1 /* Induction variable optimizations.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass tries to find the optimal set of induction variables for the loop.
21 It optimizes just the basic linear induction variables (although adding
22 support for other types should not be too hard). It includes the
23 optimizations commonly known as strength reduction, induction variable
24 coalescing and induction variable elimination. It does it in the
27 1) The interesting uses of induction variables are found. This includes
29 -- uses of induction variables in non-linear expressions
30 -- addresses of arrays
31 -- comparisons of induction variables
33 Note the interesting uses are categorized and handled in group.
34 Generally, address type uses are grouped together if their iv bases
35 are different in constant offset.
37 2) Candidates for the induction variables are found. This includes
39 -- old induction variables
40 -- the variables defined by expressions derived from the "interesting
43 3) The optimal (w.r. to a cost function) set of variables is chosen. The
44 cost function assigns a cost to sets of induction variables and consists
47 -- The group/use costs. Each of the interesting groups/uses chooses
48 the best induction variable in the set and adds its cost to the sum.
49 The cost reflects the time spent on modifying the induction variables
50 value to be usable for the given purpose (adding base and offset for
52 -- The variable costs. Each of the variables has a cost assigned that
53 reflects the costs associated with incrementing the value of the
54 variable. The original variables are somewhat preferred.
55 -- The set cost. Depending on the size of the set, extra cost may be
56 added to reflect register pressure.
58 All the costs are defined in a machine-specific way, using the target
59 hooks and machine descriptions to determine them.
61 4) The trees are transformed to use the new variables, the dead code is
64 All of this is done loop by loop. Doing it globally is theoretically
65 possible, it might give a better performance and it might enable us
66 to decide costs more precisely, but getting all the interactions right
67 would be complicated. */
71 #include "coretypes.h"
77 #include "tree-pass.h"
82 #include "insn-config.h"
86 #include "gimple-pretty-print.h"
88 #include "fold-const.h"
89 #include "stor-layout.h"
92 #include "gimple-iterator.h"
93 #include "gimplify-me.h"
95 #include "tree-ssa-loop-ivopts.h"
96 #include "tree-ssa-loop-manip.h"
97 #include "tree-ssa-loop-niter.h"
98 #include "tree-ssa-loop.h"
101 #include "tree-dfa.h"
102 #include "tree-ssa.h"
104 #include "tree-scalar-evolution.h"
106 #include "tree-affine.h"
107 #include "tree-ssa-propagate.h"
108 #include "tree-ssa-address.h"
109 #include "builtins.h"
110 #include "tree-vectorizer.h"
112 /* FIXME: Expressions are expanded to RTL in this pass to determine the
113 cost of different addressing modes. This should be moved to a TBD
114 interface between the GIMPLE and RTL worlds. */
116 /* The infinite cost. */
117 #define INFTY 10000000
119 /* Returns the expected number of loop iterations for LOOP.
120 The average trip count is computed from profile data if it
123 static inline HOST_WIDE_INT
124 avg_loop_niter (struct loop
*loop
)
126 HOST_WIDE_INT niter
= estimated_stmt_executions_int (loop
);
129 niter
= likely_max_stmt_executions_int (loop
);
131 if (niter
== -1 || niter
> PARAM_VALUE (PARAM_AVG_LOOP_NITER
))
132 return PARAM_VALUE (PARAM_AVG_LOOP_NITER
);
140 /* Representation of the induction variable. */
143 tree base
; /* Initial value of the iv. */
144 tree base_object
; /* A memory object to that the induction variable points. */
145 tree step
; /* Step of the iv (constant only). */
146 tree ssa_name
; /* The ssa name with the value. */
147 struct iv_use
*nonlin_use
; /* The identifier in the use if it is the case. */
148 bool biv_p
; /* Is it a biv? */
149 bool no_overflow
; /* True if the iv doesn't overflow. */
150 bool have_address_use
;/* For biv, indicate if it's used in any address
154 /* Per-ssa version information (induction variable descriptions, etc.). */
157 tree name
; /* The ssa name. */
158 struct iv
*iv
; /* Induction variable description. */
159 bool has_nonlin_use
; /* For a loop-level invariant, whether it is used in
160 an expression that is not an induction variable. */
161 bool preserve_biv
; /* For the original biv, whether to preserve it. */
162 unsigned inv_id
; /* Id of an invariant. */
168 USE_NONLINEAR_EXPR
, /* Use in a nonlinear expression. */
169 USE_REF_ADDRESS
, /* Use is an address for an explicit memory
171 USE_PTR_ADDRESS
, /* Use is a pointer argument to a function in
172 cases where the expansion of the function
173 will turn the argument into a normal address. */
174 USE_COMPARE
/* Use is a compare. */
177 /* Cost of a computation. */
180 comp_cost (): cost (0), complexity (0), scratch (0)
183 comp_cost (int cost
, unsigned complexity
, int scratch
= 0)
184 : cost (cost
), complexity (complexity
), scratch (scratch
)
187 /* Returns true if COST is infinite. */
188 bool infinite_cost_p ();
190 /* Adds costs COST1 and COST2. */
191 friend comp_cost
operator+ (comp_cost cost1
, comp_cost cost2
);
193 /* Adds COST to the comp_cost. */
194 comp_cost
operator+= (comp_cost cost
);
196 /* Adds constant C to this comp_cost. */
197 comp_cost
operator+= (HOST_WIDE_INT c
);
199 /* Subtracts constant C to this comp_cost. */
200 comp_cost
operator-= (HOST_WIDE_INT c
);
202 /* Divide the comp_cost by constant C. */
203 comp_cost
operator/= (HOST_WIDE_INT c
);
205 /* Multiply the comp_cost by constant C. */
206 comp_cost
operator*= (HOST_WIDE_INT c
);
208 /* Subtracts costs COST1 and COST2. */
209 friend comp_cost
operator- (comp_cost cost1
, comp_cost cost2
);
211 /* Subtracts COST from this comp_cost. */
212 comp_cost
operator-= (comp_cost cost
);
214 /* Returns true if COST1 is smaller than COST2. */
215 friend bool operator< (comp_cost cost1
, comp_cost cost2
);
217 /* Returns true if COST1 and COST2 are equal. */
218 friend bool operator== (comp_cost cost1
, comp_cost cost2
);
220 /* Returns true if COST1 is smaller or equal than COST2. */
221 friend bool operator<= (comp_cost cost1
, comp_cost cost2
);
223 int cost
; /* The runtime cost. */
224 unsigned complexity
; /* The estimate of the complexity of the code for
225 the computation (in no concrete units --
226 complexity field should be larger for more
227 complex expressions and addressing modes). */
228 int scratch
; /* Scratch used during cost computation. */
231 static const comp_cost no_cost
;
232 static const comp_cost
infinite_cost (INFTY
, INFTY
, INFTY
);
235 comp_cost::infinite_cost_p ()
237 return cost
== INFTY
;
241 operator+ (comp_cost cost1
, comp_cost cost2
)
243 if (cost1
.infinite_cost_p () || cost2
.infinite_cost_p ())
244 return infinite_cost
;
246 cost1
.cost
+= cost2
.cost
;
247 cost1
.complexity
+= cost2
.complexity
;
253 operator- (comp_cost cost1
, comp_cost cost2
)
255 if (cost1
.infinite_cost_p ())
256 return infinite_cost
;
258 gcc_assert (!cost2
.infinite_cost_p ());
260 cost1
.cost
-= cost2
.cost
;
261 cost1
.complexity
-= cost2
.complexity
;
267 comp_cost::operator+= (comp_cost cost
)
269 *this = *this + cost
;
274 comp_cost::operator+= (HOST_WIDE_INT c
)
276 if (infinite_cost_p ())
285 comp_cost::operator-= (HOST_WIDE_INT c
)
287 if (infinite_cost_p ())
296 comp_cost::operator/= (HOST_WIDE_INT c
)
298 if (infinite_cost_p ())
307 comp_cost::operator*= (HOST_WIDE_INT c
)
309 if (infinite_cost_p ())
318 comp_cost::operator-= (comp_cost cost
)
320 *this = *this - cost
;
325 operator< (comp_cost cost1
, comp_cost cost2
)
327 if (cost1
.cost
== cost2
.cost
)
328 return cost1
.complexity
< cost2
.complexity
;
330 return cost1
.cost
< cost2
.cost
;
334 operator== (comp_cost cost1
, comp_cost cost2
)
336 return cost1
.cost
== cost2
.cost
337 && cost1
.complexity
== cost2
.complexity
;
341 operator<= (comp_cost cost1
, comp_cost cost2
)
343 return cost1
< cost2
|| cost1
== cost2
;
346 struct iv_inv_expr_ent
;
348 /* The candidate - cost pair. */
351 struct iv_cand
*cand
; /* The candidate. */
352 comp_cost cost
; /* The cost. */
353 enum tree_code comp
; /* For iv elimination, the comparison. */
354 bitmap inv_vars
; /* The list of invariant ssa_vars that have to be
355 preserved when representing iv_use with iv_cand. */
356 bitmap inv_exprs
; /* The list of newly created invariant expressions
357 when representing iv_use with iv_cand. */
358 tree value
; /* For final value elimination, the expression for
359 the final value of the iv. For iv elimination,
360 the new bound to compare with. */
366 unsigned id
; /* The id of the use. */
367 unsigned group_id
; /* The group id the use belongs to. */
368 enum use_type type
; /* Type of the use. */
369 tree mem_type
; /* The memory type to use when testing whether an
370 address is legitimate, and what the address's
372 struct iv
*iv
; /* The induction variable it is based on. */
373 gimple
*stmt
; /* Statement in that it occurs. */
374 tree
*op_p
; /* The place where it occurs. */
376 tree addr_base
; /* Base address with const offset stripped. */
377 poly_uint64_pod addr_offset
;
378 /* Const offset stripped from base address. */
384 /* The id of the group. */
386 /* Uses of the group are of the same type. */
388 /* The set of "related" IV candidates, plus the important ones. */
389 bitmap related_cands
;
390 /* Number of IV candidates in the cost_map. */
391 unsigned n_map_members
;
392 /* The costs wrto the iv candidates. */
393 struct cost_pair
*cost_map
;
394 /* The selected candidate for the group. */
395 struct iv_cand
*selected
;
396 /* Uses in the group. */
397 vec
<struct iv_use
*> vuses
;
400 /* The position where the iv is computed. */
403 IP_NORMAL
, /* At the end, just before the exit condition. */
404 IP_END
, /* At the end of the latch block. */
405 IP_BEFORE_USE
, /* Immediately before a specific use. */
406 IP_AFTER_USE
, /* Immediately after a specific use. */
407 IP_ORIGINAL
/* The original biv. */
410 /* The induction variable candidate. */
413 unsigned id
; /* The number of the candidate. */
414 bool important
; /* Whether this is an "important" candidate, i.e. such
415 that it should be considered by all uses. */
416 ENUM_BITFIELD(iv_position
) pos
: 8; /* Where it is computed. */
417 gimple
*incremented_at
;/* For original biv, the statement where it is
419 tree var_before
; /* The variable used for it before increment. */
420 tree var_after
; /* The variable used for it after increment. */
421 struct iv
*iv
; /* The value of the candidate. NULL for
422 "pseudocandidate" used to indicate the possibility
423 to replace the final value of an iv by direct
424 computation of the value. */
425 unsigned cost
; /* Cost of the candidate. */
426 unsigned cost_step
; /* Cost of the candidate's increment operation. */
427 struct iv_use
*ainc_use
; /* For IP_{BEFORE,AFTER}_USE candidates, the place
428 where it is incremented. */
429 bitmap inv_vars
; /* The list of invariant ssa_vars used in step of the
431 bitmap inv_exprs
; /* If step is more complicated than a single ssa_var,
432 hanlde it as a new invariant expression which will
433 be hoisted out of loop. */
434 struct iv
*orig_iv
; /* The original iv if this cand is added from biv with
438 /* Hashtable entry for common candidate derived from iv uses. */
439 struct iv_common_cand
443 /* IV uses from which this common candidate is derived. */
444 auto_vec
<struct iv_use
*> uses
;
448 /* Hashtable helpers. */
450 struct iv_common_cand_hasher
: delete_ptr_hash
<iv_common_cand
>
452 static inline hashval_t
hash (const iv_common_cand
*);
453 static inline bool equal (const iv_common_cand
*, const iv_common_cand
*);
456 /* Hash function for possible common candidates. */
459 iv_common_cand_hasher::hash (const iv_common_cand
*ccand
)
464 /* Hash table equality function for common candidates. */
467 iv_common_cand_hasher::equal (const iv_common_cand
*ccand1
,
468 const iv_common_cand
*ccand2
)
470 return (ccand1
->hash
== ccand2
->hash
471 && operand_equal_p (ccand1
->base
, ccand2
->base
, 0)
472 && operand_equal_p (ccand1
->step
, ccand2
->step
, 0)
473 && (TYPE_PRECISION (TREE_TYPE (ccand1
->base
))
474 == TYPE_PRECISION (TREE_TYPE (ccand2
->base
))));
477 /* Loop invariant expression hashtable entry. */
479 struct iv_inv_expr_ent
481 /* Tree expression of the entry. */
483 /* Unique indentifier. */
489 /* Sort iv_inv_expr_ent pair A and B by id field. */
492 sort_iv_inv_expr_ent (const void *a
, const void *b
)
494 const iv_inv_expr_ent
* const *e1
= (const iv_inv_expr_ent
* const *) (a
);
495 const iv_inv_expr_ent
* const *e2
= (const iv_inv_expr_ent
* const *) (b
);
497 unsigned id1
= (*e1
)->id
;
498 unsigned id2
= (*e2
)->id
;
508 /* Hashtable helpers. */
510 struct iv_inv_expr_hasher
: free_ptr_hash
<iv_inv_expr_ent
>
512 static inline hashval_t
hash (const iv_inv_expr_ent
*);
513 static inline bool equal (const iv_inv_expr_ent
*, const iv_inv_expr_ent
*);
516 /* Return true if uses of type TYPE represent some form of address. */
519 address_p (use_type type
)
521 return type
== USE_REF_ADDRESS
|| type
== USE_PTR_ADDRESS
;
524 /* Hash function for loop invariant expressions. */
527 iv_inv_expr_hasher::hash (const iv_inv_expr_ent
*expr
)
532 /* Hash table equality function for expressions. */
535 iv_inv_expr_hasher::equal (const iv_inv_expr_ent
*expr1
,
536 const iv_inv_expr_ent
*expr2
)
538 return expr1
->hash
== expr2
->hash
539 && operand_equal_p (expr1
->expr
, expr2
->expr
, 0);
544 /* The currently optimized loop. */
545 struct loop
*current_loop
;
546 source_location loop_loc
;
548 /* Numbers of iterations for all exits of the current loop. */
549 hash_map
<edge
, tree_niter_desc
*> *niters
;
551 /* Number of registers used in it. */
554 /* The size of version_info array allocated. */
555 unsigned version_info_size
;
557 /* The array of information for the ssa names. */
558 struct version_info
*version_info
;
560 /* The hashtable of loop invariant expressions created
562 hash_table
<iv_inv_expr_hasher
> *inv_expr_tab
;
564 /* The bitmap of indices in version_info whose value was changed. */
567 /* The uses of induction variables. */
568 vec
<iv_group
*> vgroups
;
570 /* The candidates. */
571 vec
<iv_cand
*> vcands
;
573 /* A bitmap of important candidates. */
574 bitmap important_candidates
;
576 /* Cache used by tree_to_aff_combination_expand. */
577 hash_map
<tree
, name_expansion
*> *name_expansion_cache
;
579 /* The hashtable of common candidates derived from iv uses. */
580 hash_table
<iv_common_cand_hasher
> *iv_common_cand_tab
;
582 /* The common candidates. */
583 vec
<iv_common_cand
*> iv_common_cands
;
585 /* The maximum invariant variable id. */
586 unsigned max_inv_var_id
;
588 /* The maximum invariant expression id. */
589 unsigned max_inv_expr_id
;
591 /* Number of no_overflow BIVs which are not used in memory address. */
592 unsigned bivs_not_used_in_addr
;
594 /* Obstack for iv structure. */
595 struct obstack iv_obstack
;
597 /* Whether to consider just related and important candidates when replacing a
599 bool consider_all_candidates
;
601 /* Are we optimizing for speed? */
604 /* Whether the loop body includes any function calls. */
605 bool body_includes_call
;
607 /* Whether the loop body can only be exited via single exit. */
608 bool loop_single_exit_p
;
611 /* An assignment of iv candidates to uses. */
615 /* The number of uses covered by the assignment. */
618 /* Number of uses that cannot be expressed by the candidates in the set. */
621 /* Candidate assigned to a use, together with the related costs. */
622 struct cost_pair
**cand_for_group
;
624 /* Number of times each candidate is used. */
625 unsigned *n_cand_uses
;
627 /* The candidates used. */
630 /* The number of candidates in the set. */
633 /* The number of invariants needed, including both invariant variants and
634 invariant expressions. */
637 /* Total cost of expressing uses. */
638 comp_cost cand_use_cost
;
640 /* Total cost of candidates. */
643 /* Number of times each invariant variable is used. */
644 unsigned *n_inv_var_uses
;
646 /* Number of times each invariant expression is used. */
647 unsigned *n_inv_expr_uses
;
649 /* Total cost of the assignment. */
653 /* Difference of two iv candidate assignments. */
658 struct iv_group
*group
;
660 /* An old assignment (for rollback purposes). */
661 struct cost_pair
*old_cp
;
663 /* A new assignment. */
664 struct cost_pair
*new_cp
;
666 /* Next change in the list. */
667 struct iv_ca_delta
*next
;
670 /* Bound on number of candidates below that all candidates are considered. */
672 #define CONSIDER_ALL_CANDIDATES_BOUND \
673 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
675 /* If there are more iv occurrences, we just give up (it is quite unlikely that
676 optimizing such a loop would help, and it would take ages). */
678 #define MAX_CONSIDERED_GROUPS \
679 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
681 /* If there are at most this number of ivs in the set, try removing unnecessary
682 ivs from the set always. */
684 #define ALWAYS_PRUNE_CAND_SET_BOUND \
685 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
687 /* The list of trees for that the decl_rtl field must be reset is stored
690 static vec
<tree
> decl_rtl_to_reset
;
692 static comp_cost
force_expr_to_var_cost (tree
, bool);
694 /* The single loop exit if it dominates the latch, NULL otherwise. */
697 single_dom_exit (struct loop
*loop
)
699 edge exit
= single_exit (loop
);
704 if (!just_once_each_iteration_p (loop
, exit
->src
))
710 /* Dumps information about the induction variable IV to FILE. Don't dump
711 variable's name if DUMP_NAME is FALSE. The information is dumped with
712 preceding spaces indicated by INDENT_LEVEL. */
715 dump_iv (FILE *file
, struct iv
*iv
, bool dump_name
, unsigned indent_level
)
718 const char spaces
[9] = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\0'};
720 if (indent_level
> 4)
722 p
= spaces
+ 8 - (indent_level
<< 1);
724 fprintf (file
, "%sIV struct:\n", p
);
725 if (iv
->ssa_name
&& dump_name
)
727 fprintf (file
, "%s SSA_NAME:\t", p
);
728 print_generic_expr (file
, iv
->ssa_name
, TDF_SLIM
);
729 fprintf (file
, "\n");
732 fprintf (file
, "%s Type:\t", p
);
733 print_generic_expr (file
, TREE_TYPE (iv
->base
), TDF_SLIM
);
734 fprintf (file
, "\n");
736 fprintf (file
, "%s Base:\t", p
);
737 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
738 fprintf (file
, "\n");
740 fprintf (file
, "%s Step:\t", p
);
741 print_generic_expr (file
, iv
->step
, TDF_SLIM
);
742 fprintf (file
, "\n");
746 fprintf (file
, "%s Object:\t", p
);
747 print_generic_expr (file
, iv
->base_object
, TDF_SLIM
);
748 fprintf (file
, "\n");
751 fprintf (file
, "%s Biv:\t%c\n", p
, iv
->biv_p
? 'Y' : 'N');
753 fprintf (file
, "%s Overflowness wrto loop niter:\t%s\n",
754 p
, iv
->no_overflow
? "No-overflow" : "Overflow");
757 /* Dumps information about the USE to FILE. */
760 dump_use (FILE *file
, struct iv_use
*use
)
762 fprintf (file
, " Use %d.%d:\n", use
->group_id
, use
->id
);
763 fprintf (file
, " At stmt:\t");
764 print_gimple_stmt (file
, use
->stmt
, 0);
765 fprintf (file
, " At pos:\t");
767 print_generic_expr (file
, *use
->op_p
, TDF_SLIM
);
768 fprintf (file
, "\n");
769 dump_iv (file
, use
->iv
, false, 2);
772 /* Dumps information about the uses to FILE. */
775 dump_groups (FILE *file
, struct ivopts_data
*data
)
778 struct iv_group
*group
;
780 for (i
= 0; i
< data
->vgroups
.length (); i
++)
782 group
= data
->vgroups
[i
];
783 fprintf (file
, "Group %d:\n", group
->id
);
784 if (group
->type
== USE_NONLINEAR_EXPR
)
785 fprintf (file
, " Type:\tGENERIC\n");
786 else if (group
->type
== USE_REF_ADDRESS
)
787 fprintf (file
, " Type:\tREFERENCE ADDRESS\n");
788 else if (group
->type
== USE_PTR_ADDRESS
)
789 fprintf (file
, " Type:\tPOINTER ARGUMENT ADDRESS\n");
792 gcc_assert (group
->type
== USE_COMPARE
);
793 fprintf (file
, " Type:\tCOMPARE\n");
795 for (j
= 0; j
< group
->vuses
.length (); j
++)
796 dump_use (file
, group
->vuses
[j
]);
800 /* Dumps information about induction variable candidate CAND to FILE. */
803 dump_cand (FILE *file
, struct iv_cand
*cand
)
805 struct iv
*iv
= cand
->iv
;
807 fprintf (file
, "Candidate %d:\n", cand
->id
);
810 fprintf (file
, " Depend on inv.vars: ");
811 dump_bitmap (file
, cand
->inv_vars
);
815 fprintf (file
, " Depend on inv.exprs: ");
816 dump_bitmap (file
, cand
->inv_exprs
);
819 if (cand
->var_before
)
821 fprintf (file
, " Var befor: ");
822 print_generic_expr (file
, cand
->var_before
, TDF_SLIM
);
823 fprintf (file
, "\n");
827 fprintf (file
, " Var after: ");
828 print_generic_expr (file
, cand
->var_after
, TDF_SLIM
);
829 fprintf (file
, "\n");
835 fprintf (file
, " Incr POS: before exit test\n");
839 fprintf (file
, " Incr POS: before use %d\n", cand
->ainc_use
->id
);
843 fprintf (file
, " Incr POS: after use %d\n", cand
->ainc_use
->id
);
847 fprintf (file
, " Incr POS: at end\n");
851 fprintf (file
, " Incr POS: orig biv\n");
855 dump_iv (file
, iv
, false, 1);
858 /* Returns the info for ssa version VER. */
860 static inline struct version_info
*
861 ver_info (struct ivopts_data
*data
, unsigned ver
)
863 return data
->version_info
+ ver
;
866 /* Returns the info for ssa name NAME. */
868 static inline struct version_info
*
869 name_info (struct ivopts_data
*data
, tree name
)
871 return ver_info (data
, SSA_NAME_VERSION (name
));
874 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
878 stmt_after_ip_normal_pos (struct loop
*loop
, gimple
*stmt
)
880 basic_block bb
= ip_normal_pos (loop
), sbb
= gimple_bb (stmt
);
884 if (sbb
== loop
->latch
)
890 return stmt
== last_stmt (bb
);
893 /* Returns true if STMT if after the place where the original induction
894 variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
895 if the positions are identical. */
898 stmt_after_inc_pos (struct iv_cand
*cand
, gimple
*stmt
, bool true_if_equal
)
900 basic_block cand_bb
= gimple_bb (cand
->incremented_at
);
901 basic_block stmt_bb
= gimple_bb (stmt
);
903 if (!dominated_by_p (CDI_DOMINATORS
, stmt_bb
, cand_bb
))
906 if (stmt_bb
!= cand_bb
)
910 && gimple_uid (stmt
) == gimple_uid (cand
->incremented_at
))
912 return gimple_uid (stmt
) > gimple_uid (cand
->incremented_at
);
915 /* Returns true if STMT if after the place where the induction variable
916 CAND is incremented in LOOP. */
919 stmt_after_increment (struct loop
*loop
, struct iv_cand
*cand
, gimple
*stmt
)
927 return stmt_after_ip_normal_pos (loop
, stmt
);
931 return stmt_after_inc_pos (cand
, stmt
, false);
934 return stmt_after_inc_pos (cand
, stmt
, true);
941 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
944 abnormal_ssa_name_p (tree exp
)
949 if (TREE_CODE (exp
) != SSA_NAME
)
952 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp
) != 0;
955 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
956 abnormal phi node. Callback for for_each_index. */
959 idx_contains_abnormal_ssa_name_p (tree base
, tree
*index
,
960 void *data ATTRIBUTE_UNUSED
)
962 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
964 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 2)))
966 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 3)))
970 return !abnormal_ssa_name_p (*index
);
973 /* Returns true if EXPR contains a ssa name that occurs in an
974 abnormal phi node. */
977 contains_abnormal_ssa_name_p (tree expr
)
980 enum tree_code_class codeclass
;
985 code
= TREE_CODE (expr
);
986 codeclass
= TREE_CODE_CLASS (code
);
988 if (code
== SSA_NAME
)
989 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr
) != 0;
991 if (code
== INTEGER_CST
992 || is_gimple_min_invariant (expr
))
995 if (code
== ADDR_EXPR
)
996 return !for_each_index (&TREE_OPERAND (expr
, 0),
997 idx_contains_abnormal_ssa_name_p
,
1000 if (code
== COND_EXPR
)
1001 return contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0))
1002 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1))
1003 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 2));
1008 case tcc_comparison
:
1009 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1)))
1014 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0)))
1026 /* Returns the structure describing number of iterations determined from
1027 EXIT of DATA->current_loop, or NULL if something goes wrong. */
1029 static struct tree_niter_desc
*
1030 niter_for_exit (struct ivopts_data
*data
, edge exit
)
1032 struct tree_niter_desc
*desc
;
1033 tree_niter_desc
**slot
;
1037 data
->niters
= new hash_map
<edge
, tree_niter_desc
*>;
1041 slot
= data
->niters
->get (exit
);
1045 /* Try to determine number of iterations. We cannot safely work with ssa
1046 names that appear in phi nodes on abnormal edges, so that we do not
1047 create overlapping life ranges for them (PR 27283). */
1048 desc
= XNEW (struct tree_niter_desc
);
1049 if (!number_of_iterations_exit (data
->current_loop
,
1051 || contains_abnormal_ssa_name_p (desc
->niter
))
1056 data
->niters
->put (exit
, desc
);
1064 /* Returns the structure describing number of iterations determined from
1065 single dominating exit of DATA->current_loop, or NULL if something
1068 static struct tree_niter_desc
*
1069 niter_for_single_dom_exit (struct ivopts_data
*data
)
1071 edge exit
= single_dom_exit (data
->current_loop
);
1076 return niter_for_exit (data
, exit
);
1079 /* Initializes data structures used by the iv optimization pass, stored
1083 tree_ssa_iv_optimize_init (struct ivopts_data
*data
)
1085 data
->version_info_size
= 2 * num_ssa_names
;
1086 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
1087 data
->relevant
= BITMAP_ALLOC (NULL
);
1088 data
->important_candidates
= BITMAP_ALLOC (NULL
);
1089 data
->max_inv_var_id
= 0;
1090 data
->max_inv_expr_id
= 0;
1091 data
->niters
= NULL
;
1092 data
->vgroups
.create (20);
1093 data
->vcands
.create (20);
1094 data
->inv_expr_tab
= new hash_table
<iv_inv_expr_hasher
> (10);
1095 data
->name_expansion_cache
= NULL
;
1096 data
->iv_common_cand_tab
= new hash_table
<iv_common_cand_hasher
> (10);
1097 data
->iv_common_cands
.create (20);
1098 decl_rtl_to_reset
.create (20);
1099 gcc_obstack_init (&data
->iv_obstack
);
1102 /* Returns a memory object to that EXPR points. In case we are able to
1103 determine that it does not point to any such object, NULL is returned. */
1106 determine_base_object (tree expr
)
1108 enum tree_code code
= TREE_CODE (expr
);
1111 /* If this is a pointer casted to any type, we need to determine
1112 the base object for the pointer; so handle conversions before
1113 throwing away non-pointer expressions. */
1114 if (CONVERT_EXPR_P (expr
))
1115 return determine_base_object (TREE_OPERAND (expr
, 0));
1117 if (!POINTER_TYPE_P (TREE_TYPE (expr
)))
1126 obj
= TREE_OPERAND (expr
, 0);
1127 base
= get_base_address (obj
);
1132 if (TREE_CODE (base
) == MEM_REF
)
1133 return determine_base_object (TREE_OPERAND (base
, 0));
1135 return fold_convert (ptr_type_node
,
1136 build_fold_addr_expr (base
));
1138 case POINTER_PLUS_EXPR
:
1139 return determine_base_object (TREE_OPERAND (expr
, 0));
1143 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
1147 if (POLY_INT_CST_P (expr
))
1149 return fold_convert (ptr_type_node
, expr
);
1153 /* Return true if address expression with non-DECL_P operand appears
1157 contain_complex_addr_expr (tree expr
)
1162 switch (TREE_CODE (expr
))
1164 case POINTER_PLUS_EXPR
:
1167 res
|= contain_complex_addr_expr (TREE_OPERAND (expr
, 0));
1168 res
|= contain_complex_addr_expr (TREE_OPERAND (expr
, 1));
1172 return (!DECL_P (TREE_OPERAND (expr
, 0)));
1181 /* Allocates an induction variable with given initial value BASE and step STEP
1182 for loop LOOP. NO_OVERFLOW implies the iv doesn't overflow. */
1185 alloc_iv (struct ivopts_data
*data
, tree base
, tree step
,
1186 bool no_overflow
= false)
1189 struct iv
*iv
= (struct iv
*) obstack_alloc (&data
->iv_obstack
,
1190 sizeof (struct iv
));
1191 gcc_assert (step
!= NULL_TREE
);
1193 /* Lower address expression in base except ones with DECL_P as operand.
