sem_ch3.adb (Build_Derived_Record_Type): if derived type is an anonymous base generat...
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob6e0efe1fd30076dba958a6a002d3b412ad0fe9da
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Elists; use Elists;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Ch9; use Exp_Ch9;
35 with Exp_Disp; use Exp_Disp;
36 with Exp_Dist; use Exp_Dist;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Layout; use Layout;
43 with Lib; use Lib;
44 with Lib.Xref; use Lib.Xref;
45 with Namet; use Namet;
46 with Nmake; use Nmake;
47 with Opt; use Opt;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Case; use Sem_Case;
54 with Sem_Cat; use Sem_Cat;
55 with Sem_Ch6; use Sem_Ch6;
56 with Sem_Ch7; use Sem_Ch7;
57 with Sem_Ch8; use Sem_Ch8;
58 with Sem_Ch13; use Sem_Ch13;
59 with Sem_Disp; use Sem_Disp;
60 with Sem_Dist; use Sem_Dist;
61 with Sem_Elim; use Sem_Elim;
62 with Sem_Eval; use Sem_Eval;
63 with Sem_Mech; use Sem_Mech;
64 with Sem_Res; use Sem_Res;
65 with Sem_Smem; use Sem_Smem;
66 with Sem_Type; use Sem_Type;
67 with Sem_Util; use Sem_Util;
68 with Sem_Warn; use Sem_Warn;
69 with Stand; use Stand;
70 with Sinfo; use Sinfo;
71 with Snames; use Snames;
72 with Targparm; use Targparm;
73 with Tbuild; use Tbuild;
74 with Ttypes; use Ttypes;
75 with Uintp; use Uintp;
76 with Urealp; use Urealp;
78 package body Sem_Ch3 is
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
85 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
86 -- abstract interface types implemented by a record type or a derived
87 -- record type.
89 procedure Build_Derived_Type
90 (N : Node_Id;
91 Parent_Type : Entity_Id;
92 Derived_Type : Entity_Id;
93 Is_Completion : Boolean;
94 Derive_Subps : Boolean := True);
95 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
96 -- the N_Full_Type_Declaration node containing the derived type definition.
97 -- Parent_Type is the entity for the parent type in the derived type
98 -- definition and Derived_Type the actual derived type. Is_Completion must
99 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
100 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
101 -- completion of a private type declaration. If Is_Completion is set to
102 -- True, N is the completion of a private type declaration and Derived_Type
103 -- is different from the defining identifier inside N (i.e. Derived_Type /=
104 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
105 -- subprograms should be derived. The only case where this parameter is
106 -- False is when Build_Derived_Type is recursively called to process an
107 -- implicit derived full type for a type derived from a private type (in
108 -- that case the subprograms must only be derived for the private view of
109 -- the type).
111 -- ??? These flags need a bit of re-examination and re-documentation:
112 -- ??? are they both necessary (both seem related to the recursion)?
114 procedure Build_Derived_Access_Type
115 (N : Node_Id;
116 Parent_Type : Entity_Id;
117 Derived_Type : Entity_Id);
118 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
119 -- create an implicit base if the parent type is constrained or if the
120 -- subtype indication has a constraint.
122 procedure Build_Derived_Array_Type
123 (N : Node_Id;
124 Parent_Type : Entity_Id;
125 Derived_Type : Entity_Id);
126 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
127 -- create an implicit base if the parent type is constrained or if the
128 -- subtype indication has a constraint.
130 procedure Build_Derived_Concurrent_Type
131 (N : Node_Id;
132 Parent_Type : Entity_Id;
133 Derived_Type : Entity_Id);
134 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
135 -- protected type, inherit entries and protected subprograms, check
136 -- legality of discriminant constraints if any.
138 procedure Build_Derived_Enumeration_Type
139 (N : Node_Id;
140 Parent_Type : Entity_Id;
141 Derived_Type : Entity_Id);
142 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
143 -- type, we must create a new list of literals. Types derived from
144 -- Character and [Wide_]Wide_Character are special-cased.
146 procedure Build_Derived_Numeric_Type
147 (N : Node_Id;
148 Parent_Type : Entity_Id;
149 Derived_Type : Entity_Id);
150 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
151 -- an anonymous base type, and propagate constraint to subtype if needed.
153 procedure Build_Derived_Private_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id;
157 Is_Completion : Boolean;
158 Derive_Subps : Boolean := True);
159 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
160 -- because the parent may or may not have a completion, and the derivation
161 -- may itself be a completion.
163 procedure Build_Derived_Record_Type
164 (N : Node_Id;
165 Parent_Type : Entity_Id;
166 Derived_Type : Entity_Id;
167 Derive_Subps : Boolean := True);
168 -- Subsidiary procedure for Build_Derived_Type and
169 -- Analyze_Private_Extension_Declaration used for tagged and untagged
170 -- record types. All parameters are as in Build_Derived_Type except that
171 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
172 -- N_Private_Extension_Declaration node. See the definition of this routine
173 -- for much more info. Derive_Subps indicates whether subprograms should
174 -- be derived from the parent type. The only case where Derive_Subps is
175 -- False is for an implicit derived full type for a type derived from a
176 -- private type (see Build_Derived_Type).
178 procedure Build_Discriminal (Discrim : Entity_Id);
179 -- Create the discriminal corresponding to discriminant Discrim, that is
180 -- the parameter corresponding to Discrim to be used in initialization
181 -- procedures for the type where Discrim is a discriminant. Discriminals
182 -- are not used during semantic analysis, and are not fully defined
183 -- entities until expansion. Thus they are not given a scope until
184 -- initialization procedures are built.
186 function Build_Discriminant_Constraints
187 (T : Entity_Id;
188 Def : Node_Id;
189 Derived_Def : Boolean := False) return Elist_Id;
190 -- Validate discriminant constraints and return the list of the constraints
191 -- in order of discriminant declarations, where T is the discriminated
192 -- unconstrained type. Def is the N_Subtype_Indication node where the
193 -- discriminants constraints for T are specified. Derived_Def is True
194 -- when building the discriminant constraints in a derived type definition
195 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
196 -- type and Def is the constraint "(xxx)" on T and this routine sets the
197 -- Corresponding_Discriminant field of the discriminants in the derived
198 -- type D to point to the corresponding discriminants in the parent type T.
200 procedure Build_Discriminated_Subtype
201 (T : Entity_Id;
202 Def_Id : Entity_Id;
203 Elist : Elist_Id;
204 Related_Nod : Node_Id;
205 For_Access : Boolean := False);
206 -- Subsidiary procedure to Constrain_Discriminated_Type and to
207 -- Process_Incomplete_Dependents. Given
209 -- T (a possibly discriminated base type)
210 -- Def_Id (a very partially built subtype for T),
212 -- the call completes Def_Id to be the appropriate E_*_Subtype.
214 -- The Elist is the list of discriminant constraints if any (it is set
215 -- to No_Elist if T is not a discriminated type, and to an empty list if
216 -- T has discriminants but there are no discriminant constraints). The
217 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
218 -- The For_Access says whether or not this subtype is really constraining
219 -- an access type. That is its sole purpose is the designated type of an
220 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
221 -- is built to avoid freezing T when the access subtype is frozen.
223 function Build_Scalar_Bound
224 (Bound : Node_Id;
225 Par_T : Entity_Id;
226 Der_T : Entity_Id) return Node_Id;
227 -- The bounds of a derived scalar type are conversions of the bounds of
228 -- the parent type. Optimize the representation if the bounds are literals.
229 -- Needs a more complete spec--what are the parameters exactly, and what
230 -- exactly is the returned value, and how is Bound affected???
232 procedure Build_Underlying_Full_View
233 (N : Node_Id;
234 Typ : Entity_Id;
235 Par : Entity_Id);
236 -- If the completion of a private type is itself derived from a private
237 -- type, or if the full view of a private subtype is itself private, the
238 -- back-end has no way to compute the actual size of this type. We build
239 -- an internal subtype declaration of the proper parent type to convey
240 -- this information. This extra mechanism is needed because a full
241 -- view cannot itself have a full view (it would get clobbered during
242 -- view exchanges).
244 procedure Check_Access_Discriminant_Requires_Limited
245 (D : Node_Id;
246 Loc : Node_Id);
247 -- Check the restriction that the type to which an access discriminant
248 -- belongs must be a concurrent type or a descendant of a type with
249 -- the reserved word 'limited' in its declaration.
251 procedure Check_Anonymous_Access_Components
252 (Typ_Decl : Node_Id;
253 Typ : Entity_Id;
254 Prev : Entity_Id;
255 Comp_List : Node_Id);
256 -- Ada 2005 AI-382: an access component in a record definition can refer to
257 -- the enclosing record, in which case it denotes the type itself, and not
258 -- the current instance of the type. We create an anonymous access type for
259 -- the component, and flag it as an access to a component, so accessibility
260 -- checks are properly performed on it. The declaration of the access type
261 -- is placed ahead of that of the record to prevent order-of-elaboration
262 -- circularity issues in Gigi. We create an incomplete type for the record
263 -- declaration, which is the designated type of the anonymous access.
265 procedure Check_Delta_Expression (E : Node_Id);
266 -- Check that the expression represented by E is suitable for use as a
267 -- delta expression, i.e. it is of real type and is static.
269 procedure Check_Digits_Expression (E : Node_Id);
270 -- Check that the expression represented by E is suitable for use as a
271 -- digits expression, i.e. it is of integer type, positive and static.
273 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
274 -- Validate the initialization of an object declaration. T is the required
275 -- type, and Exp is the initialization expression.
277 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
278 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
280 procedure Check_Or_Process_Discriminants
281 (N : Node_Id;
282 T : Entity_Id;
283 Prev : Entity_Id := Empty);
284 -- If T is the full declaration of an incomplete or private type, check the
285 -- conformance of the discriminants, otherwise process them. Prev is the
286 -- entity of the partial declaration, if any.
288 procedure Check_Real_Bound (Bound : Node_Id);
289 -- Check given bound for being of real type and static. If not, post an
290 -- appropriate message, and rewrite the bound with the real literal zero.
292 procedure Constant_Redeclaration
293 (Id : Entity_Id;
294 N : Node_Id;
295 T : out Entity_Id);
296 -- Various checks on legality of full declaration of deferred constant.
297 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
298 -- node. The caller has not yet set any attributes of this entity.
300 function Contain_Interface
301 (Iface : Entity_Id;
302 Ifaces : Elist_Id) return Boolean;
303 -- Ada 2005: Determine whether Iface is present in the list Ifaces
305 procedure Convert_Scalar_Bounds
306 (N : Node_Id;
307 Parent_Type : Entity_Id;
308 Derived_Type : Entity_Id;
309 Loc : Source_Ptr);
310 -- For derived scalar types, convert the bounds in the type definition to
311 -- the derived type, and complete their analysis. Given a constraint of the
312 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
313 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
314 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
315 -- subtype are conversions of those bounds to the derived_type, so that
316 -- their typing is consistent.
318 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
319 -- Copies attributes from array base type T2 to array base type T1. Copies
320 -- only attributes that apply to base types, but not subtypes.
322 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
323 -- Copies attributes from array subtype T2 to array subtype T1. Copies
324 -- attributes that apply to both subtypes and base types.
326 procedure Create_Constrained_Components
327 (Subt : Entity_Id;
328 Decl_Node : Node_Id;
329 Typ : Entity_Id;
330 Constraints : Elist_Id);
331 -- Build the list of entities for a constrained discriminated record
332 -- subtype. If a component depends on a discriminant, replace its subtype
333 -- using the discriminant values in the discriminant constraint. Subt
334 -- is the defining identifier for the subtype whose list of constrained
335 -- entities we will create. Decl_Node is the type declaration node where
336 -- we will attach all the itypes created. Typ is the base discriminated
337 -- type for the subtype Subt. Constraints is the list of discriminant
338 -- constraints for Typ.
340 function Constrain_Component_Type
341 (Comp : Entity_Id;
342 Constrained_Typ : Entity_Id;
343 Related_Node : Node_Id;
344 Typ : Entity_Id;
345 Constraints : Elist_Id) return Entity_Id;
346 -- Given a discriminated base type Typ, a list of discriminant constraint
347 -- Constraints for Typ and a component of Typ, with type Compon_Type,
348 -- create and return the type corresponding to Compon_type where all
349 -- discriminant references are replaced with the corresponding constraint.
350 -- If no discriminant references occur in Compon_Typ then return it as is.
351 -- Constrained_Typ is the final constrained subtype to which the
352 -- constrained Compon_Type belongs. Related_Node is the node where we will
353 -- attach all the itypes created.
355 -- Above description is confused, what is Compon_Type???
357 procedure Constrain_Access
358 (Def_Id : in out Entity_Id;
359 S : Node_Id;
360 Related_Nod : Node_Id);
361 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
362 -- an anonymous type created for a subtype indication. In that case it is
363 -- created in the procedure and attached to Related_Nod.
365 procedure Constrain_Array
366 (Def_Id : in out Entity_Id;
367 SI : Node_Id;
368 Related_Nod : Node_Id;
369 Related_Id : Entity_Id;
370 Suffix : Character);
371 -- Apply a list of index constraints to an unconstrained array type. The
372 -- first parameter is the entity for the resulting subtype. A value of
373 -- Empty for Def_Id indicates that an implicit type must be created, but
374 -- creation is delayed (and must be done by this procedure) because other
375 -- subsidiary implicit types must be created first (which is why Def_Id
376 -- is an in/out parameter). The second parameter is a subtype indication
377 -- node for the constrained array to be created (e.g. something of the
378 -- form string (1 .. 10)). Related_Nod gives the place where this type
379 -- has to be inserted in the tree. The Related_Id and Suffix parameters
380 -- are used to build the associated Implicit type name.
382 procedure Constrain_Concurrent
383 (Def_Id : in out Entity_Id;
384 SI : Node_Id;
385 Related_Nod : Node_Id;
386 Related_Id : Entity_Id;
387 Suffix : Character);
388 -- Apply list of discriminant constraints to an unconstrained concurrent
389 -- type.
391 -- SI is the N_Subtype_Indication node containing the constraint and
392 -- the unconstrained type to constrain.
394 -- Def_Id is the entity for the resulting constrained subtype. A value
395 -- of Empty for Def_Id indicates that an implicit type must be created,
396 -- but creation is delayed (and must be done by this procedure) because
397 -- other subsidiary implicit types must be created first (which is why
398 -- Def_Id is an in/out parameter).
400 -- Related_Nod gives the place where this type has to be inserted
401 -- in the tree
403 -- The last two arguments are used to create its external name if needed.
405 function Constrain_Corresponding_Record
406 (Prot_Subt : Entity_Id;
407 Corr_Rec : Entity_Id;
408 Related_Nod : Node_Id;
409 Related_Id : Entity_Id) return Entity_Id;
410 -- When constraining a protected type or task type with discriminants,
411 -- constrain the corresponding record with the same discriminant values.
413 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
414 -- Constrain a decimal fixed point type with a digits constraint and/or a
415 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
417 procedure Constrain_Discriminated_Type
418 (Def_Id : Entity_Id;
419 S : Node_Id;
420 Related_Nod : Node_Id;
421 For_Access : Boolean := False);
422 -- Process discriminant constraints of composite type. Verify that values
423 -- have been provided for all discriminants, that the original type is
424 -- unconstrained, and that the types of the supplied expressions match
425 -- the discriminant types. The first three parameters are like in routine
426 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
427 -- of For_Access.
429 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
430 -- Constrain an enumeration type with a range constraint. This is identical
431 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
433 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
434 -- Constrain a floating point type with either a digits constraint
435 -- and/or a range constraint, building a E_Floating_Point_Subtype.
437 procedure Constrain_Index
438 (Index : Node_Id;
439 S : Node_Id;
440 Related_Nod : Node_Id;
441 Related_Id : Entity_Id;
442 Suffix : Character;
443 Suffix_Index : Nat);
444 -- Process an index constraint in a constrained array declaration. The
445 -- constraint can be a subtype name, or a range with or without an explicit
446 -- subtype mark. The index is the corresponding index of the unconstrained
447 -- array. The Related_Id and Suffix parameters are used to build the
448 -- associated Implicit type name.
450 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
451 -- Build subtype of a signed or modular integer type
453 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
454 -- Constrain an ordinary fixed point type with a range constraint, and
455 -- build an E_Ordinary_Fixed_Point_Subtype entity.
457 procedure Copy_And_Swap (Priv, Full : Entity_Id);
458 -- Copy the Priv entity into the entity of its full declaration then swap
459 -- the two entities in such a manner that the former private type is now
460 -- seen as a full type.
462 procedure Decimal_Fixed_Point_Type_Declaration
463 (T : Entity_Id;
464 Def : Node_Id);
465 -- Create a new decimal fixed point type, and apply the constraint to
466 -- obtain a subtype of this new type.
468 procedure Complete_Private_Subtype
469 (Priv : Entity_Id;
470 Full : Entity_Id;
471 Full_Base : Entity_Id;
472 Related_Nod : Node_Id);
473 -- Complete the implicit full view of a private subtype by setting the
474 -- appropriate semantic fields. If the full view of the parent is a record
475 -- type, build constrained components of subtype.
477 procedure Derive_Progenitor_Subprograms
478 (Parent_Type : Entity_Id;
479 Tagged_Type : Entity_Id);
480 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
481 -- operations of progenitors of Tagged_Type, and replace the subsidiary
482 -- subtypes with Tagged_Type, to build the specs of the inherited interface
483 -- primitives. The derived primitives are aliased to those of the
484 -- interface. This routine takes care also of transferring to the full-view
485 -- subprograms associated with the partial-view of Tagged_Type that cover
486 -- interface primitives.
488 procedure Derived_Standard_Character
489 (N : Node_Id;
490 Parent_Type : Entity_Id;
491 Derived_Type : Entity_Id);
492 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
493 -- derivations from types Standard.Character and Standard.Wide_Character.
495 procedure Derived_Type_Declaration
496 (T : Entity_Id;
497 N : Node_Id;
498 Is_Completion : Boolean);
499 -- Process a derived type declaration. Build_Derived_Type is invoked
500 -- to process the actual derived type definition. Parameters N and
501 -- Is_Completion have the same meaning as in Build_Derived_Type.
502 -- T is the N_Defining_Identifier for the entity defined in the
503 -- N_Full_Type_Declaration node N, that is T is the derived type.
505 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
506 -- Insert each literal in symbol table, as an overloadable identifier. Each
507 -- enumeration type is mapped into a sequence of integers, and each literal
508 -- is defined as a constant with integer value. If any of the literals are
509 -- character literals, the type is a character type, which means that
510 -- strings are legal aggregates for arrays of components of the type.
512 function Expand_To_Stored_Constraint
513 (Typ : Entity_Id;
514 Constraint : Elist_Id) return Elist_Id;
515 -- Given a constraint (i.e. a list of expressions) on the discriminants of
516 -- Typ, expand it into a constraint on the stored discriminants and return
517 -- the new list of expressions constraining the stored discriminants.
519 function Find_Type_Of_Object
520 (Obj_Def : Node_Id;
521 Related_Nod : Node_Id) return Entity_Id;
522 -- Get type entity for object referenced by Obj_Def, attaching the
523 -- implicit types generated to Related_Nod
525 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
526 -- Create a new float and apply the constraint to obtain subtype of it
528 function Has_Range_Constraint (N : Node_Id) return Boolean;
529 -- Given an N_Subtype_Indication node N, return True if a range constraint
530 -- is present, either directly, or as part of a digits or delta constraint.
531 -- In addition, a digits constraint in the decimal case returns True, since
532 -- it establishes a default range if no explicit range is present.
534 function Inherit_Components
535 (N : Node_Id;
536 Parent_Base : Entity_Id;
537 Derived_Base : Entity_Id;
538 Is_Tagged : Boolean;
539 Inherit_Discr : Boolean;
540 Discs : Elist_Id) return Elist_Id;
541 -- Called from Build_Derived_Record_Type to inherit the components of
542 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
543 -- For more information on derived types and component inheritance please
544 -- consult the comment above the body of Build_Derived_Record_Type.
546 -- N is the original derived type declaration
548 -- Is_Tagged is set if we are dealing with tagged types
550 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
551 -- Parent_Base, otherwise no discriminants are inherited.
553 -- Discs gives the list of constraints that apply to Parent_Base in the
554 -- derived type declaration. If Discs is set to No_Elist, then we have
555 -- the following situation:
557 -- type Parent (D1..Dn : ..) is [tagged] record ...;
558 -- type Derived is new Parent [with ...];
560 -- which gets treated as
562 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
564 -- For untagged types the returned value is an association list. The list
565 -- starts from the association (Parent_Base => Derived_Base), and then it
566 -- contains a sequence of the associations of the form
568 -- (Old_Component => New_Component),
570 -- where Old_Component is the Entity_Id of a component in Parent_Base and
571 -- New_Component is the Entity_Id of the corresponding component in
572 -- Derived_Base. For untagged records, this association list is needed when
573 -- copying the record declaration for the derived base. In the tagged case
574 -- the value returned is irrelevant.
576 function Is_Progenitor
577 (Iface : Entity_Id;
578 Typ : Entity_Id) return Boolean;
579 -- Determine whether the interface Iface is implemented by Typ. It requires
580 -- traversing the list of abstract interfaces of the type, as well as that
581 -- of the ancestor types. The predicate is used to determine when a formal
582 -- in the signature of an inherited operation must carry the derived type.
584 function Is_Valid_Constraint_Kind
585 (T_Kind : Type_Kind;
586 Constraint_Kind : Node_Kind) return Boolean;
587 -- Returns True if it is legal to apply the given kind of constraint to the
588 -- given kind of type (index constraint to an array type, for example).
590 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
591 -- Create new modular type. Verify that modulus is in bounds and is
592 -- a power of two (implementation restriction).
594 procedure New_Concatenation_Op (Typ : Entity_Id);
595 -- Create an abbreviated declaration for an operator in order to
596 -- materialize concatenation on array types.
598 procedure Ordinary_Fixed_Point_Type_Declaration
599 (T : Entity_Id;
600 Def : Node_Id);
601 -- Create a new ordinary fixed point type, and apply the constraint to
602 -- obtain subtype of it.
604 procedure Prepare_Private_Subtype_Completion
605 (Id : Entity_Id;
606 Related_Nod : Node_Id);
607 -- Id is a subtype of some private type. Creates the full declaration
608 -- associated with Id whenever possible, i.e. when the full declaration
609 -- of the base type is already known. Records each subtype into
610 -- Private_Dependents of the base type.
612 procedure Process_Incomplete_Dependents
613 (N : Node_Id;
614 Full_T : Entity_Id;
615 Inc_T : Entity_Id);
616 -- Process all entities that depend on an incomplete type. There include
617 -- subtypes, subprogram types that mention the incomplete type in their
618 -- profiles, and subprogram with access parameters that designate the
619 -- incomplete type.
621 -- Inc_T is the defining identifier of an incomplete type declaration, its
622 -- Ekind is E_Incomplete_Type.
624 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
626 -- Full_T is N's defining identifier.
628 -- Subtypes of incomplete types with discriminants are completed when the
629 -- parent type is. This is simpler than private subtypes, because they can
630 -- only appear in the same scope, and there is no need to exchange views.
631 -- Similarly, access_to_subprogram types may have a parameter or a return
632 -- type that is an incomplete type, and that must be replaced with the
633 -- full type.
635 -- If the full type is tagged, subprogram with access parameters that
636 -- designated the incomplete may be primitive operations of the full type,
637 -- and have to be processed accordingly.
639 procedure Process_Real_Range_Specification (Def : Node_Id);
640 -- Given the type definition for a real type, this procedure processes and
641 -- checks the real range specification of this type definition if one is
642 -- present. If errors are found, error messages are posted, and the
643 -- Real_Range_Specification of Def is reset to Empty.
645 procedure Record_Type_Declaration
646 (T : Entity_Id;
647 N : Node_Id;
648 Prev : Entity_Id);
649 -- Process a record type declaration (for both untagged and tagged
650 -- records). Parameters T and N are exactly like in procedure
651 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
652 -- for this routine. If this is the completion of an incomplete type
653 -- declaration, Prev is the entity of the incomplete declaration, used for
654 -- cross-referencing. Otherwise Prev = T.
656 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
657 -- This routine is used to process the actual record type definition (both
658 -- for untagged and tagged records). Def is a record type definition node.
659 -- This procedure analyzes the components in this record type definition.
660 -- Prev_T is the entity for the enclosing record type. It is provided so
661 -- that its Has_Task flag can be set if any of the component have Has_Task
662 -- set. If the declaration is the completion of an incomplete type
663 -- declaration, Prev_T is the original incomplete type, whose full view is
664 -- the record type.
666 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
667 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
668 -- build a copy of the declaration tree of the parent, and we create
669 -- independently the list of components for the derived type. Semantic
670 -- information uses the component entities, but record representation
671 -- clauses are validated on the declaration tree. This procedure replaces
672 -- discriminants and components in the declaration with those that have
673 -- been created by Inherit_Components.
675 procedure Set_Fixed_Range
676 (E : Entity_Id;
677 Loc : Source_Ptr;
678 Lo : Ureal;
679 Hi : Ureal);
680 -- Build a range node with the given bounds and set it as the Scalar_Range
681 -- of the given fixed-point type entity. Loc is the source location used
682 -- for the constructed range. See body for further details.
684 procedure Set_Scalar_Range_For_Subtype
685 (Def_Id : Entity_Id;
686 R : Node_Id;
687 Subt : Entity_Id);
688 -- This routine is used to set the scalar range field for a subtype given
689 -- Def_Id, the entity for the subtype, and R, the range expression for the
690 -- scalar range. Subt provides the parent subtype to be used to analyze,
691 -- resolve, and check the given range.
693 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
694 -- Create a new signed integer entity, and apply the constraint to obtain
695 -- the required first named subtype of this type.
697 procedure Set_Stored_Constraint_From_Discriminant_Constraint
698 (E : Entity_Id);
699 -- E is some record type. This routine computes E's Stored_Constraint
700 -- from its Discriminant_Constraint.
702 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
703 -- Check that an entity in a list of progenitors is an interface,
704 -- emit error otherwise.
706 -----------------------
707 -- Access_Definition --
708 -----------------------
710 function Access_Definition
711 (Related_Nod : Node_Id;
712 N : Node_Id) return Entity_Id
714 Loc : constant Source_Ptr := Sloc (Related_Nod);
715 Anon_Type : Entity_Id;
716 Anon_Scope : Entity_Id;
717 Desig_Type : Entity_Id;
718 Decl : Entity_Id;
719 Enclosing_Prot_Type : Entity_Id := Empty;
721 begin
722 if Is_Entry (Current_Scope)
723 and then Is_Task_Type (Etype (Scope (Current_Scope)))
724 then
725 Error_Msg_N ("task entries cannot have access parameters", N);
726 return Empty;
727 end if;
729 -- Ada 2005: for an object declaration the corresponding anonymous
730 -- type is declared in the current scope.
732 -- If the access definition is the return type of another access to
733 -- function, scope is the current one, because it is the one of the
734 -- current type declaration.
736 if Nkind_In (Related_Nod, N_Object_Declaration,
737 N_Access_Function_Definition)
738 then
739 Anon_Scope := Current_Scope;
741 -- For the anonymous function result case, retrieve the scope of the
742 -- function specification's associated entity rather than using the
743 -- current scope. The current scope will be the function itself if the
744 -- formal part is currently being analyzed, but will be the parent scope
745 -- in the case of a parameterless function, and we always want to use
746 -- the function's parent scope. Finally, if the function is a child
747 -- unit, we must traverse the tree to retrieve the proper entity.
749 elsif Nkind (Related_Nod) = N_Function_Specification
750 and then Nkind (Parent (N)) /= N_Parameter_Specification
751 then
752 -- If the current scope is a protected type, the anonymous access
753 -- is associated with one of the protected operations, and must
754 -- be available in the scope that encloses the protected declaration.
755 -- Otherwise the type is in the scope enclosing the subprogram.
757 -- If the function has formals, The return type of a subprogram
758 -- declaration is analyzed in the scope of the subprogram (see
759 -- Process_Formals) and thus the protected type, if present, is
760 -- the scope of the current function scope.
762 if Ekind (Current_Scope) = E_Protected_Type then
763 Enclosing_Prot_Type := Current_Scope;
765 elsif Ekind (Current_Scope) = E_Function
766 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
767 then
768 Enclosing_Prot_Type := Scope (Current_Scope);
769 end if;
771 if Present (Enclosing_Prot_Type) then
772 Anon_Scope := Scope (Enclosing_Prot_Type);
774 else
775 Anon_Scope := Scope (Defining_Entity (Related_Nod));
776 end if;
778 else
779 -- For access formals, access components, and access discriminants,
780 -- the scope is that of the enclosing declaration,
782 Anon_Scope := Scope (Current_Scope);
783 end if;
785 Anon_Type :=
786 Create_Itype
787 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
789 if All_Present (N)
790 and then Ada_Version >= Ada_05
791 then
792 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
793 end if;
795 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
796 -- the corresponding semantic routine
798 if Present (Access_To_Subprogram_Definition (N)) then
799 Access_Subprogram_Declaration
800 (T_Name => Anon_Type,
801 T_Def => Access_To_Subprogram_Definition (N));
803 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
804 Set_Ekind
805 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
806 else
807 Set_Ekind
808 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
809 end if;
811 Set_Can_Use_Internal_Rep
812 (Anon_Type, not Always_Compatible_Rep_On_Target);
814 -- If the anonymous access is associated with a protected operation
815 -- create a reference to it after the enclosing protected definition
816 -- because the itype will be used in the subsequent bodies.
818 if Ekind (Current_Scope) = E_Protected_Type then
819 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
820 end if;
822 return Anon_Type;
823 end if;
825 Find_Type (Subtype_Mark (N));
826 Desig_Type := Entity (Subtype_Mark (N));
828 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
829 Set_Etype (Anon_Type, Anon_Type);
831 -- Make sure the anonymous access type has size and alignment fields
832 -- set, as required by gigi. This is necessary in the case of the
833 -- Task_Body_Procedure.
835 if not Has_Private_Component (Desig_Type) then
836 Layout_Type (Anon_Type);
837 end if;
839 -- ???The following makes no sense, because Anon_Type is an access type
840 -- and therefore cannot have components, private or otherwise. Hence
841 -- the assertion. Not sure what was meant, here.
842 Set_Depends_On_Private (Anon_Type, Has_Private_Component (Anon_Type));
843 pragma Assert (not Depends_On_Private (Anon_Type));
845 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
846 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
847 -- the null value is allowed. In Ada 95 the null value is never allowed.
849 if Ada_Version >= Ada_05 then
850 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
851 else
852 Set_Can_Never_Be_Null (Anon_Type, True);
853 end if;
855 -- The anonymous access type is as public as the discriminated type or
856 -- subprogram that defines it. It is imported (for back-end purposes)
857 -- if the designated type is.
859 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
861 -- Ada 2005 (AI-231): Propagate the access-constant attribute
863 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
865 -- The context is either a subprogram declaration, object declaration,
866 -- or an access discriminant, in a private or a full type declaration.
867 -- In the case of a subprogram, if the designated type is incomplete,
868 -- the operation will be a primitive operation of the full type, to be
869 -- updated subsequently. If the type is imported through a limited_with
870 -- clause, the subprogram is not a primitive operation of the type
871 -- (which is declared elsewhere in some other scope).
873 if Ekind (Desig_Type) = E_Incomplete_Type
874 and then not From_With_Type (Desig_Type)
875 and then Is_Overloadable (Current_Scope)
876 then
877 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
878 Set_Has_Delayed_Freeze (Current_Scope);
879 end if;
881 -- Ada 2005: if the designated type is an interface that may contain
882 -- tasks, create a Master entity for the declaration. This must be done
883 -- before expansion of the full declaration, because the declaration may
884 -- include an expression that is an allocator, whose expansion needs the
885 -- proper Master for the created tasks.
887 if Nkind (Related_Nod) = N_Object_Declaration
888 and then Expander_Active
889 then
890 if Is_Interface (Desig_Type)
891 and then Is_Limited_Record (Desig_Type)
892 then
893 Build_Class_Wide_Master (Anon_Type);
895 -- Similarly, if the type is an anonymous access that designates
896 -- tasks, create a master entity for it in the current context.
898 elsif Has_Task (Desig_Type)
899 and then Comes_From_Source (Related_Nod)
900 then
901 if not Has_Master_Entity (Current_Scope) then
902 Decl :=
903 Make_Object_Declaration (Loc,
904 Defining_Identifier =>
905 Make_Defining_Identifier (Loc, Name_uMaster),
906 Constant_Present => True,
907 Object_Definition =>
908 New_Reference_To (RTE (RE_Master_Id), Loc),
909 Expression =>
910 Make_Explicit_Dereference (Loc,
911 New_Reference_To (RTE (RE_Current_Master), Loc)));
913 Insert_Before (Related_Nod, Decl);
914 Analyze (Decl);
916 Set_Master_Id (Anon_Type, Defining_Identifier (Decl));
917 Set_Has_Master_Entity (Current_Scope);
918 else
919 Build_Master_Renaming (Related_Nod, Anon_Type);
920 end if;
921 end if;
922 end if;
924 -- For a private component of a protected type, it is imperative that
925 -- the back-end elaborate the type immediately after the protected
926 -- declaration, because this type will be used in the declarations
927 -- created for the component within each protected body, so we must
928 -- create an itype reference for it now.
