1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
32 Global Optimization by Suppression of Partial Redundancies
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
104 Rice University Ph.D. thesis, Apr. 1996
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
114 Advanced Compiler Design and Implementation
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
137 #include "coretypes.h"
139 #include "diagnostic-core.h"
141 #include "hard-reg-set.h"
143 #include "hash-set.h"
144 #include "machmode.h"
146 #include "double-int.h"
150 #include "wide-int.h"
157 #include "insn-config.h"
160 #include "function.h"
161 #include "dominance.h"
166 #include "cfgcleanup.h"
167 #include "basic-block.h"
169 #include "statistics.h"
171 #include "fixed-value.h"
176 #include "emit-rtl.h"
186 #include "tree-pass.h"
187 #include "hash-table.h"
192 #include "gcse-common.h"
194 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
195 are a superset of those done by classic GCSE.
197 Two passes of copy/constant propagation are done around PRE or hoisting
198 because the first one enables more GCSE and the second one helps to clean
199 up the copies that PRE and HOIST create. This is needed more for PRE than
200 for HOIST because code hoisting will try to use an existing register
201 containing the common subexpression rather than create a new one. This is
202 harder to do for PRE because of the code motion (which HOIST doesn't do).
204 Expressions we are interested in GCSE-ing are of the form
205 (set (pseudo-reg) (expression)).
206 Function want_to_gcse_p says what these are.
208 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
209 This allows PRE to hoist expressions that are expressed in multiple insns,
210 such as complex address calculations (e.g. for PIC code, or loads with a
211 high part and a low part).
213 PRE handles moving invariant expressions out of loops (by treating them as
214 partially redundant).
216 **********************
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
229 It was found doing copy propagation between each pass enables further
232 This study was done before expressions in REG_EQUAL notes were added as
233 candidate expressions for optimization, and before the GIMPLE optimizers
234 were added. Probably, multiple passes is even less efficient now than
235 at the time when the study was conducted.
237 PRE is quite expensive in complicated functions because the DFA can take
238 a while to converge. Hence we only perform one pass.
240 **********************
242 The steps for PRE are:
244 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
246 2) Perform the data flow analysis for PRE.
248 3) Delete the redundant instructions
250 4) Insert the required copies [if any] that make the partially
251 redundant instructions fully redundant.
253 5) For other reaching expressions, insert an instruction to copy the value
254 to a newly created pseudo that will reach the redundant instruction.
256 The deletion is done first so that when we do insertions we
257 know which pseudo reg to use.
259 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
260 argue it is not. The number of iterations for the algorithm to converge
261 is typically 2-4 so I don't view it as that expensive (relatively speaking).
263 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
264 we create. To make an expression reach the place where it's redundant,
265 the result of the expression is copied to a new register, and the redundant
266 expression is deleted by replacing it with this new register. Classic GCSE
267 doesn't have this problem as much as it computes the reaching defs of
268 each register in each block and thus can try to use an existing
271 /* GCSE global vars. */
273 struct target_gcse default_target_gcse
;
274 #if SWITCHABLE_TARGET
275 struct target_gcse
*this_target_gcse
= &default_target_gcse
;
278 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
279 int flag_rerun_cse_after_global_opts
;
281 /* An obstack for our working variables. */
282 static struct obstack gcse_obstack
;
284 /* Hash table of expressions. */
288 /* The expression. */
290 /* Index in the available expression bitmaps. */
292 /* Next entry with the same hash. */
293 struct gcse_expr
*next_same_hash
;
294 /* List of anticipatable occurrences in basic blocks in the function.
295 An "anticipatable occurrence" is one that is the first occurrence in the
296 basic block, the operands are not modified in the basic block prior
297 to the occurrence and the output is not used between the start of
298 the block and the occurrence. */
299 struct gcse_occr
*antic_occr
;
300 /* List of available occurrence in basic blocks in the function.
301 An "available occurrence" is one that is the last occurrence in the
302 basic block and the operands are not modified by following statements in
303 the basic block [including this insn]. */
304 struct gcse_occr
*avail_occr
;
305 /* Non-null if the computation is PRE redundant.
306 The value is the newly created pseudo-reg to record a copy of the
307 expression in all the places that reach the redundant copy. */
309 /* Maximum distance in instructions this expression can travel.
310 We avoid moving simple expressions for more than a few instructions
311 to keep register pressure under control.
312 A value of "0" removes restrictions on how far the expression can
317 /* Occurrence of an expression.
318 There is one per basic block. If a pattern appears more than once the
319 last appearance is used [or first for anticipatable expressions]. */
323 /* Next occurrence of this expression. */
324 struct gcse_occr
*next
;
325 /* The insn that computes the expression. */
327 /* Nonzero if this [anticipatable] occurrence has been deleted. */
329 /* Nonzero if this [available] occurrence has been copied to
331 /* ??? This is mutually exclusive with deleted_p, so they could share
336 typedef struct gcse_occr
*occr_t
;
338 /* Expression hash tables.
339 Each hash table is an array of buckets.
340 ??? It is known that if it were an array of entries, structure elements
341 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
342 not clear whether in the final analysis a sufficient amount of memory would
343 be saved as the size of the available expression bitmaps would be larger
344 [one could build a mapping table without holes afterwards though].
345 Someday I'll perform the computation and figure it out. */
347 struct gcse_hash_table_d
350 This is an array of `expr_hash_table_size' elements. */
351 struct gcse_expr
**table
;
353 /* Size of the hash table, in elements. */
356 /* Number of hash table elements. */
357 unsigned int n_elems
;
360 /* Expression hash table. */
361 static struct gcse_hash_table_d expr_hash_table
;
363 /* This is a list of expressions which are MEMs and will be used by load
365 Load motion tracks MEMs which aren't killed by anything except itself,
366 i.e. loads and stores to a single location.
367 We can then allow movement of these MEM refs with a little special
368 allowance. (all stores copy the same value to the reaching reg used
369 for the loads). This means all values used to store into memory must have
370 no side effects so we can re-issue the setter value. */
374 struct gcse_expr
* expr
; /* Gcse expression reference for LM. */
375 rtx pattern
; /* Pattern of this mem. */
376 rtx pattern_regs
; /* List of registers mentioned by the mem. */
377 rtx_insn_list
*loads
; /* INSN list of loads seen. */
378 rtx_insn_list
*stores
; /* INSN list of stores seen. */
379 struct ls_expr
* next
; /* Next in the list. */
380 int invalid
; /* Invalid for some reason. */
381 int index
; /* If it maps to a bitmap index. */
382 unsigned int hash_index
; /* Index when in a hash table. */
383 rtx reaching_reg
; /* Register to use when re-writing. */
386 /* Head of the list of load/store memory refs. */
387 static struct ls_expr
* pre_ldst_mems
= NULL
;
389 struct pre_ldst_expr_hasher
: typed_noop_remove
<ls_expr
>
391 typedef ls_expr value_type
;
392 typedef value_type compare_type
;
393 static inline hashval_t
hash (const value_type
*);
394 static inline bool equal (const value_type
*, const compare_type
*);
397 /* Hashtable helpers. */
399 pre_ldst_expr_hasher::hash (const value_type
*x
)
401 int do_not_record_p
= 0;
403 hash_rtx (x
->pattern
, GET_MODE (x
->pattern
), &do_not_record_p
, NULL
, false);
406 static int expr_equiv_p (const_rtx
, const_rtx
);
409 pre_ldst_expr_hasher::equal (const value_type
*ptr1
,
410 const compare_type
*ptr2
)
412 return expr_equiv_p (ptr1
->pattern
, ptr2
->pattern
);
415 /* Hashtable for the load/store memory refs. */
416 static hash_table
<pre_ldst_expr_hasher
> *pre_ldst_table
;
418 /* Bitmap containing one bit for each register in the program.
419 Used when performing GCSE to track which registers have been set since
420 the start of the basic block. */
421 static regset reg_set_bitmap
;
423 /* Array, indexed by basic block number for a list of insns which modify
424 memory within that block. */
425 static vec
<rtx_insn
*> *modify_mem_list
;
426 static bitmap modify_mem_list_set
;
428 /* This array parallels modify_mem_list, except that it stores MEMs
429 being set and their canonicalized memory addresses. */
430 static vec
<modify_pair
> *canon_modify_mem_list
;
432 /* Bitmap indexed by block numbers to record which blocks contain
434 static bitmap blocks_with_calls
;
436 /* Various variables for statistics gathering. */
438 /* Memory used in a pass.
439 This isn't intended to be absolutely precise. Its intent is only
440 to keep an eye on memory usage. */
441 static int bytes_used
;
443 /* GCSE substitutions made. */
444 static int gcse_subst_count
;
445 /* Number of copy instructions created. */
446 static int gcse_create_count
;
448 /* Doing code hoisting. */
449 static bool doing_code_hoisting_p
= false;
451 /* For available exprs */
452 static sbitmap
*ae_kill
;
454 /* Data stored for each basic block. */
457 /* Maximal register pressure inside basic block for given register class
458 (defined only for the pressure classes). */
459 int max_reg_pressure
[N_REG_CLASSES
];
460 /* Recorded register pressure of basic block before trying to hoist
461 an expression. Will be used to restore the register pressure
462 if the expression should not be hoisted. */
464 /* Recorded register live_in info of basic block during code hoisting
465 process. BACKUP is used to record live_in info before trying to
466 hoist an expression, and will be used to restore LIVE_IN if the
467 expression should not be hoisted. */
468 bitmap live_in
, backup
;
471 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
473 static basic_block curr_bb
;
475 /* Current register pressure for each pressure class. */
476 static int curr_reg_pressure
[N_REG_CLASSES
];
479 static void compute_can_copy (void);
480 static void *gmalloc (size_t) ATTRIBUTE_MALLOC
;
481 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC
;
482 static void *gcse_alloc (unsigned long);
483 static void alloc_gcse_mem (void);
484 static void free_gcse_mem (void);
485 static void hash_scan_insn (rtx_insn
*, struct gcse_hash_table_d
*);
486 static void hash_scan_set (rtx
, rtx_insn
*, struct gcse_hash_table_d
*);
487 static void hash_scan_clobber (rtx
, rtx_insn
*, struct gcse_hash_table_d
*);
488 static void hash_scan_call (rtx
, rtx_insn
*, struct gcse_hash_table_d
*);
489 static int want_to_gcse_p (rtx
, int *);
490 static int oprs_unchanged_p (const_rtx
, const rtx_insn
*, int);
491 static int oprs_anticipatable_p (const_rtx
, const rtx_insn
*);
492 static int oprs_available_p (const_rtx
, const rtx_insn
*);
493 static void insert_expr_in_table (rtx
, machine_mode
, rtx_insn
*, int, int,
494 int, struct gcse_hash_table_d
*);
495 static unsigned int hash_expr (const_rtx
, machine_mode
, int *, int);
496 static void record_last_reg_set_info (rtx
, int);
497 static void record_last_mem_set_info (rtx_insn
*);
498 static void record_last_set_info (rtx
, const_rtx
, void *);
499 static void compute_hash_table (struct gcse_hash_table_d
*);
500 static void alloc_hash_table (struct gcse_hash_table_d
*);
501 static void free_hash_table (struct gcse_hash_table_d
*);
502 static void compute_hash_table_work (struct gcse_hash_table_d
*);
503 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d
*);
504 static void compute_local_properties (sbitmap
*, sbitmap
*, sbitmap
*,
505 struct gcse_hash_table_d
*);
506 static void mems_conflict_for_gcse_p (rtx
, const_rtx
, void *);
507 static int load_killed_in_block_p (const_basic_block
, int, const_rtx
, int);
508 static void alloc_pre_mem (int, int);
509 static void free_pre_mem (void);
510 static struct edge_list
*compute_pre_data (void);
511 static int pre_expr_reaches_here_p (basic_block
, struct gcse_expr
*,
513 static void insert_insn_end_basic_block (struct gcse_expr
*, basic_block
);
514 static void pre_insert_copy_insn (struct gcse_expr
*, rtx_insn
*);
515 static void pre_insert_copies (void);
516 static int pre_delete (void);
517 static int pre_gcse (struct edge_list
*);
518 static int one_pre_gcse_pass (void);
519 static void add_label_notes (rtx
, rtx
);
520 static void alloc_code_hoist_mem (int, int);
521 static void free_code_hoist_mem (void);
522 static void compute_code_hoist_vbeinout (void);
523 static void compute_code_hoist_data (void);
524 static int should_hoist_expr_to_dom (basic_block
, struct gcse_expr
*, basic_block
,
525 sbitmap
, int, int *, enum reg_class
,
526 int *, bitmap
, rtx_insn
*);
527 static int hoist_code (void);
528 static enum reg_class
get_regno_pressure_class (int regno
, int *nregs
);
529 static enum reg_class
get_pressure_class_and_nregs (rtx_insn
*insn
, int *nregs
);
530 static int one_code_hoisting_pass (void);
531 static rtx_insn
*process_insert_insn (struct gcse_expr
*);
532 static int pre_edge_insert (struct edge_list
*, struct gcse_expr
**);
533 static int pre_expr_reaches_here_p_work (basic_block
, struct gcse_expr
*,
534 basic_block
, char *);
535 static struct ls_expr
* ldst_entry (rtx
);
536 static void free_ldst_entry (struct ls_expr
*);
537 static void free_ld_motion_mems (void);
538 static void print_ldst_list (FILE *);
539 static struct ls_expr
* find_rtx_in_ldst (rtx
);
540 static int simple_mem (const_rtx
);
541 static void invalidate_any_buried_refs (rtx
);
542 static void compute_ld_motion_mems (void);
543 static void trim_ld_motion_mems (void);
544 static void update_ld_motion_stores (struct gcse_expr
*);
545 static void clear_modify_mem_tables (void);
546 static void free_modify_mem_tables (void);
547 static rtx
gcse_emit_move_after (rtx
, rtx
, rtx_insn
*);
548 static bool is_too_expensive (const char *);
550 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
551 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
553 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
554 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
556 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
557 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
559 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
560 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
562 /* Misc. utilities. */
565 (this_target_gcse->x_can_copy)
566 #define can_copy_init_p \
567 (this_target_gcse->x_can_copy_init_p)
569 /* Compute which modes support reg/reg copy operations. */
572 compute_can_copy (void)
575 #ifndef AVOID_CCMODE_COPIES
578 memset (can_copy
, 0, NUM_MACHINE_MODES
);
581 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
582 if (GET_MODE_CLASS (i
) == MODE_CC
)
584 #ifdef AVOID_CCMODE_COPIES
587 reg
= gen_rtx_REG ((machine_mode
) i
, LAST_VIRTUAL_REGISTER
+ 1);
588 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, reg
));
589 if (recog (PATTERN (insn
), insn
, NULL
) >= 0)
599 /* Returns whether the mode supports reg/reg copy operations. */
602 can_copy_p (machine_mode mode
)
604 if (! can_copy_init_p
)
607 can_copy_init_p
= true;
610 return can_copy
[mode
] != 0;
613 /* Cover function to xmalloc to record bytes allocated. */
616 gmalloc (size_t size
)
619 return xmalloc (size
);
622 /* Cover function to xcalloc to record bytes allocated. */
625 gcalloc (size_t nelem
, size_t elsize
)
627 bytes_used
+= nelem
* elsize
;
628 return xcalloc (nelem
, elsize
);
631 /* Cover function to obstack_alloc. */
634 gcse_alloc (unsigned long size
)
637 return obstack_alloc (&gcse_obstack
, size
);
640 /* Allocate memory for the reg/memory set tracking tables.