1195 1) More accurate cost can be computed for address expressions;
1196 2) Duplicate candidates won't be created for bases in different
1197 forms, like &a[0] and &a. */
1199 if ((TREE_CODE (expr
) == ADDR_EXPR
&& !DECL_P (TREE_OPERAND (expr
, 0)))
1200 || contain_complex_addr_expr (expr
))
1203 tree_to_aff_combination (expr
, TREE_TYPE (expr
), &comb
);
1204 base
= fold_convert (TREE_TYPE (base
), aff_combination_to_tree (&comb
));
1208 iv
->base_object
= determine_base_object (base
);
1211 iv
->nonlin_use
= NULL
;
1212 iv
->ssa_name
= NULL_TREE
;
1214 && !iv_can_overflow_p (data
->current_loop
, TREE_TYPE (base
),
1217 iv
->no_overflow
= no_overflow
;
1218 iv
->have_address_use
= false;
1223 /* Sets STEP and BASE for induction variable IV. NO_OVERFLOW implies the IV
1224 doesn't overflow. */
1227 set_iv (struct ivopts_data
*data
, tree iv
, tree base
, tree step
,
1230 struct version_info
*info
= name_info (data
, iv
);
1232 gcc_assert (!info
->iv
);
1234 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (iv
));
1235 info
->iv
= alloc_iv (data
, base
, step
, no_overflow
);
1236 info
->iv
->ssa_name
= iv
;
1239 /* Finds induction variable declaration for VAR. */
1242 get_iv (struct ivopts_data
*data
, tree var
)
1245 tree type
= TREE_TYPE (var
);
1247 if (!POINTER_TYPE_P (type
)
1248 && !INTEGRAL_TYPE_P (type
))
1251 if (!name_info (data
, var
)->iv
)
1253 bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1256 || !flow_bb_inside_loop_p (data
->current_loop
, bb
))
1257 set_iv (data
, var
, var
, build_int_cst (type
, 0), true);
1260 return name_info (data
, var
)->iv
;
1263 /* Return the first non-invariant ssa var found in EXPR. */
1266 extract_single_var_from_expr (tree expr
)
1270 enum tree_code code
;
1272 if (!expr
|| is_gimple_min_invariant (expr
))
1275 code
= TREE_CODE (expr
);
1276 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
1278 n
= TREE_OPERAND_LENGTH (expr
);
1279 for (i
= 0; i
< n
; i
++)
1281 tmp
= extract_single_var_from_expr (TREE_OPERAND (expr
, i
));
1287 return (TREE_CODE (expr
) == SSA_NAME
) ? expr
: NULL
;
1290 /* Finds basic ivs. */
1293 find_bivs (struct ivopts_data
*data
)
1297 tree step
, type
, base
, stop
;
1299 struct loop
*loop
= data
->current_loop
;
1302 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1306 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi
)))
1309 if (virtual_operand_p (PHI_RESULT (phi
)))
1312 if (!simple_iv (loop
, loop
, PHI_RESULT (phi
), &iv
, true))
1315 if (integer_zerop (iv
.step
))
1319 base
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1320 /* Stop expanding iv base at the first ssa var referred by iv step.
1321 Ideally we should stop at any ssa var, because that's expensive
1322 and unusual to happen, we just do it on the first one.
1324 See PR64705 for the rationale. */
1325 stop
= extract_single_var_from_expr (step
);
1326 base
= expand_simple_operations (base
, stop
);
1327 if (contains_abnormal_ssa_name_p (base
)
1328 || contains_abnormal_ssa_name_p (step
))
1331 type
= TREE_TYPE (PHI_RESULT (phi
));
1332 base
= fold_convert (type
, base
);
1335 if (POINTER_TYPE_P (type
))
1336 step
= convert_to_ptrofftype (step
);
1338 step
= fold_convert (type
, step
);
1341 set_iv (data
, PHI_RESULT (phi
), base
, step
, iv
.no_overflow
);
1348 /* Marks basic ivs. */
1351 mark_bivs (struct ivopts_data
*data
)
1356 struct iv
*iv
, *incr_iv
;
1357 struct loop
*loop
= data
->current_loop
;
1358 basic_block incr_bb
;
1361 data
->bivs_not_used_in_addr
= 0;
1362 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1366 iv
= get_iv (data
, PHI_RESULT (phi
));
1370 var
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
1371 def
= SSA_NAME_DEF_STMT (var
);
1372 /* Don't mark iv peeled from other one as biv. */
1374 && gimple_code (def
) == GIMPLE_PHI
1375 && gimple_bb (def
) == loop
->header
)
1378 incr_iv
= get_iv (data
, var
);
1382 /* If the increment is in the subloop, ignore it. */
1383 incr_bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1384 if (incr_bb
->loop_father
!= data
->current_loop
1385 || (incr_bb
->flags
& BB_IRREDUCIBLE_LOOP
))
1389 incr_iv
->biv_p
= true;
1390 if (iv
->no_overflow
)
1391 data
->bivs_not_used_in_addr
++;
1392 if (incr_iv
->no_overflow
)
1393 data
->bivs_not_used_in_addr
++;
1397 /* Checks whether STMT defines a linear induction variable and stores its
1398 parameters to IV. */
1401 find_givs_in_stmt_scev (struct ivopts_data
*data
, gimple
*stmt
, affine_iv
*iv
)
1404 struct loop
*loop
= data
->current_loop
;
1406 iv
->base
= NULL_TREE
;
1407 iv
->step
= NULL_TREE
;
1409 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1412 lhs
= gimple_assign_lhs (stmt
);
1413 if (TREE_CODE (lhs
) != SSA_NAME
)
1416 if (!simple_iv (loop
, loop_containing_stmt (stmt
), lhs
, iv
, true))
1419 /* Stop expanding iv base at the first ssa var referred by iv step.
1420 Ideally we should stop at any ssa var, because that's expensive
1421 and unusual to happen, we just do it on the first one.
1423 See PR64705 for the rationale. */
1424 stop
= extract_single_var_from_expr (iv
->step
);
1425 iv
->base
= expand_simple_operations (iv
->base
, stop
);
1426 if (contains_abnormal_ssa_name_p (iv
->base
)
1427 || contains_abnormal_ssa_name_p (iv
->step
))
1430 /* If STMT could throw, then do not consider STMT as defining a GIV.
1431 While this will suppress optimizations, we can not safely delete this
1432 GIV and associated statements, even if it appears it is not used. */
1433 if (stmt_could_throw_p (stmt
))
1439 /* Finds general ivs in statement STMT. */
1442 find_givs_in_stmt (struct ivopts_data
*data
, gimple
*stmt
)
1446 if (!find_givs_in_stmt_scev (data
, stmt
, &iv
))
1449 set_iv (data
, gimple_assign_lhs (stmt
), iv
.base
, iv
.step
, iv
.no_overflow
);
1452 /* Finds general ivs in basic block BB. */
1455 find_givs_in_bb (struct ivopts_data
*data
, basic_block bb
)
1457 gimple_stmt_iterator bsi
;
1459 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1460 find_givs_in_stmt (data
, gsi_stmt (bsi
));
1463 /* Finds general ivs. */
1466 find_givs (struct ivopts_data
*data
)
1468 struct loop
*loop
= data
->current_loop
;
1469 basic_block
*body
= get_loop_body_in_dom_order (loop
);
1472 for (i
= 0; i
< loop
->num_nodes
; i
++)
1473 find_givs_in_bb (data
, body
[i
]);
1477 /* For each ssa name defined in LOOP determines whether it is an induction
1478 variable and if so, its initial value and step. */
1481 find_induction_variables (struct ivopts_data
*data
)
1486 if (!find_bivs (data
))
1492 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1494 struct tree_niter_desc
*niter
= niter_for_single_dom_exit (data
);
1498 fprintf (dump_file
, " number of iterations ");
1499 print_generic_expr (dump_file
, niter
->niter
, TDF_SLIM
);
1500 if (!integer_zerop (niter
->may_be_zero
))
1502 fprintf (dump_file
, "; zero if ");
1503 print_generic_expr (dump_file
, niter
->may_be_zero
, TDF_SLIM
);
1505 fprintf (dump_file
, "\n");
1508 fprintf (dump_file
, "\n<Induction Vars>:\n");
1509 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
1511 struct version_info
*info
= ver_info (data
, i
);
1512 if (info
->iv
&& info
->iv
->step
&& !integer_zerop (info
->iv
->step
))
1513 dump_iv (dump_file
, ver_info (data
, i
)->iv
, true, 0);
1520 /* Records a use of TYPE at *USE_P in STMT whose value is IV in GROUP.
1521 For address type use, ADDR_BASE is the stripped IV base, ADDR_OFFSET
1522 is the const offset stripped from IV base and MEM_TYPE is the type
1523 of the memory being addressed. For uses of other types, ADDR_BASE
1524 and ADDR_OFFSET are zero by default and MEM_TYPE is NULL_TREE. */
1526 static struct iv_use
*
1527 record_use (struct iv_group
*group
, tree
*use_p
, struct iv
*iv
,
1528 gimple
*stmt
, enum use_type type
, tree mem_type
,
1529 tree addr_base
, poly_uint64 addr_offset
)
1531 struct iv_use
*use
= XCNEW (struct iv_use
);
1533 use
->id
= group
->vuses
.length ();
1534 use
->group_id
= group
->id
;
1536 use
->mem_type
= mem_type
;
1540 use
->addr_base
= addr_base
;
1541 use
->addr_offset
= addr_offset
;
1543 group
->vuses
.safe_push (use
);
1547 /* Checks whether OP is a loop-level invariant and if so, records it.
1548 NONLINEAR_USE is true if the invariant is used in a way we do not
1549 handle specially. */
1552 record_invariant (struct ivopts_data
*data
, tree op
, bool nonlinear_use
)
1555 struct version_info
*info
;
1557 if (TREE_CODE (op
) != SSA_NAME
1558 || virtual_operand_p (op
))
1561 bb
= gimple_bb (SSA_NAME_DEF_STMT (op
));
1563 && flow_bb_inside_loop_p (data
->current_loop
, bb
))
1566 info
= name_info (data
, op
);
1568 info
->has_nonlin_use
|= nonlinear_use
;
1570 info
->inv_id
= ++data
->max_inv_var_id
;
1571 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (op
));
1574 /* Record a group of TYPE. */
1576 static struct iv_group
*
1577 record_group (struct ivopts_data
*data
, enum use_type type
)
1579 struct iv_group
*group
= XCNEW (struct iv_group
);
1581 group
->id
= data
->vgroups
.length ();
1583 group
->related_cands
= BITMAP_ALLOC (NULL
);
1584 group
->vuses
.create (1);
1586 data
->vgroups
.safe_push (group
);
1590 /* Record a use of TYPE at *USE_P in STMT whose value is IV in a group.
1591 New group will be created if there is no existing group for the use.
1592 MEM_TYPE is the type of memory being addressed, or NULL if this
1593 isn't an address reference. */
1595 static struct iv_use
*
1596 record_group_use (struct ivopts_data
*data
, tree
*use_p
,
1597 struct iv
*iv
, gimple
*stmt
, enum use_type type
,
1600 tree addr_base
= NULL
;
1601 struct iv_group
*group
= NULL
;
1602 poly_uint64 addr_offset
= 0;
1604 /* Record non address type use in a new group. */
1605 if (address_p (type
))
1609 addr_base
= strip_offset (iv
->base
, &addr_offset
);
1610 for (i
= 0; i
< data
->vgroups
.length (); i
++)
1614 group
= data
->vgroups
[i
];
1615 use
= group
->vuses
[0];
1616 if (!address_p (use
->type
))
1619 /* Check if it has the same stripped base and step. */
1620 if (operand_equal_p (iv
->base_object
, use
->iv
->base_object
, 0)
1621 && operand_equal_p (iv
->step
, use
->iv
->step
, 0)
1622 && operand_equal_p (addr_base
, use
->addr_base
, 0))
1625 if (i
== data
->vgroups
.length ())
1630 group
= record_group (data
, type
);
1632 return record_use (group
, use_p
, iv
, stmt
, type
, mem_type
,
1633 addr_base
, addr_offset
);
1636 /* Checks whether the use OP is interesting and if so, records it. */
1638 static struct iv_use
*
1639 find_interesting_uses_op (struct ivopts_data
*data
, tree op
)
1645 if (TREE_CODE (op
) != SSA_NAME
)
1648 iv
= get_iv (data
, op
);
1654 gcc_assert (iv
->nonlin_use
->type
== USE_NONLINEAR_EXPR
);
1655 return iv
->nonlin_use
;
1658 if (integer_zerop (iv
->step
))
1660 record_invariant (data
, op
, true);
1664 stmt
= SSA_NAME_DEF_STMT (op
);
1665 gcc_assert (gimple_code (stmt
) == GIMPLE_PHI
|| is_gimple_assign (stmt
));
1667 use
= record_group_use (data
, NULL
, iv
, stmt
, USE_NONLINEAR_EXPR
, NULL_TREE
);
1668 iv
->nonlin_use
= use
;
1672 /* Indicate how compare type iv_use can be handled. */
1673 enum comp_iv_rewrite
1676 /* We may rewrite compare type iv_use by expressing value of the iv_use. */
1678 /* We may rewrite compare type iv_uses on both sides of comparison by
1679 expressing value of each iv_use. */
1681 /* We may rewrite compare type iv_use by expressing value of the iv_use
1682 or by eliminating it with other iv_cand. */
1686 /* Given a condition in statement STMT, checks whether it is a compare
1687 of an induction variable and an invariant. If this is the case,
1688 CONTROL_VAR is set to location of the iv, BOUND to the location of
1689 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1690 induction variable descriptions, and true is returned. If this is not
1691 the case, CONTROL_VAR and BOUND are set to the arguments of the
1692 condition and false is returned. */
1694 static enum comp_iv_rewrite
1695 extract_cond_operands (struct ivopts_data
*data
, gimple
*stmt
,
1696 tree
**control_var
, tree
**bound
,
1697 struct iv
**iv_var
, struct iv
**iv_bound
)
1699 /* The objects returned when COND has constant operands. */
1700 static struct iv const_iv
;
1702 tree
*op0
= &zero
, *op1
= &zero
;
1703 struct iv
*iv0
= &const_iv
, *iv1
= &const_iv
;
1704 enum comp_iv_rewrite rewrite_type
= COMP_IV_NA
;
1706 if (gimple_code (stmt
) == GIMPLE_COND
)
1708 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1709 op0
= gimple_cond_lhs_ptr (cond_stmt
);
1710 op1
= gimple_cond_rhs_ptr (cond_stmt
);
1714 op0
= gimple_assign_rhs1_ptr (stmt
);
1715 op1
= gimple_assign_rhs2_ptr (stmt
);
1718 zero
= integer_zero_node
;
1719 const_iv
.step
= integer_zero_node
;
1721 if (TREE_CODE (*op0
) == SSA_NAME
)
1722 iv0
= get_iv (data
, *op0
);
1723 if (TREE_CODE (*op1
) == SSA_NAME
)
1724 iv1
= get_iv (data
, *op1
);
1726 /* If both sides of comparison are IVs. We can express ivs on both end. */
1727 if (iv0
&& iv1
&& !integer_zerop (iv0
->step
) && !integer_zerop (iv1
->step
))
1729 rewrite_type
= COMP_IV_EXPR_2
;
1733 /* If none side of comparison is IV. */
1734 if ((!iv0
|| integer_zerop (iv0
->step
))
1735 && (!iv1
|| integer_zerop (iv1
->step
)))
1738 /* Control variable may be on the other side. */
1739 if (!iv0
|| integer_zerop (iv0
->step
))
1741 std::swap (op0
, op1
);
1742 std::swap (iv0
, iv1
);
1744 /* If one side is IV and the other side isn't loop invariant. */
1746 rewrite_type
= COMP_IV_EXPR
;
1747 /* If one side is IV and the other side is loop invariant. */
1748 else if (!integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
))
1749 rewrite_type
= COMP_IV_ELIM
;
1761 return rewrite_type
;
1764 /* Checks whether the condition in STMT is interesting and if so,
1768 find_interesting_uses_cond (struct ivopts_data
*data
, gimple
*stmt
)
1770 tree
*var_p
, *bound_p
;
1771 struct iv
*var_iv
, *bound_iv
;
1772 enum comp_iv_rewrite ret
;
1774 ret
= extract_cond_operands (data
, stmt
,
1775 &var_p
, &bound_p
, &var_iv
, &bound_iv
);
1776 if (ret
== COMP_IV_NA
)
1778 find_interesting_uses_op (data
, *var_p
);
1779 find_interesting_uses_op (data
, *bound_p
);
1783 record_group_use (data
, var_p
, var_iv
, stmt
, USE_COMPARE
, NULL_TREE
);
1784 /* Record compare type iv_use for iv on the other side of comparison. */
1785 if (ret
== COMP_IV_EXPR_2
)
1786 record_group_use (data
, bound_p
, bound_iv
, stmt
, USE_COMPARE
, NULL_TREE
);
1789 /* Returns the outermost loop EXPR is obviously invariant in
1790 relative to the loop LOOP, i.e. if all its operands are defined
1791 outside of the returned loop. Returns NULL if EXPR is not
1792 even obviously invariant in LOOP. */
1795 outermost_invariant_loop_for_expr (struct loop
*loop
, tree expr
)
1800 if (is_gimple_min_invariant (expr
))
1801 return current_loops
->tree_root
;
1803 if (TREE_CODE (expr
) == SSA_NAME
)
1805 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1808 if (flow_bb_inside_loop_p (loop
, def_bb
))
1810 return superloop_at_depth (loop
,
1811 loop_depth (def_bb
->loop_father
) + 1);
1814 return current_loops
->tree_root
;
1820 unsigned maxdepth
= 0;
1821 len
= TREE_OPERAND_LENGTH (expr
);
1822 for (i
= 0; i
< len
; i
++)
1824 struct loop
*ivloop
;
1825 if (!TREE_OPERAND (expr
, i
))
1828 ivloop
= outermost_invariant_loop_for_expr (loop
, TREE_OPERAND (expr
, i
));
1831 maxdepth
= MAX (maxdepth
, loop_depth (ivloop
));
1834 return superloop_at_depth (loop
, maxdepth
);
1837 /* Returns true if expression EXPR is obviously invariant in LOOP,
1838 i.e. if all its operands are defined outside of the LOOP. LOOP
1839 should not be the function body. */
1842 expr_invariant_in_loop_p (struct loop
*loop
, tree expr
)
1847 gcc_assert (loop_depth (loop
) > 0);
1849 if (is_gimple_min_invariant (expr
))
1852 if (TREE_CODE (expr
) == SSA_NAME
)
1854 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1856 && flow_bb_inside_loop_p (loop
, def_bb
))
1865 len
= TREE_OPERAND_LENGTH (expr
);
1866 for (i
= 0; i
< len
; i
++)
1867 if (TREE_OPERAND (expr
, i
)
1868 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (expr
, i
)))
1874 /* Given expression EXPR which computes inductive values with respect
1875 to loop recorded in DATA, this function returns biv from which EXPR
1876 is derived by tracing definition chains of ssa variables in EXPR. */
1879 find_deriving_biv_for_expr (struct ivopts_data
*data
, tree expr
)
1884 enum tree_code code
;
1887 if (expr
== NULL_TREE
)
1890 if (is_gimple_min_invariant (expr
))
1893 code
= TREE_CODE (expr
);
1894 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
1896 n
= TREE_OPERAND_LENGTH (expr
);
1897 for (i
= 0; i
< n
; i
++)
1899 iv
= find_deriving_biv_for_expr (data
, TREE_OPERAND (expr
, i
));
1905 /* Stop if it's not ssa name. */
1906 if (code
!= SSA_NAME
)
1909 iv
= get_iv (data
, expr
);
1910 if (!iv
|| integer_zerop (iv
->step
))
1915 stmt
= SSA_NAME_DEF_STMT (expr
);
1916 if (gphi
*phi
= dyn_cast
<gphi
*> (stmt
))
1919 use_operand_p use_p
;
1920 basic_block phi_bb
= gimple_bb (phi
);
1922 /* Skip loop header PHI that doesn't define biv. */
1923 if (phi_bb
->loop_father
== data
->current_loop
)
1926 if (virtual_operand_p (gimple_phi_result (phi
)))
1929 FOR_EACH_PHI_ARG (use_p
, phi
, iter
, SSA_OP_USE
)
1931 tree use
= USE_FROM_PTR (use_p
);
1932 iv
= find_deriving_biv_for_expr (data
, use
);
1938 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1941 e1
= gimple_assign_rhs1 (stmt
);
1942 code
= gimple_assign_rhs_code (stmt
);
1943 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1944 return find_deriving_biv_for_expr (data
, e1
);
1951 case POINTER_PLUS_EXPR
:
1952 /* Increments, decrements and multiplications by a constant
1954 e2
= gimple_assign_rhs2 (stmt
);
1955 iv
= find_deriving_biv_for_expr (data
, e2
);
1961 /* Casts are simple. */
1962 return find_deriving_biv_for_expr (data
, e1
);
1971 /* Record BIV, its predecessor and successor that they are used in
1972 address type uses. */
1975 record_biv_for_address_use (struct ivopts_data
*data
, struct iv
*biv
)
1978 tree type
, base_1
, base_2
;
1981 if (!biv
|| !biv
->biv_p
|| integer_zerop (biv
->step
)
1982 || biv
->have_address_use
|| !biv
->no_overflow
)
1985 type
= TREE_TYPE (biv
->base
);
1986 if (!INTEGRAL_TYPE_P (type
))
1989 biv
->have_address_use
= true;
1990 data
->bivs_not_used_in_addr
--;
1991 base_1
= fold_build2 (PLUS_EXPR
, type
, biv
->base
, biv
->step
);
1992 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
1994 struct iv
*iv
= ver_info (data
, i
)->iv
;
1996 if (!iv
|| !iv
->biv_p
|| integer_zerop (iv
->step
)
1997 || iv
->have_address_use
|| !iv
->no_overflow
)
2000 if (type
!= TREE_TYPE (iv
->base
)
2001 || !INTEGRAL_TYPE_P (TREE_TYPE (iv
->base
)))
2004 if (!operand_equal_p (biv
->step
, iv
->step
, 0))
2007 base_2
= fold_build2 (PLUS_EXPR
, type
, iv
->base
, iv
->step
);
2008 if (operand_equal_p (base_1
, iv
->base
, 0)
2009 || operand_equal_p (base_2
, biv
->base
, 0))
2011 iv
->have_address_use
= true;
2012 data
->bivs_not_used_in_addr
--;
2017 /* Cumulates the steps of indices into DATA and replaces their values with the
2018 initial ones. Returns false when the value of the index cannot be determined.
2019 Callback for for_each_index. */
2021 struct ifs_ivopts_data
2023 struct ivopts_data
*ivopts_data
;
2029 idx_find_step (tree base
, tree
*idx
, void *data
)
2031 struct ifs_ivopts_data
*dta
= (struct ifs_ivopts_data
*) data
;
2033 bool use_overflow_semantics
= false;
2034 tree step
, iv_base
, iv_step
, lbound
, off
;
2035 struct loop
*loop
= dta
->ivopts_data
->current_loop
;
2037 /* If base is a component ref, require that the offset of the reference
2039 if (TREE_CODE (base
) == COMPONENT_REF
)
2041 off
= component_ref_field_offset (base
);
2042 return expr_invariant_in_loop_p (loop
, off
);
2045 /* If base is array, first check whether we will be able to move the
2046 reference out of the loop (in order to take its address in strength
2047 reduction). In order for this to work we need both lower bound
2048 and step to be loop invariants. */
2049 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
2051 /* Moreover, for a range, the size needs to be invariant as well. */
2052 if (TREE_CODE (base
) == ARRAY_RANGE_REF
2053 && !expr_invariant_in_loop_p (loop
, TYPE_SIZE (TREE_TYPE (base
))))
2056 step
= array_ref_element_size (base
);
2057 lbound
= array_ref_low_bound (base
);
2059 if (!expr_invariant_in_loop_p (loop
, step
)
2060 || !expr_invariant_in_loop_p (loop
, lbound
))
2064 if (TREE_CODE (*idx
) != SSA_NAME
)
2067 iv
= get_iv (dta
->ivopts_data
, *idx
);
2071 /* XXX We produce for a base of *D42 with iv->base being &x[0]
2072 *&x[0], which is not folded and does not trigger the
2073 ARRAY_REF path below. */
2076 if (integer_zerop (iv
->step
))
2079 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
2081 step
= array_ref_element_size (base
);
2083 /* We only handle addresses whose step is an integer constant. */
2084 if (TREE_CODE (step
) != INTEGER_CST
)
2088 /* The step for pointer arithmetics already is 1 byte. */
2089 step
= size_one_node
;
2093 if (iv
->no_overflow
&& nowrap_type_p (TREE_TYPE (iv_step
)))
2094 use_overflow_semantics
= true;
2096 if (!convert_affine_scev (dta
->ivopts_data
->current_loop
,
2097 sizetype
, &iv_base
, &iv_step
, dta
->stmt
,
2098 use_overflow_semantics
))
2100 /* The index might wrap. */
2104 step
= fold_build2 (MULT_EXPR
, sizetype
, step
, iv_step
);
2105 dta
->step
= fold_build2 (PLUS_EXPR
, sizetype
, dta
->step
, step
);
2107 if (dta
->ivopts_data
->bivs_not_used_in_addr
)
2110 iv
= find_deriving_biv_for_expr (dta
->ivopts_data
, iv
->ssa_name
);
2112 record_biv_for_address_use (dta
->ivopts_data
, iv
);
2117 /* Records use in index IDX. Callback for for_each_index. Ivopts data
2118 object is passed to it in DATA. */
2121 idx_record_use (tree base
, tree
*idx
,
2124 struct ivopts_data
*data
= (struct ivopts_data
*) vdata
;
2125 find_interesting_uses_op (data
, *idx
);
2126 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
2128 find_interesting_uses_op (data
, array_ref_element_size (base
));
2129 find_interesting_uses_op (data
, array_ref_low_bound (base
));
2134 /* If we can prove that TOP = cst * BOT for some constant cst,
2135 store cst to MUL and return true. Otherwise return false.