930 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
931 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
933 -- Similarly, if the access definition is the return result of a
934 -- function, create an itype reference for it because it will be used
935 -- within the function body. For a regular function that is not a
936 -- compilation unit, insert reference after the declaration. For a
937 -- protected operation, insert it after the enclosing protected type
938 -- declaration. In either case, do not create a reference for a type
939 -- obtained through a limited_with clause, because this would introduce
940 -- semantic dependencies.
942 -- Similarly, do not create a reference if the designated type is a
943 -- generic formal, because no use of it will reach the backend.
945 elsif Nkind (Related_Nod) = N_Function_Specification
946 and then not From_With_Type (Desig_Type)
947 and then not Is_Generic_Type (Desig_Type)
948 then
949 if Present (Enclosing_Prot_Type) then
950 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
952 elsif Is_List_Member (Parent (Related_Nod))
953 and then Nkind (Parent (N)) /= N_Parameter_Specification
954 then
955 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
956 end if;
958 -- Finally, create an itype reference for an object declaration of an
959 -- anonymous access type. This is strictly necessary only for deferred
960 -- constants, but in any case will avoid out-of-scope problems in the
961 -- back-end.
963 elsif Nkind (Related_Nod) = N_Object_Declaration then
964 Build_Itype_Reference (Anon_Type, Related_Nod);
965 end if;
967 return Anon_Type;
968 end Access_Definition;
970 -----------------------------------
971 -- Access_Subprogram_Declaration --
972 -----------------------------------
974 procedure Access_Subprogram_Declaration
975 (T_Name : Entity_Id;
976 T_Def : Node_Id)
979 procedure Check_For_Premature_Usage (Def : Node_Id);
980 -- Check that type T_Name is not used, directly or recursively, as a
981 -- parameter or a return type in Def. Def is either a subtype, an
982 -- access_definition, or an access_to_subprogram_definition.
984 -------------------------------
985 -- Check_For_Premature_Usage --
986 -------------------------------
988 procedure Check_For_Premature_Usage (Def : Node_Id) is
989 Param : Node_Id;
991 begin
992 -- Check for a subtype mark
994 if Nkind (Def) in N_Has_Etype then
995 if Etype (Def) = T_Name then
996 Error_Msg_N
997 ("type& cannot be used before end of its declaration", Def);
998 end if;
1000 -- If this is not a subtype, then this is an access_definition
1002 elsif Nkind (Def) = N_Access_Definition then
1003 if Present (Access_To_Subprogram_Definition (Def)) then
1004 Check_For_Premature_Usage
1005 (Access_To_Subprogram_Definition (Def));
1006 else
1007 Check_For_Premature_Usage (Subtype_Mark (Def));
1008 end if;
1010 -- The only cases left are N_Access_Function_Definition and
1011 -- N_Access_Procedure_Definition.
1013 else
1014 if Present (Parameter_Specifications (Def)) then
1015 Param := First (Parameter_Specifications (Def));
1016 while Present (Param) loop
1017 Check_For_Premature_Usage (Parameter_Type (Param));
1018 Param := Next (Param);
1019 end loop;
1020 end if;
1022 if Nkind (Def) = N_Access_Function_Definition then
1023 Check_For_Premature_Usage (Result_Definition (Def));
1024 end if;
1025 end if;
1026 end Check_For_Premature_Usage;
1028 -- Local variables
1030 Formals : constant List_Id := Parameter_Specifications (T_Def);
1031 Formal : Entity_Id;
1032 D_Ityp : Node_Id;
1033 Desig_Type : constant Entity_Id :=
1034 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1036 -- Start of processing for Access_Subprogram_Declaration
1038 begin
1039 -- Associate the Itype node with the inner full-type declaration or
1040 -- subprogram spec. This is required to handle nested anonymous
1041 -- declarations. For example:
1043 -- procedure P
1044 -- (X : access procedure
1045 -- (Y : access procedure
1046 -- (Z : access T)))
1048 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1049 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1050 N_Private_Type_Declaration,
1051 N_Private_Extension_Declaration,
1052 N_Procedure_Specification,
1053 N_Function_Specification)
1054 or else
1055 Nkind_In (D_Ityp, N_Object_Declaration,
1056 N_Object_Renaming_Declaration,
1057 N_Formal_Object_Declaration,
1058 N_Formal_Type_Declaration,
1059 N_Task_Type_Declaration,
1060 N_Protected_Type_Declaration))
1061 loop
1062 D_Ityp := Parent (D_Ityp);
1063 pragma Assert (D_Ityp /= Empty);
1064 end loop;
1066 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1068 if Nkind_In (D_Ityp, N_Procedure_Specification,
1069 N_Function_Specification)
1070 then
1071 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1073 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1074 N_Object_Declaration,
1075 N_Object_Renaming_Declaration,
1076 N_Formal_Type_Declaration)
1077 then
1078 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1079 end if;
1081 if Nkind (T_Def) = N_Access_Function_Definition then
1082 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1083 declare
1084 Acc : constant Node_Id := Result_Definition (T_Def);
1086 begin
1087 if Present (Access_To_Subprogram_Definition (Acc))
1088 and then
1089 Protected_Present (Access_To_Subprogram_Definition (Acc))
1090 then
1091 Set_Etype
1092 (Desig_Type,
1093 Replace_Anonymous_Access_To_Protected_Subprogram
1094 (T_Def));
1096 else
1097 Set_Etype
1098 (Desig_Type,
1099 Access_Definition (T_Def, Result_Definition (T_Def)));
1100 end if;
1101 end;
1103 else
1104 Analyze (Result_Definition (T_Def));
1106 declare
1107 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1109 begin
1110 -- If a null exclusion is imposed on the result type, then
1111 -- create a null-excluding itype (an access subtype) and use
1112 -- it as the function's Etype.
1114 if Is_Access_Type (Typ)
1115 and then Null_Exclusion_In_Return_Present (T_Def)
1116 then
1117 Set_Etype (Desig_Type,
1118 Create_Null_Excluding_Itype
1119 (T => Typ,
1120 Related_Nod => T_Def,
1121 Scope_Id => Current_Scope));
1123 else
1124 if From_With_Type (Typ) then
1125 Error_Msg_NE
1126 ("illegal use of incomplete type&",
1127 Result_Definition (T_Def), Typ);
1129 elsif Ekind (Current_Scope) = E_Package
1130 and then In_Private_Part (Current_Scope)
1131 then
1132 if Ekind (Typ) = E_Incomplete_Type then
1133 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1135 elsif Is_Class_Wide_Type (Typ)
1136 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1137 then
1138 Append_Elmt
1139 (Desig_Type, Private_Dependents (Etype (Typ)));
1140 end if;
1141 end if;
1143 Set_Etype (Desig_Type, Typ);
1144 end if;
1145 end;
1146 end if;
1148 if not (Is_Type (Etype (Desig_Type))) then
1149 Error_Msg_N
1150 ("expect type in function specification",
1151 Result_Definition (T_Def));
1152 end if;
1154 else
1155 Set_Etype (Desig_Type, Standard_Void_Type);
1156 end if;
1158 if Present (Formals) then
1159 Push_Scope (Desig_Type);
1161 -- A bit of a kludge here. These kludges will be removed when Itypes
1162 -- have proper parent pointers to their declarations???
1164 -- Kludge 1) Link defining_identifier of formals. Required by
1165 -- First_Formal to provide its functionality.
1167 declare
1168 F : Node_Id;
1170 begin
1171 F := First (Formals);
1172 while Present (F) loop
1173 if No (Parent (Defining_Identifier (F))) then
1174 Set_Parent (Defining_Identifier (F), F);
1175 end if;
1177 Next (F);
1178 end loop;
1179 end;
1181 Process_Formals (Formals, Parent (T_Def));
1183 -- Kludge 2) End_Scope requires that the parent pointer be set to
1184 -- something reasonable, but Itypes don't have parent pointers. So
1185 -- we set it and then unset it ???
1187 Set_Parent (Desig_Type, T_Name);
1188 End_Scope;
1189 Set_Parent (Desig_Type, Empty);
1190 end if;
1192 -- Check for premature usage of the type being defined
1194 Check_For_Premature_Usage (T_Def);
1196 -- The return type and/or any parameter type may be incomplete. Mark
1197 -- the subprogram_type as depending on the incomplete type, so that
1198 -- it can be updated when the full type declaration is seen. This
1199 -- only applies to incomplete types declared in some enclosing scope,
1200 -- not to limited views from other packages.
1202 if Present (Formals) then
1203 Formal := First_Formal (Desig_Type);
1204 while Present (Formal) loop
1205 if Ekind (Formal) /= E_In_Parameter
1206 and then Nkind (T_Def) = N_Access_Function_Definition
1207 then
1208 Error_Msg_N ("functions can only have IN parameters", Formal);
1209 end if;
1211 if Ekind (Etype (Formal)) = E_Incomplete_Type
1212 and then In_Open_Scopes (Scope (Etype (Formal)))
1213 then
1214 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1215 Set_Has_Delayed_Freeze (Desig_Type);
1216 end if;
1218 Next_Formal (Formal);
1219 end loop;
1220 end if;
1222 -- If the return type is incomplete, this is legal as long as the
1223 -- type is declared in the current scope and will be completed in
1224 -- it (rather than being part of limited view).
1226 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1227 and then not Has_Delayed_Freeze (Desig_Type)
1228 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1229 then
1230 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1231 Set_Has_Delayed_Freeze (Desig_Type);
1232 end if;
1234 Check_Delayed_Subprogram (Desig_Type);
1236 if Protected_Present (T_Def) then
1237 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1238 Set_Convention (Desig_Type, Convention_Protected);
1239 else
1240 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1241 end if;
1243 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1245 Set_Etype (T_Name, T_Name);
1246 Init_Size_Align (T_Name);
1247 Set_Directly_Designated_Type (T_Name, Desig_Type);
1249 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1251 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1253 Check_Restriction (No_Access_Subprograms, T_Def);
1254 end Access_Subprogram_Declaration;
1256 ----------------------------
1257 -- Access_Type_Declaration --
1258 ----------------------------
1260 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1261 S : constant Node_Id := Subtype_Indication (Def);
1262 P : constant Node_Id := Parent (Def);
1263 begin
1264 -- Check for permissible use of incomplete type
1266 if Nkind (S) /= N_Subtype_Indication then
1267 Analyze (S);
1269 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1270 Set_Directly_Designated_Type (T, Entity (S));
1271 else
1272 Set_Directly_Designated_Type (T,
1273 Process_Subtype (S, P, T, 'P'));
1274 end if;
1276 else
1277 Set_Directly_Designated_Type (T,
1278 Process_Subtype (S, P, T, 'P'));
1279 end if;
1281 if All_Present (Def) or Constant_Present (Def) then
1282 Set_Ekind (T, E_General_Access_Type);
1283 else
1284 Set_Ekind (T, E_Access_Type);
1285 end if;
1287 if Base_Type (Designated_Type (T)) = T then
1288 Error_Msg_N ("access type cannot designate itself", S);
1290 -- In Ada 2005, the type may have a limited view through some unit
1291 -- in its own context, allowing the following circularity that cannot
1292 -- be detected earlier
1294 elsif Is_Class_Wide_Type (Designated_Type (T))
1295 and then Etype (Designated_Type (T)) = T
1296 then
1297 Error_Msg_N
1298 ("access type cannot designate its own classwide type", S);
1300 -- Clean up indication of tagged status to prevent cascaded errors
1302 Set_Is_Tagged_Type (T, False);
1303 end if;
1305 Set_Etype (T, T);
1307 -- If the type has appeared already in a with_type clause, it is
1308 -- frozen and the pointer size is already set. Else, initialize.
1310 if not From_With_Type (T) then
1311 Init_Size_Align (T);
1312 end if;
1314 -- Note that Has_Task is always false, since the access type itself
1315 -- is not a task type. See Einfo for more description on this point.
1316 -- Exactly the same consideration applies to Has_Controlled_Component.
1318 Set_Has_Task (T, False);
1319 Set_Has_Controlled_Component (T, False);
1321 -- Initialize Associated_Final_Chain explicitly to Empty, to avoid
1322 -- problems where an incomplete view of this entity has been previously
1323 -- established by a limited with and an overlaid version of this field
1324 -- (Stored_Constraint) was initialized for the incomplete view.
1326 Set_Associated_Final_Chain (T, Empty);
1328 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1329 -- attributes
1331 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1332 Set_Is_Access_Constant (T, Constant_Present (Def));
1333 end Access_Type_Declaration;
1335 ----------------------------------
1336 -- Add_Interface_Tag_Components --
1337 ----------------------------------
1339 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1340 Loc : constant Source_Ptr := Sloc (N);
1341 L : List_Id;
1342 Last_Tag : Node_Id;
1344 procedure Add_Tag (Iface : Entity_Id);
1345 -- Add tag for one of the progenitor interfaces
1347 -------------
1348 -- Add_Tag --
1349 -------------
1351 procedure Add_Tag (Iface : Entity_Id) is
1352 Decl : Node_Id;
1353 Def : Node_Id;
1354 Tag : Entity_Id;
1355 Offset : Entity_Id;
1357 begin
1358 pragma Assert (Is_Tagged_Type (Iface)
1359 and then Is_Interface (Iface));
1361 Def :=
1362 Make_Component_Definition (Loc,
1363 Aliased_Present => True,
1364 Subtype_Indication =>
1365 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1367 Tag := Make_Defining_Identifier (Loc, New_Internal_Name ('V'));
1369 Decl :=
1370 Make_Component_Declaration (Loc,
1371 Defining_Identifier => Tag,
1372 Component_Definition => Def);
1374 Analyze_Component_Declaration (Decl);
1376 Set_Analyzed (Decl);
1377 Set_Ekind (Tag, E_Component);
1378 Set_Is_Tag (Tag);
1379 Set_Is_Aliased (Tag);
1380 Set_Related_Type (Tag, Iface);
1381 Init_Component_Location (Tag);
1383 pragma Assert (Is_Frozen (Iface));
1385 Set_DT_Entry_Count (Tag,
1386 DT_Entry_Count (First_Entity (Iface)));
1388 if No (Last_Tag) then
1389 Prepend (Decl, L);
1390 else
1391 Insert_After (Last_Tag, Decl);
1392 end if;
1394 Last_Tag := Decl;
1396 -- If the ancestor has discriminants we need to give special support
1397 -- to store the offset_to_top value of the secondary dispatch tables.
1398 -- For this purpose we add a supplementary component just after the
1399 -- field that contains the tag associated with each secondary DT.
1401 if Typ /= Etype (Typ)
1402 and then Has_Discriminants (Etype (Typ))
1403 then
1404 Def :=
1405 Make_Component_Definition (Loc,
1406 Subtype_Indication =>
1407 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1409 Offset :=
1410 Make_Defining_Identifier (Loc, New_Internal_Name ('V'));
1412 Decl :=
1413 Make_Component_Declaration (Loc,
1414 Defining_Identifier => Offset,
1415 Component_Definition => Def);
1417 Analyze_Component_Declaration (Decl);
1419 Set_Analyzed (Decl);
1420 Set_Ekind (Offset, E_Component);
1421 Set_Is_Aliased (Offset);
1422 Set_Related_Type (Offset, Iface);
1423 Init_Component_Location (Offset);
1424 Insert_After (Last_Tag, Decl);
1425 Last_Tag := Decl;
1426 end if;
1427 end Add_Tag;
1429 -- Local variables
1431 Elmt : Elmt_Id;
1432 Ext : Node_Id;
1433 Comp : Node_Id;
1435 -- Start of processing for Add_Interface_Tag_Components
1437 begin
1438 if not RTE_Available (RE_Interface_Tag) then
1439 Error_Msg
1440 ("(Ada 2005) interface types not supported by this run-time!",
1441 Sloc (N));
1442 return;
1443 end if;
1445 if Ekind (Typ) /= E_Record_Type
1446 or else (Is_Concurrent_Record_Type (Typ)
1447 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1448 or else (not Is_Concurrent_Record_Type (Typ)
1449 and then No (Interfaces (Typ))
1450 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1451 then
1452 return;
1453 end if;
1455 -- Find the current last tag
1457 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1458 Ext := Record_Extension_Part (Type_Definition (N));
1459 else
1460 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1461 Ext := Type_Definition (N);
1462 end if;
1464 Last_Tag := Empty;
1466 if not (Present (Component_List (Ext))) then
1467 Set_Null_Present (Ext, False);
1468 L := New_List;
1469 Set_Component_List (Ext,
1470 Make_Component_List (Loc,
1471 Component_Items => L,
1472 Null_Present => False));
1473 else
1474 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1475 L := Component_Items
1476 (Component_List
1477 (Record_Extension_Part
1478 (Type_Definition (N))));
1479 else
1480 L := Component_Items
1481 (Component_List
1482 (Type_Definition (N)));
1483 end if;
1485 -- Find the last tag component
1487 Comp := First (L);
1488 while Present (Comp) loop
1489 if Nkind (Comp) = N_Component_Declaration
1490 and then Is_Tag (Defining_Identifier (Comp))
1491 then
1492 Last_Tag := Comp;
1493 end if;
1495 Next (Comp);
1496 end loop;
1497 end if;
1499 -- At this point L references the list of components and Last_Tag
1500 -- references the current last tag (if any). Now we add the tag
1501 -- corresponding with all the interfaces that are not implemented
1502 -- by the parent.
1504 if Present (Interfaces (Typ)) then
1505 Elmt := First_Elmt (Interfaces (Typ));
1506 while Present (Elmt) loop
1507 Add_Tag (Node (Elmt));
1508 Next_Elmt (Elmt);
1509 end loop;
1510 end if;
1511 end Add_Interface_Tag_Components;
1513 -------------------------------------
1514 -- Add_Internal_Interface_Entities --
1515 -------------------------------------
1517 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1518 Elmt : Elmt_Id;
1519 Iface : Entity_Id;
1520 Iface_Elmt : Elmt_Id;
1521 Iface_Prim : Entity_Id;
1522 Ifaces_List : Elist_Id;
1523 New_Subp : Entity_Id := Empty;
1524 Prim : Entity_Id;
1526 begin
1527 pragma Assert (Ada_Version >= Ada_05
1528 and then Is_Record_Type (Tagged_Type)
1529 and then Is_Tagged_Type (Tagged_Type)
1530 and then Has_Interfaces (Tagged_Type)
1531 and then not Is_Interface (Tagged_Type));
1533 Collect_Interfaces (Tagged_Type, Ifaces_List);
1535 Iface_Elmt := First_Elmt (Ifaces_List);
1536 while Present (Iface_Elmt) loop
1537 Iface := Node (Iface_Elmt);
1539 -- Exclude from this processing interfaces that are parents of
1540 -- Tagged_Type because their primitives are located in the primary
1541 -- dispatch table (and hence no auxiliary internal entities are
1542 -- required to handle secondary dispatch tables in such case).
1544 if not Is_Ancestor (Iface, Tagged_Type) then
1545 Elmt := First_Elmt (Primitive_Operations (Iface));
1546 while Present (Elmt) loop
1547 Iface_Prim := Node (Elmt);
1549 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1550 Prim :=
1551 Find_Primitive_Covering_Interface
1552 (Tagged_Type => Tagged_Type,
1553 Iface_Prim => Iface_Prim);
1555 pragma Assert (Present (Prim));
1557 Derive_Subprogram
1558 (New_Subp => New_Subp,
1559 Parent_Subp => Iface_Prim,
1560 Derived_Type => Tagged_Type,
1561 Parent_Type => Iface);
1563 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1564 -- associated with interface types. These entities are
1565 -- only registered in the list of primitives of its
1566 -- corresponding tagged type because they are only used
1567 -- to fill the contents of the secondary dispatch tables.
1568 -- Therefore they are removed from the homonym chains.
1570 Set_Is_Hidden (New_Subp);
1571 Set_Is_Internal (New_Subp);
1572 Set_Alias (New_Subp, Prim);
1573 Set_Is_Abstract_Subprogram (New_Subp,
1574 Is_Abstract_Subprogram (Prim));
1575 Set_Interface_Alias (New_Subp, Iface_Prim);
1577 -- Internal entities associated with interface types are
1578 -- only registered in the list of primitives of the tagged
1579 -- type. They are only used to fill the contents of the
1580 -- secondary dispatch tables. Therefore they are not needed
1581 -- in the homonym chains.
1583 Remove_Homonym (New_Subp);
1585 -- Hidden entities associated with interfaces must have set
1586 -- the Has_Delay_Freeze attribute to ensure that, in case of
1587 -- locally defined tagged types (or compiling with static
1588 -- dispatch tables generation disabled) the corresponding
1589 -- entry of the secondary dispatch table is filled when
1590 -- such an entity is frozen.
1592 Set_Has_Delayed_Freeze (New_Subp);
1593 end if;
1595 Next_Elmt (Elmt);
1596 end loop;
1597 end if;
1599 Next_Elmt (Iface_Elmt);
1600 end loop;
1601 end Add_Internal_Interface_Entities;
1603 -----------------------------------
1604 -- Analyze_Component_Declaration --
1605 -----------------------------------
1607 procedure Analyze_Component_Declaration (N : Node_Id) is
1608 Id : constant Entity_Id := Defining_Identifier (N);
1609 E : constant Node_Id := Expression (N);
1610 T : Entity_Id;
1611 P : Entity_Id;
1613 function Contains_POC (Constr : Node_Id) return Boolean;
1614 -- Determines whether a constraint uses the discriminant of a record
1615 -- type thus becoming a per-object constraint (POC).
1617 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1618 -- Typ is the type of the current component, check whether this type is
1619 -- a limited type. Used to validate declaration against that of
1620 -- enclosing record.
1622 ------------------
1623 -- Contains_POC --
1624 ------------------
1626 function Contains_POC (Constr : Node_Id) return Boolean is
1627 begin
1628 -- Prevent cascaded errors
1630 if Error_Posted (Constr) then
1631 return False;
1632 end if;
1634 case Nkind (Constr) is
1635 when N_Attribute_Reference =>
1636 return
1637 Attribute_Name (Constr) = Name_Access
1638 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1640 when N_Discriminant_Association =>
1641 return Denotes_Discriminant (Expression (Constr));
1643 when N_Identifier =>
1644 return Denotes_Discriminant (Constr);
1646 when N_Index_Or_Discriminant_Constraint =>
1647 declare
1648 IDC : Node_Id;
1650 begin
1651 IDC := First (Constraints (Constr));
1652 while Present (IDC) loop
1654 -- One per-object constraint is sufficient
1656 if Contains_POC (IDC) then
1657 return True;
1658 end if;
1660 Next (IDC);
1661 end loop;
1663 return False;
1664 end;
1666 when N_Range =>
1667 return Denotes_Discriminant (Low_Bound (Constr))
1668 or else
1669 Denotes_Discriminant (High_Bound (Constr));
1671 when N_Range_Constraint =>
1672 return Denotes_Discriminant (Range_Expression (Constr));
1674 when others =>
1675 return False;
1677 end case;
1678 end Contains_POC;
1680 ----------------------
1681 -- Is_Known_Limited --
1682 ----------------------
1684 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1685 P : constant Entity_Id := Etype (Typ);
1686 R : constant Entity_Id := Root_Type (Typ);
1688 begin
1689 if Is_Limited_Record (Typ) then
1690 return True;
1692 -- If the root type is limited (and not a limited interface)
1693 -- so is the current type
1695 elsif Is_Limited_Record (R)
1696 and then
1697 (not Is_Interface (R)
1698 or else not Is_Limited_Interface (R))
1699 then
1700 return True;
1702 -- Else the type may have a limited interface progenitor, but a
1703 -- limited record parent.
1705 elsif R /= P
1706 and then Is_Limited_Record (P)
1707 then
1708 return True;
1710 else
1711 return False;
1712 end if;
1713 end Is_Known_Limited;
1715 -- Start of processing for Analyze_Component_Declaration
1717 begin
1718 Generate_Definition (Id);
1719 Enter_Name (Id);
1721 if Present (Subtype_Indication (Component_Definition (N))) then
1722 T := Find_Type_Of_Object
1723 (Subtype_Indication (Component_Definition (N)), N);
1725 -- Ada 2005 (AI-230): Access Definition case
1727 else
1728 pragma Assert (Present
1729 (Access_Definition (Component_Definition (N))));
1731 T := Access_Definition
1732 (Related_Nod => N,
1733 N => Access_Definition (Component_Definition (N)));
1734 Set_Is_Local_Anonymous_Access (T);
1736 -- Ada 2005 (AI-254)
1738 if Present (Access_To_Subprogram_Definition
1739 (Access_Definition (Component_Definition (N))))
1740 and then Protected_Present (Access_To_Subprogram_Definition
1741 (Access_Definition
1742 (Component_Definition (N))))
1743 then
1744 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1745 end if;
1746 end if;
1748 -- If the subtype is a constrained subtype of the enclosing record,
1749 -- (which must have a partial view) the back-end does not properly
1750 -- handle the recursion. Rewrite the component declaration with an
1751 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1752 -- the tree directly because side effects have already been removed from
1753 -- discriminant constraints.
1755 if Ekind (T) = E_Access_Subtype
1756 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1757 and then Comes_From_Source (T)
1758 and then Nkind (Parent (T)) = N_Subtype_Declaration
1759 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1760 then
1761 Rewrite
1762 (Subtype_Indication (Component_Definition (N)),
1763 New_Copy_Tree (Subtype_Indication (Parent (T))));
1764 T := Find_Type_Of_Object
1765 (Subtype_Indication (Component_Definition (N)), N);
1766 end if;
1768 -- If the component declaration includes a default expression, then we
1769 -- check that the component is not of a limited type (RM 3.7(5)),
1770 -- and do the special preanalysis of the expression (see section on
1771 -- "Handling of Default and Per-Object Expressions" in the spec of
1772 -- package Sem).
1774 if Present (E) then
1775 Preanalyze_Spec_Expression (E, T);
1776 Check_Initialization (T, E);
1778 if Ada_Version >= Ada_05
1779 and then Ekind (T) = E_Anonymous_Access_Type
1780 and then Etype (E) /= Any_Type
1781 then
1782 -- Check RM 3.9.2(9): "if the expected type for an expression is
1783 -- an anonymous access-to-specific tagged type, then the object
1784 -- designated by the expression shall not be dynamically tagged
1785 -- unless it is a controlling operand in a call on a dispatching
1786 -- operation"
1788 if Is_Tagged_Type (Directly_Designated_Type (T))
1789 and then
1790 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1791 and then
1792 Ekind (Directly_Designated_Type (Etype (E))) =
1793 E_Class_Wide_Type
1794 then
1795 Error_Msg_N
1796 ("access to specific tagged type required (RM 3.9.2(9))", E);
1797 end if;
1799 -- (Ada 2005: AI-230): Accessibility check for anonymous
1800 -- components
1802 if Type_Access_Level (Etype (E)) > Type_Access_Level (T) then
1803 Error_Msg_N
1804 ("expression has deeper access level than component " &
1805 "(RM 3.10.2 (12.2))", E);
1806 end if;
1808 -- The initialization expression is a reference to an access
1809 -- discriminant. The type of the discriminant is always deeper
1810 -- than any access type.
1812 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1813 and then Is_Entity_Name (E)
1814 and then Ekind (Entity (E)) = E_In_Parameter
1815 and then Present (Discriminal_Link (Entity (E)))
1816 then
1817 Error_Msg_N
1818 ("discriminant has deeper accessibility level than target",
1820 end if;
1821 end if;
1822 end if;
1824 -- The parent type may be a private view with unknown discriminants,
1825 -- and thus unconstrained. Regular components must be constrained.
1827 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1828 if Is_Class_Wide_Type (T) then
1829 Error_Msg_N
1830 ("class-wide subtype with unknown discriminants" &
1831 " in component declaration",
1832 Subtype_Indication (Component_Definition (N)));
1833 else
1834 Error_Msg_N
1835 ("unconstrained subtype in component declaration",
1836 Subtype_Indication (Component_Definition (N)));
1837 end if;
1839 -- Components cannot be abstract, except for the special case of
1840 -- the _Parent field (case of extending an abstract tagged type)
1842 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1843 Error_Msg_N ("type of a component cannot be abstract", N);
1844 end if;
1846 Set_Etype (Id, T);
1847 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1849 -- The component declaration may have a per-object constraint, set
1850 -- the appropriate flag in the defining identifier of the subtype.
1852 if Present (Subtype_Indication (Component_Definition (N))) then
1853 declare
1854 Sindic : constant Node_Id :=
1855 Subtype_Indication (Component_Definition (N));
1856 begin
1857 if Nkind (Sindic) = N_Subtype_Indication
1858 and then Present (Constraint (Sindic))
1859 and then Contains_POC (Constraint (Sindic))
1860 then
1861 Set_Has_Per_Object_Constraint (Id);
1862 end if;
1863 end;
1864 end if;
1866 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1867 -- out some static checks.
1869 if Ada_Version >= Ada_05
1870 and then Can_Never_Be_Null (T)
1871 then
1872 Null_Exclusion_Static_Checks (N);
1873 end if;
1875 -- If this component is private (or depends on a private type), flag the
1876 -- record type to indicate that some operations are not available.
1878 P := Private_Component (T);
1880 if Present (P) then
1882 -- Check for circular definitions
1884 if P = Any_Type then
1885 Set_Etype (Id, Any_Type);
1887 -- There is a gap in the visibility of operations only if the
1888 -- component type is not defined in the scope of the record type.
1890 elsif Scope (P) = Scope (Current_Scope) then
1891 null;
1893 elsif Is_Limited_Type (P) then
1894 Set_Is_Limited_Composite (Current_Scope);
1896 else
1897 Set_Is_Private_Composite (Current_Scope);
1898 end if;
1899 end if;
1901 if P /= Any_Type
1902 and then Is_Limited_Type (T)
1903 and then Chars (Id) /= Name_uParent
1904 and then Is_Tagged_Type (Current_Scope)
1905 then
1906 if Is_Derived_Type (Current_Scope)
1907 and then not Is_Known_Limited (Current_Scope)
1908 then
1909 Error_Msg_N
1910 ("extension of nonlimited type cannot have limited components",
1913 if Is_Interface (Root_Type (Current_Scope)) then
1914 Error_Msg_N
1915 ("\limitedness is not inherited from limited interface", N);
1916 Error_Msg_N
1917 ("\add LIMITED to type indication", N);
1918 end if;
1920 Explain_Limited_Type (T, N);
1921 Set_Etype (Id, Any_Type);
1922 Set_Is_Limited_Composite (Current_Scope, False);
1924 elsif not Is_Derived_Type (Current_Scope)
1925 and then not Is_Limited_Record (Current_Scope)
1926 and then not Is_Concurrent_Type (Current_Scope)
1927 then
1928 Error_Msg_N
1929 ("nonlimited tagged type cannot have limited components", N);
1930 Explain_Limited_Type (T, N);
1931 Set_Etype (Id, Any_Type);
1932 Set_Is_Limited_Composite (Current_Scope, False);
1933 end if;
1934 end if;
1936 Set_Original_Record_Component (Id, Id);
1937 end Analyze_Component_Declaration;
1939 --------------------------
1940 -- Analyze_Declarations --
1941 --------------------------
1943 procedure Analyze_Declarations (L : List_Id) is
1944 D : Node_Id;
1945 Freeze_From : Entity_Id := Empty;
1946 Next_Node : Node_Id;
1948 procedure Adjust_D;
1949 -- Adjust D not to include implicit label declarations, since these
1950 -- have strange Sloc values that result in elaboration check problems.
1951 -- (They have the sloc of the label as found in the source, and that
1952 -- is ahead of the current declarative part).
1954 --------------
1955 -- Adjust_D --
1956 --------------
1958 procedure Adjust_D is
1959 begin
1960 while Present (Prev (D))
1961 and then Nkind (D) = N_Implicit_Label_Declaration
1962 loop
1963 Prev (D);
1964 end loop;
1965 end Adjust_D;
1967 -- Start of processing for Analyze_Declarations
1969 begin
1970 D := First (L);
1971 while Present (D) loop
1973 -- Complete analysis of declaration
1975 Analyze (D);
1976 Next_Node := Next (D);
1978 if No (Freeze_From) then
1979 Freeze_From := First_Entity (Current_Scope);
1980 end if;
1982 -- At the end of a declarative part, freeze remaining entities
1983 -- declared in it. The end of the visible declarations of package
1984 -- specification is not the end of a declarative part if private
1985 -- declarations are present. The end of a package declaration is a
1986 -- freezing point only if it a library package. A task definition or
1987 -- protected type definition is not a freeze point either. Finally,
1988 -- we do not freeze entities in generic scopes, because there is no
1989 -- code generated for them and freeze nodes will be generated for
1990 -- the instance.
1992 -- The end of a package instantiation is not a freeze point, but
1993 -- for now we make it one, because the generic body is inserted
1994 -- (currently) immediately after. Generic instantiations will not
1995 -- be a freeze point once delayed freezing of bodies is implemented.
1996 -- (This is needed in any case for early instantiations ???).
