be_shared = true;
6975 FOR_EACH_EDGE (e, ei, bb->preds)
6976 if (!VTI (e->src)->flooded)
6977 gcc_assert (bb_order[bb->index]
6978 <= bb_order[e->src->index]);
6979 else if (first)
6981 dataflow_set_copy (in, &VTI (e->src)->out);
6982 first_out = &VTI (e->src)->out;
6983 first = false;
6985 else
6987 dataflow_set_merge (in, &VTI (e->src)->out);
6988 adjust = true;
6991 if (adjust)
6993 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6994 #if ENABLE_CHECKING
6995 /* Merge and merge_adjust should keep entries in
6996 canonical order. */
6997 shared_hash_htab (in->vars)
6998 .traverse <dataflow_set *,
6999 canonicalize_loc_order_check> (in);
7000 #endif
7001 if (dst_can_be_shared)
7003 shared_hash_destroy (in->vars);
7004 in->vars = shared_hash_copy (first_out->vars);
7008 VTI (bb)->flooded = true;
7010 else
7012 /* Calculate the IN set as union of predecessor OUT sets. */
7013 dataflow_set_clear (&VTI (bb)->in);
7014 FOR_EACH_EDGE (e, ei, bb->preds)
7015 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7018 changed = compute_bb_dataflow (bb);
7019 htabsz += shared_hash_htab (VTI (bb)->in.vars).size ()
7020 + shared_hash_htab (VTI (bb)->out.vars).size ();
7022 if (htabmax && htabsz > htabmax)
7024 if (MAY_HAVE_DEBUG_INSNS)
7025 inform (DECL_SOURCE_LOCATION (cfun->decl),
7026 "variable tracking size limit exceeded with "
7027 "-fvar-tracking-assignments, retrying without");
7028 else
7029 inform (DECL_SOURCE_LOCATION (cfun->decl),
7030 "variable tracking size limit exceeded");
7031 success = false;
7032 break;
7035 if (changed)
7037 FOR_EACH_EDGE (e, ei, bb->succs)
7039 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7040 continue;
7042 if (bitmap_bit_p (visited, e->dest->index))
7044 if (!bitmap_bit_p (in_pending, e->dest->index))
7046 /* Send E->DEST to next round. */
7047 bitmap_set_bit (in_pending, e->dest->index);
7048 fibheap_insert (pending,
7049 bb_order[e->dest->index],
7050 e->dest);
7053 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7055 /* Add E->DEST to current round. */
7056 bitmap_set_bit (in_worklist, e->dest->index);
7057 fibheap_insert (worklist, bb_order[e->dest->index],
7058 e->dest);
7063 if (dump_file)
7064 fprintf (dump_file,
7065 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7066 bb->index,
7067 (int)shared_hash_htab (VTI (bb)->in.vars).size (),
7068 oldinsz,
7069 (int)shared_hash_htab (VTI (bb)->out.vars).size (),
7070 oldoutsz,
7071 (int)worklist->nodes, (int)pending->nodes, htabsz);
7073 if (dump_file && (dump_flags & TDF_DETAILS))
7075 fprintf (dump_file, "BB %i IN:\n", bb->index);
7076 dump_dataflow_set (&VTI (bb)->in);
7077 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7078 dump_dataflow_set (&VTI (bb)->out);
7084 if (success && MAY_HAVE_DEBUG_INSNS)
7085 FOR_EACH_BB (bb)
7086 gcc_assert (VTI (bb)->flooded);
7088 free (bb_order);
7089 fibheap_delete (worklist);
7090 fibheap_delete (pending);
7091 sbitmap_free (visited);
7092 sbitmap_free (in_worklist);
7093 sbitmap_free (in_pending);
7095 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7096 return success;
7099 /* Print the content of the LIST to dump file. */
7101 static void
7102 dump_attrs_list (attrs list)
7104 for (; list; list = list->next)
7106 if (dv_is_decl_p (list->dv))
7107 print_mem_expr (dump_file, dv_as_decl (list->dv));
7108 else
7109 print_rtl_single (dump_file, dv_as_value (list->dv));
7110 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7112 fprintf (dump_file, "\n");
7115 /* Print the information about variable *SLOT to dump file. */
7118 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7120 variable var = *slot;
7122 dump_var (var);
7124 /* Continue traversing the hash table. */
7125 return 1;
7128 /* Print the information about variable VAR to dump file. */
7130 static void
7131 dump_var (variable var)
7133 int i;
7134 location_chain node;
7136 if (dv_is_decl_p (var->dv))
7138 const_tree decl = dv_as_decl (var->dv);
7140 if (DECL_NAME (decl))
7142 fprintf (dump_file, " name: %s",
7143 IDENTIFIER_POINTER (DECL_NAME (decl)));
7144 if (dump_flags & TDF_UID)
7145 fprintf (dump_file, "D.%u", DECL_UID (decl));
7147 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7148 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7149 else
7150 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7151 fprintf (dump_file, "\n");
7153 else
7155 fputc (' ', dump_file);
7156 print_rtl_single (dump_file, dv_as_value (var->dv));
7159 for (i = 0; i < var->n_var_parts; i++)
7161 fprintf (dump_file, " offset %ld\n",
7162 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7163 for (node = var->var_part[i].loc_chain; node; node = node->next)
7165 fprintf (dump_file, " ");
7166 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7167 fprintf (dump_file, "[uninit]");
7168 print_rtl_single (dump_file, node->loc);
7173 /* Print the information about variables from hash table VARS to dump file. */
7175 static void
7176 dump_vars (variable_table_type vars)
7178 if (vars.elements () > 0)
7180 fprintf (dump_file, "Variables:\n");
7181 vars.traverse <void *, dump_var_tracking_slot> (NULL);
7185 /* Print the dataflow set SET to dump file. */
7187 static void
7188 dump_dataflow_set (dataflow_set *set)
7190 int i;
7192 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7193 set->stack_adjust);
7194 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7196 if (set->regs[i])
7198 fprintf (dump_file, "Reg %d:", i);
7199 dump_attrs_list (set->regs[i]);
7202 dump_vars (shared_hash_htab (set->vars));
7203 fprintf (dump_file, "\n");
7206 /* Print the IN and OUT sets for each basic block to dump file. */
7208 static void
7209 dump_dataflow_sets (void)
7211 basic_block bb;
7213 FOR_EACH_BB (bb)
7215 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7216 fprintf (dump_file, "IN:\n");
7217 dump_dataflow_set (&VTI (bb)->in);
7218 fprintf (dump_file, "OUT:\n");
7219 dump_dataflow_set (&VTI (bb)->out);
7223 /* Return the variable for DV in dropped_values, inserting one if
7224 requested with INSERT. */
7226 static inline variable
7227 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7229 variable_def **slot;
7230 variable empty_var;
7231 onepart_enum_t onepart;
7233 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7235 if (!slot)
7236 return NULL;
7238 if (*slot)
7239 return *slot;
7241 gcc_checking_assert (insert == INSERT);
7243 onepart = dv_onepart_p (dv);
7245 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7247 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7248 empty_var->dv = dv;
7249 empty_var->refcount = 1;
7250 empty_var->n_var_parts = 0;
7251 empty_var->onepart = onepart;
7252 empty_var->in_changed_variables = false;
7253 empty_var->var_part[0].loc_chain = NULL;
7254 empty_var->var_part[0].cur_loc = NULL;
7255 VAR_LOC_1PAUX (empty_var) = NULL;
7256 set_dv_changed (dv, true);
7258 *slot = empty_var;
7260 return empty_var;
7263 /* Recover the one-part aux from dropped_values. */
7265 static struct onepart_aux *
7266 recover_dropped_1paux (variable var)
7268 variable dvar;
7270 gcc_checking_assert (var->onepart);
7272 if (VAR_LOC_1PAUX (var))
7273 return VAR_LOC_1PAUX (var);
7275 if (var->onepart == ONEPART_VDECL)
7276 return NULL;
7278 dvar = variable_from_dropped (var->dv, NO_INSERT);
7280 if (!dvar)
7281 return NULL;
7283 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7284 VAR_LOC_1PAUX (dvar) = NULL;
7286 return VAR_LOC_1PAUX (var);
7289 /* Add variable VAR to the hash table of changed variables and
7290 if it has no locations delete it from SET's hash table. */
7292 static void
7293 variable_was_changed (variable var, dataflow_set *set)
7295 hashval_t hash = dv_htab_hash (var->dv);
7297 if (emit_notes)
7299 variable_def **slot;
7301 /* Remember this decl or VALUE has been added to changed_variables. */
7302 set_dv_changed (var->dv, true);
7304 slot = changed_variables.find_slot_with_hash (var->dv, hash, INSERT);
7306 if (*slot)
7308 variable old_var = *slot;
7309 gcc_assert (old_var->in_changed_variables);
7310 old_var->in_changed_variables = false;
7311 if (var != old_var && var->onepart)
7313 /* Restore the auxiliary info from an empty variable
7314 previously created for changed_variables, so it is
7315 not lost. */
7316 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7317 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7318 VAR_LOC_1PAUX (old_var) = NULL;
7320 variable_htab_free (*slot);
7323 if (set && var->n_var_parts == 0)
7325 onepart_enum_t onepart = var->onepart;
7326 variable empty_var = NULL;
7327 variable_def **dslot = NULL;
7329 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7331 dslot = dropped_values.find_slot_with_hash (var->dv,
7332 dv_htab_hash (var->dv),
7333 INSERT);
7334 empty_var = *dslot;
7336 if (empty_var)
7338 gcc_checking_assert (!empty_var->in_changed_variables);
7339 if (!VAR_LOC_1PAUX (var))
7341 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7342 VAR_LOC_1PAUX (empty_var) = NULL;
7344 else
7345 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7349 if (!empty_var)
7351 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7352 empty_var->dv = var->dv;
7353 empty_var->refcount = 1;
7354 empty_var->n_var_parts = 0;
7355 empty_var->onepart = onepart;
7356 if (dslot)
7358 empty_var->refcount++;
7359 *dslot = empty_var;
7362 else
7363 empty_var->refcount++;
7364 empty_var->in_changed_variables = true;
7365 *slot = empty_var;
7366 if (onepart)
7368 empty_var->var_part[0].loc_chain = NULL;
7369 empty_var->var_part[0].cur_loc = NULL;
7370 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7371 VAR_LOC_1PAUX (var) = NULL;
7373 goto drop_var;
7375 else
7377 if (var->onepart && !VAR_LOC_1PAUX (var))
7378 recover_dropped_1paux (var);
7379 var->refcount++;
7380 var->in_changed_variables = true;
7381 *slot = var;
7384 else
7386 gcc_assert (set);
7387 if (var->n_var_parts == 0)
7389 variable_def **slot;
7391 drop_var:
7392 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7393 if (slot)
7395 if (shared_hash_shared (set->vars))
7396 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7397 NO_INSERT);
7398 shared_hash_htab (set->vars).clear_slot (slot);
7404 /* Look for the index in VAR->var_part corresponding to OFFSET.