2136 The returned value is always sign-extended, regardless of the
2137 signedness of TOP and BOT. */
2140 constant_multiple_of (tree top
, tree bot
, widest_int
*mul
)
2143 enum tree_code code
;
2144 unsigned precision
= TYPE_PRECISION (TREE_TYPE (top
));
2145 widest_int res
, p0
, p1
;
2150 if (operand_equal_p (top
, bot
, 0))
2156 code
= TREE_CODE (top
);
2160 mby
= TREE_OPERAND (top
, 1);
2161 if (TREE_CODE (mby
) != INTEGER_CST
)
2164 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &res
))
2167 *mul
= wi::sext (res
* wi::to_widest (mby
), precision
);
2172 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &p0
)
2173 || !constant_multiple_of (TREE_OPERAND (top
, 1), bot
, &p1
))
2176 if (code
== MINUS_EXPR
)
2178 *mul
= wi::sext (p0
+ p1
, precision
);
2182 if (TREE_CODE (bot
) != INTEGER_CST
)
2185 p0
= widest_int::from (wi::to_wide (top
), SIGNED
);
2186 p1
= widest_int::from (wi::to_wide (bot
), SIGNED
);
2189 *mul
= wi::sext (wi::divmod_trunc (p0
, p1
, SIGNED
, &res
), precision
);
2193 if (POLY_INT_CST_P (top
)
2194 && POLY_INT_CST_P (bot
)
2195 && constant_multiple_p (wi::to_poly_widest (top
),
2196 wi::to_poly_widest (bot
), mul
))
2203 /* Return true if memory reference REF with step STEP may be unaligned. */
2206 may_be_unaligned_p (tree ref
, tree step
)
2208 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
2209 thus they are not misaligned. */
2210 if (TREE_CODE (ref
) == TARGET_MEM_REF
)
2213 unsigned int align
= TYPE_ALIGN (TREE_TYPE (ref
));
2214 if (GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref
))) > align
)
2215 align
= GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref
)));
2217 unsigned HOST_WIDE_INT bitpos
;
2218 unsigned int ref_align
;
2219 get_object_alignment_1 (ref
, &ref_align
, &bitpos
);
2220 if (ref_align
< align
2221 || (bitpos
% align
) != 0
2222 || (bitpos
% BITS_PER_UNIT
) != 0)
2225 unsigned int trailing_zeros
= tree_ctz (step
);
2226 if (trailing_zeros
< HOST_BITS_PER_INT
2227 && (1U << trailing_zeros
) * BITS_PER_UNIT
< align
)
2233 /* Return true if EXPR may be non-addressable. */
2236 may_be_nonaddressable_p (tree expr
)
2238 switch (TREE_CODE (expr
))
2240 case TARGET_MEM_REF
:
2241 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
2242 target, thus they are always addressable. */
2246 /* Likewise for MEM_REFs, modulo the storage order. */
2247 return REF_REVERSE_STORAGE_ORDER (expr
);
2250 if (REF_REVERSE_STORAGE_ORDER (expr
))
2252 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
2255 if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr
, 0))))
2257 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr
, 1))
2258 || may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
2261 case ARRAY_RANGE_REF
:
2262 if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr
, 0))))
2264 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
2266 case VIEW_CONVERT_EXPR
:
2267 /* This kind of view-conversions may wrap non-addressable objects
2268 and make them look addressable. After some processing the
2269 non-addressability may be uncovered again, causing ADDR_EXPRs
2270 of inappropriate objects to be built. */
2271 if (is_gimple_reg (TREE_OPERAND (expr
, 0))
2272 || !is_gimple_addressable (TREE_OPERAND (expr
, 0)))
2274 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
2286 /* Finds addresses in *OP_P inside STMT. */
2289 find_interesting_uses_address (struct ivopts_data
*data
, gimple
*stmt
,
2292 tree base
= *op_p
, step
= size_zero_node
;
2294 struct ifs_ivopts_data ifs_ivopts_data
;
2296 /* Do not play with volatile memory references. A bit too conservative,
2297 perhaps, but safe. */
2298 if (gimple_has_volatile_ops (stmt
))
2301 /* Ignore bitfields for now. Not really something terribly complicated
2303 if (TREE_CODE (base
) == BIT_FIELD_REF
)
2306 base
= unshare_expr (base
);
2308 if (TREE_CODE (base
) == TARGET_MEM_REF
)
2310 tree type
= build_pointer_type (TREE_TYPE (base
));
2314 && TREE_CODE (TMR_BASE (base
)) == SSA_NAME
)
2316 civ
= get_iv (data
, TMR_BASE (base
));
2320 TMR_BASE (base
) = civ
->base
;
2323 if (TMR_INDEX2 (base
)
2324 && TREE_CODE (TMR_INDEX2 (base
)) == SSA_NAME
)
2326 civ
= get_iv (data
, TMR_INDEX2 (base
));
2330 TMR_INDEX2 (base
) = civ
->base
;
2333 if (TMR_INDEX (base
)
2334 && TREE_CODE (TMR_INDEX (base
)) == SSA_NAME
)
2336 civ
= get_iv (data
, TMR_INDEX (base
));
2340 TMR_INDEX (base
) = civ
->base
;
2345 if (TMR_STEP (base
))
2346 astep
= fold_build2 (MULT_EXPR
, type
, TMR_STEP (base
), astep
);
2348 step
= fold_build2 (PLUS_EXPR
, type
, step
, astep
);
2352 if (integer_zerop (step
))
2354 base
= tree_mem_ref_addr (type
, base
);
2358 ifs_ivopts_data
.ivopts_data
= data
;
2359 ifs_ivopts_data
.stmt
= stmt
;
2360 ifs_ivopts_data
.step
= size_zero_node
;
2361 if (!for_each_index (&base
, idx_find_step
, &ifs_ivopts_data
)
2362 || integer_zerop (ifs_ivopts_data
.step
))
2364 step
= ifs_ivopts_data
.step
;
2366 /* Check that the base expression is addressable. This needs
2367 to be done after substituting bases of IVs into it. */
2368 if (may_be_nonaddressable_p (base
))
2371 /* Moreover, on strict alignment platforms, check that it is
2372 sufficiently aligned. */
2373 if (STRICT_ALIGNMENT
&& may_be_unaligned_p (base
, step
))
2376 base
= build_fold_addr_expr (base
);
2378 /* Substituting bases of IVs into the base expression might
2379 have caused folding opportunities. */
2380 if (TREE_CODE (base
) == ADDR_EXPR
)
2382 tree
*ref
= &TREE_OPERAND (base
, 0);
2383 while (handled_component_p (*ref
))
2384 ref
= &TREE_OPERAND (*ref
, 0);
2385 if (TREE_CODE (*ref
) == MEM_REF
)
2387 tree tem
= fold_binary (MEM_REF
, TREE_TYPE (*ref
),
2388 TREE_OPERAND (*ref
, 0),
2389 TREE_OPERAND (*ref
, 1));
2396 civ
= alloc_iv (data
, base
, step
);
2397 /* Fail if base object of this memory reference is unknown. */
2398 if (civ
->base_object
== NULL_TREE
)
2401 record_group_use (data
, op_p
, civ
, stmt
, USE_REF_ADDRESS
, TREE_TYPE (*op_p
));
2405 for_each_index (op_p
, idx_record_use
, data
);
2408 /* Finds and records invariants used in STMT. */
2411 find_invariants_stmt (struct ivopts_data
*data
, gimple
*stmt
)
2414 use_operand_p use_p
;
2417 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
2419 op
= USE_FROM_PTR (use_p
);
2420 record_invariant (data
, op
, false);
2424 /* CALL calls an internal function. If operand *OP_P will become an
2425 address when the call is expanded, return the type of the memory
2426 being addressed, otherwise return null. */
2429 get_mem_type_for_internal_fn (gcall
*call
, tree
*op_p
)
2431 switch (gimple_call_internal_fn (call
))
2434 if (op_p
== gimple_call_arg_ptr (call
, 0))
2435 return TREE_TYPE (gimple_call_lhs (call
));
2438 case IFN_MASK_STORE
:
2439 if (op_p
== gimple_call_arg_ptr (call
, 0))
2440 return TREE_TYPE (gimple_call_arg (call
, 3));
2448 /* IV is a (non-address) iv that describes operand *OP_P of STMT.
2449 Return true if the operand will become an address when STMT
2450 is expanded and record the associated address use if so. */
2453 find_address_like_use (struct ivopts_data
*data
, gimple
*stmt
, tree
*op_p
,
2456 /* Fail if base object of this memory reference is unknown. */
2457 if (iv
->base_object
== NULL_TREE
)
2460 tree mem_type
= NULL_TREE
;
2461 if (gcall
*call
= dyn_cast
<gcall
*> (stmt
))
2462 if (gimple_call_internal_p (call
))
2463 mem_type
= get_mem_type_for_internal_fn (call
, op_p
);
2466 iv
= alloc_iv (data
, iv
->base
, iv
->step
);
2467 record_group_use (data
, op_p
, iv
, stmt
, USE_PTR_ADDRESS
, mem_type
);
2473 /* Finds interesting uses of induction variables in the statement STMT. */
2476 find_interesting_uses_stmt (struct ivopts_data
*data
, gimple
*stmt
)
2479 tree op
, *lhs
, *rhs
;
2481 use_operand_p use_p
;
2482 enum tree_code code
;
2484 find_invariants_stmt (data
, stmt
);
2486 if (gimple_code (stmt
) == GIMPLE_COND
)
2488 find_interesting_uses_cond (data
, stmt
);
2492 if (is_gimple_assign (stmt
))
2494 lhs
= gimple_assign_lhs_ptr (stmt
);
2495 rhs
= gimple_assign_rhs1_ptr (stmt
);
2497 if (TREE_CODE (*lhs
) == SSA_NAME
)
2499 /* If the statement defines an induction variable, the uses are not
2500 interesting by themselves. */
2502 iv
= get_iv (data
, *lhs
);
2504 if (iv
&& !integer_zerop (iv
->step
))
2508 code
= gimple_assign_rhs_code (stmt
);
2509 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
2510 && (REFERENCE_CLASS_P (*rhs
)
2511 || is_gimple_val (*rhs
)))
2513 if (REFERENCE_CLASS_P (*rhs
))
2514 find_interesting_uses_address (data
, stmt
, rhs
);
2516 find_interesting_uses_op (data
, *rhs
);
2518 if (REFERENCE_CLASS_P (*lhs
))
2519 find_interesting_uses_address (data
, stmt
, lhs
);
2522 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
2524 find_interesting_uses_cond (data
, stmt
);
2528 /* TODO -- we should also handle address uses of type
2530 memory = call (whatever);
2537 if (gimple_code (stmt
) == GIMPLE_PHI
2538 && gimple_bb (stmt
) == data
->current_loop
->header
)
2540 iv
= get_iv (data
, PHI_RESULT (stmt
));
2542 if (iv
&& !integer_zerop (iv
->step
))
2546 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
2548 op
= USE_FROM_PTR (use_p
);
2550 if (TREE_CODE (op
) != SSA_NAME
)
2553 iv
= get_iv (data
, op
);
2557 if (!find_address_like_use (data
, stmt
, use_p
->use
, iv
))
2558 find_interesting_uses_op (data
, op
);
2562 /* Finds interesting uses of induction variables outside of loops
2563 on loop exit edge EXIT. */
2566 find_interesting_uses_outside (struct ivopts_data
*data
, edge exit
)
2572 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); gsi_next (&psi
))
2575 def
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
2576 if (!virtual_operand_p (def
))
2577 find_interesting_uses_op (data
, def
);
2581 /* Return TRUE if OFFSET is within the range of [base + offset] addressing
2582 mode for memory reference represented by USE. */
2584 static GTY (()) vec
<rtx
, va_gc
> *addr_list
;
2587 addr_offset_valid_p (struct iv_use
*use
, poly_int64 offset
)
2590 unsigned list_index
;
2591 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (use
->iv
->base
));
2592 machine_mode addr_mode
, mem_mode
= TYPE_MODE (use
->mem_type
);
2594 list_index
= (unsigned) as
* MAX_MACHINE_MODE
+ (unsigned) mem_mode
;
2595 if (list_index
>= vec_safe_length (addr_list
))
2596 vec_safe_grow_cleared (addr_list
, list_index
+ MAX_MACHINE_MODE
);
2598 addr
= (*addr_list
)[list_index
];
2601 addr_mode
= targetm
.addr_space
.address_mode (as
);
2602 reg
= gen_raw_REG (addr_mode
, LAST_VIRTUAL_REGISTER
+ 1);
2603 addr
= gen_rtx_fmt_ee (PLUS
, addr_mode
, reg
, NULL_RTX
);
2604 (*addr_list
)[list_index
] = addr
;
2607 addr_mode
= GET_MODE (addr
);
2609 XEXP (addr
, 1) = gen_int_mode (offset
, addr_mode
);
2610 return (memory_address_addr_space_p (mem_mode
, addr
, as
));
2613 /* Comparison function to sort group in ascending order of addr_offset. */
2616 group_compare_offset (const void *a
, const void *b
)
2618 const struct iv_use
*const *u1
= (const struct iv_use
*const *) a
;
2619 const struct iv_use
*const *u2
= (const struct iv_use
*const *) b
;
2621 return compare_sizes_for_sort ((*u1
)->addr_offset
, (*u2
)->addr_offset
);
2624 /* Check if small groups should be split. Return true if no group
2625 contains more than two uses with distinct addr_offsets. Return
2626 false otherwise. We want to split such groups because:
2628 1) Small groups don't have much benefit and may interfer with
2629 general candidate selection.
2630 2) Size for problem with only small groups is usually small and
2631 general algorithm can handle it well.
2633 TODO -- Above claim may not hold when we want to merge memory
2634 accesses with conseuctive addresses. */
2637 split_small_address_groups_p (struct ivopts_data
*data
)
2639 unsigned int i
, j
, distinct
= 1;
2641 struct iv_group
*group
;
2643 for (i
= 0; i
< data
->vgroups
.length (); i
++)
2645 group
= data
->vgroups
[i
];
2646 if (group
->vuses
.length () == 1)
2649 gcc_assert (address_p (group
->type
));
2650 if (group
->vuses
.length () == 2)
2652 if (compare_sizes_for_sort (group
->vuses
[0]->addr_offset
,
2653 group
->vuses
[1]->addr_offset
) > 0)
2654 std::swap (group
->vuses
[0], group
->vuses
[1]);
2657 group
->vuses
.qsort (group_compare_offset
);
2663 for (pre
= group
->vuses
[0], j
= 1; j
< group
->vuses
.length (); j
++)
2665 if (maybe_ne (group
->vuses
[j
]->addr_offset
, pre
->addr_offset
))
2667 pre
= group
->vuses
[j
];
2676 return (distinct
<= 2);
2679 /* For each group of address type uses, this function further groups
2680 these uses according to the maximum offset supported by target's
2681 [base + offset] addressing mode. */
2684 split_address_groups (struct ivopts_data
*data
)
2687 /* Always split group. */
2688 bool split_p
= split_small_address_groups_p (data
);
2690 for (i
= 0; i
< data
->vgroups
.length (); i
++)
2692 struct iv_group
*new_group
= NULL
;
2693 struct iv_group
*group
= data
->vgroups
[i
];
2694 struct iv_use
*use
= group
->vuses
[0];
2697 use
->group_id
= group
->id
;
2698 if (group
->vuses
.length () == 1)
2701 gcc_assert (address_p (use
->type
));
2703 for (j
= 1; j
< group
->vuses
.length ();)
2705 struct iv_use
*next
= group
->vuses
[j
];
2706 poly_int64 offset
= next
->addr_offset
- use
->addr_offset
;
2708 /* Split group if aksed to, or the offset against the first
2709 use can't fit in offset part of addressing mode. IV uses
2710 having the same offset are still kept in one group. */
2711 if (maybe_ne (offset
, 0)
2712 && (split_p
|| !addr_offset_valid_p (use
, offset
)))
2715 new_group
= record_group (data
, group
->type
);
2716 group
->vuses
.ordered_remove (j
);
2717 new_group
->vuses
.safe_push (next
);
2722 next
->group_id
= group
->id
;
2728 /* Finds uses of the induction variables that are interesting. */
2731 find_interesting_uses (struct ivopts_data
*data
)
2734 gimple_stmt_iterator bsi
;
2735 basic_block
*body
= get_loop_body (data
->current_loop
);
2739 for (i
= 0; i
< data
->current_loop
->num_nodes
; i
++)
2744 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2745 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2746 && !flow_bb_inside_loop_p (data
->current_loop
, e
->dest
))
2747 find_interesting_uses_outside (data
, e
);
2749 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2750 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2751 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2752 if (!is_gimple_debug (gsi_stmt (bsi
)))
2753 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2757 split_address_groups (data
);
2759 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2761 fprintf (dump_file
, "\n<IV Groups>:\n");
2762 dump_groups (dump_file
, data
);
2763 fprintf (dump_file
, "\n");
2767 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
2768 is true, assume we are inside an address. If TOP_COMPREF is true, assume
2769 we are at the top-level of the processed address. */
2772 strip_offset_1 (tree expr
, bool inside_addr
, bool top_compref
,
2775 tree op0
= NULL_TREE
, op1
= NULL_TREE
, tmp
, step
;
2776 enum tree_code code
;
2777 tree type
, orig_type
= TREE_TYPE (expr
);
2778 poly_int64 off0
, off1
;
2780 tree orig_expr
= expr
;
2784 type
= TREE_TYPE (expr
);
2785 code
= TREE_CODE (expr
);
2790 case POINTER_PLUS_EXPR
:
2793 op0
= TREE_OPERAND (expr
, 0);
2794 op1
= TREE_OPERAND (expr
, 1);
2796 op0
= strip_offset_1 (op0
, false, false, &off0
);
2797 op1
= strip_offset_1 (op1
, false, false, &off1
);
2799 *offset
= (code
== MINUS_EXPR
? off0
- off1
: off0
+ off1
);
2800 if (op0
== TREE_OPERAND (expr
, 0)
2801 && op1
== TREE_OPERAND (expr
, 1))
2804 if (integer_zerop (op1
))
2806 else if (integer_zerop (op0
))
2808 if (code
== MINUS_EXPR
)
2809 expr
= fold_build1 (NEGATE_EXPR
, type
, op1
);
2814 expr
= fold_build2 (code
, type
, op0
, op1
);
2816 return fold_convert (orig_type
, expr
);
2819 op1
= TREE_OPERAND (expr
, 1);
2820 if (!cst_and_fits_in_hwi (op1
))
2823 op0
= TREE_OPERAND (expr
, 0);
2824 op0
= strip_offset_1 (op0
, false, false, &off0
);
2825 if (op0
== TREE_OPERAND (expr
, 0))
2828 *offset
= off0
* int_cst_value (op1
);
2829 if (integer_zerop (op0
))
2832 expr
= fold_build2 (MULT_EXPR
, type
, op0
, op1
);
2834 return fold_convert (orig_type
, expr
);
2837 case ARRAY_RANGE_REF
:
2841 step
= array_ref_element_size (expr
);
2842 if (!cst_and_fits_in_hwi (step
))
2845 st
= int_cst_value (step
);
2846 op1
= TREE_OPERAND (expr
, 1);
2847 op1
= strip_offset_1 (op1
, false, false, &off1
);
2848 *offset
= off1
* st
;
2851 && integer_zerop (op1
))
2853 /* Strip the component reference completely. */
2854 op0
= TREE_OPERAND (expr
, 0);
2855 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2868 tmp
= component_ref_field_offset (expr
);
2869 field
= TREE_OPERAND (expr
, 1);
2871 && cst_and_fits_in_hwi (tmp
)
2872 && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field
)))
2874 HOST_WIDE_INT boffset
, abs_off
;
2876 /* Strip the component reference completely. */
2877 op0
= TREE_OPERAND (expr
, 0);
2878 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2879 boffset
= int_cst_value (DECL_FIELD_BIT_OFFSET (field
));
2880 abs_off
= abs_hwi (boffset
) / BITS_PER_UNIT
;
2884 *offset
= off0
+ int_cst_value (tmp
) + abs_off
;
2891 op0
= TREE_OPERAND (expr
, 0);
2892 op0
= strip_offset_1 (op0
, true, true, &off0
);
2895 if (op0
== TREE_OPERAND (expr
, 0))
2898 expr
= build_fold_addr_expr (op0
);
2899 return fold_convert (orig_type
, expr
);
2902 /* ??? Offset operand? */
2903 inside_addr
= false;
2907 if (ptrdiff_tree_p (expr
, offset
) && maybe_ne (*offset
, 0))
2908 return build_int_cst (orig_type
, 0);
2912 /* Default handling of expressions for that we want to recurse into
2913 the first operand. */
2914 op0
= TREE_OPERAND (expr
, 0);
2915 op0
= strip_offset_1 (op0
, inside_addr
, false, &off0
);
2918 if (op0
== TREE_OPERAND (expr
, 0)
2919 && (!op1
|| op1
== TREE_OPERAND (expr
, 1)))
2922 expr
= copy_node (expr
);
2923 TREE_OPERAND (expr
, 0) = op0
;
2925 TREE_OPERAND (expr
, 1) = op1
;
2927 /* Inside address, we might strip the top level component references,
2928 thus changing type of the expression. Handling of ADDR_EXPR
2930 expr
= fold_convert (orig_type
, expr
);
2935 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2938 strip_offset (tree expr
, poly_uint64_pod
*offset
)
2941 tree core
= strip_offset_1 (expr
, false, false, &off
);
2946 /* Returns variant of TYPE that can be used as base for different uses.
2947 We return unsigned type with the same precision, which avoids problems
2951 generic_type_for (tree type
)
2953 if (POINTER_TYPE_P (type
))
2954 return unsigned_type_for (type
);
2956 if (TYPE_UNSIGNED (type
))
2959 return unsigned_type_for (type
);
2962 /* Private data for walk_tree. */
2964 struct walk_tree_data
2967 struct ivopts_data
*idata
;
2970 /* Callback function for walk_tree, it records invariants and symbol
2971 reference in *EXPR_P. DATA is the structure storing result info. */
2974 find_inv_vars_cb (tree
*expr_p
, int *ws ATTRIBUTE_UNUSED
, void *data
)
2977 struct version_info
*info
;
2978 struct walk_tree_data
*wdata
= (struct walk_tree_data
*) data
;
2980 if (TREE_CODE (op
) != SSA_NAME
)
2983 info
= name_info (wdata
->idata
, op
);
2984 /* Because we expand simple operations when finding IVs, loop invariant
2985 variable that isn't referred by the original loop could be used now.
2986 Record such invariant variables here. */
2989 struct ivopts_data
*idata
= wdata
->idata
;
2990 basic_block bb
= gimple_bb (SSA_NAME_DEF_STMT (op
));
2992 if (!bb
|| !flow_bb_inside_loop_p (idata
->current_loop
, bb
))
2994 set_iv (idata
, op
, op
, build_int_cst (TREE_TYPE (op
), 0), true);
2995 record_invariant (idata
, op
, false);
2998 if (!info
->inv_id
|| info
->has_nonlin_use
)
3001 if (!*wdata
->inv_vars
)
3002 *wdata
->inv_vars
= BITMAP_ALLOC (NULL
);
3003 bitmap_set_bit (*wdata
->inv_vars
, info
->inv_id
);
3008 /* Records invariants in *EXPR_P. INV_VARS is the bitmap to that we should
3012 find_inv_vars (struct ivopts_data
*data
, tree
*expr_p
, bitmap
*inv_vars
)
3014 struct walk_tree_data wdata
;
3020 wdata
.inv_vars
= inv_vars
;
3021 walk_tree (expr_p
, find_inv_vars_cb
, &wdata
, NULL
);
3024 /* Get entry from invariant expr hash table for INV_EXPR. New entry
3025 will be recorded if it doesn't exist yet. Given below two exprs:
3026 inv_expr + cst1, inv_expr + cst2
3027 It's hard to make decision whether constant part should be stripped
3028 or not. We choose to not strip based on below facts:
3029 1) We need to count ADD cost for constant part if it's stripped,
3030 which is't always trivial where this functions is called.
3031 2) Stripping constant away may be conflict with following loop
3032 invariant hoisting pass.
3033 3) Not stripping constant away results in more invariant exprs,
3034 which usually leads to decision preferring lower reg pressure. */
3036 static iv_inv_expr_ent
*
3037 get_loop_invariant_expr (struct ivopts_data
*data
, tree inv_expr
)
3039 STRIP_NOPS (inv_expr
);
3041 if (poly_int_tree_p (inv_expr
)
3042 || TREE_CODE (inv_expr
) == SSA_NAME
)
3045 /* Don't strip constant part away as we used to. */
3047 /* Stores EXPR in DATA->inv_expr_tab, return pointer to iv_inv_expr_ent. */
3048 struct iv_inv_expr_ent ent
;
3049 ent
.expr
= inv_expr
;
3050 ent
.hash
= iterative_hash_expr (inv_expr
, 0);
3051 struct iv_inv_expr_ent
**slot
= data
->inv_expr_tab
->find_slot (&ent
, INSERT
);
3055 *slot
= XNEW (struct iv_inv_expr_ent
);
3056 (*slot
)->expr
= inv_expr
;
3057 (*slot
)->hash
= ent
.hash
;
3058 (*slot
)->id
= ++data
->max_inv_expr_id
;
3064 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
3065 position to POS. If USE is not NULL, the candidate is set as related to
3066 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
3067 replacement of the final value of the iv by a direct computation. */
3069 static struct iv_cand
*
3070 add_candidate_1 (struct ivopts_data
*data
,
3071 tree base
, tree step
, bool important
, enum iv_position pos
,
3072 struct iv_use
*use
, gimple
*incremented_at
,
3073 struct iv
*orig_iv
= NULL
)
3076 struct iv_cand
*cand
= NULL
;
3077 tree type
, orig_type
;
3079 gcc_assert (base
&& step
);
3081 /* -fkeep-gc-roots-live means that we have to keep a real pointer
3082 live, but the ivopts code may replace a real pointer with one
3083 pointing before or after the memory block that is then adjusted
3084 into the memory block during the loop. FIXME: It would likely be
3085 better to actually force the pointer live and still use ivopts;
3086 for example, it would be enough to write the pointer into memory
3087 and keep it there until after the loop. */
3088 if (flag_keep_gc_roots_live
&& POINTER_TYPE_P (TREE_TYPE (base
)))
3091 /* For non-original variables, make sure their values are computed in a type
3092 that does not invoke undefined behavior on overflows (since in general,
3093 we cannot prove that these induction variables are non-wrapping). */
3094 if (pos
!= IP_ORIGINAL
)
3096 orig_type
= TREE_TYPE (base
);
3097 type
= generic_type_for (orig_type
);
3098 if (type
!= orig_type
)
3100 base
= fold_convert (type
, base
);
3101 step
= fold_convert (type
, step
);
3105 for (i
= 0; i
< data
->vcands
.length (); i
++)
3107 cand
= data
->vcands
[i
];
3109 if (cand
->pos
!= pos
)
3112 if (cand
->incremented_at
!= incremented_at
3113 || ((pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
3114 && cand
->ainc_use
!= use
))
3117 if (operand_equal_p (base
, cand
->iv
->base
, 0)
3118 && operand_equal_p (step
, cand
->iv
->step
, 0)
3119 && (TYPE_PRECISION (TREE_TYPE (base
))
3120 == TYPE_PRECISION (TREE_TYPE (cand
->iv
->base
))))
3124 if (i
== data
->vcands
.length ())
3126 cand
= XCNEW (struct iv_cand
);
3128 cand
->iv
= alloc_iv (data
, base
, step
);
3130 if (pos
!= IP_ORIGINAL
)
3132 cand
->var_before
= create_tmp_var_raw (TREE_TYPE (base
), "ivtmp");
3133 cand
->var_after
= cand
->var_before
;
3135 cand
->important
= important
;
3136 cand
->incremented_at
= incremented_at
;
3137 data
->vcands
.safe_push (cand
);
3139 if (!poly_int_tree_p (step
))
3141 find_inv_vars (data
, &step
, &cand
->inv_vars
);
3143 iv_inv_expr_ent
*inv_expr
= get_loop_invariant_expr (data
, step
);
3144 /* Share bitmap between inv_vars and inv_exprs for cand. */
3145 if (inv_expr
!= NULL
)
3147 cand
->inv_exprs
= cand
->inv_vars
;
3148 cand
->inv_vars
= NULL
;
3149 if (cand
->inv_exprs
)
3150 bitmap_clear (cand
->inv_exprs
);
3152 cand
->inv_exprs
= BITMAP_ALLOC (NULL
);
3154 bitmap_set_bit (cand
->inv_exprs
, inv_expr
->id
);
3158 if (pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
3159 cand
->ainc_use
= use
;
3161 cand
->ainc_use
= NULL
;
3163 cand
->orig_iv
= orig_iv
;
3164 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3165 dump_cand (dump_file
, cand
);
3168 cand
->important
|= important
;
3170 /* Relate candidate to the group for which it is added. */
3172 bitmap_set_bit (data
->vgroups
[use
->group_id
]->related_cands
, i
);
3177 /* Returns true if incrementing the induction variable at the end of the LOOP
3180 The purpose is to avoid splitting latch edge with a biv increment, thus
3181 creating a jump, possibly confusing other optimization passes and leaving
3182 less freedom to scheduler. So we allow IP_END only if IP_NORMAL is not
3183 available (so we do not have a better alternative), or if the latch edge
3184 is already nonempty. */
3187 allow_ip_end_pos_p (struct loop
*loop
)
3189 if (!ip_normal_pos (loop
))
3192 if (!empty_block_p (ip_end_pos (loop
)))
3198 /* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
3199 Important field is set to IMPORTANT. */
3202 add_autoinc_candidates (struct ivopts_data
*data
, tree base
, tree step
,
3203 bool important
, struct iv_use
*use
)
3205 basic_block use_bb
= gimple_bb (use
->stmt
);
3206 machine_mode mem_mode
;
3207 unsigned HOST_WIDE_INT cstepi
;
3209 /* If we insert the increment in any position other than the standard
3210 ones, we must ensure that it is incremented once per iteration.