641 This is called at the start of each pass. */
644 alloc_gcse_mem (void)
646 /* Allocate vars to track sets of regs. */
647 reg_set_bitmap
= ALLOC_REG_SET (NULL
);
649 /* Allocate array to keep a list of insns which modify memory in each
650 basic block. The two typedefs are needed to work around the
651 pre-processor limitation with template types in macro arguments. */
652 typedef vec
<rtx_insn
*> vec_rtx_heap
;
653 typedef vec
<modify_pair
> vec_modify_pair_heap
;
654 modify_mem_list
= GCNEWVEC (vec_rtx_heap
, last_basic_block_for_fn (cfun
));
655 canon_modify_mem_list
= GCNEWVEC (vec_modify_pair_heap
,
656 last_basic_block_for_fn (cfun
));
657 modify_mem_list_set
= BITMAP_ALLOC (NULL
);
658 blocks_with_calls
= BITMAP_ALLOC (NULL
);
661 /* Free memory allocated by alloc_gcse_mem. */
666 FREE_REG_SET (reg_set_bitmap
);
668 free_modify_mem_tables ();
669 BITMAP_FREE (modify_mem_list_set
);
670 BITMAP_FREE (blocks_with_calls
);
673 /* Compute the local properties of each recorded expression.
675 Local properties are those that are defined by the block, irrespective of
678 An expression is transparent in a block if its operands are not modified
681 An expression is computed (locally available) in a block if it is computed
682 at least once and expression would contain the same value if the
683 computation was moved to the end of the block.
685 An expression is locally anticipatable in a block if it is computed at
686 least once and expression would contain the same value if the computation
687 was moved to the beginning of the block.
689 We call this routine for pre and code hoisting. They all compute
690 basically the same information and thus can easily share this code.
692 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
693 properties. If NULL, then it is not necessary to compute or record that
696 TABLE controls which hash table to look at. */
699 compute_local_properties (sbitmap
*transp
, sbitmap
*comp
, sbitmap
*antloc
,
700 struct gcse_hash_table_d
*table
)
704 /* Initialize any bitmaps that were passed in. */
707 bitmap_vector_ones (transp
, last_basic_block_for_fn (cfun
));
711 bitmap_vector_clear (comp
, last_basic_block_for_fn (cfun
));
713 bitmap_vector_clear (antloc
, last_basic_block_for_fn (cfun
));
715 for (i
= 0; i
< table
->size
; i
++)
717 struct gcse_expr
*expr
;
719 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
721 int indx
= expr
->bitmap_index
;
722 struct gcse_occr
*occr
;
724 /* The expression is transparent in this block if it is not killed.
725 We start by assuming all are transparent [none are killed], and
726 then reset the bits for those that are. */
728 compute_transp (expr
->expr
, indx
, transp
,
731 canon_modify_mem_list
);
733 /* The occurrences recorded in antic_occr are exactly those that
734 we want to set to nonzero in ANTLOC. */
736 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
738 bitmap_set_bit (antloc
[BLOCK_FOR_INSN (occr
->insn
)->index
], indx
);
740 /* While we're scanning the table, this is a good place to
745 /* The occurrences recorded in avail_occr are exactly those that
746 we want to set to nonzero in COMP. */
748 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
750 bitmap_set_bit (comp
[BLOCK_FOR_INSN (occr
->insn
)->index
], indx
);
752 /* While we're scanning the table, this is a good place to
757 /* While we're scanning the table, this is a good place to
759 expr
->reaching_reg
= 0;
764 /* Hash table support. */
766 struct reg_avail_info
773 static struct reg_avail_info
*reg_avail_info
;
774 static basic_block current_bb
;
776 /* See whether X, the source of a set, is something we want to consider for
780 want_to_gcse_p (rtx x
, int *max_distance_ptr
)
783 /* On register stack architectures, don't GCSE constants from the
784 constant pool, as the benefits are often swamped by the overhead
785 of shuffling the register stack between basic blocks. */
786 if (IS_STACK_MODE (GET_MODE (x
)))
787 x
= avoid_constant_pool_reference (x
);
790 /* GCSE'ing constants:
792 We do not specifically distinguish between constant and non-constant
793 expressions in PRE and Hoist. We use set_src_cost below to limit
794 the maximum distance simple expressions can travel.
796 Nevertheless, constants are much easier to GCSE, and, hence,
797 it is easy to overdo the optimizations. Usually, excessive PRE and
798 Hoisting of constant leads to increased register pressure.
800 RA can deal with this by rematerialing some of the constants.
801 Therefore, it is important that the back-end generates sets of constants
802 in a way that allows reload rematerialize them under high register
803 pressure, i.e., a pseudo register with REG_EQUAL to constant
804 is set only once. Failing to do so will result in IRA/reload
805 spilling such constants under high register pressure instead of
806 rematerializing them. */
808 switch (GET_CODE (x
))
816 if (!doing_code_hoisting_p
)
817 /* Do not PRE constants. */
823 if (doing_code_hoisting_p
)
824 /* PRE doesn't implement max_distance restriction. */
829 gcc_assert (!optimize_function_for_speed_p (cfun
)
830 && optimize_function_for_size_p (cfun
));
831 cost
= set_src_cost (x
, 0);
833 if (cost
< COSTS_N_INSNS (GCSE_UNRESTRICTED_COST
))
835 max_distance
= (GCSE_COST_DISTANCE_RATIO
* cost
) / 10;
836 if (max_distance
== 0)
839 gcc_assert (max_distance
> 0);
844 if (max_distance_ptr
)
845 *max_distance_ptr
= max_distance
;
848 return can_assign_to_reg_without_clobbers_p (x
);
852 /* Used internally by can_assign_to_reg_without_clobbers_p. */
854 static GTY(()) rtx_insn
*test_insn
;
856 /* Return true if we can assign X to a pseudo register such that the
857 resulting insn does not result in clobbering a hard register as a
860 Additionally, if the target requires it, check that the resulting insn
861 can be copied. If it cannot, this means that X is special and probably
862 has hidden side-effects we don't want to mess with.
864 This function is typically used by code motion passes, to verify
865 that it is safe to insert an insn without worrying about clobbering
866 maybe live hard regs. */
869 can_assign_to_reg_without_clobbers_p (rtx x
)
871 int num_clobbers
= 0;
873 bool can_assign
= false;
875 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
876 if (general_operand (x
, GET_MODE (x
)))
878 else if (GET_MODE (x
) == VOIDmode
)
881 /* Otherwise, check if we can make a valid insn from it. First initialize
882 our test insn if we haven't already. */
886 = make_insn_raw (gen_rtx_SET (VOIDmode
,
887 gen_rtx_REG (word_mode
,
888 FIRST_PSEUDO_REGISTER
* 2),
890 SET_NEXT_INSN (test_insn
) = SET_PREV_INSN (test_insn
) = 0;
891 INSN_LOCATION (test_insn
) = UNKNOWN_LOCATION
;
894 /* Now make an insn like the one we would make when GCSE'ing and see if
896 PUT_MODE (SET_DEST (PATTERN (test_insn
)), GET_MODE (x
));
897 SET_SRC (PATTERN (test_insn
)) = x
;
899 icode
= recog (PATTERN (test_insn
), test_insn
, &num_clobbers
);
901 /* If the test insn is valid and doesn't need clobbers, and the target also
902 has no objections, we're good. */
904 && (num_clobbers
== 0 || !added_clobbers_hard_reg_p (icode
))
905 && ! (targetm
.cannot_copy_insn_p
906 && targetm
.cannot_copy_insn_p (test_insn
)))
909 /* Make sure test_insn doesn't have any pointers into GC space. */
910 SET_SRC (PATTERN (test_insn
)) = NULL_RTX
;
915 /* Return nonzero if the operands of expression X are unchanged from the
916 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
917 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
920 oprs_unchanged_p (const_rtx x
, const rtx_insn
*insn
, int avail_p
)
934 struct reg_avail_info
*info
= ®_avail_info
[REGNO (x
)];
936 if (info
->last_bb
!= current_bb
)
939 return info
->last_set
< DF_INSN_LUID (insn
);
941 return info
->first_set
>= DF_INSN_LUID (insn
);
946 || load_killed_in_block_p (current_bb
, DF_INSN_LUID (insn
),
950 return oprs_unchanged_p (XEXP (x
, 0), insn
, avail_p
);
974 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
978 /* If we are about to do the last recursive call needed at this
979 level, change it into iteration. This function is called enough
982 return oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
);
984 else if (! oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
))
987 else if (fmt
[i
] == 'E')
988 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
989 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, avail_p
))
996 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
998 struct mem_conflict_info
1000 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
1001 see if a memory store conflicts with this memory load. */
1004 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
1009 /* DEST is the output of an instruction. If it is a memory reference and
1010 possibly conflicts with the load found in DATA, then communicate this
1011 information back through DATA. */
1014 mems_conflict_for_gcse_p (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
,
1017 struct mem_conflict_info
*mci
= (struct mem_conflict_info
*) data
;
1019 while (GET_CODE (dest
) == SUBREG
1020 || GET_CODE (dest
) == ZERO_EXTRACT
1021 || GET_CODE (dest
) == STRICT_LOW_PART
)
1022 dest
= XEXP (dest
, 0);
1024 /* If DEST is not a MEM, then it will not conflict with the load. Note
1025 that function calls are assumed to clobber memory, but are handled
1030 /* If we are setting a MEM in our list of specially recognized MEMs,
1031 don't mark as killed this time. */
1032 if (pre_ldst_mems
!= NULL
&& expr_equiv_p (dest
, mci
->mem
))
1034 if (!find_rtx_in_ldst (dest
))
1035 mci
->conflict
= true;
1039 if (true_dependence (dest
, GET_MODE (dest
), mci
->mem
))
1040 mci
->conflict
= true;
1043 /* Return nonzero if the expression in X (a memory reference) is killed
1044 in block BB before or after the insn with the LUID in UID_LIMIT.
1045 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1048 To check the entire block, set UID_LIMIT to max_uid + 1 and
1052 load_killed_in_block_p (const_basic_block bb
, int uid_limit
, const_rtx x
,
1055 vec
<rtx_insn
*> list
= modify_mem_list
[bb
->index
];
1059 /* If this is a readonly then we aren't going to be changing it. */
1060 if (MEM_READONLY_P (x
))
1063 FOR_EACH_VEC_ELT_REVERSE (list
, ix
, setter
)
1065 struct mem_conflict_info mci
;
1067 /* Ignore entries in the list that do not apply. */
1069 && DF_INSN_LUID (setter
) < uid_limit
)
1071 && DF_INSN_LUID (setter
) > uid_limit
))
1074 /* If SETTER is a call everything is clobbered. Note that calls
1075 to pure functions are never put on the list, so we need not
1076 worry about them. */
1077 if (CALL_P (setter
))
1080 /* SETTER must be an INSN of some kind that sets memory. Call
1081 note_stores to examine each hunk of memory that is modified. */
1083 mci
.conflict
= false;
1084 note_stores (PATTERN (setter
), mems_conflict_for_gcse_p
, &mci
);
1091 /* Return nonzero if the operands of expression X are unchanged from
1092 the start of INSN's basic block up to but not including INSN. */
1095 oprs_anticipatable_p (const_rtx x
, const rtx_insn
*insn
)
1097 return oprs_unchanged_p (x
, insn
, 0);
1100 /* Return nonzero if the operands of expression X are unchanged from
1101 INSN to the end of INSN's basic block. */
1104 oprs_available_p (const_rtx x
, const rtx_insn
*insn
)
1106 return oprs_unchanged_p (x
, insn
, 1);
1109 /* Hash expression X.
1111 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1112 indicating if a volatile operand is found or if the expression contains
1113 something we don't want to insert in the table. HASH_TABLE_SIZE is
1114 the current size of the hash table to be probed. */
1117 hash_expr (const_rtx x
, machine_mode mode
, int *do_not_record_p
,
1118 int hash_table_size
)
1122 *do_not_record_p
= 0;
1124 hash
= hash_rtx (x
, mode
, do_not_record_p
, NULL
, /*have_reg_qty=*/false);
1125 return hash
% hash_table_size
;
1128 /* Return nonzero if exp1 is equivalent to exp2. */
1131 expr_equiv_p (const_rtx x
, const_rtx y
)
1133 return exp_equiv_p (x
, y
, 0, true);
1136 /* Insert expression X in INSN in the hash TABLE.
1137 If it is already present, record it as the last occurrence in INSN's
1140 MODE is the mode of the value X is being stored into.
1141 It is only used if X is a CONST_INT.
1143 ANTIC_P is nonzero if X is an anticipatable expression.
1144 AVAIL_P is nonzero if X is an available expression.
1146 MAX_DISTANCE is the maximum distance in instructions this expression can
1150 insert_expr_in_table (rtx x
, machine_mode mode
, rtx_insn
*insn
,
1152 int avail_p
, int max_distance
, struct gcse_hash_table_d
*table
)
1154 int found
, do_not_record_p
;
1156 struct gcse_expr
*cur_expr
, *last_expr
= NULL
;
1157 struct gcse_occr
*antic_occr
, *avail_occr
;
1159 hash
= hash_expr (x
, mode
, &do_not_record_p
, table
->size
);
1161 /* Do not insert expression in table if it contains volatile operands,
1162 or if hash_expr determines the expression is something we don't want
1163 to or can't handle. */
1164 if (do_not_record_p
)
1167 cur_expr
= table
->table
[hash
];
1170 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1172 /* If the expression isn't found, save a pointer to the end of
1174 last_expr
= cur_expr
;
1175 cur_expr
= cur_expr
->next_same_hash
;
1180 cur_expr
= GOBNEW (struct gcse_expr
);
1181 bytes_used
+= sizeof (struct gcse_expr
);
1182 if (table
->table
[hash
] == NULL
)
1183 /* This is the first pattern that hashed to this index. */
1184 table
->table
[hash
] = cur_expr
;
1186 /* Add EXPR to end of this hash chain. */
1187 last_expr
->next_same_hash
= cur_expr
;
1189 /* Set the fields of the expr element. */
1191 cur_expr
->bitmap_index
= table
->n_elems
++;
1192 cur_expr
->next_same_hash
= NULL
;
1193 cur_expr
->antic_occr
= NULL
;
1194 cur_expr
->avail_occr
= NULL
;
1195 gcc_assert (max_distance
>= 0);
1196 cur_expr
->max_distance
= max_distance
;
1199 gcc_assert (cur_expr
->max_distance
== max_distance
);
1201 /* Now record the occurrence(s). */
1204 antic_occr
= cur_expr
->antic_occr
;
1207 && BLOCK_FOR_INSN (antic_occr
->insn
) != BLOCK_FOR_INSN (insn
))
1211 /* Found another instance of the expression in the same basic block.