7405 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7406 referenced int will be set to the index that the part has or should
7407 have, if it should be inserted. */
7409 static inline int
7410 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7411 int *insertion_point)
7413 int pos, low, high;
7415 if (var->onepart)
7417 if (offset != 0)
7418 return -1;
7420 if (insertion_point)
7421 *insertion_point = 0;
7423 return var->n_var_parts - 1;
7426 /* Find the location part. */
7427 low = 0;
7428 high = var->n_var_parts;
7429 while (low != high)
7431 pos = (low + high) / 2;
7432 if (VAR_PART_OFFSET (var, pos) < offset)
7433 low = pos + 1;
7434 else
7435 high = pos;
7437 pos = low;
7439 if (insertion_point)
7440 *insertion_point = pos;
7442 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7443 return pos;
7445 return -1;
7448 static variable_def **
7449 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7450 decl_or_value dv, HOST_WIDE_INT offset,
7451 enum var_init_status initialized, rtx set_src)
7453 int pos;
7454 location_chain node, next;
7455 location_chain *nextp;
7456 variable var;
7457 onepart_enum_t onepart;
7459 var = *slot;
7461 if (var)
7462 onepart = var->onepart;
7463 else
7464 onepart = dv_onepart_p (dv);
7466 gcc_checking_assert (offset == 0 || !onepart);
7467 gcc_checking_assert (loc != dv_as_opaque (dv));
7469 if (! flag_var_tracking_uninit)
7470 initialized = VAR_INIT_STATUS_INITIALIZED;
7472 if (!var)
7474 /* Create new variable information. */
7475 var = (variable) pool_alloc (onepart_pool (onepart));
7476 var->dv = dv;
7477 var->refcount = 1;
7478 var->n_var_parts = 1;
7479 var->onepart = onepart;
7480 var->in_changed_variables = false;
7481 if (var->onepart)
7482 VAR_LOC_1PAUX (var) = NULL;
7483 else
7484 VAR_PART_OFFSET (var, 0) = offset;
7485 var->var_part[0].loc_chain = NULL;
7486 var->var_part[0].cur_loc = NULL;
7487 *slot = var;
7488 pos = 0;
7489 nextp = &var->var_part[0].loc_chain;
7491 else if (onepart)
7493 int r = -1, c = 0;
7495 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7497 pos = 0;
7499 if (GET_CODE (loc) == VALUE)
7501 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7502 nextp = &node->next)
7503 if (GET_CODE (node->loc) == VALUE)
7505 if (node->loc == loc)
7507 r = 0;
7508 break;
7510 if (canon_value_cmp (node->loc, loc))
7511 c++;
7512 else
7514 r = 1;
7515 break;
7518 else if (REG_P (node->loc) || MEM_P (node->loc))
7519 c++;
7520 else
7522 r = 1;
7523 break;
7526 else if (REG_P (loc))
7528 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7529 nextp = &node->next)
7530 if (REG_P (node->loc))
7532 if (REGNO (node->loc) < REGNO (loc))
7533 c++;
7534 else
7536 if (REGNO (node->loc) == REGNO (loc))
7537 r = 0;
7538 else
7539 r = 1;
7540 break;
7543 else
7545 r = 1;
7546 break;
7549 else if (MEM_P (loc))
7551 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7552 nextp = &node->next)
7553 if (REG_P (node->loc))
7554 c++;
7555 else if (MEM_P (node->loc))
7557 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7558 break;
7559 else
7560 c++;
7562 else
7564 r = 1;
7565 break;
7568 else
7569 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7570 nextp = &node->next)
7571 if ((r = loc_cmp (node->loc, loc)) >= 0)
7572 break;
7573 else
7574 c++;
7576 if (r == 0)
7577 return slot;
7579 if (shared_var_p (var, set->vars))
7581 slot = unshare_variable (set, slot, var, initialized);
7582 var = *slot;
7583 for (nextp = &var->var_part[0].loc_chain; c;
7584 nextp = &(*nextp)->next)
7585 c--;
7586 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7589 else
7591 int inspos = 0;
7593 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7595 pos = find_variable_location_part (var, offset, &inspos);
7597 if (pos >= 0)
7599 node = var->var_part[pos].loc_chain;
7601 if (node
7602 && ((REG_P (node->loc) && REG_P (loc)
7603 && REGNO (node->loc) == REGNO (loc))
7604 || rtx_equal_p (node->loc, loc)))
7606 /* LOC is in the beginning of the chain so we have nothing
7607 to do. */
7608 if (node->init < initialized)
7609 node->init = initialized;
7610 if (set_src != NULL)
7611 node->set_src = set_src;
7613 return slot;
7615 else
7617 /* We have to make a copy of a shared variable. */
7618 if (shared_var_p (var, set->vars))
7620 slot = unshare_variable (set, slot, var, initialized);
7621 var = *slot;
7625 else
7627 /* We have not found the location part, new one will be created. */
7629 /* We have to make a copy of the shared variable. */
7630 if (shared_var_p (var, set->vars))
7632 slot = unshare_variable (set, slot, var, initialized);
7633 var = *slot;
7636 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7637 thus there are at most MAX_VAR_PARTS different offsets. */
7638 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7639 && (!var->n_var_parts || !onepart));
7641 /* We have to move the elements of array starting at index
7642 inspos to the next position. */
7643 for (pos = var->n_var_parts; pos > inspos; pos--)
7644 var->var_part[pos] = var->var_part[pos - 1];
7646 var->n_var_parts++;
7647 gcc_checking_assert (!onepart);
7648 VAR_PART_OFFSET (var, pos) = offset;
7649 var->var_part[pos].loc_chain = NULL;
7650 var->var_part[pos].cur_loc = NULL;
7653 /* Delete the location from the list. */
7654 nextp = &var->var_part[pos].loc_chain;
7655 for (node = var->var_part[pos].loc_chain; node; node = next)
7657 next = node->next;
7658 if ((REG_P (node->loc) && REG_P (loc)
7659 && REGNO (node->loc) == REGNO (loc))
7660 || rtx_equal_p (node->loc, loc))
7662 /* Save these values, to assign to the new node, before
7663 deleting this one. */
7664 if (node->init > initialized)
7665 initialized = node->init;
7666 if (node->set_src != NULL && set_src == NULL)
7667 set_src = node->set_src;
7668 if (var->var_part[pos].cur_loc == node->loc)
7669 var->var_part[pos].cur_loc = NULL;
7670 pool_free (loc_chain_pool, node);
7671 *nextp = next;
7672 break;
7674 else
7675 nextp = &node->next;
7678 nextp = &var->var_part[pos].loc_chain;
7681 /* Add the location to the beginning. */
7682 node = (location_chain) pool_alloc (loc_chain_pool);
7683 node->loc = loc;
7684 node->init = initialized;
7685 node->set_src = set_src;
7686 node->next = *nextp;
7687 *nextp = node;
7689 /* If no location was emitted do so. */
7690 if (var->var_part[pos].cur_loc == NULL)
7691 variable_was_changed (var, set);
7693 return slot;
7696 /* Set the part of variable's location in the dataflow set SET. The
7697 variable part is specified by variable's declaration in DV and
7698 offset OFFSET and the part's location by LOC. IOPT should be
7699 NO_INSERT if the variable is known to be in SET already and the
7700 variable hash table must not be resized, and INSERT otherwise. */
7702 static void
7703 set_variable_part (dataflow_set *set, rtx loc,
7704 decl_or_value dv, HOST_WIDE_INT offset,
7705 enum var_init_status initialized, rtx set_src,
7706 enum insert_option iopt)
7708 variable_def **slot;
7710 if (iopt == NO_INSERT)
7711 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7712 else
7714 slot = shared_hash_find_slot (set->vars, dv);
7715 if (!slot)
7716 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7718 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7721 /* Remove all recorded register locations for the given variable part
7722 from dataflow set SET, except for those that are identical to loc.
7723 The variable part is specified by variable's declaration or value
7724 DV and offset OFFSET. */
7726 static variable_def **
7727 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7728 HOST_WIDE_INT offset, rtx set_src)
7730 variable var = *slot;
7731 int pos = find_variable_location_part (var, offset, NULL);
7733 if (pos >= 0)
7735 location_chain node, next;
7737 /* Remove the register locations from the dataflow set. */
7738 next = var->var_part[pos].loc_chain;
7739 for (node = next; node; node = next)
7741 next = node->next;
7742 if (node->loc != loc
7743 && (!flag_var_tracking_uninit
7744 || !set_src
7745 || MEM_P (set_src)
7746 || !rtx_equal_p (set_src, node->set_src)))
7748 if (REG_P (node->loc))
7750 attrs anode, anext;
7751 attrs *anextp;
7753 /* Remove the variable part from the register's
7754 list, but preserve any other variable parts
7755 that might be regarded as live in that same
7756 register. */
7757 anextp = &set->regs[REGNO (node->loc)];
7758 for (anode = *anextp; anode; anode = anext)
7760 anext = anode->next;
7761 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7762 && anode->offset == offset)
7764 pool_free (attrs_pool, anode);
7765 *anextp = anext;
7767 else
7768 anextp = &anode->next;
7772 slot = delete_slot_part (set, node->loc, slot, offset);
7777 return slot;
7780 /* Remove all recorded register locations for the given variable part
7781 from dataflow set SET, except for those that are identical to loc.