3211 It must not be in an inner nested loop, or one side of an if
3213 if (use_bb
->loop_father
!= data
->current_loop
3214 || !dominated_by_p (CDI_DOMINATORS
, data
->current_loop
->latch
, use_bb
)
3215 || stmt_can_throw_internal (use
->stmt
)
3216 || !cst_and_fits_in_hwi (step
))
3219 cstepi
= int_cst_value (step
);
3221 mem_mode
= TYPE_MODE (use
->mem_type
);
3222 if (((USE_LOAD_PRE_INCREMENT (mem_mode
)
3223 || USE_STORE_PRE_INCREMENT (mem_mode
))
3224 && known_eq (GET_MODE_SIZE (mem_mode
), cstepi
))
3225 || ((USE_LOAD_PRE_DECREMENT (mem_mode
)
3226 || USE_STORE_PRE_DECREMENT (mem_mode
))
3227 && known_eq (GET_MODE_SIZE (mem_mode
), -cstepi
)))
3229 enum tree_code code
= MINUS_EXPR
;
3231 tree new_step
= step
;
3233 if (POINTER_TYPE_P (TREE_TYPE (base
)))
3235 new_step
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (step
), step
);
3236 code
= POINTER_PLUS_EXPR
;
3239 new_step
= fold_convert (TREE_TYPE (base
), new_step
);
3240 new_base
= fold_build2 (code
, TREE_TYPE (base
), base
, new_step
);
3241 add_candidate_1 (data
, new_base
, step
, important
, IP_BEFORE_USE
, use
,
3244 if (((USE_LOAD_POST_INCREMENT (mem_mode
)
3245 || USE_STORE_POST_INCREMENT (mem_mode
))
3246 && known_eq (GET_MODE_SIZE (mem_mode
), cstepi
))
3247 || ((USE_LOAD_POST_DECREMENT (mem_mode
)
3248 || USE_STORE_POST_DECREMENT (mem_mode
))
3249 && known_eq (GET_MODE_SIZE (mem_mode
), -cstepi
)))
3251 add_candidate_1 (data
, base
, step
, important
, IP_AFTER_USE
, use
,
3256 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
3257 position to POS. If USE is not NULL, the candidate is set as related to
3258 it. The candidate computation is scheduled before exit condition and at
3262 add_candidate (struct ivopts_data
*data
,
3263 tree base
, tree step
, bool important
, struct iv_use
*use
,
3264 struct iv
*orig_iv
= NULL
)
3266 if (ip_normal_pos (data
->current_loop
))
3267 add_candidate_1 (data
, base
, step
, important
,
3268 IP_NORMAL
, use
, NULL
, orig_iv
);
3269 if (ip_end_pos (data
->current_loop
)
3270 && allow_ip_end_pos_p (data
->current_loop
))
3271 add_candidate_1 (data
, base
, step
, important
, IP_END
, use
, NULL
, orig_iv
);
3274 /* Adds standard iv candidates. */
3277 add_standard_iv_candidates (struct ivopts_data
*data
)
3279 add_candidate (data
, integer_zero_node
, integer_one_node
, true, NULL
);
3281 /* The same for a double-integer type if it is still fast enough. */
3283 (long_integer_type_node
) > TYPE_PRECISION (integer_type_node
)
3284 && TYPE_PRECISION (long_integer_type_node
) <= BITS_PER_WORD
)
3285 add_candidate (data
, build_int_cst (long_integer_type_node
, 0),
3286 build_int_cst (long_integer_type_node
, 1), true, NULL
);
3288 /* The same for a double-integer type if it is still fast enough. */
3290 (long_long_integer_type_node
) > TYPE_PRECISION (long_integer_type_node
)
3291 && TYPE_PRECISION (long_long_integer_type_node
) <= BITS_PER_WORD
)
3292 add_candidate (data
, build_int_cst (long_long_integer_type_node
, 0),
3293 build_int_cst (long_long_integer_type_node
, 1), true, NULL
);
3297 /* Adds candidates bases on the old induction variable IV. */
3300 add_iv_candidate_for_biv (struct ivopts_data
*data
, struct iv
*iv
)
3304 struct iv_cand
*cand
;
3306 /* Check if this biv is used in address type use. */
3307 if (iv
->no_overflow
&& iv
->have_address_use
3308 && INTEGRAL_TYPE_P (TREE_TYPE (iv
->base
))
3309 && TYPE_PRECISION (TREE_TYPE (iv
->base
)) < TYPE_PRECISION (sizetype
))
3311 tree base
= fold_convert (sizetype
, iv
->base
);
3312 tree step
= fold_convert (sizetype
, iv
->step
);
3314 /* Add iv cand of same precision as index part in TARGET_MEM_REF. */
3315 add_candidate (data
, base
, step
, true, NULL
, iv
);
3316 /* Add iv cand of the original type only if it has nonlinear use. */
3318 add_candidate (data
, iv
->base
, iv
->step
, true, NULL
);
3321 add_candidate (data
, iv
->base
, iv
->step
, true, NULL
);
3323 /* The same, but with initial value zero. */
3324 if (POINTER_TYPE_P (TREE_TYPE (iv
->base
)))
3325 add_candidate (data
, size_int (0), iv
->step
, true, NULL
);
3327 add_candidate (data
, build_int_cst (TREE_TYPE (iv
->base
), 0),
3328 iv
->step
, true, NULL
);
3330 phi
= SSA_NAME_DEF_STMT (iv
->ssa_name
);
3331 if (gimple_code (phi
) == GIMPLE_PHI
)
3333 /* Additionally record the possibility of leaving the original iv
3335 def
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (data
->current_loop
));
3336 /* Don't add candidate if it's from another PHI node because
3337 it's an affine iv appearing in the form of PEELED_CHREC. */
3338 phi
= SSA_NAME_DEF_STMT (def
);
3339 if (gimple_code (phi
) != GIMPLE_PHI
)
3341 cand
= add_candidate_1 (data
,
3342 iv
->base
, iv
->step
, true, IP_ORIGINAL
, NULL
,
3343 SSA_NAME_DEF_STMT (def
));
3346 cand
->var_before
= iv
->ssa_name
;
3347 cand
->var_after
= def
;
3351 gcc_assert (gimple_bb (phi
) == data
->current_loop
->header
);
3355 /* Adds candidates based on the old induction variables. */
3358 add_iv_candidate_for_bivs (struct ivopts_data
*data
)
3364 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
3366 iv
= ver_info (data
, i
)->iv
;
3367 if (iv
&& iv
->biv_p
&& !integer_zerop (iv
->step
))
3368 add_iv_candidate_for_biv (data
, iv
);
3372 /* Record common candidate {BASE, STEP} derived from USE in hashtable. */
3375 record_common_cand (struct ivopts_data
*data
, tree base
,
3376 tree step
, struct iv_use
*use
)
3378 struct iv_common_cand ent
;
3379 struct iv_common_cand
**slot
;
3383 ent
.hash
= iterative_hash_expr (base
, 0);
3384 ent
.hash
= iterative_hash_expr (step
, ent
.hash
);
3386 slot
= data
->iv_common_cand_tab
->find_slot (&ent
, INSERT
);
3389 *slot
= new iv_common_cand ();
3390 (*slot
)->base
= base
;
3391 (*slot
)->step
= step
;
3392 (*slot
)->uses
.create (8);
3393 (*slot
)->hash
= ent
.hash
;
3394 data
->iv_common_cands
.safe_push ((*slot
));
3397 gcc_assert (use
!= NULL
);
3398 (*slot
)->uses
.safe_push (use
);
3402 /* Comparison function used to sort common candidates. */
3405 common_cand_cmp (const void *p1
, const void *p2
)
3408 const struct iv_common_cand
*const *const ccand1
3409 = (const struct iv_common_cand
*const *)p1
;
3410 const struct iv_common_cand
*const *const ccand2
3411 = (const struct iv_common_cand
*const *)p2
;
3413 n1
= (*ccand1
)->uses
.length ();
3414 n2
= (*ccand2
)->uses
.length ();
3418 /* Adds IV candidates based on common candidated recorded. */
3421 add_iv_candidate_derived_from_uses (struct ivopts_data
*data
)
3424 struct iv_cand
*cand_1
, *cand_2
;
3426 data
->iv_common_cands
.qsort (common_cand_cmp
);
3427 for (i
= 0; i
< data
->iv_common_cands
.length (); i
++)
3429 struct iv_common_cand
*ptr
= data
->iv_common_cands
[i
];
3431 /* Only add IV candidate if it's derived from multiple uses. */
3432 if (ptr
->uses
.length () <= 1)
3437 if (ip_normal_pos (data
->current_loop
))
3438 cand_1
= add_candidate_1 (data
, ptr
->base
, ptr
->step
,
3439 false, IP_NORMAL
, NULL
, NULL
);
3441 if (ip_end_pos (data
->current_loop
)
3442 && allow_ip_end_pos_p (data
->current_loop
))
3443 cand_2
= add_candidate_1 (data
, ptr
->base
, ptr
->step
,
3444 false, IP_END
, NULL
, NULL
);
3446 /* Bind deriving uses and the new candidates. */
3447 for (j
= 0; j
< ptr
->uses
.length (); j
++)
3449 struct iv_group
*group
= data
->vgroups
[ptr
->uses
[j
]->group_id
];
3451 bitmap_set_bit (group
->related_cands
, cand_1
->id
);
3453 bitmap_set_bit (group
->related_cands
, cand_2
->id
);
3457 /* Release data since it is useless from this point. */
3458 data
->iv_common_cand_tab
->empty ();
3459 data
->iv_common_cands
.truncate (0);
3462 /* Adds candidates based on the value of USE's iv. */
3465 add_iv_candidate_for_use (struct ivopts_data
*data
, struct iv_use
*use
)
3470 struct iv
*iv
= use
->iv
;
3472 add_candidate (data
, iv
->base
, iv
->step
, false, use
);
3474 /* Record common candidate for use in case it can be shared by others. */
3475 record_common_cand (data
, iv
->base
, iv
->step
, use
);
3477 /* Record common candidate with initial value zero. */
3478 basetype
= TREE_TYPE (iv
->base
);
3479 if (POINTER_TYPE_P (basetype
))
3480 basetype
= sizetype
;
3481 record_common_cand (data
, build_int_cst (basetype
, 0), iv
->step
, use
);
3483 /* Record common candidate with constant offset stripped in base.
3484 Like the use itself, we also add candidate directly for it. */
3485 base
= strip_offset (iv
->base
, &offset
);
3486 if (maybe_ne (offset
, 0U) || base
!= iv
->base
)
3488 record_common_cand (data
, base
, iv
->step
, use
);
3489 add_candidate (data
, base
, iv
->step
, false, use
);
3492 /* Record common candidate with base_object removed in base. */
3495 if (iv
->base_object
!= NULL
&& TREE_CODE (base
) == POINTER_PLUS_EXPR
)
3497 tree step
= iv
->step
;
3500 base
= TREE_OPERAND (base
, 1);
3501 step
= fold_convert (sizetype
, step
);
3502 record_common_cand (data
, base
, step
, use
);
3503 /* Also record common candidate with offset stripped. */
3504 base
= strip_offset (base
, &offset
);
3505 if (maybe_ne (offset
, 0U))
3506 record_common_cand (data
, base
, step
, use
);
3509 /* At last, add auto-incremental candidates. Make such variables
3510 important since other iv uses with same base object may be based
3512 if (use
!= NULL
&& address_p (use
->type
))
3513 add_autoinc_candidates (data
, iv
->base
, iv
->step
, true, use
);
3516 /* Adds candidates based on the uses. */
3519 add_iv_candidate_for_groups (struct ivopts_data
*data
)
3523 /* Only add candidate for the first use in group. */
3524 for (i
= 0; i
< data
->vgroups
.length (); i
++)
3526 struct iv_group
*group
= data
->vgroups
[i
];
3528 gcc_assert (group
->vuses
[0] != NULL
);
3529 add_iv_candidate_for_use (data
, group
->vuses
[0]);
3531 add_iv_candidate_derived_from_uses (data
);
3534 /* Record important candidates and add them to related_cands bitmaps. */
3537 record_important_candidates (struct ivopts_data
*data
)
3540 struct iv_group
*group
;
3542 for (i
= 0; i
< data
->vcands
.length (); i
++)
3544 struct iv_cand
*cand
= data
->vcands
[i
];
3546 if (cand
->important
)
3547 bitmap_set_bit (data
->important_candidates
, i
);
3550 data
->consider_all_candidates
= (data
->vcands
.length ()
3551 <= CONSIDER_ALL_CANDIDATES_BOUND
);
3553 /* Add important candidates to groups' related_cands bitmaps. */
3554 for (i
= 0; i
< data
->vgroups
.length (); i
++)
3556 group
= data
->vgroups
[i
];
3557 bitmap_ior_into (group
->related_cands
, data
->important_candidates
);
3561 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
3562 If consider_all_candidates is true, we use a two-dimensional array, otherwise
3563 we allocate a simple list to every use. */
3566 alloc_use_cost_map (struct ivopts_data
*data
)
3568 unsigned i
, size
, s
;
3570 for (i
= 0; i
< data
->vgroups
.length (); i
++)
3572 struct iv_group
*group
= data
->vgroups
[i
];
3574 if (data
->consider_all_candidates
)
3575 size
= data
->vcands
.length ();
3578 s
= bitmap_count_bits (group
->related_cands
);
3580 /* Round up to the power of two, so that moduling by it is fast. */
3581 size
= s
? (1 << ceil_log2 (s
)) : 1;
3584 group
->n_map_members
= size
;
3585 group
->cost_map
= XCNEWVEC (struct cost_pair
, size
);
3589 /* Sets cost of (GROUP, CAND) pair to COST and record that it depends
3590 on invariants INV_VARS and that the value used in expressing it is
3591 VALUE, and in case of iv elimination the comparison operator is COMP. */
3594 set_group_iv_cost (struct ivopts_data
*data
,
3595 struct iv_group
*group
, struct iv_cand
*cand
,
3596 comp_cost cost
, bitmap inv_vars
, tree value
,
3597 enum tree_code comp
, bitmap inv_exprs
)
3601 if (cost
.infinite_cost_p ())
3603 BITMAP_FREE (inv_vars
);
3604 BITMAP_FREE (inv_exprs
);
3608 if (data
->consider_all_candidates
)
3610 group
->cost_map
[cand
->id
].cand
= cand
;
3611 group
->cost_map
[cand
->id
].cost
= cost
;
3612 group
->cost_map
[cand
->id
].inv_vars
= inv_vars
;
3613 group
->cost_map
[cand
->id
].inv_exprs
= inv_exprs
;
3614 group
->cost_map
[cand
->id
].value
= value
;
3615 group
->cost_map
[cand
->id
].comp
= comp
;
3619 /* n_map_members is a power of two, so this computes modulo. */
3620 s
= cand
->id
& (group
->n_map_members
- 1);
3621 for (i
= s
; i
< group
->n_map_members
; i
++)
3622 if (!group
->cost_map
[i
].cand
)
3624 for (i
= 0; i
< s
; i
++)
3625 if (!group
->cost_map
[i
].cand
)
3631 group
->cost_map
[i
].cand
= cand
;
3632 group
->cost_map
[i
].cost
= cost
;
3633 group
->cost_map
[i
].inv_vars
= inv_vars
;
3634 group
->cost_map
[i
].inv_exprs
= inv_exprs
;
3635 group
->cost_map
[i
].value
= value
;
3636 group
->cost_map
[i
].comp
= comp
;
3639 /* Gets cost of (GROUP, CAND) pair. */
3641 static struct cost_pair
*
3642 get_group_iv_cost (struct ivopts_data
*data
, struct iv_group
*group
,
3643 struct iv_cand
*cand
)
3646 struct cost_pair
*ret
;
3651 if (data
->consider_all_candidates
)
3653 ret
= group
->cost_map
+ cand
->id
;
3660 /* n_map_members is a power of two, so this computes modulo. */
3661 s
= cand
->id
& (group
->n_map_members
- 1);
3662 for (i
= s
; i
< group
->n_map_members
; i
++)
3663 if (group
->cost_map
[i
].cand
== cand
)
3664 return group
->cost_map
+ i
;
3665 else if (group
->cost_map
[i
].cand
== NULL
)
3667 for (i
= 0; i
< s
; i
++)
3668 if (group
->cost_map
[i
].cand
== cand
)
3669 return group
->cost_map
+ i
;
3670 else if (group
->cost_map
[i
].cand
== NULL
)
3676 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
3678 produce_memory_decl_rtl (tree obj
, int *regno
)
3680 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (obj
));
3681 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3685 if (TREE_STATIC (obj
) || DECL_EXTERNAL (obj
))
3687 const char *name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj
));
3688 x
= gen_rtx_SYMBOL_REF (address_mode
, name
);
3689 SET_SYMBOL_REF_DECL (x
, obj
);
3690 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
3691 set_mem_addr_space (x
, as
);
3692 targetm
.encode_section_info (obj
, x
, true);
3696 x
= gen_raw_REG (address_mode
, (*regno
)++);
3697 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
3698 set_mem_addr_space (x
, as
);
3704 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
3705 walk_tree. DATA contains the actual fake register number. */
3708 prepare_decl_rtl (tree
*expr_p
, int *ws
, void *data
)
3710 tree obj
= NULL_TREE
;
3712 int *regno
= (int *) data
;
3714 switch (TREE_CODE (*expr_p
))
3717 for (expr_p
= &TREE_OPERAND (*expr_p
, 0);
3718 handled_component_p (*expr_p
);
3719 expr_p
= &TREE_OPERAND (*expr_p
, 0))
3722 if (DECL_P (obj
) && HAS_RTL_P (obj
) && !DECL_RTL_SET_P (obj
))
3723 x
= produce_memory_decl_rtl (obj
, regno
);
3728 obj
= SSA_NAME_VAR (*expr_p
);
3729 /* Defer handling of anonymous SSA_NAMEs to the expander. */
3732 if (!DECL_RTL_SET_P (obj
))
3733 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
3742 if (DECL_RTL_SET_P (obj
))
3745 if (DECL_MODE (obj
) == BLKmode
)
3746 x
= produce_memory_decl_rtl (obj
, regno
);
3748 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
3758 decl_rtl_to_reset
.safe_push (obj
);
3759 SET_DECL_RTL (obj
, x
);
3765 /* Determines cost of the computation of EXPR. */
3768 computation_cost (tree expr
, bool speed
)
3772 tree type
= TREE_TYPE (expr
);
3774 /* Avoid using hard regs in ways which may be unsupported. */
3775 int regno
= LAST_VIRTUAL_REGISTER
+ 1;
3776 struct cgraph_node
*node
= cgraph_node::get (current_function_decl
);
3777 enum node_frequency real_frequency
= node
->frequency
;
3779 node
->frequency
= NODE_FREQUENCY_NORMAL
;
3780 crtl
->maybe_hot_insn_p
= speed
;
3781 walk_tree (&expr
, prepare_decl_rtl
, ®no
, NULL
);
3783 rslt
= expand_expr (expr
, NULL_RTX
, TYPE_MODE (type
), EXPAND_NORMAL
);
3786 default_rtl_profile ();
3787 node
->frequency
= real_frequency
;
3789 cost
= seq_cost (seq
, speed
);
3791 cost
+= address_cost (XEXP (rslt
, 0), TYPE_MODE (type
),
3792 TYPE_ADDR_SPACE (type
), speed
);
3793 else if (!REG_P (rslt
))
3794 cost
+= set_src_cost (rslt
, TYPE_MODE (type
), speed
);
3799 /* Returns variable containing the value of candidate CAND at statement AT. */
3802 var_at_stmt (struct loop
*loop
, struct iv_cand
*cand
, gimple
*stmt
)
3804 if (stmt_after_increment (loop
, cand
, stmt
))
3805 return cand
->var_after
;
3807 return cand
->var_before
;
3810 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
3811 same precision that is at least as wide as the precision of TYPE, stores
3812 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
3816 determine_common_wider_type (tree
*a
, tree
*b
)
3818 tree wider_type
= NULL
;
3820 tree atype
= TREE_TYPE (*a
);
3822 if (CONVERT_EXPR_P (*a
))
3824 suba
= TREE_OPERAND (*a
, 0);
3825 wider_type
= TREE_TYPE (suba
);
3826 if (TYPE_PRECISION (wider_type
) < TYPE_PRECISION (atype
))
3832 if (CONVERT_EXPR_P (*b
))
3834 subb
= TREE_OPERAND (*b
, 0);
3835 if (TYPE_PRECISION (wider_type
) != TYPE_PRECISION (TREE_TYPE (subb
)))
3846 /* Determines the expression by that USE is expressed from induction variable
3847 CAND at statement AT in LOOP. The expression is stored in two parts in a
3848 decomposed form. The invariant part is stored in AFF_INV; while variant
3849 part in AFF_VAR. Store ratio of CAND.step over USE.step in PRAT if it's
3850 non-null. Returns false if USE cannot be expressed using CAND. */
3853 get_computation_aff_1 (struct loop
*loop
, gimple
*at
, struct iv_use
*use
,
3854 struct iv_cand
*cand
, struct aff_tree
*aff_inv
,
3855 struct aff_tree
*aff_var
, widest_int
*prat
= NULL
)
3857 tree ubase
= use
->iv
->base
, ustep
= use
->iv
->step
;
3858 tree cbase
= cand
->iv
->base
, cstep
= cand
->iv
->step
;
3859 tree common_type
, uutype
, var
, cstep_common
;
3860 tree utype
= TREE_TYPE (ubase
), ctype
= TREE_TYPE (cbase
);
3864 /* We must have a precision to express the values of use. */
3865 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
3868 var
= var_at_stmt (loop
, cand
, at
);
3869 uutype
= unsigned_type_for (utype
);
3871 /* If the conversion is not noop, perform it. */
3872 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
3874 if (cand
->orig_iv
!= NULL
&& CONVERT_EXPR_P (cbase
)
3875 && (CONVERT_EXPR_P (cstep
) || poly_int_tree_p (cstep
)))
3877 tree inner_base
, inner_step
, inner_type
;
3878 inner_base
= TREE_OPERAND (cbase
, 0);
3879 if (CONVERT_EXPR_P (cstep
))
3880 inner_step
= TREE_OPERAND (cstep
, 0);
3884 inner_type
= TREE_TYPE (inner_base
);
3885 /* If candidate is added from a biv whose type is smaller than
3886 ctype, we know both candidate and the biv won't overflow.
3887 In this case, it's safe to skip the convertion in candidate.
3888 As an example, (unsigned short)((unsigned long)A) equals to
3889 (unsigned short)A, if A has a type no larger than short. */
3890 if (TYPE_PRECISION (inner_type
) <= TYPE_PRECISION (uutype
))
3896 cbase
= fold_convert (uutype
, cbase
);
3897 cstep
= fold_convert (uutype
, cstep
);
3898 var
= fold_convert (uutype
, var
);
3901 /* Ratio is 1 when computing the value of biv cand by itself.
3902 We can't rely on constant_multiple_of in this case because the
3903 use is created after the original biv is selected. The call
3904 could fail because of inconsistent fold behavior. See PR68021
3905 for more information. */
3906 if (cand
->pos
== IP_ORIGINAL
&& cand
->incremented_at
== use
->stmt
)
3908 gcc_assert (is_gimple_assign (use
->stmt
));
3909 gcc_assert (use
->iv
->ssa_name
== cand
->var_after
);
3910 gcc_assert (gimple_assign_lhs (use
->stmt
) == cand
->var_after
);
3913 else if (!constant_multiple_of (ustep
, cstep
, &rat
))
3919 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
3920 type, we achieve better folding by computing their difference in this
3921 wider type, and cast the result to UUTYPE. We do not need to worry about
3922 overflows, as all the arithmetics will in the end be performed in UUTYPE
3924 common_type
= determine_common_wider_type (&ubase
, &cbase
);
3926 /* use = ubase - ratio * cbase + ratio * var. */
3927 tree_to_aff_combination (ubase
, common_type
, aff_inv
);
3928 tree_to_aff_combination (cbase
, common_type
, &aff_cbase
);
3929 tree_to_aff_combination (var
, uutype
, aff_var
);
3931 /* We need to shift the value if we are after the increment. */
3932 if (stmt_after_increment (loop
, cand
, at
))
3936 if (common_type
!= uutype
)
3937 cstep_common
= fold_convert (common_type
, cstep
);
3939 cstep_common
= cstep
;
3941 tree_to_aff_combination (cstep_common
, common_type
, &cstep_aff
);
3942 aff_combination_add (&aff_cbase
, &cstep_aff
);
3945 aff_combination_scale (&aff_cbase
, -rat
);
3946 aff_combination_add (aff_inv
, &aff_cbase
);
3947 if (common_type
!= uutype
)
3948 aff_combination_convert (aff_inv
, uutype
);
3950 aff_combination_scale (aff_var
, rat
);
3954 /* Determines the expression by that USE is expressed from induction variable
3955 CAND at statement AT in LOOP. The expression is stored in a decomposed
3956 form into AFF. Returns false if USE cannot be expressed using CAND. */
3959 get_computation_aff (struct loop
*loop
, gimple
*at
, struct iv_use
*use
,
3960 struct iv_cand
*cand
, struct aff_tree
*aff
)
3964 if (!get_computation_aff_1 (loop
, at
, use
, cand
, aff
, &aff_var
))
3967 aff_combination_add (aff
, &aff_var
);
3971 /* Return the type of USE. */
3974 get_use_type (struct iv_use
*use
)
3976 tree base_type
= TREE_TYPE (use
->iv
->base
);
3979 if (use
->type
== USE_REF_ADDRESS
)
3981 /* The base_type may be a void pointer. Create a pointer type based on
3982 the mem_ref instead. */
3983 type
= build_pointer_type (TREE_TYPE (*use
->op_p
));
3984 gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type
))
3985 == TYPE_ADDR_SPACE (TREE_TYPE (base_type
)));
3993 /* Determines the expression by that USE is expressed from induction variable
3994 CAND at statement AT in LOOP. The computation is unshared. */
3997 get_computation_at (struct loop
*loop
, gimple
*at
,
3998 struct iv_use
*use
, struct iv_cand
*cand
)
4001 tree type
= get_use_type (use
);
4003 if (!get_computation_aff (loop
, at
, use
, cand
, &aff
))
4005 unshare_aff_combination (&aff
);
4006 return fold_convert (type
, aff_combination_to_tree (&aff
));
4009 /* Adjust the cost COST for being in loop setup rather than loop body.
4010 If we're optimizing for space, the loop setup overhead is constant;
4011 if we're optimizing for speed, amortize it over the per-iteration cost.