1212 Prefer the currently recorded one. We want the first one in the
1213 block and the block is scanned from start to end. */
1214 ; /* nothing to do */
1217 /* First occurrence of this expression in this basic block. */
1218 antic_occr
= GOBNEW (struct gcse_occr
);
1219 bytes_used
+= sizeof (struct gcse_occr
);
1220 antic_occr
->insn
= insn
;
1221 antic_occr
->next
= cur_expr
->antic_occr
;
1222 antic_occr
->deleted_p
= 0;
1223 cur_expr
->antic_occr
= antic_occr
;
1229 avail_occr
= cur_expr
->avail_occr
;
1232 && BLOCK_FOR_INSN (avail_occr
->insn
) == BLOCK_FOR_INSN (insn
))
1234 /* Found another instance of the expression in the same basic block.
1235 Prefer this occurrence to the currently recorded one. We want
1236 the last one in the block and the block is scanned from start
1238 avail_occr
->insn
= insn
;
1242 /* First occurrence of this expression in this basic block. */
1243 avail_occr
= GOBNEW (struct gcse_occr
);
1244 bytes_used
+= sizeof (struct gcse_occr
);
1245 avail_occr
->insn
= insn
;
1246 avail_occr
->next
= cur_expr
->avail_occr
;
1247 avail_occr
->deleted_p
= 0;
1248 cur_expr
->avail_occr
= avail_occr
;
1253 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1256 hash_scan_set (rtx set
, rtx_insn
*insn
, struct gcse_hash_table_d
*table
)
1258 rtx src
= SET_SRC (set
);
1259 rtx dest
= SET_DEST (set
);
1262 if (GET_CODE (src
) == CALL
)
1263 hash_scan_call (src
, insn
, table
);
1265 else if (REG_P (dest
))
1267 unsigned int regno
= REGNO (dest
);
1268 int max_distance
= 0;
1270 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1272 This allows us to do a single GCSE pass and still eliminate
1273 redundant constants, addresses or other expressions that are
1274 constructed with multiple instructions.
1276 However, keep the original SRC if INSN is a simple reg-reg move.
1277 In this case, there will almost always be a REG_EQUAL note on the
1278 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1279 for INSN, we miss copy propagation opportunities and we perform the
1280 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1281 do more than one PRE GCSE pass.
1283 Note that this does not impede profitable constant propagations. We
1284 "look through" reg-reg sets in lookup_avail_set. */
1285 note
= find_reg_equal_equiv_note (insn
);
1287 && REG_NOTE_KIND (note
) == REG_EQUAL
1289 && want_to_gcse_p (XEXP (note
, 0), NULL
))
1290 src
= XEXP (note
, 0), set
= gen_rtx_SET (VOIDmode
, dest
, src
);
1292 /* Only record sets of pseudo-regs in the hash table. */
1293 if (regno
>= FIRST_PSEUDO_REGISTER
1294 /* Don't GCSE something if we can't do a reg/reg copy. */
1295 && can_copy_p (GET_MODE (dest
))
1296 /* GCSE commonly inserts instruction after the insn. We can't
1297 do that easily for EH edges so disable GCSE on these for now. */
1298 /* ??? We can now easily create new EH landing pads at the
1299 gimple level, for splitting edges; there's no reason we
1300 can't do the same thing at the rtl level. */
1301 && !can_throw_internal (insn
)
1302 /* Is SET_SRC something we want to gcse? */
1303 && want_to_gcse_p (src
, &max_distance
)
1304 /* Don't CSE a nop. */
1305 && ! set_noop_p (set
)
1306 /* Don't GCSE if it has attached REG_EQUIV note.
1307 At this point this only function parameters should have
1308 REG_EQUIV notes and if the argument slot is used somewhere
1309 explicitly, it means address of parameter has been taken,
1310 so we should not extend the lifetime of the pseudo. */
1311 && (note
== NULL_RTX
|| ! MEM_P (XEXP (note
, 0))))
1313 /* An expression is not anticipatable if its operands are
1314 modified before this insn or if this is not the only SET in
1315 this insn. The latter condition does not have to mean that
1316 SRC itself is not anticipatable, but we just will not be
1317 able to handle code motion of insns with multiple sets. */
1318 int antic_p
= oprs_anticipatable_p (src
, insn
)
1319 && !multiple_sets (insn
);
1320 /* An expression is not available if its operands are
1321 subsequently modified, including this insn. It's also not
1322 available if this is a branch, because we can't insert
1323 a set after the branch. */
1324 int avail_p
= (oprs_available_p (src
, insn
)
1325 && ! JUMP_P (insn
));
1327 insert_expr_in_table (src
, GET_MODE (dest
), insn
, antic_p
, avail_p
,
1328 max_distance
, table
);
1331 /* In case of store we want to consider the memory value as available in
1332 the REG stored in that memory. This makes it possible to remove
1333 redundant loads from due to stores to the same location. */
1334 else if (flag_gcse_las
&& REG_P (src
) && MEM_P (dest
))
1336 unsigned int regno
= REGNO (src
);
1337 int max_distance
= 0;
1339 /* Only record sets of pseudo-regs in the hash table. */
1340 if (regno
>= FIRST_PSEUDO_REGISTER
1341 /* Don't GCSE something if we can't do a reg/reg copy. */
1342 && can_copy_p (GET_MODE (src
))
1343 /* GCSE commonly inserts instruction after the insn. We can't
1344 do that easily for EH edges so disable GCSE on these for now. */
1345 && !can_throw_internal (insn
)
1346 /* Is SET_DEST something we want to gcse? */
1347 && want_to_gcse_p (dest
, &max_distance
)
1348 /* Don't CSE a nop. */
1349 && ! set_noop_p (set
)
1350 /* Don't GCSE if it has attached REG_EQUIV note.
1351 At this point this only function parameters should have
1352 REG_EQUIV notes and if the argument slot is used somewhere
1353 explicitly, it means address of parameter has been taken,
1354 so we should not extend the lifetime of the pseudo. */
1355 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1356 || ! MEM_P (XEXP (note
, 0))))
1358 /* Stores are never anticipatable. */
1360 /* An expression is not available if its operands are
1361 subsequently modified, including this insn. It's also not
1362 available if this is a branch, because we can't insert
1363 a set after the branch. */
1364 int avail_p
= oprs_available_p (dest
, insn
)
1367 /* Record the memory expression (DEST) in the hash table. */
1368 insert_expr_in_table (dest
, GET_MODE (dest
), insn
,
1369 antic_p
, avail_p
, max_distance
, table
);
1375 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED
, rtx_insn
*insn ATTRIBUTE_UNUSED
,
1376 struct gcse_hash_table_d
*table ATTRIBUTE_UNUSED
)
1378 /* Currently nothing to do. */
1382 hash_scan_call (rtx x ATTRIBUTE_UNUSED
, rtx_insn
*insn ATTRIBUTE_UNUSED
,
1383 struct gcse_hash_table_d
*table ATTRIBUTE_UNUSED
)
1385 /* Currently nothing to do. */
1388 /* Process INSN and add hash table entries as appropriate. */
1391 hash_scan_insn (rtx_insn
*insn
, struct gcse_hash_table_d
*table
)
1393 rtx pat
= PATTERN (insn
);
1396 /* Pick out the sets of INSN and for other forms of instructions record
1397 what's been modified. */
1399 if (GET_CODE (pat
) == SET
)
1400 hash_scan_set (pat
, insn
, table
);
1402 else if (GET_CODE (pat
) == CLOBBER
)
1403 hash_scan_clobber (pat
, insn
, table
);
1405 else if (GET_CODE (pat
) == CALL
)
1406 hash_scan_call (pat
, insn
, table
);
1408 else if (GET_CODE (pat
) == PARALLEL
)
1409 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1411 rtx x
= XVECEXP (pat
, 0, i
);
1413 if (GET_CODE (x
) == SET
)
1414 hash_scan_set (x
, insn
, table
);
1415 else if (GET_CODE (x
) == CLOBBER
)
1416 hash_scan_clobber (x
, insn
, table
);
1417 else if (GET_CODE (x
) == CALL
)
1418 hash_scan_call (x
, insn
, table
);
1422 /* Dump the hash table TABLE to file FILE under the name NAME. */
1425 dump_hash_table (FILE *file
, const char *name
, struct gcse_hash_table_d
*table
)
1428 /* Flattened out table, so it's printed in proper order. */
1429 struct gcse_expr
**flat_table
;
1430 unsigned int *hash_val
;
1431 struct gcse_expr
*expr
;
1433 flat_table
= XCNEWVEC (struct gcse_expr
*, table
->n_elems
);
1434 hash_val
= XNEWVEC (unsigned int, table
->n_elems
);
1436 for (i
= 0; i
< (int) table
->size
; i
++)
1437 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1439 flat_table
[expr
->bitmap_index
] = expr
;
1440 hash_val
[expr
->bitmap_index
] = i
;
1443 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
1444 name
, table
->size
, table
->n_elems
);
1446 for (i
= 0; i
< (int) table
->n_elems
; i
++)
1447 if (flat_table
[i
] != 0)
1449 expr
= flat_table
[i
];
1450 fprintf (file
, "Index %d (hash value %d; max distance %d)\n ",
1451 expr
->bitmap_index
, hash_val
[i
], expr
->max_distance
);
1452 print_rtl (file
, expr
->expr
);
1453 fprintf (file
, "\n");
1456 fprintf (file
, "\n");
1462 /* Record register first/last/block set information for REGNO in INSN.
1464 first_set records the first place in the block where the register
1465 is set and is used to compute "anticipatability".
1467 last_set records the last place in the block where the register
1468 is set and is used to compute "availability".
1470 last_bb records the block for which first_set and last_set are
1471 valid, as a quick test to invalidate them. */
1474 record_last_reg_set_info (rtx insn
, int regno
)
1476 struct reg_avail_info
*info
= ®_avail_info
[regno
];
1477 int luid
= DF_INSN_LUID (insn
);
1479 info
->last_set
= luid
;
1480 if (info
->last_bb
!= current_bb
)
1482 info
->last_bb
= current_bb
;
1483 info
->first_set
= luid
;
1487 /* Record memory modification information for INSN. We do not actually care
1488 about the memory location(s) that are set, or even how they are set (consider
1489 a CALL_INSN). We merely need to record which insns modify memory. */
1492 record_last_mem_set_info (rtx_insn
*insn
)
1497 record_last_mem_set_info_common (insn
, modify_mem_list
,
1498 canon_modify_mem_list
,
1499 modify_mem_list_set
,
1503 /* Called from compute_hash_table via note_stores to handle one
1504 SET or CLOBBER in an insn. DATA is really the instruction in which
1505 the SET is taking place. */
1508 record_last_set_info (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
, void *data
)
1510 rtx_insn
*last_set_insn
= (rtx_insn
*) data
;
1512 if (GET_CODE (dest
) == SUBREG
)
1513 dest
= SUBREG_REG (dest
);
1516 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
1517 else if (MEM_P (dest
)
1518 /* Ignore pushes, they clobber nothing. */
1519 && ! push_operand (dest
, GET_MODE (dest
)))
1520 record_last_mem_set_info (last_set_insn
);
1523 /* Top level function to create an expression hash table.
1525 Expression entries are placed in the hash table if
1526 - they are of the form (set (pseudo-reg) src),
1527 - src is something we want to perform GCSE on,
1528 - none of the operands are subsequently modified in the block
1530 Currently src must be a pseudo-reg or a const_int.
1532 TABLE is the table computed. */
1535 compute_hash_table_work (struct gcse_hash_table_d
*table
)
1539 /* re-Cache any INSN_LIST nodes we have allocated. */
1540 clear_modify_mem_tables ();
1541 /* Some working arrays used to track first and last set in each block. */
1542 reg_avail_info
= GNEWVEC (struct reg_avail_info
, max_reg_num ());
1544 for (i
= 0; i
< max_reg_num (); ++i
)
1545 reg_avail_info
[i
].last_bb
= NULL
;
1547 FOR_EACH_BB_FN (current_bb
, cfun
)
1552 /* First pass over the instructions records information used to
1553 determine when registers and memory are first and last set. */
1554 FOR_BB_INSNS (current_bb
, insn
)
1556 if (!NONDEBUG_INSN_P (insn
))
1561 hard_reg_set_iterator hrsi
;
1562 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
,
1564 record_last_reg_set_info (insn
, regno
);
1566 if (! RTL_CONST_OR_PURE_CALL_P (insn
))
1567 record_last_mem_set_info (insn
);
1570 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
1573 /* The next pass builds the hash table. */
1574 FOR_BB_INSNS (current_bb
, insn
)
1575 if (NONDEBUG_INSN_P (insn
))
1576 hash_scan_insn (insn
, table
);
1579 free (reg_avail_info
);
1580 reg_avail_info
= NULL
;
1583 /* Allocate space for the set/expr hash TABLE.
1584 It is used to determine the number of buckets to use. */
1587 alloc_hash_table (struct gcse_hash_table_d
*table
)
1591 n
= get_max_insn_count ();
1593 table
->size
= n
/ 4;
1594 if (table
->size
< 11)
1597 /* Attempt to maintain efficient use of hash table.