7782 The variable part is specified by variable's declaration or value
7783 DV and offset OFFSET. */
7785 static void
7786 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7787 HOST_WIDE_INT offset, rtx set_src)
7789 variable_def **slot;
7791 if (!dv_as_opaque (dv)
7792 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7793 return;
7795 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7796 if (!slot)
7797 return;
7799 clobber_slot_part (set, loc, slot, offset, set_src);
7802 /* Delete the part of variable's location from dataflow set SET. The
7803 variable part is specified by its SET->vars slot SLOT and offset
7804 OFFSET and the part's location by LOC. */
7806 static variable_def **
7807 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7808 HOST_WIDE_INT offset)
7810 variable var = *slot;
7811 int pos = find_variable_location_part (var, offset, NULL);
7813 if (pos >= 0)
7815 location_chain node, next;
7816 location_chain *nextp;
7817 bool changed;
7818 rtx cur_loc;
7820 if (shared_var_p (var, set->vars))
7822 /* If the variable contains the location part we have to
7823 make a copy of the variable. */
7824 for (node = var->var_part[pos].loc_chain; node;
7825 node = node->next)
7827 if ((REG_P (node->loc) && REG_P (loc)
7828 && REGNO (node->loc) == REGNO (loc))
7829 || rtx_equal_p (node->loc, loc))
7831 slot = unshare_variable (set, slot, var,
7832 VAR_INIT_STATUS_UNKNOWN);
7833 var = *slot;
7834 break;
7839 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7840 cur_loc = VAR_LOC_FROM (var);
7841 else
7842 cur_loc = var->var_part[pos].cur_loc;
7844 /* Delete the location part. */
7845 changed = false;
7846 nextp = &var->var_part[pos].loc_chain;
7847 for (node = *nextp; node; node = next)
7849 next = node->next;
7850 if ((REG_P (node->loc) && REG_P (loc)
7851 && REGNO (node->loc) == REGNO (loc))
7852 || rtx_equal_p (node->loc, loc))
7854 /* If we have deleted the location which was last emitted
7855 we have to emit new location so add the variable to set
7856 of changed variables. */
7857 if (cur_loc == node->loc)
7859 changed = true;
7860 var->var_part[pos].cur_loc = NULL;
7861 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7862 VAR_LOC_FROM (var) = NULL;
7864 pool_free (loc_chain_pool, node);
7865 *nextp = next;
7866 break;
7868 else
7869 nextp = &node->next;
7872 if (var->var_part[pos].loc_chain == NULL)
7874 changed = true;
7875 var->n_var_parts--;
7876 while (pos < var->n_var_parts)
7878 var->var_part[pos] = var->var_part[pos + 1];
7879 pos++;
7882 if (changed)
7883 variable_was_changed (var, set);
7886 return slot;
7889 /* Delete the part of variable's location from dataflow set SET. The
7890 variable part is specified by variable's declaration or value DV
7891 and offset OFFSET and the part's location by LOC. */
7893 static void
7894 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7895 HOST_WIDE_INT offset)
7897 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7898 if (!slot)
7899 return;
7901 delete_slot_part (set, loc, slot, offset);
7905 /* Structure for passing some other parameters to function
7906 vt_expand_loc_callback. */
7907 struct expand_loc_callback_data
7909 /* The variables and values active at this point. */
7910 variable_table_type vars;
7912 /* Stack of values and debug_exprs under expansion, and their
7913 children. */
7914 stack_vec<rtx, 4> expanding;
7916 /* Stack of values and debug_exprs whose expansion hit recursion
7917 cycles. They will have VALUE_RECURSED_INTO marked when added to
7918 this list. This flag will be cleared if any of its dependencies
7919 resolves to a valid location. So, if the flag remains set at the
7920 end of the search, we know no valid location for this one can
7921 possibly exist. */
7922 stack_vec<rtx, 4> pending;
7924 /* The maximum depth among the sub-expressions under expansion.
7925 Zero indicates no expansion so far. */
7926 expand_depth depth;
7929 /* Allocate the one-part auxiliary data structure for VAR, with enough
7930 room for COUNT dependencies. */
7932 static void
7933 loc_exp_dep_alloc (variable var, int count)
7935 size_t allocsize;
7937 gcc_checking_assert (var->onepart);
7939 /* We can be called with COUNT == 0 to allocate the data structure
7940 without any dependencies, e.g. for the backlinks only. However,
7941 if we are specifying a COUNT, then the dependency list must have
7942 been emptied before. It would be possible to adjust pointers or
7943 force it empty here, but this is better done at an earlier point
7944 in the algorithm, so we instead leave an assertion to catch
7945 errors. */
7946 gcc_checking_assert (!count
7947 || VAR_LOC_DEP_VEC (var) == NULL
7948 || VAR_LOC_DEP_VEC (var)->is_empty ());
7950 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
7951 return;
7953 allocsize = offsetof (struct onepart_aux, deps)
7954 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
7956 if (VAR_LOC_1PAUX (var))
7958 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
7959 VAR_LOC_1PAUX (var), allocsize);
7960 /* If the reallocation moves the onepaux structure, the
7961 back-pointer to BACKLINKS in the first list member will still
7962 point to its old location. Adjust it. */
7963 if (VAR_LOC_DEP_LST (var))
7964 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
7966 else
7968 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
7969 *VAR_LOC_DEP_LSTP (var) = NULL;
7970 VAR_LOC_FROM (var) = NULL;
7971 VAR_LOC_DEPTH (var).complexity = 0;
7972 VAR_LOC_DEPTH (var).entryvals = 0;
7974 VAR_LOC_DEP_VEC (var)->embedded_init (count);
7977 /* Remove all entries from the vector of active dependencies of VAR,
7978 removing them from the back-links lists too. */
7980 static void
7981 loc_exp_dep_clear (variable var)
7983 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
7985 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
7986 if (led->next)
7987 led->next->pprev = led->pprev;
7988 if (led->pprev)
7989 *led->pprev = led->next;
7990 VAR_LOC_DEP_VEC (var)->pop ();
7994 /* Insert an active dependency from VAR on X to the vector of
7995 dependencies, and add the corresponding back-link to X's list of
7996 back-links in VARS. */
7998 static void
7999 loc_exp_insert_dep (variable var, rtx x, variable_table_type vars)
8001 decl_or_value dv;
8002 variable xvar;
8003 loc_exp_dep *led;
8005 dv = dv_from_rtx (x);
8007 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8008 an additional look up? */
8009 xvar = vars.find_with_hash (dv, dv_htab_hash (dv));
8011 if (!xvar)
8013 xvar = variable_from_dropped (dv, NO_INSERT);
8014 gcc_checking_assert (xvar);
8017 /* No point in adding the same backlink more than once. This may
8018 arise if say the same value appears in two complex expressions in
8019 the same loc_list, or even more than once in a single
8020 expression. */
8021 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8022 return;
8024 if (var->onepart == NOT_ONEPART)
8025 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8026 else
8028 loc_exp_dep empty;
8029 memset (&empty, 0, sizeof (empty));
8030 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8031 led = &VAR_LOC_DEP_VEC (var)->last ();
8033 led->dv = var->dv;
8034 led->value = x;
8036 loc_exp_dep_alloc (xvar, 0);
8037 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8038 led->next = *led->pprev;
8039 if (led->next)
8040 led->next->pprev = &led->next;
8041 *led->pprev = led;
8044 /* Create active dependencies of VAR on COUNT values starting at
8045 VALUE, and corresponding back-links to the entries in VARS. Return
8046 true if we found any pending-recursion results. */
8048 static bool
8049 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8050 variable_table_type vars)
8052 bool pending_recursion = false;
8054 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8055 || VAR_LOC_DEP_VEC (var)->is_empty ());
8057 /* Set up all dependencies from last_child (as set up at the end of
8058 the loop above) to the end. */
8059 loc_exp_dep_alloc (var, count);
8061 while (count--)
8063 rtx x = *value++;
8065 if (!pending_recursion)
8066 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8068 loc_exp_insert_dep (var, x, vars);
8071 return pending_recursion;
8074 /* Notify the back-links of IVAR that are pending recursion that we
8075 have found a non-NIL value for it, so they are cleared for another
8076 attempt to compute a current location. */
8078 static void
8079 notify_dependents_of_resolved_value (variable ivar, variable_table_type vars)
8081 loc_exp_dep *led, *next;
8083 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8085 decl_or_value dv = led->dv;
8086 variable var;
8088 next = led->next;
8090 if (dv_is_value_p (dv))
8092 rtx value = dv_as_value (dv);
8094 /* If we have already resolved it, leave it alone. */
8095 if (!VALUE_RECURSED_INTO (value))
8096 continue;
8098 /* Check that VALUE_RECURSED_INTO, true from the test above,
8099 implies NO_LOC_P. */
8100 gcc_checking_assert (NO_LOC_P (value));
8102 /* We won't notify variables that are being expanded,
8103 because their dependency list is cleared before
8104 recursing. */
8105 NO_LOC_P (value) = false;
8106 VALUE_RECURSED_INTO (value) = false;
8108 gcc_checking_assert (dv_changed_p (dv));
8110 else
8112 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8113 if (!dv_changed_p (dv))
8114 continue;
8117 var = vars.find_with_hash (dv, dv_htab_hash (dv));
8119 if (!var)
8120 var = variable_from_dropped (dv, NO_INSERT);
8122 if (var)
8123 notify_dependents_of_resolved_value (var, vars);
8125 if (next)
8126 next->pprev = led->pprev;
8127 if (led->pprev)
8128 *led->pprev = next;
8129 led->next = NULL;
8130 led->pprev = NULL;
8134 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8135 int max_depth, void *data);
8137 /* Return the combined depth, when one sub-expression evaluated to
8138 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8140 static inline expand_depth
8141 update_depth (expand_depth saved_depth, expand_depth best_depth)
8143 /* If we didn't find anything, stick with what we had. */
8144 if (!best_depth.complexity)
8145 return saved_depth;
8147 /* If we found hadn't found anything, use the depth of the current
8148 expression. Do NOT add one extra level, we want to compute the
8149 maximum depth among sub-expressions. We'll increment it later,
8150 if appropriate. */
8151 if (!saved_depth.complexity)
8152 return best_depth;
8154 /* Combine the entryval count so that regardless of which one we
8155 return, the entryval count is accurate. */
8156 best_depth.entryvals = saved_depth.entryvals
8157 = best_depth.entryvals + saved_depth.entryvals;
8159 if (saved_depth.complexity < best_depth.complexity)
8160 return best_depth;
8161 else
8162 return saved_depth;
8165 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8166 DATA for cselib expand callback. If PENDRECP is given, indicate in
8167 it whether any sub-expression couldn't be fully evaluated because
8168 it is pending recursion resolution. */
8170 static inline rtx
8171 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8173 struct expand_loc_callback_data *elcd
8174 = (struct expand_loc_callback_data *) data;
8175 location_chain loc, next;
8176 rtx result = NULL;
8177 int first_child, result_first_child, last_child;
8178 bool pending_recursion;
8179 rtx loc_from = NULL;