4012 If ROUND_UP_P is true, the result is round up rather than to zero when
4013 optimizing for speed. */
4015 adjust_setup_cost (struct ivopts_data
*data
, unsigned cost
,
4016 bool round_up_p
= false)
4020 else if (optimize_loop_for_speed_p (data
->current_loop
))
4022 HOST_WIDE_INT niters
= avg_loop_niter (data
->current_loop
);
4023 return ((HOST_WIDE_INT
) cost
+ (round_up_p
? niters
- 1 : 0)) / niters
;
4029 /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
4030 EXPR operand holding the shift. COST0 and COST1 are the costs for
4031 calculating the operands of EXPR. Returns true if successful, and returns
4032 the cost in COST. */
4035 get_shiftadd_cost (tree expr
, scalar_int_mode mode
, comp_cost cost0
,
4036 comp_cost cost1
, tree mult
, bool speed
, comp_cost
*cost
)
4039 tree op1
= TREE_OPERAND (expr
, 1);
4040 tree cst
= TREE_OPERAND (mult
, 1);
4041 tree multop
= TREE_OPERAND (mult
, 0);
4042 int m
= exact_log2 (int_cst_value (cst
));
4043 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
4044 int as_cost
, sa_cost
;
4047 if (!(m
>= 0 && m
< maxm
))
4051 mult_in_op1
= operand_equal_p (op1
, mult
, 0);
4053 as_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
4055 /* If the target has a cheap shift-and-add or shift-and-sub instruction,
4056 use that in preference to a shift insn followed by an add insn. */
4057 sa_cost
= (TREE_CODE (expr
) != MINUS_EXPR
4058 ? shiftadd_cost (speed
, mode
, m
)
4060 ? shiftsub1_cost (speed
, mode
, m
)
4061 : shiftsub0_cost (speed
, mode
, m
)));
4063 res
= comp_cost (MIN (as_cost
, sa_cost
), 0);
4064 res
+= (mult_in_op1
? cost0
: cost1
);
4066 STRIP_NOPS (multop
);
4067 if (!is_gimple_val (multop
))
4068 res
+= force_expr_to_var_cost (multop
, speed
);
4074 /* Estimates cost of forcing expression EXPR into a variable. */
4077 force_expr_to_var_cost (tree expr
, bool speed
)
4079 static bool costs_initialized
= false;
4080 static unsigned integer_cost
[2];
4081 static unsigned symbol_cost
[2];
4082 static unsigned address_cost
[2];
4084 comp_cost cost0
, cost1
, cost
;
4086 scalar_int_mode int_mode
;
4088 if (!costs_initialized
)
4090 tree type
= build_pointer_type (integer_type_node
);
4095 var
= create_tmp_var_raw (integer_type_node
, "test_var");
4096 TREE_STATIC (var
) = 1;
4097 x
= produce_memory_decl_rtl (var
, NULL
);
4098 SET_DECL_RTL (var
, x
);
4100 addr
= build1 (ADDR_EXPR
, type
, var
);
4103 for (i
= 0; i
< 2; i
++)
4105 integer_cost
[i
] = computation_cost (build_int_cst (integer_type_node
,
4108 symbol_cost
[i
] = computation_cost (addr
, i
) + 1;
4111 = computation_cost (fold_build_pointer_plus_hwi (addr
, 2000), i
) + 1;
4112 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4114 fprintf (dump_file
, "force_expr_to_var_cost %s costs:\n", i
? "speed" : "size");
4115 fprintf (dump_file
, " integer %d\n", (int) integer_cost
[i
]);
4116 fprintf (dump_file
, " symbol %d\n", (int) symbol_cost
[i
]);
4117 fprintf (dump_file
, " address %d\n", (int) address_cost
[i
]);
4118 fprintf (dump_file
, " other %d\n", (int) target_spill_cost
[i
]);
4119 fprintf (dump_file
, "\n");
4123 costs_initialized
= true;
4128 if (SSA_VAR_P (expr
))
4131 if (is_gimple_min_invariant (expr
))
4133 if (poly_int_tree_p (expr
))
4134 return comp_cost (integer_cost
[speed
], 0);
4136 if (TREE_CODE (expr
) == ADDR_EXPR
)
4138 tree obj
= TREE_OPERAND (expr
, 0);
4141 || TREE_CODE (obj
) == PARM_DECL
4142 || TREE_CODE (obj
) == RESULT_DECL
)
4143 return comp_cost (symbol_cost
[speed
], 0);
4146 return comp_cost (address_cost
[speed
], 0);
4149 switch (TREE_CODE (expr
))
4151 case POINTER_PLUS_EXPR
:
4155 case TRUNC_DIV_EXPR
:
4160 op0
= TREE_OPERAND (expr
, 0);
4161 op1
= TREE_OPERAND (expr
, 1);
4169 op0
= TREE_OPERAND (expr
, 0);
4175 /* Just an arbitrary value, FIXME. */
4176 return comp_cost (target_spill_cost
[speed
], 0);
4179 if (op0
== NULL_TREE
4180 || TREE_CODE (op0
) == SSA_NAME
|| CONSTANT_CLASS_P (op0
))
4183 cost0
= force_expr_to_var_cost (op0
, speed
);
4185 if (op1
== NULL_TREE
4186 || TREE_CODE (op1
) == SSA_NAME
|| CONSTANT_CLASS_P (op1
))
4189 cost1
= force_expr_to_var_cost (op1
, speed
);
4191 mode
= TYPE_MODE (TREE_TYPE (expr
));
4192 switch (TREE_CODE (expr
))
4194 case POINTER_PLUS_EXPR
:
4198 cost
= comp_cost (add_cost (speed
, mode
), 0);
4199 if (TREE_CODE (expr
) != NEGATE_EXPR
)
4201 tree mult
= NULL_TREE
;
4203 if (TREE_CODE (op1
) == MULT_EXPR
)
4205 else if (TREE_CODE (op0
) == MULT_EXPR
)
4208 if (mult
!= NULL_TREE
4209 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
4210 && cst_and_fits_in_hwi (TREE_OPERAND (mult
, 1))
4211 && get_shiftadd_cost (expr
, int_mode
, cost0
, cost1
, mult
,
4219 tree inner_mode
, outer_mode
;
4220 outer_mode
= TREE_TYPE (expr
);
4221 inner_mode
= TREE_TYPE (op0
);
4222 cost
= comp_cost (convert_cost (TYPE_MODE (outer_mode
),
4223 TYPE_MODE (inner_mode
), speed
), 0);
4228 if (cst_and_fits_in_hwi (op0
))
4229 cost
= comp_cost (mult_by_coeff_cost (int_cst_value (op0
),
4231 else if (cst_and_fits_in_hwi (op1
))
4232 cost
= comp_cost (mult_by_coeff_cost (int_cst_value (op1
),
4235 return comp_cost (target_spill_cost
[speed
], 0);
4238 case TRUNC_DIV_EXPR
:
4239 /* Division by power of two is usually cheap, so we allow it. Forbid
4241 if (integer_pow2p (TREE_OPERAND (expr
, 1)))
4242 cost
= comp_cost (add_cost (speed
, mode
), 0);
4244 cost
= comp_cost (target_spill_cost
[speed
], 0);
4252 cost
= comp_cost (add_cost (speed
, mode
), 0);
4264 /* Estimates cost of forcing EXPR into a variable. INV_VARS is a set of the
4265 invariants the computation depends on. */
4268 force_var_cost (struct ivopts_data
*data
, tree expr
, bitmap
*inv_vars
)
4273 find_inv_vars (data
, &expr
, inv_vars
);
4274 return force_expr_to_var_cost (expr
, data
->speed
);
4277 /* Returns cost of auto-modifying address expression in shape base + offset.
4278 AINC_STEP is step size of the address IV. AINC_OFFSET is offset of the
4279 address expression. The address expression has ADDR_MODE in addr space
4280 AS. The memory access has MEM_MODE. SPEED means we are optimizing for
4285 AINC_PRE_INC
, /* Pre increment. */
4286 AINC_PRE_DEC
, /* Pre decrement. */
4287 AINC_POST_INC
, /* Post increment. */
4288 AINC_POST_DEC
, /* Post decrement. */
4289 AINC_NONE
/* Also the number of auto increment types. */
4292 struct ainc_cost_data
4294 unsigned costs
[AINC_NONE
];
4298 get_address_cost_ainc (poly_int64 ainc_step
, poly_int64 ainc_offset
,
4299 machine_mode addr_mode
, machine_mode mem_mode
,
4300 addr_space_t as
, bool speed
)
4302 if (!USE_LOAD_PRE_DECREMENT (mem_mode
)
4303 && !USE_STORE_PRE_DECREMENT (mem_mode
)
4304 && !USE_LOAD_POST_DECREMENT (mem_mode
)
4305 && !USE_STORE_POST_DECREMENT (mem_mode
)
4306 && !USE_LOAD_PRE_INCREMENT (mem_mode
)
4307 && !USE_STORE_PRE_INCREMENT (mem_mode
)
4308 && !USE_LOAD_POST_INCREMENT (mem_mode
)
4309 && !USE_STORE_POST_INCREMENT (mem_mode
))
4310 return infinite_cost
;
4312 static vec
<ainc_cost_data
*> ainc_cost_data_list
;
4313 unsigned idx
= (unsigned) as
* MAX_MACHINE_MODE
+ (unsigned) mem_mode
;
4314 if (idx
>= ainc_cost_data_list
.length ())
4316 unsigned nsize
= ((unsigned) as
+ 1) *MAX_MACHINE_MODE
;
4318 gcc_assert (nsize
> idx
);
4319 ainc_cost_data_list
.safe_grow_cleared (nsize
);
4322 ainc_cost_data
*data
= ainc_cost_data_list
[idx
];
4325 rtx reg
= gen_raw_REG (addr_mode
, LAST_VIRTUAL_REGISTER
+ 1);
4327 data
= (ainc_cost_data
*) xcalloc (1, sizeof (*data
));
4328 data
->costs
[AINC_PRE_DEC
] = INFTY
;
4329 data
->costs
[AINC_POST_DEC
] = INFTY
;
4330 data
->costs
[AINC_PRE_INC
] = INFTY
;
4331 data
->costs
[AINC_POST_INC
] = INFTY
;
4332 if (USE_LOAD_PRE_DECREMENT (mem_mode
)
4333 || USE_STORE_PRE_DECREMENT (mem_mode
))
4335 rtx addr
= gen_rtx_PRE_DEC (addr_mode
, reg
);
4337 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
4338 data
->costs
[AINC_PRE_DEC
]
4339 = address_cost (addr
, mem_mode
, as
, speed
);
4341 if (USE_LOAD_POST_DECREMENT (mem_mode
)
4342 || USE_STORE_POST_DECREMENT (mem_mode
))
4344 rtx addr
= gen_rtx_POST_DEC (addr_mode
, reg
);
4346 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
4347 data
->costs
[AINC_POST_DEC
]
4348 = address_cost (addr
, mem_mode
, as
, speed
);
4350 if (USE_LOAD_PRE_INCREMENT (mem_mode
)
4351 || USE_STORE_PRE_INCREMENT (mem_mode
))
4353 rtx addr
= gen_rtx_PRE_INC (addr_mode
, reg
);
4355 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
4356 data
->costs
[AINC_PRE_INC
]
4357 = address_cost (addr
, mem_mode
, as
, speed
);
4359 if (USE_LOAD_POST_INCREMENT (mem_mode
)
4360 || USE_STORE_POST_INCREMENT (mem_mode
))
4362 rtx addr
= gen_rtx_POST_INC (addr_mode
, reg
);
4364 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
4365 data
->costs
[AINC_POST_INC
]
4366 = address_cost (addr
, mem_mode
, as
, speed
);
4368 ainc_cost_data_list
[idx
] = data
;
4371 poly_int64 msize
= GET_MODE_SIZE (mem_mode
);
4372 if (known_eq (ainc_offset
, 0) && known_eq (msize
, ainc_step
))
4373 return comp_cost (data
->costs
[AINC_POST_INC
], 0);
4374 if (known_eq (ainc_offset
, 0) && known_eq (msize
, -ainc_step
))
4375 return comp_cost (data
->costs
[AINC_POST_DEC
], 0);
4376 if (known_eq (ainc_offset
, msize
) && known_eq (msize
, ainc_step
))
4377 return comp_cost (data
->costs
[AINC_PRE_INC
], 0);
4378 if (known_eq (ainc_offset
, -msize
) && known_eq (msize
, -ainc_step
))
4379 return comp_cost (data
->costs
[AINC_PRE_DEC
], 0);
4381 return infinite_cost
;
4384 /* Return cost of computing USE's address expression by using CAND.
4385 AFF_INV and AFF_VAR represent invariant and variant parts of the
4386 address expression, respectively. If AFF_INV is simple, store
4387 the loop invariant variables which are depended by it in INV_VARS;
4388 if AFF_INV is complicated, handle it as a new invariant expression
4389 and record it in INV_EXPR. RATIO indicates multiple times between
4390 steps of USE and CAND. If CAN_AUTOINC is nonNULL, store boolean
4391 value to it indicating if this is an auto-increment address. */
4394 get_address_cost (struct ivopts_data
*data
, struct iv_use
*use
,
4395 struct iv_cand
*cand
, aff_tree
*aff_inv
,
4396 aff_tree
*aff_var
, HOST_WIDE_INT ratio
,
4397 bitmap
*inv_vars
, iv_inv_expr_ent
**inv_expr
,
4398 bool *can_autoinc
, bool speed
)
4401 bool simple_inv
= true;
4402 tree comp_inv
= NULL_TREE
, type
= aff_var
->type
;
4403 comp_cost var_cost
= no_cost
, cost
= no_cost
;
4404 struct mem_address parts
= {NULL_TREE
, integer_one_node
,
4405 NULL_TREE
, NULL_TREE
, NULL_TREE
};
4406 machine_mode addr_mode
= TYPE_MODE (type
);
4407 machine_mode mem_mode
= TYPE_MODE (use
->mem_type
);
4408 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (use
->iv
->base
));
4409 /* Only true if ratio != 1. */
4410 bool ok_with_ratio_p
= false;
4411 bool ok_without_ratio_p
= false;
4413 if (!aff_combination_const_p (aff_inv
))
4415 parts
.index
= integer_one_node
;
4416 /* Addressing mode "base + index". */
4417 ok_without_ratio_p
= valid_mem_ref_p (mem_mode
, as
, &parts
);
4420 parts
.step
= wide_int_to_tree (type
, ratio
);
4421 /* Addressing mode "base + index << scale". */
4422 ok_with_ratio_p
= valid_mem_ref_p (mem_mode
, as
, &parts
);
4423 if (!ok_with_ratio_p
)
4424 parts
.step
= NULL_TREE
;
4426 if (ok_with_ratio_p
|| ok_without_ratio_p
)
4428 if (maybe_ne (aff_inv
->offset
, 0))
4430 parts
.offset
= wide_int_to_tree (sizetype
, aff_inv
->offset
);
4431 /* Addressing mode "base + index [<< scale] + offset". */
4432 if (!valid_mem_ref_p (mem_mode
, as
, &parts
))
4433 parts
.offset
= NULL_TREE
;
4435 aff_inv
->offset
= 0;
4438 move_fixed_address_to_symbol (&parts
, aff_inv
);
4439 /* Base is fixed address and is moved to symbol part. */
4440 if (parts
.symbol
!= NULL_TREE
&& aff_combination_zero_p (aff_inv
))
4441 parts
.base
= NULL_TREE
;
4443 /* Addressing mode "symbol + base + index [<< scale] [+ offset]". */
4444 if (parts
.symbol
!= NULL_TREE
4445 && !valid_mem_ref_p (mem_mode
, as
, &parts
))
4447 aff_combination_add_elt (aff_inv
, parts
.symbol
, 1);
4448 parts
.symbol
= NULL_TREE
;
4449 /* Reset SIMPLE_INV since symbol address needs to be computed
4450 outside of address expression in this case. */
4452 /* Symbol part is moved back to base part, it can't be NULL. */
4453 parts
.base
= integer_one_node
;
4457 parts
.index
= NULL_TREE
;
4461 poly_int64 ainc_step
;
4464 && ptrdiff_tree_p (cand
->iv
->step
, &ainc_step
))
4466 poly_int64 ainc_offset
= (aff_inv
->offset
).force_shwi ();
4468 if (stmt_after_increment (data
->current_loop
, cand
, use
->stmt
))
4469 ainc_offset
+= ainc_step
;
4470 cost
= get_address_cost_ainc (ainc_step
, ainc_offset
,
4471 addr_mode
, mem_mode
, as
, speed
);
4472 if (!cost
.infinite_cost_p ())
4474 *can_autoinc
= true;
4479 if (!aff_combination_zero_p (aff_inv
))
4481 parts
.offset
= wide_int_to_tree (sizetype
, aff_inv
->offset
);
4482 /* Addressing mode "base + offset". */
4483 if (!valid_mem_ref_p (mem_mode
, as
, &parts
))
4484 parts
.offset
= NULL_TREE
;
4486 aff_inv
->offset
= 0;
4491 simple_inv
= (aff_inv
== NULL
4492 || aff_combination_const_p (aff_inv
)
4493 || aff_combination_singleton_var_p (aff_inv
));
4494 if (!aff_combination_zero_p (aff_inv
))
4495 comp_inv
= aff_combination_to_tree (aff_inv
);
4496 if (comp_inv
!= NULL_TREE
)
4497 cost
= force_var_cost (data
, comp_inv
, inv_vars
);
4498 if (ratio
!= 1 && parts
.step
== NULL_TREE
)
4499 var_cost
+= mult_by_coeff_cost (ratio
, addr_mode
, speed
);
4500 if (comp_inv
!= NULL_TREE
&& parts
.index
== NULL_TREE
)
4501 var_cost
+= add_cost (speed
, addr_mode
);
4503 if (comp_inv
&& inv_expr
&& !simple_inv
)
4505 *inv_expr
= get_loop_invariant_expr (data
, comp_inv
);
4506 /* Clear depends on. */
4507 if (*inv_expr
!= NULL
&& inv_vars
&& *inv_vars
)
4508 bitmap_clear (*inv_vars
);
4510 /* Cost of small invariant expression adjusted against loop niters
4511 is usually zero, which makes it difficult to be differentiated
4512 from candidate based on loop invariant variables. Secondly, the
4513 generated invariant expression may not be hoisted out of loop by
4514 following pass. We penalize the cost by rounding up in order to
4515 neutralize such effects. */
4516 cost
.cost
= adjust_setup_cost (data
, cost
.cost
, true);
4517 cost
.scratch
= cost
.cost
;
4521 addr
= addr_for_mem_ref (&parts
, as
, false);
4522 gcc_assert (memory_address_addr_space_p (mem_mode
, addr
, as
));
4523 cost
+= address_cost (addr
, mem_mode
, as
, speed
);
4525 if (parts
.symbol
!= NULL_TREE
)
4526 cost
.complexity
+= 1;
4527 /* Don't increase the complexity of adding a scaled index if it's
4528 the only kind of index that the target allows. */
4529 if (parts
.step
!= NULL_TREE
&& ok_without_ratio_p
)
4530 cost
.complexity
+= 1;
4531 if (parts
.base
!= NULL_TREE
&& parts
.index
!= NULL_TREE
)
4532 cost
.complexity
+= 1;
4533 if (parts
.offset
!= NULL_TREE
&& !integer_zerop (parts
.offset
))
4534 cost
.complexity
+= 1;
4539 /* Scale (multiply) the computed COST (except scratch part that should be
4540 hoisted out a loop) by header->frequency / AT->frequency, which makes
4541 expected cost more accurate. */
4544 get_scaled_computation_cost_at (ivopts_data
*data
, gimple
*at
, comp_cost cost
)
4546 int loop_freq
= data
->current_loop
->header
->count
.to_frequency (cfun
);
4547 int bb_freq
= gimple_bb (at
)->count
.to_frequency (cfun
);
4550 gcc_assert (cost
.scratch
<= cost
.cost
);
4552 = cost
.scratch
+ (cost
.cost
- cost
.scratch
) * bb_freq
/ loop_freq
;
4554 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4555 fprintf (dump_file
, "Scaling cost based on bb prob "
4556 "by %2.2f: %d (scratch: %d) -> %d (%d/%d)\n",
4557 1.0f
* bb_freq
/ loop_freq
, cost
.cost
,
4558 cost
.scratch
, scaled_cost
, bb_freq
, loop_freq
);
4560 cost
.cost
= scaled_cost
;
4566 /* Determines the cost of the computation by that USE is expressed
4567 from induction variable CAND. If ADDRESS_P is true, we just need
4568 to create an address from it, otherwise we want to get it into
4569 register. A set of invariants we depend on is stored in INV_VARS.
4570 If CAN_AUTOINC is nonnull, use it to record whether autoinc
4571 addressing is likely. If INV_EXPR is nonnull, record invariant
4572 expr entry in it. */
4575 get_computation_cost (struct ivopts_data
*data
, struct iv_use
*use
,
4576 struct iv_cand
*cand
, bool address_p
, bitmap
*inv_vars
,
4577 bool *can_autoinc
, iv_inv_expr_ent
**inv_expr
)
4579 gimple
*at
= use
->stmt
;
4580 tree ubase
= use
->iv
->base
, cbase
= cand
->iv
->base
;
4581 tree utype
= TREE_TYPE (ubase
), ctype
= TREE_TYPE (cbase
);
4582 tree comp_inv
= NULL_TREE
;
4583 HOST_WIDE_INT ratio
, aratio
;
4586 aff_tree aff_inv
, aff_var
;
4587 bool speed
= optimize_bb_for_speed_p (gimple_bb (at
));
4592 *can_autoinc
= false;
4596 /* Check if we have enough precision to express the values of use. */
4597 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
4598 return infinite_cost
;
4601 || (use
->iv
->base_object
4602 && cand
->iv
->base_object
4603 && POINTER_TYPE_P (TREE_TYPE (use
->iv
->base_object
))
4604 && POINTER_TYPE_P (TREE_TYPE (cand
->iv
->base_object
))))
4606 /* Do not try to express address of an object with computation based
4607 on address of a different object. This may cause problems in rtl
4608 level alias analysis (that does not expect this to be happening,
4609 as this is illegal in C), and would be unlikely to be useful
4611 if (use
->iv
->base_object
4612 && cand
->iv
->base_object
4613 && !operand_equal_p (use
->iv
->base_object
, cand
->iv
->base_object
, 0))
4614 return infinite_cost
;
4617 if (!get_computation_aff_1 (data
->current_loop
, at
, use
,
4618 cand
, &aff_inv
, &aff_var
, &rat
)
4619 || !wi::fits_shwi_p (rat
))
4620 return infinite_cost
;
4622 ratio
= rat
.to_shwi ();
4625 cost
= get_address_cost (data
, use
, cand
, &aff_inv
, &aff_var
, ratio
,
4626 inv_vars
, inv_expr
, can_autoinc
, speed
);
4627 return get_scaled_computation_cost_at (data
, at
, cost
);
4630 bool simple_inv
= (aff_combination_const_p (&aff_inv
)
4631 || aff_combination_singleton_var_p (&aff_inv
));
4632 tree signed_type
= signed_type_for (aff_combination_type (&aff_inv
));
4633 aff_combination_convert (&aff_inv
, signed_type
);
4634 if (!aff_combination_zero_p (&aff_inv
))
4635 comp_inv
= aff_combination_to_tree (&aff_inv
);
4637 cost
= force_var_cost (data
, comp_inv
, inv_vars
);
4638 if (comp_inv
&& inv_expr
&& !simple_inv
)
4640 *inv_expr
= get_loop_invariant_expr (data
, comp_inv
);
4641 /* Clear depends on. */
4642 if (*inv_expr
!= NULL
&& inv_vars
&& *inv_vars
)
4643 bitmap_clear (*inv_vars
);
4645 cost
.cost
= adjust_setup_cost (data
, cost
.cost
);
4646 /* Record setup cost in scratch field. */
4647 cost
.scratch
= cost
.cost
;
4649 /* Cost of constant integer can be covered when adding invariant part to
4651 else if (comp_inv
&& CONSTANT_CLASS_P (comp_inv
))
4654 /* Need type narrowing to represent use with cand. */
4655 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
4657 machine_mode outer_mode
= TYPE_MODE (utype
);
4658 machine_mode inner_mode
= TYPE_MODE (ctype
);
4659 cost
+= comp_cost (convert_cost (outer_mode
, inner_mode
, speed
), 0);
4662 /* Turn a + i * (-c) into a - i * c. */
4663 if (ratio
< 0 && comp_inv
&& !integer_zerop (comp_inv
))
4669 cost
+= mult_by_coeff_cost (aratio
, TYPE_MODE (utype
), speed
);
4671 /* TODO: We may also need to check if we can compute a + i * 4 in one
4673 /* Need to add up the invariant and variant parts. */
4674 if (comp_inv
&& !integer_zerop (comp_inv
))
4675 cost
+= add_cost (speed
, TYPE_MODE (utype
));
4677 return get_scaled_computation_cost_at (data
, at
, cost
);
4680 /* Determines cost of computing the use in GROUP with CAND in a generic
4684 determine_group_iv_cost_generic (struct ivopts_data
*data
,
4685 struct iv_group
*group
, struct iv_cand
*cand
)
4688 iv_inv_expr_ent
*inv_expr
= NULL
;
4689 bitmap inv_vars
= NULL
, inv_exprs
= NULL
;
4690 struct iv_use
*use
= group
->vuses
[0];
4692 /* The simple case first -- if we need to express value of the preserved
4693 original biv, the cost is 0. This also prevents us from counting the
4694 cost of increment twice -- once at this use and once in the cost of
4696 if (cand
->pos
== IP_ORIGINAL
&& cand
->incremented_at
== use
->stmt
)
4699 cost
= get_computation_cost (data
, use
, cand
, false,
4700 &inv_vars
, NULL
, &inv_expr
);
4704 inv_exprs
= BITMAP_ALLOC (NULL
);
4705 bitmap_set_bit (inv_exprs
, inv_expr
->id
);
4707 set_group_iv_cost (data
, group
, cand
, cost
, inv_vars
,
4708 NULL_TREE
, ERROR_MARK
, inv_exprs
);
4709 return !cost
.infinite_cost_p ();
4712 /* Determines cost of computing uses in GROUP with CAND in addresses. */
4715 determine_group_iv_cost_address (struct ivopts_data
*data
,
4716 struct iv_group
*group
, struct iv_cand
*cand
)
4719 bitmap inv_vars
= NULL
, inv_exprs
= NULL
;
4721 iv_inv_expr_ent
*inv_expr
= NULL
;
4722 struct iv_use
*use
= group
->vuses
[0];
4723 comp_cost sum_cost
= no_cost
, cost
;
4725 cost
= get_computation_cost (data
, use
, cand
, true,
4726 &inv_vars
, &can_autoinc
, &inv_expr
);
4730 inv_exprs
= BITMAP_ALLOC (NULL
);
4731 bitmap_set_bit (inv_exprs
, inv_expr
->id
);
4734 if (!sum_cost
.infinite_cost_p () && cand
->ainc_use
== use
)
4737 sum_cost
-= cand
->cost_step
;
4738 /* If we generated the candidate solely for exploiting autoincrement
4739 opportunities, and it turns out it can't be used, set the cost to
4740 infinity to make sure we ignore it. */
4741 else if (cand
->pos
== IP_AFTER_USE
|| cand
->pos
== IP_BEFORE_USE
)
4742 sum_cost
= infinite_cost
;
4745 /* Uses in a group can share setup code, so only add setup cost once. */
4746 cost
-= cost
.scratch
;
4747 /* Compute and add costs for rest uses of this group. */
4748 for (i
= 1; i
< group
->vuses
.length () && !sum_cost
.infinite_cost_p (); i
++)
4750 struct iv_use
*next
= group
->vuses
[i
];
4752 /* TODO: We could skip computing cost for sub iv_use when it has the
4753 same cost as the first iv_use, but the cost really depends on the
4754 offset and where the iv_use is. */
4755 cost
= get_computation_cost (data
, next
, cand
, true,
4756 NULL
, &can_autoinc
, &inv_expr
);
4760 inv_exprs
= BITMAP_ALLOC (NULL
);
4762 bitmap_set_bit (inv_exprs
, inv_expr
->id
);
4766 set_group_iv_cost (data
, group
, cand
, sum_cost
, inv_vars
,
4767 NULL_TREE
, ERROR_MARK
, inv_exprs
);
4769 return !sum_cost
.infinite_cost_p ();
4772 /* Computes value of candidate CAND at position AT in iteration NITER, and
4773 stores it to VAL. */
4776 cand_value_at (struct loop
*loop
, struct iv_cand
*cand
, gimple
*at
, tree niter
,
4779 aff_tree step
, delta
, nit
;
4780 struct iv
*iv
= cand
->iv
;
4781 tree type
= TREE_TYPE (iv
->base
);
4783 if (POINTER_TYPE_P (type
))
4784 steptype
= sizetype
;
4786 steptype
= unsigned_type_for (type
);
4788 tree_to_aff_combination (iv
->step
, TREE_TYPE (iv
->step
), &step
);
4789 aff_combination_convert (&step
, steptype
);
4790 tree_to_aff_combination (niter
, TREE_TYPE (niter
), &nit
);
4791 aff_combination_convert (&nit
, steptype
);
4792 aff_combination_mult (&nit
, &step
, &delta
);
4793 if (stmt_after_increment (loop
, cand
, at
))
4794 aff_combination_add (&delta
, &step
);
4796 tree_to_aff_combination (iv
->base
, type
, val
);
4797 if (!POINTER_TYPE_P (type
))
4798 aff_combination_convert (val
, steptype
);
4799 aff_combination_add (val
, &delta
);
4802 /* Returns period of induction variable iv. */
4805 iv_period (struct iv
*iv
)
4807 tree step
= iv
->step
, period
, type
;
4810 gcc_assert (step
&& TREE_CODE (step
) == INTEGER_CST
);
4812 type
= unsigned_type_for (TREE_TYPE (step
));
4813 /* Period of the iv is lcm (step, type_range)/step -1,
4814 i.e., N*type_range/step - 1. Since type range is power
4815 of two, N == (step >> num_of_ending_zeros_binary (step),
4816 so the final result is
4818 (type_range >> num_of_ending_zeros_binary (step)) - 1
4821 pow2div
= num_ending_zeros (step
);
4823 period
= build_low_bits_mask (type
,
4824 (TYPE_PRECISION (type
)
4825 - tree_to_uhwi (pow2div
)));
4830 /* Returns the comparison operator used when eliminating the iv USE. */
4832 static enum tree_code
4833 iv_elimination_compare (struct ivopts_data
*data
, struct iv_use
*use
)
4835 struct loop
*loop
= data
->current_loop
;
4839 ex_bb
= gimple_bb (use
->stmt
);
4840 exit
= EDGE_SUCC (ex_bb
, 0);
4841 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
4842 exit
= EDGE_SUCC (ex_bb
, 1);
4844 return (exit
->flags
& EDGE_TRUE_VALUE
? EQ_EXPR
: NE_EXPR
);
4847 /* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
4848 we only detect the situation that BASE = SOMETHING + OFFSET, where the
4849 calculation is performed in non-wrapping type.