1598 Making it an odd number is simplest for now.
1599 ??? Later take some measurements. */
1601 n
= table
->size
* sizeof (struct gcse_expr
*);
1602 table
->table
= GNEWVAR (struct gcse_expr
*, n
);
1605 /* Free things allocated by alloc_hash_table. */
1608 free_hash_table (struct gcse_hash_table_d
*table
)
1610 free (table
->table
);
1613 /* Compute the expression hash table TABLE. */
1616 compute_hash_table (struct gcse_hash_table_d
*table
)
1618 /* Initialize count of number of entries in hash table. */
1620 memset (table
->table
, 0, table
->size
* sizeof (struct gcse_expr
*));
1622 compute_hash_table_work (table
);
1625 /* Expression tracking support. */
1627 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1629 clear_modify_mem_tables (void)
1634 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set
, 0, i
, bi
)
1636 modify_mem_list
[i
].release ();
1637 canon_modify_mem_list
[i
].release ();
1639 bitmap_clear (modify_mem_list_set
);
1640 bitmap_clear (blocks_with_calls
);
1643 /* Release memory used by modify_mem_list_set. */
1646 free_modify_mem_tables (void)
1648 clear_modify_mem_tables ();
1649 free (modify_mem_list
);
1650 free (canon_modify_mem_list
);
1651 modify_mem_list
= 0;
1652 canon_modify_mem_list
= 0;
1655 /* Compute PRE+LCM working variables. */
1657 /* Local properties of expressions. */
1659 /* Nonzero for expressions that are transparent in the block. */
1660 static sbitmap
*transp
;
1662 /* Nonzero for expressions that are computed (available) in the block. */
1663 static sbitmap
*comp
;
1665 /* Nonzero for expressions that are locally anticipatable in the block. */
1666 static sbitmap
*antloc
;
1668 /* Nonzero for expressions where this block is an optimal computation
1670 static sbitmap
*pre_optimal
;
1672 /* Nonzero for expressions which are redundant in a particular block. */
1673 static sbitmap
*pre_redundant
;
1675 /* Nonzero for expressions which should be inserted on a specific edge. */
1676 static sbitmap
*pre_insert_map
;
1678 /* Nonzero for expressions which should be deleted in a specific block. */
1679 static sbitmap
*pre_delete_map
;
1681 /* Allocate vars used for PRE analysis. */
1684 alloc_pre_mem (int n_blocks
, int n_exprs
)
1686 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
1687 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
1688 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
1691 pre_redundant
= NULL
;
1692 pre_insert_map
= NULL
;
1693 pre_delete_map
= NULL
;
1694 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
1696 /* pre_insert and pre_delete are allocated later. */
1699 /* Free vars used for PRE analysis. */
1704 sbitmap_vector_free (transp
);
1705 sbitmap_vector_free (comp
);
1707 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1710 sbitmap_vector_free (pre_optimal
);
1712 sbitmap_vector_free (pre_redundant
);
1714 sbitmap_vector_free (pre_insert_map
);
1716 sbitmap_vector_free (pre_delete_map
);
1718 transp
= comp
= NULL
;
1719 pre_optimal
= pre_redundant
= pre_insert_map
= pre_delete_map
= NULL
;
1722 /* Remove certain expressions from anticipatable and transparent
1723 sets of basic blocks that have incoming abnormal edge.
1724 For PRE remove potentially trapping expressions to avoid placing
1725 them on abnormal edges. For hoisting remove memory references that
1726 can be clobbered by calls. */
1729 prune_expressions (bool pre_p
)
1731 sbitmap prune_exprs
;
1732 struct gcse_expr
*expr
;
1736 prune_exprs
= sbitmap_alloc (expr_hash_table
.n_elems
);
1737 bitmap_clear (prune_exprs
);
1738 for (ui
= 0; ui
< expr_hash_table
.size
; ui
++)
1740 for (expr
= expr_hash_table
.table
[ui
]; expr
; expr
= expr
->next_same_hash
)
1742 /* Note potentially trapping expressions. */
1743 if (may_trap_p (expr
->expr
))
1745 bitmap_set_bit (prune_exprs
, expr
->bitmap_index
);
1749 if (!pre_p
&& MEM_P (expr
->expr
))
1750 /* Note memory references that can be clobbered by a call.
1751 We do not split abnormal edges in hoisting, so would
1752 a memory reference get hoisted along an abnormal edge,
1753 it would be placed /before/ the call. Therefore, only
1754 constant memory references can be hoisted along abnormal
1757 if (GET_CODE (XEXP (expr
->expr
, 0)) == SYMBOL_REF
1758 && CONSTANT_POOL_ADDRESS_P (XEXP (expr
->expr
, 0)))
1761 if (MEM_READONLY_P (expr
->expr
)
1762 && !MEM_VOLATILE_P (expr
->expr
)
1763 && MEM_NOTRAP_P (expr
->expr
))
1764 /* Constant memory reference, e.g., a PIC address. */
1767 /* ??? Optimally, we would use interprocedural alias
1768 analysis to determine if this mem is actually killed
1771 bitmap_set_bit (prune_exprs
, expr
->bitmap_index
);
1776 FOR_EACH_BB_FN (bb
, cfun
)
1781 /* If the current block is the destination of an abnormal edge, we
1782 kill all trapping (for PRE) and memory (for hoist) expressions
1783 because we won't be able to properly place the instruction on
1784 the edge. So make them neither anticipatable nor transparent.
1785 This is fairly conservative.
1787 ??? For hoisting it may be necessary to check for set-and-jump
1788 instructions here, not just for abnormal edges. The general problem
1789 is that when an expression cannot not be placed right at the end of
1790 a basic block we should account for any side-effects of a subsequent
1791 jump instructions that could clobber the expression. It would
1792 be best to implement this check along the lines of
1793 should_hoist_expr_to_dom where the target block is already known
1794 and, hence, there's no need to conservatively prune expressions on
1795 "intermediate" set-and-jump instructions. */
1796 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1797 if ((e
->flags
& EDGE_ABNORMAL
)
1798 && (pre_p
|| CALL_P (BB_END (e
->src
))))
1800 bitmap_and_compl (antloc
[bb
->index
],
1801 antloc
[bb
->index
], prune_exprs
);
1802 bitmap_and_compl (transp
[bb
->index
],
1803 transp
[bb
->index
], prune_exprs
);
1808 sbitmap_free (prune_exprs
);
1811 /* It may be necessary to insert a large number of insns on edges to
1812 make the existing occurrences of expressions fully redundant. This
1813 routine examines the set of insertions and deletions and if the ratio
1814 of insertions to deletions is too high for a particular expression, then
1815 the expression is removed from the insertion/deletion sets.
1817 N_ELEMS is the number of elements in the hash table. */
1820 prune_insertions_deletions (int n_elems
)
1822 sbitmap_iterator sbi
;
1823 sbitmap prune_exprs
;
1825 /* We always use I to iterate over blocks/edges and J to iterate over
1829 /* Counts for the number of times an expression needs to be inserted and
1830 number of times an expression can be removed as a result. */
1831 int *insertions
= GCNEWVEC (int, n_elems
);
1832 int *deletions
= GCNEWVEC (int, n_elems
);
1834 /* Set of expressions which require too many insertions relative to
1835 the number of deletions achieved. We will prune these out of the
1836 insertion/deletion sets. */
1837 prune_exprs
= sbitmap_alloc (n_elems
);
1838 bitmap_clear (prune_exprs
);
1840 /* Iterate over the edges counting the number of times each expression
1841 needs to be inserted. */
1842 for (i
= 0; i
< (unsigned) n_edges_for_fn (cfun
); i
++)
1844 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map
[i
], 0, j
, sbi
)
1848 /* Similarly for deletions, but those occur in blocks rather than on
1850 for (i
= 0; i
< (unsigned) last_basic_block_for_fn (cfun
); i
++)
1852 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map
[i
], 0, j
, sbi
)
1856 /* Now that we have accurate counts, iterate over the elements in the
1857 hash table and see if any need too many insertions relative to the
1858 number of evaluations that can be removed. If so, mark them in
1860 for (j
= 0; j
< (unsigned) n_elems
; j
++)
1862 && ((unsigned) insertions
[j
] / deletions
[j
]) > MAX_GCSE_INSERTION_RATIO
)
1863 bitmap_set_bit (prune_exprs
, j
);
1865 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1866 EXECUTE_IF_SET_IN_BITMAP (prune_exprs
, 0, j
, sbi
)
1868 for (i
= 0; i
< (unsigned) n_edges_for_fn (cfun
); i
++)
1869 bitmap_clear_bit (pre_insert_map
[i
], j
);
1871 for (i
= 0; i
< (unsigned) last_basic_block_for_fn (cfun
); i
++)
1872 bitmap_clear_bit (pre_delete_map
[i
], j
);
1875 sbitmap_free (prune_exprs
);
1880 /* Top level routine to do the dataflow analysis needed by PRE. */
1882 static struct edge_list
*
1883 compute_pre_data (void)
1885 struct edge_list
*edge_list
;
1888 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
1889 prune_expressions (true);
1890 bitmap_vector_clear (ae_kill
, last_basic_block_for_fn (cfun
));
1892 /* Compute ae_kill for each basic block using:
1897 FOR_EACH_BB_FN (bb
, cfun
)
1899 bitmap_ior (ae_kill
[bb
->index
], transp
[bb
->index
], comp
[bb
->index
]);
1900 bitmap_not (ae_kill
[bb
->index
], ae_kill
[bb
->index
]);
1903 edge_list
= pre_edge_lcm (expr_hash_table
.n_elems
, transp
, comp
, antloc
,
1904 ae_kill
, &pre_insert_map
, &pre_delete_map
);
1905 sbitmap_vector_free (antloc
);
1907 sbitmap_vector_free (ae_kill
);
1910 prune_insertions_deletions (expr_hash_table
.n_elems
);
1917 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1920 VISITED is a pointer to a working buffer for tracking which BB's have
1921 been visited. It is NULL for the top-level call.
1923 We treat reaching expressions that go through blocks containing the same
1924 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1925 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1926 2 as not reaching. The intent is to improve the probability of finding
1927 only one reaching expression and to reduce register lifetimes by picking
1928 the closest such expression. */
1931 pre_expr_reaches_here_p_work (basic_block occr_bb
, struct gcse_expr
*expr
,
1932 basic_block bb
, char *visited
)
1937 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
1939 basic_block pred_bb
= pred
->src
;
1941 if (pred
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1942 /* Has predecessor has already been visited? */
1943 || visited
[pred_bb
->index
])
1944 ;/* Nothing to do. */
1946 /* Does this predecessor generate this expression? */
1947 else if (bitmap_bit_p (comp
[pred_bb
->index
], expr
->bitmap_index
))
1949 /* Is this the occurrence we're looking for?
1950 Note that there's only one generating occurrence per block
1951 so we just need to check the block number. */
1952 if (occr_bb
== pred_bb
)
1955 visited
[pred_bb
->index
] = 1;
1957 /* Ignore this predecessor if it kills the expression. */
1958 else if (! bitmap_bit_p (transp
[pred_bb
->index
], expr
->bitmap_index
))
1959 visited
[pred_bb
->index
] = 1;
1961 /* Neither gen nor kill. */
1964 visited
[pred_bb
->index
] = 1;
1965 if (pre_expr_reaches_here_p_work (occr_bb
, expr
, pred_bb
, visited
))
1970 /* All paths have been checked. */
1974 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1975 memory allocated for that function is returned. */
1978 pre_expr_reaches_here_p (basic_block occr_bb
, struct gcse_expr
*expr
, basic_block bb
)
1981 char *visited
= XCNEWVEC (char, last_basic_block_for_fn (cfun
));
1983 rval
= pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
);
1989 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1992 process_insert_insn (struct gcse_expr
*expr
)
1994 rtx reg
= expr
->reaching_reg
;
1995 /* Copy the expression to make sure we don't have any sharing issues. */
1996 rtx exp
= copy_rtx (expr
->expr
);
2001 /* If the expression is something that's an operand, like a constant,
2002 just copy it to a register. */
2003 if (general_operand (exp
, GET_MODE (reg
)))
2004 emit_move_insn (reg
, exp
);
2006 /* Otherwise, make a new insn to compute this expression and make sure the
2007 insn will be recognized (this also adds any needed CLOBBERs). */
2010 rtx_insn
*insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, exp
));
2012 if (insn_invalid_p (insn
, false))
2022 /* Add EXPR to the end of basic block BB.
2024 This is used by both the PRE and code hoisting. */
2027 insert_insn_end_basic_block (struct gcse_expr
*expr
, basic_block bb
)
2029 rtx_insn
*insn
= BB_END (bb
);
2031 rtx reg
= expr
->reaching_reg
;
2032 int regno
= REGNO (reg
);
2033 rtx_insn
*pat
, *pat_end
;
2035 pat
= process_insert_insn (expr
);
2036 gcc_assert (pat
&& INSN_P (pat
));
2039 while (NEXT_INSN (pat_end
) != NULL_RTX
)
2040 pat_end
= NEXT_INSN (pat_end
);
2042 /* If the last insn is a jump, insert EXPR in front [taking care to
2043 handle cc0, etc. properly]. Similarly we need to care trapping
2044 instructions in presence of non-call exceptions. */
2047 || (NONJUMP_INSN_P (insn
)
2048 && (!single_succ_p (bb
)
2049 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
)))
2052 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2053 if cc0 isn't set. */
2054 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2056 insn
= safe_as_a
<rtx_insn
*> (XEXP (note
, 0));
2059 rtx_insn
*maybe_cc0_setter
= prev_nonnote_insn (insn
);
2060 if (maybe_cc0_setter
2061 && INSN_P (maybe_cc0_setter
)
2062 && sets_cc0_p (PATTERN (maybe_cc0_setter
)))
2063 insn
= maybe_cc0_setter
;
2066 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2067 new_insn
= emit_insn_before_noloc (pat
, insn
, bb
);
2070 /* Likewise if the last insn is a call, as will happen in the presence
2071 of exception handling. */
2072 else if (CALL_P (insn
)
2073 && (!single_succ_p (bb
)
2074 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
))
2076 /* Keeping in mind targets with small register classes and parameters
2077 in registers, we search backward and place the instructions before
2078 the first parameter is loaded. Do this for everyone for consistency
2079 and a presumption that we'll get better code elsewhere as well. */
2081 /* Since different machines initialize their parameter registers
2082 in different orders, assume nothing. Collect the set of all
2083 parameter registers. */
2084 insn
= find_first_parameter_load (insn
, BB_HEAD (bb
));
2086 /* If we found all the parameter loads, then we want to insert
2087 before the first parameter load.
2089 If we did not find all the parameter loads, then we might have
2090 stopped on the head of the block, which could be a CODE_LABEL.