8180 struct elt_loc_list *cloc = NULL;
8181 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8182 int wanted_entryvals, found_entryvals = 0;
8184 /* Clear all backlinks pointing at this, so that we're not notified
8185 while we're active. */
8186 loc_exp_dep_clear (var);
8188 retry:
8189 if (var->onepart == ONEPART_VALUE)
8191 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8193 gcc_checking_assert (cselib_preserved_value_p (val));
8195 cloc = val->locs;
8198 first_child = result_first_child = last_child
8199 = elcd->expanding.length ();
8201 wanted_entryvals = found_entryvals;
8203 /* Attempt to expand each available location in turn. */
8204 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8205 loc || cloc; loc = next)
8207 result_first_child = last_child;
8209 if (!loc)
8211 loc_from = cloc->loc;
8212 next = loc;
8213 cloc = cloc->next;
8214 if (unsuitable_loc (loc_from))
8215 continue;
8217 else
8219 loc_from = loc->loc;
8220 next = loc->next;
8223 gcc_checking_assert (!unsuitable_loc (loc_from));
8225 elcd->depth.complexity = elcd->depth.entryvals = 0;
8226 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8227 vt_expand_loc_callback, data);
8228 last_child = elcd->expanding.length ();
8230 if (result)
8232 depth = elcd->depth;
8234 gcc_checking_assert (depth.complexity
8235 || result_first_child == last_child);
8237 if (last_child - result_first_child != 1)
8239 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8240 depth.entryvals++;
8241 depth.complexity++;
8244 if (depth.complexity <= EXPR_USE_DEPTH)
8246 if (depth.entryvals <= wanted_entryvals)
8247 break;
8248 else if (!found_entryvals || depth.entryvals < found_entryvals)
8249 found_entryvals = depth.entryvals;
8252 result = NULL;
8255 /* Set it up in case we leave the loop. */
8256 depth.complexity = depth.entryvals = 0;
8257 loc_from = NULL;
8258 result_first_child = first_child;
8261 if (!loc_from && wanted_entryvals < found_entryvals)
8263 /* We found entries with ENTRY_VALUEs and skipped them. Since
8264 we could not find any expansions without ENTRY_VALUEs, but we
8265 found at least one with them, go back and get an entry with
8266 the minimum number ENTRY_VALUE count that we found. We could
8267 avoid looping, but since each sub-loc is already resolved,
8268 the re-expansion should be trivial. ??? Should we record all
8269 attempted locs as dependencies, so that we retry the
8270 expansion should any of them change, in the hope it can give
8271 us a new entry without an ENTRY_VALUE? */
8272 elcd->expanding.truncate (first_child);
8273 goto retry;
8276 /* Register all encountered dependencies as active. */
8277 pending_recursion = loc_exp_dep_set
8278 (var, result, elcd->expanding.address () + result_first_child,
8279 last_child - result_first_child, elcd->vars);
8281 elcd->expanding.truncate (first_child);
8283 /* Record where the expansion came from. */
8284 gcc_checking_assert (!result || !pending_recursion);
8285 VAR_LOC_FROM (var) = loc_from;
8286 VAR_LOC_DEPTH (var) = depth;
8288 gcc_checking_assert (!depth.complexity == !result);
8290 elcd->depth = update_depth (saved_depth, depth);
8292 /* Indicate whether any of the dependencies are pending recursion
8293 resolution. */
8294 if (pendrecp)
8295 *pendrecp = pending_recursion;
8297 if (!pendrecp || !pending_recursion)
8298 var->var_part[0].cur_loc = result;
8300 return result;
8303 /* Callback for cselib_expand_value, that looks for expressions
8304 holding the value in the var-tracking hash tables. Return X for
8305 standard processing, anything else is to be used as-is. */
8307 static rtx
8308 vt_expand_loc_callback (rtx x, bitmap regs,
8309 int max_depth ATTRIBUTE_UNUSED,
8310 void *data)
8312 struct expand_loc_callback_data *elcd
8313 = (struct expand_loc_callback_data *) data;
8314 decl_or_value dv;
8315 variable var;
8316 rtx result, subreg;
8317 bool pending_recursion = false;
8318 bool from_empty = false;
8320 switch (GET_CODE (x))
8322 case SUBREG:
8323 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8324 EXPR_DEPTH,
8325 vt_expand_loc_callback, data);
8327 if (!subreg)
8328 return NULL;
8330 result = simplify_gen_subreg (GET_MODE (x), subreg,
8331 GET_MODE (SUBREG_REG (x)),
8332 SUBREG_BYTE (x));
8334 /* Invalid SUBREGs are ok in debug info. ??? We could try
8335 alternate expansions for the VALUE as well. */
8336 if (!result)
8337 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8339 return result;
8341 case DEBUG_EXPR:
8342 case VALUE:
8343 dv = dv_from_rtx (x);
8344 break;
8346 default:
8347 return x;
8350 elcd->expanding.safe_push (x);
8352 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8353 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8355 if (NO_LOC_P (x))
8357 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8358 return NULL;
8361 var = elcd->vars.find_with_hash (dv, dv_htab_hash (dv));
8363 if (!var)
8365 from_empty = true;
8366 var = variable_from_dropped (dv, INSERT);
8369 gcc_checking_assert (var);
8371 if (!dv_changed_p (dv))
8373 gcc_checking_assert (!NO_LOC_P (x));
8374 gcc_checking_assert (var->var_part[0].cur_loc);
8375 gcc_checking_assert (VAR_LOC_1PAUX (var));
8376 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8378 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8380 return var->var_part[0].cur_loc;
8383 VALUE_RECURSED_INTO (x) = true;
8384 /* This is tentative, but it makes some tests simpler. */
8385 NO_LOC_P (x) = true;
8387 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8389 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8391 if (pending_recursion)
8393 gcc_checking_assert (!result);
8394 elcd->pending.safe_push (x);
8396 else
8398 NO_LOC_P (x) = !result;
8399 VALUE_RECURSED_INTO (x) = false;
8400 set_dv_changed (dv, false);
8402 if (result)
8403 notify_dependents_of_resolved_value (var, elcd->vars);
8406 return result;
8409 /* While expanding variables, we may encounter recursion cycles
8410 because of mutual (possibly indirect) dependencies between two
8411 particular variables (or values), say A and B. If we're trying to
8412 expand A when we get to B, which in turn attempts to expand A, if
8413 we can't find any other expansion for B, we'll add B to this
8414 pending-recursion stack, and tentatively return NULL for its
8415 location. This tentative value will be used for any other
8416 occurrences of B, unless A gets some other location, in which case
8417 it will notify B that it is worth another try at computing a
8418 location for it, and it will use the location computed for A then.
8419 At the end of the expansion, the tentative NULL locations become
8420 final for all members of PENDING that didn't get a notification.
8421 This function performs this finalization of NULL locations. */
8423 static void
8424 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8426 while (!pending->is_empty ())
8428 rtx x = pending->pop ();
8429 decl_or_value dv;
8431 if (!VALUE_RECURSED_INTO (x))
8432 continue;
8434 gcc_checking_assert (NO_LOC_P (x));
8435 VALUE_RECURSED_INTO (x) = false;
8436 dv = dv_from_rtx (x);
8437 gcc_checking_assert (dv_changed_p (dv));
8438 set_dv_changed (dv, false);
8442 /* Initialize expand_loc_callback_data D with variable hash table V.
8443 It must be a macro because of alloca (vec stack). */
8444 #define INIT_ELCD(d, v) \
8445 do \
8447 (d).vars = (v); \
8448 (d).depth.complexity = (d).depth.entryvals = 0; \
8450 while (0)
8451 /* Finalize expand_loc_callback_data D, resolved to location L. */
8452 #define FINI_ELCD(d, l) \
8453 do \
8455 resolve_expansions_pending_recursion (&(d).pending); \
8456 (d).pending.release (); \
8457 (d).expanding.release (); \
8459 if ((l) && MEM_P (l)) \
8460 (l) = targetm.delegitimize_address (l); \
8462 while (0)
8464 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8465 equivalences in VARS, updating their CUR_LOCs in the process. */
8467 static rtx
8468 vt_expand_loc (rtx loc, variable_table_type vars)
8470 struct expand_loc_callback_data data;
8471 rtx result;
8473 if (!MAY_HAVE_DEBUG_INSNS)
8474 return loc;
8476 INIT_ELCD (data, vars);
8478 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8479 vt_expand_loc_callback, &data);
8481 FINI_ELCD (data, result);
8483 return result;
8486 /* Expand the one-part VARiable to a location, using the equivalences
8487 in VARS, updating their CUR_LOCs in the process. */
8489 static rtx
8490 vt_expand_1pvar (variable var, variable_table_type vars)
8492 struct expand_loc_callback_data data;
8493 rtx loc;
8495 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8497 if (!dv_changed_p (var->dv))
8498 return var->var_part[0].cur_loc;
8500 INIT_ELCD (data, vars);
8502 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8504 gcc_checking_assert (data.expanding.is_empty ());
8506 FINI_ELCD (data, loc);
8508 return loc;
8511 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8512 additional parameters: WHERE specifies whether the note shall be emitted
8513 before or after instruction INSN. */
8516 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8518 variable var = *varp;
8519 rtx insn = data->insn;
8520 enum emit_note_where where = data->where;
8521 variable_table_type vars = data->vars;
8522 rtx note, note_vl;
8523 int i, j, n_var_parts;
8524 bool complete;
8525 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8526 HOST_WIDE_INT last_limit;
8527 tree type_size_unit;
8528 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8529 rtx loc[MAX_VAR_PARTS];
8530 tree decl;
8531 location_chain lc;
8533 gcc_checking_assert (var->onepart == NOT_ONEPART
8534 || var->onepart == ONEPART_VDECL);
8536 decl = dv_as_decl (var->dv);
8538 complete = true;
8539 last_limit = 0;
8540 n_var_parts = 0;
8541 if (!var->onepart)
8542 for (i = 0; i < var->n_var_parts; i++)
8543 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8544 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8545 for (i = 0; i < var->n_var_parts; i++)
8547 enum machine_mode mode, wider_mode;
8548 rtx loc2;
8549 HOST_WIDE_INT offset;
8551 if (i == 0 && var->onepart)
8553 gcc_checking_assert (var->n_var_parts == 1);
8554 offset = 0;
8555 initialized = VAR_INIT_STATUS_INITIALIZED;
8556 loc2 = vt_expand_1pvar (var, vars);
8558 else
8560 if (last_limit < VAR_PART_OFFSET (var, i))
8562 complete = false;
8563 break;
8565 else if (last_limit > VAR_PART_OFFSET (var, i))
8566 continue;
8567 offset = VAR_PART_OFFSET (var, i);
8568 loc2 = var->var_part[i].cur_loc;
8569 if (loc2 && GET_CODE (loc2) == MEM
8570 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8572 rtx depval = XEXP (loc2, 0);
8574 loc2 = vt_expand_loc (loc2, vars);
8576 if (loc2)
8577 loc_exp_insert_dep (var, depval, vars);
8579 if (!loc2)
8581 complete = false;
8582 continue;
8584 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8585 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8586 if (var->var_part[i].cur_loc == lc->loc)
8588 initialized = lc->init;
8589 break;
8591 gcc_assert (lc);
8594 offsets[n_var_parts] = offset;
8595 if (!loc2)
8597 complete = false;
8598 continue;
8600 loc[n_var_parts] = loc2;
8601 mode = GET_MODE (var->var_part[i].cur_loc);
8602 if (mode == VOIDmode && var->onepart)
8603 mode = DECL_MODE (decl);
8604 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8606 /* Attempt to merge adjacent registers or memory. */