4851 TODO: More generally, we could test for the situation that
4852 BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
4853 This would require knowing the sign of OFFSET. */
4856 difference_cannot_overflow_p (struct ivopts_data
*data
, tree base
, tree offset
)
4858 enum tree_code code
;
4860 aff_tree aff_e1
, aff_e2
, aff_offset
;
4862 if (!nowrap_type_p (TREE_TYPE (base
)))
4865 base
= expand_simple_operations (base
);
4867 if (TREE_CODE (base
) == SSA_NAME
)
4869 gimple
*stmt
= SSA_NAME_DEF_STMT (base
);
4871 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
4874 code
= gimple_assign_rhs_code (stmt
);
4875 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
4878 e1
= gimple_assign_rhs1 (stmt
);
4879 e2
= gimple_assign_rhs2 (stmt
);
4883 code
= TREE_CODE (base
);
4884 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
4886 e1
= TREE_OPERAND (base
, 0);
4887 e2
= TREE_OPERAND (base
, 1);
4890 /* Use affine expansion as deeper inspection to prove the equality. */
4891 tree_to_aff_combination_expand (e2
, TREE_TYPE (e2
),
4892 &aff_e2
, &data
->name_expansion_cache
);
4893 tree_to_aff_combination_expand (offset
, TREE_TYPE (offset
),
4894 &aff_offset
, &data
->name_expansion_cache
);
4895 aff_combination_scale (&aff_offset
, -1);
4899 aff_combination_add (&aff_e2
, &aff_offset
);
4900 if (aff_combination_zero_p (&aff_e2
))
4903 tree_to_aff_combination_expand (e1
, TREE_TYPE (e1
),
4904 &aff_e1
, &data
->name_expansion_cache
);
4905 aff_combination_add (&aff_e1
, &aff_offset
);
4906 return aff_combination_zero_p (&aff_e1
);
4908 case POINTER_PLUS_EXPR
:
4909 aff_combination_add (&aff_e2
, &aff_offset
);
4910 return aff_combination_zero_p (&aff_e2
);
4917 /* Tries to replace loop exit by one formulated in terms of a LT_EXPR
4918 comparison with CAND. NITER describes the number of iterations of
4919 the loops. If successful, the comparison in COMP_P is altered accordingly.
4921 We aim to handle the following situation:
4937 Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
4938 We aim to optimize this to
4946 while (p < p_0 - a + b);
4948 This preserves the correctness, since the pointer arithmetics does not
4949 overflow. More precisely:
4951 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
4952 overflow in computing it or the values of p.
4953 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
4954 overflow. To prove this, we use the fact that p_0 = base + a. */
4957 iv_elimination_compare_lt (struct ivopts_data
*data
,
4958 struct iv_cand
*cand
, enum tree_code
*comp_p
,
4959 struct tree_niter_desc
*niter
)
4961 tree cand_type
, a
, b
, mbz
, nit_type
= TREE_TYPE (niter
->niter
), offset
;
4962 struct aff_tree nit
, tmpa
, tmpb
;
4963 enum tree_code comp
;
4966 /* We need to know that the candidate induction variable does not overflow.
4967 While more complex analysis may be used to prove this, for now just
4968 check that the variable appears in the original program and that it
4969 is computed in a type that guarantees no overflows. */
4970 cand_type
= TREE_TYPE (cand
->iv
->base
);
4971 if (cand
->pos
!= IP_ORIGINAL
|| !nowrap_type_p (cand_type
))
4974 /* Make sure that the loop iterates till the loop bound is hit, as otherwise
4975 the calculation of the BOUND could overflow, making the comparison
4977 if (!data
->loop_single_exit_p
)
4980 /* We need to be able to decide whether candidate is increasing or decreasing
4981 in order to choose the right comparison operator. */
4982 if (!cst_and_fits_in_hwi (cand
->iv
->step
))
4984 step
= int_cst_value (cand
->iv
->step
);
4986 /* Check that the number of iterations matches the expected pattern:
4987 a + 1 > b ? 0 : b - a - 1. */
4988 mbz
= niter
->may_be_zero
;
4989 if (TREE_CODE (mbz
) == GT_EXPR
)
4991 /* Handle a + 1 > b. */
4992 tree op0
= TREE_OPERAND (mbz
, 0);
4993 if (TREE_CODE (op0
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op0
, 1)))
4995 a
= TREE_OPERAND (op0
, 0);
4996 b
= TREE_OPERAND (mbz
, 1);
5001 else if (TREE_CODE (mbz
) == LT_EXPR
)
5003 tree op1
= TREE_OPERAND (mbz
, 1);
5005 /* Handle b < a + 1. */
5006 if (TREE_CODE (op1
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op1
, 1)))
5008 a
= TREE_OPERAND (op1
, 0);
5009 b
= TREE_OPERAND (mbz
, 0);
5017 /* Expected number of iterations is B - A - 1. Check that it matches
5018 the actual number, i.e., that B - A - NITER = 1. */
5019 tree_to_aff_combination (niter
->niter
, nit_type
, &nit
);
5020 tree_to_aff_combination (fold_convert (nit_type
, a
), nit_type
, &tmpa
);
5021 tree_to_aff_combination (fold_convert (nit_type
, b
), nit_type
, &tmpb
);
5022 aff_combination_scale (&nit
, -1);
5023 aff_combination_scale (&tmpa
, -1);
5024 aff_combination_add (&tmpb
, &tmpa
);
5025 aff_combination_add (&tmpb
, &nit
);
5026 if (tmpb
.n
!= 0 || maybe_ne (tmpb
.offset
, 1))
5029 /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
5031 offset
= fold_build2 (MULT_EXPR
, TREE_TYPE (cand
->iv
->step
),
5033 fold_convert (TREE_TYPE (cand
->iv
->step
), a
));
5034 if (!difference_cannot_overflow_p (data
, cand
->iv
->base
, offset
))
5037 /* Determine the new comparison operator. */
5038 comp
= step
< 0 ? GT_EXPR
: LT_EXPR
;
5039 if (*comp_p
== NE_EXPR
)
5041 else if (*comp_p
== EQ_EXPR
)
5042 *comp_p
= invert_tree_comparison (comp
, false);
5049 /* Check whether it is possible to express the condition in USE by comparison
5050 of candidate CAND. If so, store the value compared with to BOUND, and the
5051 comparison operator to COMP. */
5054 may_eliminate_iv (struct ivopts_data
*data
,
5055 struct iv_use
*use
, struct iv_cand
*cand
, tree
*bound
,
5056 enum tree_code
*comp
)
5061 struct loop
*loop
= data
->current_loop
;
5063 struct tree_niter_desc
*desc
= NULL
;
5065 if (TREE_CODE (cand
->iv
->step
) != INTEGER_CST
)
5068 /* For now works only for exits that dominate the loop latch.
5069 TODO: extend to other conditions inside loop body. */
5070 ex_bb
= gimple_bb (use
->stmt
);
5071 if (use
->stmt
!= last_stmt (ex_bb
)
5072 || gimple_code (use
->stmt
) != GIMPLE_COND
5073 || !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, ex_bb
))
5076 exit
= EDGE_SUCC (ex_bb
, 0);
5077 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
5078 exit
= EDGE_SUCC (ex_bb
, 1);
5079 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
5082 desc
= niter_for_exit (data
, exit
);
5086 /* Determine whether we can use the variable to test the exit condition.
5087 This is the case iff the period of the induction variable is greater
5088 than the number of iterations for which the exit condition is true. */
5089 period
= iv_period (cand
->iv
);
5091 /* If the number of iterations is constant, compare against it directly. */
5092 if (TREE_CODE (desc
->niter
) == INTEGER_CST
)
5094 /* See cand_value_at. */
5095 if (stmt_after_increment (loop
, cand
, use
->stmt
))
5097 if (!tree_int_cst_lt (desc
->niter
, period
))
5102 if (tree_int_cst_lt (period
, desc
->niter
))
5107 /* If not, and if this is the only possible exit of the loop, see whether
5108 we can get a conservative estimate on the number of iterations of the
5109 entire loop and compare against that instead. */
5112 widest_int period_value
, max_niter
;
5114 max_niter
= desc
->max
;
5115 if (stmt_after_increment (loop
, cand
, use
->stmt
))
5117 period_value
= wi::to_widest (period
);
5118 if (wi::gtu_p (max_niter
, period_value
))
5120 /* See if we can take advantage of inferred loop bound
5122 if (data
->loop_single_exit_p
)
5124 if (!max_loop_iterations (loop
, &max_niter
))
5126 /* The loop bound is already adjusted by adding 1. */
5127 if (wi::gtu_p (max_niter
, period_value
))
5135 cand_value_at (loop
, cand
, use
->stmt
, desc
->niter
, &bnd
);
5137 *bound
= fold_convert (TREE_TYPE (cand
->iv
->base
),
5138 aff_combination_to_tree (&bnd
));
5139 *comp
= iv_elimination_compare (data
, use
);
5141 /* It is unlikely that computing the number of iterations using division
5142 would be more profitable than keeping the original induction variable. */
5143 if (expression_expensive_p (*bound
))
5146 /* Sometimes, it is possible to handle the situation that the number of
5147 iterations may be zero unless additional assumptions by using <
5148 instead of != in the exit condition.
5150 TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
5151 base the exit condition on it. However, that is often too
5153 if (!integer_zerop (desc
->may_be_zero
))
5154 return iv_elimination_compare_lt (data
, cand
, comp
, desc
);
5159 /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
5160 be copied, if it is used in the loop body and DATA->body_includes_call. */
5163 parm_decl_cost (struct ivopts_data
*data
, tree bound
)
5165 tree sbound
= bound
;
5166 STRIP_NOPS (sbound
);
5168 if (TREE_CODE (sbound
) == SSA_NAME
5169 && SSA_NAME_IS_DEFAULT_DEF (sbound
)
5170 && TREE_CODE (SSA_NAME_VAR (sbound
)) == PARM_DECL
5171 && data
->body_includes_call
)
5172 return COSTS_N_INSNS (1);
5177 /* Determines cost of computing the use in GROUP with CAND in a condition. */
5180 determine_group_iv_cost_cond (struct ivopts_data
*data
,
5181 struct iv_group
*group
, struct iv_cand
*cand
)
5183 tree bound
= NULL_TREE
;
5185 bitmap inv_exprs
= NULL
;
5186 bitmap inv_vars_elim
= NULL
, inv_vars_express
= NULL
, inv_vars
;
5187 comp_cost elim_cost
= infinite_cost
, express_cost
, cost
, bound_cost
;
5188 enum comp_iv_rewrite rewrite_type
;
5189 iv_inv_expr_ent
*inv_expr_elim
= NULL
, *inv_expr_express
= NULL
, *inv_expr
;
5190 tree
*control_var
, *bound_cst
;
5191 enum tree_code comp
= ERROR_MARK
;
5192 struct iv_use
*use
= group
->vuses
[0];
5194 /* Extract condition operands. */
5195 rewrite_type
= extract_cond_operands (data
, use
->stmt
, &control_var
,
5196 &bound_cst
, NULL
, &cmp_iv
);
5197 gcc_assert (rewrite_type
!= COMP_IV_NA
);
5199 /* Try iv elimination. */
5200 if (rewrite_type
== COMP_IV_ELIM
5201 && may_eliminate_iv (data
, use
, cand
, &bound
, &comp
))
5203 elim_cost
= force_var_cost (data
, bound
, &inv_vars_elim
);
5204 if (elim_cost
.cost
== 0)
5205 elim_cost
.cost
= parm_decl_cost (data
, bound
);
5206 else if (TREE_CODE (bound
) == INTEGER_CST
)
5208 /* If we replace a loop condition 'i < n' with 'p < base + n',
5209 inv_vars_elim will have 'base' and 'n' set, which implies that both
5210 'base' and 'n' will be live during the loop. More likely,
5211 'base + n' will be loop invariant, resulting in only one live value
5212 during the loop. So in that case we clear inv_vars_elim and set
5213 inv_expr_elim instead. */
5214 if (inv_vars_elim
&& bitmap_count_bits (inv_vars_elim
) > 1)
5216 inv_expr_elim
= get_loop_invariant_expr (data
, bound
);
5217 bitmap_clear (inv_vars_elim
);
5219 /* The bound is a loop invariant, so it will be only computed
5221 elim_cost
.cost
= adjust_setup_cost (data
, elim_cost
.cost
);
5224 /* When the condition is a comparison of the candidate IV against
5225 zero, prefer this IV.
5227 TODO: The constant that we're subtracting from the cost should
5228 be target-dependent. This information should be added to the
5229 target costs for each backend. */
5230 if (!elim_cost
.infinite_cost_p () /* Do not try to decrease infinite! */
5231 && integer_zerop (*bound_cst
)
5232 && (operand_equal_p (*control_var
, cand
->var_after
, 0)
5233 || operand_equal_p (*control_var
, cand
->var_before
, 0)))
5236 express_cost
= get_computation_cost (data
, use
, cand
, false,
5237 &inv_vars_express
, NULL
,
5240 find_inv_vars (data
, &cmp_iv
->base
, &inv_vars_express
);
5242 /* Count the cost of the original bound as well. */
5243 bound_cost
= force_var_cost (data
, *bound_cst
, NULL
);
5244 if (bound_cost
.cost
== 0)
5245 bound_cost
.cost
= parm_decl_cost (data
, *bound_cst
);
5246 else if (TREE_CODE (*bound_cst
) == INTEGER_CST
)
5247 bound_cost
.cost
= 0;
5248 express_cost
+= bound_cost
;
5250 /* Choose the better approach, preferring the eliminated IV. */
5251 if (elim_cost
<= express_cost
)
5254 inv_vars
= inv_vars_elim
;
5255 inv_vars_elim
= NULL
;
5256 inv_expr
= inv_expr_elim
;
5260 cost
= express_cost
;
5261 inv_vars
= inv_vars_express
;
5262 inv_vars_express
= NULL
;
5265 inv_expr
= inv_expr_express
;
5270 inv_exprs
= BITMAP_ALLOC (NULL
);
5271 bitmap_set_bit (inv_exprs
, inv_expr
->id
);
5273 set_group_iv_cost (data
, group
, cand
, cost
,
5274 inv_vars
, bound
, comp
, inv_exprs
);
5277 BITMAP_FREE (inv_vars_elim
);
5278 if (inv_vars_express
)
5279 BITMAP_FREE (inv_vars_express
);
5281 return !cost
.infinite_cost_p ();
5284 /* Determines cost of computing uses in GROUP with CAND. Returns false
5285 if USE cannot be represented with CAND. */
5288 determine_group_iv_cost (struct ivopts_data
*data
,
5289 struct iv_group
*group
, struct iv_cand
*cand
)
5291 switch (group
->type
)
5293 case USE_NONLINEAR_EXPR
:
5294 return determine_group_iv_cost_generic (data
, group
, cand
);
5296 case USE_REF_ADDRESS
:
5297 case USE_PTR_ADDRESS
:
5298 return determine_group_iv_cost_address (data
, group
, cand
);
5301 return determine_group_iv_cost_cond (data
, group
, cand
);
5308 /* Return true if get_computation_cost indicates that autoincrement is
5309 a possibility for the pair of USE and CAND, false otherwise. */
5312 autoinc_possible_for_pair (struct ivopts_data
*data
, struct iv_use
*use
,
5313 struct iv_cand
*cand
)
5315 if (!address_p (use
->type
))
5318 bool can_autoinc
= false;
5319 get_computation_cost (data
, use
, cand
, true, NULL
, &can_autoinc
, NULL
);
5323 /* Examine IP_ORIGINAL candidates to see if they are incremented next to a
5324 use that allows autoincrement, and set their AINC_USE if possible. */
5327 set_autoinc_for_original_candidates (struct ivopts_data
*data
)
5331 for (i
= 0; i
< data
->vcands
.length (); i
++)
5333 struct iv_cand
*cand
= data
->vcands
[i
];
5334 struct iv_use
*closest_before
= NULL
;
5335 struct iv_use
*closest_after
= NULL
;
5336 if (cand
->pos
!= IP_ORIGINAL
)
5339 for (j
= 0; j
< data
->vgroups
.length (); j
++)
5341 struct iv_group
*group
= data
->vgroups
[j
];
5342 struct iv_use
*use
= group
->vuses
[0];
5343 unsigned uid
= gimple_uid (use
->stmt
);
5345 if (gimple_bb (use
->stmt
) != gimple_bb (cand
->incremented_at
))
5348 if (uid
< gimple_uid (cand
->incremented_at
)
5349 && (closest_before
== NULL
5350 || uid
> gimple_uid (closest_before
->stmt
)))
5351 closest_before
= use
;
5353 if (uid
> gimple_uid (cand
->incremented_at
)
5354 && (closest_after
== NULL
5355 || uid
< gimple_uid (closest_after
->stmt
)))
5356 closest_after
= use
;
5359 if (closest_before
!= NULL
5360 && autoinc_possible_for_pair (data
, closest_before
, cand
))
5361 cand
->ainc_use
= closest_before
;
5362 else if (closest_after
!= NULL
5363 && autoinc_possible_for_pair (data
, closest_after
, cand
))
5364 cand
->ainc_use
= closest_after
;
5368 /* Relate compare use with all candidates. */
5371 relate_compare_use_with_all_cands (struct ivopts_data
*data
)
5373 unsigned i
, count
= data
->vcands
.length ();
5374 for (i
= 0; i
< data
->vgroups
.length (); i
++)
5376 struct iv_group
*group
= data
->vgroups
[i
];
5378 if (group
->type
== USE_COMPARE
)
5379 bitmap_set_range (group
->related_cands
, 0, count
);
5383 /* Finds the candidates for the induction variables. */
5386 find_iv_candidates (struct ivopts_data
*data
)
5388 /* Add commonly used ivs. */
5389 add_standard_iv_candidates (data
);
5391 /* Add old induction variables. */
5392 add_iv_candidate_for_bivs (data
);
5394 /* Add induction variables derived from uses. */
5395 add_iv_candidate_for_groups (data
);
5397 set_autoinc_for_original_candidates (data
);
5399 /* Record the important candidates. */
5400 record_important_candidates (data
);
5402 /* Relate compare iv_use with all candidates. */
5403 if (!data
->consider_all_candidates
)
5404 relate_compare_use_with_all_cands (data
);
5406 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5410 fprintf (dump_file
, "\n<Important Candidates>:\t");
5411 for (i
= 0; i
< data
->vcands
.length (); i
++)
5412 if (data
->vcands
[i
]->important
)
5413 fprintf (dump_file
, " %d,", data
->vcands
[i
]->id
);
5414 fprintf (dump_file
, "\n");
5416 fprintf (dump_file
, "\n<Group, Cand> Related:\n");
5417 for (i
= 0; i
< data
->vgroups
.length (); i
++)
5419 struct iv_group
*group
= data
->vgroups
[i
];
5421 if (group
->related_cands
)
5423 fprintf (dump_file
, " Group %d:\t", group
->id
);
5424 dump_bitmap (dump_file
, group
->related_cands
);
5427 fprintf (dump_file
, "\n");
5431 /* Determines costs of computing use of iv with an iv candidate. */
5434 determine_group_iv_costs (struct ivopts_data
*data
)
5437 struct iv_cand
*cand
;
5438 struct iv_group
*group
;
5439 bitmap to_clear
= BITMAP_ALLOC (NULL
);
5441 alloc_use_cost_map (data
);
5443 for (i
= 0; i
< data
->vgroups
.length (); i
++)
5445 group
= data
->vgroups
[i
];
5447 if (data
->consider_all_candidates
)
5449 for (j
= 0; j
< data
->vcands
.length (); j
++)
5451 cand
= data
->vcands
[j
];
5452 determine_group_iv_cost (data
, group
, cand
);
5459 EXECUTE_IF_SET_IN_BITMAP (group
->related_cands
, 0, j
, bi
)
5461 cand
= data
->vcands
[j
];
5462 if (!determine_group_iv_cost (data
, group
, cand
))
5463 bitmap_set_bit (to_clear
, j
);
5466 /* Remove the candidates for that the cost is infinite from
5467 the list of related candidates. */
5468 bitmap_and_compl_into (group
->related_cands
, to_clear
);
5469 bitmap_clear (to_clear
);
5473 BITMAP_FREE (to_clear
);
5475 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5479 /* Dump invariant variables. */
5480 fprintf (dump_file
, "\n<Invariant Vars>:\n");
5481 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
5483 struct version_info
*info
= ver_info (data
, i
);
5486 fprintf (dump_file
, "Inv %d:\t", info
->inv_id
);
5487 print_generic_expr (dump_file
, info
->name
, TDF_SLIM
);
5488 fprintf (dump_file
, "%s\n",
5489 info
->has_nonlin_use
? "" : "\t(eliminable)");
5493 /* Dump invariant expressions. */
5494 fprintf (dump_file
, "\n<Invariant Expressions>:\n");
5495 auto_vec
<iv_inv_expr_ent
*> list (data
->inv_expr_tab
->elements ());
5497 for (hash_table
<iv_inv_expr_hasher
>::iterator it
5498 = data
->inv_expr_tab
->begin (); it
!= data
->inv_expr_tab
->end ();
5500 list
.safe_push (*it
);
5502 list
.qsort (sort_iv_inv_expr_ent
);
5504 for (i
= 0; i
< list
.length (); ++i
)
5506 fprintf (dump_file
, "inv_expr %d: \t", list
[i
]->id
);
5507 print_generic_expr (dump_file
, list
[i
]->expr
, TDF_SLIM
);
5508 fprintf (dump_file
, "\n");
5511 fprintf (dump_file
, "\n<Group-candidate Costs>:\n");
5513 for (i
= 0; i
< data
->vgroups
.length (); i
++)
5515 group
= data
->vgroups
[i
];
5517 fprintf (dump_file
, "Group %d:\n", i
);
5518 fprintf (dump_file
, " cand\tcost\tcompl.\tinv.expr.\tinv.vars\n");
5519 for (j
= 0; j
< group
->n_map_members
; j
++)
5521 if (!group
->cost_map
[j
].cand
5522 || group
->cost_map
[j
].cost
.infinite_cost_p ())
5525 fprintf (dump_file
, " %d\t%d\t%d\t",
5526 group
->cost_map
[j
].cand
->id
,
5527 group
->cost_map
[j
].cost
.cost
,
5528 group
->cost_map
[j
].cost
.complexity
);
5529 if (!group
->cost_map
[j
].inv_exprs
5530 || bitmap_empty_p (group
->cost_map
[j
].inv_exprs
))
5531 fprintf (dump_file
, "NIL;\t");
5533 bitmap_print (dump_file
,
5534 group
->cost_map
[j
].inv_exprs
, "", ";\t");
5535 if (!group
->cost_map
[j
].inv_vars
5536 || bitmap_empty_p (group
->cost_map
[j
].inv_vars
))
5537 fprintf (dump_file
, "NIL;\n");
5539 bitmap_print (dump_file
,
5540 group
->cost_map
[j
].inv_vars
, "", "\n");
5543 fprintf (dump_file
, "\n");
5545 fprintf (dump_file
, "\n");
5549 /* Determines cost of the candidate CAND. */
5552 determine_iv_cost (struct ivopts_data
*data
, struct iv_cand
*cand
)
5554 comp_cost cost_base
;
5555 unsigned cost
, cost_step
;
5558 gcc_assert (cand
->iv
!= NULL
);
5560 /* There are two costs associated with the candidate -- its increment
5561 and its initialization. The second is almost negligible for any loop
5562 that rolls enough, so we take it just very little into account. */
5564 base
= cand
->iv
->base
;
5565 cost_base
= force_var_cost (data
, base
, NULL
);
5566 /* It will be exceptional that the iv register happens to be initialized with
5567 the proper value at no cost. In general, there will at least be a regcopy
5569 if (cost_base
.cost
== 0)
5570 cost_base
.cost
= COSTS_N_INSNS (1);
5571 cost_step
= add_cost (data
->speed
, TYPE_MODE (TREE_TYPE (base
)));
5573 cost
= cost_step
+ adjust_setup_cost (data
, cost_base
.cost
);
5575 /* Prefer the original ivs unless we may gain something by replacing it.