1998 if No (Next_Node) then
1999 if Nkind_In (Parent (L), N_Component_List,
2000 N_Task_Definition,
2001 N_Protected_Definition)
2002 then
2003 null;
2005 elsif Nkind (Parent (L)) /= N_Package_Specification then
2006 if Nkind (Parent (L)) = N_Package_Body then
2007 Freeze_From := First_Entity (Current_Scope);
2008 end if;
2010 Adjust_D;
2011 Freeze_All (Freeze_From, D);
2012 Freeze_From := Last_Entity (Current_Scope);
2014 elsif Scope (Current_Scope) /= Standard_Standard
2015 and then not Is_Child_Unit (Current_Scope)
2016 and then No (Generic_Parent (Parent (L)))
2017 then
2018 null;
2020 elsif L /= Visible_Declarations (Parent (L))
2021 or else No (Private_Declarations (Parent (L)))
2022 or else Is_Empty_List (Private_Declarations (Parent (L)))
2023 then
2024 Adjust_D;
2025 Freeze_All (Freeze_From, D);
2026 Freeze_From := Last_Entity (Current_Scope);
2027 end if;
2029 -- If next node is a body then freeze all types before the body.
2030 -- An exception occurs for some expander-generated bodies. If these
2031 -- are generated at places where in general language rules would not
2032 -- allow a freeze point, then we assume that the expander has
2033 -- explicitly checked that all required types are properly frozen,
2034 -- and we do not cause general freezing here. This special circuit
2035 -- is used when the encountered body is marked as having already
2036 -- been analyzed.
2038 -- In all other cases (bodies that come from source, and expander
2039 -- generated bodies that have not been analyzed yet), freeze all
2040 -- types now. Note that in the latter case, the expander must take
2041 -- care to attach the bodies at a proper place in the tree so as to
2042 -- not cause unwanted freezing at that point.
2044 elsif not Analyzed (Next_Node)
2045 and then (Nkind_In (Next_Node, N_Subprogram_Body,
2046 N_Entry_Body,
2047 N_Package_Body,
2048 N_Protected_Body,
2049 N_Task_Body)
2050 or else
2051 Nkind (Next_Node) in N_Body_Stub)
2052 then
2053 Adjust_D;
2054 Freeze_All (Freeze_From, D);
2055 Freeze_From := Last_Entity (Current_Scope);
2056 end if;
2058 D := Next_Node;
2059 end loop;
2060 end Analyze_Declarations;
2062 ----------------------------------
2063 -- Analyze_Incomplete_Type_Decl --
2064 ----------------------------------
2066 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2067 F : constant Boolean := Is_Pure (Current_Scope);
2068 T : Entity_Id;
2070 begin
2071 Generate_Definition (Defining_Identifier (N));
2073 -- Process an incomplete declaration. The identifier must not have been
2074 -- declared already in the scope. However, an incomplete declaration may
2075 -- appear in the private part of a package, for a private type that has
2076 -- already been declared.
2078 -- In this case, the discriminants (if any) must match
2080 T := Find_Type_Name (N);
2082 Set_Ekind (T, E_Incomplete_Type);
2083 Init_Size_Align (T);
2084 Set_Is_First_Subtype (T, True);
2085 Set_Etype (T, T);
2087 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2088 -- incomplete types.
2090 if Tagged_Present (N) then
2091 Set_Is_Tagged_Type (T);
2092 Make_Class_Wide_Type (T);
2093 Set_Primitive_Operations (T, New_Elmt_List);
2094 end if;
2096 Push_Scope (T);
2098 Set_Stored_Constraint (T, No_Elist);
2100 if Present (Discriminant_Specifications (N)) then
2101 Process_Discriminants (N);
2102 end if;
2104 End_Scope;
2106 -- If the type has discriminants, non-trivial subtypes may be
2107 -- declared before the full view of the type. The full views of those
2108 -- subtypes will be built after the full view of the type.
2110 Set_Private_Dependents (T, New_Elmt_List);
2111 Set_Is_Pure (T, F);
2112 end Analyze_Incomplete_Type_Decl;
2114 -----------------------------------
2115 -- Analyze_Interface_Declaration --
2116 -----------------------------------
2118 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2119 CW : constant Entity_Id := Class_Wide_Type (T);
2121 begin
2122 Set_Is_Tagged_Type (T);
2124 Set_Is_Limited_Record (T, Limited_Present (Def)
2125 or else Task_Present (Def)
2126 or else Protected_Present (Def)
2127 or else Synchronized_Present (Def));
2129 -- Type is abstract if full declaration carries keyword, or if previous
2130 -- partial view did.
2132 Set_Is_Abstract_Type (T);
2133 Set_Is_Interface (T);
2135 -- Type is a limited interface if it includes the keyword limited, task,
2136 -- protected, or synchronized.
2138 Set_Is_Limited_Interface
2139 (T, Limited_Present (Def)
2140 or else Protected_Present (Def)
2141 or else Synchronized_Present (Def)
2142 or else Task_Present (Def));
2144 Set_Is_Protected_Interface (T, Protected_Present (Def));
2145 Set_Is_Task_Interface (T, Task_Present (Def));
2147 -- Type is a synchronized interface if it includes the keyword task,
2148 -- protected, or synchronized.
2150 Set_Is_Synchronized_Interface
2151 (T, Synchronized_Present (Def)
2152 or else Protected_Present (Def)
2153 or else Task_Present (Def));
2155 Set_Interfaces (T, New_Elmt_List);
2156 Set_Primitive_Operations (T, New_Elmt_List);
2158 -- Complete the decoration of the class-wide entity if it was already
2159 -- built (i.e. during the creation of the limited view)
2161 if Present (CW) then
2162 Set_Is_Interface (CW);
2163 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2164 Set_Is_Protected_Interface (CW, Is_Protected_Interface (T));
2165 Set_Is_Synchronized_Interface (CW, Is_Synchronized_Interface (T));
2166 Set_Is_Task_Interface (CW, Is_Task_Interface (T));
2167 end if;
2169 -- Check runtime support for synchronized interfaces
2171 if VM_Target = No_VM
2172 and then (Is_Task_Interface (T)
2173 or else Is_Protected_Interface (T)
2174 or else Is_Synchronized_Interface (T))
2175 and then not RTE_Available (RE_Select_Specific_Data)
2176 then
2177 Error_Msg_CRT ("synchronized interfaces", T);
2178 end if;
2179 end Analyze_Interface_Declaration;
2181 -----------------------------
2182 -- Analyze_Itype_Reference --
2183 -----------------------------
2185 -- Nothing to do. This node is placed in the tree only for the benefit of
2186 -- back end processing, and has no effect on the semantic processing.
2188 procedure Analyze_Itype_Reference (N : Node_Id) is
2189 begin
2190 pragma Assert (Is_Itype (Itype (N)));
2191 null;
2192 end Analyze_Itype_Reference;
2194 --------------------------------
2195 -- Analyze_Number_Declaration --
2196 --------------------------------
2198 procedure Analyze_Number_Declaration (N : Node_Id) is
2199 Id : constant Entity_Id := Defining_Identifier (N);
2200 E : constant Node_Id := Expression (N);
2201 T : Entity_Id;
2202 Index : Interp_Index;
2203 It : Interp;
2205 begin
2206 Generate_Definition (Id);
2207 Enter_Name (Id);
2209 -- This is an optimization of a common case of an integer literal
2211 if Nkind (E) = N_Integer_Literal then
2212 Set_Is_Static_Expression (E, True);
2213 Set_Etype (E, Universal_Integer);
2215 Set_Etype (Id, Universal_Integer);
2216 Set_Ekind (Id, E_Named_Integer);
2217 Set_Is_Frozen (Id, True);
2218 return;
2219 end if;
2221 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2223 -- Process expression, replacing error by integer zero, to avoid
2224 -- cascaded errors or aborts further along in the processing
2226 -- Replace Error by integer zero, which seems least likely to
2227 -- cause cascaded errors.
2229 if E = Error then
2230 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2231 Set_Error_Posted (E);
2232 end if;
2234 Analyze (E);
2236 -- Verify that the expression is static and numeric. If
2237 -- the expression is overloaded, we apply the preference
2238 -- rule that favors root numeric types.
2240 if not Is_Overloaded (E) then
2241 T := Etype (E);
2243 else
2244 T := Any_Type;
2246 Get_First_Interp (E, Index, It);
2247 while Present (It.Typ) loop
2248 if (Is_Integer_Type (It.Typ)
2249 or else Is_Real_Type (It.Typ))
2250 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2251 then
2252 if T = Any_Type then
2253 T := It.Typ;
2255 elsif It.Typ = Universal_Real
2256 or else It.Typ = Universal_Integer
2257 then
2258 -- Choose universal interpretation over any other
2260 T := It.Typ;
2261 exit;
2262 end if;
2263 end if;
2265 Get_Next_Interp (Index, It);
2266 end loop;
2267 end if;
2269 if Is_Integer_Type (T) then
2270 Resolve (E, T);
2271 Set_Etype (Id, Universal_Integer);
2272 Set_Ekind (Id, E_Named_Integer);
2274 elsif Is_Real_Type (T) then
2276 -- Because the real value is converted to universal_real, this is a
2277 -- legal context for a universal fixed expression.
2279 if T = Universal_Fixed then
2280 declare
2281 Loc : constant Source_Ptr := Sloc (N);
2282 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2283 Subtype_Mark =>
2284 New_Occurrence_Of (Universal_Real, Loc),
2285 Expression => Relocate_Node (E));
2287 begin
2288 Rewrite (E, Conv);
2289 Analyze (E);
2290 end;
2292 elsif T = Any_Fixed then
2293 Error_Msg_N ("illegal context for mixed mode operation", E);
2295 -- Expression is of the form : universal_fixed * integer. Try to
2296 -- resolve as universal_real.
2298 T := Universal_Real;
2299 Set_Etype (E, T);
2300 end if;
2302 Resolve (E, T);
2303 Set_Etype (Id, Universal_Real);
2304 Set_Ekind (Id, E_Named_Real);
2306 else
2307 Wrong_Type (E, Any_Numeric);
2308 Resolve (E, T);
2310 Set_Etype (Id, T);
2311 Set_Ekind (Id, E_Constant);
2312 Set_Never_Set_In_Source (Id, True);
2313 Set_Is_True_Constant (Id, True);
2314 return;
2315 end if;
2317 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
2318 Set_Etype (E, Etype (Id));
2319 end if;
2321 if not Is_OK_Static_Expression (E) then
2322 Flag_Non_Static_Expr
2323 ("non-static expression used in number declaration!", E);
2324 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
2325 Set_Etype (E, Any_Type);
2326 end if;
2327 end Analyze_Number_Declaration;
2329 --------------------------------
2330 -- Analyze_Object_Declaration --
2331 --------------------------------
2333 procedure Analyze_Object_Declaration (N : Node_Id) is
2334 Loc : constant Source_Ptr := Sloc (N);
2335 Id : constant Entity_Id := Defining_Identifier (N);
2336 T : Entity_Id;
2337 Act_T : Entity_Id;
2339 E : Node_Id := Expression (N);
2340 -- E is set to Expression (N) throughout this routine. When
2341 -- Expression (N) is modified, E is changed accordingly.
2343 Prev_Entity : Entity_Id := Empty;
2345 function Count_Tasks (T : Entity_Id) return Uint;
2346 -- This function is called when a non-generic library level object of a
2347 -- task type is declared. Its function is to count the static number of
2348 -- tasks declared within the type (it is only called if Has_Tasks is set
2349 -- for T). As a side effect, if an array of tasks with non-static bounds
2350 -- or a variant record type is encountered, Check_Restrictions is called
2351 -- indicating the count is unknown.
2353 -----------------
2354 -- Count_Tasks --
2355 -----------------
2357 function Count_Tasks (T : Entity_Id) return Uint is
2358 C : Entity_Id;
2359 X : Node_Id;
2360 V : Uint;
2362 begin
2363 if Is_Task_Type (T) then
2364 return Uint_1;
2366 elsif Is_Record_Type (T) then
2367 if Has_Discriminants (T) then
2368 Check_Restriction (Max_Tasks, N);
2369 return Uint_0;
2371 else
2372 V := Uint_0;
2373 C := First_Component (T);
2374 while Present (C) loop
2375 V := V + Count_Tasks (Etype (C));
2376 Next_Component (C);
2377 end loop;
2379 return V;
2380 end if;
2382 elsif Is_Array_Type (T) then
2383 X := First_Index (T);
2384 V := Count_Tasks (Component_Type (T));
2385 while Present (X) loop
2386 C := Etype (X);
2388 if not Is_Static_Subtype (C) then
2389 Check_Restriction (Max_Tasks, N);
2390 return Uint_0;
2391 else
2392 V := V * (UI_Max (Uint_0,
2393 Expr_Value (Type_High_Bound (C)) -
2394 Expr_Value (Type_Low_Bound (C)) + Uint_1));
2395 end if;
2397 Next_Index (X);
2398 end loop;
2400 return V;
2402 else
2403 return Uint_0;
2404 end if;
2405 end Count_Tasks;
2407 -- Start of processing for Analyze_Object_Declaration
2409 begin
2410 -- There are three kinds of implicit types generated by an
2411 -- object declaration:
2413 -- 1. Those for generated by the original Object Definition
2415 -- 2. Those generated by the Expression
2417 -- 3. Those used to constrained the Object Definition with the
2418 -- expression constraints when it is unconstrained
2420 -- They must be generated in this order to avoid order of elaboration
2421 -- issues. Thus the first step (after entering the name) is to analyze
2422 -- the object definition.
2424 if Constant_Present (N) then
2425 Prev_Entity := Current_Entity_In_Scope (Id);
2427 if Present (Prev_Entity)
2428 and then
2429 -- If the homograph is an implicit subprogram, it is overridden
2430 -- by the current declaration.
2432 ((Is_Overloadable (Prev_Entity)
2433 and then Is_Inherited_Operation (Prev_Entity))
2435 -- The current object is a discriminal generated for an entry
2436 -- family index. Even though the index is a constant, in this
2437 -- particular context there is no true constant redeclaration.
2438 -- Enter_Name will handle the visibility.
2440 or else
2441 (Is_Discriminal (Id)
2442 and then Ekind (Discriminal_Link (Id)) =
2443 E_Entry_Index_Parameter)
2445 -- The current object is the renaming for a generic declared
2446 -- within the instance.
2448 or else
2449 (Ekind (Prev_Entity) = E_Package
2450 and then Nkind (Parent (Prev_Entity)) =
2451 N_Package_Renaming_Declaration
2452 and then not Comes_From_Source (Prev_Entity)
2453 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
2454 then
2455 Prev_Entity := Empty;
2456 end if;
2457 end if;
2459 if Present (Prev_Entity) then
2460 Constant_Redeclaration (Id, N, T);
2462 Generate_Reference (Prev_Entity, Id, 'c');
2463 Set_Completion_Referenced (Id);
2465 if Error_Posted (N) then
2467 -- Type mismatch or illegal redeclaration, Do not analyze
2468 -- expression to avoid cascaded errors.
2470 T := Find_Type_Of_Object (Object_Definition (N), N);
2471 Set_Etype (Id, T);
2472 Set_Ekind (Id, E_Variable);
2473 return;
2474 end if;
2476 -- In the normal case, enter identifier at the start to catch premature
2477 -- usage in the initialization expression.
2479 else
2480 Generate_Definition (Id);
2481 Enter_Name (Id);
2483 Mark_Coextensions (N, Object_Definition (N));
2485 T := Find_Type_Of_Object (Object_Definition (N), N);
2487 if Nkind (Object_Definition (N)) = N_Access_Definition
2488 and then Present
2489 (Access_To_Subprogram_Definition (Object_Definition (N)))
2490 and then Protected_Present
2491 (Access_To_Subprogram_Definition (Object_Definition (N)))
2492 then
2493 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2494 end if;
2496 if Error_Posted (Id) then
2497 Set_Etype (Id, T);
2498 Set_Ekind (Id, E_Variable);
2499 return;
2500 end if;
2501 end if;
2503 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2504 -- out some static checks
2506 if Ada_Version >= Ada_05
2507 and then Can_Never_Be_Null (T)
2508 then
2509 -- In case of aggregates we must also take care of the correct
2510 -- initialization of nested aggregates bug this is done at the
2511 -- point of the analysis of the aggregate (see sem_aggr.adb)
2513 if Present (Expression (N))
2514 and then Nkind (Expression (N)) = N_Aggregate
2515 then
2516 null;
2518 else
2519 declare
2520 Save_Typ : constant Entity_Id := Etype (Id);
2521 begin
2522 Set_Etype (Id, T); -- Temp. decoration for static checks
2523 Null_Exclusion_Static_Checks (N);
2524 Set_Etype (Id, Save_Typ);
2525 end;
2526 end if;
2527 end if;
2529 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2531 -- If deferred constant, make sure context is appropriate. We detect
2532 -- a deferred constant as a constant declaration with no expression.
2533 -- A deferred constant can appear in a package body if its completion
2534 -- is by means of an interface pragma.
2536 if Constant_Present (N)
2537 and then No (E)
2538 then
2539 -- A deferred constant may appear in the declarative part of the
2540 -- following constructs:
2542 -- blocks
2543 -- entry bodies
2544 -- extended return statements
2545 -- package specs
2546 -- package bodies
2547 -- subprogram bodies
2548 -- task bodies
2550 -- When declared inside a package spec, a deferred constant must be
2551 -- completed by a full constant declaration or pragma Import. In all
2552 -- other cases, the only proper completion is pragma Import. Extended
2553 -- return statements are flagged as invalid contexts because they do
2554 -- not have a declarative part and so cannot accommodate the pragma.
2556 if Ekind (Current_Scope) = E_Return_Statement then
2557 Error_Msg_N
2558 ("invalid context for deferred constant declaration (RM 7.4)",
2560 Error_Msg_N
2561 ("\declaration requires an initialization expression",
2563 Set_Constant_Present (N, False);
2565 -- In Ada 83, deferred constant must be of private type
2567 elsif not Is_Private_Type (T) then
2568 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2569 Error_Msg_N
2570 ("(Ada 83) deferred constant must be private type", N);
2571 end if;
2572 end if;
2574 -- If not a deferred constant, then object declaration freezes its type
2576 else
2577 Check_Fully_Declared (T, N);
2578 Freeze_Before (N, T);
2579 end if;
2581 -- If the object was created by a constrained array definition, then
2582 -- set the link in both the anonymous base type and anonymous subtype
2583 -- that are built to represent the array type to point to the object.
2585 if Nkind (Object_Definition (Declaration_Node (Id))) =
2586 N_Constrained_Array_Definition
2587 then
2588 Set_Related_Array_Object (T, Id);
2589 Set_Related_Array_Object (Base_Type (T), Id);
2590 end if;
2592 -- Special checks for protected objects not at library level
2594 if Is_Protected_Type (T)
2595 and then not Is_Library_Level_Entity (Id)
2596 then
2597 Check_Restriction (No_Local_Protected_Objects, Id);
2599 -- Protected objects with interrupt handlers must be at library level
2601 -- Ada 2005: this test is not needed (and the corresponding clause
2602 -- in the RM is removed) because accessibility checks are sufficient
2603 -- to make handlers not at the library level illegal.
2605 if Has_Interrupt_Handler (T)
2606 and then Ada_Version < Ada_05
2607 then
2608 Error_Msg_N
2609 ("interrupt object can only be declared at library level", Id);
2610 end if;
2611 end if;
2613 -- The actual subtype of the object is the nominal subtype, unless
2614 -- the nominal one is unconstrained and obtained from the expression.
2616 Act_T := T;
2618 -- Process initialization expression if present and not in error
2620 if Present (E) and then E /= Error then
2622 -- Generate an error in case of CPP class-wide object initialization.
2623 -- Required because otherwise the expansion of the class-wide
2624 -- assignment would try to use 'size to initialize the object
2625 -- (primitive that is not available in CPP tagged types).
2627 if Is_Class_Wide_Type (Act_T)
2628 and then
2629 (Is_CPP_Class (Root_Type (Etype (Act_T)))
2630 or else
2631 (Present (Full_View (Root_Type (Etype (Act_T))))
2632 and then
2633 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
2634 then
2635 Error_Msg_N
2636 ("predefined assignment not available for 'C'P'P tagged types",
2638 end if;
2640 Mark_Coextensions (N, E);
2641 Analyze (E);
2643 -- In case of errors detected in the analysis of the expression,
2644 -- decorate it with the expected type to avoid cascaded errors
2646 if No (Etype (E)) then
2647 Set_Etype (E, T);
2648 end if;
2650 -- If an initialization expression is present, then we set the
2651 -- Is_True_Constant flag. It will be reset if this is a variable
2652 -- and it is indeed modified.
2654 Set_Is_True_Constant (Id, True);
2656 -- If we are analyzing a constant declaration, set its completion
2657 -- flag after analyzing and resolving the expression.
2659 if Constant_Present (N) then
2660 Set_Has_Completion (Id);
2661 end if;
2663 -- Set type and resolve (type may be overridden later on)
2665 Set_Etype (Id, T);
2666 Resolve (E, T);
2668 -- If E is null and has been replaced by an N_Raise_Constraint_Error
2669 -- node (which was marked already-analyzed), we need to set the type
2670 -- to something other than Any_Access in order to keep gigi happy.
2672 if Etype (E) = Any_Access then
2673 Set_Etype (E, T);
2674 end if;
2676 -- If the object is an access to variable, the initialization
2677 -- expression cannot be an access to constant.
2679 if Is_Access_Type (T)
2680 and then not Is_Access_Constant (T)
2681 and then Is_Access_Type (Etype (E))
2682 and then Is_Access_Constant (Etype (E))
2683 then
2684 Error_Msg_N
2685 ("access to variable cannot be initialized "
2686 & "with an access-to-constant expression", E);
2687 end if;
2689 if not Assignment_OK (N) then
2690 Check_Initialization (T, E);
2691 end if;
2693 Check_Unset_Reference (E);
2695 -- If this is a variable, then set current value. If this is a
2696 -- declared constant of a scalar type with a static expression,
2697 -- indicate that it is always valid.
2699 if not Constant_Present (N) then
2700 if Compile_Time_Known_Value (E) then
2701 Set_Current_Value (Id, E);
2702 end if;
2704 elsif Is_Scalar_Type (T)
2705 and then Is_OK_Static_Expression (E)
2706 then
2707 Set_Is_Known_Valid (Id);
2708 end if;
2710 -- Deal with setting of null flags
2712 if Is_Access_Type (T) then
2713 if Known_Non_Null (E) then
2714 Set_Is_Known_Non_Null (Id, True);
2715 elsif Known_Null (E)
2716 and then not Can_Never_Be_Null (Id)
2717 then
2718 Set_Is_Known_Null (Id, True);
2719 end if;
2720 end if;
2722 -- Check incorrect use of dynamically tagged expressions.
2724 if Is_Tagged_Type (T) then
2725 Check_Dynamically_Tagged_Expression
2726 (Expr => E,
2727 Typ => T,
2728 Related_Nod => N);
2729 end if;
2731 Apply_Scalar_Range_Check (E, T);
2732 Apply_Static_Length_Check (E, T);
2733 end if;
2735 -- If the No_Streams restriction is set, check that the type of the
2736 -- object is not, and does not contain, any subtype derived from
2737 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
2738 -- Has_Stream just for efficiency reasons. There is no point in
2739 -- spending time on a Has_Stream check if the restriction is not set.
2741 if Restrictions.Set (No_Streams) then
2742 if Has_Stream (T) then
2743 Check_Restriction (No_Streams, N);
2744 end if;
2745 end if;
2747 -- Case of unconstrained type
2749 if Is_Indefinite_Subtype (T) then
2751 -- Nothing to do in deferred constant case
2753 if Constant_Present (N) and then No (E) then
2754 null;
2756 -- Case of no initialization present
2758 elsif No (E) then
2759 if No_Initialization (N) then
2760 null;
2762 elsif Is_Class_Wide_Type (T) then
2763 Error_Msg_N
2764 ("initialization required in class-wide declaration ", N);
2766 else
2767 Error_Msg_N
2768 ("unconstrained subtype not allowed (need initialization)",
2769 Object_Definition (N));
2771 if Is_Record_Type (T) and then Has_Discriminants (T) then
2772 Error_Msg_N
2773 ("\provide initial value or explicit discriminant values",
2774 Object_Definition (N));
2776 Error_Msg_NE
2777 ("\or give default discriminant values for type&",
2778 Object_Definition (N), T);
2780 elsif Is_Array_Type (T) then
2781 Error_Msg_N
2782 ("\provide initial value or explicit array bounds",
2783 Object_Definition (N));
2784 end if;
2785 end if;
2787 -- Case of initialization present but in error. Set initial
2788 -- expression as absent (but do not make above complaints)
2790 elsif E = Error then
2791 Set_Expression (N, Empty);
2792 E := Empty;
2794 -- Case of initialization present
2796 else
2797 -- Not allowed in Ada 83
2799 if not Constant_Present (N) then
2800 if Ada_Version = Ada_83
2801 and then Comes_From_Source (Object_Definition (N))
2802 then
2803 Error_Msg_N
2804 ("(Ada 83) unconstrained variable not allowed",
2805 Object_Definition (N));
2806 end if;
2807 end if;
2809 -- Now we constrain the variable from the initializing expression
2811 -- If the expression is an aggregate, it has been expanded into
2812 -- individual assignments. Retrieve the actual type from the
2813 -- expanded construct.
2815 if Is_Array_Type (T)
2816 and then No_Initialization (N)
2817 and then Nkind (Original_Node (E)) = N_Aggregate
2818 then
2819 Act_T := Etype (E);
2821 -- In case of class-wide interface object declarations we delay
2822 -- the generation of the equivalent record type declarations until
2823 -- its expansion because there are cases in they are not required.
2825 elsif Is_Interface (T) then
2826 null;
2828 else
2829 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
2830 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
2831 end if;
2833 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
2835 if Aliased_Present (N) then
2836 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
2837 end if;
2839 Freeze_Before (N, Act_T);
2840 Freeze_Before (N, T);
2841 end if;
2843 elsif Is_Array_Type (T)
2844 and then No_Initialization (N)
2845 and then Nkind (Original_Node (E)) = N_Aggregate
2846 then
2847 if not Is_Entity_Name (Object_Definition (N)) then
2848 Act_T := Etype (E);
2849 Check_Compile_Time_Size (Act_T);
2851 if Aliased_Present (N) then
2852 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
2853 end if;
2854 end if;
2856 -- When the given object definition and the aggregate are specified
2857 -- independently, and their lengths might differ do a length check.
2858 -- This cannot happen if the aggregate is of the form (others =>...)
2860 if not Is_Constrained (T) then
2861 null;
2863 elsif Nkind (E) = N_Raise_Constraint_Error then
2865 -- Aggregate is statically illegal. Place back in declaration
2867 Set_Expression (N, E);
2868 Set_No_Initialization (N, False);
2870 elsif T = Etype (E) then
2871 null;
2873 elsif Nkind (E) = N_Aggregate
2874 and then Present (Component_Associations (E))
2875 and then Present (Choices (First (Component_Associations (E))))
2876 and then Nkind (First
2877 (Choices (First (Component_Associations (E))))) = N_Others_Choice
2878 then
2879 null;
2881 else
2882 Apply_Length_Check (E, T);
2883 end if;
2885 -- If the type is limited unconstrained with defaulted discriminants and
2886 -- there is no expression, then the object is constrained by the
2887 -- defaults, so it is worthwhile building the corresponding subtype.
2889 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
2890 and then not Is_Constrained (T)
2891 and then Has_Discriminants (T)
2892 then
2893 if No (E) then
2894 Act_T := Build_Default_Subtype (T, N);
2895 else
2896 -- Ada 2005: a limited object may be initialized by means of an
2897 -- aggregate. If the type has default discriminants it has an
2898 -- unconstrained nominal type, Its actual subtype will be obtained
2899 -- from the aggregate, and not from the default discriminants.
2901 Act_T := Etype (E);
2902 end if;
2904 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
2906 elsif Present (Underlying_Type (T))
2907 and then not Is_Constrained (Underlying_Type (T))
2908 and then Has_Discriminants (Underlying_Type (T))
2909 and then Nkind (E) = N_Function_Call
2910 and then Constant_Present (N)
2911 then
2912 -- The back-end has problems with constants of a discriminated type
2913 -- with defaults, if the initial value is a function call. We
2914 -- generate an intermediate temporary for the result of the call.
2915 -- It is unclear why this should make it acceptable to gcc. ???
2917 Remove_Side_Effects (E);
2918 end if;
2920 -- Check No_Wide_Characters restriction
2922 if T = Standard_Wide_Character
2923 or else T = Standard_Wide_Wide_Character
2924 or else Root_Type (T) = Standard_Wide_String
2925 or else Root_Type (T) = Standard_Wide_Wide_String
2926 then
2927 Check_Restriction (No_Wide_Characters, Object_Definition (N));
2928 end if;
2930 -- Indicate this is not set in source. Certainly true for constants,
2931 -- and true for variables so far (will be reset for a variable if and
2932 -- when we encounter a modification in the source).
2934 Set_Never_Set_In_Source (Id, True);
2936 -- Now establish the proper kind and type of the object
2938 if Constant_Present (N) then
2939 Set_Ekind (Id, E_Constant);
2940 Set_Is_True_Constant (Id, True);
2942 else
2943 Set_Ekind (Id, E_Variable);
2945 -- A variable is set as shared passive if it appears in a shared
2946 -- passive package, and is at the outer level. This is not done
2947 -- for entities generated during expansion, because those are
2948 -- always manipulated locally.
2950 if Is_Shared_Passive (Current_Scope)
2951 and then Is_Library_Level_Entity (Id)
2952 and then Comes_From_Source (Id)
2953 then
2954 Set_Is_Shared_Passive (Id);
2955 Check_Shared_Var (Id, T, N);
2956 end if;
2958 -- Set Has_Initial_Value if initializing expression present. Note
2959 -- that if there is no initializing expression, we leave the state
2960 -- of this flag unchanged (usually it will be False, but notably in
2961 -- the case of exception choice variables, it will already be true).
2963 if Present (E) then
2964 Set_Has_Initial_Value (Id, True);
2965 end if;
2966 end if;
2968 -- Initialize alignment and size and capture alignment setting
2970 Init_Alignment (Id);
2971 Init_Esize (Id);
2972 Set_Optimize_Alignment_Flags (Id);
2974 -- Deal with aliased case
2976 if Aliased_Present (N) then
2977 Set_Is_Aliased (Id);
2979 -- If the object is aliased and the type is unconstrained with
2980 -- defaulted discriminants and there is no expression, then the
2981 -- object is constrained by the defaults, so it is worthwhile
2982 -- building the corresponding subtype.
2984 -- Ada 2005 (AI-363): If the aliased object is discriminated and
2985 -- unconstrained, then only establish an actual subtype if the
2986 -- nominal subtype is indefinite. In definite cases the object is
2987 -- unconstrained in Ada 2005.
2989 if No (E)
2990 and then Is_Record_Type (T)
2991 and then not Is_Constrained (T)
2992 and then Has_Discriminants (T)
2993 and then (Ada_Version < Ada_05 or else Is_Indefinite_Subtype (T))
2994 then
2995 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
2996 end if;
2997 end if;
2999 -- Now we can set the type of the object
3001 Set_Etype (Id, Act_T);
3003 -- Deal with controlled types
3005 if Has_Controlled_Component (Etype (Id))
3006 or else Is_Controlled (Etype (Id))
3007 then
3008 if not Is_Library_Level_Entity (Id) then
3009 Check_Restriction (No_Nested_Finalization, N);
3010 else
3011 Validate_Controlled_Object (Id);
3012 end if;
3014 -- Generate a warning when an initialization causes an obvious ABE
3015 -- violation. If the init expression is a simple aggregate there
3016 -- shouldn't be any initialize/adjust call generated. This will be
3017 -- true as soon as aggregates are built in place when possible.
3019 -- ??? at the moment we do not generate warnings for temporaries
3020 -- created for those aggregates although Program_Error might be
3021 -- generated if compiled with -gnato.
3023 if Is_Controlled (Etype (Id))
3024 and then Comes_From_Source (Id)
3025 then
3026 declare
3027 BT : constant Entity_Id := Base_Type (Etype (Id));
3029 Implicit_Call : Entity_Id;
3030 pragma Warnings (Off, Implicit_Call);
3031 -- ??? what is this for (never referenced!)
3033 function Is_Aggr (N : Node_Id) return Boolean;
3034 -- Check that N is an aggregate
3036 -------------
3037 -- Is_Aggr --
3038 -------------
3040 function Is_Aggr (N : Node_Id) return Boolean is
3041 begin
3042 case Nkind (Original_Node (N)) is
3043 when N_Aggregate | N_Extension_Aggregate =>
3044 return True;
3046 when N_Qualified_Expression |
3047 N_Type_Conversion |
3048 N_Unchecked_Type_Conversion =>
3049 return Is_Aggr (Expression (Original_Node (N)));
3051 when others =>
3052 return False;
3053 end case;
3054 end Is_Aggr;
3056 begin
3057 -- If no underlying type, we already are in an error situation.
3058 -- Do not try to add a warning since we do not have access to
3059 -- prim-op list.
3061 if No (Underlying_Type (BT)) then
3062 Implicit_Call := Empty;
3064 -- A generic type does not have usable primitive operators.