8607 wider_mode = GET_MODE_WIDER_MODE (mode);
8608 for (j = i + 1; j < var->n_var_parts; j++)
8609 if (last_limit <= VAR_PART_OFFSET (var, j))
8610 break;
8611 if (j < var->n_var_parts
8612 && wider_mode != VOIDmode
8613 && var->var_part[j].cur_loc
8614 && mode == GET_MODE (var->var_part[j].cur_loc)
8615 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8616 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8617 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8618 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8620 rtx new_loc = NULL;
8622 if (REG_P (loc[n_var_parts])
8623 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8624 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8625 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8626 == REGNO (loc2))
8628 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8629 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8630 mode, 0);
8631 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8632 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8633 if (new_loc)
8635 if (!REG_P (new_loc)
8636 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8637 new_loc = NULL;
8638 else
8639 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8642 else if (MEM_P (loc[n_var_parts])
8643 && GET_CODE (XEXP (loc2, 0)) == PLUS
8644 && REG_P (XEXP (XEXP (loc2, 0), 0))
8645 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8647 if ((REG_P (XEXP (loc[n_var_parts], 0))
8648 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8649 XEXP (XEXP (loc2, 0), 0))
8650 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8651 == GET_MODE_SIZE (mode))
8652 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8653 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8654 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8655 XEXP (XEXP (loc2, 0), 0))
8656 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8657 + GET_MODE_SIZE (mode)
8658 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8659 new_loc = adjust_address_nv (loc[n_var_parts],
8660 wider_mode, 0);
8663 if (new_loc)
8665 loc[n_var_parts] = new_loc;
8666 mode = wider_mode;
8667 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8668 i = j;
8671 ++n_var_parts;
8673 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8674 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8675 complete = false;
8677 if (! flag_var_tracking_uninit)
8678 initialized = VAR_INIT_STATUS_INITIALIZED;
8680 note_vl = NULL_RTX;
8681 if (!complete)
8682 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
8683 (int) initialized);
8684 else if (n_var_parts == 1)
8686 rtx expr_list;
8688 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8689 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8690 else
8691 expr_list = loc[0];
8693 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
8694 (int) initialized);
8696 else if (n_var_parts)
8698 rtx parallel;
8700 for (i = 0; i < n_var_parts; i++)
8701 loc[i]
8702 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8704 parallel = gen_rtx_PARALLEL (VOIDmode,
8705 gen_rtvec_v (n_var_parts, loc));
8706 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8707 parallel, (int) initialized);
8710 if (where != EMIT_NOTE_BEFORE_INSN)
8712 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8713 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8714 NOTE_DURING_CALL_P (note) = true;
8716 else
8718 /* Make sure that the call related notes come first. */
8719 while (NEXT_INSN (insn)
8720 && NOTE_P (insn)
8721 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8722 && NOTE_DURING_CALL_P (insn))
8723 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8724 insn = NEXT_INSN (insn);
8725 if (NOTE_P (insn)
8726 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8727 && NOTE_DURING_CALL_P (insn))
8728 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8729 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8730 else
8731 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8733 NOTE_VAR_LOCATION (note) = note_vl;
8735 set_dv_changed (var->dv, false);
8736 gcc_assert (var->in_changed_variables);
8737 var->in_changed_variables = false;
8738 changed_variables.clear_slot (varp);
8740 /* Continue traversing the hash table. */
8741 return 1;
8744 /* While traversing changed_variables, push onto DATA (a stack of RTX
8745 values) entries that aren't user variables. */
8748 var_track_values_to_stack (variable_def **slot,
8749 vec<rtx, va_heap> *changed_values_stack)
8751 variable var = *slot;
8753 if (var->onepart == ONEPART_VALUE)
8754 changed_values_stack->safe_push (dv_as_value (var->dv));
8755 else if (var->onepart == ONEPART_DEXPR)
8756 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8758 return 1;
8761 /* Remove from changed_variables the entry whose DV corresponds to
8762 value or debug_expr VAL. */
8763 static void
8764 remove_value_from_changed_variables (rtx val)
8766 decl_or_value dv = dv_from_rtx (val);
8767 variable_def **slot;
8768 variable var;
8770 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8771 NO_INSERT);
8772 var = *slot;
8773 var->in_changed_variables = false;
8774 changed_variables.clear_slot (slot);
8777 /* If VAL (a value or debug_expr) has backlinks to variables actively
8778 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8779 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8780 have dependencies of their own to notify. */
8782 static void
8783 notify_dependents_of_changed_value (rtx val, variable_table_type htab,
8784 vec<rtx, va_heap> *changed_values_stack)
8786 variable_def **slot;
8787 variable var;
8788 loc_exp_dep *led;
8789 decl_or_value dv = dv_from_rtx (val);
8791 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8792 NO_INSERT);
8793 if (!slot)
8794 slot = htab.find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8795 if (!slot)
8796 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv),
8797 NO_INSERT);
8798 var = *slot;
8800 while ((led = VAR_LOC_DEP_LST (var)))
8802 decl_or_value ldv = led->dv;
8803 variable ivar;
8805 /* Deactivate and remove the backlink, as it was “used up”. It
8806 makes no sense to attempt to notify the same entity again:
8807 either it will be recomputed and re-register an active
8808 dependency, or it will still have the changed mark. */
8809 if (led->next)
8810 led->next->pprev = led->pprev;
8811 if (led->pprev)
8812 *led->pprev = led->next;
8813 led->next = NULL;
8814 led->pprev = NULL;
8816 if (dv_changed_p (ldv))
8817 continue;
8819 switch (dv_onepart_p (ldv))
8821 case ONEPART_VALUE:
8822 case ONEPART_DEXPR:
8823 set_dv_changed (ldv, true);
8824 changed_values_stack->safe_push (dv_as_rtx (ldv));
8825 break;
8827 case ONEPART_VDECL:
8828 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8829 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8830 variable_was_changed (ivar, NULL);
8831 break;
8833 case NOT_ONEPART:
8834 pool_free (loc_exp_dep_pool, led);
8835 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8836 if (ivar)
8838 int i = ivar->n_var_parts;
8839 while (i--)
8841 rtx loc = ivar->var_part[i].cur_loc;
8843 if (loc && GET_CODE (loc) == MEM
8844 && XEXP (loc, 0) == val)
8846 variable_was_changed (ivar, NULL);
8847 break;
8851 break;
8853 default:
8854 gcc_unreachable ();
8859 /* Take out of changed_variables any entries that don't refer to use
8860 variables. Back-propagate change notifications from values and
8861 debug_exprs to their active dependencies in HTAB or in
8862 CHANGED_VARIABLES. */
8864 static void
8865 process_changed_values (variable_table_type htab)
8867 int i, n;
8868 rtx val;
8869 stack_vec<rtx, 20> changed_values_stack;
8871 /* Move values from changed_variables to changed_values_stack. */
8872 changed_variables
8873 .traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8874 (&changed_values_stack);
8876 /* Back-propagate change notifications in values while popping
8877 them from the stack. */
8878 for (n = i = changed_values_stack.length ();
8879 i > 0; i = changed_values_stack.length ())
8881 val = changed_values_stack.pop ();
8882 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8884 /* This condition will hold when visiting each of the entries
8885 originally in changed_variables. We can't remove them
8886 earlier because this could drop the backlinks before we got a
8887 chance to use them. */
8888 if (i == n)
8890 remove_value_from_changed_variables (val);
8891 n--;
8896 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8897 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8898 the notes shall be emitted before of after instruction INSN. */
8900 static void
8901 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8902 shared_hash vars)
8904 emit_note_data data;
8905 variable_table_type htab = shared_hash_htab (vars);
8907 if (!changed_variables.elements ())
8908 return;
8910 if (MAY_HAVE_DEBUG_INSNS)
8911 process_changed_values (htab);
8913 data.insn = insn;
8914 data.where = where;
8915 data.vars = htab;
8917 changed_variables
8918 .traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8921 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8922 same variable in hash table DATA or is not there at all. */
8925 emit_notes_for_differences_1 (variable_def **slot, variable_table_type new_vars)
8927 variable old_var, new_var;
8929 old_var = *slot;
8930 new_var = new_vars.find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8932 if (!new_var)
8934 /* Variable has disappeared. */
8935 variable empty_var = NULL;
8937 if (old_var->onepart == ONEPART_VALUE
8938 || old_var->onepart == ONEPART_DEXPR)
8940 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8941 if (empty_var)
8943 gcc_checking_assert (!empty_var->in_changed_variables);
8944 if (!VAR_LOC_1PAUX (old_var))
8946 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8947 VAR_LOC_1PAUX (empty_var) = NULL;
8949 else
8950 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8954 if (!empty_var)
8956 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
8957 empty_var->dv = old_var->dv;
8958 empty_var->refcount = 0;
8959 empty_var->n_var_parts = 0;
8960 empty_var->onepart = old_var->onepart;
8961 empty_var->in_changed_variables = false;
8964 if (empty_var->onepart)
8966 /* Propagate the auxiliary data to (ultimately)
8967 changed_variables. */
8968 empty_var->var_part[0].loc_chain = NULL;
8969 empty_var->var_part[0].cur_loc = NULL;
8970 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
8971 VAR_LOC_1PAUX (old_var) = NULL;
8973 variable_was_changed (empty_var, NULL);
8974 /* Continue traversing the hash table. */
8975 return 1;
8977 /* Update cur_loc and one-part auxiliary data, before new_var goes
8978 through variable_was_changed. */
8979 if (old_var != new_var && new_var->onepart)
8981 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
8982 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
8983 VAR_LOC_1PAUX (old_var) = NULL;
8984 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
8986 if (variable_different_p (old_var, new_var))
8987 variable_was_changed (new_var, NULL);
8989 /* Continue traversing the hash table. */
8990 return 1;
8993 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
8994 table DATA. */
8997 emit_notes_for_differences_2 (variable_def **slot, variable_table_type old_vars)
8999 variable old_var, new_var;
9001 new_var = *slot;