5576 The reason is to make debugging simpler; so this is not relevant for
5577 artificial ivs created by other optimization passes. */
5578 if (cand
->pos
!= IP_ORIGINAL
5579 || !SSA_NAME_VAR (cand
->var_before
)
5580 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand
->var_before
)))
5583 /* Prefer not to insert statements into latch unless there are some
5584 already (so that we do not create unnecessary jumps). */
5585 if (cand
->pos
== IP_END
5586 && empty_block_p (ip_end_pos (data
->current_loop
)))
5590 cand
->cost_step
= cost_step
;
5593 /* Determines costs of computation of the candidates. */
5596 determine_iv_costs (struct ivopts_data
*data
)
5600 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5602 fprintf (dump_file
, "<Candidate Costs>:\n");
5603 fprintf (dump_file
, " cand\tcost\n");
5606 for (i
= 0; i
< data
->vcands
.length (); i
++)
5608 struct iv_cand
*cand
= data
->vcands
[i
];
5610 determine_iv_cost (data
, cand
);
5612 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5613 fprintf (dump_file
, " %d\t%d\n", i
, cand
->cost
);
5616 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5617 fprintf (dump_file
, "\n");
5620 /* Estimate register pressure for loop having N_INVS invariants and N_CANDS
5621 induction variables. Note N_INVS includes both invariant variables and
5622 invariant expressions. */
5625 ivopts_estimate_reg_pressure (struct ivopts_data
*data
, unsigned n_invs
,
5629 unsigned n_old
= data
->regs_used
, n_new
= n_invs
+ n_cands
;
5630 unsigned regs_needed
= n_new
+ n_old
, available_regs
= target_avail_regs
;
5631 bool speed
= data
->speed
;
5633 /* If there is a call in the loop body, the call-clobbered registers
5634 are not available for loop invariants. */
5635 if (data
->body_includes_call
)
5636 available_regs
= available_regs
- target_clobbered_regs
;
5638 /* If we have enough registers. */
5639 if (regs_needed
+ target_res_regs
< available_regs
)
5641 /* If close to running out of registers, try to preserve them. */
5642 else if (regs_needed
<= available_regs
)
5643 cost
= target_reg_cost
[speed
] * regs_needed
;
5644 /* If we run out of available registers but the number of candidates
5645 does not, we penalize extra registers using target_spill_cost. */
5646 else if (n_cands
<= available_regs
)
5647 cost
= target_reg_cost
[speed
] * available_regs
5648 + target_spill_cost
[speed
] * (regs_needed
- available_regs
);
5649 /* If the number of candidates runs out available registers, we penalize
5650 extra candidate registers using target_spill_cost * 2. Because it is
5651 more expensive to spill induction variable than invariant. */
5653 cost
= target_reg_cost
[speed
] * available_regs
5654 + target_spill_cost
[speed
] * (n_cands
- available_regs
) * 2
5655 + target_spill_cost
[speed
] * (regs_needed
- n_cands
);
5657 /* Finally, add the number of candidates, so that we prefer eliminating
5658 induction variables if possible. */
5659 return cost
+ n_cands
;
5662 /* For each size of the induction variable set determine the penalty. */
5665 determine_set_costs (struct ivopts_data
*data
)
5671 struct loop
*loop
= data
->current_loop
;
5674 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5676 fprintf (dump_file
, "<Global Costs>:\n");
5677 fprintf (dump_file
, " target_avail_regs %d\n", target_avail_regs
);
5678 fprintf (dump_file
, " target_clobbered_regs %d\n", target_clobbered_regs
);
5679 fprintf (dump_file
, " target_reg_cost %d\n", target_reg_cost
[data
->speed
]);
5680 fprintf (dump_file
, " target_spill_cost %d\n", target_spill_cost
[data
->speed
]);
5684 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
5687 op
= PHI_RESULT (phi
);
5689 if (virtual_operand_p (op
))
5692 if (get_iv (data
, op
))
5695 if (!POINTER_TYPE_P (TREE_TYPE (op
))
5696 && !INTEGRAL_TYPE_P (TREE_TYPE (op
)))
5702 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
5704 struct version_info
*info
= ver_info (data
, j
);
5706 if (info
->inv_id
&& info
->has_nonlin_use
)
5710 data
->regs_used
= n
;
5711 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5712 fprintf (dump_file
, " regs_used %d\n", n
);
5714 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5716 fprintf (dump_file
, " cost for size:\n");
5717 fprintf (dump_file
, " ivs\tcost\n");
5718 for (j
= 0; j
<= 2 * target_avail_regs
; j
++)
5719 fprintf (dump_file
, " %d\t%d\n", j
,
5720 ivopts_estimate_reg_pressure (data
, 0, j
));
5721 fprintf (dump_file
, "\n");
5725 /* Returns true if A is a cheaper cost pair than B. */
5728 cheaper_cost_pair (struct cost_pair
*a
, struct cost_pair
*b
)
5736 if (a
->cost
< b
->cost
)
5739 if (b
->cost
< a
->cost
)
5742 /* In case the costs are the same, prefer the cheaper candidate. */
5743 if (a
->cand
->cost
< b
->cand
->cost
)
5749 /* Compare if A is a more expensive cost pair than B. Return 1, 0 and -1
5750 for more expensive, equal and cheaper respectively. */
5753 compare_cost_pair (struct cost_pair
*a
, struct cost_pair
*b
)
5755 if (cheaper_cost_pair (a
, b
))
5757 if (cheaper_cost_pair (b
, a
))
5763 /* Returns candidate by that USE is expressed in IVS. */
5765 static struct cost_pair
*
5766 iv_ca_cand_for_group (struct iv_ca
*ivs
, struct iv_group
*group
)
5768 return ivs
->cand_for_group
[group
->id
];
5771 /* Computes the cost field of IVS structure. */
5774 iv_ca_recount_cost (struct ivopts_data
*data
, struct iv_ca
*ivs
)
5776 comp_cost cost
= ivs
->cand_use_cost
;
5778 cost
+= ivs
->cand_cost
;
5779 cost
+= ivopts_estimate_reg_pressure (data
, ivs
->n_invs
, ivs
->n_cands
);
5783 /* Remove use of invariants in set INVS by decreasing counter in N_INV_USES
5787 iv_ca_set_remove_invs (struct iv_ca
*ivs
, bitmap invs
, unsigned *n_inv_uses
)
5795 gcc_assert (n_inv_uses
!= NULL
);
5796 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
5799 if (n_inv_uses
[iid
] == 0)
5804 /* Set USE not to be expressed by any candidate in IVS. */
5807 iv_ca_set_no_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5808 struct iv_group
*group
)
5810 unsigned gid
= group
->id
, cid
;
5811 struct cost_pair
*cp
;
5813 cp
= ivs
->cand_for_group
[gid
];
5819 ivs
->cand_for_group
[gid
] = NULL
;
5820 ivs
->n_cand_uses
[cid
]--;
5822 if (ivs
->n_cand_uses
[cid
] == 0)
5824 bitmap_clear_bit (ivs
->cands
, cid
);
5826 ivs
->cand_cost
-= cp
->cand
->cost
;
5827 iv_ca_set_remove_invs (ivs
, cp
->cand
->inv_vars
, ivs
->n_inv_var_uses
);
5828 iv_ca_set_remove_invs (ivs
, cp
->cand
->inv_exprs
, ivs
->n_inv_expr_uses
);
5831 ivs
->cand_use_cost
-= cp
->cost
;
5832 iv_ca_set_remove_invs (ivs
, cp
->inv_vars
, ivs
->n_inv_var_uses
);
5833 iv_ca_set_remove_invs (ivs
, cp
->inv_exprs
, ivs
->n_inv_expr_uses
);
5834 iv_ca_recount_cost (data
, ivs
);
5837 /* Add use of invariants in set INVS by increasing counter in N_INV_USES and
5841 iv_ca_set_add_invs (struct iv_ca
*ivs
, bitmap invs
, unsigned *n_inv_uses
)
5849 gcc_assert (n_inv_uses
!= NULL
);
5850 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
5853 if (n_inv_uses
[iid
] == 1)
5858 /* Set cost pair for GROUP in set IVS to CP. */
5861 iv_ca_set_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5862 struct iv_group
*group
, struct cost_pair
*cp
)
5864 unsigned gid
= group
->id
, cid
;
5866 if (ivs
->cand_for_group
[gid
] == cp
)
5869 if (ivs
->cand_for_group
[gid
])
5870 iv_ca_set_no_cp (data
, ivs
, group
);
5877 ivs
->cand_for_group
[gid
] = cp
;
5878 ivs
->n_cand_uses
[cid
]++;
5879 if (ivs
->n_cand_uses
[cid
] == 1)
5881 bitmap_set_bit (ivs
->cands
, cid
);
5883 ivs
->cand_cost
+= cp
->cand
->cost
;
5884 iv_ca_set_add_invs (ivs
, cp
->cand
->inv_vars
, ivs
->n_inv_var_uses
);
5885 iv_ca_set_add_invs (ivs
, cp
->cand
->inv_exprs
, ivs
->n_inv_expr_uses
);
5888 ivs
->cand_use_cost
+= cp
->cost
;
5889 iv_ca_set_add_invs (ivs
, cp
->inv_vars
, ivs
->n_inv_var_uses
);
5890 iv_ca_set_add_invs (ivs
, cp
->inv_exprs
, ivs
->n_inv_expr_uses
);
5891 iv_ca_recount_cost (data
, ivs
);
5895 /* Extend set IVS by expressing USE by some of the candidates in it
5896 if possible. Consider all important candidates if candidates in
5897 set IVS don't give any result. */
5900 iv_ca_add_group (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5901 struct iv_group
*group
)
5903 struct cost_pair
*best_cp
= NULL
, *cp
;
5906 struct iv_cand
*cand
;
5908 gcc_assert (ivs
->upto
>= group
->id
);
5912 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
5914 cand
= data
->vcands
[i
];
5915 cp
= get_group_iv_cost (data
, group
, cand
);
5916 if (cheaper_cost_pair (cp
, best_cp
))
5920 if (best_cp
== NULL
)
5922 EXECUTE_IF_SET_IN_BITMAP (data
->important_candidates
, 0, i
, bi
)
5924 cand
= data
->vcands
[i
];
5925 cp
= get_group_iv_cost (data
, group
, cand
);
5926 if (cheaper_cost_pair (cp
, best_cp
))
5931 iv_ca_set_cp (data
, ivs
, group
, best_cp
);
5934 /* Get cost for assignment IVS. */
5937 iv_ca_cost (struct iv_ca
*ivs
)
5939 /* This was a conditional expression but it triggered a bug in
5941 if (ivs
->bad_groups
)
5942 return infinite_cost
;
5947 /* Compare if applying NEW_CP to GROUP for IVS introduces more invariants
5948 than OLD_CP. Return 1, 0 and -1 for more, equal and fewer invariants
5952 iv_ca_compare_deps (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5953 struct iv_group
*group
, struct cost_pair
*old_cp
,
5954 struct cost_pair
*new_cp
)
5956 gcc_assert (old_cp
&& new_cp
&& old_cp
!= new_cp
);
5957 unsigned old_n_invs
= ivs
->n_invs
;
5958 iv_ca_set_cp (data
, ivs
, group
, new_cp
);
5959 unsigned new_n_invs
= ivs
->n_invs
;
5960 iv_ca_set_cp (data
, ivs
, group
, old_cp
);
5962 return new_n_invs
> old_n_invs
? 1 : (new_n_invs
< old_n_invs
? -1 : 0);
5965 /* Creates change of expressing GROUP by NEW_CP instead of OLD_CP and chains
5968 static struct iv_ca_delta
*
5969 iv_ca_delta_add (struct iv_group
*group
, struct cost_pair
*old_cp
,
5970 struct cost_pair
*new_cp
, struct iv_ca_delta
*next
)
5972 struct iv_ca_delta
*change
= XNEW (struct iv_ca_delta
);
5974 change
->group
= group
;
5975 change
->old_cp
= old_cp
;
5976 change
->new_cp
= new_cp
;
5977 change
->next
= next
;
5982 /* Joins two lists of changes L1 and L2. Destructive -- old lists
5985 static struct iv_ca_delta
*
5986 iv_ca_delta_join (struct iv_ca_delta
*l1
, struct iv_ca_delta
*l2
)
5988 struct iv_ca_delta
*last
;
5996 for (last
= l1
; last
->next
; last
= last
->next
)
6003 /* Reverse the list of changes DELTA, forming the inverse to it. */
6005 static struct iv_ca_delta
*
6006 iv_ca_delta_reverse (struct iv_ca_delta
*delta
)
6008 struct iv_ca_delta
*act
, *next
, *prev
= NULL
;
6010 for (act
= delta
; act
; act
= next
)
6016 std::swap (act
->old_cp
, act
->new_cp
);
6022 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
6023 reverted instead. */
6026 iv_ca_delta_commit (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6027 struct iv_ca_delta
*delta
, bool forward
)
6029 struct cost_pair
*from
, *to
;
6030 struct iv_ca_delta
*act
;
6033 delta
= iv_ca_delta_reverse (delta
);
6035 for (act
= delta
; act
; act
= act
->next
)
6039 gcc_assert (iv_ca_cand_for_group (ivs
, act
->group
) == from
);
6040 iv_ca_set_cp (data
, ivs
, act
->group
, to
);
6044 iv_ca_delta_reverse (delta
);
6047 /* Returns true if CAND is used in IVS. */
6050 iv_ca_cand_used_p (struct iv_ca
*ivs
, struct iv_cand
*cand
)
6052 return ivs
->n_cand_uses
[cand
->id
] > 0;
6055 /* Returns number of induction variable candidates in the set IVS. */
6058 iv_ca_n_cands (struct iv_ca
*ivs
)
6060 return ivs
->n_cands
;
6063 /* Free the list of changes DELTA. */
6066 iv_ca_delta_free (struct iv_ca_delta
**delta
)
6068 struct iv_ca_delta
*act
, *next
;
6070 for (act
= *delta
; act
; act
= next
)
6079 /* Allocates new iv candidates assignment. */
6081 static struct iv_ca
*
6082 iv_ca_new (struct ivopts_data
*data
)
6084 struct iv_ca
*nw
= XNEW (struct iv_ca
);
6088 nw
->cand_for_group
= XCNEWVEC (struct cost_pair
*,
6089 data
->vgroups
.length ());
6090 nw
->n_cand_uses
= XCNEWVEC (unsigned, data
->vcands
.length ());
6091 nw
->cands
= BITMAP_ALLOC (NULL
);
6094 nw
->cand_use_cost
= no_cost
;
6096 nw
->n_inv_var_uses
= XCNEWVEC (unsigned, data
->max_inv_var_id
+ 1);
6097 nw
->n_inv_expr_uses
= XCNEWVEC (unsigned, data
->max_inv_expr_id
+ 1);
6103 /* Free memory occupied by the set IVS. */
6106 iv_ca_free (struct iv_ca
**ivs
)
6108 free ((*ivs
)->cand_for_group
);
6109 free ((*ivs
)->n_cand_uses
);
6110 BITMAP_FREE ((*ivs
)->cands
);
6111 free ((*ivs
)->n_inv_var_uses
);
6112 free ((*ivs
)->n_inv_expr_uses
);
6117 /* Dumps IVS to FILE. */
6120 iv_ca_dump (struct ivopts_data
*data
, FILE *file
, struct iv_ca
*ivs
)
6123 comp_cost cost
= iv_ca_cost (ivs
);
6125 fprintf (file
, " cost: %d (complexity %d)\n", cost
.cost
,
6127 fprintf (file
, " cand_cost: %d\n cand_group_cost: %d (complexity %d)\n",
6128 ivs
->cand_cost
, ivs
->cand_use_cost
.cost
,
6129 ivs
->cand_use_cost
.complexity
);
6130 bitmap_print (file
, ivs
->cands
, " candidates: ","\n");
6132 for (i
= 0; i
< ivs
->upto
; i
++)
6134 struct iv_group
*group
= data
->vgroups
[i
];
6135 struct cost_pair
*cp
= iv_ca_cand_for_group (ivs
, group
);
6137 fprintf (file
, " group:%d --> iv_cand:%d, cost=(%d,%d)\n",
6138 group
->id
, cp
->cand
->id
, cp
->cost
.cost
,
6139 cp
->cost
.complexity
);
6141 fprintf (file
, " group:%d --> ??\n", group
->id
);
6144 const char *pref
= "";
6145 fprintf (file
, " invariant variables: ");
6146 for (i
= 1; i
<= data
->max_inv_var_id
; i
++)
6147 if (ivs
->n_inv_var_uses
[i
])
6149 fprintf (file
, "%s%d", pref
, i
);
6154 fprintf (file
, "\n invariant expressions: ");
6155 for (i
= 1; i
<= data
->max_inv_expr_id
; i
++)
6156 if (ivs
->n_inv_expr_uses
[i
])
6158 fprintf (file
, "%s%d", pref
, i
);
6162 fprintf (file
, "\n\n");
6165 /* Try changing candidate in IVS to CAND for each use. Return cost of the
6166 new set, and store differences in DELTA. Number of induction variables
6167 in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
6168 the function will try to find a solution with mimimal iv candidates. */
6171 iv_ca_extend (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6172 struct iv_cand
*cand
, struct iv_ca_delta
**delta
,
6173 unsigned *n_ivs
, bool min_ncand
)
6177 struct iv_group
*group
;
6178 struct cost_pair
*old_cp
, *new_cp
;
6181 for (i
= 0; i
< ivs
->upto
; i
++)
6183 group
= data
->vgroups
[i
];
6184 old_cp
= iv_ca_cand_for_group (ivs
, group
);
6187 && old_cp
->cand
== cand
)
6190 new_cp
= get_group_iv_cost (data
, group
, cand
);
6196 int cmp_invs
= iv_ca_compare_deps (data
, ivs
, group
, old_cp
, new_cp
);
6197 /* Skip if new_cp depends on more invariants. */
6201 int cmp_cost
= compare_cost_pair (new_cp
, old_cp
);
6202 /* Skip if new_cp is not cheaper. */
6203 if (cmp_cost
> 0 || (cmp_cost
== 0 && cmp_invs
== 0))
6207 *delta
= iv_ca_delta_add (group
, old_cp
, new_cp
, *delta
);
6210 iv_ca_delta_commit (data
, ivs
, *delta
, true);
6211 cost
= iv_ca_cost (ivs
);
6213 *n_ivs
= iv_ca_n_cands (ivs
);
6214 iv_ca_delta_commit (data
, ivs
, *delta
, false);
6219 /* Try narrowing set IVS by removing CAND. Return the cost of
6220 the new set and store the differences in DELTA. START is
6221 the candidate with which we start narrowing. */
6224 iv_ca_narrow (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6225 struct iv_cand
*cand
, struct iv_cand
*start
,
6226 struct iv_ca_delta
**delta
)
6229 struct iv_group
*group
;
6230 struct cost_pair
*old_cp
, *new_cp
, *cp
;
6232 struct iv_cand
*cnd
;
6233 comp_cost cost
, best_cost
, acost
;
6236 for (i
= 0; i
< data
->vgroups
.length (); i
++)
6238 group
= data
->vgroups
[i
];
6240 old_cp
= iv_ca_cand_for_group (ivs
, group
);
6241 if (old_cp
->cand
!= cand
)
6244 best_cost
= iv_ca_cost (ivs
);
6245 /* Start narrowing with START. */
6246 new_cp
= get_group_iv_cost (data
, group
, start
);
6248 if (data
->consider_all_candidates
)
6250 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, ci
, bi
)
6252 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
6255 cnd
= data
->vcands
[ci
];
6257 cp
= get_group_iv_cost (data
, group
, cnd
);
6261 iv_ca_set_cp (data
, ivs
, group
, cp
);
6262 acost
= iv_ca_cost (ivs
);
6264 if (acost
< best_cost
)
6273 EXECUTE_IF_AND_IN_BITMAP (group
->related_cands
, ivs
->cands
, 0, ci
, bi
)
6275 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
6278 cnd
= data
->vcands
[ci
];
6280 cp
= get_group_iv_cost (data
, group
, cnd
);
6284 iv_ca_set_cp (data
, ivs
, group
, cp
);
6285 acost
= iv_ca_cost (ivs
);
6287 if (acost
< best_cost
)
6294 /* Restore to old cp for use. */
6295 iv_ca_set_cp (data
, ivs
, group
, old_cp
);
6299 iv_ca_delta_free (delta
);
6300 return infinite_cost
;
6303 *delta
= iv_ca_delta_add (group
, old_cp
, new_cp
, *delta
);
6306 iv_ca_delta_commit (data
, ivs
, *delta
, true);
6307 cost
= iv_ca_cost (ivs
);
6308 iv_ca_delta_commit (data
, ivs
, *delta
, false);
6313 /* Try optimizing the set of candidates IVS by removing candidates different
6314 from to EXCEPT_CAND from it. Return cost of the new set, and store
6315 differences in DELTA. */
6318 iv_ca_prune (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6319 struct iv_cand
*except_cand
, struct iv_ca_delta
**delta
)
6322 struct iv_ca_delta
*act_delta
, *best_delta
;
6324 comp_cost best_cost
, acost
;
6325 struct iv_cand
*cand
;
6328 best_cost
= iv_ca_cost (ivs
);
6330 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
6332 cand
= data
->vcands
[i
];
6334 if (cand
== except_cand
)
6337 acost
= iv_ca_narrow (data
, ivs
, cand
, except_cand
, &act_delta
);
6339 if (acost
< best_cost
)
6342 iv_ca_delta_free (&best_delta
);
6343 best_delta
= act_delta
;
6346 iv_ca_delta_free (&act_delta
);
6355 /* Recurse to possibly remove other unnecessary ivs. */
6356 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6357 best_cost
= iv_ca_prune (data
, ivs
, except_cand
, delta
);
6358 iv_ca_delta_commit (data
, ivs
, best_delta
, false);
6359 *delta
= iv_ca_delta_join (best_delta
, *delta
);
6363 /* Check if CAND_IDX is a candidate other than OLD_CAND and has
6364 cheaper local cost for GROUP than BEST_CP. Return pointer to
6365 the corresponding cost_pair, otherwise just return BEST_CP. */
6367 static struct cost_pair
*
6368 cheaper_cost_with_cand (struct ivopts_data
*data
, struct iv_group
*group
,
6369 unsigned int cand_idx
, struct iv_cand
*old_cand
,
6370 struct cost_pair
*best_cp
)
6372 struct iv_cand
*cand
;
6373 struct cost_pair
*cp
;
6375 gcc_assert (old_cand
!= NULL
&& best_cp
!= NULL
);
6376 if (cand_idx
== old_cand
->id
)
6379 cand
= data
->vcands
[cand_idx
];
6380 cp
= get_group_iv_cost (data
, group
, cand
);
6381 if (cp
!= NULL
&& cheaper_cost_pair (cp
, best_cp
))
6387 /* Try breaking local optimal fixed-point for IVS by replacing candidates
6388 which are used by more than one iv uses. For each of those candidates,
6389 this function tries to represent iv uses under that candidate using
6390 other ones with lower local cost, then tries to prune the new set.
6391 If the new set has lower cost, It returns the new cost after recording
6392 candidate replacement in list DELTA. */
6395 iv_ca_replace (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6396 struct iv_ca_delta
**delta
)
6398 bitmap_iterator bi
, bj
;
6399 unsigned int i
, j
, k
;
6400 struct iv_cand
*cand
;
6401 comp_cost orig_cost
, acost
;
6402 struct iv_ca_delta
*act_delta
, *tmp_delta
;
6403 struct cost_pair
*old_cp
, *best_cp
= NULL
;
6406 orig_cost
= iv_ca_cost (ivs
);
6408 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
6410 if (ivs
->n_cand_uses
[i
] == 1
6411 || ivs
->n_cand_uses
[i
] > ALWAYS_PRUNE_CAND_SET_BOUND
)
6414 cand
= data
->vcands
[i
];
6417 /* Represent uses under current candidate using other ones with
6418 lower local cost. */
6419 for (j
= 0; j
< ivs
->upto
; j
++)
6421 struct iv_group
*group
= data
->vgroups
[j
];
6422 old_cp
= iv_ca_cand_for_group (ivs
, group
);
6424 if (old_cp
->cand
!= cand
)
6428 if (data
->consider_all_candidates
)
6429 for (k
= 0; k
< data
->vcands
.length (); k
++)
6430 best_cp
= cheaper_cost_with_cand (data
, group
, k
,
6431 old_cp
->cand
, best_cp
);
6433 EXECUTE_IF_SET_IN_BITMAP (group
->related_cands
, 0, k
, bj
)
6434 best_cp
= cheaper_cost_with_cand (data
, group
, k
,
6435 old_cp
->cand
, best_cp
);
6437 if (best_cp
== old_cp
)
6440 act_delta
= iv_ca_delta_add (group
, old_cp
, best_cp
, act_delta
);
6442 /* No need for further prune. */
6446 /* Prune the new candidate set. */
6447 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
6448 acost
= iv_ca_prune (data
, ivs
, NULL
, &tmp_delta
);
6449 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
6450 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
6452 if (acost
< orig_cost
)
6458 iv_ca_delta_free (&act_delta
);
6464 /* Tries to extend the sets IVS in the best possible way in order to
6465 express the GROUP. If ORIGINALP is true, prefer candidates from
6466 the original set of IVs, otherwise favor important candidates not
6467 based on any memory object. */
6470 try_add_cand_for (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6471 struct iv_group
*group
, bool originalp
)
6473 comp_cost best_cost
, act_cost
;
6476 struct iv_cand
*cand
;
6477 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
;
6478 struct cost_pair
*cp
;
6480 iv_ca_add_group (data
, ivs
, group
);
6481 best_cost
= iv_ca_cost (ivs
);
6482 cp
= iv_ca_cand_for_group (ivs
, group
);
6485 best_delta
= iv_ca_delta_add (group
, NULL
, cp
, NULL
);
6486 iv_ca_set_no_cp (data
, ivs
, group
);
6489 /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
6490 first try important candidates not based on any memory object. Only if
6491 this fails, try the specific ones. Rationale -- in loops with many
6492 variables the best choice often is to use just one generic biv. If we
6493 added here many ivs specific to the uses, the optimization algorithm later
6494 would be likely to get stuck in a local minimum, thus causing us to create
6495 too many ivs. The approach from few ivs to more seems more likely to be
6496 successful -- starting from few ivs, replacing an expensive use by a
6497 specific iv should always be a win. */
6498 EXECUTE_IF_SET_IN_BITMAP (group
->related_cands
, 0, i
, bi
)
6500 cand
= data
->vcands
[i
];
6502 if (originalp
&& cand
->pos
!=IP_ORIGINAL
)
6505 if (!originalp
&& cand
->iv
->base_object
!= NULL_TREE
)
6508 if (iv_ca_cand_used_p (ivs
, cand
))
6511 cp
= get_group_iv_cost (data
, group
, cand
);
6515 iv_ca_set_cp (data
, ivs
, group
, cp
);
6516 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
,
6518 iv_ca_set_no_cp (data
, ivs
, group
);
6519 act_delta
= iv_ca_delta_add (group
, NULL
, cp
, act_delta
);
6521 if (act_cost
< best_cost
)
6523 best_cost
= act_cost
;
6525 iv_ca_delta_free (&best_delta
);
6526 best_delta
= act_delta
;
6529 iv_ca_delta_free (&act_delta
);
6532 if (best_cost
.infinite_cost_p ())
6534 for (i
= 0; i
< group
->n_map_members
; i
++)
6536 cp
= group
->cost_map
+ i
;
6541 /* Already tried this. */
6542 if (cand
->important
)
6544 if (originalp
&& cand
->pos
== IP_ORIGINAL
)
6546 if (!originalp
&& cand
->iv
->base_object
== NULL_TREE
)
6550 if (iv_ca_cand_used_p (ivs
, cand
))
6554 iv_ca_set_cp (data
, ivs
, group
, cp
);
6555 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
, true);
6556 iv_ca_set_no_cp (data
, ivs
, group
);
6557 act_delta
= iv_ca_delta_add (group
,
6558 iv_ca_cand_for_group (ivs
, group
),
6561 if (act_cost
< best_cost
)
6563 best_cost
= act_cost
;
6566 iv_ca_delta_free (&best_delta
);
6567 best_delta
= act_delta
;
6570 iv_ca_delta_free (&act_delta
);
6574 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6575 iv_ca_delta_free (&best_delta
);
6577 return !best_cost
.infinite_cost_p ();
6580 /* Finds an initial assignment of candidates to uses. */
6582 static struct iv_ca
*
6583 get_initial_solution (struct ivopts_data
*data
, bool originalp
)
6586 struct iv_ca
*ivs
= iv_ca_new (data
);
6588 for (i
= 0; i
< data
->vgroups
.length (); i
++)
6589 if (!try_add_cand_for (data
, ivs
, data
->vgroups
[i
], originalp
))
6598 /* Tries to improve set of induction variables IVS. TRY_REPLACE_P
6599 points to a bool variable, this function tries to break local
6600 optimal fixed-point by replacing candidates in IVS if it's true. */
6603 try_improve_iv_set (struct ivopts_data
*data
,
6604 struct iv_ca
*ivs
, bool *try_replace_p
)
6607 comp_cost acost
, best_cost
= iv_ca_cost (ivs
);
6608 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
, *tmp_delta
;
6609 struct iv_cand
*cand
;
6611 /* Try extending the set of induction variables by one. */
6612 for (i
= 0; i
< data
->vcands
.length (); i
++)
6614 cand
= data
->vcands
[i
];
6616 if (iv_ca_cand_used_p (ivs
, cand
))
6619 acost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, &n_ivs
, false);
6623 /* If we successfully added the candidate and the set is small enough,
6624 try optimizing it by removing other candidates. */
6625 if (n_ivs
<= ALWAYS_PRUNE_CAND_SET_BOUND
)
6627 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
6628 acost
= iv_ca_prune (data
, ivs
, cand
, &tmp_delta
);
6629 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
6630 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
6633 if (acost
< best_cost
)
6636 iv_ca_delta_free (&best_delta
);
6637 best_delta
= act_delta
;
6640 iv_ca_delta_free (&act_delta
);
6645 /* Try removing the candidates from the set instead. */
6646 best_cost
= iv_ca_prune (data
, ivs
, NULL
, &best_delta
);
6648 if (!best_delta
&& *try_replace_p
)
6650 *try_replace_p
= false;
6651 /* So far candidate selecting algorithm tends to choose fewer IVs
6652 so that it can handle cases in which loops have many variables
6653 but the best choice is often to use only one general biv. One
6654 weakness is it can't handle opposite cases, in which different
6655 candidates should be chosen with respect to each use. To solve
6656 the problem, we replace candidates in a manner described by the
6657 comments of iv_ca_replace, thus give general algorithm a chance
6658 to break local optimal fixed-point in these cases. */
6659 best_cost
= iv_ca_replace (data
, ivs
, &best_delta
);
6666 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6667 gcc_assert (best_cost
== iv_ca_cost (ivs
));
6668 iv_ca_delta_free (&best_delta
);
6672 /* Attempts to find the optimal set of induction variables. We do simple
6673 greedy heuristic -- we try to replace at most one candidate in the selected
6674 solution and remove the unused ivs while this improves the cost. */
6676 static struct iv_ca
*
6677 find_optimal_iv_set_1 (struct ivopts_data
*data
, bool originalp
)
6680 bool try_replace_p
= true;
6682 /* Get the initial solution. */
6683 set
= get_initial_solution (data
, originalp
);
6686 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6687 fprintf (dump_file
, "Unable to substitute for ivs, failed.\n");
6691 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6693 fprintf (dump_file
, "Initial set of candidates:\n");
6694 iv_ca_dump (data
, dump_file
, set
);
6697 while (try_improve_iv_set (data
, set
, &try_replace_p
))
6699 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6701 fprintf (dump_file
, "Improved to:\n");
6702 iv_ca_dump (data
, dump_file
, set
);
6709 static struct iv_ca
*
6710 find_optimal_iv_set (struct ivopts_data
*data
)
6713 comp_cost cost
, origcost
;
6714 struct iv_ca
*set
, *origset
;
6716 /* Determine the cost based on a strategy that starts with original IVs,
6717 and try again using a strategy that prefers candidates not based
6719 origset
= find_optimal_iv_set_1 (data
, true);
6720 set
= find_optimal_iv_set_1 (data
, false);
6722 if (!origset
&& !set
)
6725 origcost
= origset
? iv_ca_cost (origset
) : infinite_cost
;
6726 cost
= set
? iv_ca_cost (set
) : infinite_cost
;
6728 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6730 fprintf (dump_file
, "Original cost %d (complexity %d)\n\n",
6731 origcost
.cost
, origcost
.complexity
);
6732 fprintf (dump_file
, "Final cost %d (complexity %d)\n\n",
6733 cost
.cost
, cost
.complexity
);
6736 /* Choose the one with the best cost. */
6737 if (origcost
<= cost
)
6744 iv_ca_free (&origset
);
6746 for (i
= 0; i
< data
->vgroups
.length (); i
++)
6748 struct iv_group
*group
= data
->vgroups
[i
];
6749 group
->selected
= iv_ca_cand_for_group (set
, group
)->cand
;
6755 /* Creates a new induction variable corresponding to CAND. */
6758 create_new_iv (struct ivopts_data
*data
, struct iv_cand
*cand
)
6760 gimple_stmt_iterator incr_pos
;
6763 struct iv_group
*group
;
6766 gcc_assert (cand
->iv
!= NULL
);
6771 incr_pos
= gsi_last_bb (ip_normal_pos (data
->current_loop
));
6775 incr_pos
= gsi_last_bb (ip_end_pos (data
->current_loop
));
6783 incr_pos
= gsi_for_stmt (cand
->incremented_at
);
6787 /* Mark that the iv is preserved. */
6788 name_info (data
, cand
->var_before
)->preserve_biv
= true;
6789 name_info (data
, cand
->var_after
)->preserve_biv
= true;
6791 /* Rewrite the increment so that it uses var_before directly. */
6792 use
= find_interesting_uses_op (data
, cand
->var_after
);
6793 group
= data
->vgroups
[use
->group_id
];
6794 group
->selected
= cand
;
6798 gimple_add_tmp_var (cand
->var_before
);
6800 base
= unshare_expr (cand
->iv
->base
);
6802 create_iv (base
, unshare_expr (cand
->iv
->step
),
6803 cand
->var_before
, data
->current_loop
,
6804 &incr_pos
, after
, &cand
->var_before
, &cand
->var_after
);
6807 /* Creates new induction variables described in SET. */
6810 create_new_ivs (struct ivopts_data
*data
, struct iv_ca
*set
)
6813 struct iv_cand
*cand
;
6816 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
6818 cand
= data
->vcands
[i
];
6819 create_new_iv (data
, cand
);
6822 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6824 fprintf (dump_file
, "Selected IV set for loop %d",
6825 data
->current_loop
->num
);
6826 if (data
->loop_loc
!= UNKNOWN_LOCATION
)
6827 fprintf (dump_file
, " at %s:%d", LOCATION_FILE (data
->loop_loc
),
6828 LOCATION_LINE (data
->loop_loc
));
6829 fprintf (dump_file
, ", " HOST_WIDE_INT_PRINT_DEC
" avg niters",
6830 avg_loop_niter (data
->current_loop
));
6831 fprintf (dump_file
, ", %lu IVs:\n", bitmap_count_bits (set
->cands
));
6832 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
6834 cand
= data
->vcands
[i
];
6835 dump_cand (dump_file
, cand
);
6837 fprintf (dump_file
, "\n");
6841 /* Rewrites USE (definition of iv used in a nonlinear expression)
6842 using candidate CAND. */
6845 rewrite_use_nonlinear_expr (struct ivopts_data
*data
,
6846 struct iv_use
*use
, struct iv_cand
*cand
)
6849 gimple_stmt_iterator bsi
;
6850 tree comp
, type
= get_use_type (use
), tgt
;
6852 /* An important special case -- if we are asked to express value of
6853 the original iv by itself, just exit; there is no need to
6854 introduce a new computation (that might also need casting the
6855 variable to unsigned and back). */
6856 if (cand
->pos
== IP_ORIGINAL
6857 && cand
->incremented_at
== use
->stmt
)
6859 tree op
= NULL_TREE
;
6860 enum tree_code stmt_code
;
6862 gcc_assert (is_gimple_assign (use
->stmt
));
6863 gcc_assert (gimple_assign_lhs (use
->stmt
) == cand
->var_after
);
6865 /* Check whether we may leave the computation unchanged.