3065 -- Initialization calls are built for instances.
3067 elsif Is_Generic_Type (BT) then
3068 Implicit_Call := Empty;
3070 -- If the init expression is not an aggregate, an adjust call
3071 -- will be generated
3073 elsif Present (E) and then not Is_Aggr (E) then
3074 Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
3076 -- If no init expression and we are not in the deferred
3077 -- constant case, an Initialize call will be generated
3079 elsif No (E) and then not Constant_Present (N) then
3080 Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
3082 else
3083 Implicit_Call := Empty;
3084 end if;
3085 end;
3086 end if;
3087 end if;
3089 if Has_Task (Etype (Id)) then
3090 Check_Restriction (No_Tasking, N);
3092 -- Deal with counting max tasks
3094 -- Nothing to do if inside a generic
3096 if Inside_A_Generic then
3097 null;
3099 -- If library level entity, then count tasks
3101 elsif Is_Library_Level_Entity (Id) then
3102 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3104 -- If not library level entity, then indicate we don't know max
3105 -- tasks and also check task hierarchy restriction and blocking
3106 -- operation (since starting a task is definitely blocking!)
3108 else
3109 Check_Restriction (Max_Tasks, N);
3110 Check_Restriction (No_Task_Hierarchy, N);
3111 Check_Potentially_Blocking_Operation (N);
3112 end if;
3114 -- A rather specialized test. If we see two tasks being declared
3115 -- of the same type in the same object declaration, and the task
3116 -- has an entry with an address clause, we know that program error
3117 -- will be raised at run-time since we can't have two tasks with
3118 -- entries at the same address.
3120 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
3121 declare
3122 E : Entity_Id;
3124 begin
3125 E := First_Entity (Etype (Id));
3126 while Present (E) loop
3127 if Ekind (E) = E_Entry
3128 and then Present (Get_Attribute_Definition_Clause
3129 (E, Attribute_Address))
3130 then
3131 Error_Msg_N
3132 ("?more than one task with same entry address", N);
3133 Error_Msg_N
3134 ("\?Program_Error will be raised at run time", N);
3135 Insert_Action (N,
3136 Make_Raise_Program_Error (Loc,
3137 Reason => PE_Duplicated_Entry_Address));
3138 exit;
3139 end if;
3141 Next_Entity (E);
3142 end loop;
3143 end;
3144 end if;
3145 end if;
3147 -- Some simple constant-propagation: if the expression is a constant
3148 -- string initialized with a literal, share the literal. This avoids
3149 -- a run-time copy.
3151 if Present (E)
3152 and then Is_Entity_Name (E)
3153 and then Ekind (Entity (E)) = E_Constant
3154 and then Base_Type (Etype (E)) = Standard_String
3155 then
3156 declare
3157 Val : constant Node_Id := Constant_Value (Entity (E));
3158 begin
3159 if Present (Val)
3160 and then Nkind (Val) = N_String_Literal
3161 then
3162 Rewrite (E, New_Copy (Val));
3163 end if;
3164 end;
3165 end if;
3167 -- Another optimization: if the nominal subtype is unconstrained and
3168 -- the expression is a function call that returns an unconstrained
3169 -- type, rewrite the declaration as a renaming of the result of the
3170 -- call. The exceptions below are cases where the copy is expected,
3171 -- either by the back end (Aliased case) or by the semantics, as for
3172 -- initializing controlled types or copying tags for classwide types.
3174 if Present (E)
3175 and then Nkind (E) = N_Explicit_Dereference
3176 and then Nkind (Original_Node (E)) = N_Function_Call
3177 and then not Is_Library_Level_Entity (Id)
3178 and then not Is_Constrained (Underlying_Type (T))
3179 and then not Is_Aliased (Id)
3180 and then not Is_Class_Wide_Type (T)
3181 and then not Is_Controlled (T)
3182 and then not Has_Controlled_Component (Base_Type (T))
3183 and then Expander_Active
3184 then
3185 Rewrite (N,
3186 Make_Object_Renaming_Declaration (Loc,
3187 Defining_Identifier => Id,
3188 Access_Definition => Empty,
3189 Subtype_Mark => New_Occurrence_Of
3190 (Base_Type (Etype (Id)), Loc),
3191 Name => E));
3193 Set_Renamed_Object (Id, E);
3195 -- Force generation of debugging information for the constant and for
3196 -- the renamed function call.
3198 Set_Debug_Info_Needed (Id);
3199 Set_Debug_Info_Needed (Entity (Prefix (E)));
3200 end if;
3202 if Present (Prev_Entity)
3203 and then Is_Frozen (Prev_Entity)
3204 and then not Error_Posted (Id)
3205 then
3206 Error_Msg_N ("full constant declaration appears too late", N);
3207 end if;
3209 Check_Eliminated (Id);
3211 -- Deal with setting In_Private_Part flag if in private part
3213 if Ekind (Scope (Id)) = E_Package
3214 and then In_Private_Part (Scope (Id))
3215 then
3216 Set_In_Private_Part (Id);
3217 end if;
3219 -- Check for violation of No_Local_Timing_Events
3221 if Is_RTE (Etype (Id), RE_Timing_Event)
3222 and then not Is_Library_Level_Entity (Id)
3223 then
3224 Check_Restriction (No_Local_Timing_Events, N);
3225 end if;
3226 end Analyze_Object_Declaration;
3228 ---------------------------
3229 -- Analyze_Others_Choice --
3230 ---------------------------
3232 -- Nothing to do for the others choice node itself, the semantic analysis
3233 -- of the others choice will occur as part of the processing of the parent
3235 procedure Analyze_Others_Choice (N : Node_Id) is
3236 pragma Warnings (Off, N);
3237 begin
3238 null;
3239 end Analyze_Others_Choice;
3241 -------------------------------------------
3242 -- Analyze_Private_Extension_Declaration --
3243 -------------------------------------------
3245 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
3246 T : constant Entity_Id := Defining_Identifier (N);
3247 Indic : constant Node_Id := Subtype_Indication (N);
3248 Parent_Type : Entity_Id;
3249 Parent_Base : Entity_Id;
3251 begin
3252 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
3254 if Is_Non_Empty_List (Interface_List (N)) then
3255 declare
3256 Intf : Node_Id;
3257 T : Entity_Id;
3259 begin
3260 Intf := First (Interface_List (N));
3261 while Present (Intf) loop
3262 T := Find_Type_Of_Subtype_Indic (Intf);
3264 Diagnose_Interface (Intf, T);
3265 Next (Intf);
3266 end loop;
3267 end;
3268 end if;
3270 Generate_Definition (T);
3271 Enter_Name (T);
3273 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
3274 Parent_Base := Base_Type (Parent_Type);
3276 if Parent_Type = Any_Type
3277 or else Etype (Parent_Type) = Any_Type
3278 then
3279 Set_Ekind (T, Ekind (Parent_Type));
3280 Set_Etype (T, Any_Type);
3281 return;
3283 elsif not Is_Tagged_Type (Parent_Type) then
3284 Error_Msg_N
3285 ("parent of type extension must be a tagged type ", Indic);
3286 return;
3288 elsif Ekind (Parent_Type) = E_Void
3289 or else Ekind (Parent_Type) = E_Incomplete_Type
3290 then
3291 Error_Msg_N ("premature derivation of incomplete type", Indic);
3292 return;
3294 elsif Is_Concurrent_Type (Parent_Type) then
3295 Error_Msg_N
3296 ("parent type of a private extension cannot be "
3297 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
3299 Set_Etype (T, Any_Type);
3300 Set_Ekind (T, E_Limited_Private_Type);
3301 Set_Private_Dependents (T, New_Elmt_List);
3302 Set_Error_Posted (T);
3303 return;
3304 end if;
3306 -- Perhaps the parent type should be changed to the class-wide type's
3307 -- specific type in this case to prevent cascading errors ???
3309 if Is_Class_Wide_Type (Parent_Type) then
3310 Error_Msg_N
3311 ("parent of type extension must not be a class-wide type", Indic);
3312 return;
3313 end if;
3315 if (not Is_Package_Or_Generic_Package (Current_Scope)
3316 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
3317 or else In_Private_Part (Current_Scope)
3319 then
3320 Error_Msg_N ("invalid context for private extension", N);
3321 end if;
3323 -- Set common attributes
3325 Set_Is_Pure (T, Is_Pure (Current_Scope));
3326 Set_Scope (T, Current_Scope);
3327 Set_Ekind (T, E_Record_Type_With_Private);
3328 Init_Size_Align (T);
3330 Set_Etype (T, Parent_Base);
3331 Set_Has_Task (T, Has_Task (Parent_Base));
3333 Set_Convention (T, Convention (Parent_Type));
3334 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
3335 Set_Is_First_Subtype (T);
3336 Make_Class_Wide_Type (T);
3338 if Unknown_Discriminants_Present (N) then
3339 Set_Discriminant_Constraint (T, No_Elist);
3340 end if;
3342 Build_Derived_Record_Type (N, Parent_Type, T);
3344 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
3345 -- synchronized formal derived type.
3347 if Ada_Version >= Ada_05
3348 and then Synchronized_Present (N)
3349 then
3350 Set_Is_Limited_Record (T);
3352 -- Formal derived type case
3354 if Is_Generic_Type (T) then
3356 -- The parent must be a tagged limited type or a synchronized
3357 -- interface.
3359 if (not Is_Tagged_Type (Parent_Type)
3360 or else not Is_Limited_Type (Parent_Type))
3361 and then
3362 (not Is_Interface (Parent_Type)
3363 or else not Is_Synchronized_Interface (Parent_Type))
3364 then
3365 Error_Msg_NE ("parent type of & must be tagged limited " &
3366 "or synchronized", N, T);
3367 end if;
3369 -- The progenitors (if any) must be limited or synchronized
3370 -- interfaces.
3372 if Present (Interfaces (T)) then
3373 declare
3374 Iface : Entity_Id;
3375 Iface_Elmt : Elmt_Id;
3377 begin
3378 Iface_Elmt := First_Elmt (Interfaces (T));
3379 while Present (Iface_Elmt) loop
3380 Iface := Node (Iface_Elmt);
3382 if not Is_Limited_Interface (Iface)
3383 and then not Is_Synchronized_Interface (Iface)
3384 then
3385 Error_Msg_NE ("progenitor & must be limited " &
3386 "or synchronized", N, Iface);
3387 end if;
3389 Next_Elmt (Iface_Elmt);
3390 end loop;
3391 end;
3392 end if;
3394 -- Regular derived extension, the parent must be a limited or
3395 -- synchronized interface.
3397 else
3398 if not Is_Interface (Parent_Type)
3399 or else (not Is_Limited_Interface (Parent_Type)
3400 and then
3401 not Is_Synchronized_Interface (Parent_Type))
3402 then
3403 Error_Msg_NE
3404 ("parent type of & must be limited interface", N, T);
3405 end if;
3406 end if;
3408 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
3409 -- extension with a synchronized parent must be explicitly declared
3410 -- synchronized, because the full view will be a synchronized type.
3411 -- This must be checked before the check for limited types below,
3412 -- to ensure that types declared limited are not allowed to extend
3413 -- synchronized interfaces.
3415 elsif Is_Interface (Parent_Type)
3416 and then Is_Synchronized_Interface (Parent_Type)
3417 and then not Synchronized_Present (N)
3418 then
3419 Error_Msg_NE
3420 ("private extension of& must be explicitly synchronized",
3421 N, Parent_Type);
3423 elsif Limited_Present (N) then
3424 Set_Is_Limited_Record (T);
3426 if not Is_Limited_Type (Parent_Type)
3427 and then
3428 (not Is_Interface (Parent_Type)
3429 or else not Is_Limited_Interface (Parent_Type))
3430 then
3431 Error_Msg_NE ("parent type& of limited extension must be limited",
3432 N, Parent_Type);
3433 end if;
3434 end if;
3435 end Analyze_Private_Extension_Declaration;
3437 ---------------------------------
3438 -- Analyze_Subtype_Declaration --
3439 ---------------------------------
3441 procedure Analyze_Subtype_Declaration
3442 (N : Node_Id;
3443 Skip : Boolean := False)
3445 Id : constant Entity_Id := Defining_Identifier (N);
3446 T : Entity_Id;
3447 R_Checks : Check_Result;
3449 begin
3450 Generate_Definition (Id);
3451 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3452 Init_Size_Align (Id);
3454 -- The following guard condition on Enter_Name is to handle cases where
3455 -- the defining identifier has already been entered into the scope but
3456 -- the declaration as a whole needs to be analyzed.
3458 -- This case in particular happens for derived enumeration types. The
3459 -- derived enumeration type is processed as an inserted enumeration type
3460 -- declaration followed by a rewritten subtype declaration. The defining
3461 -- identifier, however, is entered into the name scope very early in the
3462 -- processing of the original type declaration and therefore needs to be
3463 -- avoided here, when the created subtype declaration is analyzed. (See
3464 -- Build_Derived_Types)
3466 -- This also happens when the full view of a private type is derived
3467 -- type with constraints. In this case the entity has been introduced
3468 -- in the private declaration.
3470 if Skip
3471 or else (Present (Etype (Id))
3472 and then (Is_Private_Type (Etype (Id))
3473 or else Is_Task_Type (Etype (Id))
3474 or else Is_Rewrite_Substitution (N)))
3475 then
3476 null;
3478 else
3479 Enter_Name (Id);
3480 end if;
3482 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
3484 -- Inherit common attributes
3486 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
3487 Set_Is_Volatile (Id, Is_Volatile (T));
3488 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
3489 Set_Is_Atomic (Id, Is_Atomic (T));
3490 Set_Is_Ada_2005_Only (Id, Is_Ada_2005_Only (T));
3491 Set_Convention (Id, Convention (T));
3493 -- In the case where there is no constraint given in the subtype
3494 -- indication, Process_Subtype just returns the Subtype_Mark, so its
3495 -- semantic attributes must be established here.
3497 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
3498 Set_Etype (Id, Base_Type (T));
3500 case Ekind (T) is
3501 when Array_Kind =>
3502 Set_Ekind (Id, E_Array_Subtype);
3503 Copy_Array_Subtype_Attributes (Id, T);
3505 when Decimal_Fixed_Point_Kind =>
3506 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
3507 Set_Digits_Value (Id, Digits_Value (T));
3508 Set_Delta_Value (Id, Delta_Value (T));
3509 Set_Scale_Value (Id, Scale_Value (T));
3510 Set_Small_Value (Id, Small_Value (T));
3511 Set_Scalar_Range (Id, Scalar_Range (T));
3512 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
3513 Set_Is_Constrained (Id, Is_Constrained (T));
3514 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3515 Set_RM_Size (Id, RM_Size (T));
3517 when Enumeration_Kind =>
3518 Set_Ekind (Id, E_Enumeration_Subtype);
3519 Set_First_Literal (Id, First_Literal (Base_Type (T)));
3520 Set_Scalar_Range (Id, Scalar_Range (T));
3521 Set_Is_Character_Type (Id, Is_Character_Type (T));
3522 Set_Is_Constrained (Id, Is_Constrained (T));
3523 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3524 Set_RM_Size (Id, RM_Size (T));
3526 when Ordinary_Fixed_Point_Kind =>
3527 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
3528 Set_Scalar_Range (Id, Scalar_Range (T));
3529 Set_Small_Value (Id, Small_Value (T));
3530 Set_Delta_Value (Id, Delta_Value (T));
3531 Set_Is_Constrained (Id, Is_Constrained (T));
3532 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3533 Set_RM_Size (Id, RM_Size (T));
3535 when Float_Kind =>
3536 Set_Ekind (Id, E_Floating_Point_Subtype);
3537 Set_Scalar_Range (Id, Scalar_Range (T));
3538 Set_Digits_Value (Id, Digits_Value (T));
3539 Set_Is_Constrained (Id, Is_Constrained (T));
3541 when Signed_Integer_Kind =>
3542 Set_Ekind (Id, E_Signed_Integer_Subtype);
3543 Set_Scalar_Range (Id, Scalar_Range (T));
3544 Set_Is_Constrained (Id, Is_Constrained (T));
3545 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3546 Set_RM_Size (Id, RM_Size (T));
3548 when Modular_Integer_Kind =>
3549 Set_Ekind (Id, E_Modular_Integer_Subtype);
3550 Set_Scalar_Range (Id, Scalar_Range (T));
3551 Set_Is_Constrained (Id, Is_Constrained (T));
3552 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3553 Set_RM_Size (Id, RM_Size (T));
3555 when Class_Wide_Kind =>
3556 Set_Ekind (Id, E_Class_Wide_Subtype);
3557 Set_First_Entity (Id, First_Entity (T));
3558 Set_Last_Entity (Id, Last_Entity (T));
3559 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
3560 Set_Cloned_Subtype (Id, T);
3561 Set_Is_Tagged_Type (Id, True);
3562 Set_Has_Unknown_Discriminants
3563 (Id, True);
3565 if Ekind (T) = E_Class_Wide_Subtype then
3566 Set_Equivalent_Type (Id, Equivalent_Type (T));
3567 end if;
3569 when E_Record_Type | E_Record_Subtype =>
3570 Set_Ekind (Id, E_Record_Subtype);
3572 if Ekind (T) = E_Record_Subtype
3573 and then Present (Cloned_Subtype (T))
3574 then
3575 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
3576 else
3577 Set_Cloned_Subtype (Id, T);
3578 end if;
3580 Set_First_Entity (Id, First_Entity (T));
3581 Set_Last_Entity (Id, Last_Entity (T));
3582 Set_Has_Discriminants (Id, Has_Discriminants (T));
3583 Set_Is_Constrained (Id, Is_Constrained (T));
3584 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
3585 Set_Has_Unknown_Discriminants
3586 (Id, Has_Unknown_Discriminants (T));
3588 if Has_Discriminants (T) then
3589 Set_Discriminant_Constraint
3590 (Id, Discriminant_Constraint (T));
3591 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3593 elsif Has_Unknown_Discriminants (Id) then
3594 Set_Discriminant_Constraint (Id, No_Elist);
3595 end if;
3597 if Is_Tagged_Type (T) then
3598 Set_Is_Tagged_Type (Id);
3599 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
3600 Set_Primitive_Operations
3601 (Id, Primitive_Operations (T));
3602 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
3604 if Is_Interface (T) then
3605 Set_Is_Interface (Id);
3606 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
3607 end if;
3608 end if;
3610 when Private_Kind =>
3611 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
3612 Set_Has_Discriminants (Id, Has_Discriminants (T));
3613 Set_Is_Constrained (Id, Is_Constrained (T));
3614 Set_First_Entity (Id, First_Entity (T));
3615 Set_Last_Entity (Id, Last_Entity (T));
3616 Set_Private_Dependents (Id, New_Elmt_List);
3617 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
3618 Set_Has_Unknown_Discriminants
3619 (Id, Has_Unknown_Discriminants (T));
3620 Set_Known_To_Have_Preelab_Init
3621 (Id, Known_To_Have_Preelab_Init (T));
3623 if Is_Tagged_Type (T) then
3624 Set_Is_Tagged_Type (Id);
3625 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
3626 Set_Primitive_Operations (Id, Primitive_Operations (T));
3627 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
3628 end if;
3630 -- In general the attributes of the subtype of a private type
3631 -- are the attributes of the partial view of parent. However,
3632 -- the full view may be a discriminated type, and the subtype
3633 -- must share the discriminant constraint to generate correct
3634 -- calls to initialization procedures.
3636 if Has_Discriminants (T) then
3637 Set_Discriminant_Constraint
3638 (Id, Discriminant_Constraint (T));
3639 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3641 elsif Present (Full_View (T))
3642 and then Has_Discriminants (Full_View (T))
3643 then
3644 Set_Discriminant_Constraint
3645 (Id, Discriminant_Constraint (Full_View (T)));
3646 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3648 -- This would seem semantically correct, but apparently
3649 -- confuses the back-end. To be explained and checked with
3650 -- current version ???
3652 -- Set_Has_Discriminants (Id);
3653 end if;
3655 Prepare_Private_Subtype_Completion (Id, N);
3657 when Access_Kind =>
3658 Set_Ekind (Id, E_Access_Subtype);
3659 Set_Is_Constrained (Id, Is_Constrained (T));
3660 Set_Is_Access_Constant
3661 (Id, Is_Access_Constant (T));
3662 Set_Directly_Designated_Type
3663 (Id, Designated_Type (T));
3664 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
3666 -- A Pure library_item must not contain the declaration of a
3667 -- named access type, except within a subprogram, generic
3668 -- subprogram, task unit, or protected unit, or if it has
3669 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
3671 if Comes_From_Source (Id)
3672 and then In_Pure_Unit
3673 and then not In_Subprogram_Task_Protected_Unit
3674 and then not No_Pool_Assigned (Id)
3675 then
3676 Error_Msg_N
3677 ("named access types not allowed in pure unit", N);
3678 end if;
3680 when Concurrent_Kind =>
3681 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
3682 Set_Corresponding_Record_Type (Id,
3683 Corresponding_Record_Type (T));
3684 Set_First_Entity (Id, First_Entity (T));
3685 Set_First_Private_Entity (Id, First_Private_Entity (T));
3686 Set_Has_Discriminants (Id, Has_Discriminants (T));
3687 Set_Is_Constrained (Id, Is_Constrained (T));
3688 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
3689 Set_Last_Entity (Id, Last_Entity (T));
3691 if Has_Discriminants (T) then
3692 Set_Discriminant_Constraint (Id,
3693 Discriminant_Constraint (T));
3694 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3695 end if;
3697 when E_Incomplete_Type =>
3698 if Ada_Version >= Ada_05 then
3699 Set_Ekind (Id, E_Incomplete_Subtype);
3701 -- Ada 2005 (AI-412): Decorate an incomplete subtype
3702 -- of an incomplete type visible through a limited
3703 -- with clause.
3705 if From_With_Type (T)
3706 and then Present (Non_Limited_View (T))
3707 then
3708 Set_From_With_Type (Id);
3709 Set_Non_Limited_View (Id, Non_Limited_View (T));
3711 -- Ada 2005 (AI-412): Add the regular incomplete subtype
3712 -- to the private dependents of the original incomplete
3713 -- type for future transformation.
3715 else
3716 Append_Elmt (Id, Private_Dependents (T));
3717 end if;
3719 -- If the subtype name denotes an incomplete type an error
3720 -- was already reported by Process_Subtype.
3722 else
3723 Set_Etype (Id, Any_Type);
3724 end if;
3726 when others =>
3727 raise Program_Error;
3728 end case;
3729 end if;
3731 if Etype (Id) = Any_Type then
3732 return;
3733 end if;
3735 -- Some common processing on all types
3737 Set_Size_Info (Id, T);
3738 Set_First_Rep_Item (Id, First_Rep_Item (T));
3740 T := Etype (Id);
3742 Set_Is_Immediately_Visible (Id, True);
3743 Set_Depends_On_Private (Id, Has_Private_Component (T));
3744 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
3746 if Is_Interface (T) then
3747 Set_Is_Interface (Id);
3748 end if;
3750 if Present (Generic_Parent_Type (N))
3751 and then
3752 (Nkind
3753 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
3754 or else Nkind
3755 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
3756 /= N_Formal_Private_Type_Definition)
3757 then
3758 if Is_Tagged_Type (Id) then
3760 -- If this is a generic actual subtype for a synchronized type,
3761 -- the primitive operations are those of the corresponding record
3762 -- for which there is a separate subtype declaration.
3764 if Is_Concurrent_Type (Id) then
3765 null;
3766 elsif Is_Class_Wide_Type (Id) then
3767 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
3768 else
3769 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
3770 end if;
3772 elsif Scope (Etype (Id)) /= Standard_Standard then
3773 Derive_Subprograms (Generic_Parent_Type (N), Id);
3774 end if;
3775 end if;
3777 if Is_Private_Type (T)
3778 and then Present (Full_View (T))
3779 then
3780 Conditional_Delay (Id, Full_View (T));
3782 -- The subtypes of components or subcomponents of protected types
3783 -- do not need freeze nodes, which would otherwise appear in the
3784 -- wrong scope (before the freeze node for the protected type). The
3785 -- proper subtypes are those of the subcomponents of the corresponding
3786 -- record.
3788 elsif Ekind (Scope (Id)) /= E_Protected_Type
3789 and then Present (Scope (Scope (Id))) -- error defense!
3790 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
3791 then
3792 Conditional_Delay (Id, T);
3793 end if;
3795 -- Check that constraint_error is raised for a scalar subtype
3796 -- indication when the lower or upper bound of a non-null range
3797 -- lies outside the range of the type mark.
3799 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
3800 if Is_Scalar_Type (Etype (Id))
3801 and then Scalar_Range (Id) /=
3802 Scalar_Range (Etype (Subtype_Mark
3803 (Subtype_Indication (N))))
3804 then
3805 Apply_Range_Check
3806 (Scalar_Range (Id),
3807 Etype (Subtype_Mark (Subtype_Indication (N))));
3809 elsif Is_Array_Type (Etype (Id))
3810 and then Present (First_Index (Id))
3811 then
3812 -- This really should be a subprogram that finds the indications
3813 -- to check???
3815 if ((Nkind (First_Index (Id)) = N_Identifier
3816 and then Ekind (Entity (First_Index (Id))) in Scalar_Kind)
3817 or else Nkind (First_Index (Id)) = N_Subtype_Indication)
3818 and then
3819 Nkind (Scalar_Range (Etype (First_Index (Id)))) = N_Range
3820 then
3821 declare
3822 Target_Typ : constant Entity_Id :=
3823 Etype
3824 (First_Index (Etype
3825 (Subtype_Mark (Subtype_Indication (N)))));
3826 begin
3827 R_Checks :=
3828 Get_Range_Checks
3829 (Scalar_Range (Etype (First_Index (Id))),
3830 Target_Typ,
3831 Etype (First_Index (Id)),
3832 Defining_Identifier (N));
3834 Insert_Range_Checks
3835 (R_Checks,
3837 Target_Typ,
3838 Sloc (Defining_Identifier (N)));
3839 end;
3840 end if;
3841 end if;
3842 end if;
3844 Set_Optimize_Alignment_Flags (Id);
3845 Check_Eliminated (Id);
3846 end Analyze_Subtype_Declaration;
3848 --------------------------------
3849 -- Analyze_Subtype_Indication --
3850 --------------------------------
3852 procedure Analyze_Subtype_Indication (N : Node_Id) is
3853 T : constant Entity_Id := Subtype_Mark (N);
3854 R : constant Node_Id := Range_Expression (Constraint (N));
3856 begin
3857 Analyze (T);
3859 if R /= Error then
3860 Analyze (R);
3861 Set_Etype (N, Etype (R));
3862 Resolve (R, Entity (T));
3863 else
3864 Set_Error_Posted (R);
3865 Set_Error_Posted (T);
3866 end if;
3867 end Analyze_Subtype_Indication;
3869 ------------------------------
3870 -- Analyze_Type_Declaration --
3871 ------------------------------
3873 procedure Analyze_Type_Declaration (N : Node_Id) is
3874 Def : constant Node_Id := Type_Definition (N);
3875 Def_Id : constant Entity_Id := Defining_Identifier (N);
3876 T : Entity_Id;
3877 Prev : Entity_Id;
3879 Is_Remote : constant Boolean :=
3880 (Is_Remote_Types (Current_Scope)
3881 or else Is_Remote_Call_Interface (Current_Scope))
3882 and then not (In_Private_Part (Current_Scope)
3883 or else In_Package_Body (Current_Scope));
3885 procedure Check_Ops_From_Incomplete_Type;
3886 -- If there is a tagged incomplete partial view of the type, transfer
3887 -- its operations to the full view, and indicate that the type of the
3888 -- controlling parameter (s) is this full view.
3890 ------------------------------------
3891 -- Check_Ops_From_Incomplete_Type --
3892 ------------------------------------
3894 procedure Check_Ops_From_Incomplete_Type is
3895 Elmt : Elmt_Id;
3896 Formal : Entity_Id;
3897 Op : Entity_Id;
3899 begin
3900 if Prev /= T
3901 and then Ekind (Prev) = E_Incomplete_Type
3902 and then Is_Tagged_Type (Prev)
3903 and then Is_Tagged_Type (T)
3904 then
3905 Elmt := First_Elmt (Primitive_Operations (Prev));
3906 while Present (Elmt) loop
3907 Op := Node (Elmt);
3908 Prepend_Elmt (Op, Primitive_Operations (T));
3910 Formal := First_Formal (Op);
3911 while Present (Formal) loop
3912 if Etype (Formal) = Prev then
3913 Set_Etype (Formal, T);
3914 end if;
3916 Next_Formal (Formal);
3917 end loop;
3919 if Etype (Op) = Prev then
3920 Set_Etype (Op, T);
3921 end if;
3923 Next_Elmt (Elmt);
3924 end loop;
3925 end if;
3926 end Check_Ops_From_Incomplete_Type;
3928 -- Start of processing for Analyze_Type_Declaration
3930 begin
3931 Prev := Find_Type_Name (N);
3933 -- The full view, if present, now points to the current type
3935 -- Ada 2005 (AI-50217): If the type was previously decorated when
3936 -- imported through a LIMITED WITH clause, it appears as incomplete
3937 -- but has no full view.
3938 -- If the incomplete view is tagged, a class_wide type has been
3939 -- created already. Use it for the full view as well, to prevent
3940 -- multiple incompatible class-wide types that may be created for
3941 -- self-referential anonymous access components.
3943 if Ekind (Prev) = E_Incomplete_Type
3944 and then Present (Full_View (Prev))
3945 then
3946 T := Full_View (Prev);
3948 if Is_Tagged_Type (Prev)
3949 and then Present (Class_Wide_Type (Prev))
3950 then
3951 Set_Ekind (T, Ekind (Prev)); -- will be reset later
3952 Set_Class_Wide_Type (T, Class_Wide_Type (Prev));
3953 Set_Etype (Class_Wide_Type (T), T);
3954 end if;
3956 else
3957 T := Prev;
3958 end if;
3960 Set_Is_Pure (T, Is_Pure (Current_Scope));
3962 -- We set the flag Is_First_Subtype here. It is needed to set the
3963 -- corresponding flag for the Implicit class-wide-type created
3964 -- during tagged types processing.
3966 Set_Is_First_Subtype (T, True);
3968 -- Only composite types other than array types are allowed to have
3969 -- discriminants.
3971 case Nkind (Def) is
3973 -- For derived types, the rule will be checked once we've figured
3974 -- out the parent type.
3976 when N_Derived_Type_Definition =>
3977 null;
3979 -- For record types, discriminants are allowed
3981 when N_Record_Definition =>
3982 null;
3984 when others =>
3985 if Present (Discriminant_Specifications (N)) then
3986 Error_Msg_N
3987 ("elementary or array type cannot have discriminants",
3988 Defining_Identifier
3989 (First (Discriminant_Specifications (N))));
3990 end if;
3991 end case;
3993 -- Elaborate the type definition according to kind, and generate
3994 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3995 -- already done (this happens during the reanalysis that follows a call
3996 -- to the high level optimizer).
3998 if not Analyzed (T) then
3999 Set_Analyzed (T);
4001 case Nkind (Def) is
4003 when N_Access_To_Subprogram_Definition =>
4004 Access_Subprogram_Declaration (T, Def);
4006 -- If this is a remote access to subprogram, we must create the
4007 -- equivalent fat pointer type, and related subprograms.
4009 if Is_Remote then
4010 Process_Remote_AST_Declaration (N);
4011 end if;
4013 -- Validate categorization rule against access type declaration
4014 -- usually a violation in Pure unit, Shared_Passive unit.
4016 Validate_Access_Type_Declaration (T, N);
4018 when N_Access_To_Object_Definition =>
4019 Access_Type_Declaration (T, Def);
4021 -- Validate categorization rule against access type declaration
4022 -- usually a violation in Pure unit, Shared_Passive unit.
4024 Validate_Access_Type_Declaration (T, N);
4026 -- If we are in a Remote_Call_Interface package and define a
4027 -- RACW, then calling stubs and specific stream attributes
4028 -- must be added.
4030 if Is_Remote
4031 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
4032 then
4033 Add_RACW_Features (Def_Id);
4034 end if;
4036 -- Set no strict aliasing flag if config pragma seen
4038 if Opt.No_Strict_Aliasing then
4039 Set_No_Strict_Aliasing (Base_Type (Def_Id));
4040 end if;
4042 when N_Array_Type_Definition =>
4043 Array_Type_Declaration (T, Def);
4045 when N_Derived_Type_Definition =>
4046 Derived_Type_Declaration (T, N, T /= Def_Id);
4048 when N_Enumeration_Type_Definition =>
4049 Enumeration_Type_Declaration (T, Def);
4051 when N_Floating_Point_Definition =>
4052 Floating_Point_Type_Declaration (T, Def);
4054 when N_Decimal_Fixed_Point_Definition =>
4055 Decimal_Fixed_Point_Type_Declaration (T, Def);
4057 when N_Ordinary_Fixed_Point_Definition =>
4058 Ordinary_Fixed_Point_Type_Declaration (T, Def);
4060 when N_Signed_Integer_Type_Definition =>
4061 Signed_Integer_Type_Declaration (T, Def);
4063 when N_Modular_Type_Definition =>
4064 Modular_Type_Declaration (T, Def);
4066 when N_Record_Definition =>
4067 Record_Type_Declaration (T, N, Prev);
4069 when others =>
4070 raise Program_Error;
4072 end case;
4073 end if;
4075 if Etype (T) = Any_Type then
4076 return;
4077 end if;
4079 -- Some common processing for all types
4081 Set_Depends_On_Private (T, Has_Private_Component (T));
4082 Check_Ops_From_Incomplete_Type;
4084 -- Both the declared entity, and its anonymous base type if one
4085 -- was created, need freeze nodes allocated.