2091 If we inserted before the CODE_LABEL, then we would be putting
2092 the insn in the wrong basic block. In that case, put the insn
2093 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2094 while (LABEL_P (insn
)
2095 || NOTE_INSN_BASIC_BLOCK_P (insn
))
2096 insn
= NEXT_INSN (insn
);
2098 new_insn
= emit_insn_before_noloc (pat
, insn
, bb
);
2101 new_insn
= emit_insn_after_noloc (pat
, insn
, bb
);
2106 add_label_notes (PATTERN (pat
), new_insn
);
2109 pat
= NEXT_INSN (pat
);
2112 gcse_create_count
++;
2116 fprintf (dump_file
, "PRE/HOIST: end of bb %d, insn %d, ",
2117 bb
->index
, INSN_UID (new_insn
));
2118 fprintf (dump_file
, "copying expression %d to reg %d\n",
2119 expr
->bitmap_index
, regno
);
2123 /* Insert partially redundant expressions on edges in the CFG to make
2124 the expressions fully redundant. */
2127 pre_edge_insert (struct edge_list
*edge_list
, struct gcse_expr
**index_map
)
2129 int e
, i
, j
, num_edges
, set_size
, did_insert
= 0;
2132 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2133 if it reaches any of the deleted expressions. */
2135 set_size
= pre_insert_map
[0]->size
;
2136 num_edges
= NUM_EDGES (edge_list
);
2137 inserted
= sbitmap_vector_alloc (num_edges
, expr_hash_table
.n_elems
);
2138 bitmap_vector_clear (inserted
, num_edges
);
2140 for (e
= 0; e
< num_edges
; e
++)
2143 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
2145 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
2147 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
2150 insert
&& j
< (int) expr_hash_table
.n_elems
;
2152 if ((insert
& 1) != 0 && index_map
[j
]->reaching_reg
!= NULL_RTX
)
2154 struct gcse_expr
*expr
= index_map
[j
];
2155 struct gcse_occr
*occr
;
2157 /* Now look at each deleted occurrence of this expression. */
2158 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
2160 if (! occr
->deleted_p
)
2163 /* Insert this expression on this edge if it would
2164 reach the deleted occurrence in BB. */
2165 if (!bitmap_bit_p (inserted
[e
], j
))
2168 edge eg
= INDEX_EDGE (edge_list
, e
);
2170 /* We can't insert anything on an abnormal and
2171 critical edge, so we insert the insn at the end of
2172 the previous block. There are several alternatives
2173 detailed in Morgans book P277 (sec 10.5) for
2174 handling this situation. This one is easiest for
2177 if (eg
->flags
& EDGE_ABNORMAL
)
2178 insert_insn_end_basic_block (index_map
[j
], bb
);
2181 insn
= process_insert_insn (index_map
[j
]);
2182 insert_insn_on_edge (insn
, eg
);
2187 fprintf (dump_file
, "PRE: edge (%d,%d), ",
2189 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
2190 fprintf (dump_file
, "copy expression %d\n",
2191 expr
->bitmap_index
);
2194 update_ld_motion_stores (expr
);
2195 bitmap_set_bit (inserted
[e
], j
);
2197 gcse_create_count
++;
2204 sbitmap_vector_free (inserted
);
2208 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2209 Given "old_reg <- expr" (INSN), instead of adding after it
2210 reaching_reg <- old_reg
2211 it's better to do the following:
2212 reaching_reg <- expr
2213 old_reg <- reaching_reg
2214 because this way copy propagation can discover additional PRE
2215 opportunities. But if this fails, we try the old way.
2216 When "expr" is a store, i.e.
2217 given "MEM <- old_reg", instead of adding after it
2218 reaching_reg <- old_reg
2219 it's better to add it before as follows:
2220 reaching_reg <- old_reg
2221 MEM <- reaching_reg. */
2224 pre_insert_copy_insn (struct gcse_expr
*expr
, rtx_insn
*insn
)
2226 rtx reg
= expr
->reaching_reg
;
2227 int regno
= REGNO (reg
);
2228 int indx
= expr
->bitmap_index
;
2229 rtx pat
= PATTERN (insn
);
2230 rtx set
, first_set
, new_insn
;
2234 /* This block matches the logic in hash_scan_insn. */
2235 switch (GET_CODE (pat
))
2242 /* Search through the parallel looking for the set whose
2243 source was the expression that we're interested in. */
2244 first_set
= NULL_RTX
;
2246 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2248 rtx x
= XVECEXP (pat
, 0, i
);
2249 if (GET_CODE (x
) == SET
)
2251 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2252 may not find an equivalent expression, but in this
2253 case the PARALLEL will have a single set. */
2254 if (first_set
== NULL_RTX
)
2256 if (expr_equiv_p (SET_SRC (x
), expr
->expr
))
2264 gcc_assert (first_set
);
2265 if (set
== NULL_RTX
)
2273 if (REG_P (SET_DEST (set
)))
2275 old_reg
= SET_DEST (set
);
2276 /* Check if we can modify the set destination in the original insn. */
2277 if (validate_change (insn
, &SET_DEST (set
), reg
, 0))
2279 new_insn
= gen_move_insn (old_reg
, reg
);
2280 new_insn
= emit_insn_after (new_insn
, insn
);
2284 new_insn
= gen_move_insn (reg
, old_reg
);
2285 new_insn
= emit_insn_after (new_insn
, insn
);
2288 else /* This is possible only in case of a store to memory. */
2290 old_reg
= SET_SRC (set
);
2291 new_insn
= gen_move_insn (reg
, old_reg
);
2293 /* Check if we can modify the set source in the original insn. */
2294 if (validate_change (insn
, &SET_SRC (set
), reg
, 0))
2295 new_insn
= emit_insn_before (new_insn
, insn
);
2297 new_insn
= emit_insn_after (new_insn
, insn
);
2300 gcse_create_count
++;
2304 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2305 BLOCK_FOR_INSN (insn
)->index
, INSN_UID (new_insn
), indx
,
2306 INSN_UID (insn
), regno
);
2309 /* Copy available expressions that reach the redundant expression
2310 to `reaching_reg'. */
2313 pre_insert_copies (void)
2315 unsigned int i
, added_copy
;
2316 struct gcse_expr
*expr
;
2317 struct gcse_occr
*occr
;
2318 struct gcse_occr
*avail
;
2320 /* For each available expression in the table, copy the result to
2321 `reaching_reg' if the expression reaches a deleted one.
2323 ??? The current algorithm is rather brute force.
2324 Need to do some profiling. */
2326 for (i
= 0; i
< expr_hash_table
.size
; i
++)
2327 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
2329 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2330 we don't want to insert a copy here because the expression may not
2331 really be redundant. So only insert an insn if the expression was
2332 deleted. This test also avoids further processing if the
2333 expression wasn't deleted anywhere. */
2334 if (expr
->reaching_reg
== NULL
)
2337 /* Set when we add a copy for that expression. */
2340 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
2342 if (! occr
->deleted_p
)
2345 for (avail
= expr
->avail_occr
; avail
!= NULL
; avail
= avail
->next
)
2347 rtx_insn
*insn
= avail
->insn
;
2349 /* No need to handle this one if handled already. */
2350 if (avail
->copied_p
)
2353 /* Don't handle this one if it's a redundant one. */
2354 if (insn
->deleted ())
2357 /* Or if the expression doesn't reach the deleted one. */
2358 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail
->insn
),
2360 BLOCK_FOR_INSN (occr
->insn
)))
2365 /* Copy the result of avail to reaching_reg. */
2366 pre_insert_copy_insn (expr
, insn
);
2367 avail
->copied_p
= 1;
2372 update_ld_motion_stores (expr
);
2383 /* Increment number of sets and record set in DATA. */
2386 record_set_data (rtx dest
, const_rtx set
, void *data
)
2388 struct set_data
*s
= (struct set_data
*)data
;
2390 if (GET_CODE (set
) == SET
)
2392 /* We allow insns having multiple sets, where all but one are
2393 dead as single set insns. In the common case only a single
2394 set is present, so we want to avoid checking for REG_UNUSED
2395 notes unless necessary. */
2397 && find_reg_note (s
->insn
, REG_UNUSED
, SET_DEST (s
->set
))
2398 && !side_effects_p (s
->set
))
2403 /* Record this set. */
2407 else if (!find_reg_note (s
->insn
, REG_UNUSED
, dest
)
2408 || side_effects_p (set
))
2414 single_set_gcse (rtx_insn
*insn
)
2419 gcc_assert (INSN_P (insn
));
2421 /* Optimize common case. */
2422 pattern
= PATTERN (insn
);
2423 if (GET_CODE (pattern
) == SET
)
2428 note_stores (pattern
, record_set_data
, &s
);
2430 /* Considered invariant insns have exactly one set. */
2431 gcc_assert (s
.nsets
== 1);
2435 /* Emit move from SRC to DEST noting the equivalence with expression computed
2439 gcse_emit_move_after (rtx dest
, rtx src
, rtx_insn
*insn
)
2442 const_rtx set
= single_set_gcse (insn
);
2447 /* This should never fail since we're creating a reg->reg copy
2448 we've verified to be valid. */
2450 new_rtx
= emit_insn_after (gen_move_insn (dest
, src
), insn
);
2452 /* Note the equivalence for local CSE pass. Take the note from the old
2453 set if there was one. Otherwise record the SET_SRC from the old set
2454 unless DEST is also an operand of the SET_SRC. */
2455 set2
= single_set (new_rtx
);
2456 if (!set2
|| !rtx_equal_p (SET_DEST (set2
), dest
))
2458 if ((note
= find_reg_equal_equiv_note (insn
)))
2459 eqv
= XEXP (note
, 0);
2460 else if (! REG_P (dest
)
2461 || ! reg_mentioned_p (dest
, SET_SRC (set
)))
2462 eqv
= SET_SRC (set
);
2464 if (eqv
!= NULL_RTX
)
2465 set_unique_reg_note (new_rtx
, REG_EQUAL
, copy_insn_1 (eqv
));
2470 /* Delete redundant computations.
2471 Deletion is done by changing the insn to copy the `reaching_reg' of
2472 the expression into the result of the SET. It is left to later passes
2473 to propagate the copy or eliminate it.
2475 Return nonzero if a change is made. */
2482 struct gcse_expr
*expr
;
2483 struct gcse_occr
*occr
;
2486 for (i
= 0; i
< expr_hash_table
.size
; i
++)
2487 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
2489 int indx
= expr
->bitmap_index
;
2491 /* We only need to search antic_occr since we require ANTLOC != 0. */
2492 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
2494 rtx_insn
*insn
= occr
->insn
;
2496 basic_block bb
= BLOCK_FOR_INSN (insn
);
2498 /* We only delete insns that have a single_set. */
2499 if (bitmap_bit_p (pre_delete_map
[bb
->index
], indx
)
2500 && (set
= single_set (insn
)) != 0
2501 && dbg_cnt (pre_insn
))
2503 /* Create a pseudo-reg to store the result of reaching
2504 expressions into. Get the mode for the new pseudo from
2505 the mode of the original destination pseudo. */
2506 if (expr
->reaching_reg
== NULL
)
2507 expr
->reaching_reg
= gen_reg_rtx_and_attrs (SET_DEST (set
));
2509 gcse_emit_move_after (SET_DEST (set
), expr
->reaching_reg
, insn
);
2511 occr
->deleted_p
= 1;
2518 "PRE: redundant insn %d (expression %d) in ",
2519 INSN_UID (insn
), indx
);
2520 fprintf (dump_file
, "bb %d, reaching reg is %d\n",
2521 bb
->index
, REGNO (expr
->reaching_reg
));
2530 /* Perform GCSE optimizations using PRE.
2531 This is called by one_pre_gcse_pass after all the dataflow analysis
2534 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2535 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2536 Compiler Design and Implementation.
2538 ??? A new pseudo reg is created to hold the reaching expression. The nice
2539 thing about the classical approach is that it would try to use an existing
2540 reg. If the register can't be adequately optimized [i.e. we introduce
2541 reload problems], one could add a pass here to propagate the new register
2544 ??? We don't handle single sets in PARALLELs because we're [currently] not
2545 able to copy the rest of the parallel when we insert copies to create full
2546 redundancies from partial redundancies. However, there's no reason why we
2547 can't handle PARALLELs in the cases where there are no partial
2551 pre_gcse (struct edge_list
*edge_list
)
2554 int did_insert
, changed
;
2555 struct gcse_expr
**index_map
;
2556 struct gcse_expr
*expr
;
2558 /* Compute a mapping from expression number (`bitmap_index') to
2559 hash table entry. */
2561 index_map
= XCNEWVEC (struct gcse_expr
*, expr_hash_table
.n_elems
);
2562 for (i
= 0; i
< expr_hash_table
.size
; i
++)
2563 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
2564 index_map
[expr
->bitmap_index
] = expr
;
2566 /* Delete the redundant insns first so that
2567 - we know what register to use for the new insns and for the other
2568 ones with reaching expressions
2569 - we know which insns are redundant when we go to create copies */
2571 changed
= pre_delete ();
2572 did_insert
= pre_edge_insert (edge_list
, index_map
);
2574 /* In other places with reaching expressions, copy the expression to the
2575 specially allocated pseudo-reg that reaches the redundant expr. */
2576 pre_insert_copies ();
2579 commit_edge_insertions ();
2587 /* Top level routine to perform one PRE GCSE pass.
2589 Return nonzero if a change was made. */
2592 one_pre_gcse_pass (void)
2596 gcse_subst_count
= 0;
2597 gcse_create_count
= 0;
2599 /* Return if there's nothing to do, or it is too expensive. */
2600 if (n_basic_blocks_for_fn (cfun
) <= NUM_FIXED_BLOCKS
+ 1
2601 || is_too_expensive (_("PRE disabled")))
2604 /* We need alias. */
2605 init_alias_analysis ();
2608 gcc_obstack_init (&gcse_obstack
);
2611 alloc_hash_table (&expr_hash_table
);
2612 add_noreturn_fake_exit_edges ();
2614 compute_ld_motion_mems ();
2616 compute_hash_table (&expr_hash_table
);
2618 trim_ld_motion_mems ();
2620 dump_hash_table (dump_file
, "Expression", &expr_hash_table
);
2622 if (expr_hash_table
.n_elems
> 0)
2624 struct edge_list
*edge_list
;
2625 alloc_pre_mem (last_basic_block_for_fn (cfun
), expr_hash_table
.n_elems
);
2626 edge_list
= compute_pre_data ();
2627 changed
|= pre_gcse (edge_list
);
2628 free_edge_list (edge_list
);
2633 free_ld_motion_mems ();
2634 remove_fake_exit_edges ();
2635 free_hash_table (&expr_hash_table
);
2638 obstack_free (&gcse_obstack
, NULL
);
2640 /* We are finished with alias. */
2641 end_alias_analysis ();
2645 fprintf (dump_file
, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2646 current_function_name (), n_basic_blocks_for_fn (cfun
),
2648 fprintf (dump_file
, "%d substs, %d insns created\n",
2649 gcse_subst_count
, gcse_create_count
);
2655 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2656 to INSN. If such notes are added to an insn which references a
2657 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2658 that note, because the following loop optimization pass requires
2661 /* ??? If there was a jump optimization pass after gcse and before loop,
2662 then we would not need to do this here, because jump would add the
2663 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2666 add_label_notes (rtx x
, rtx insn
)
2668 enum rtx_code code
= GET_CODE (x
);
2672 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
2674 /* This code used to ignore labels that referred to dispatch tables to
2675 avoid flow generating (slightly) worse code.