9002 old_var = old_vars.find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9003 if (!old_var)
9005 int i;
9006 for (i = 0; i < new_var->n_var_parts; i++)
9007 new_var->var_part[i].cur_loc = NULL;
9008 variable_was_changed (new_var, NULL);
9011 /* Continue traversing the hash table. */
9012 return 1;
9015 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9016 NEW_SET. */
9018 static void
9019 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
9020 dataflow_set *new_set)
9022 shared_hash_htab (old_set->vars)
9023 .traverse <variable_table_type, emit_notes_for_differences_1>
9024 (shared_hash_htab (new_set->vars));
9025 shared_hash_htab (new_set->vars)
9026 .traverse <variable_table_type, emit_notes_for_differences_2>
9027 (shared_hash_htab (old_set->vars));
9028 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9031 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9033 static rtx
9034 next_non_note_insn_var_location (rtx insn)
9036 while (insn)
9038 insn = NEXT_INSN (insn);
9039 if (insn == 0
9040 || !NOTE_P (insn)
9041 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9042 break;
9045 return insn;
9048 /* Emit the notes for changes of location parts in the basic block BB. */
9050 static void
9051 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9053 unsigned int i;
9054 micro_operation *mo;
9056 dataflow_set_clear (set);
9057 dataflow_set_copy (set, &VTI (bb)->in);
9059 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9061 rtx insn = mo->insn;
9062 rtx next_insn = next_non_note_insn_var_location (insn);
9064 switch (mo->type)
9066 case MO_CALL:
9067 dataflow_set_clear_at_call (set);
9068 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9070 rtx arguments = mo->u.loc, *p = &arguments, note;
9071 while (*p)
9073 XEXP (XEXP (*p, 0), 1)
9074 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9075 shared_hash_htab (set->vars));
9076 /* If expansion is successful, keep it in the list. */
9077 if (XEXP (XEXP (*p, 0), 1))
9078 p = &XEXP (*p, 1);
9079 /* Otherwise, if the following item is data_value for it,
9080 drop it too too. */
9081 else if (XEXP (*p, 1)
9082 && REG_P (XEXP (XEXP (*p, 0), 0))
9083 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9084 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9086 && REGNO (XEXP (XEXP (*p, 0), 0))
9087 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9088 0), 0)))
9089 *p = XEXP (XEXP (*p, 1), 1);
9090 /* Just drop this item. */
9091 else
9092 *p = XEXP (*p, 1);
9094 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9095 NOTE_VAR_LOCATION (note) = arguments;
9097 break;
9099 case MO_USE:
9101 rtx loc = mo->u.loc;
9103 if (REG_P (loc))
9104 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9105 else
9106 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9108 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9110 break;
9112 case MO_VAL_LOC:
9114 rtx loc = mo->u.loc;
9115 rtx val, vloc;
9116 tree var;
9118 if (GET_CODE (loc) == CONCAT)
9120 val = XEXP (loc, 0);
9121 vloc = XEXP (loc, 1);
9123 else
9125 val = NULL_RTX;
9126 vloc = loc;
9129 var = PAT_VAR_LOCATION_DECL (vloc);
9131 clobber_variable_part (set, NULL_RTX,
9132 dv_from_decl (var), 0, NULL_RTX);
9133 if (val)
9135 if (VAL_NEEDS_RESOLUTION (loc))
9136 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9137 set_variable_part (set, val, dv_from_decl (var), 0,
9138 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9139 INSERT);
9141 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9142 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9143 dv_from_decl (var), 0,
9144 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9145 INSERT);
9147 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9149 break;
9151 case MO_VAL_USE:
9153 rtx loc = mo->u.loc;
9154 rtx val, vloc, uloc;
9156 vloc = uloc = XEXP (loc, 1);
9157 val = XEXP (loc, 0);
9159 if (GET_CODE (val) == CONCAT)
9161 uloc = XEXP (val, 1);
9162 val = XEXP (val, 0);
9165 if (VAL_NEEDS_RESOLUTION (loc))
9166 val_resolve (set, val, vloc, insn);
9167 else
9168 val_store (set, val, uloc, insn, false);
9170 if (VAL_HOLDS_TRACK_EXPR (loc))
9172 if (GET_CODE (uloc) == REG)
9173 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9174 NULL);
9175 else if (GET_CODE (uloc) == MEM)
9176 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9177 NULL);
9180 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9182 break;
9184 case MO_VAL_SET:
9186 rtx loc = mo->u.loc;
9187 rtx val, vloc, uloc;
9188 rtx dstv, srcv;
9190 vloc = loc;
9191 uloc = XEXP (vloc, 1);
9192 val = XEXP (vloc, 0);
9193 vloc = uloc;
9195 if (GET_CODE (uloc) == SET)
9197 dstv = SET_DEST (uloc);
9198 srcv = SET_SRC (uloc);
9200 else
9202 dstv = uloc;
9203 srcv = NULL;
9206 if (GET_CODE (val) == CONCAT)
9208 dstv = vloc = XEXP (val, 1);
9209 val = XEXP (val, 0);
9212 if (GET_CODE (vloc) == SET)
9214 srcv = SET_SRC (vloc);
9216 gcc_assert (val != srcv);
9217 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9219 dstv = vloc = SET_DEST (vloc);
9221 if (VAL_NEEDS_RESOLUTION (loc))
9222 val_resolve (set, val, srcv, insn);
9224 else if (VAL_NEEDS_RESOLUTION (loc))
9226 gcc_assert (GET_CODE (uloc) == SET
9227 && GET_CODE (SET_SRC (uloc)) == REG);
9228 val_resolve (set, val, SET_SRC (uloc), insn);
9231 if (VAL_HOLDS_TRACK_EXPR (loc))
9233 if (VAL_EXPR_IS_CLOBBERED (loc))
9235 if (REG_P (uloc))
9236 var_reg_delete (set, uloc, true);
9237 else if (MEM_P (uloc))
9239 gcc_assert (MEM_P (dstv));
9240 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9241 var_mem_delete (set, dstv, true);
9244 else
9246 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9247 rtx src = NULL, dst = uloc;
9248 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9250 if (GET_CODE (uloc) == SET)
9252 src = SET_SRC (uloc);
9253 dst = SET_DEST (uloc);
9256 if (copied_p)
9258 status = find_src_status (set, src);
9260 src = find_src_set_src (set, src);
9263 if (REG_P (dst))
9264 var_reg_delete_and_set (set, dst, !copied_p,
9265 status, srcv);
9266 else if (MEM_P (dst))
9268 gcc_assert (MEM_P (dstv));
9269 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9270 var_mem_delete_and_set (set, dstv, !copied_p,
9271 status, srcv);
9275 else if (REG_P (uloc))
9276 var_regno_delete (set, REGNO (uloc));
9277 else if (MEM_P (uloc))
9279 gcc_checking_assert (GET_CODE (vloc) == MEM);
9280 gcc_checking_assert (vloc == dstv);
9281 if (vloc != dstv)
9282 clobber_overlapping_mems (set, vloc);
9285 val_store (set, val, dstv, insn, true);
9287 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9288 set->vars);
9290 break;
9292 case MO_SET:
9294 rtx loc = mo->u.loc;
9295 rtx set_src = NULL;
9297 if (GET_CODE (loc) == SET)
9299 set_src = SET_SRC (loc);
9300 loc = SET_DEST (loc);
9303 if (REG_P (loc))
9304 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9305 set_src);
9306 else
9307 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9308 set_src);
9310 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9311 set->vars);
9313 break;
9315 case MO_COPY:
9317 rtx loc = mo->u.loc;
9318 enum var_init_status src_status;
9319 rtx set_src = NULL;
9321 if (GET_CODE (loc) == SET)
9323 set_src = SET_SRC (loc);
9324 loc = SET_DEST (loc);
9327 src_status = find_src_status (set, set_src);
9328 set_src = find_src_set_src (set, set_src);
9330 if (REG_P (loc))
9331 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9332 else
9333 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9335 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9336 set->vars);
9338 break;
9340 case MO_USE_NO_VAR:
9342 rtx loc = mo->u.loc;
9344 if (REG_P (loc))
9345 var_reg_delete (set, loc, false);
9346 else
9347 var_mem_delete (set, loc, false);
9349 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9351 break;
9353 case MO_CLOBBER:
9355 rtx loc = mo->u.loc;
9357 if (REG_P (loc))
9358 var_reg_delete (set, loc, true);
9359 else
9360 var_mem_delete (set, loc, true);
9362 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9363 set->vars);
9365 break;
9367 case MO_ADJUST:
9368 set->stack_adjust += mo->u.adjust;
9369 break;
9374 /* Emit notes for the whole function. */
9376 static void
9377 vt_emit_notes (void)
9379 basic_block bb;
9380 dataflow_set cur;
9382 gcc_assert (!changed_variables.elements ());
9384 /* Free memory occupied by the out hash tables, as they aren't used
9385 anymore. */
9386 FOR_EACH_BB (bb)
9387 dataflow_set_clear (&VTI (bb)->out);
9389 /* Enable emitting notes by functions (mainly by set_variable_part and
9390 delete_variable_part). */
9391 emit_notes = true;
9393 if (MAY_HAVE_DEBUG_INSNS)
9395 dropped_values.create (cselib_get_next_uid () * 2);
9396 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9397 sizeof (loc_exp_dep), 64);
9400 dataflow_set_init (&cur);
9402 FOR_EACH_BB (bb)
9404 /* Emit the notes for changes of variable locations between two
9405 subsequent basic blocks. */
9406 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9408 if (MAY_HAVE_DEBUG_INSNS)
9409 local_get_addr_cache = pointer_map_create ();
9411 /* Emit the notes for the changes in the basic block itself. */
9412 emit_notes_in_bb (bb, &cur);
9414 if (MAY_HAVE_DEBUG_INSNS)
9415 pointer_map_destroy (local_get_addr_cache);
9416 local_get_addr_cache = NULL;
9418 /* Free memory occupied by the in hash table, we won't need it
9419 again. */
9420 dataflow_set_clear (&VTI (bb)->in);
9422 #ifdef ENABLE_CHECKING
9423 shared_hash_htab (cur.vars)
9424 .traverse <variable_table_type, emit_notes_for_differences_1>
9425 (shared_hash_htab (empty_shared_hash));
9426 #endif
9427 dataflow_set_destroy (&cur);
9429 if (MAY_HAVE_DEBUG_INSNS)
9430 dropped_values.dispose ();
9432 emit_notes = false;
9435 /* If there is a declaration and offset associated with register/memory RTL
9436 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9438 static bool
9439 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9441 if (REG_P (rtl))
9443 if (REG_ATTRS (rtl))
9445 *declp = REG_EXPR (rtl);
9446 *offsetp = REG_OFFSET (rtl);
9447 return true;
9450 else if (MEM_P (rtl))
9452 if (MEM_ATTRS (rtl))
9454 *declp = MEM_EXPR (rtl);
9455 *offsetp = INT_MEM_OFFSET (rtl);
9456 return true;
9459 return false;
9462 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9463 of VAL. */
9465 static void
9466 record_entry_value (cselib_val *val, rtx rtl)
9468 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9470 ENTRY_VALUE_EXP (ev) = rtl;
9472 cselib_add_permanent_equiv (val, ev, get_insns ());
9475 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9477 static void
9478 vt_add_function_parameter (tree parm)
9480 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9481 rtx incoming = DECL_INCOMING_RTL (parm);
9482 tree decl;
9483 enum machine_mode mode;
9484 HOST_WIDE_INT offset;
9485 dataflow_set *out;
9486 decl_or_value dv;
9488 if (TREE_CODE (parm) != PARM_DECL)
9489 return;
9491 if (!decl_rtl || !incoming)
9492 return;
9494 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9495 return;
9497 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9498 rewrite the incoming location of parameters passed on the stack
9499 into MEMs based on the argument pointer, so that incoming doesn't
9500 depend on a pseudo. */
9501 if (MEM_P (incoming)
9502 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9503 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9504 && XEXP (XEXP (incoming, 0), 0)