4087 declare
4088 B : constant Entity_Id := Base_Type (T);
4090 begin
4091 -- In the case where the base type differs from the first subtype, we
4092 -- pre-allocate a freeze node, and set the proper link to the first
4093 -- subtype. Freeze_Entity will use this preallocated freeze node when
4094 -- it freezes the entity.
4096 -- This does not apply if the base type is a generic type, whose
4097 -- declaration is independent of the current derived definition.
4099 if B /= T and then not Is_Generic_Type (B) then
4100 Ensure_Freeze_Node (B);
4101 Set_First_Subtype_Link (Freeze_Node (B), T);
4102 end if;
4104 -- A type that is imported through a limited_with clause cannot
4105 -- generate any code, and thus need not be frozen. However, an access
4106 -- type with an imported designated type needs a finalization list,
4107 -- which may be referenced in some other package that has non-limited
4108 -- visibility on the designated type. Thus we must create the
4109 -- finalization list at the point the access type is frozen, to
4110 -- prevent unsatisfied references at link time.
4112 if not From_With_Type (T) or else Is_Access_Type (T) then
4113 Set_Has_Delayed_Freeze (T);
4114 end if;
4115 end;
4117 -- Case where T is the full declaration of some private type which has
4118 -- been swapped in Defining_Identifier (N).
4120 if T /= Def_Id and then Is_Private_Type (Def_Id) then
4121 Process_Full_View (N, T, Def_Id);
4123 -- Record the reference. The form of this is a little strange, since
4124 -- the full declaration has been swapped in. So the first parameter
4125 -- here represents the entity to which a reference is made which is
4126 -- the "real" entity, i.e. the one swapped in, and the second
4127 -- parameter provides the reference location.
4129 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
4130 -- since we don't want a complaint about the full type being an
4131 -- unwanted reference to the private type
4133 declare
4134 B : constant Boolean := Has_Pragma_Unreferenced (T);
4135 begin
4136 Set_Has_Pragma_Unreferenced (T, False);
4137 Generate_Reference (T, T, 'c');
4138 Set_Has_Pragma_Unreferenced (T, B);
4139 end;
4141 Set_Completion_Referenced (Def_Id);
4143 -- For completion of incomplete type, process incomplete dependents
4144 -- and always mark the full type as referenced (it is the incomplete
4145 -- type that we get for any real reference).
4147 elsif Ekind (Prev) = E_Incomplete_Type then
4148 Process_Incomplete_Dependents (N, T, Prev);
4149 Generate_Reference (Prev, Def_Id, 'c');
4150 Set_Completion_Referenced (Def_Id);
4152 -- If not private type or incomplete type completion, this is a real
4153 -- definition of a new entity, so record it.
4155 else
4156 Generate_Definition (Def_Id);
4157 end if;
4159 if Chars (Scope (Def_Id)) = Name_System
4160 and then Chars (Def_Id) = Name_Address
4161 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
4162 then
4163 Set_Is_Descendent_Of_Address (Def_Id);
4164 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
4165 Set_Is_Descendent_Of_Address (Prev);
4166 end if;
4168 Set_Optimize_Alignment_Flags (Def_Id);
4169 Check_Eliminated (Def_Id);
4170 end Analyze_Type_Declaration;
4172 --------------------------
4173 -- Analyze_Variant_Part --
4174 --------------------------
4176 procedure Analyze_Variant_Part (N : Node_Id) is
4178 procedure Non_Static_Choice_Error (Choice : Node_Id);
4179 -- Error routine invoked by the generic instantiation below when the
4180 -- variant part has a non static choice.
4182 procedure Process_Declarations (Variant : Node_Id);
4183 -- Analyzes all the declarations associated with a Variant. Needed by
4184 -- the generic instantiation below.
4186 package Variant_Choices_Processing is new
4187 Generic_Choices_Processing
4188 (Get_Alternatives => Variants,
4189 Get_Choices => Discrete_Choices,
4190 Process_Empty_Choice => No_OP,
4191 Process_Non_Static_Choice => Non_Static_Choice_Error,
4192 Process_Associated_Node => Process_Declarations);
4193 use Variant_Choices_Processing;
4194 -- Instantiation of the generic choice processing package
4196 -----------------------------
4197 -- Non_Static_Choice_Error --
4198 -----------------------------
4200 procedure Non_Static_Choice_Error (Choice : Node_Id) is
4201 begin
4202 Flag_Non_Static_Expr
4203 ("choice given in variant part is not static!", Choice);
4204 end Non_Static_Choice_Error;
4206 --------------------------
4207 -- Process_Declarations --
4208 --------------------------
4210 procedure Process_Declarations (Variant : Node_Id) is
4211 begin
4212 if not Null_Present (Component_List (Variant)) then
4213 Analyze_Declarations (Component_Items (Component_List (Variant)));
4215 if Present (Variant_Part (Component_List (Variant))) then
4216 Analyze (Variant_Part (Component_List (Variant)));
4217 end if;
4218 end if;
4219 end Process_Declarations;
4221 -- Local Variables
4223 Discr_Name : Node_Id;
4224 Discr_Type : Entity_Id;
4226 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
4227 Last_Choice : Nat;
4228 Dont_Care : Boolean;
4229 Others_Present : Boolean := False;
4231 pragma Warnings (Off, Case_Table);
4232 pragma Warnings (Off, Last_Choice);
4233 pragma Warnings (Off, Dont_Care);
4234 pragma Warnings (Off, Others_Present);
4235 -- We don't care about the assigned values of any of these
4237 -- Start of processing for Analyze_Variant_Part
4239 begin
4240 Discr_Name := Name (N);
4241 Analyze (Discr_Name);
4243 -- If Discr_Name bad, get out (prevent cascaded errors)
4245 if Etype (Discr_Name) = Any_Type then
4246 return;
4247 end if;
4249 -- Check invalid discriminant in variant part
4251 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
4252 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
4253 end if;
4255 Discr_Type := Etype (Entity (Discr_Name));
4257 if not Is_Discrete_Type (Discr_Type) then
4258 Error_Msg_N
4259 ("discriminant in a variant part must be of a discrete type",
4260 Name (N));
4261 return;
4262 end if;
4264 -- Call the instantiated Analyze_Choices which does the rest of the work
4266 Analyze_Choices
4267 (N, Discr_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
4268 end Analyze_Variant_Part;
4270 ----------------------------
4271 -- Array_Type_Declaration --
4272 ----------------------------
4274 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
4275 Component_Def : constant Node_Id := Component_Definition (Def);
4276 Element_Type : Entity_Id;
4277 Implicit_Base : Entity_Id;
4278 Index : Node_Id;
4279 Related_Id : Entity_Id := Empty;
4280 Nb_Index : Nat;
4281 P : constant Node_Id := Parent (Def);
4282 Priv : Entity_Id;
4284 begin
4285 if Nkind (Def) = N_Constrained_Array_Definition then
4286 Index := First (Discrete_Subtype_Definitions (Def));
4287 else
4288 Index := First (Subtype_Marks (Def));
4289 end if;
4291 -- Find proper names for the implicit types which may be public. In case
4292 -- of anonymous arrays we use the name of the first object of that type
4293 -- as prefix.
4295 if No (T) then
4296 Related_Id := Defining_Identifier (P);
4297 else
4298 Related_Id := T;
4299 end if;
4301 Nb_Index := 1;
4302 while Present (Index) loop
4303 Analyze (Index);
4305 -- Add a subtype declaration for each index of private array type
4306 -- declaration whose etype is also private. For example:
4308 -- package Pkg is
4309 -- type Index is private;
4310 -- private
4311 -- type Table is array (Index) of ...
4312 -- end;
4314 -- This is currently required by the expander for the internally
4315 -- generated equality subprogram of records with variant parts in
4316 -- which the etype of some component is such private type.
4318 if Ekind (Current_Scope) = E_Package
4319 and then In_Private_Part (Current_Scope)
4320 and then Has_Private_Declaration (Etype (Index))
4321 then
4322 declare
4323 Loc : constant Source_Ptr := Sloc (Def);
4324 New_E : Entity_Id;
4325 Decl : Entity_Id;
4327 begin
4328 New_E :=
4329 Make_Defining_Identifier (Loc,
4330 Chars => New_Internal_Name ('T'));
4331 Set_Is_Internal (New_E);
4333 Decl :=
4334 Make_Subtype_Declaration (Loc,
4335 Defining_Identifier => New_E,
4336 Subtype_Indication =>
4337 New_Occurrence_Of (Etype (Index), Loc));
4339 Insert_Before (Parent (Def), Decl);
4340 Analyze (Decl);
4341 Set_Etype (Index, New_E);
4343 -- If the index is a range the Entity attribute is not
4344 -- available. Example:
4346 -- package Pkg is
4347 -- type T is private;
4348 -- private
4349 -- type T is new Natural;
4350 -- Table : array (T(1) .. T(10)) of Boolean;
4351 -- end Pkg;
4353 if Nkind (Index) /= N_Range then
4354 Set_Entity (Index, New_E);
4355 end if;
4356 end;
4357 end if;
4359 Make_Index (Index, P, Related_Id, Nb_Index);
4360 Next_Index (Index);
4361 Nb_Index := Nb_Index + 1;
4362 end loop;
4364 -- Process subtype indication if one is present
4366 if Present (Subtype_Indication (Component_Def)) then
4367 Element_Type :=
4368 Process_Subtype
4369 (Subtype_Indication (Component_Def), P, Related_Id, 'C');
4371 -- Ada 2005 (AI-230): Access Definition case
4373 else pragma Assert (Present (Access_Definition (Component_Def)));
4375 -- Indicate that the anonymous access type is created by the
4376 -- array type declaration.
4378 Element_Type := Access_Definition
4379 (Related_Nod => P,
4380 N => Access_Definition (Component_Def));
4381 Set_Is_Local_Anonymous_Access (Element_Type);
4383 -- Propagate the parent. This field is needed if we have to generate
4384 -- the master_id associated with an anonymous access to task type
4385 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4387 Set_Parent (Element_Type, Parent (T));
4389 -- Ada 2005 (AI-230): In case of components that are anonymous access
4390 -- types the level of accessibility depends on the enclosing type
4391 -- declaration
4393 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
4395 -- Ada 2005 (AI-254)
4397 declare
4398 CD : constant Node_Id :=
4399 Access_To_Subprogram_Definition
4400 (Access_Definition (Component_Def));
4401 begin
4402 if Present (CD) and then Protected_Present (CD) then
4403 Element_Type :=
4404 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
4405 end if;
4406 end;
4407 end if;
4409 -- Constrained array case
4411 if No (T) then
4412 T := Create_Itype (E_Void, P, Related_Id, 'T');
4413 end if;
4415 if Nkind (Def) = N_Constrained_Array_Definition then
4417 -- Establish Implicit_Base as unconstrained base type
4419 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
4421 Set_Etype (Implicit_Base, Implicit_Base);
4422 Set_Scope (Implicit_Base, Current_Scope);
4423 Set_Has_Delayed_Freeze (Implicit_Base);
4425 -- The constrained array type is a subtype of the unconstrained one
4427 Set_Ekind (T, E_Array_Subtype);
4428 Init_Size_Align (T);
4429 Set_Etype (T, Implicit_Base);
4430 Set_Scope (T, Current_Scope);
4431 Set_Is_Constrained (T, True);
4432 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
4433 Set_Has_Delayed_Freeze (T);
4435 -- Complete setup of implicit base type
4437 Set_First_Index (Implicit_Base, First_Index (T));
4438 Set_Component_Type (Implicit_Base, Element_Type);
4439 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
4440 Set_Component_Size (Implicit_Base, Uint_0);
4441 Set_Packed_Array_Type (Implicit_Base, Empty);
4442 Set_Has_Controlled_Component
4443 (Implicit_Base, Has_Controlled_Component
4444 (Element_Type)
4445 or else Is_Controlled
4446 (Element_Type));
4447 Set_Finalize_Storage_Only
4448 (Implicit_Base, Finalize_Storage_Only
4449 (Element_Type));
4451 -- Unconstrained array case
4453 else
4454 Set_Ekind (T, E_Array_Type);
4455 Init_Size_Align (T);
4456 Set_Etype (T, T);
4457 Set_Scope (T, Current_Scope);
4458 Set_Component_Size (T, Uint_0);
4459 Set_Is_Constrained (T, False);
4460 Set_First_Index (T, First (Subtype_Marks (Def)));
4461 Set_Has_Delayed_Freeze (T, True);
4462 Set_Has_Task (T, Has_Task (Element_Type));
4463 Set_Has_Controlled_Component (T, Has_Controlled_Component
4464 (Element_Type)
4465 or else
4466 Is_Controlled (Element_Type));
4467 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
4468 (Element_Type));
4469 end if;
4471 -- Common attributes for both cases
4473 Set_Component_Type (Base_Type (T), Element_Type);
4474 Set_Packed_Array_Type (T, Empty);
4476 if Aliased_Present (Component_Definition (Def)) then
4477 Set_Has_Aliased_Components (Etype (T));
4478 end if;
4480 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
4481 -- array type to ensure that objects of this type are initialized.
4483 if Ada_Version >= Ada_05
4484 and then Can_Never_Be_Null (Element_Type)
4485 then
4486 Set_Can_Never_Be_Null (T);
4488 if Null_Exclusion_Present (Component_Definition (Def))
4490 -- No need to check itypes because in their case this check was
4491 -- done at their point of creation
4493 and then not Is_Itype (Element_Type)
4494 then
4495 Error_Msg_N
4496 ("`NOT NULL` not allowed (null already excluded)",
4497 Subtype_Indication (Component_Definition (Def)));
4498 end if;
4499 end if;
4501 Priv := Private_Component (Element_Type);
4503 if Present (Priv) then
4505 -- Check for circular definitions
4507 if Priv = Any_Type then
4508 Set_Component_Type (Etype (T), Any_Type);
4510 -- There is a gap in the visibility of operations on the composite
4511 -- type only if the component type is defined in a different scope.
4513 elsif Scope (Priv) = Current_Scope then
4514 null;
4516 elsif Is_Limited_Type (Priv) then
4517 Set_Is_Limited_Composite (Etype (T));
4518 Set_Is_Limited_Composite (T);
4519 else
4520 Set_Is_Private_Composite (Etype (T));
4521 Set_Is_Private_Composite (T);
4522 end if;
4523 end if;
4525 -- A syntax error in the declaration itself may lead to an empty index
4526 -- list, in which case do a minimal patch.
4528 if No (First_Index (T)) then
4529 Error_Msg_N ("missing index definition in array type declaration", T);
4531 declare
4532 Indices : constant List_Id :=
4533 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
4534 begin
4535 Set_Discrete_Subtype_Definitions (Def, Indices);
4536 Set_First_Index (T, First (Indices));
4537 return;
4538 end;
4539 end if;
4541 -- Create a concatenation operator for the new type. Internal array
4542 -- types created for packed entities do not need such, they are
4543 -- compatible with the user-defined type.
4545 if Number_Dimensions (T) = 1
4546 and then not Is_Packed_Array_Type (T)
4547 then
4548 New_Concatenation_Op (T);
4549 end if;
4551 -- In the case of an unconstrained array the parser has already verified
4552 -- that all the indices are unconstrained but we still need to make sure
4553 -- that the element type is constrained.
4555 if Is_Indefinite_Subtype (Element_Type) then
4556 Error_Msg_N
4557 ("unconstrained element type in array declaration",
4558 Subtype_Indication (Component_Def));
4560 elsif Is_Abstract_Type (Element_Type) then
4561 Error_Msg_N
4562 ("the type of a component cannot be abstract",
4563 Subtype_Indication (Component_Def));
4564 end if;
4565 end Array_Type_Declaration;
4567 ------------------------------------------------------
4568 -- Replace_Anonymous_Access_To_Protected_Subprogram --
4569 ------------------------------------------------------
4571 function Replace_Anonymous_Access_To_Protected_Subprogram
4572 (N : Node_Id) return Entity_Id
4574 Loc : constant Source_Ptr := Sloc (N);
4576 Curr_Scope : constant Scope_Stack_Entry :=
4577 Scope_Stack.Table (Scope_Stack.Last);
4579 Anon : constant Entity_Id :=
4580 Make_Defining_Identifier (Loc,
4581 Chars => New_Internal_Name ('S'));
4583 Acc : Node_Id;
4584 Comp : Node_Id;
4585 Decl : Node_Id;
4586 P : Node_Id;
4588 begin
4589 Set_Is_Internal (Anon);
4591 case Nkind (N) is
4592 when N_Component_Declaration |
4593 N_Unconstrained_Array_Definition |
4594 N_Constrained_Array_Definition =>
4595 Comp := Component_Definition (N);
4596 Acc := Access_Definition (Comp);
4598 when N_Discriminant_Specification =>
4599 Comp := Discriminant_Type (N);
4600 Acc := Comp;
4602 when N_Parameter_Specification =>
4603 Comp := Parameter_Type (N);
4604 Acc := Comp;
4606 when N_Access_Function_Definition =>
4607 Comp := Result_Definition (N);
4608 Acc := Comp;
4610 when N_Object_Declaration =>
4611 Comp := Object_Definition (N);
4612 Acc := Comp;
4614 when N_Function_Specification =>
4615 Comp := Result_Definition (N);
4616 Acc := Comp;
4618 when others =>
4619 raise Program_Error;
4620 end case;
4622 Decl := Make_Full_Type_Declaration (Loc,
4623 Defining_Identifier => Anon,
4624 Type_Definition =>
4625 Copy_Separate_Tree (Access_To_Subprogram_Definition (Acc)));
4627 Mark_Rewrite_Insertion (Decl);
4629 -- Insert the new declaration in the nearest enclosing scope. If the
4630 -- node is a body and N is its return type, the declaration belongs in
4631 -- the enclosing scope.
4633 P := Parent (N);
4635 if Nkind (P) = N_Subprogram_Body
4636 and then Nkind (N) = N_Function_Specification
4637 then
4638 P := Parent (P);
4639 end if;
4641 while Present (P) and then not Has_Declarations (P) loop
4642 P := Parent (P);
4643 end loop;
4645 pragma Assert (Present (P));
4647 if Nkind (P) = N_Package_Specification then
4648 Prepend (Decl, Visible_Declarations (P));
4649 else
4650 Prepend (Decl, Declarations (P));
4651 end if;
4653 -- Replace the anonymous type with an occurrence of the new declaration.
4654 -- In all cases the rewritten node does not have the null-exclusion
4655 -- attribute because (if present) it was already inherited by the
4656 -- anonymous entity (Anon). Thus, in case of components we do not
4657 -- inherit this attribute.
4659 if Nkind (N) = N_Parameter_Specification then
4660 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4661 Set_Etype (Defining_Identifier (N), Anon);
4662 Set_Null_Exclusion_Present (N, False);
4664 elsif Nkind (N) = N_Object_Declaration then
4665 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4666 Set_Etype (Defining_Identifier (N), Anon);
4668 elsif Nkind (N) = N_Access_Function_Definition then
4669 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4671 elsif Nkind (N) = N_Function_Specification then
4672 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4673 Set_Etype (Defining_Unit_Name (N), Anon);
4675 else
4676 Rewrite (Comp,
4677 Make_Component_Definition (Loc,
4678 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
4679 end if;
4681 Mark_Rewrite_Insertion (Comp);
4683 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
4684 Analyze (Decl);
4686 else
4687 -- Temporarily remove the current scope (record or subprogram) from
4688 -- the stack to add the new declarations to the enclosing scope.
4690 Scope_Stack.Decrement_Last;
4691 Analyze (Decl);
4692 Set_Is_Itype (Anon);
4693 Scope_Stack.Append (Curr_Scope);
4694 end if;
4696 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
4697 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
4698 return Anon;
4699 end Replace_Anonymous_Access_To_Protected_Subprogram;
4701 -------------------------------
4702 -- Build_Derived_Access_Type --
4703 -------------------------------
4705 procedure Build_Derived_Access_Type
4706 (N : Node_Id;
4707 Parent_Type : Entity_Id;
4708 Derived_Type : Entity_Id)
4710 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
4712 Desig_Type : Entity_Id;
4713 Discr : Entity_Id;
4714 Discr_Con_Elist : Elist_Id;
4715 Discr_Con_El : Elmt_Id;
4716 Subt : Entity_Id;
4718 begin
4719 -- Set the designated type so it is available in case this is an access
4720 -- to a self-referential type, e.g. a standard list type with a next
4721 -- pointer. Will be reset after subtype is built.
4723 Set_Directly_Designated_Type
4724 (Derived_Type, Designated_Type (Parent_Type));
4726 Subt := Process_Subtype (S, N);
4728 if Nkind (S) /= N_Subtype_Indication
4729 and then Subt /= Base_Type (Subt)
4730 then
4731 Set_Ekind (Derived_Type, E_Access_Subtype);
4732 end if;
4734 if Ekind (Derived_Type) = E_Access_Subtype then
4735 declare
4736 Pbase : constant Entity_Id := Base_Type (Parent_Type);
4737 Ibase : constant Entity_Id :=
4738 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
4739 Svg_Chars : constant Name_Id := Chars (Ibase);
4740 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
4742 begin
4743 Copy_Node (Pbase, Ibase);
4745 Set_Chars (Ibase, Svg_Chars);
4746 Set_Next_Entity (Ibase, Svg_Next_E);
4747 Set_Sloc (Ibase, Sloc (Derived_Type));
4748 Set_Scope (Ibase, Scope (Derived_Type));
4749 Set_Freeze_Node (Ibase, Empty);
4750 Set_Is_Frozen (Ibase, False);
4751 Set_Comes_From_Source (Ibase, False);
4752 Set_Is_First_Subtype (Ibase, False);
4754 Set_Etype (Ibase, Pbase);
4755 Set_Etype (Derived_Type, Ibase);
4756 end;
4757 end if;
4759 Set_Directly_Designated_Type
4760 (Derived_Type, Designated_Type (Subt));
4762 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
4763 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
4764 Set_Size_Info (Derived_Type, Parent_Type);
4765 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
4766 Set_Depends_On_Private (Derived_Type,
4767 Has_Private_Component (Derived_Type));
4768 Conditional_Delay (Derived_Type, Subt);
4770 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
4771 -- that it is not redundant.
4773 if Null_Exclusion_Present (Type_Definition (N)) then
4774 Set_Can_Never_Be_Null (Derived_Type);
4776 if Can_Never_Be_Null (Parent_Type)
4777 and then False
4778 then
4779 Error_Msg_NE
4780 ("`NOT NULL` not allowed (& already excludes null)",
4781 N, Parent_Type);
4782 end if;
4784 elsif Can_Never_Be_Null (Parent_Type) then
4785 Set_Can_Never_Be_Null (Derived_Type);
4786 end if;
4788 -- Note: we do not copy the Storage_Size_Variable, since we always go to
4789 -- the root type for this information.
4791 -- Apply range checks to discriminants for derived record case
4792 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
4794 Desig_Type := Designated_Type (Derived_Type);
4795 if Is_Composite_Type (Desig_Type)
4796 and then (not Is_Array_Type (Desig_Type))
4797 and then Has_Discriminants (Desig_Type)
4798 and then Base_Type (Desig_Type) /= Desig_Type
4799 then
4800 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
4801 Discr_Con_El := First_Elmt (Discr_Con_Elist);
4803 Discr := First_Discriminant (Base_Type (Desig_Type));
4804 while Present (Discr_Con_El) loop
4805 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
4806 Next_Elmt (Discr_Con_El);
4807 Next_Discriminant (Discr);
4808 end loop;
4809 end if;
4810 end Build_Derived_Access_Type;
4812 ------------------------------
4813 -- Build_Derived_Array_Type --
4814 ------------------------------
4816 procedure Build_Derived_Array_Type
4817 (N : Node_Id;
4818 Parent_Type : Entity_Id;
4819 Derived_Type : Entity_Id)
4821 Loc : constant Source_Ptr := Sloc (N);
4822 Tdef : constant Node_Id := Type_Definition (N);
4823 Indic : constant Node_Id := Subtype_Indication (Tdef);
4824 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
4825 Implicit_Base : Entity_Id;
4826 New_Indic : Node_Id;
4828 procedure Make_Implicit_Base;
4829 -- If the parent subtype is constrained, the derived type is a subtype
4830 -- of an implicit base type derived from the parent base.
4832 ------------------------
4833 -- Make_Implicit_Base --
4834 ------------------------
4836 procedure Make_Implicit_Base is
4837 begin
4838 Implicit_Base :=
4839 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
4841 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
4842 Set_Etype (Implicit_Base, Parent_Base);
4844 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
4845 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
4847 Set_Has_Delayed_Freeze (Implicit_Base, True);
4848 end Make_Implicit_Base;
4850 -- Start of processing for Build_Derived_Array_Type
4852 begin
4853 if not Is_Constrained (Parent_Type) then
4854 if Nkind (Indic) /= N_Subtype_Indication then
4855 Set_Ekind (Derived_Type, E_Array_Type);
4857 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
4858 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
4860 Set_Has_Delayed_Freeze (Derived_Type, True);
4862 else
4863 Make_Implicit_Base;
4864 Set_Etype (Derived_Type, Implicit_Base);
4866 New_Indic :=
4867 Make_Subtype_Declaration (Loc,
4868 Defining_Identifier => Derived_Type,
4869 Subtype_Indication =>
4870 Make_Subtype_Indication (Loc,
4871 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
4872 Constraint => Constraint (Indic)));
4874 Rewrite (N, New_Indic);
4875 Analyze (N);
4876 end if;
4878 else
4879 if Nkind (Indic) /= N_Subtype_Indication then
4880 Make_Implicit_Base;
4882 Set_Ekind (Derived_Type, Ekind (Parent_Type));
4883 Set_Etype (Derived_Type, Implicit_Base);
4884 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
4886 else
4887 Error_Msg_N ("illegal constraint on constrained type", Indic);
4888 end if;
4889 end if;
4891 -- If parent type is not a derived type itself, and is declared in
4892 -- closed scope (e.g. a subprogram), then we must explicitly introduce
4893 -- the new type's concatenation operator since Derive_Subprograms
4894 -- will not inherit the parent's operator. If the parent type is
4895 -- unconstrained, the operator is of the unconstrained base type.
4897 if Number_Dimensions (Parent_Type) = 1
4898 and then not Is_Limited_Type (Parent_Type)
4899 and then not Is_Derived_Type (Parent_Type)
4900 and then not Is_Package_Or_Generic_Package
4901 (Scope (Base_Type (Parent_Type)))
4902 then
4903 if not Is_Constrained (Parent_Type)
4904 and then Is_Constrained (Derived_Type)
4905 then
4906 New_Concatenation_Op (Implicit_Base);
4907 else
4908 New_Concatenation_Op (Derived_Type);
4909 end if;
4910 end if;
4911 end Build_Derived_Array_Type;
4913 -----------------------------------
4914 -- Build_Derived_Concurrent_Type --
4915 -----------------------------------
4917 procedure Build_Derived_Concurrent_Type
4918 (N : Node_Id;
4919 Parent_Type : Entity_Id;
4920 Derived_Type : Entity_Id)
4922 Loc : constant Source_Ptr := Sloc (N);
4924 Corr_Record : constant Entity_Id :=
4925 Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
4927 Corr_Decl : Node_Id;
4928 Corr_Decl_Needed : Boolean;
4929 -- If the derived type has fewer discriminants than its parent, the
4930 -- corresponding record is also a derived type, in order to account for
4931 -- the bound discriminants. We create a full type declaration for it in
4932 -- this case.
4934 Constraint_Present : constant Boolean :=
4935 Nkind (Subtype_Indication (Type_Definition (N))) =
4936 N_Subtype_Indication;
4938 D_Constraint : Node_Id;
4939 New_Constraint : Elist_Id;
4940 Old_Disc : Entity_Id;
4941 New_Disc : Entity_Id;
4942 New_N : Node_Id;
4944 begin
4945 Set_Stored_Constraint (Derived_Type, No_Elist);
4946 Corr_Decl_Needed := False;
4947 Old_Disc := Empty;
4949 if Present (Discriminant_Specifications (N))
4950 and then Constraint_Present
4951 then
4952 Old_Disc := First_Discriminant (Parent_Type);
4953 New_Disc := First (Discriminant_Specifications (N));
4954 while Present (New_Disc) and then Present (Old_Disc) loop
4955 Next_Discriminant (Old_Disc);
4956 Next (New_Disc);
4957 end loop;
4958 end if;
4960 if Present (Old_Disc) then
4962 -- The new type has fewer discriminants, so we need to create a new
4963 -- corresponding record, which is derived from the corresponding
4964 -- record of the parent, and has a stored constraint that captures
4965 -- the values of the discriminant constraints.
4967 -- The type declaration for the derived corresponding record has
4968 -- the same discriminant part and constraints as the current
4969 -- declaration. Copy the unanalyzed tree to build declaration.
4971 Corr_Decl_Needed := True;
4972 New_N := Copy_Separate_Tree (N);
4974 Corr_Decl :=
4975 Make_Full_Type_Declaration (Loc,
4976 Defining_Identifier => Corr_Record,
4977 Discriminant_Specifications =>
4978 Discriminant_Specifications (New_N),
4979 Type_Definition =>
4980 Make_Derived_Type_Definition (Loc,
4981 Subtype_Indication =>
4982 Make_Subtype_Indication (Loc,
4983 Subtype_Mark =>
4984 New_Occurrence_Of
4985 (Corresponding_Record_Type (Parent_Type), Loc),
4986 Constraint =>
4987 Constraint
4988 (Subtype_Indication (Type_Definition (New_N))))));
4989 end if;
4991 -- Copy Storage_Size and Relative_Deadline variables if task case
4993 if Is_Task_Type (Parent_Type) then
4994 Set_Storage_Size_Variable (Derived_Type,
4995 Storage_Size_Variable (Parent_Type));
4996 Set_Relative_Deadline_Variable (Derived_Type,
4997 Relative_Deadline_Variable (Parent_Type));
4998 end if;
5000 if Present (Discriminant_Specifications (N)) then
5001 Push_Scope (Derived_Type);
5002 Check_Or_Process_Discriminants (N, Derived_Type);
5004 if Constraint_Present then
5005 New_Constraint :=
5006 Expand_To_Stored_Constraint
5007 (Parent_Type,
5008 Build_Discriminant_Constraints
5009 (Parent_Type,
5010 Subtype_Indication (Type_Definition (N)), True));
5011 end if;
5013 End_Scope;
5015 elsif Constraint_Present then
5017 -- Build constrained subtype and derive from it
5019 declare
5020 Loc : constant Source_Ptr := Sloc (N);
5021 Anon : constant Entity_Id :=
5022 Make_Defining_Identifier (Loc,
5023 New_External_Name (Chars (Derived_Type), 'T'));
5024 Decl : Node_Id;
5026 begin
5027 Decl :=
5028 Make_Subtype_Declaration (Loc,
5029 Defining_Identifier => Anon,
5030 Subtype_Indication =>
5031 Subtype_Indication (Type_Definition (N)));
5032 Insert_Before (N, Decl);
5033 Analyze (Decl);
5035 Rewrite (Subtype_Indication (Type_Definition (N)),
5036 New_Occurrence_Of (Anon, Loc));
5037 Set_Analyzed (Derived_Type, False);
5038 Analyze (N);
5039 return;
5040 end;
5041 end if;
5043 -- By default, operations and private data are inherited from parent.
5044 -- However, in the presence of bound discriminants, a new corresponding
5045 -- record will be created, see below.
5047 Set_Has_Discriminants
5048 (Derived_Type, Has_Discriminants (Parent_Type));
5049 Set_Corresponding_Record_Type
5050 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5052 -- Is_Constrained is set according the parent subtype, but is set to
5053 -- False if the derived type is declared with new discriminants.
5055 Set_Is_Constrained
5056 (Derived_Type,
5057 (Is_Constrained (Parent_Type) or else Constraint_Present)
5058 and then not Present (Discriminant_Specifications (N)));
5060 if Constraint_Present then
5061 if not Has_Discriminants (Parent_Type) then
5062 Error_Msg_N ("untagged parent must have discriminants", N);
5064 elsif Present (Discriminant_Specifications (N)) then
5066 -- Verify that new discriminants are used to constrain old ones
5068 D_Constraint :=
5069 First
5070 (Constraints
5071 (Constraint (Subtype_Indication (Type_Definition (N)))));
5073 Old_Disc := First_Discriminant (Parent_Type);
5075 while Present (D_Constraint) loop
5076 if Nkind (D_Constraint) /= N_Discriminant_Association then
5078 -- Positional constraint. If it is a reference to a new
5079 -- discriminant, it constrains the corresponding old one.