2677 We no longer ignore such label references (see LABEL_REF handling in
2678 mark_jump_label for additional information). */
2680 /* There's no reason for current users to emit jump-insns with
2681 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2683 gcc_assert (!JUMP_P (insn
));
2684 add_reg_note (insn
, REG_LABEL_OPERAND
, LABEL_REF_LABEL (x
));
2686 if (LABEL_P (LABEL_REF_LABEL (x
)))
2687 LABEL_NUSES (LABEL_REF_LABEL (x
))++;
2692 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2695 add_label_notes (XEXP (x
, i
), insn
);
2696 else if (fmt
[i
] == 'E')
2697 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2698 add_label_notes (XVECEXP (x
, i
, j
), insn
);
2702 /* Code Hoisting variables and subroutines. */
2704 /* Very busy expressions. */
2705 static sbitmap
*hoist_vbein
;
2706 static sbitmap
*hoist_vbeout
;
2708 /* ??? We could compute post dominators and run this algorithm in
2709 reverse to perform tail merging, doing so would probably be
2710 more effective than the tail merging code in jump.c.
2712 It's unclear if tail merging could be run in parallel with
2713 code hoisting. It would be nice. */
2715 /* Allocate vars used for code hoisting analysis. */
2718 alloc_code_hoist_mem (int n_blocks
, int n_exprs
)
2720 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
2721 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
2722 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
2724 hoist_vbein
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
2725 hoist_vbeout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
2728 /* Free vars used for code hoisting analysis. */
2731 free_code_hoist_mem (void)
2733 sbitmap_vector_free (antloc
);
2734 sbitmap_vector_free (transp
);
2735 sbitmap_vector_free (comp
);
2737 sbitmap_vector_free (hoist_vbein
);
2738 sbitmap_vector_free (hoist_vbeout
);
2740 free_dominance_info (CDI_DOMINATORS
);
2743 /* Compute the very busy expressions at entry/exit from each block.
2745 An expression is very busy if all paths from a given point
2746 compute the expression. */
2749 compute_code_hoist_vbeinout (void)
2751 int changed
, passes
;
2754 bitmap_vector_clear (hoist_vbeout
, last_basic_block_for_fn (cfun
));
2755 bitmap_vector_clear (hoist_vbein
, last_basic_block_for_fn (cfun
));
2764 /* We scan the blocks in the reverse order to speed up
2766 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2768 if (bb
->next_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
2770 bitmap_intersection_of_succs (hoist_vbeout
[bb
->index
],
2773 /* Include expressions in VBEout that are calculated
2774 in BB and available at its end. */
2775 bitmap_ior (hoist_vbeout
[bb
->index
],
2776 hoist_vbeout
[bb
->index
], comp
[bb
->index
]);
2779 changed
|= bitmap_or_and (hoist_vbein
[bb
->index
],
2781 hoist_vbeout
[bb
->index
],
2790 fprintf (dump_file
, "hoisting vbeinout computation: %d passes\n", passes
);
2792 FOR_EACH_BB_FN (bb
, cfun
)
2794 fprintf (dump_file
, "vbein (%d): ", bb
->index
);
2795 dump_bitmap_file (dump_file
, hoist_vbein
[bb
->index
]);
2796 fprintf (dump_file
, "vbeout(%d): ", bb
->index
);
2797 dump_bitmap_file (dump_file
, hoist_vbeout
[bb
->index
]);
2802 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2805 compute_code_hoist_data (void)
2807 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
2808 prune_expressions (false);
2809 compute_code_hoist_vbeinout ();
2810 calculate_dominance_info (CDI_DOMINATORS
);
2812 fprintf (dump_file
, "\n");
2815 /* Update register pressure for BB when hoisting an expression from
2816 instruction FROM, if live ranges of inputs are shrunk. Also
2817 maintain live_in information if live range of register referred
2820 Return 0 if register pressure doesn't change, otherwise return
2821 the number by which register pressure is decreased.
2823 NOTE: Register pressure won't be increased in this function. */
2826 update_bb_reg_pressure (basic_block bb
, rtx_insn
*from
)
2830 basic_block succ_bb
;
2834 int decreased_pressure
= 0;
2836 enum reg_class pressure_class
;
2838 FOR_EACH_INSN_USE (use
, from
)
2840 dreg
= DF_REF_REAL_REG (use
);
2841 /* The live range of register is shrunk only if it isn't:
2842 1. referred on any path from the end of this block to EXIT, or
2843 2. referred by insns other than FROM in this block. */
2844 FOR_EACH_EDGE (succ
, ei
, bb
->succs
)
2846 succ_bb
= succ
->dest
;
2847 if (succ_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
2850 if (bitmap_bit_p (BB_DATA (succ_bb
)->live_in
, REGNO (dreg
)))
2856 op_ref
= DF_REG_USE_CHAIN (REGNO (dreg
));
2857 for (; op_ref
; op_ref
= DF_REF_NEXT_REG (op_ref
))
2859 if (!DF_REF_INSN_INFO (op_ref
))
2862 insn
= DF_REF_INSN (op_ref
);
2863 if (BLOCK_FOR_INSN (insn
) == bb
2864 && NONDEBUG_INSN_P (insn
) && insn
!= from
)
2868 pressure_class
= get_regno_pressure_class (REGNO (dreg
), &nregs
);
2869 /* Decrease register pressure and update live_in information for
2871 if (!op_ref
&& pressure_class
!= NO_REGS
)
2873 decreased_pressure
+= nregs
;
2874 BB_DATA (bb
)->max_reg_pressure
[pressure_class
] -= nregs
;
2875 bitmap_clear_bit (BB_DATA (bb
)->live_in
, REGNO (dreg
));
2878 return decreased_pressure
;
2881 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2882 flow graph, if it can reach BB unimpared. Stop the search if the
2883 expression would need to be moved more than DISTANCE instructions.
2885 DISTANCE is the number of instructions through which EXPR can be
2886 hoisted up in flow graph.
2888 BB_SIZE points to an array which contains the number of instructions
2889 for each basic block.
2891 PRESSURE_CLASS and NREGS are register class and number of hard registers
2894 HOISTED_BBS points to a bitmap indicating basic blocks through which
2897 FROM is the instruction from which EXPR is hoisted.
2899 It's unclear exactly what Muchnick meant by "unimpared". It seems
2900 to me that the expression must either be computed or transparent in
2901 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2902 would allow the expression to be hoisted out of loops, even if
2903 the expression wasn't a loop invariant.
2905 Contrast this to reachability for PRE where an expression is
2906 considered reachable if *any* path reaches instead of *all*
2910 should_hoist_expr_to_dom (basic_block expr_bb
, struct gcse_expr
*expr
,
2911 basic_block bb
, sbitmap visited
, int distance
,
2912 int *bb_size
, enum reg_class pressure_class
,
2913 int *nregs
, bitmap hoisted_bbs
, rtx_insn
*from
)
2918 sbitmap_iterator sbi
;
2919 int visited_allocated_locally
= 0;
2920 int decreased_pressure
= 0;
2922 if (flag_ira_hoist_pressure
)
2924 /* Record old information of basic block BB when it is visited
2925 at the first time. */
2926 if (!bitmap_bit_p (hoisted_bbs
, bb
->index
))
2928 struct bb_data
*data
= BB_DATA (bb
);
2929 bitmap_copy (data
->backup
, data
->live_in
);
2930 data
->old_pressure
= data
->max_reg_pressure
[pressure_class
];
2932 decreased_pressure
= update_bb_reg_pressure (bb
, from
);
2934 /* Terminate the search if distance, for which EXPR is allowed to move,
2938 if (flag_ira_hoist_pressure
)
2940 /* Prefer to hoist EXPR if register pressure is decreased. */
2941 if (decreased_pressure
> *nregs
)
2942 distance
+= bb_size
[bb
->index
];
2943 /* Let EXPR be hoisted through basic block at no cost if one
2944 of following conditions is satisfied:
2946 1. The basic block has low register pressure.
2947 2. Register pressure won't be increases after hoisting EXPR.
2949 Constant expressions is handled conservatively, because
2950 hoisting constant expression aggressively results in worse
2951 code. This decision is made by the observation of CSiBE
2952 on ARM target, while it has no obvious effect on other
2953 targets like x86, x86_64, mips and powerpc. */
2954 else if (CONST_INT_P (expr
->expr
)
2955 || (BB_DATA (bb
)->max_reg_pressure
[pressure_class
]
2956 >= ira_class_hard_regs_num
[pressure_class
]
2957 && decreased_pressure
< *nregs
))
2958 distance
-= bb_size
[bb
->index
];
2961 distance
-= bb_size
[bb
->index
];
2967 gcc_assert (distance
== 0);
2969 if (visited
== NULL
)
2971 visited_allocated_locally
= 1;
2972 visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
2973 bitmap_clear (visited
);
2976 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
2978 basic_block pred_bb
= pred
->src
;
2980 if (pred
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2982 else if (pred_bb
== expr_bb
)
2984 else if (bitmap_bit_p (visited
, pred_bb
->index
))
2986 else if (! bitmap_bit_p (transp
[pred_bb
->index
], expr
->bitmap_index
))
2991 bitmap_set_bit (visited
, pred_bb
->index
);
2992 if (! should_hoist_expr_to_dom (expr_bb
, expr
, pred_bb
,
2993 visited
, distance
, bb_size
,
2994 pressure_class
, nregs
,
2999 if (visited_allocated_locally
)
3001 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3002 which EXPR is hoisted in hoisted_bbs. */
3003 if (flag_ira_hoist_pressure
&& !pred
)
3005 /* Record the basic block from which EXPR is hoisted. */
3006 bitmap_set_bit (visited
, bb
->index
);
3007 EXECUTE_IF_SET_IN_BITMAP (visited
, 0, i
, sbi
)
3008 bitmap_set_bit (hoisted_bbs
, i
);
3010 sbitmap_free (visited
);
3013 return (pred
== NULL
);
3016 /* Find occurrence in BB. */
3018 static struct gcse_occr
*
3019 find_occr_in_bb (struct gcse_occr
*occr
, basic_block bb
)
3021 /* Find the right occurrence of this expression. */
3022 while (occr
&& BLOCK_FOR_INSN (occr
->insn
) != bb
)
3028 /* Actually perform code hoisting.
3030 The code hoisting pass can hoist multiple computations of the same
3031 expression along dominated path to a dominating basic block, like
3032 from b2/b3 to b1 as depicted below:
3042 Unfortunately code hoisting generally extends the live range of an
3043 output pseudo register, which increases register pressure and hurts
3044 register allocation. To address this issue, an attribute MAX_DISTANCE
3045 is computed and attached to each expression. The attribute is computed
3046 from rtx cost of the corresponding expression and it's used to control
3047 how long the expression can be hoisted up in flow graph. As the
3048 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3049 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3050 register pressure if live ranges of inputs are shrunk.
3052 Option "-fira-hoist-pressure" implements register pressure directed
3053 hoist based on upper method. The rationale is:
3054 1. Calculate register pressure for each basic block by reusing IRA
3056 2. When expression is hoisted through one basic block, GCC checks
3057 the change of live ranges for inputs/output. The basic block's
3058 register pressure will be increased because of extended live
3059 range of output. However, register pressure will be decreased
3060 if the live ranges of inputs are shrunk.
3061 3. After knowing how hoisting affects register pressure, GCC prefers
3062 to hoist the expression if it can decrease register pressure, by
3063 increasing DISTANCE of the corresponding expression.