6866 This is the case only if it does not rely on other
6867 computations in the loop -- otherwise, the computation
6868 we rely upon may be removed in remove_unused_ivs,
6869 thus leading to ICE. */
6870 stmt_code
= gimple_assign_rhs_code (use
->stmt
);
6871 if (stmt_code
== PLUS_EXPR
6872 || stmt_code
== MINUS_EXPR
6873 || stmt_code
== POINTER_PLUS_EXPR
)
6875 if (gimple_assign_rhs1 (use
->stmt
) == cand
->var_before
)
6876 op
= gimple_assign_rhs2 (use
->stmt
);
6877 else if (gimple_assign_rhs2 (use
->stmt
) == cand
->var_before
)
6878 op
= gimple_assign_rhs1 (use
->stmt
);
6881 if (op
!= NULL_TREE
)
6883 if (expr_invariant_in_loop_p (data
->current_loop
, op
))
6885 if (TREE_CODE (op
) == SSA_NAME
)
6887 struct iv
*iv
= get_iv (data
, op
);
6888 if (iv
!= NULL
&& integer_zerop (iv
->step
))
6894 switch (gimple_code (use
->stmt
))
6897 tgt
= PHI_RESULT (use
->stmt
);
6899 /* If we should keep the biv, do not replace it. */
6900 if (name_info (data
, tgt
)->preserve_biv
)
6903 bsi
= gsi_after_labels (gimple_bb (use
->stmt
));
6907 tgt
= gimple_assign_lhs (use
->stmt
);
6908 bsi
= gsi_for_stmt (use
->stmt
);
6915 aff_tree aff_inv
, aff_var
;
6916 if (!get_computation_aff_1 (data
->current_loop
, use
->stmt
,
6917 use
, cand
, &aff_inv
, &aff_var
))
6920 unshare_aff_combination (&aff_inv
);
6921 unshare_aff_combination (&aff_var
);
6922 /* Prefer CSE opportunity than loop invariant by adding offset at last
6923 so that iv_uses have different offsets can be CSEed. */
6924 poly_widest_int offset
= aff_inv
.offset
;
6927 gimple_seq stmt_list
= NULL
, seq
= NULL
;
6928 tree comp_op1
= aff_combination_to_tree (&aff_inv
);
6929 tree comp_op2
= aff_combination_to_tree (&aff_var
);
6930 gcc_assert (comp_op1
&& comp_op2
);
6932 comp_op1
= force_gimple_operand (comp_op1
, &seq
, true, NULL
);
6933 gimple_seq_add_seq (&stmt_list
, seq
);
6934 comp_op2
= force_gimple_operand (comp_op2
, &seq
, true, NULL
);
6935 gimple_seq_add_seq (&stmt_list
, seq
);
6937 if (POINTER_TYPE_P (TREE_TYPE (comp_op2
)))
6938 std::swap (comp_op1
, comp_op2
);
6940 if (POINTER_TYPE_P (TREE_TYPE (comp_op1
)))
6942 comp
= fold_build_pointer_plus (comp_op1
,
6943 fold_convert (sizetype
, comp_op2
));
6944 comp
= fold_build_pointer_plus (comp
,
6945 wide_int_to_tree (sizetype
, offset
));
6949 comp
= fold_build2 (PLUS_EXPR
, TREE_TYPE (comp_op1
), comp_op1
,
6950 fold_convert (TREE_TYPE (comp_op1
), comp_op2
));
6951 comp
= fold_build2 (PLUS_EXPR
, TREE_TYPE (comp_op1
), comp
,
6952 wide_int_to_tree (TREE_TYPE (comp_op1
), offset
));
6955 comp
= fold_convert (type
, comp
);
6956 if (!valid_gimple_rhs_p (comp
)
6957 || (gimple_code (use
->stmt
) != GIMPLE_PHI
6958 /* We can't allow re-allocating the stmt as it might be pointed
6960 && (get_gimple_rhs_num_ops (TREE_CODE (comp
))
6961 >= gimple_num_ops (gsi_stmt (bsi
)))))
6963 comp
= force_gimple_operand (comp
, &seq
, true, NULL
);
6964 gimple_seq_add_seq (&stmt_list
, seq
);
6965 if (POINTER_TYPE_P (TREE_TYPE (tgt
)))
6967 duplicate_ssa_name_ptr_info (comp
, SSA_NAME_PTR_INFO (tgt
));
6968 /* As this isn't a plain copy we have to reset alignment
6970 if (SSA_NAME_PTR_INFO (comp
))
6971 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp
));
6975 gsi_insert_seq_before (&bsi
, stmt_list
, GSI_SAME_STMT
);
6976 if (gimple_code (use
->stmt
) == GIMPLE_PHI
)
6978 ass
= gimple_build_assign (tgt
, comp
);
6979 gsi_insert_before (&bsi
, ass
, GSI_SAME_STMT
);
6981 bsi
= gsi_for_stmt (use
->stmt
);
6982 remove_phi_node (&bsi
, false);
6986 gimple_assign_set_rhs_from_tree (&bsi
, comp
);
6987 use
->stmt
= gsi_stmt (bsi
);
6991 /* Performs a peephole optimization to reorder the iv update statement with
6992 a mem ref to enable instruction combining in later phases. The mem ref uses
6993 the iv value before the update, so the reordering transformation requires
6994 adjustment of the offset. CAND is the selected IV_CAND.
6998 t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
7006 directly propagating t over to (1) will introduce overlapping live range
7007 thus increase register pressure. This peephole transform it into:
7011 t = MEM_REF (base, iv2, 8, 8);
7018 adjust_iv_update_pos (struct iv_cand
*cand
, struct iv_use
*use
)
7021 gimple
*iv_update
, *stmt
;
7023 gimple_stmt_iterator gsi
, gsi_iv
;
7025 if (cand
->pos
!= IP_NORMAL
)
7028 var_after
= cand
->var_after
;
7029 iv_update
= SSA_NAME_DEF_STMT (var_after
);
7031 bb
= gimple_bb (iv_update
);
7032 gsi
= gsi_last_nondebug_bb (bb
);
7033 stmt
= gsi_stmt (gsi
);
7035 /* Only handle conditional statement for now. */
7036 if (gimple_code (stmt
) != GIMPLE_COND
)
7039 gsi_prev_nondebug (&gsi
);
7040 stmt
= gsi_stmt (gsi
);
7041 if (stmt
!= iv_update
)
7044 gsi_prev_nondebug (&gsi
);
7045 if (gsi_end_p (gsi
))
7048 stmt
= gsi_stmt (gsi
);
7049 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
7052 if (stmt
!= use
->stmt
)
7055 if (TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
7058 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7060 fprintf (dump_file
, "Reordering \n");
7061 print_gimple_stmt (dump_file
, iv_update
, 0);
7062 print_gimple_stmt (dump_file
, use
->stmt
, 0);
7063 fprintf (dump_file
, "\n");
7066 gsi
= gsi_for_stmt (use
->stmt
);
7067 gsi_iv
= gsi_for_stmt (iv_update
);
7068 gsi_move_before (&gsi_iv
, &gsi
);
7070 cand
->pos
= IP_BEFORE_USE
;
7071 cand
->incremented_at
= use
->stmt
;
7074 /* Return the alias pointer type that should be used for a MEM_REF
7075 associated with USE, which has type USE_PTR_ADDRESS. */
7078 get_alias_ptr_type_for_ptr_address (iv_use
*use
)
7080 gcall
*call
= as_a
<gcall
*> (use
->stmt
);
7081 switch (gimple_call_internal_fn (call
))
7084 case IFN_MASK_STORE
:
7085 /* The second argument contains the correct alias type. */
7086 gcc_assert (use
->op_p
= gimple_call_arg_ptr (call
, 0));
7087 return TREE_TYPE (gimple_call_arg (call
, 1));
7095 /* Rewrites USE (address that is an iv) using candidate CAND. */
7098 rewrite_use_address (struct ivopts_data
*data
,
7099 struct iv_use
*use
, struct iv_cand
*cand
)
7104 adjust_iv_update_pos (cand
, use
);
7105 ok
= get_computation_aff (data
->current_loop
, use
->stmt
, use
, cand
, &aff
);
7107 unshare_aff_combination (&aff
);
7109 /* To avoid undefined overflow problems, all IV candidates use unsigned
7110 integer types. The drawback is that this makes it impossible for
7111 create_mem_ref to distinguish an IV that is based on a memory object
7112 from one that represents simply an offset.
7114 To work around this problem, we pass a hint to create_mem_ref that
7115 indicates which variable (if any) in aff is an IV based on a memory
7116 object. Note that we only consider the candidate. If this is not
7117 based on an object, the base of the reference is in some subexpression
7118 of the use -- but these will use pointer types, so they are recognized
7119 by the create_mem_ref heuristics anyway. */
7120 tree iv
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
7121 tree base_hint
= (cand
->iv
->base_object
) ? iv
: NULL_TREE
;
7122 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
7123 tree type
= use
->mem_type
;
7124 tree alias_ptr_type
;
7125 if (use
->type
== USE_PTR_ADDRESS
)
7126 alias_ptr_type
= get_alias_ptr_type_for_ptr_address (use
);
7129 gcc_assert (type
== TREE_TYPE (*use
->op_p
));
7130 unsigned int align
= get_object_alignment (*use
->op_p
);
7131 if (align
!= TYPE_ALIGN (type
))
7132 type
= build_aligned_type (type
, align
);
7133 alias_ptr_type
= reference_alias_ptr_type (*use
->op_p
);
7135 tree ref
= create_mem_ref (&bsi
, type
, &aff
, alias_ptr_type
,
7136 iv
, base_hint
, data
->speed
);
7138 if (use
->type
== USE_PTR_ADDRESS
)
7140 ref
= fold_build1 (ADDR_EXPR
, build_pointer_type (use
->mem_type
), ref
);
7141 ref
= fold_convert (get_use_type (use
), ref
);
7142 ref
= force_gimple_operand_gsi (&bsi
, ref
, true, NULL_TREE
,
7143 true, GSI_SAME_STMT
);
7146 copy_ref_info (ref
, *use
->op_p
);
7151 /* Rewrites USE (the condition such that one of the arguments is an iv) using
7155 rewrite_use_compare (struct ivopts_data
*data
,
7156 struct iv_use
*use
, struct iv_cand
*cand
)
7158 tree comp
, op
, bound
;
7159 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
7160 enum tree_code compare
;
7161 struct iv_group
*group
= data
->vgroups
[use
->group_id
];
7162 struct cost_pair
*cp
= get_group_iv_cost (data
, group
, cand
);
7167 tree var
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
7168 tree var_type
= TREE_TYPE (var
);
7171 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7173 fprintf (dump_file
, "Replacing exit test: ");
7174 print_gimple_stmt (dump_file
, use
->stmt
, 0, TDF_SLIM
);
7177 bound
= unshare_expr (fold_convert (var_type
, bound
));
7178 op
= force_gimple_operand (bound
, &stmts
, true, NULL_TREE
);
7180 gsi_insert_seq_on_edge_immediate (
7181 loop_preheader_edge (data
->current_loop
),
7184 gcond
*cond_stmt
= as_a
<gcond
*> (use
->stmt
);
7185 gimple_cond_set_lhs (cond_stmt
, var
);
7186 gimple_cond_set_code (cond_stmt
, compare
);
7187 gimple_cond_set_rhs (cond_stmt
, op
);
7191 /* The induction variable elimination failed; just express the original
7193 comp
= get_computation_at (data
->current_loop
, use
->stmt
, use
, cand
);
7194 gcc_assert (comp
!= NULL_TREE
);
7195 gcc_assert (use
->op_p
!= NULL
);
7196 *use
->op_p
= force_gimple_operand_gsi (&bsi
, comp
, true,
7197 SSA_NAME_VAR (*use
->op_p
),
7198 true, GSI_SAME_STMT
);
7201 /* Rewrite the groups using the selected induction variables. */
7204 rewrite_groups (struct ivopts_data
*data
)
7208 for (i
= 0; i
< data
->vgroups
.length (); i
++)
7210 struct iv_group
*group
= data
->vgroups
[i
];
7211 struct iv_cand
*cand
= group
->selected
;
7215 if (group
->type
== USE_NONLINEAR_EXPR
)
7217 for (j
= 0; j
< group
->vuses
.length (); j
++)
7219 rewrite_use_nonlinear_expr (data
, group
->vuses
[j
], cand
);
7220 update_stmt (group
->vuses
[j
]->stmt
);
7223 else if (address_p (group
->type
))
7225 for (j
= 0; j
< group
->vuses
.length (); j
++)
7227 rewrite_use_address (data
, group
->vuses
[j
], cand
);
7228 update_stmt (group
->vuses
[j
]->stmt
);
7233 gcc_assert (group
->type
== USE_COMPARE
);
7235 for (j
= 0; j
< group
->vuses
.length (); j
++)
7237 rewrite_use_compare (data
, group
->vuses
[j
], cand
);
7238 update_stmt (group
->vuses
[j
]->stmt
);
7244 /* Removes the ivs that are not used after rewriting. */
7247 remove_unused_ivs (struct ivopts_data
*data
)
7251 bitmap toremove
= BITMAP_ALLOC (NULL
);
7253 /* Figure out an order in which to release SSA DEFs so that we don't
7254 release something that we'd have to propagate into a debug stmt
7256 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
7258 struct version_info
*info
;
7260 info
= ver_info (data
, j
);
7262 && !integer_zerop (info
->iv
->step
)
7264 && !info
->iv
->nonlin_use
7265 && !info
->preserve_biv
)
7267 bitmap_set_bit (toremove
, SSA_NAME_VERSION (info
->iv
->ssa_name
));
7269 tree def
= info
->iv
->ssa_name
;
7271 if (MAY_HAVE_DEBUG_BIND_STMTS
&& SSA_NAME_DEF_STMT (def
))
7273 imm_use_iterator imm_iter
;
7274 use_operand_p use_p
;
7278 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
7280 if (!gimple_debug_bind_p (stmt
))
7283 /* We just want to determine whether to do nothing
7284 (count == 0), to substitute the computed
7285 expression into a single use of the SSA DEF by
7286 itself (count == 1), or to use a debug temp
7287 because the SSA DEF is used multiple times or as
7288 part of a larger expression (count > 1). */
7290 if (gimple_debug_bind_get_value (stmt
) != def
)
7294 BREAK_FROM_IMM_USE_STMT (imm_iter
);
7300 struct iv_use dummy_use
;
7301 struct iv_cand
*best_cand
= NULL
, *cand
;
7302 unsigned i
, best_pref
= 0, cand_pref
;
7304 memset (&dummy_use
, 0, sizeof (dummy_use
));
7305 dummy_use
.iv
= info
->iv
;
7306 for (i
= 0; i
< data
->vgroups
.length () && i
< 64; i
++)
7308 cand
= data
->vgroups
[i
]->selected
;
7309 if (cand
== best_cand
)
7311 cand_pref
= operand_equal_p (cand
->iv
->step
,
7315 += TYPE_MODE (TREE_TYPE (cand
->iv
->base
))
7316 == TYPE_MODE (TREE_TYPE (info
->iv
->base
))
7319 += TREE_CODE (cand
->iv
->base
) == INTEGER_CST
7321 if (best_cand
== NULL
|| best_pref
< cand_pref
)
7324 best_pref
= cand_pref
;
7331 tree comp
= get_computation_at (data
->current_loop
,
7332 SSA_NAME_DEF_STMT (def
),
7333 &dummy_use
, best_cand
);
7339 tree vexpr
= make_node (DEBUG_EXPR_DECL
);
7340 DECL_ARTIFICIAL (vexpr
) = 1;
7341 TREE_TYPE (vexpr
) = TREE_TYPE (comp
);
7342 if (SSA_NAME_VAR (def
))
7343 SET_DECL_MODE (vexpr
, DECL_MODE (SSA_NAME_VAR (def
)));
7345 SET_DECL_MODE (vexpr
, TYPE_MODE (TREE_TYPE (vexpr
)));
7347 = gimple_build_debug_bind (vexpr
, comp
, NULL
);
7348 gimple_stmt_iterator gsi
;
7350 if (gimple_code (SSA_NAME_DEF_STMT (def
)) == GIMPLE_PHI
)
7351 gsi
= gsi_after_labels (gimple_bb
7352 (SSA_NAME_DEF_STMT (def
)));
7354 gsi
= gsi_for_stmt (SSA_NAME_DEF_STMT (def
));
7356 gsi_insert_before (&gsi
, def_temp
, GSI_SAME_STMT
);
7360 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
7362 if (!gimple_debug_bind_p (stmt
))
7365 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
7366 SET_USE (use_p
, comp
);
7374 release_defs_bitset (toremove
);
7376 BITMAP_FREE (toremove
);
7379 /* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
7380 for hash_map::traverse. */
7383 free_tree_niter_desc (edge
const &, tree_niter_desc
*const &value
, void *)
7389 /* Frees data allocated by the optimization of a single loop. */
7392 free_loop_data (struct ivopts_data
*data
)
7400 data
->niters
->traverse
<void *, free_tree_niter_desc
> (NULL
);
7401 delete data
->niters
;
7402 data
->niters
= NULL
;
7405 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
7407 struct version_info
*info
;
7409 info
= ver_info (data
, i
);
7411 info
->has_nonlin_use
= false;
7412 info
->preserve_biv
= false;
7415 bitmap_clear (data
->relevant
);
7416 bitmap_clear (data
->important_candidates
);
7418 for (i
= 0; i
< data
->vgroups
.length (); i
++)
7420 struct iv_group
*group
= data
->vgroups
[i
];
7422 for (j
= 0; j
< group
->vuses
.length (); j
++)
7423 free (group
->vuses
[j
]);
7424 group
->vuses
.release ();
7426 BITMAP_FREE (group
->related_cands
);
7427 for (j
= 0; j
< group
->n_map_members
; j
++)
7429 if (group
->cost_map
[j
].inv_vars
)
7430 BITMAP_FREE (group
->cost_map
[j
].inv_vars
);
7431 if (group
->cost_map
[j
].inv_exprs
)
7432 BITMAP_FREE (group
->cost_map
[j
].inv_exprs
);
7435 free (group
->cost_map
);
7438 data
->vgroups
.truncate (0);
7440 for (i
= 0; i
< data
->vcands
.length (); i
++)
7442 struct iv_cand
*cand
= data
->vcands
[i
];
7445 BITMAP_FREE (cand
->inv_vars
);
7446 if (cand
->inv_exprs
)
7447 BITMAP_FREE (cand
->inv_exprs
);
7450 data
->vcands
.truncate (0);
7452 if (data
->version_info_size
< num_ssa_names
)
7454 data
->version_info_size
= 2 * num_ssa_names
;
7455 free (data
->version_info
);
7456 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
7459 data
->max_inv_var_id
= 0;
7460 data
->max_inv_expr_id
= 0;
7462 FOR_EACH_VEC_ELT (decl_rtl_to_reset
, i
, obj
)
7463 SET_DECL_RTL (obj
, NULL_RTX
);
7465 decl_rtl_to_reset
.truncate (0);
7467 data
->inv_expr_tab
->empty ();
7469 data
->iv_common_cand_tab
->empty ();
7470 data
->iv_common_cands
.truncate (0);
7473 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
7477 tree_ssa_iv_optimize_finalize (struct ivopts_data
*data
)
7479 free_loop_data (data
);
7480 free (data
->version_info
);
7481 BITMAP_FREE (data
->relevant
);
7482 BITMAP_FREE (data
->important_candidates
);
7484 decl_rtl_to_reset
.release ();
7485 data
->vgroups
.release ();
7486 data
->vcands
.release ();
7487 delete data
->inv_expr_tab
;
7488 data
->inv_expr_tab
= NULL
;
7489 free_affine_expand_cache (&data
->name_expansion_cache
);
7490 delete data
->iv_common_cand_tab
;
7491 data
->iv_common_cand_tab
= NULL
;
7492 data
->iv_common_cands
.release ();
7493 obstack_free (&data
->iv_obstack
, NULL
);
7496 /* Returns true if the loop body BODY includes any function calls. */
7499 loop_body_includes_call (basic_block
*body
, unsigned num_nodes
)
7501 gimple_stmt_iterator gsi
;
7504 for (i
= 0; i
< num_nodes
; i
++)
7505 for (gsi
= gsi_start_bb (body
[i
]); !gsi_end_p (gsi
); gsi_next (&gsi
))
7507 gimple
*stmt
= gsi_stmt (gsi
);
7508 if (is_gimple_call (stmt
)
7509 && !gimple_call_internal_p (stmt
)
7510 && !is_inexpensive_builtin (gimple_call_fndecl (stmt
)))
7516 /* Optimizes the LOOP. Returns true if anything changed. */
7519 tree_ssa_iv_optimize_loop (struct ivopts_data
*data
, struct loop
*loop
)
7521 bool changed
= false;
7522 struct iv_ca
*iv_ca
;
7523 edge exit
= single_dom_exit (loop
);
7526 gcc_assert (!data
->niters
);
7527 data
->current_loop
= loop
;
7528 data
->loop_loc
= find_loop_location (loop
);
7529 data
->speed
= optimize_loop_for_speed_p (loop
);
7531 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7533 fprintf (dump_file
, "Processing loop %d", loop
->num
);
7534 if (data
->loop_loc
!= UNKNOWN_LOCATION
)
7535 fprintf (dump_file
, " at %s:%d", LOCATION_FILE (data
->loop_loc
),
7536 LOCATION_LINE (data
->loop_loc
));
7537 fprintf (dump_file
, "\n");
7541 fprintf (dump_file
, " single exit %d -> %d, exit condition ",
7542 exit
->src
->index
, exit
->dest
->index
);
7543 print_gimple_stmt (dump_file
, last_stmt (exit
->src
), 0, TDF_SLIM
);
7544 fprintf (dump_file
, "\n");
7547 fprintf (dump_file
, "\n");
7550 body
= get_loop_body (loop
);
7551 data
->body_includes_call
= loop_body_includes_call (body
, loop
->num_nodes
);
7552 renumber_gimple_stmt_uids_in_blocks (body
, loop
->num_nodes
);
7555 data
->loop_single_exit_p
= exit
!= NULL
&& loop_only_exit_p (loop
, exit
);
7557 /* For each ssa name determines whether it behaves as an induction variable
7559 if (!find_induction_variables (data
))
7562 /* Finds interesting uses (item 1). */
7563 find_interesting_uses (data
);
7564 if (data
->vgroups
.length () > MAX_CONSIDERED_GROUPS
)
7567 /* Finds candidates for the induction variables (item 2). */
7568 find_iv_candidates (data
);
7570 /* Calculates the costs (item 3, part 1). */
7571 determine_iv_costs (data
);
7572 determine_group_iv_costs (data
);
7573 determine_set_costs (data
);
7575 /* Find the optimal set of induction variables (item 3, part 2). */
7576 iv_ca
= find_optimal_iv_set (data
);
7581 /* Create the new induction variables (item 4, part 1). */
7582 create_new_ivs (data
, iv_ca
);
7583 iv_ca_free (&iv_ca
);
7585 /* Rewrite the uses (item 4, part 2). */
7586 rewrite_groups (data
);
7588 /* Remove the ivs that are unused after rewriting. */
7589 remove_unused_ivs (data
);
7591 /* We have changed the structure of induction variables; it might happen
7592 that definitions in the scev database refer to some of them that were
7597 free_loop_data (data
);
7602 /* Main entry point. Optimizes induction variables in loops. */
7605 tree_ssa_iv_optimize (void)
7608 struct ivopts_data data
;
7610 tree_ssa_iv_optimize_init (&data
);
7612 /* Optimize the loops starting with the innermost ones. */
7613 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
7615 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7616 flow_loop_dump (loop
, dump_file
, NULL
, 1);
7618 tree_ssa_iv_optimize_loop (&data
, loop
);
7621 tree_ssa_iv_optimize_finalize (&data
);
7624 #include "gt-tree-ssa-loop-ivopts.h"