5081 if Nkind (D_Constraint) = N_Identifier then
5082 New_Disc := First_Discriminant (Derived_Type);
5083 while Present (New_Disc) loop
5084 exit when Chars (New_Disc) = Chars (D_Constraint);
5085 Next_Discriminant (New_Disc);
5086 end loop;
5088 if Present (New_Disc) then
5089 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5090 end if;
5091 end if;
5093 Next_Discriminant (Old_Disc);
5095 -- if this is a named constraint, search by name for the old
5096 -- discriminants constrained by the new one.
5098 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5100 -- Find new discriminant with that name
5102 New_Disc := First_Discriminant (Derived_Type);
5103 while Present (New_Disc) loop
5104 exit when
5105 Chars (New_Disc) = Chars (Expression (D_Constraint));
5106 Next_Discriminant (New_Disc);
5107 end loop;
5109 if Present (New_Disc) then
5111 -- Verify that new discriminant renames some discriminant
5112 -- of the parent type, and associate the new discriminant
5113 -- with one or more old ones that it renames.
5115 declare
5116 Selector : Node_Id;
5118 begin
5119 Selector := First (Selector_Names (D_Constraint));
5120 while Present (Selector) loop
5121 Old_Disc := First_Discriminant (Parent_Type);
5122 while Present (Old_Disc) loop
5123 exit when Chars (Old_Disc) = Chars (Selector);
5124 Next_Discriminant (Old_Disc);
5125 end loop;
5127 if Present (Old_Disc) then
5128 Set_Corresponding_Discriminant
5129 (New_Disc, Old_Disc);
5130 end if;
5132 Next (Selector);
5133 end loop;
5134 end;
5135 end if;
5136 end if;
5138 Next (D_Constraint);
5139 end loop;
5141 New_Disc := First_Discriminant (Derived_Type);
5142 while Present (New_Disc) loop
5143 if No (Corresponding_Discriminant (New_Disc)) then
5144 Error_Msg_NE
5145 ("new discriminant& must constrain old one", N, New_Disc);
5147 elsif not
5148 Subtypes_Statically_Compatible
5149 (Etype (New_Disc),
5150 Etype (Corresponding_Discriminant (New_Disc)))
5151 then
5152 Error_Msg_NE
5153 ("& not statically compatible with parent discriminant",
5154 N, New_Disc);
5155 end if;
5157 Next_Discriminant (New_Disc);
5158 end loop;
5159 end if;
5161 elsif Present (Discriminant_Specifications (N)) then
5162 Error_Msg_N
5163 ("missing discriminant constraint in untagged derivation", N);
5164 end if;
5166 -- The entity chain of the derived type includes the new discriminants
5167 -- but shares operations with the parent.
5169 if Present (Discriminant_Specifications (N)) then
5170 Old_Disc := First_Discriminant (Parent_Type);
5171 while Present (Old_Disc) loop
5172 if No (Next_Entity (Old_Disc))
5173 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
5174 then
5175 Set_Next_Entity
5176 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
5177 exit;
5178 end if;
5180 Next_Discriminant (Old_Disc);
5181 end loop;
5183 else
5184 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
5185 if Has_Discriminants (Parent_Type) then
5186 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5187 Set_Discriminant_Constraint (
5188 Derived_Type, Discriminant_Constraint (Parent_Type));
5189 end if;
5190 end if;
5192 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
5194 Set_Has_Completion (Derived_Type);
5196 if Corr_Decl_Needed then
5197 Set_Stored_Constraint (Derived_Type, New_Constraint);
5198 Insert_After (N, Corr_Decl);
5199 Analyze (Corr_Decl);
5200 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
5201 end if;
5202 end Build_Derived_Concurrent_Type;
5204 ------------------------------------
5205 -- Build_Derived_Enumeration_Type --
5206 ------------------------------------
5208 procedure Build_Derived_Enumeration_Type
5209 (N : Node_Id;
5210 Parent_Type : Entity_Id;
5211 Derived_Type : Entity_Id)
5213 Loc : constant Source_Ptr := Sloc (N);
5214 Def : constant Node_Id := Type_Definition (N);
5215 Indic : constant Node_Id := Subtype_Indication (Def);
5216 Implicit_Base : Entity_Id;
5217 Literal : Entity_Id;
5218 New_Lit : Entity_Id;
5219 Literals_List : List_Id;
5220 Type_Decl : Node_Id;
5221 Hi, Lo : Node_Id;
5222 Rang_Expr : Node_Id;
5224 begin
5225 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
5226 -- not have explicit literals lists we need to process types derived
5227 -- from them specially. This is handled by Derived_Standard_Character.
5228 -- If the parent type is a generic type, there are no literals either,
5229 -- and we construct the same skeletal representation as for the generic
5230 -- parent type.
5232 if Is_Standard_Character_Type (Parent_Type) then
5233 Derived_Standard_Character (N, Parent_Type, Derived_Type);
5235 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
5236 declare
5237 Lo : Node_Id;
5238 Hi : Node_Id;
5240 begin
5241 if Nkind (Indic) /= N_Subtype_Indication then
5242 Lo :=
5243 Make_Attribute_Reference (Loc,
5244 Attribute_Name => Name_First,
5245 Prefix => New_Reference_To (Derived_Type, Loc));
5246 Set_Etype (Lo, Derived_Type);
5248 Hi :=
5249 Make_Attribute_Reference (Loc,
5250 Attribute_Name => Name_Last,
5251 Prefix => New_Reference_To (Derived_Type, Loc));
5252 Set_Etype (Hi, Derived_Type);
5254 Set_Scalar_Range (Derived_Type,
5255 Make_Range (Loc,
5256 Low_Bound => Lo,
5257 High_Bound => Hi));
5258 else
5260 -- Analyze subtype indication and verify compatibility
5261 -- with parent type.
5263 if Base_Type (Process_Subtype (Indic, N)) /=
5264 Base_Type (Parent_Type)
5265 then
5266 Error_Msg_N
5267 ("illegal constraint for formal discrete type", N);
5268 end if;
5269 end if;
5270 end;
5272 else
5273 -- If a constraint is present, analyze the bounds to catch
5274 -- premature usage of the derived literals.
5276 if Nkind (Indic) = N_Subtype_Indication
5277 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
5278 then
5279 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
5280 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
5281 end if;
5283 -- Introduce an implicit base type for the derived type even if there
5284 -- is no constraint attached to it, since this seems closer to the
5285 -- Ada semantics. Build a full type declaration tree for the derived
5286 -- type using the implicit base type as the defining identifier. The
5287 -- build a subtype declaration tree which applies the constraint (if
5288 -- any) have it replace the derived type declaration.
5290 Literal := First_Literal (Parent_Type);
5291 Literals_List := New_List;
5292 while Present (Literal)
5293 and then Ekind (Literal) = E_Enumeration_Literal
5294 loop
5295 -- Literals of the derived type have the same representation as
5296 -- those of the parent type, but this representation can be
5297 -- overridden by an explicit representation clause. Indicate
5298 -- that there is no explicit representation given yet. These
5299 -- derived literals are implicit operations of the new type,
5300 -- and can be overridden by explicit ones.
5302 if Nkind (Literal) = N_Defining_Character_Literal then
5303 New_Lit :=
5304 Make_Defining_Character_Literal (Loc, Chars (Literal));
5305 else
5306 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
5307 end if;
5309 Set_Ekind (New_Lit, E_Enumeration_Literal);
5310 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
5311 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
5312 Set_Enumeration_Rep_Expr (New_Lit, Empty);
5313 Set_Alias (New_Lit, Literal);
5314 Set_Is_Known_Valid (New_Lit, True);
5316 Append (New_Lit, Literals_List);
5317 Next_Literal (Literal);
5318 end loop;
5320 Implicit_Base :=
5321 Make_Defining_Identifier (Sloc (Derived_Type),
5322 New_External_Name (Chars (Derived_Type), 'B'));
5324 -- Indicate the proper nature of the derived type. This must be done
5325 -- before analysis of the literals, to recognize cases when a literal
5326 -- may be hidden by a previous explicit function definition (cf.
5327 -- c83031a).
5329 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
5330 Set_Etype (Derived_Type, Implicit_Base);
5332 Type_Decl :=
5333 Make_Full_Type_Declaration (Loc,
5334 Defining_Identifier => Implicit_Base,
5335 Discriminant_Specifications => No_List,
5336 Type_Definition =>
5337 Make_Enumeration_Type_Definition (Loc, Literals_List));
5339 Mark_Rewrite_Insertion (Type_Decl);
5340 Insert_Before (N, Type_Decl);
5341 Analyze (Type_Decl);
5343 -- After the implicit base is analyzed its Etype needs to be changed
5344 -- to reflect the fact that it is derived from the parent type which
5345 -- was ignored during analysis. We also set the size at this point.
5347 Set_Etype (Implicit_Base, Parent_Type);
5349 Set_Size_Info (Implicit_Base, Parent_Type);
5350 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
5351 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
5353 Set_Has_Non_Standard_Rep
5354 (Implicit_Base, Has_Non_Standard_Rep
5355 (Parent_Type));
5356 Set_Has_Delayed_Freeze (Implicit_Base);
5358 -- Process the subtype indication including a validation check on the
5359 -- constraint, if any. If a constraint is given, its bounds must be
5360 -- implicitly converted to the new type.
5362 if Nkind (Indic) = N_Subtype_Indication then
5363 declare
5364 R : constant Node_Id :=
5365 Range_Expression (Constraint (Indic));
5367 begin
5368 if Nkind (R) = N_Range then
5369 Hi := Build_Scalar_Bound
5370 (High_Bound (R), Parent_Type, Implicit_Base);
5371 Lo := Build_Scalar_Bound
5372 (Low_Bound (R), Parent_Type, Implicit_Base);
5374 else
5375 -- Constraint is a Range attribute. Replace with explicit
5376 -- mention of the bounds of the prefix, which must be a
5377 -- subtype.
5379 Analyze (Prefix (R));
5380 Hi :=
5381 Convert_To (Implicit_Base,
5382 Make_Attribute_Reference (Loc,
5383 Attribute_Name => Name_Last,
5384 Prefix =>
5385 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
5387 Lo :=
5388 Convert_To (Implicit_Base,
5389 Make_Attribute_Reference (Loc,
5390 Attribute_Name => Name_First,
5391 Prefix =>
5392 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
5393 end if;
5394 end;
5396 else
5397 Hi :=
5398 Build_Scalar_Bound
5399 (Type_High_Bound (Parent_Type),
5400 Parent_Type, Implicit_Base);
5401 Lo :=
5402 Build_Scalar_Bound
5403 (Type_Low_Bound (Parent_Type),
5404 Parent_Type, Implicit_Base);
5405 end if;
5407 Rang_Expr :=
5408 Make_Range (Loc,
5409 Low_Bound => Lo,
5410 High_Bound => Hi);
5412 -- If we constructed a default range for the case where no range
5413 -- was given, then the expressions in the range must not freeze
5414 -- since they do not correspond to expressions in the source.
5416 if Nkind (Indic) /= N_Subtype_Indication then
5417 Set_Must_Not_Freeze (Lo);
5418 Set_Must_Not_Freeze (Hi);
5419 Set_Must_Not_Freeze (Rang_Expr);
5420 end if;
5422 Rewrite (N,
5423 Make_Subtype_Declaration (Loc,
5424 Defining_Identifier => Derived_Type,
5425 Subtype_Indication =>
5426 Make_Subtype_Indication (Loc,
5427 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5428 Constraint =>
5429 Make_Range_Constraint (Loc,
5430 Range_Expression => Rang_Expr))));
5432 Analyze (N);
5434 -- If pragma Discard_Names applies on the first subtype of the parent
5435 -- type, then it must be applied on this subtype as well.
5437 if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
5438 Set_Discard_Names (Derived_Type);
5439 end if;
5441 -- Apply a range check. Since this range expression doesn't have an
5442 -- Etype, we have to specifically pass the Source_Typ parameter. Is
5443 -- this right???
5445 if Nkind (Indic) = N_Subtype_Indication then
5446 Apply_Range_Check (Range_Expression (Constraint (Indic)),
5447 Parent_Type,
5448 Source_Typ => Entity (Subtype_Mark (Indic)));
5449 end if;
5450 end if;
5451 end Build_Derived_Enumeration_Type;
5453 --------------------------------
5454 -- Build_Derived_Numeric_Type --
5455 --------------------------------
5457 procedure Build_Derived_Numeric_Type
5458 (N : Node_Id;
5459 Parent_Type : Entity_Id;
5460 Derived_Type : Entity_Id)
5462 Loc : constant Source_Ptr := Sloc (N);
5463 Tdef : constant Node_Id := Type_Definition (N);
5464 Indic : constant Node_Id := Subtype_Indication (Tdef);
5465 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5466 No_Constraint : constant Boolean := Nkind (Indic) /=
5467 N_Subtype_Indication;
5468 Implicit_Base : Entity_Id;
5470 Lo : Node_Id;
5471 Hi : Node_Id;
5473 begin
5474 -- Process the subtype indication including a validation check on
5475 -- the constraint if any.
5477 Discard_Node (Process_Subtype (Indic, N));
5479 -- Introduce an implicit base type for the derived type even if there
5480 -- is no constraint attached to it, since this seems closer to the Ada
5481 -- semantics.
5483 Implicit_Base :=
5484 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5486 Set_Etype (Implicit_Base, Parent_Base);
5487 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5488 Set_Size_Info (Implicit_Base, Parent_Base);
5489 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
5490 Set_Parent (Implicit_Base, Parent (Derived_Type));
5491 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
5493 -- Set RM Size for discrete type or decimal fixed-point type
5494 -- Ordinary fixed-point is excluded, why???
5496 if Is_Discrete_Type (Parent_Base)
5497 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
5498 then
5499 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
5500 end if;
5502 Set_Has_Delayed_Freeze (Implicit_Base);
5504 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
5505 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
5507 Set_Scalar_Range (Implicit_Base,
5508 Make_Range (Loc,
5509 Low_Bound => Lo,
5510 High_Bound => Hi));
5512 if Has_Infinities (Parent_Base) then
5513 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
5514 end if;
5516 -- The Derived_Type, which is the entity of the declaration, is a
5517 -- subtype of the implicit base. Its Ekind is a subtype, even in the
5518 -- absence of an explicit constraint.
5520 Set_Etype (Derived_Type, Implicit_Base);
5522 -- If we did not have a constraint, then the Ekind is set from the
5523 -- parent type (otherwise Process_Subtype has set the bounds)
5525 if No_Constraint then
5526 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
5527 end if;
5529 -- If we did not have a range constraint, then set the range from the
5530 -- parent type. Otherwise, the call to Process_Subtype has set the
5531 -- bounds.
5533 if No_Constraint
5534 or else not Has_Range_Constraint (Indic)
5535 then
5536 Set_Scalar_Range (Derived_Type,
5537 Make_Range (Loc,
5538 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
5539 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
5540 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5542 if Has_Infinities (Parent_Type) then
5543 Set_Includes_Infinities (Scalar_Range (Derived_Type));
5544 end if;
5546 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
5547 end if;
5549 Set_Is_Descendent_Of_Address (Derived_Type,
5550 Is_Descendent_Of_Address (Parent_Type));
5551 Set_Is_Descendent_Of_Address (Implicit_Base,
5552 Is_Descendent_Of_Address (Parent_Type));
5554 -- Set remaining type-specific fields, depending on numeric type
5556 if Is_Modular_Integer_Type (Parent_Type) then
5557 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
5559 Set_Non_Binary_Modulus
5560 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
5562 Set_Is_Known_Valid
5563 (Implicit_Base, Is_Known_Valid (Parent_Base));
5565 elsif Is_Floating_Point_Type (Parent_Type) then
5567 -- Digits of base type is always copied from the digits value of
5568 -- the parent base type, but the digits of the derived type will
5569 -- already have been set if there was a constraint present.
5571 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
5572 Set_Vax_Float (Implicit_Base, Vax_Float (Parent_Base));
5574 if No_Constraint then
5575 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
5576 end if;
5578 elsif Is_Fixed_Point_Type (Parent_Type) then
5580 -- Small of base type and derived type are always copied from the
5581 -- parent base type, since smalls never change. The delta of the
5582 -- base type is also copied from the parent base type. However the
5583 -- delta of the derived type will have been set already if a
5584 -- constraint was present.
5586 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
5587 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
5588 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
5590 if No_Constraint then
5591 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
5592 end if;
5594 -- The scale and machine radix in the decimal case are always
5595 -- copied from the parent base type.
5597 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
5598 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
5599 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
5601 Set_Machine_Radix_10
5602 (Derived_Type, Machine_Radix_10 (Parent_Base));
5603 Set_Machine_Radix_10
5604 (Implicit_Base, Machine_Radix_10 (Parent_Base));
5606 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
5608 if No_Constraint then
5609 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
5611 else
5612 -- the analysis of the subtype_indication sets the
5613 -- digits value of the derived type.
5615 null;
5616 end if;
5617 end if;
5618 end if;
5620 -- The type of the bounds is that of the parent type, and they
5621 -- must be converted to the derived type.
5623 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
5625 -- The implicit_base should be frozen when the derived type is frozen,
5626 -- but note that it is used in the conversions of the bounds. For fixed
5627 -- types we delay the determination of the bounds until the proper
5628 -- freezing point. For other numeric types this is rejected by GCC, for
5629 -- reasons that are currently unclear (???), so we choose to freeze the
5630 -- implicit base now. In the case of integers and floating point types
5631 -- this is harmless because subsequent representation clauses cannot
5632 -- affect anything, but it is still baffling that we cannot use the
5633 -- same mechanism for all derived numeric types.
5635 -- There is a further complication: actually *some* representation
5636 -- clauses can affect the implicit base type. Namely, attribute
5637 -- definition clauses for stream-oriented attributes need to set the
5638 -- corresponding TSS entries on the base type, and this normally cannot
5639 -- be done after the base type is frozen, so the circuitry in
5640 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility and
5641 -- not use Set_TSS in this case.
5643 if Is_Fixed_Point_Type (Parent_Type) then
5644 Conditional_Delay (Implicit_Base, Parent_Type);
5645 else
5646 Freeze_Before (N, Implicit_Base);
5647 end if;
5648 end Build_Derived_Numeric_Type;
5650 --------------------------------
5651 -- Build_Derived_Private_Type --
5652 --------------------------------
5654 procedure Build_Derived_Private_Type
5655 (N : Node_Id;
5656 Parent_Type : Entity_Id;
5657 Derived_Type : Entity_Id;
5658 Is_Completion : Boolean;
5659 Derive_Subps : Boolean := True)
5661 Loc : constant Source_Ptr := Sloc (N);
5662 Der_Base : Entity_Id;
5663 Discr : Entity_Id;
5664 Full_Decl : Node_Id := Empty;
5665 Full_Der : Entity_Id;
5666 Full_P : Entity_Id;
5667 Last_Discr : Entity_Id;
5668 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
5669 Swapped : Boolean := False;
5671 procedure Copy_And_Build;
5672 -- Copy derived type declaration, replace parent with its full view,
5673 -- and analyze new declaration.
5675 --------------------
5676 -- Copy_And_Build --
5677 --------------------
5679 procedure Copy_And_Build is
5680 Full_N : Node_Id;
5682 begin
5683 if Ekind (Parent_Type) in Record_Kind
5684 or else
5685 (Ekind (Parent_Type) in Enumeration_Kind
5686 and then not Is_Standard_Character_Type (Parent_Type)
5687 and then not Is_Generic_Type (Root_Type (Parent_Type)))
5688 then
5689 Full_N := New_Copy_Tree (N);
5690 Insert_After (N, Full_N);
5691 Build_Derived_Type (
5692 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
5694 else
5695 Build_Derived_Type (
5696 N, Parent_Type, Full_Der, True, Derive_Subps => False);
5697 end if;
5698 end Copy_And_Build;
5700 -- Start of processing for Build_Derived_Private_Type
5702 begin
5703 if Is_Tagged_Type (Parent_Type) then
5704 Full_P := Full_View (Parent_Type);
5706 -- A type extension of a type with unknown discriminants is an
5707 -- indefinite type that the back-end cannot handle directly.
5708 -- We treat it as a private type, and build a completion that is
5709 -- derived from the full view of the parent, and hopefully has
5710 -- known discriminants.
5712 -- If the full view of the parent type has an underlying record view,
5713 -- use it to generate the underlying record view of this derived type
5714 -- (required for chains of derivations with unknown discriminants).
5716 -- Minor optimization: we avoid the generation of useless underlying
5717 -- record view entities if the private type declaration has unknown
5718 -- discriminants but its corresponding full view has no
5719 -- discriminants.
5721 if Has_Unknown_Discriminants (Parent_Type)
5722 and then Present (Full_P)
5723 and then (Has_Discriminants (Full_P)
5724 or else Present (Underlying_Record_View (Full_P)))
5725 and then not In_Open_Scopes (Par_Scope)
5726 and then Expander_Active
5727 then
5728 declare
5729 Full_Der : constant Entity_Id :=
5730 Make_Defining_Identifier (Loc,
5731 Chars => New_Internal_Name ('T'));
5732 New_Ext : constant Node_Id :=
5733 Copy_Separate_Tree
5734 (Record_Extension_Part (Type_Definition (N)));
5735 Decl : Node_Id;
5737 begin
5738 Build_Derived_Record_Type
5739 (N, Parent_Type, Derived_Type, Derive_Subps);
5741 -- Build anonymous completion, as a derivation from the full
5742 -- view of the parent. This is not a completion in the usual
5743 -- sense, because the current type is not private.
5745 Decl :=
5746 Make_Full_Type_Declaration (Loc,
5747 Defining_Identifier => Full_Der,
5748 Type_Definition =>
5749 Make_Derived_Type_Definition (Loc,
5750 Subtype_Indication =>
5751 New_Copy_Tree
5752 (Subtype_Indication (Type_Definition (N))),
5753 Record_Extension_Part => New_Ext));
5755 -- If the parent type has an underlying record view, use it
5756 -- here to build the new underlying record view.
5758 if Present (Underlying_Record_View (Full_P)) then
5759 pragma Assert
5760 (Nkind (Subtype_Indication (Type_Definition (Decl)))
5761 = N_Identifier);
5762 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
5763 Underlying_Record_View (Full_P));
5764 end if;
5766 Install_Private_Declarations (Par_Scope);
5767 Install_Visible_Declarations (Par_Scope);
5768 Insert_Before (N, Decl);
5770 -- Mark entity as an underlying record view before analysis,
5771 -- to avoid generating the list of its primitive operations
5772 -- (which is not really required for this entity) and thus
5773 -- prevent spurious errors associated with missing overriding
5774 -- of abstract primitives (overridden only for Derived_Type).
5776 Set_Ekind (Full_Der, E_Record_Type);
5777 Set_Is_Underlying_Record_View (Full_Der);
5779 Analyze (Decl);
5781 pragma Assert (Has_Discriminants (Full_Der)
5782 and then not Has_Unknown_Discriminants (Full_Der));
5784 Uninstall_Declarations (Par_Scope);
5786 -- Freeze the underlying record view, to prevent generation of
5787 -- useless dispatching information, which is simply shared with
5788 -- the real derived type.
5790 Set_Is_Frozen (Full_Der);
5792 -- Set up links between real entity and underlying record view
5794 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
5795 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
5796 end;
5798 -- If discriminants are known, build derived record
5800 else
5801 Build_Derived_Record_Type
5802 (N, Parent_Type, Derived_Type, Derive_Subps);
5803 end if;
5805 return;
5807 elsif Has_Discriminants (Parent_Type) then
5808 if Present (Full_View (Parent_Type)) then
5809 if not Is_Completion then
5811 -- Copy declaration for subsequent analysis, to provide a
5812 -- completion for what is a private declaration. Indicate that
5813 -- the full type is internally generated.
5815 Full_Decl := New_Copy_Tree (N);
5816 Full_Der := New_Copy (Derived_Type);
5817 Set_Comes_From_Source (Full_Decl, False);
5818 Set_Comes_From_Source (Full_Der, False);
5820 Insert_After (N, Full_Decl);
5822 else
5823 -- If this is a completion, the full view being built is itself
5824 -- private. We build a subtype of the parent with the same
5825 -- constraints as this full view, to convey to the back end the
5826 -- constrained components and the size of this subtype. If the
5827 -- parent is constrained, its full view can serve as the
5828 -- underlying full view of the derived type.
5830 if No (Discriminant_Specifications (N)) then
5831 if Nkind (Subtype_Indication (Type_Definition (N))) =
5832 N_Subtype_Indication
5833 then
5834 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
5836 elsif Is_Constrained (Full_View (Parent_Type)) then
5837 Set_Underlying_Full_View
5838 (Derived_Type, Full_View (Parent_Type));
5839 end if;
5841 else
5842 -- If there are new discriminants, the parent subtype is
5843 -- constrained by them, but it is not clear how to build
5844 -- the Underlying_Full_View in this case???
5846 null;
5847 end if;
5848 end if;
5849 end if;
5851 -- Build partial view of derived type from partial view of parent
5853 Build_Derived_Record_Type
5854 (N, Parent_Type, Derived_Type, Derive_Subps);
5856 if Present (Full_View (Parent_Type)) and then not Is_Completion then
5857 if not In_Open_Scopes (Par_Scope)
5858 or else not In_Same_Source_Unit (N, Parent_Type)
5859 then
5860 -- Swap partial and full views temporarily
5862 Install_Private_Declarations (Par_Scope);
5863 Install_Visible_Declarations (Par_Scope);
5864 Swapped := True;
5865 end if;
5867 -- Build full view of derived type from full view of parent which
5868 -- is now installed. Subprograms have been derived on the partial
5869 -- view, the completion does not derive them anew.
5871 if not Is_Tagged_Type (Parent_Type) then
5873 -- If the parent is itself derived from another private type,
5874 -- installing the private declarations has not affected its
5875 -- privacy status, so use its own full view explicitly.
5877 if Is_Private_Type (Parent_Type) then
5878 Build_Derived_Record_Type
5879 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
5880 else
5881 Build_Derived_Record_Type
5882 (Full_Decl, Parent_Type, Full_Der, False);
5883 end if;
5885 else
5886 -- If full view of parent is tagged, the completion inherits
5887 -- the proper primitive operations.
5889 Set_Defining_Identifier (Full_Decl, Full_Der);
5890 Build_Derived_Record_Type
5891 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
5892 Set_Analyzed (Full_Decl);
5893 end if;
5895 if Swapped then
5896 Uninstall_Declarations (Par_Scope);
5898 if In_Open_Scopes (Par_Scope) then
5899 Install_Visible_Declarations (Par_Scope);
5900 end if;
5901 end if;
5903 Der_Base := Base_Type (Derived_Type);
5904 Set_Full_View (Derived_Type, Full_Der);
5905 Set_Full_View (Der_Base, Base_Type (Full_Der));
5907 -- Copy the discriminant list from full view to the partial views
5908 -- (base type and its subtype). Gigi requires that the partial and
5909 -- full views have the same discriminants.
5911 -- Note that since the partial view is pointing to discriminants
5912 -- in the full view, their scope will be that of the full view.
5913 -- This might cause some front end problems and need adjustment???
5915 Discr := First_Discriminant (Base_Type (Full_Der));
5916 Set_First_Entity (Der_Base, Discr);
5918 loop
5919 Last_Discr := Discr;
5920 Next_Discriminant (Discr);
5921 exit when No (Discr);
5922 end loop;
5924 Set_Last_Entity (Der_Base, Last_Discr);
5926 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
5927 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
5928 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
5930 else
5931 -- If this is a completion, the derived type stays private and
5932 -- there is no need to create a further full view, except in the
5933 -- unusual case when the derivation is nested within a child unit,
5934 -- see below.
5936 null;
5937 end if;
5939 elsif Present (Full_View (Parent_Type))
5940 and then Has_Discriminants (Full_View (Parent_Type))
5941 then
5942 if Has_Unknown_Discriminants (Parent_Type)
5943 and then Nkind (Subtype_Indication (Type_Definition (N))) =
5944 N_Subtype_Indication
5945 then
5946 Error_Msg_N
5947 ("cannot constrain type with unknown discriminants",
5948 Subtype_Indication (Type_Definition (N)));
5949 return;
5950 end if;
5952 -- If full view of parent is a record type, build full view as a
5953 -- derivation from the parent's full view. Partial view remains
5954 -- private. For code generation and linking, the full view must have
5955 -- the same public status as the partial one. This full view is only
5956 -- needed if the parent type is in an enclosing scope, so that the
5957 -- full view may actually become visible, e.g. in a child unit. This
5958 -- is both more efficient, and avoids order of freezing problems with
5959 -- the added entities.
5961 if not Is_Private_Type (Full_View (Parent_Type))
5962 and then (In_Open_Scopes (Scope (Parent_Type)))
5963 then
5964 Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
5965 Chars (Derived_Type));
5966 Set_Is_Itype (Full_Der);
5967 Set_Has_Private_Declaration (Full_Der);
5968 Set_Has_Private_Declaration (Derived_Type);
5969 Set_Associated_Node_For_Itype (Full_Der, N);
5970 Set_Parent (Full_Der, Parent (Derived_Type));
5971 Set_Full_View (Derived_Type, Full_Der);
5972 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
5973 Full_P := Full_View (Parent_Type);
5974 Exchange_Declarations (Parent_Type);
5975 Copy_And_Build;
5976 Exchange_Declarations (Full_P);
5978 else
5979 Build_Derived_Record_Type
5980 (N, Full_View (Parent_Type), Derived_Type,
5981 Derive_Subps => False);
5982 end if;
5984 -- In any case, the primitive operations are inherited from the
5985 -- parent type, not from the internal full view.
5987 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
5989 if Derive_Subps then
5990 Derive_Subprograms (Parent_Type, Derived_Type);
5991 end if;
5993 else
5994 -- Untagged type, No discriminants on either view
5996 if Nkind (Subtype_Indication (Type_Definition (N))) =
5997 N_Subtype_Indication
5998 then
5999 Error_Msg_N
6000 ("illegal constraint on type without discriminants", N);
6001 end if;
6003 if Present (Discriminant_Specifications (N))
6004 and then Present (Full_View (Parent_Type))
6005 and then not Is_Tagged_Type (Full_View (Parent_Type))
6006 then
6007 Error_Msg_N ("cannot add discriminants to untagged type", N);
6008 end if;
6010 Set_Stored_Constraint (Derived_Type, No_Elist);
6011 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6012 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6013 Set_Has_Controlled_Component
6014 (Derived_Type, Has_Controlled_Component
6015 (Parent_Type));
6017 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6019 if not Is_Controlled (Parent_Type) then
6020 Set_Finalize_Storage_Only
6021 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6022 end if;
6024 -- Construct the implicit full view by deriving from full view of the
6025 -- parent type. In order to get proper visibility, we install the
6026 -- parent scope and its declarations.
6028 -- ??? If the parent is untagged private and its completion is
6029 -- tagged, this mechanism will not work because we cannot derive from
6030 -- the tagged full view unless we have an extension.
6032 if Present (Full_View (Parent_Type))
6033 and then not Is_Tagged_Type (Full_View (Parent_Type))
6034 and then not Is_Completion
6035 then
6036 Full_Der :=
6037 Make_Defining_Identifier (Sloc (Derived_Type),
6038 Chars => Chars (Derived_Type));
6039 Set_Is_Itype (Full_Der);
6040 Set_Has_Private_Declaration (Full_Der);
6041 Set_Has_Private_Declaration (Derived_Type);
6042 Set_Associated_Node_For_Itype (Full_Der, N);
6043 Set_Parent (Full_Der, Parent (Derived_Type));
6044 Set_Full_View (Derived_Type, Full_Der);
6046 if not In_Open_Scopes (Par_Scope) then
6047 Install_Private_Declarations (Par_Scope);
6048 Install_Visible_Declarations (Par_Scope);
6049 Copy_And_Build;
6050 Uninstall_Declarations (Par_Scope);
6052 -- If parent scope is open and in another unit, and parent has a
6053 -- completion, then the derivation is taking place in the visible
6054 -- part of a child unit. In that case retrieve the full view of
6055 -- the parent momentarily.
6057 elsif not In_Same_Source_Unit (N, Parent_Type) then
6058 Full_P := Full_View (Parent_Type);
6059 Exchange_Declarations (Parent_Type);
6060 Copy_And_Build;
6061 Exchange_Declarations (Full_P);
6063 -- Otherwise it is a local derivation
6065 else
6066 Copy_And_Build;
6067 end if;
6069 Set_Scope (Full_Der, Current_Scope);
6070 Set_Is_First_Subtype (Full_Der,
6071 Is_First_Subtype (Derived_Type));
6072 Set_Has_Size_Clause (Full_Der, False);
6073 Set_Has_Alignment_Clause (Full_Der, False);
6074 Set_Next_Entity (Full_Der, Empty);
6075 Set_Has_Delayed_Freeze (Full_Der);
6076 Set_Is_Frozen (Full_Der, False);
6077 Set_Freeze_Node (Full_Der, Empty);
6078 Set_Depends_On_Private (Full_Der,
6079 Has_Private_Component (Full_Der));
6080 Set_Public_Status (Full_Der);
6081 end if;
6082 end if;
6084 Set_Has_Unknown_Discriminants (Derived_Type,
6085 Has_Unknown_Discriminants (Parent_Type));
6087 if Is_Private_Type (Derived_Type) then
6088 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6089 end if;
6091 if Is_Private_Type (Parent_Type)
6092 and then Base_Type (Parent_Type) = Parent_Type
6093 and then In_Open_Scopes (Scope (Parent_Type))
6094 then
6095 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6097 if Is_Child_Unit (Scope (Current_Scope))
6098 and then Is_Completion
6099 and then In_Private_Part (Current_Scope)
6100 and then Scope (Parent_Type) /= Current_Scope
6101 then
6102 -- This is the unusual case where a type completed by a private
6103 -- derivation occurs within a package nested in a child unit, and
6104 -- the parent is declared in an ancestor. In this case, the full
6105 -- view of the parent type will become visible in the body of
6106 -- the enclosing child, and only then will the current type be
6107 -- possibly non-private. We build a underlying full view that
6108 -- will be installed when the enclosing child body is compiled.