9505 == crtl->args.internal_arg_pointer
9506 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9508 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9509 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9510 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9511 incoming
9512 = replace_equiv_address_nv (incoming,
9513 plus_constant (Pmode,
9514 arg_pointer_rtx, off));
9517 #ifdef HAVE_window_save
9518 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9519 If the target machine has an explicit window save instruction, the
9520 actual entry value is the corresponding OUTGOING_REGNO instead. */
9521 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9523 if (REG_P (incoming)
9524 && HARD_REGISTER_P (incoming)
9525 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9527 parm_reg_t p;
9528 p.incoming = incoming;
9529 incoming
9530 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9531 OUTGOING_REGNO (REGNO (incoming)), 0);
9532 p.outgoing = incoming;
9533 vec_safe_push (windowed_parm_regs, p);
9535 else if (MEM_P (incoming)
9536 && REG_P (XEXP (incoming, 0))
9537 && HARD_REGISTER_P (XEXP (incoming, 0)))
9539 rtx reg = XEXP (incoming, 0);
9540 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9542 parm_reg_t p;
9543 p.incoming = reg;
9544 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9545 p.outgoing = reg;
9546 vec_safe_push (windowed_parm_regs, p);
9547 incoming = replace_equiv_address_nv (incoming, reg);
9551 #endif
9553 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9555 if (MEM_P (incoming))
9557 /* This means argument is passed by invisible reference. */
9558 offset = 0;
9559 decl = parm;
9561 else
9563 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9564 return;
9565 offset += byte_lowpart_offset (GET_MODE (incoming),
9566 GET_MODE (decl_rtl));
9570 if (!decl)
9571 return;
9573 if (parm != decl)
9575 /* If that DECL_RTL wasn't a pseudo that got spilled to
9576 memory, bail out. Otherwise, the spill slot sharing code
9577 will force the memory to reference spill_slot_decl (%sfp),
9578 so we don't match above. That's ok, the pseudo must have
9579 referenced the entire parameter, so just reset OFFSET. */
9580 if (decl != get_spill_slot_decl (false))
9581 return;
9582 offset = 0;
9585 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9586 return;
9588 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9590 dv = dv_from_decl (parm);
9592 if (target_for_debug_bind (parm)
9593 /* We can't deal with these right now, because this kind of
9594 variable is single-part. ??? We could handle parallels
9595 that describe multiple locations for the same single
9596 value, but ATM we don't. */
9597 && GET_CODE (incoming) != PARALLEL)
9599 cselib_val *val;
9600 rtx lowpart;
9602 /* ??? We shouldn't ever hit this, but it may happen because
9603 arguments passed by invisible reference aren't dealt with
9604 above: incoming-rtl will have Pmode rather than the
9605 expected mode for the type. */
9606 if (offset)
9607 return;
9609 lowpart = var_lowpart (mode, incoming);
9610 if (!lowpart)
9611 return;
9613 val = cselib_lookup_from_insn (lowpart, mode, true,
9614 VOIDmode, get_insns ());
9616 /* ??? Float-typed values in memory are not handled by
9617 cselib. */
9618 if (val)
9620 preserve_value (val);
9621 set_variable_part (out, val->val_rtx, dv, offset,
9622 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9623 dv = dv_from_value (val->val_rtx);
9626 if (MEM_P (incoming))
9628 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9629 VOIDmode, get_insns ());
9630 if (val)
9632 preserve_value (val);
9633 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9638 if (REG_P (incoming))
9640 incoming = var_lowpart (mode, incoming);
9641 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9642 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9643 incoming);
9644 set_variable_part (out, incoming, dv, offset,
9645 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9646 if (dv_is_value_p (dv))
9648 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9649 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9650 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9652 enum machine_mode indmode
9653 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9654 rtx mem = gen_rtx_MEM (indmode, incoming);
9655 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9656 VOIDmode,
9657 get_insns ());
9658 if (val)
9660 preserve_value (val);
9661 record_entry_value (val, mem);
9662 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9663 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9668 else if (MEM_P (incoming))
9670 incoming = var_lowpart (mode, incoming);
9671 set_variable_part (out, incoming, dv, offset,
9672 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9676 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9678 static void
9679 vt_add_function_parameters (void)
9681 tree parm;
9683 for (parm = DECL_ARGUMENTS (current_function_decl);
9684 parm; parm = DECL_CHAIN (parm))
9685 vt_add_function_parameter (parm);
9687 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9689 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9691 if (TREE_CODE (vexpr) == INDIRECT_REF)
9692 vexpr = TREE_OPERAND (vexpr, 0);
9694 if (TREE_CODE (vexpr) == PARM_DECL
9695 && DECL_ARTIFICIAL (vexpr)
9696 && !DECL_IGNORED_P (vexpr)
9697 && DECL_NAMELESS (vexpr))
9698 vt_add_function_parameter (vexpr);
9702 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9703 ensure it isn't flushed during cselib_reset_table.
9704 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9705 has been eliminated. */
9707 static void
9708 vt_init_cfa_base (void)
9710 cselib_val *val;
9712 #ifdef FRAME_POINTER_CFA_OFFSET
9713 cfa_base_rtx = frame_pointer_rtx;
9714 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9715 #else
9716 cfa_base_rtx = arg_pointer_rtx;
9717 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9718 #endif
9719 if (cfa_base_rtx == hard_frame_pointer_rtx
9720 || !fixed_regs[REGNO (cfa_base_rtx)])
9722 cfa_base_rtx = NULL_RTX;
9723 return;
9725 if (!MAY_HAVE_DEBUG_INSNS)
9726 return;
9728 /* Tell alias analysis that cfa_base_rtx should share
9729 find_base_term value with stack pointer or hard frame pointer. */
9730 if (!frame_pointer_needed)
9731 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9732 else if (!crtl->stack_realign_tried)
9733 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9735 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9736 VOIDmode, get_insns ());
9737 preserve_value (val);
9738 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9741 /* Allocate and initialize the data structures for variable tracking
9742 and parse the RTL to get the micro operations. */
9744 static bool
9745 vt_initialize (void)
9747 basic_block bb;
9748 HOST_WIDE_INT fp_cfa_offset = -1;
9750 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9752 attrs_pool = create_alloc_pool ("attrs_def pool",
9753 sizeof (struct attrs_def), 1024);
9754 var_pool = create_alloc_pool ("variable_def pool",
9755 sizeof (struct variable_def)
9756 + (MAX_VAR_PARTS - 1)
9757 * sizeof (((variable)NULL)->var_part[0]), 64);
9758 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9759 sizeof (struct location_chain_def),
9760 1024);
9761 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9762 sizeof (struct shared_hash_def), 256);
9763 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9764 empty_shared_hash->refcount = 1;
9765 empty_shared_hash->htab.create (1);
9766 changed_variables.create (10);
9768 /* Init the IN and OUT sets. */
9769 FOR_ALL_BB (bb)
9771 VTI (bb)->visited = false;
9772 VTI (bb)->flooded = false;
9773 dataflow_set_init (&VTI (bb)->in);
9774 dataflow_set_init (&VTI (bb)->out);
9775 VTI (bb)->permp = NULL;
9778 if (MAY_HAVE_DEBUG_INSNS)
9780 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9781 scratch_regs = BITMAP_ALLOC (NULL);
9782 valvar_pool = create_alloc_pool ("small variable_def pool",
9783 sizeof (struct variable_def), 256);
9784 preserved_values.create (256);
9785 global_get_addr_cache = pointer_map_create ();
9787 else
9789 scratch_regs = NULL;
9790 valvar_pool = NULL;
9791 global_get_addr_cache = NULL;
9794 if (MAY_HAVE_DEBUG_INSNS)
9796 rtx reg, expr;
9797 int ofst;
9798 cselib_val *val;
9800 #ifdef FRAME_POINTER_CFA_OFFSET
9801 reg = frame_pointer_rtx;
9802 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9803 #else
9804 reg = arg_pointer_rtx;
9805 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9806 #endif
9808 ofst -= INCOMING_FRAME_SP_OFFSET;
9810 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9811 VOIDmode, get_insns ());
9812 preserve_value (val);
9813 cselib_preserve_cfa_base_value (val, REGNO (reg));
9814 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9815 stack_pointer_rtx, -ofst);
9816 cselib_add_permanent_equiv (val, expr, get_insns ());
9818 if (ofst)
9820 val = cselib_lookup_from_insn (stack_pointer_rtx,
9821 GET_MODE (stack_pointer_rtx), 1,
9822 VOIDmode, get_insns ());
9823 preserve_value (val);
9824 expr = plus_constant (GET_MODE (reg), reg, ofst);
9825 cselib_add_permanent_equiv (val, expr, get_insns ());
9829 /* In order to factor out the adjustments made to the stack pointer or to
9830 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9831 instead of individual location lists, we're going to rewrite MEMs based
9832 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9833 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9834 resp. arg_pointer_rtx. We can do this either when there is no frame
9835 pointer in the function and stack adjustments are consistent for all
9836 basic blocks or when there is a frame pointer and no stack realignment.
9837 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9838 has been eliminated. */
9839 if (!frame_pointer_needed)
9841 rtx reg, elim;
9843 if (!vt_stack_adjustments ())
9844 return false;
9846 #ifdef FRAME_POINTER_CFA_OFFSET
9847 reg = frame_pointer_rtx;
9848 #else
9849 reg = arg_pointer_rtx;
9850 #endif
9851 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9852 if (elim != reg)
9854 if (GET_CODE (elim) == PLUS)
9855 elim = XEXP (elim, 0);
9856 if (elim == stack_pointer_rtx)
9857 vt_init_cfa_base ();
9860 else if (!crtl->stack_realign_tried)
9862 rtx reg, elim;
9864 #ifdef FRAME_POINTER_CFA_OFFSET
9865 reg = frame_pointer_rtx;
9866 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9867 #else
9868 reg = arg_pointer_rtx;
9869 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9870 #endif
9871 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9872 if (elim != reg)
9874 if (GET_CODE (elim) == PLUS)
9876 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9877 elim = XEXP (elim, 0);
9879 if (elim != hard_frame_pointer_rtx)
9880 fp_cfa_offset = -1;
9882 else
9883 fp_cfa_offset = -1;
9886 /* If the stack is realigned and a DRAP register is used, we're going to
9887 rewrite MEMs based on it representing incoming locations of parameters
9888 passed on the stack into MEMs based on the argument pointer. Although
9889 we aren't going to rewrite other MEMs, we still need to initialize the
9890 virtual CFA pointer in order to ensure that the argument pointer will
9891 be seen as a constant throughout the function.