3064 4. If hoisting the expression increases register pressure, GCC checks
3065 register pressure of the basic block and decrease DISTANCE only if
3066 the register pressure is high. In other words, expression will be
3067 hoisted through at no cost if the basic block has low register
3069 5. Update register pressure information for basic blocks through
3070 which expression is hoisted. */
3075 basic_block bb
, dominated
;
3076 vec
<basic_block
> dom_tree_walk
;
3077 unsigned int dom_tree_walk_index
;
3078 vec
<basic_block
> domby
;
3079 unsigned int i
, j
, k
;
3080 struct gcse_expr
**index_map
;
3081 struct gcse_expr
*expr
;
3085 struct bb_data
*data
;
3086 /* Basic blocks that have occurrences reachable from BB. */
3088 /* Basic blocks through which expr is hoisted. */
3089 bitmap hoisted_bbs
= NULL
;
3092 /* Compute a mapping from expression number (`bitmap_index') to
3093 hash table entry. */
3095 index_map
= XCNEWVEC (struct gcse_expr
*, expr_hash_table
.n_elems
);
3096 for (i
= 0; i
< expr_hash_table
.size
; i
++)
3097 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
3098 index_map
[expr
->bitmap_index
] = expr
;
3100 /* Calculate sizes of basic blocks and note how far
3101 each instruction is from the start of its block. We then use this
3102 data to restrict distance an expression can travel. */
3104 to_bb_head
= XCNEWVEC (int, get_max_uid ());
3105 bb_size
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
3107 FOR_EACH_BB_FN (bb
, cfun
)
3113 FOR_BB_INSNS (bb
, insn
)
3115 /* Don't count debug instructions to avoid them affecting
3116 decision choices. */
3117 if (NONDEBUG_INSN_P (insn
))
3118 to_bb_head
[INSN_UID (insn
)] = to_head
++;
3121 bb_size
[bb
->index
] = to_head
;
3124 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
) == 1
3125 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun
), 0)->dest
3126 == ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
));
3128 from_bbs
= BITMAP_ALLOC (NULL
);
3129 if (flag_ira_hoist_pressure
)
3130 hoisted_bbs
= BITMAP_ALLOC (NULL
);
3132 dom_tree_walk
= get_all_dominated_blocks (CDI_DOMINATORS
,
3133 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
);
3135 /* Walk over each basic block looking for potentially hoistable
3136 expressions, nothing gets hoisted from the entry block. */
3137 FOR_EACH_VEC_ELT (dom_tree_walk
, dom_tree_walk_index
, bb
)
3139 domby
= get_dominated_to_depth (CDI_DOMINATORS
, bb
, MAX_HOIST_DEPTH
);
3141 if (domby
.length () == 0)
3144 /* Examine each expression that is very busy at the exit of this
3145 block. These are the potentially hoistable expressions. */
3146 for (i
= 0; i
< SBITMAP_SIZE (hoist_vbeout
[bb
->index
]); i
++)
3148 if (bitmap_bit_p (hoist_vbeout
[bb
->index
], i
))
3151 enum reg_class pressure_class
= NO_REGS
;
3152 /* Current expression. */
3153 struct gcse_expr
*expr
= index_map
[i
];
3154 /* Number of occurrences of EXPR that can be hoisted to BB. */
3156 /* Occurrences reachable from BB. */
3157 vec
<occr_t
> occrs_to_hoist
= vNULL
;
3158 /* We want to insert the expression into BB only once, so
3159 note when we've inserted it. */
3160 int insn_inserted_p
;
3163 /* If an expression is computed in BB and is available at end of
3164 BB, hoist all occurrences dominated by BB to BB. */
3165 if (bitmap_bit_p (comp
[bb
->index
], i
))
3167 occr
= find_occr_in_bb (expr
->antic_occr
, bb
);
3171 /* An occurrence might've been already deleted
3172 while processing a dominator of BB. */
3173 if (!occr
->deleted_p
)
3175 gcc_assert (NONDEBUG_INSN_P (occr
->insn
));
3183 /* We've found a potentially hoistable expression, now
3184 we look at every block BB dominates to see if it
3185 computes the expression. */
3186 FOR_EACH_VEC_ELT (domby
, j
, dominated
)
3190 /* Ignore self dominance. */
3191 if (bb
== dominated
)
3193 /* We've found a dominated block, now see if it computes
3194 the busy expression and whether or not moving that
3195 expression to the "beginning" of that block is safe. */
3196 if (!bitmap_bit_p (antloc
[dominated
->index
], i
))
3199 occr
= find_occr_in_bb (expr
->antic_occr
, dominated
);
3202 /* An occurrence might've been already deleted
3203 while processing a dominator of BB. */
3204 if (occr
->deleted_p
)
3206 gcc_assert (NONDEBUG_INSN_P (occr
->insn
));
3208 max_distance
= expr
->max_distance
;
3209 if (max_distance
> 0)
3210 /* Adjust MAX_DISTANCE to account for the fact that
3211 OCCR won't have to travel all of DOMINATED, but
3213 max_distance
+= (bb_size
[dominated
->index
]
3214 - to_bb_head
[INSN_UID (occr
->insn
)]);
3216 pressure_class
= get_pressure_class_and_nregs (occr
->insn
,
3219 /* Note if the expression should be hoisted from the dominated
3220 block to BB if it can reach DOMINATED unimpared.
3222 Keep track of how many times this expression is hoistable
3223 from a dominated block into BB. */
3224 if (should_hoist_expr_to_dom (bb
, expr
, dominated
, NULL
,
3225 max_distance
, bb_size
,
3226 pressure_class
, &nregs
,
3227 hoisted_bbs
, occr
->insn
))
3230 occrs_to_hoist
.safe_push (occr
);
3231 bitmap_set_bit (from_bbs
, dominated
->index
);
3235 /* If we found more than one hoistable occurrence of this
3236 expression, then note it in the vector of expressions to
3237 hoist. It makes no sense to hoist things which are computed
3238 in only one BB, and doing so tends to pessimize register
3239 allocation. One could increase this value to try harder
3240 to avoid any possible code expansion due to register
3241 allocation issues; however experiments have shown that
3242 the vast majority of hoistable expressions are only movable
3243 from two successors, so raising this threshold is likely
3244 to nullify any benefit we get from code hoisting. */
3245 if (hoistable
> 1 && dbg_cnt (hoist_insn
))
3247 /* If (hoistable != vec::length), then there is
3248 an occurrence of EXPR in BB itself. Don't waste
3249 time looking for LCA in this case. */
3250 if ((unsigned) hoistable
== occrs_to_hoist
.length ())
3254 lca
= nearest_common_dominator_for_set (CDI_DOMINATORS
,
3257 /* Punt, it's better to hoist these occurrences to
3259 occrs_to_hoist
.release ();
3263 /* Punt, no point hoisting a single occurrence. */
3264 occrs_to_hoist
.release ();
3266 if (flag_ira_hoist_pressure
3267 && !occrs_to_hoist
.is_empty ())
3269 /* Increase register pressure of basic blocks to which
3270 expr is hoisted because of extended live range of
3272 data
= BB_DATA (bb
);
3273 data
->max_reg_pressure
[pressure_class
] += nregs
;
3274 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs
, 0, k
, bi
)
3276 data
= BB_DATA (BASIC_BLOCK_FOR_FN (cfun
, k
));
3277 data
->max_reg_pressure
[pressure_class
] += nregs
;
3280 else if (flag_ira_hoist_pressure
)
3282 /* Restore register pressure and live_in info for basic
3283 blocks recorded in hoisted_bbs when expr will not be
3285 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs
, 0, k
, bi
)
3287 data
= BB_DATA (BASIC_BLOCK_FOR_FN (cfun
, k
));
3288 bitmap_copy (data
->live_in
, data
->backup
);
3289 data
->max_reg_pressure
[pressure_class
]
3290 = data
->old_pressure
;
3294 if (flag_ira_hoist_pressure
)
3295 bitmap_clear (hoisted_bbs
);
3297 insn_inserted_p
= 0;
3299 /* Walk through occurrences of I'th expressions we want
3300 to hoist to BB and make the transformations. */
3301 FOR_EACH_VEC_ELT (occrs_to_hoist
, j
, occr
)
3306 gcc_assert (!occr
->deleted_p
);
3309 set
= single_set_gcse (insn
);
3311 /* Create a pseudo-reg to store the result of reaching
3312 expressions into. Get the mode for the new pseudo
3313 from the mode of the original destination pseudo.
3315 It is important to use new pseudos whenever we
3316 emit a set. This will allow reload to use
3317 rematerialization for such registers. */
3318 if (!insn_inserted_p
)
3320 = gen_reg_rtx_and_attrs (SET_DEST (set
));
3322 gcse_emit_move_after (SET_DEST (set
), expr
->reaching_reg
,
3325 occr
->deleted_p
= 1;
3329 if (!insn_inserted_p
)
3331 insert_insn_end_basic_block (expr
, bb
);
3332 insn_inserted_p
= 1;
3336 occrs_to_hoist
.release ();
3337 bitmap_clear (from_bbs
);
3343 dom_tree_walk
.release ();
3344 BITMAP_FREE (from_bbs
);
3345 if (flag_ira_hoist_pressure
)
3346 BITMAP_FREE (hoisted_bbs
);
3355 /* Return pressure class and number of needed hard registers (through
3356 *NREGS) of register REGNO. */
3357 static enum reg_class
3358 get_regno_pressure_class (int regno
, int *nregs
)
3360 if (regno
>= FIRST_PSEUDO_REGISTER
)
3362 enum reg_class pressure_class
;
3364 pressure_class
= reg_allocno_class (regno
);
3365 pressure_class
= ira_pressure_class_translate
[pressure_class
];
3367 = ira_reg_class_max_nregs
[pressure_class
][PSEUDO_REGNO_MODE (regno
)];
3368 return pressure_class
;
3370 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs
, regno
)
3371 && ! TEST_HARD_REG_BIT (eliminable_regset
, regno
))
3374 return ira_pressure_class_translate
[REGNO_REG_CLASS (regno
)];
3383 /* Return pressure class and number of hard registers (through *NREGS)
3384 for destination of INSN. */
3385 static enum reg_class
3386 get_pressure_class_and_nregs (rtx_insn
*insn
, int *nregs
)
3389 enum reg_class pressure_class
;
3390 const_rtx set
= single_set_gcse (insn
);
3392 reg
= SET_DEST (set
);
3393 if (GET_CODE (reg
) == SUBREG
)
3394 reg
= SUBREG_REG (reg
);
3398 pressure_class
= NO_REGS
;
3402 gcc_assert (REG_P (reg
));
3403 pressure_class
= reg_allocno_class (REGNO (reg
));
3404 pressure_class
= ira_pressure_class_translate
[pressure_class
];
3406 = ira_reg_class_max_nregs
[pressure_class
][GET_MODE (SET_SRC (set
))];
3408 return pressure_class
;
3411 /* Increase (if INCR_P) or decrease current register pressure for
3414 change_pressure (int regno
, bool incr_p
)
3417 enum reg_class pressure_class
;
3419 pressure_class
= get_regno_pressure_class (regno
, &nregs
);
3421 curr_reg_pressure
[pressure_class
] -= nregs
;
3424 curr_reg_pressure
[pressure_class
] += nregs
;
3425 if (BB_DATA (curr_bb
)->max_reg_pressure
[pressure_class
]
3426 < curr_reg_pressure
[pressure_class
])
3427 BB_DATA (curr_bb
)->max_reg_pressure
[pressure_class
]
3428 = curr_reg_pressure
[pressure_class
];
3432 /* Calculate register pressure for each basic block by walking insns
3433 from last to first. */
3435 calculate_bb_reg_pressure (void)
3441 bitmap curr_regs_live
;
3445 ira_setup_eliminable_regset ();
3446 curr_regs_live
= BITMAP_ALLOC (®_obstack
);
3447 FOR_EACH_BB_FN (bb
, cfun
)
3450 BB_DATA (bb
)->live_in
= BITMAP_ALLOC (NULL
);
3451 BB_DATA (bb
)->backup
= BITMAP_ALLOC (NULL
);
3452 bitmap_copy (BB_DATA (bb
)->live_in
, df_get_live_in (bb
));
3453 bitmap_copy (curr_regs_live
, df_get_live_out (bb
));
3454 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
3455 curr_reg_pressure
[ira_pressure_classes
[i
]] = 0;
3456 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live
, 0, j
, bi
)
3457 change_pressure (j
, true);
3459 FOR_BB_INSNS_REVERSE (bb
, insn
)
3465 if (! NONDEBUG_INSN_P (insn
))
3468 FOR_EACH_INSN_DEF (def
, insn
)
3470 dreg
= DF_REF_REAL_REG (def
);
3471 gcc_assert (REG_P (dreg
));
3472 regno
= REGNO (dreg
);
3473 if (!(DF_REF_FLAGS (def
)
3474 & (DF_REF_PARTIAL
| DF_REF_CONDITIONAL
)))
3476 if (bitmap_clear_bit (curr_regs_live
, regno
))
3477 change_pressure (regno
, false);
3481 FOR_EACH_INSN_USE (use
, insn
)
3483 dreg
= DF_REF_REAL_REG (use
);
3484 gcc_assert (REG_P (dreg
));
3485 regno
= REGNO (dreg
);
3486 if (bitmap_set_bit (curr_regs_live
, regno
))
3487 change_pressure (regno
, true);
3491 BITMAP_FREE (curr_regs_live
);
3493 if (dump_file
== NULL
)
3496 fprintf (dump_file
, "\nRegister Pressure: \n");
3497 FOR_EACH_BB_FN (bb
, cfun
)
3499 fprintf (dump_file
, " Basic block %d: \n", bb
->index
);
3500 for (i
= 0; (int) i
< ira_pressure_classes_num
; i
++)
3502 enum reg_class pressure_class
;
3504 pressure_class
= ira_pressure_classes
[i
];
3505 if (BB_DATA (bb
)->max_reg_pressure
[pressure_class
] == 0)
3508 fprintf (dump_file
, " %s=%d\n", reg_class_names
[pressure_class
],
3509 BB_DATA (bb
)->max_reg_pressure
[pressure_class
]);
3512 fprintf (dump_file
, "\n");
3515 /* Top level routine to perform one code hoisting (aka unification) pass
3517 Return nonzero if a change was made. */
3520 one_code_hoisting_pass (void)
3524 gcse_subst_count
= 0;
3525 gcse_create_count
= 0;
3527 /* Return if there's nothing to do, or it is too expensive. */
3528 if (n_basic_blocks_for_fn (cfun
) <= NUM_FIXED_BLOCKS
+ 1
3529 || is_too_expensive (_("GCSE disabled")))
3532 doing_code_hoisting_p
= true;
3534 /* Calculate register pressure for each basic block. */
3535 if (flag_ira_hoist_pressure
)
3537 regstat_init_n_sets_and_refs ();
3538 ira_set_pseudo_classes (false, dump_file
);
3539 alloc_aux_for_blocks (sizeof (struct bb_data
));
3540 calculate_bb_reg_pressure ();
3541 regstat_free_n_sets_and_refs ();
3544 /* We need alias. */
3545 init_alias_analysis ();
3548 gcc_obstack_init (&gcse_obstack
);
3551 alloc_hash_table (&expr_hash_table
);
3552 compute_hash_table (&expr_hash_table
);
3554 dump_hash_table (dump_file
, "Code Hosting Expressions", &expr_hash_table
);
3556 if (expr_hash_table
.n_elems
> 0)
3558 alloc_code_hoist_mem (last_basic_block_for_fn (cfun
),
3559 expr_hash_table
.n_elems
);
3560 compute_code_hoist_data ();
3561 changed
= hoist_code ();
3562 free_code_hoist_mem ();
3565 if (flag_ira_hoist_pressure
)
3567 free_aux_for_blocks ();
3570 free_hash_table (&expr_hash_table
);
3572 obstack_free (&gcse_obstack
, NULL
);
3574 /* We are finished with alias. */
3575 end_alias_analysis ();
3579 fprintf (dump_file
, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3580 current_function_name (), n_basic_blocks_for_fn (cfun
),
3582 fprintf (dump_file
, "%d substs, %d insns created\n",
3583 gcse_subst_count
, gcse_create_count
);
3586 doing_code_hoisting_p
= false;
3591 /* Here we provide the things required to do store motion towards the exit.
3592 In order for this to be effective, gcse also needed to be taught how to
3593 move a load when it is killed only by a store to itself.
3598 void foo(float scale)
3600 for (i=0; i<10; i++)
3604 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3605 the load out since its live around the loop, and stored at the bottom
3608 The 'Load Motion' referred to and implemented in this file is
3609 an enhancement to gcse which when using edge based LCM, recognizes
3610 this situation and allows gcse to move the load out of the loop.