6110 Full_Der :=
6111 Make_Defining_Identifier (Sloc (Derived_Type),
6112 Chars => Chars (Derived_Type));
6113 Set_Is_Itype (Full_Der);
6114 Build_Itype_Reference (Full_Der, N);
6116 -- The full view will be used to swap entities on entry/exit to
6117 -- the body, and must appear in the entity list for the package.
6119 Append_Entity (Full_Der, Scope (Derived_Type));
6120 Set_Has_Private_Declaration (Full_Der);
6121 Set_Has_Private_Declaration (Derived_Type);
6122 Set_Associated_Node_For_Itype (Full_Der, N);
6123 Set_Parent (Full_Der, Parent (Derived_Type));
6124 Full_P := Full_View (Parent_Type);
6125 Exchange_Declarations (Parent_Type);
6126 Copy_And_Build;
6127 Exchange_Declarations (Full_P);
6128 Set_Underlying_Full_View (Derived_Type, Full_Der);
6129 end if;
6130 end if;
6131 end Build_Derived_Private_Type;
6133 -------------------------------
6134 -- Build_Derived_Record_Type --
6135 -------------------------------
6137 -- 1. INTRODUCTION
6139 -- Ideally we would like to use the same model of type derivation for
6140 -- tagged and untagged record types. Unfortunately this is not quite
6141 -- possible because the semantics of representation clauses is different
6142 -- for tagged and untagged records under inheritance. Consider the
6143 -- following:
6145 -- type R (...) is [tagged] record ... end record;
6146 -- type T (...) is new R (...) [with ...];
6148 -- The representation clauses for T can specify a completely different
6149 -- record layout from R's. Hence the same component can be placed in two
6150 -- very different positions in objects of type T and R. If R and T are
6151 -- tagged types, representation clauses for T can only specify the layout
6152 -- of non inherited components, thus components that are common in R and T
6153 -- have the same position in objects of type R and T.
6155 -- This has two implications. The first is that the entire tree for R's
6156 -- declaration needs to be copied for T in the untagged case, so that T
6157 -- can be viewed as a record type of its own with its own representation
6158 -- clauses. The second implication is the way we handle discriminants.
6159 -- Specifically, in the untagged case we need a way to communicate to Gigi
6160 -- what are the real discriminants in the record, while for the semantics
6161 -- we need to consider those introduced by the user to rename the
6162 -- discriminants in the parent type. This is handled by introducing the
6163 -- notion of stored discriminants. See below for more.
6165 -- Fortunately the way regular components are inherited can be handled in
6166 -- the same way in tagged and untagged types.
6168 -- To complicate things a bit more the private view of a private extension
6169 -- cannot be handled in the same way as the full view (for one thing the
6170 -- semantic rules are somewhat different). We will explain what differs
6171 -- below.
6173 -- 2. DISCRIMINANTS UNDER INHERITANCE
6175 -- The semantic rules governing the discriminants of derived types are
6176 -- quite subtle.
6178 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6179 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
6181 -- If parent type has discriminants, then the discriminants that are
6182 -- declared in the derived type are [3.4 (11)]:
6184 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
6185 -- there is one;
6187 -- o Otherwise, each discriminant of the parent type (implicitly declared
6188 -- in the same order with the same specifications). In this case, the
6189 -- discriminants are said to be "inherited", or if unknown in the parent
6190 -- are also unknown in the derived type.
6192 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
6194 -- o The parent subtype shall be constrained;
6196 -- o If the parent type is not a tagged type, then each discriminant of
6197 -- the derived type shall be used in the constraint defining a parent
6198 -- subtype. [Implementation note: This ensures that the new discriminant
6199 -- can share storage with an existing discriminant.]
6201 -- For the derived type each discriminant of the parent type is either
6202 -- inherited, constrained to equal some new discriminant of the derived
6203 -- type, or constrained to the value of an expression.
6205 -- When inherited or constrained to equal some new discriminant, the
6206 -- parent discriminant and the discriminant of the derived type are said
6207 -- to "correspond".
6209 -- If a discriminant of the parent type is constrained to a specific value
6210 -- in the derived type definition, then the discriminant is said to be
6211 -- "specified" by that derived type definition.
6213 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
6215 -- We have spoken about stored discriminants in point 1 (introduction)
6216 -- above. There are two sort of stored discriminants: implicit and
6217 -- explicit. As long as the derived type inherits the same discriminants as
6218 -- the root record type, stored discriminants are the same as regular
6219 -- discriminants, and are said to be implicit. However, if any discriminant
6220 -- in the root type was renamed in the derived type, then the derived
6221 -- type will contain explicit stored discriminants. Explicit stored
6222 -- discriminants are discriminants in addition to the semantically visible
6223 -- discriminants defined for the derived type. Stored discriminants are
6224 -- used by Gigi to figure out what are the physical discriminants in
6225 -- objects of the derived type (see precise definition in einfo.ads).
6226 -- As an example, consider the following:
6228 -- type R (D1, D2, D3 : Int) is record ... end record;
6229 -- type T1 is new R;
6230 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
6231 -- type T3 is new T2;
6232 -- type T4 (Y : Int) is new T3 (Y, 99);
6234 -- The following table summarizes the discriminants and stored
6235 -- discriminants in R and T1 through T4.
6237 -- Type Discrim Stored Discrim Comment
6238 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
6239 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
6240 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
6241 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
6242 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
6244 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
6245 -- find the corresponding discriminant in the parent type, while
6246 -- Original_Record_Component (abbreviated ORC below), the actual physical
6247 -- component that is renamed. Finally the field Is_Completely_Hidden
6248 -- (abbreviated ICH below) is set for all explicit stored discriminants
6249 -- (see einfo.ads for more info). For the above example this gives:
6251 -- Discrim CD ORC ICH
6252 -- ^^^^^^^ ^^ ^^^ ^^^
6253 -- D1 in R empty itself no
6254 -- D2 in R empty itself no
6255 -- D3 in R empty itself no
6257 -- D1 in T1 D1 in R itself no
6258 -- D2 in T1 D2 in R itself no
6259 -- D3 in T1 D3 in R itself no
6261 -- X1 in T2 D3 in T1 D3 in T2 no
6262 -- X2 in T2 D1 in T1 D1 in T2 no
6263 -- D1 in T2 empty itself yes
6264 -- D2 in T2 empty itself yes
6265 -- D3 in T2 empty itself yes
6267 -- X1 in T3 X1 in T2 D3 in T3 no
6268 -- X2 in T3 X2 in T2 D1 in T3 no
6269 -- D1 in T3 empty itself yes
6270 -- D2 in T3 empty itself yes
6271 -- D3 in T3 empty itself yes
6273 -- Y in T4 X1 in T3 D3 in T3 no
6274 -- D1 in T3 empty itself yes
6275 -- D2 in T3 empty itself yes
6276 -- D3 in T3 empty itself yes
6278 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
6280 -- Type derivation for tagged types is fairly straightforward. If no
6281 -- discriminants are specified by the derived type, these are inherited
6282 -- from the parent. No explicit stored discriminants are ever necessary.
6283 -- The only manipulation that is done to the tree is that of adding a
6284 -- _parent field with parent type and constrained to the same constraint
6285 -- specified for the parent in the derived type definition. For instance:
6287 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
6288 -- type T1 is new R with null record;
6289 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
6291 -- are changed into:
6293 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
6294 -- _parent : R (D1, D2, D3);
6295 -- end record;
6297 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
6298 -- _parent : T1 (X2, 88, X1);
6299 -- end record;
6301 -- The discriminants actually present in R, T1 and T2 as well as their CD,
6302 -- ORC and ICH fields are:
6304 -- Discrim CD ORC ICH
6305 -- ^^^^^^^ ^^ ^^^ ^^^
6306 -- D1 in R empty itself no
6307 -- D2 in R empty itself no
6308 -- D3 in R empty itself no
6310 -- D1 in T1 D1 in R D1 in R no
6311 -- D2 in T1 D2 in R D2 in R no
6312 -- D3 in T1 D3 in R D3 in R no
6314 -- X1 in T2 D3 in T1 D3 in R no
6315 -- X2 in T2 D1 in T1 D1 in R no
6317 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
6319 -- Regardless of whether we dealing with a tagged or untagged type
6320 -- we will transform all derived type declarations of the form
6322 -- type T is new R (...) [with ...];
6323 -- or
6324 -- subtype S is R (...);
6325 -- type T is new S [with ...];
6326 -- into
6327 -- type BT is new R [with ...];
6328 -- subtype T is BT (...);
6330 -- That is, the base derived type is constrained only if it has no
6331 -- discriminants. The reason for doing this is that GNAT's semantic model
6332 -- assumes that a base type with discriminants is unconstrained.
6334 -- Note that, strictly speaking, the above transformation is not always
6335 -- correct. Consider for instance the following excerpt from ACVC b34011a:
6337 -- procedure B34011A is
6338 -- type REC (D : integer := 0) is record
6339 -- I : Integer;
6340 -- end record;
6342 -- package P is
6343 -- type T6 is new Rec;
6344 -- function F return T6;
6345 -- end P;
6347 -- use P;
6348 -- package Q6 is
6349 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
6350 -- end Q6;
6352 -- The definition of Q6.U is illegal. However transforming Q6.U into
6354 -- type BaseU is new T6;
6355 -- subtype U is BaseU (Q6.F.I)
6357 -- turns U into a legal subtype, which is incorrect. To avoid this problem
6358 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
6359 -- the transformation described above.
6361 -- There is another instance where the above transformation is incorrect.
6362 -- Consider:
6364 -- package Pack is
6365 -- type Base (D : Integer) is tagged null record;
6366 -- procedure P (X : Base);
6368 -- type Der is new Base (2) with null record;
6369 -- procedure P (X : Der);
6370 -- end Pack;
6372 -- Then the above transformation turns this into
6374 -- type Der_Base is new Base with null record;
6375 -- -- procedure P (X : Base) is implicitly inherited here
6376 -- -- as procedure P (X : Der_Base).
6378 -- subtype Der is Der_Base (2);
6379 -- procedure P (X : Der);
6380 -- -- The overriding of P (X : Der_Base) is illegal since we
6381 -- -- have a parameter conformance problem.
6383 -- To get around this problem, after having semantically processed Der_Base
6384 -- and the rewritten subtype declaration for Der, we copy Der_Base field
6385 -- Discriminant_Constraint from Der so that when parameter conformance is
6386 -- checked when P is overridden, no semantic errors are flagged.
6388 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
6390 -- Regardless of whether we are dealing with a tagged or untagged type
6391 -- we will transform all derived type declarations of the form
6393 -- type R (D1, .., Dn : ...) is [tagged] record ...;
6394 -- type T is new R [with ...];
6395 -- into
6396 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
6398 -- The reason for such transformation is that it allows us to implement a
6399 -- very clean form of component inheritance as explained below.
6401 -- Note that this transformation is not achieved by direct tree rewriting
6402 -- and manipulation, but rather by redoing the semantic actions that the
6403 -- above transformation will entail. This is done directly in routine
6404 -- Inherit_Components.
6406 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
6408 -- In both tagged and untagged derived types, regular non discriminant
6409 -- components are inherited in the derived type from the parent type. In
6410 -- the absence of discriminants component, inheritance is straightforward
6411 -- as components can simply be copied from the parent.
6413 -- If the parent has discriminants, inheriting components constrained with
6414 -- these discriminants requires caution. Consider the following example:
6416 -- type R (D1, D2 : Positive) is [tagged] record
6417 -- S : String (D1 .. D2);
6418 -- end record;
6420 -- type T1 is new R [with null record];
6421 -- type T2 (X : positive) is new R (1, X) [with null record];
6423 -- As explained in 6. above, T1 is rewritten as
6424 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
6425 -- which makes the treatment for T1 and T2 identical.
6427 -- What we want when inheriting S, is that references to D1 and D2 in R are
6428 -- replaced with references to their correct constraints, i.e. D1 and D2 in
6429 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
6430 -- with either discriminant references in the derived type or expressions.
6431 -- This replacement is achieved as follows: before inheriting R's
6432 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
6433 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
6434 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
6435 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
6436 -- by String (1 .. X).
6438 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
6440 -- We explain here the rules governing private type extensions relevant to
6441 -- type derivation. These rules are explained on the following example:
6443 -- type D [(...)] is new A [(...)] with private; <-- partial view
6444 -- type D [(...)] is new P [(...)] with null record; <-- full view
6446 -- Type A is called the ancestor subtype of the private extension.
6447 -- Type P is the parent type of the full view of the private extension. It
6448 -- must be A or a type derived from A.
6450 -- The rules concerning the discriminants of private type extensions are
6451 -- [7.3(10-13)]:
6453 -- o If a private extension inherits known discriminants from the ancestor
6454 -- subtype, then the full view shall also inherit its discriminants from
6455 -- the ancestor subtype and the parent subtype of the full view shall be
6456 -- constrained if and only if the ancestor subtype is constrained.
6458 -- o If a partial view has unknown discriminants, then the full view may
6459 -- define a definite or an indefinite subtype, with or without
6460 -- discriminants.
6462 -- o If a partial view has neither known nor unknown discriminants, then
6463 -- the full view shall define a definite subtype.
6465 -- o If the ancestor subtype of a private extension has constrained
6466 -- discriminants, then the parent subtype of the full view shall impose a
6467 -- statically matching constraint on those discriminants.
6469 -- This means that only the following forms of private extensions are
6470 -- allowed:
6472 -- type D is new A with private; <-- partial view
6473 -- type D is new P with null record; <-- full view
6475 -- If A has no discriminants than P has no discriminants, otherwise P must
6476 -- inherit A's discriminants.
6478 -- type D is new A (...) with private; <-- partial view
6479 -- type D is new P (:::) with null record; <-- full view
6481 -- P must inherit A's discriminants and (...) and (:::) must statically
6482 -- match.
6484 -- subtype A is R (...);
6485 -- type D is new A with private; <-- partial view
6486 -- type D is new P with null record; <-- full view
6488 -- P must have inherited R's discriminants and must be derived from A or
6489 -- any of its subtypes.
6491 -- type D (..) is new A with private; <-- partial view
6492 -- type D (..) is new P [(:::)] with null record; <-- full view
6494 -- No specific constraints on P's discriminants or constraint (:::).
6495 -- Note that A can be unconstrained, but the parent subtype P must either
6496 -- be constrained or (:::) must be present.
6498 -- type D (..) is new A [(...)] with private; <-- partial view
6499 -- type D (..) is new P [(:::)] with null record; <-- full view
6501 -- P's constraints on A's discriminants must statically match those
6502 -- imposed by (...).
6504 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
6506 -- The full view of a private extension is handled exactly as described
6507 -- above. The model chose for the private view of a private extension is
6508 -- the same for what concerns discriminants (i.e. they receive the same
6509 -- treatment as in the tagged case). However, the private view of the
6510 -- private extension always inherits the components of the parent base,
6511 -- without replacing any discriminant reference. Strictly speaking this is
6512 -- incorrect. However, Gigi never uses this view to generate code so this
6513 -- is a purely semantic issue. In theory, a set of transformations similar
6514 -- to those given in 5. and 6. above could be applied to private views of
6515 -- private extensions to have the same model of component inheritance as
6516 -- for non private extensions. However, this is not done because it would
6517 -- further complicate private type processing. Semantically speaking, this
6518 -- leaves us in an uncomfortable situation. As an example consider:
6520 -- package Pack is
6521 -- type R (D : integer) is tagged record
6522 -- S : String (1 .. D);
6523 -- end record;
6524 -- procedure P (X : R);
6525 -- type T is new R (1) with private;
6526 -- private
6527 -- type T is new R (1) with null record;
6528 -- end;
6530 -- This is transformed into:
6532 -- package Pack is
6533 -- type R (D : integer) is tagged record
6534 -- S : String (1 .. D);
6535 -- end record;
6536 -- procedure P (X : R);
6537 -- type T is new R (1) with private;
6538 -- private
6539 -- type BaseT is new R with null record;
6540 -- subtype T is BaseT (1);
6541 -- end;
6543 -- (strictly speaking the above is incorrect Ada)
6545 -- From the semantic standpoint the private view of private extension T
6546 -- should be flagged as constrained since one can clearly have
6548 -- Obj : T;
6550 -- in a unit withing Pack. However, when deriving subprograms for the
6551 -- private view of private extension T, T must be seen as unconstrained
6552 -- since T has discriminants (this is a constraint of the current
6553 -- subprogram derivation model). Thus, when processing the private view of
6554 -- a private extension such as T, we first mark T as unconstrained, we
6555 -- process it, we perform program derivation and just before returning from
6556 -- Build_Derived_Record_Type we mark T as constrained.
6558 -- ??? Are there are other uncomfortable cases that we will have to
6559 -- deal with.
6561 -- 10. RECORD_TYPE_WITH_PRIVATE complications
6563 -- Types that are derived from a visible record type and have a private
6564 -- extension present other peculiarities. They behave mostly like private
6565 -- types, but if they have primitive operations defined, these will not
6566 -- have the proper signatures for further inheritance, because other
6567 -- primitive operations will use the implicit base that we define for
6568 -- private derivations below. This affect subprogram inheritance (see
6569 -- Derive_Subprograms for details). We also derive the implicit base from
6570 -- the base type of the full view, so that the implicit base is a record
6571 -- type and not another private type, This avoids infinite loops.
6573 procedure Build_Derived_Record_Type
6574 (N : Node_Id;
6575 Parent_Type : Entity_Id;
6576 Derived_Type : Entity_Id;
6577 Derive_Subps : Boolean := True)
6579 Loc : constant Source_Ptr := Sloc (N);
6580 Parent_Base : Entity_Id;
6581 Type_Def : Node_Id;
6582 Indic : Node_Id;
6583 Discrim : Entity_Id;
6584 Last_Discrim : Entity_Id;
6585 Constrs : Elist_Id;
6587 Discs : Elist_Id := New_Elmt_List;
6588 -- An empty Discs list means that there were no constraints in the
6589 -- subtype indication or that there was an error processing it.
6591 Assoc_List : Elist_Id;
6592 New_Discrs : Elist_Id;
6593 New_Base : Entity_Id;
6594 New_Decl : Node_Id;
6595 New_Indic : Node_Id;
6597 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
6598 Discriminant_Specs : constant Boolean :=
6599 Present (Discriminant_Specifications (N));
6600 Private_Extension : constant Boolean :=
6601 Nkind (N) = N_Private_Extension_Declaration;
6603 Constraint_Present : Boolean;
6604 Inherit_Discrims : Boolean := False;
6605 Save_Etype : Entity_Id;
6606 Save_Discr_Constr : Elist_Id;
6607 Save_Next_Entity : Entity_Id;
6609 begin
6610 if Ekind (Parent_Type) = E_Record_Type_With_Private
6611 and then Present (Full_View (Parent_Type))
6612 and then Has_Discriminants (Parent_Type)
6613 then
6614 Parent_Base := Base_Type (Full_View (Parent_Type));
6615 else
6616 Parent_Base := Base_Type (Parent_Type);
6617 end if;
6619 -- Before we start the previously documented transformations, here is
6620 -- little fix for size and alignment of tagged types. Normally when we
6621 -- derive type D from type P, we copy the size and alignment of P as the
6622 -- default for D, and in the absence of explicit representation clauses
6623 -- for D, the size and alignment are indeed the same as the parent.
6625 -- But this is wrong for tagged types, since fields may be added, and
6626 -- the default size may need to be larger, and the default alignment may
6627 -- need to be larger.
6629 -- We therefore reset the size and alignment fields in the tagged case.
6630 -- Note that the size and alignment will in any case be at least as
6631 -- large as the parent type (since the derived type has a copy of the
6632 -- parent type in the _parent field)
6634 -- The type is also marked as being tagged here, which is needed when
6635 -- processing components with a self-referential anonymous access type
6636 -- in the call to Check_Anonymous_Access_Components below. Note that
6637 -- this flag is also set later on for completeness.
6639 if Is_Tagged then
6640 Set_Is_Tagged_Type (Derived_Type);
6641 Init_Size_Align (Derived_Type);
6642 end if;
6644 -- STEP 0a: figure out what kind of derived type declaration we have
6646 if Private_Extension then
6647 Type_Def := N;
6648 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
6650 else
6651 Type_Def := Type_Definition (N);
6653 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
6654 -- Parent_Base can be a private type or private extension. However,
6655 -- for tagged types with an extension the newly added fields are
6656 -- visible and hence the Derived_Type is always an E_Record_Type.
6657 -- (except that the parent may have its own private fields).
6658 -- For untagged types we preserve the Ekind of the Parent_Base.
6660 if Present (Record_Extension_Part (Type_Def)) then
6661 Set_Ekind (Derived_Type, E_Record_Type);
6663 -- Create internal access types for components with anonymous
6664 -- access types.
6666 if Ada_Version >= Ada_05 then
6667 Check_Anonymous_Access_Components
6668 (N, Derived_Type, Derived_Type,
6669 Component_List (Record_Extension_Part (Type_Def)));
6670 end if;
6672 else
6673 Set_Ekind (Derived_Type, Ekind (Parent_Base));
6674 end if;
6675 end if;
6677 -- Indic can either be an N_Identifier if the subtype indication
6678 -- contains no constraint or an N_Subtype_Indication if the subtype
6679 -- indication has a constraint.
6681 Indic := Subtype_Indication (Type_Def);
6682 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
6684 -- Check that the type has visible discriminants. The type may be
6685 -- a private type with unknown discriminants whose full view has
6686 -- discriminants which are invisible.
6688 if Constraint_Present then
6689 if not Has_Discriminants (Parent_Base)
6690 or else
6691 (Has_Unknown_Discriminants (Parent_Base)
6692 and then Is_Private_Type (Parent_Base))
6693 then
6694 Error_Msg_N
6695 ("invalid constraint: type has no discriminant",
6696 Constraint (Indic));
6698 Constraint_Present := False;
6699 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
6701 elsif Is_Constrained (Parent_Type) then
6702 Error_Msg_N
6703 ("invalid constraint: parent type is already constrained",
6704 Constraint (Indic));
6706 Constraint_Present := False;
6707 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
6708 end if;
6709 end if;
6711 -- STEP 0b: If needed, apply transformation given in point 5. above
6713 if not Private_Extension
6714 and then Has_Discriminants (Parent_Type)
6715 and then not Discriminant_Specs
6716 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
6717 then
6718 -- First, we must analyze the constraint (see comment in point 5.)
6720 if Constraint_Present then
6721 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
6723 if Has_Discriminants (Derived_Type)
6724 and then Has_Private_Declaration (Derived_Type)
6725 and then Present (Discriminant_Constraint (Derived_Type))
6726 then
6727 -- Verify that constraints of the full view statically match
6728 -- those given in the partial view.
6730 declare
6731 C1, C2 : Elmt_Id;
6733 begin
6734 C1 := First_Elmt (New_Discrs);
6735 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
6736 while Present (C1) and then Present (C2) loop
6737 if Fully_Conformant_Expressions (Node (C1), Node (C2))
6738 or else
6739 (Is_OK_Static_Expression (Node (C1))
6740 and then
6741 Is_OK_Static_Expression (Node (C2))
6742 and then
6743 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
6744 then
6745 null;
6747 else
6748 Error_Msg_N (
6749 "constraint not conformant to previous declaration",
6750 Node (C1));
6751 end if;
6753 Next_Elmt (C1);
6754 Next_Elmt (C2);
6755 end loop;
6756 end;
6757 end if;
6758 end if;
6760 -- Insert and analyze the declaration for the unconstrained base type
6762 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
6764 New_Decl :=
6765 Make_Full_Type_Declaration (Loc,
6766 Defining_Identifier => New_Base,
6767 Type_Definition =>
6768 Make_Derived_Type_Definition (Loc,
6769 Abstract_Present => Abstract_Present (Type_Def),
6770 Limited_Present => Limited_Present (Type_Def),
6771 Subtype_Indication =>
6772 New_Occurrence_Of (Parent_Base, Loc),
6773 Record_Extension_Part =>
6774 Relocate_Node (Record_Extension_Part (Type_Def)),
6775 Interface_List => Interface_List (Type_Def)));
6777 Set_Parent (New_Decl, Parent (N));
6778 Mark_Rewrite_Insertion (New_Decl);
6779 Insert_Before (N, New_Decl);
6781 -- Note that this call passes False for the Derive_Subps parameter
6782 -- because subprogram derivation is deferred until after creating
6783 -- the subtype (see below).
6785 Build_Derived_Type
6786 (New_Decl, Parent_Base, New_Base,
6787 Is_Completion => True, Derive_Subps => False);
6789 -- ??? This needs re-examination to determine whether the
6790 -- above call can simply be replaced by a call to Analyze.
6792 Set_Analyzed (New_Decl);
6794 -- Insert and analyze the declaration for the constrained subtype
6796 if Constraint_Present then
6797 New_Indic :=
6798 Make_Subtype_Indication (Loc,
6799 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
6800 Constraint => Relocate_Node (Constraint (Indic)));
6802 else
6803 declare
6804 Constr_List : constant List_Id := New_List;
6805 C : Elmt_Id;
6806 Expr : Node_Id;
6808 begin
6809 C := First_Elmt (Discriminant_Constraint (Parent_Type));
6810 while Present (C) loop
6811 Expr := Node (C);
6813 -- It is safe here to call New_Copy_Tree since
6814 -- Force_Evaluation was called on each constraint in
6815 -- Build_Discriminant_Constraints.
6817 Append (New_Copy_Tree (Expr), To => Constr_List);
6819 Next_Elmt (C);
6820 end loop;
6822 New_Indic :=
6823 Make_Subtype_Indication (Loc,
6824 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
6825 Constraint =>
6826 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
6827 end;
6828 end if;
6830 Rewrite (N,
6831 Make_Subtype_Declaration (Loc,
6832 Defining_Identifier => Derived_Type,
6833 Subtype_Indication => New_Indic));
6835 Analyze (N);
6837 -- Derivation of subprograms must be delayed until the full subtype
6838 -- has been established to ensure proper overriding of subprograms
6839 -- inherited by full types. If the derivations occurred as part of
6840 -- the call to Build_Derived_Type above, then the check for type
6841 -- conformance would fail because earlier primitive subprograms
6842 -- could still refer to the full type prior the change to the new
6843 -- subtype and hence would not match the new base type created here.
6845 Derive_Subprograms (Parent_Type, Derived_Type);
6847 -- For tagged types the Discriminant_Constraint of the new base itype
6848 -- is inherited from the first subtype so that no subtype conformance
6849 -- problem arise when the first subtype overrides primitive
6850 -- operations inherited by the implicit base type.
6852 if Is_Tagged then
6853 Set_Discriminant_Constraint
6854 (New_Base, Discriminant_Constraint (Derived_Type));
6855 end if;
6857 return;
6858 end if;
6860 -- If we get here Derived_Type will have no discriminants or it will be
6861 -- a discriminated unconstrained base type.
6863 -- STEP 1a: perform preliminary actions/checks for derived tagged types
6865 if Is_Tagged then
6867 -- The parent type is frozen for non-private extensions (RM 13.14(7))
6868 -- The declaration of a specific descendant of an interface type
6869 -- freezes the interface type (RM 13.14).
6871 if not Private_Extension
6872 or else Is_Interface (Parent_Base)
6873 then
6874 Freeze_Before (N, Parent_Type);
6875 end if;
6877 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
6878 -- cannot be declared at a deeper level than its parent type is
6879 -- removed. The check on derivation within a generic body is also
6880 -- relaxed, but there's a restriction that a derived tagged type
6881 -- cannot be declared in a generic body if it's derived directly
6882 -- or indirectly from a formal type of that generic.
6884 if Ada_Version >= Ada_05 then
6885 if Present (Enclosing_Generic_Body (Derived_Type)) then
6886 declare
6887 Ancestor_Type : Entity_Id;
6889 begin
6890 -- Check to see if any ancestor of the derived type is a
6891 -- formal type.
6893 Ancestor_Type := Parent_Type;
6894 while not Is_Generic_Type (Ancestor_Type)
6895 and then Etype (Ancestor_Type) /= Ancestor_Type
6896 loop
6897 Ancestor_Type := Etype (Ancestor_Type);
6898 end loop;
6900 -- If the derived type does have a formal type as an
6901 -- ancestor, then it's an error if the derived type is
6902 -- declared within the body of the generic unit that
6903 -- declares the formal type in its generic formal part. It's
6904 -- sufficient to check whether the ancestor type is declared
6905 -- inside the same generic body as the derived type (such as
6906 -- within a nested generic spec), in which case the
6907 -- derivation is legal. If the formal type is declared
6908 -- outside of that generic body, then it's guaranteed that
6909 -- the derived type is declared within the generic body of
6910 -- the generic unit declaring the formal type.
6912 if Is_Generic_Type (Ancestor_Type)
6913 and then Enclosing_Generic_Body (Ancestor_Type) /=
6914 Enclosing_Generic_Body (Derived_Type)
6915 then
6916 Error_Msg_NE
6917 ("parent type of& must not be descendant of formal type"
6918 & " of an enclosing generic body",
6919 Indic, Derived_Type);
6920 end if;
6921 end;
6922 end if;
6924 elsif Type_Access_Level (Derived_Type) /=
6925 Type_Access_Level (Parent_Type)
6926 and then not Is_Generic_Type (Derived_Type)
6927 then
6928 if Is_Controlled (Parent_Type) then
6929 Error_Msg_N
6930 ("controlled type must be declared at the library level",
6931 Indic);
6932 else
6933 Error_Msg_N
6934 ("type extension at deeper accessibility level than parent",
6935 Indic);
6936 end if;
6938 else
6939 declare
6940 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
6942 begin
6943 if Present (GB)
6944 and then GB /= Enclosing_Generic_Body (Parent_Base)
6945 then
6946 Error_Msg_NE
6947 ("parent type of& must not be outside generic body"
6948 & " (RM 3.9.1(4))",
6949 Indic, Derived_Type);
6950 end if;
6951 end;
6952 end if;
6953 end if;
6955 -- Ada 2005 (AI-251)
6957 if Ada_Version = Ada_05
6958 and then Is_Tagged
6959 then
6960 -- "The declaration of a specific descendant of an interface type
6961 -- freezes the interface type" (RM 13.14).
6963 declare
6964 Iface : Node_Id;
6965 begin
6966 if Is_Non_Empty_List (Interface_List (Type_Def)) then
6967 Iface := First (Interface_List (Type_Def));
6968 while Present (Iface) loop
6969 Freeze_Before (N, Etype (Iface));
6970 Next (Iface);
6971 end loop;
6972 end if;
6973 end;
6974 end if;
6976 -- STEP 1b : preliminary cleanup of the full view of private types
6978 -- If the type is already marked as having discriminants, then it's the
6979 -- completion of a private type or private extension and we need to
6980 -- retain the discriminants from the partial view if the current
6981 -- declaration has Discriminant_Specifications so that we can verify
6982 -- conformance. However, we must remove any existing components that
6983 -- were inherited from the parent (and attached in Copy_And_Swap)
6984 -- because the full type inherits all appropriate components anyway, and
6985 -- we do not want the partial view's components interfering.
6987 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
6988 Discrim := First_Discriminant (Derived_Type);
6989 loop
6990 Last_Discrim := Discrim;
6991 Next_Discriminant (Discrim);
6992 exit when No (Discrim);
6993 end loop;
6995 Set_Last_Entity (Derived_Type, Last_Discrim);
6997 -- In all other cases wipe out the list of inherited components (even
6998 -- inherited discriminants), it will be properly rebuilt here.
7000 else
7001 Set_First_Entity (Derived_Type, Empty);
7002 Set_Last_Entity (Derived_Type, Empty);
7003 end if;
7005 -- STEP 1c: Initialize some flags for the Derived_Type
7007 -- The following flags must be initialized here so that
7008 -- Process_Discriminants can check that discriminants of tagged types do
7009 -- not have a default initial value and that access discriminants are
7010 -- only specified for limited records. For completeness, these flags are
7011 -- also initialized along with all the other flags below.
7013 -- AI-419: Limitedness is not inherited from an interface parent, so to
7014 -- be limited in that case the type must be explicitly declared as
7015 -- limited. However, task and protected interfaces are always limited.