9893 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9894 else if (stack_realign_drap)
9896 rtx reg, elim;
9898 #ifdef FRAME_POINTER_CFA_OFFSET
9899 reg = frame_pointer_rtx;
9900 #else
9901 reg = arg_pointer_rtx;
9902 #endif
9903 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9904 if (elim != reg)
9906 if (GET_CODE (elim) == PLUS)
9907 elim = XEXP (elim, 0);
9908 if (elim == hard_frame_pointer_rtx)
9909 vt_init_cfa_base ();
9913 hard_frame_pointer_adjustment = -1;
9915 vt_add_function_parameters ();
9917 FOR_EACH_BB (bb)
9919 rtx insn;
9920 HOST_WIDE_INT pre, post = 0;
9921 basic_block first_bb, last_bb;
9923 if (MAY_HAVE_DEBUG_INSNS)
9925 cselib_record_sets_hook = add_with_sets;
9926 if (dump_file && (dump_flags & TDF_DETAILS))
9927 fprintf (dump_file, "first value: %i\n",
9928 cselib_get_next_uid ());
9931 first_bb = bb;
9932 for (;;)
9934 edge e;
9935 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
9936 || ! single_pred_p (bb->next_bb))
9937 break;
9938 e = find_edge (bb, bb->next_bb);
9939 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
9940 break;
9941 bb = bb->next_bb;
9943 last_bb = bb;
9945 /* Add the micro-operations to the vector. */
9946 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
9948 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
9949 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
9950 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
9951 insn = NEXT_INSN (insn))
9953 if (INSN_P (insn))
9955 if (!frame_pointer_needed)
9957 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
9958 if (pre)
9960 micro_operation mo;
9961 mo.type = MO_ADJUST;
9962 mo.u.adjust = pre;
9963 mo.insn = insn;
9964 if (dump_file && (dump_flags & TDF_DETAILS))
9965 log_op_type (PATTERN (insn), bb, insn,
9966 MO_ADJUST, dump_file);
9967 VTI (bb)->mos.safe_push (mo);
9968 VTI (bb)->out.stack_adjust += pre;
9972 cselib_hook_called = false;
9973 adjust_insn (bb, insn);
9974 if (MAY_HAVE_DEBUG_INSNS)
9976 if (CALL_P (insn))
9977 prepare_call_arguments (bb, insn);
9978 cselib_process_insn (insn);
9979 if (dump_file && (dump_flags & TDF_DETAILS))
9981 print_rtl_single (dump_file, insn);
9982 dump_cselib_table (dump_file);
9985 if (!cselib_hook_called)
9986 add_with_sets (insn, 0, 0);
9987 cancel_changes (0);
9989 if (!frame_pointer_needed && post)
9991 micro_operation mo;
9992 mo.type = MO_ADJUST;
9993 mo.u.adjust = post;
9994 mo.insn = insn;
9995 if (dump_file && (dump_flags & TDF_DETAILS))
9996 log_op_type (PATTERN (insn), bb, insn,
9997 MO_ADJUST, dump_file);
9998 VTI (bb)->mos.safe_push (mo);
9999 VTI (bb)->out.stack_adjust += post;
10002 if (fp_cfa_offset != -1
10003 && hard_frame_pointer_adjustment == -1
10004 && fp_setter_insn (insn))
10006 vt_init_cfa_base ();
10007 hard_frame_pointer_adjustment = fp_cfa_offset;
10008 /* Disassociate sp from fp now. */
10009 if (MAY_HAVE_DEBUG_INSNS)
10011 cselib_val *v;
10012 cselib_invalidate_rtx (stack_pointer_rtx);
10013 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10014 VOIDmode);
10015 if (v && !cselib_preserved_value_p (v))
10017 cselib_set_value_sp_based (v);
10018 preserve_value (v);
10024 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10027 bb = last_bb;
10029 if (MAY_HAVE_DEBUG_INSNS)
10031 cselib_preserve_only_values ();
10032 cselib_reset_table (cselib_get_next_uid ());
10033 cselib_record_sets_hook = NULL;
10037 hard_frame_pointer_adjustment = -1;
10038 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10039 cfa_base_rtx = NULL_RTX;
10040 return true;
10043 /* This is *not* reset after each function. It gives each
10044 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10045 a unique label number. */
10047 static int debug_label_num = 1;
10049 /* Get rid of all debug insns from the insn stream. */
10051 static void
10052 delete_debug_insns (void)
10054 basic_block bb;
10055 rtx insn, next;
10057 if (!MAY_HAVE_DEBUG_INSNS)
10058 return;
10060 FOR_EACH_BB (bb)
10062 FOR_BB_INSNS_SAFE (bb, insn, next)
10063 if (DEBUG_INSN_P (insn))
10065 tree decl = INSN_VAR_LOCATION_DECL (insn);
10066 if (TREE_CODE (decl) == LABEL_DECL
10067 && DECL_NAME (decl)
10068 && !DECL_RTL_SET_P (decl))
10070 PUT_CODE (insn, NOTE);
10071 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10072 NOTE_DELETED_LABEL_NAME (insn)
10073 = IDENTIFIER_POINTER (DECL_NAME (decl));
10074 SET_DECL_RTL (decl, insn);
10075 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10077 else
10078 delete_insn (insn);
10083 /* Run a fast, BB-local only version of var tracking, to take care of
10084 information that we don't do global analysis on, such that not all
10085 information is lost. If SKIPPED holds, we're skipping the global
10086 pass entirely, so we should try to use information it would have
10087 handled as well.. */
10089 static void
10090 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10092 /* ??? Just skip it all for now. */
10093 delete_debug_insns ();
10096 /* Free the data structures needed for variable tracking. */
10098 static void
10099 vt_finalize (void)
10101 basic_block bb;
10103 FOR_EACH_BB (bb)
10105 VTI (bb)->mos.release ();
10108 FOR_ALL_BB (bb)
10110 dataflow_set_destroy (&VTI (bb)->in);
10111 dataflow_set_destroy (&VTI (bb)->out);
10112 if (VTI (bb)->permp)
10114 dataflow_set_destroy (VTI (bb)->permp);
10115 XDELETE (VTI (bb)->permp);
10118 free_aux_for_blocks ();
10119 empty_shared_hash->htab.dispose ();
10120 changed_variables.dispose ();
10121 free_alloc_pool (attrs_pool);
10122 free_alloc_pool (var_pool);
10123 free_alloc_pool (loc_chain_pool);
10124 free_alloc_pool (shared_hash_pool);
10126 if (MAY_HAVE_DEBUG_INSNS)
10128 if (global_get_addr_cache)
10129 pointer_map_destroy (global_get_addr_cache);
10130 global_get_addr_cache = NULL;
10131 if (loc_exp_dep_pool)
10132 free_alloc_pool (loc_exp_dep_pool);
10133 loc_exp_dep_pool = NULL;
10134 free_alloc_pool (valvar_pool);
10135 preserved_values.release ();
10136 cselib_finish ();
10137 BITMAP_FREE (scratch_regs);
10138 scratch_regs = NULL;
10141 #ifdef HAVE_window_save
10142 vec_free (windowed_parm_regs);
10143 #endif
10145 if (vui_vec)
10146 XDELETEVEC (vui_vec);
10147 vui_vec = NULL;
10148 vui_allocated = 0;
10151 /* The entry point to variable tracking pass. */
10153 static inline unsigned int
10154 variable_tracking_main_1 (void)
10156 bool success;
10158 if (flag_var_tracking_assignments < 0)
10160 delete_debug_insns ();
10161 return 0;
10164 if (n_basic_blocks_for_fn (cfun) > 500 &&
10165 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10167 vt_debug_insns_local (true);
10168 return 0;
10171 mark_dfs_back_edges ();
10172 if (!vt_initialize ())
10174 vt_finalize ();
10175 vt_debug_insns_local (true);
10176 return 0;
10179 success = vt_find_locations ();
10181 if (!success && flag_var_tracking_assignments > 0)
10183 vt_finalize ();
10185 delete_debug_insns ();
10187 /* This is later restored by our caller. */
10188 flag_var_tracking_assignments = 0;
10190 success = vt_initialize ();
10191 gcc_assert (success);
10193 success = vt_find_locations ();
10196 if (!success)
10198 vt_finalize ();
10199 vt_debug_insns_local (false);
10200 return 0;
10203 if (dump_file && (dump_flags & TDF_DETAILS))
10205 dump_dataflow_sets ();
10206 dump_reg_info (dump_file);
10207 dump_flow_info (dump_file, dump_flags);
10210 timevar_push (TV_VAR_TRACKING_EMIT);
10211 vt_emit_notes ();
10212 timevar_pop (TV_VAR_TRACKING_EMIT);
10214 vt_finalize ();
10215 vt_debug_insns_local (false);
10216 return 0;
10219 unsigned int
10220 variable_tracking_main (void)
10222 unsigned int ret;
10223 int save = flag_var_tracking_assignments;
10225 ret = variable_tracking_main_1 ();
10227 flag_var_tracking_assignments = save;
10229 return ret;
10232 static bool
10233 gate_handle_var_tracking (void)
10235 return (flag_var_tracking && !targetm.delay_vartrack);
10240 namespace {
10242 const pass_data pass_data_variable_tracking =
10244 RTL_PASS, /* type */
10245 "vartrack", /* name */
10246 OPTGROUP_NONE, /* optinfo_flags */
10247 true, /* has_gate */
10248 true, /* has_execute */
10249 TV_VAR_TRACKING, /* tv_id */
10250 0, /* properties_required */
10251 0, /* properties_provided */
10252 0, /* properties_destroyed */
10253 0, /* todo_flags_start */
10254 ( TODO_verify_rtl_sharing | TODO_verify_flow ), /* todo_flags_finish */
10257 class pass_variable_tracking : public rtl_opt_pass
10259 public:
10260 pass_variable_tracking (gcc::context *ctxt)
10261 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10264 /* opt_pass methods: */
10265 bool gate () { return gate_handle_var_tracking (); }
10266 unsigned int execute () { return variable_tracking_main (); }
10268 }; // class pass_variable_tracking
10270 } // anon namespace
10272 rtl_opt_pass *
10273 make_pass_variable_tracking (gcc::context *ctxt)
10275 return new pass_variable_tracking (ctxt);