3612 Once gcse has hoisted the load, store motion can then push this
3613 load towards the exit, and we end up with no loads or stores of 'i'
3616 /* This will search the ldst list for a matching expression. If it
3617 doesn't find one, we create one and initialize it. */
3619 static struct ls_expr
*
3622 int do_not_record_p
= 0;
3623 struct ls_expr
* ptr
;
3628 hash
= hash_rtx (x
, GET_MODE (x
), &do_not_record_p
,
3629 NULL
, /*have_reg_qty=*/false);
3632 slot
= pre_ldst_table
->find_slot_with_hash (&e
, hash
, INSERT
);
3636 ptr
= XNEW (struct ls_expr
);
3638 ptr
->next
= pre_ldst_mems
;
3641 ptr
->pattern_regs
= NULL_RTX
;
3644 ptr
->reaching_reg
= NULL_RTX
;
3647 ptr
->hash_index
= hash
;
3648 pre_ldst_mems
= ptr
;
3654 /* Free up an individual ldst entry. */
3657 free_ldst_entry (struct ls_expr
* ptr
)
3659 free_INSN_LIST_list (& ptr
->loads
);
3660 free_INSN_LIST_list (& ptr
->stores
);
3665 /* Free up all memory associated with the ldst list. */
3668 free_ld_motion_mems (void)
3670 delete pre_ldst_table
;
3671 pre_ldst_table
= NULL
;
3673 while (pre_ldst_mems
)
3675 struct ls_expr
* tmp
= pre_ldst_mems
;
3677 pre_ldst_mems
= pre_ldst_mems
->next
;
3679 free_ldst_entry (tmp
);
3682 pre_ldst_mems
= NULL
;
3685 /* Dump debugging info about the ldst list. */
3688 print_ldst_list (FILE * file
)
3690 struct ls_expr
* ptr
;
3692 fprintf (file
, "LDST list: \n");
3694 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
3696 fprintf (file
, " Pattern (%3d): ", ptr
->index
);
3698 print_rtl (file
, ptr
->pattern
);
3700 fprintf (file
, "\n Loads : ");
3703 print_rtl (file
, ptr
->loads
);
3705 fprintf (file
, "(nil)");
3707 fprintf (file
, "\n Stores : ");
3710 print_rtl (file
, ptr
->stores
);
3712 fprintf (file
, "(nil)");
3714 fprintf (file
, "\n\n");
3717 fprintf (file
, "\n");
3720 /* Returns 1 if X is in the list of ldst only expressions. */
3722 static struct ls_expr
*
3723 find_rtx_in_ldst (rtx x
)
3727 if (!pre_ldst_table
)
3730 slot
= pre_ldst_table
->find_slot (&e
, NO_INSERT
);
3731 if (!slot
|| (*slot
)->invalid
)
3736 /* Load Motion for loads which only kill themselves. */
3738 /* Return true if x, a MEM, is a simple access with no side effects.
3739 These are the types of loads we consider for the ld_motion list,
3740 otherwise we let the usual aliasing take care of it. */
3743 simple_mem (const_rtx x
)
3745 if (MEM_VOLATILE_P (x
))
3748 if (GET_MODE (x
) == BLKmode
)
3751 /* If we are handling exceptions, we must be careful with memory references
3752 that may trap. If we are not, the behavior is undefined, so we may just
3754 if (cfun
->can_throw_non_call_exceptions
&& may_trap_p (x
))
3757 if (side_effects_p (x
))
3760 /* Do not consider function arguments passed on stack. */
3761 if (reg_mentioned_p (stack_pointer_rtx
, x
))
3764 if (flag_float_store
&& FLOAT_MODE_P (GET_MODE (x
)))
3770 /* Make sure there isn't a buried reference in this pattern anywhere.
3771 If there is, invalidate the entry for it since we're not capable
3772 of fixing it up just yet.. We have to be sure we know about ALL
3773 loads since the aliasing code will allow all entries in the
3774 ld_motion list to not-alias itself. If we miss a load, we will get
3775 the wrong value since gcse might common it and we won't know to
3779 invalidate_any_buried_refs (rtx x
)
3783 struct ls_expr
* ptr
;
3785 /* Invalidate it in the list. */
3786 if (MEM_P (x
) && simple_mem (x
))
3788 ptr
= ldst_entry (x
);
3792 /* Recursively process the insn. */
3793 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3795 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3798 invalidate_any_buried_refs (XEXP (x
, i
));
3799 else if (fmt
[i
] == 'E')
3800 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3801 invalidate_any_buried_refs (XVECEXP (x
, i
, j
));
3805 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3806 being defined as MEM loads and stores to symbols, with no side effects
3807 and no registers in the expression. For a MEM destination, we also
3808 check that the insn is still valid if we replace the destination with a
3809 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3810 which don't match this criteria, they are invalidated and trimmed out
3814 compute_ld_motion_mems (void)
3816 struct ls_expr
* ptr
;
3820 pre_ldst_mems
= NULL
;
3821 pre_ldst_table
= new hash_table
<pre_ldst_expr_hasher
> (13);
3823 FOR_EACH_BB_FN (bb
, cfun
)
3825 FOR_BB_INSNS (bb
, insn
)
3827 if (NONDEBUG_INSN_P (insn
))
3829 if (GET_CODE (PATTERN (insn
)) == SET
)
3831 rtx src
= SET_SRC (PATTERN (insn
));
3832 rtx dest
= SET_DEST (PATTERN (insn
));
3833 rtx note
= find_reg_equal_equiv_note (insn
);
3836 /* Check for a simple LOAD... */
3837 if (MEM_P (src
) && simple_mem (src
))
3839 ptr
= ldst_entry (src
);
3841 ptr
->loads
= alloc_INSN_LIST (insn
, ptr
->loads
);
3847 /* Make sure there isn't a buried load somewhere. */
3848 invalidate_any_buried_refs (src
);
3851 if (note
!= 0 && REG_NOTE_KIND (note
) == REG_EQUAL
)
3852 src_eq
= XEXP (note
, 0);
3856 if (src_eq
!= NULL_RTX
3857 && !(MEM_P (src_eq
) && simple_mem (src_eq
)))
3858 invalidate_any_buried_refs (src_eq
);
3860 /* Check for stores. Don't worry about aliased ones, they
3861 will block any movement we might do later. We only care
3862 about this exact pattern since those are the only
3863 circumstance that we will ignore the aliasing info. */
3864 if (MEM_P (dest
) && simple_mem (dest
))
3866 ptr
= ldst_entry (dest
);
3869 && GET_CODE (src
) != ASM_OPERANDS
3870 /* Check for REG manually since want_to_gcse_p
3871 returns 0 for all REGs. */
3872 && can_assign_to_reg_without_clobbers_p (src
))
3873 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
3879 invalidate_any_buried_refs (PATTERN (insn
));
3885 /* Remove any references that have been either invalidated or are not in the
3886 expression list for pre gcse. */
3889 trim_ld_motion_mems (void)
3891 struct ls_expr
* * last
= & pre_ldst_mems
;
3892 struct ls_expr
* ptr
= pre_ldst_mems
;
3896 struct gcse_expr
* expr
;
3898 /* Delete if entry has been made invalid. */
3901 /* Delete if we cannot find this mem in the expression list. */
3902 unsigned int hash
= ptr
->hash_index
% expr_hash_table
.size
;
3904 for (expr
= expr_hash_table
.table
[hash
];
3906 expr
= expr
->next_same_hash
)
3907 if (expr_equiv_p (expr
->expr
, ptr
->pattern
))
3911 expr
= (struct gcse_expr
*) 0;
3915 /* Set the expression field if we are keeping it. */
3923 pre_ldst_table
->remove_elt_with_hash (ptr
, ptr
->hash_index
);
3924 free_ldst_entry (ptr
);
3929 /* Show the world what we've found. */
3930 if (dump_file
&& pre_ldst_mems
!= NULL
)
3931 print_ldst_list (dump_file
);
3934 /* This routine will take an expression which we are replacing with
3935 a reaching register, and update any stores that are needed if
3936 that expression is in the ld_motion list. Stores are updated by
3937 copying their SRC to the reaching register, and then storing
3938 the reaching register into the store location. These keeps the
3939 correct value in the reaching register for the loads. */
3942 update_ld_motion_stores (struct gcse_expr
* expr
)
3944 struct ls_expr
* mem_ptr
;
3946 if ((mem_ptr
= find_rtx_in_ldst (expr
->expr
)))
3948 /* We can try to find just the REACHED stores, but is shouldn't
3949 matter to set the reaching reg everywhere... some might be
3950 dead and should be eliminated later. */
3952 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3953 where reg is the reaching reg used in the load. We checked in
3954 compute_ld_motion_mems that we can replace (set mem expr) with
3955 (set reg expr) in that insn. */
3956 rtx list
= mem_ptr
->stores
;
3958 for ( ; list
!= NULL_RTX
; list
= XEXP (list
, 1))
3960 rtx_insn
*insn
= as_a
<rtx_insn
*> (XEXP (list
, 0));
3961 rtx pat
= PATTERN (insn
);
3962 rtx src
= SET_SRC (pat
);
3963 rtx reg
= expr
->reaching_reg
;
3966 /* If we've already copied it, continue. */
3967 if (expr
->reaching_reg
== src
)
3972 fprintf (dump_file
, "PRE: store updated with reaching reg ");
3973 print_rtl (dump_file
, reg
);
3974 fprintf (dump_file
, ":\n ");
3975 print_inline_rtx (dump_file
, insn
, 8);
3976 fprintf (dump_file
, "\n");
3979 copy
= gen_move_insn (reg
, copy_rtx (SET_SRC (pat
)));
3980 emit_insn_before (copy
, insn
);
3981 SET_SRC (pat
) = reg
;
3982 df_insn_rescan (insn
);
3984 /* un-recognize this pattern since it's probably different now. */
3985 INSN_CODE (insn
) = -1;
3986 gcse_create_count
++;
3991 /* Return true if the graph is too expensive to optimize. PASS is the
3992 optimization about to be performed. */
3995 is_too_expensive (const char *pass
)
3997 /* Trying to perform global optimizations on flow graphs which have
3998 a high connectivity will take a long time and is unlikely to be
3999 particularly useful.
4001 In normal circumstances a cfg should have about twice as many
4002 edges as blocks. But we do not want to punish small functions
4003 which have a couple switch statements. Rather than simply
4004 threshold the number of blocks, uses something with a more
4005 graceful degradation. */
4006 if (n_edges_for_fn (cfun
) > 20000 + n_basic_blocks_for_fn (cfun
) * 4)
4008 warning (OPT_Wdisabled_optimization
,
4009 "%s: %d basic blocks and %d edges/basic block",
4010 pass
, n_basic_blocks_for_fn (cfun
),
4011 n_edges_for_fn (cfun
) / n_basic_blocks_for_fn (cfun
));
4016 /* If allocating memory for the dataflow bitmaps would take up too much
4017 storage it's better just to disable the optimization. */
4018 if ((n_basic_blocks_for_fn (cfun
)
4019 * SBITMAP_SET_SIZE (max_reg_num ())
4020 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
4022 warning (OPT_Wdisabled_optimization
,
4023 "%s: %d basic blocks and %d registers",
4024 pass
, n_basic_blocks_for_fn (cfun
), max_reg_num ());
4033 execute_rtl_pre (void)
4036 delete_unreachable_blocks ();
4038 changed
= one_pre_gcse_pass ();
4039 flag_rerun_cse_after_global_opts
|= changed
;
4046 execute_rtl_hoist (void)
4049 delete_unreachable_blocks ();
4051 changed
= one_code_hoisting_pass ();
4052 flag_rerun_cse_after_global_opts
|= changed
;
4060 const pass_data pass_data_rtl_pre
=
4062 RTL_PASS
, /* type */
4063 "rtl pre", /* name */
4064 OPTGROUP_NONE
, /* optinfo_flags */
4066 PROP_cfglayout
, /* properties_required */
4067 0, /* properties_provided */
4068 0, /* properties_destroyed */
4069 0, /* todo_flags_start */
4070 TODO_df_finish
, /* todo_flags_finish */
4073 class pass_rtl_pre
: public rtl_opt_pass
4076 pass_rtl_pre (gcc::context
*ctxt
)
4077 : rtl_opt_pass (pass_data_rtl_pre
, ctxt
)
4080 /* opt_pass methods: */
4081 virtual bool gate (function
*);
4082 virtual unsigned int execute (function
*) { return execute_rtl_pre (); }
4084 }; // class pass_rtl_pre
4086 /* We do not construct an accurate cfg in functions which call
4087 setjmp, so none of these passes runs if the function calls
4089 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4092 pass_rtl_pre::gate (function
*fun
)
4094 return optimize
> 0 && flag_gcse
4095 && !fun
->calls_setjmp
4096 && optimize_function_for_speed_p (fun
)
4103 make_pass_rtl_pre (gcc::context
*ctxt
)
4105 return new pass_rtl_pre (ctxt
);
4110 const pass_data pass_data_rtl_hoist
=
4112 RTL_PASS
, /* type */
4114 OPTGROUP_NONE
, /* optinfo_flags */
4115 TV_HOIST
, /* tv_id */
4116 PROP_cfglayout
, /* properties_required */
4117 0, /* properties_provided */
4118 0, /* properties_destroyed */
4119 0, /* todo_flags_start */
4120 TODO_df_finish
, /* todo_flags_finish */
4123 class pass_rtl_hoist
: public rtl_opt_pass
4126 pass_rtl_hoist (gcc::context
*ctxt
)
4127 : rtl_opt_pass (pass_data_rtl_hoist
, ctxt
)
4130 /* opt_pass methods: */
4131 virtual bool gate (function
*);
4132 virtual unsigned int execute (function
*) { return execute_rtl_hoist (); }
4134 }; // class pass_rtl_hoist
4137 pass_rtl_hoist::gate (function
*)
4139 return optimize
> 0 && flag_gcse
4140 && !cfun
->calls_setjmp
4141 /* It does not make sense to run code hoisting unless we are optimizing
4142 for code size -- it rarely makes programs faster, and can make then
4143 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4144 && optimize_function_for_size_p (cfun
)
4151 make_pass_rtl_hoist (gcc::context
*ctxt
)
4153 return new pass_rtl_hoist (ctxt
);
4156 /* Reset all state within gcse.c so that we can rerun the compiler
4157 within the same process. For use by toplev::finalize. */
4160 gcse_c_finalize (void)
4165 #include "gt-gcse.h"