7017 if Limited_Present (Type_Def) then
7018 Set_Is_Limited_Record (Derived_Type);
7020 elsif Is_Limited_Record (Parent_Type)
7021 or else (Present (Full_View (Parent_Type))
7022 and then Is_Limited_Record (Full_View (Parent_Type)))
7023 then
7024 if not Is_Interface (Parent_Type)
7025 or else Is_Synchronized_Interface (Parent_Type)
7026 or else Is_Protected_Interface (Parent_Type)
7027 or else Is_Task_Interface (Parent_Type)
7028 then
7029 Set_Is_Limited_Record (Derived_Type);
7030 end if;
7031 end if;
7033 -- STEP 2a: process discriminants of derived type if any
7035 Push_Scope (Derived_Type);
7037 if Discriminant_Specs then
7038 Set_Has_Unknown_Discriminants (Derived_Type, False);
7040 -- The following call initializes fields Has_Discriminants and
7041 -- Discriminant_Constraint, unless we are processing the completion
7042 -- of a private type declaration.
7044 Check_Or_Process_Discriminants (N, Derived_Type);
7046 -- For non-tagged types the constraint on the Parent_Type must be
7047 -- present and is used to rename the discriminants.
7049 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7050 Error_Msg_N ("untagged parent must have discriminants", Indic);
7052 elsif not Is_Tagged and then not Constraint_Present then
7053 Error_Msg_N
7054 ("discriminant constraint needed for derived untagged records",
7055 Indic);
7057 -- Otherwise the parent subtype must be constrained unless we have a
7058 -- private extension.
7060 elsif not Constraint_Present
7061 and then not Private_Extension
7062 and then not Is_Constrained (Parent_Type)
7063 then
7064 Error_Msg_N
7065 ("unconstrained type not allowed in this context", Indic);
7067 elsif Constraint_Present then
7068 -- The following call sets the field Corresponding_Discriminant
7069 -- for the discriminants in the Derived_Type.
7071 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
7073 -- For untagged types all new discriminants must rename
7074 -- discriminants in the parent. For private extensions new
7075 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7077 Discrim := First_Discriminant (Derived_Type);
7078 while Present (Discrim) loop
7079 if not Is_Tagged
7080 and then No (Corresponding_Discriminant (Discrim))
7081 then
7082 Error_Msg_N
7083 ("new discriminants must constrain old ones", Discrim);
7085 elsif Private_Extension
7086 and then Present (Corresponding_Discriminant (Discrim))
7087 then
7088 Error_Msg_N
7089 ("only static constraints allowed for parent"
7090 & " discriminants in the partial view", Indic);
7091 exit;
7092 end if;
7094 -- If a new discriminant is used in the constraint, then its
7095 -- subtype must be statically compatible with the parent
7096 -- discriminant's subtype (3.7(15)).
7098 if Present (Corresponding_Discriminant (Discrim))
7099 and then
7100 not Subtypes_Statically_Compatible
7101 (Etype (Discrim),
7102 Etype (Corresponding_Discriminant (Discrim)))
7103 then
7104 Error_Msg_N
7105 ("subtype must be compatible with parent discriminant",
7106 Discrim);
7107 end if;
7109 Next_Discriminant (Discrim);
7110 end loop;
7112 -- Check whether the constraints of the full view statically
7113 -- match those imposed by the parent subtype [7.3(13)].
7115 if Present (Stored_Constraint (Derived_Type)) then
7116 declare
7117 C1, C2 : Elmt_Id;
7119 begin
7120 C1 := First_Elmt (Discs);
7121 C2 := First_Elmt (Stored_Constraint (Derived_Type));
7122 while Present (C1) and then Present (C2) loop
7123 if not
7124 Fully_Conformant_Expressions (Node (C1), Node (C2))
7125 then
7126 Error_Msg_N
7127 ("not conformant with previous declaration",
7128 Node (C1));
7129 end if;
7131 Next_Elmt (C1);
7132 Next_Elmt (C2);
7133 end loop;
7134 end;
7135 end if;
7136 end if;
7138 -- STEP 2b: No new discriminants, inherit discriminants if any
7140 else
7141 if Private_Extension then
7142 Set_Has_Unknown_Discriminants
7143 (Derived_Type,
7144 Has_Unknown_Discriminants (Parent_Type)
7145 or else Unknown_Discriminants_Present (N));
7147 -- The partial view of the parent may have unknown discriminants,
7148 -- but if the full view has discriminants and the parent type is
7149 -- in scope they must be inherited.
7151 elsif Has_Unknown_Discriminants (Parent_Type)
7152 and then
7153 (not Has_Discriminants (Parent_Type)
7154 or else not In_Open_Scopes (Scope (Parent_Type)))
7155 then
7156 Set_Has_Unknown_Discriminants (Derived_Type);
7157 end if;
7159 if not Has_Unknown_Discriminants (Derived_Type)
7160 and then not Has_Unknown_Discriminants (Parent_Base)
7161 and then Has_Discriminants (Parent_Type)
7162 then
7163 Inherit_Discrims := True;
7164 Set_Has_Discriminants
7165 (Derived_Type, True);
7166 Set_Discriminant_Constraint
7167 (Derived_Type, Discriminant_Constraint (Parent_Base));
7168 end if;
7170 -- The following test is true for private types (remember
7171 -- transformation 5. is not applied to those) and in an error
7172 -- situation.
7174 if Constraint_Present then
7175 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
7176 end if;
7178 -- For now mark a new derived type as constrained only if it has no
7179 -- discriminants. At the end of Build_Derived_Record_Type we properly
7180 -- set this flag in the case of private extensions. See comments in
7181 -- point 9. just before body of Build_Derived_Record_Type.
7183 Set_Is_Constrained
7184 (Derived_Type,
7185 not (Inherit_Discrims
7186 or else Has_Unknown_Discriminants (Derived_Type)));
7187 end if;
7189 -- STEP 3: initialize fields of derived type
7191 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
7192 Set_Stored_Constraint (Derived_Type, No_Elist);
7194 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
7195 -- but cannot be interfaces
7197 if not Private_Extension
7198 and then Ekind (Derived_Type) /= E_Private_Type
7199 and then Ekind (Derived_Type) /= E_Limited_Private_Type
7200 then
7201 if Interface_Present (Type_Def) then
7202 Analyze_Interface_Declaration (Derived_Type, Type_Def);
7203 end if;
7205 Set_Interfaces (Derived_Type, No_Elist);
7206 end if;
7208 -- Fields inherited from the Parent_Type
7210 Set_Discard_Names
7211 (Derived_Type, Einfo.Discard_Names (Parent_Type));
7212 Set_Has_Specified_Layout
7213 (Derived_Type, Has_Specified_Layout (Parent_Type));
7214 Set_Is_Limited_Composite
7215 (Derived_Type, Is_Limited_Composite (Parent_Type));
7216 Set_Is_Private_Composite
7217 (Derived_Type, Is_Private_Composite (Parent_Type));
7219 -- Fields inherited from the Parent_Base
7221 Set_Has_Controlled_Component
7222 (Derived_Type, Has_Controlled_Component (Parent_Base));
7223 Set_Has_Non_Standard_Rep
7224 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
7225 Set_Has_Primitive_Operations
7226 (Derived_Type, Has_Primitive_Operations (Parent_Base));
7228 -- Fields inherited from the Parent_Base in the non-private case
7230 if Ekind (Derived_Type) = E_Record_Type then
7231 Set_Has_Complex_Representation
7232 (Derived_Type, Has_Complex_Representation (Parent_Base));
7233 end if;
7235 -- Fields inherited from the Parent_Base for record types
7237 if Is_Record_Type (Derived_Type) then
7239 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7240 -- Parent_Base can be a private type or private extension.
7242 if Present (Full_View (Parent_Base)) then
7243 Set_OK_To_Reorder_Components
7244 (Derived_Type,
7245 OK_To_Reorder_Components (Full_View (Parent_Base)));
7246 Set_Reverse_Bit_Order
7247 (Derived_Type, Reverse_Bit_Order (Full_View (Parent_Base)));
7248 else
7249 Set_OK_To_Reorder_Components
7250 (Derived_Type, OK_To_Reorder_Components (Parent_Base));
7251 Set_Reverse_Bit_Order
7252 (Derived_Type, Reverse_Bit_Order (Parent_Base));
7253 end if;
7254 end if;
7256 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7258 if not Is_Controlled (Parent_Type) then
7259 Set_Finalize_Storage_Only
7260 (Derived_Type, Finalize_Storage_Only (Parent_Type));
7261 end if;
7263 -- Set fields for private derived types
7265 if Is_Private_Type (Derived_Type) then
7266 Set_Depends_On_Private (Derived_Type, True);
7267 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7269 -- Inherit fields from non private record types. If this is the
7270 -- completion of a derivation from a private type, the parent itself
7271 -- is private, and the attributes come from its full view, which must
7272 -- be present.
7274 else
7275 if Is_Private_Type (Parent_Base)
7276 and then not Is_Record_Type (Parent_Base)
7277 then
7278 Set_Component_Alignment
7279 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
7280 Set_C_Pass_By_Copy
7281 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
7282 else
7283 Set_Component_Alignment
7284 (Derived_Type, Component_Alignment (Parent_Base));
7285 Set_C_Pass_By_Copy
7286 (Derived_Type, C_Pass_By_Copy (Parent_Base));
7287 end if;
7288 end if;
7290 -- Set fields for tagged types
7292 if Is_Tagged then
7293 Set_Primitive_Operations (Derived_Type, New_Elmt_List);
7295 -- All tagged types defined in Ada.Finalization are controlled
7297 if Chars (Scope (Derived_Type)) = Name_Finalization
7298 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
7299 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
7300 then
7301 Set_Is_Controlled (Derived_Type);
7302 else
7303 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
7304 end if;
7306 -- Minor optimization: there is no need to generate the class-wide
7307 -- entity associated with an underlying record view.
7309 if not Is_Underlying_Record_View (Derived_Type) then
7310 Make_Class_Wide_Type (Derived_Type);
7311 end if;
7313 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
7315 if Has_Discriminants (Derived_Type)
7316 and then Constraint_Present
7317 then
7318 Set_Stored_Constraint
7319 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
7320 end if;
7322 if Ada_Version >= Ada_05 then
7323 declare
7324 Ifaces_List : Elist_Id;
7326 begin
7327 -- Checks rules 3.9.4 (13/2 and 14/2)
7329 if Comes_From_Source (Derived_Type)
7330 and then not Is_Private_Type (Derived_Type)
7331 and then Is_Interface (Parent_Type)
7332 and then not Is_Interface (Derived_Type)
7333 then
7334 if Is_Task_Interface (Parent_Type) then
7335 Error_Msg_N
7336 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
7337 Derived_Type);
7339 elsif Is_Protected_Interface (Parent_Type) then
7340 Error_Msg_N
7341 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
7342 Derived_Type);
7343 end if;
7344 end if;
7346 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
7348 Check_Interfaces (N, Type_Def);
7350 -- Ada 2005 (AI-251): Collect the list of progenitors that are
7351 -- not already in the parents.
7353 Collect_Interfaces
7354 (T => Derived_Type,
7355 Ifaces_List => Ifaces_List,
7356 Exclude_Parents => True);
7358 Set_Interfaces (Derived_Type, Ifaces_List);
7360 -- If the derived type is the anonymous type created for
7361 -- a declaration whose parent has a constraint, propagate
7362 -- the interface list to the source type. This must be done
7363 -- prior to the completion of the analysis of the source type
7364 -- because the components in the extension may contain current
7365 -- instances whose legality depends on some ancestor.
7367 if Is_Itype (Derived_Type) then
7368 declare
7369 Def : constant Node_Id :=
7370 Associated_Node_For_Itype (Derived_Type);
7371 begin
7372 if Present (Def)
7373 and then Nkind (Def) = N_Full_Type_Declaration
7374 then
7375 Set_Interfaces
7376 (Defining_Identifier (Def), Ifaces_List);
7377 end if;
7378 end;
7379 end if;
7380 end;
7381 end if;
7383 else
7384 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
7385 Set_Has_Non_Standard_Rep
7386 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
7387 end if;
7389 -- STEP 4: Inherit components from the parent base and constrain them.
7390 -- Apply the second transformation described in point 6. above.
7392 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
7393 or else not Has_Discriminants (Parent_Type)
7394 or else not Is_Constrained (Parent_Type)
7395 then
7396 Constrs := Discs;
7397 else
7398 Constrs := Discriminant_Constraint (Parent_Type);
7399 end if;
7401 Assoc_List :=
7402 Inherit_Components
7403 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
7405 -- STEP 5a: Copy the parent record declaration for untagged types
7407 if not Is_Tagged then
7409 -- Discriminant_Constraint (Derived_Type) has been properly
7410 -- constructed. Save it and temporarily set it to Empty because we
7411 -- do not want the call to New_Copy_Tree below to mess this list.
7413 if Has_Discriminants (Derived_Type) then
7414 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
7415 Set_Discriminant_Constraint (Derived_Type, No_Elist);
7416 else
7417 Save_Discr_Constr := No_Elist;
7418 end if;
7420 -- Save the Etype field of Derived_Type. It is correctly set now,
7421 -- but the call to New_Copy tree may remap it to point to itself,
7422 -- which is not what we want. Ditto for the Next_Entity field.
7424 Save_Etype := Etype (Derived_Type);
7425 Save_Next_Entity := Next_Entity (Derived_Type);
7427 -- Assoc_List maps all stored discriminants in the Parent_Base to
7428 -- stored discriminants in the Derived_Type. It is fundamental that
7429 -- no types or itypes with discriminants other than the stored
7430 -- discriminants appear in the entities declared inside
7431 -- Derived_Type, since the back end cannot deal with it.
7433 New_Decl :=
7434 New_Copy_Tree
7435 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
7437 -- Restore the fields saved prior to the New_Copy_Tree call
7438 -- and compute the stored constraint.
7440 Set_Etype (Derived_Type, Save_Etype);
7441 Set_Next_Entity (Derived_Type, Save_Next_Entity);
7443 if Has_Discriminants (Derived_Type) then
7444 Set_Discriminant_Constraint
7445 (Derived_Type, Save_Discr_Constr);
7446 Set_Stored_Constraint
7447 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
7448 Replace_Components (Derived_Type, New_Decl);
7449 end if;
7451 -- Insert the new derived type declaration
7453 Rewrite (N, New_Decl);
7455 -- STEP 5b: Complete the processing for record extensions in generics
7457 -- There is no completion for record extensions declared in the
7458 -- parameter part of a generic, so we need to complete processing for
7459 -- these generic record extensions here. The Record_Type_Definition call
7460 -- will change the Ekind of the components from E_Void to E_Component.
7462 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
7463 Record_Type_Definition (Empty, Derived_Type);
7465 -- STEP 5c: Process the record extension for non private tagged types
7467 elsif not Private_Extension then
7469 -- Add the _parent field in the derived type
7471 Expand_Record_Extension (Derived_Type, Type_Def);
7473 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
7474 -- implemented interfaces if we are in expansion mode
7476 if Expander_Active
7477 and then Has_Interfaces (Derived_Type)
7478 then
7479 Add_Interface_Tag_Components (N, Derived_Type);
7480 end if;
7482 -- Analyze the record extension
7484 Record_Type_Definition
7485 (Record_Extension_Part (Type_Def), Derived_Type);
7486 end if;
7488 End_Scope;
7490 -- Nothing else to do if there is an error in the derivation.
7491 -- An unusual case: the full view may be derived from a type in an
7492 -- instance, when the partial view was used illegally as an actual
7493 -- in that instance, leading to a circular definition.
7495 if Etype (Derived_Type) = Any_Type
7496 or else Etype (Parent_Type) = Derived_Type
7497 then
7498 return;
7499 end if;
7501 -- Set delayed freeze and then derive subprograms, we need to do
7502 -- this in this order so that derived subprograms inherit the
7503 -- derived freeze if necessary.
7505 Set_Has_Delayed_Freeze (Derived_Type);
7507 if Derive_Subps then
7508 Derive_Subprograms (Parent_Type, Derived_Type);
7509 end if;
7511 -- If we have a private extension which defines a constrained derived
7512 -- type mark as constrained here after we have derived subprograms. See
7513 -- comment on point 9. just above the body of Build_Derived_Record_Type.
7515 if Private_Extension and then Inherit_Discrims then
7516 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
7517 Set_Is_Constrained (Derived_Type, True);
7518 Set_Discriminant_Constraint (Derived_Type, Discs);
7520 elsif Is_Constrained (Parent_Type) then
7521 Set_Is_Constrained
7522 (Derived_Type, True);
7523 Set_Discriminant_Constraint
7524 (Derived_Type, Discriminant_Constraint (Parent_Type));
7525 end if;
7526 end if;
7528 -- Update the class-wide type, which shares the now-completed entity
7529 -- list with its specific type. In case of underlying record views,
7530 -- we do not generate the corresponding class wide entity.
7532 if Is_Tagged
7533 and then not Is_Underlying_Record_View (Derived_Type)
7534 then
7535 Set_First_Entity
7536 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
7537 Set_Last_Entity
7538 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
7539 end if;
7541 -- Update the scope of anonymous access types of discriminants and other
7542 -- components, to prevent scope anomalies in gigi, when the derivation
7543 -- appears in a scope nested within that of the parent.
7545 declare
7546 D : Entity_Id;
7548 begin
7549 D := First_Entity (Derived_Type);
7550 while Present (D) loop
7551 if Ekind (D) = E_Discriminant
7552 or else Ekind (D) = E_Component
7553 then
7554 if Is_Itype (Etype (D))
7555 and then Ekind (Etype (D)) = E_Anonymous_Access_Type
7556 then
7557 Set_Scope (Etype (D), Current_Scope);
7558 end if;
7559 end if;
7561 Next_Entity (D);
7562 end loop;
7563 end;
7564 end Build_Derived_Record_Type;
7566 ------------------------
7567 -- Build_Derived_Type --
7568 ------------------------
7570 procedure Build_Derived_Type
7571 (N : Node_Id;
7572 Parent_Type : Entity_Id;
7573 Derived_Type : Entity_Id;
7574 Is_Completion : Boolean;
7575 Derive_Subps : Boolean := True)
7577 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7579 begin
7580 -- Set common attributes
7582 Set_Scope (Derived_Type, Current_Scope);
7584 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7585 Set_Etype (Derived_Type, Parent_Base);
7586 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
7588 Set_Size_Info (Derived_Type, Parent_Type);
7589 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
7590 Set_Convention (Derived_Type, Convention (Parent_Type));
7591 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7592 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
7594 -- The derived type inherits the representation clauses of the parent.
7595 -- However, for a private type that is completed by a derivation, there
7596 -- may be operation attributes that have been specified already (stream
7597 -- attributes and External_Tag) and those must be provided. Finally,
7598 -- if the partial view is a private extension, the representation items
7599 -- of the parent have been inherited already, and should not be chained
7600 -- twice to the derived type.
7602 if Is_Tagged_Type (Parent_Type)
7603 and then Present (First_Rep_Item (Derived_Type))
7604 then
7605 -- The existing items are either operational items or items inherited
7606 -- from a private extension declaration.
7608 declare
7609 Rep : Node_Id;
7610 -- Used to iterate over representation items of the derived type
7612 Last_Rep : Node_Id;
7613 -- Last representation item of the (non-empty) representation
7614 -- item list of the derived type.
7616 Found : Boolean := False;
7618 begin
7619 Rep := First_Rep_Item (Derived_Type);
7620 Last_Rep := Rep;
7621 while Present (Rep) loop
7622 if Rep = First_Rep_Item (Parent_Type) then
7623 Found := True;
7624 exit;
7626 else
7627 Rep := Next_Rep_Item (Rep);
7629 if Present (Rep) then
7630 Last_Rep := Rep;
7631 end if;
7632 end if;
7633 end loop;
7635 -- Here if we either encountered the parent type's first rep
7636 -- item on the derived type's rep item list (in which case
7637 -- Found is True, and we have nothing else to do), or if we
7638 -- reached the last rep item of the derived type, which is
7639 -- Last_Rep, in which case we further chain the parent type's
7640 -- rep items to those of the derived type.
7642 if not Found then
7643 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
7644 end if;
7645 end;
7647 else
7648 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
7649 end if;
7651 case Ekind (Parent_Type) is
7652 when Numeric_Kind =>
7653 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
7655 when Array_Kind =>
7656 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
7658 when E_Record_Type
7659 | E_Record_Subtype
7660 | Class_Wide_Kind =>
7661 Build_Derived_Record_Type
7662 (N, Parent_Type, Derived_Type, Derive_Subps);
7663 return;
7665 when Enumeration_Kind =>
7666 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
7668 when Access_Kind =>
7669 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
7671 when Incomplete_Or_Private_Kind =>
7672 Build_Derived_Private_Type
7673 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
7675 -- For discriminated types, the derivation includes deriving
7676 -- primitive operations. For others it is done below.
7678 if Is_Tagged_Type (Parent_Type)
7679 or else Has_Discriminants (Parent_Type)
7680 or else (Present (Full_View (Parent_Type))
7681 and then Has_Discriminants (Full_View (Parent_Type)))
7682 then
7683 return;
7684 end if;
7686 when Concurrent_Kind =>
7687 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
7689 when others =>
7690 raise Program_Error;
7691 end case;
7693 if Etype (Derived_Type) = Any_Type then
7694 return;
7695 end if;
7697 -- Set delayed freeze and then derive subprograms, we need to do this
7698 -- in this order so that derived subprograms inherit the derived freeze
7699 -- if necessary.
7701 Set_Has_Delayed_Freeze (Derived_Type);
7702 if Derive_Subps then
7703 Derive_Subprograms (Parent_Type, Derived_Type);
7704 end if;
7706 Set_Has_Primitive_Operations
7707 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
7708 end Build_Derived_Type;
7710 -----------------------
7711 -- Build_Discriminal --
7712 -----------------------
7714 procedure Build_Discriminal (Discrim : Entity_Id) is
7715 D_Minal : Entity_Id;
7716 CR_Disc : Entity_Id;
7718 begin
7719 -- A discriminal has the same name as the discriminant
7721 D_Minal :=
7722 Make_Defining_Identifier (Sloc (Discrim),
7723 Chars => Chars (Discrim));
7725 Set_Ekind (D_Minal, E_In_Parameter);
7726 Set_Mechanism (D_Minal, Default_Mechanism);
7727 Set_Etype (D_Minal, Etype (Discrim));
7729 Set_Discriminal (Discrim, D_Minal);
7730 Set_Discriminal_Link (D_Minal, Discrim);
7732 -- For task types, build at once the discriminants of the corresponding
7733 -- record, which are needed if discriminants are used in entry defaults
7734 -- and in family bounds.
7736 if Is_Concurrent_Type (Current_Scope)
7737 or else Is_Limited_Type (Current_Scope)
7738 then
7739 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
7741 Set_Ekind (CR_Disc, E_In_Parameter);
7742 Set_Mechanism (CR_Disc, Default_Mechanism);
7743 Set_Etype (CR_Disc, Etype (Discrim));
7744 Set_Discriminal_Link (CR_Disc, Discrim);
7745 Set_CR_Discriminant (Discrim, CR_Disc);
7746 end if;
7747 end Build_Discriminal;
7749 ------------------------------------
7750 -- Build_Discriminant_Constraints --
7751 ------------------------------------
7753 function Build_Discriminant_Constraints
7754 (T : Entity_Id;
7755 Def : Node_Id;
7756 Derived_Def : Boolean := False) return Elist_Id
7758 C : constant Node_Id := Constraint (Def);
7759 Nb_Discr : constant Nat := Number_Discriminants (T);
7761 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
7762 -- Saves the expression corresponding to a given discriminant in T
7764 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
7765 -- Return the Position number within array Discr_Expr of a discriminant
7766 -- D within the discriminant list of the discriminated type T.
7768 ------------------
7769 -- Pos_Of_Discr --
7770 ------------------
7772 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
7773 Disc : Entity_Id;
7775 begin
7776 Disc := First_Discriminant (T);
7777 for J in Discr_Expr'Range loop
7778 if Disc = D then
7779 return J;
7780 end if;
7782 Next_Discriminant (Disc);
7783 end loop;
7785 -- Note: Since this function is called on discriminants that are
7786 -- known to belong to the discriminated type, falling through the
7787 -- loop with no match signals an internal compiler error.
7789 raise Program_Error;
7790 end Pos_Of_Discr;
7792 -- Declarations local to Build_Discriminant_Constraints
7794 Discr : Entity_Id;
7795 E : Entity_Id;
7796 Elist : constant Elist_Id := New_Elmt_List;
7798 Constr : Node_Id;
7799 Expr : Node_Id;
7800 Id : Node_Id;
7801 Position : Nat;
7802 Found : Boolean;
7804 Discrim_Present : Boolean := False;
7806 -- Start of processing for Build_Discriminant_Constraints
7808 begin
7809 -- The following loop will process positional associations only.
7810 -- For a positional association, the (single) discriminant is
7811 -- implicitly specified by position, in textual order (RM 3.7.2).
7813 Discr := First_Discriminant (T);
7814 Constr := First (Constraints (C));
7815 for D in Discr_Expr'Range loop
7816 exit when Nkind (Constr) = N_Discriminant_Association;
7818 if No (Constr) then
7819 Error_Msg_N ("too few discriminants given in constraint", C);
7820 return New_Elmt_List;
7822 elsif Nkind (Constr) = N_Range
7823 or else (Nkind (Constr) = N_Attribute_Reference
7824 and then
7825 Attribute_Name (Constr) = Name_Range)
7826 then
7827 Error_Msg_N
7828 ("a range is not a valid discriminant constraint", Constr);
7829 Discr_Expr (D) := Error;
7831 else
7832 Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
7833 Discr_Expr (D) := Constr;
7834 end if;
7836 Next_Discriminant (Discr);
7837 Next (Constr);
7838 end loop;
7840 if No (Discr) and then Present (Constr) then
7841 Error_Msg_N ("too many discriminants given in constraint", Constr);
7842 return New_Elmt_List;
7843 end if;
7845 -- Named associations can be given in any order, but if both positional
7846 -- and named associations are used in the same discriminant constraint,
7847 -- then positional associations must occur first, at their normal
7848 -- position. Hence once a named association is used, the rest of the
7849 -- discriminant constraint must use only named associations.
7851 while Present (Constr) loop
7853 -- Positional association forbidden after a named association
7855 if Nkind (Constr) /= N_Discriminant_Association then
7856 Error_Msg_N ("positional association follows named one", Constr);
7857 return New_Elmt_List;
7859 -- Otherwise it is a named association
7861 else
7862 -- E records the type of the discriminants in the named
7863 -- association. All the discriminants specified in the same name
7864 -- association must have the same type.
7866 E := Empty;
7868 -- Search the list of discriminants in T to see if the simple name
7869 -- given in the constraint matches any of them.
7871 Id := First (Selector_Names (Constr));
7872 while Present (Id) loop
7873 Found := False;
7875 -- If Original_Discriminant is present, we are processing a
7876 -- generic instantiation and this is an instance node. We need
7877 -- to find the name of the corresponding discriminant in the
7878 -- actual record type T and not the name of the discriminant in
7879 -- the generic formal. Example:
7881 -- generic
7882 -- type G (D : int) is private;
7883 -- package P is
7884 -- subtype W is G (D => 1);
7885 -- end package;
7886 -- type Rec (X : int) is record ... end record;
7887 -- package Q is new P (G => Rec);
7889 -- At the point of the instantiation, formal type G is Rec
7890 -- and therefore when reanalyzing "subtype W is G (D => 1);"
7891 -- which really looks like "subtype W is Rec (D => 1);" at
7892 -- the point of instantiation, we want to find the discriminant
7893 -- that corresponds to D in Rec, i.e. X.
7895 if Present (Original_Discriminant (Id)) then
7896 Discr := Find_Corresponding_Discriminant (Id, T);
7897 Found := True;
7899 else
7900 Discr := First_Discriminant (T);
7901 while Present (Discr) loop
7902 if Chars (Discr) = Chars (Id) then
7903 Found := True;
7904 exit;
7905 end if;
7907 Next_Discriminant (Discr);
7908 end loop;
7910 if not Found then
7911 Error_Msg_N ("& does not match any discriminant", Id);
7912 return New_Elmt_List;
7914 -- The following is only useful for the benefit of generic
7915 -- instances but it does not interfere with other
7916 -- processing for the non-generic case so we do it in all
7917 -- cases (for generics this statement is executed when
7918 -- processing the generic definition, see comment at the
7919 -- beginning of this if statement).
7921 else
7922 Set_Original_Discriminant (Id, Discr);
7923 end if;
7924 end if;
7926 Position := Pos_Of_Discr (T, Discr);
7928 if Present (Discr_Expr (Position)) then
7929 Error_Msg_N ("duplicate constraint for discriminant&", Id);
7931 else
7932 -- Each discriminant specified in the same named association
7933 -- must be associated with a separate copy of the
7934 -- corresponding expression.
7936 if Present (Next (Id)) then
7937 Expr := New_Copy_Tree (Expression (Constr));
7938 Set_Parent (Expr, Parent (Expression (Constr)));
7939 else
7940 Expr := Expression (Constr);
7941 end if;
7943 Discr_Expr (Position) := Expr;
7944 Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
7945 end if;
7947 -- A discriminant association with more than one discriminant
7948 -- name is only allowed if the named discriminants are all of
7949 -- the same type (RM 3.7.1(8)).
7951 if E = Empty then
7952 E := Base_Type (Etype (Discr));
7954 elsif Base_Type (Etype (Discr)) /= E then
7955 Error_Msg_N
7956 ("all discriminants in an association " &
7957 "must have the same type", Id);
7958 end if;
7960 Next (Id);
7961 end loop;
7962 end if;
7964 Next (Constr);
7965 end loop;
7967 -- A discriminant constraint must provide exactly one value for each
7968 -- discriminant of the type (RM 3.7.1(8)).
7970 for J in Discr_Expr'Range loop
7971 if No (Discr_Expr (J)) then
7972 Error_Msg_N ("too few discriminants given in constraint", C);
7973 return New_Elmt_List;
7974 end if;
7975 end loop;
7977 -- Determine if there are discriminant expressions in the constraint
7979 for J in Discr_Expr'Range loop
7980 if Denotes_Discriminant
7981 (Discr_Expr (J), Check_Concurrent => True)
7982 then
7983 Discrim_Present := True;
7984 end if;
7985 end loop;
7987 -- Build an element list consisting of the expressions given in the
7988 -- discriminant constraint and apply the appropriate checks. The list
7989 -- is constructed after resolving any named discriminant associations
7990 -- and therefore the expressions appear in the textual order of the
7991 -- discriminants.
7993 Discr := First_Discriminant (T);
7994 for J in Discr_Expr'Range loop
7995 if Discr_Expr (J) /= Error then
7996 Append_Elmt (Discr_Expr (J), Elist);
7998 -- If any of the discriminant constraints is given by a
7999 -- discriminant and we are in a derived type declaration we
8000 -- have a discriminant renaming. Establish link between new
8001 -- and old discriminant.
8003 if Denotes_Discriminant (Discr_Expr (J)) then
8004 if Derived_Def then
8005 Set_Corresponding_Discriminant
8006 (Entity (Discr_Expr (J)), Discr);
8007 end if;
8009 -- Force the evaluation of non-discriminant expressions.
8010 -- If we have found a discriminant in the constraint 3.4(26)
8011 -- and 3.8(18) demand that no range checks are performed are
8012 -- after evaluation. If the constraint is for a component
8013 -- definition that has a per-object constraint, expressions are
8014 -- evaluated but not checked either. In all other cases perform
8015 -- a range check.
8017 else
8018 if Discrim_Present then
8019 null;
8021 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
8022 and then
8023 Has_Per_Object_Constraint
8024 (Defining_Identifier (Parent (Parent (Def))))
8025 then
8026 null;
8028 elsif Is_Access_Type (Etype (Discr)) then
8029 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
8031 else
8032 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
8033 end if;
8035 Force_Evaluation (Discr_Expr (J));
8036 end if;
8038 -- Check that the designated type of an access discriminant's
8039 -- expression is not a class-wide type unless the discriminant's
8040 -- designated type is also class-wide.
8042 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
8043 and then not Is_Class_Wide_Type
8044 (Designated_Type (Etype (Discr)))
8045 and then Etype (Discr_Expr (J)) /= Any_Type
8046 and then Is_Class_Wide_Type
8047 (Designated_Type (Etype (Discr_Expr (J))))
8048 then
8049 Wrong_Type (Discr_Expr (J), Etype (Discr));
8051 elsif Is_Access_Type (Etype (Discr))
8052 and then not Is_Access_Constant (Etype (Discr))
8053 and then Is_Access_Type (Etype (Discr_Expr (J)))
8054 and then Is_Access_Constant (Etype (Discr_Expr (J)))
8055 then
8056 Error_Msg_NE
8057 ("constraint for discriminant& must be access to variable",
8058 Def, Discr);
8059 end if;
8060 end if;
8062 Next_Discriminant (Discr);
8063 end loop;
8065 return Elist;
8066 end Build_Discriminant_Constraints;
8068 ---------------------------------
8069 -- Build_Discriminated_Subtype --
8070 ---------------------------------
8072 procedure Build_Discriminated_Subtype
8073 (T : Entity_Id;
8074 Def_Id : Entity_Id;
8075 Elist : Elist_Id;
8076 Related_Nod : Node_Id;
8077 For_Access : Boolean := False)
8079 Has_Discrs : constant Boolean := Has_Discriminants (T);
8080 Constrained : constant Boolean :=
8081 (Has_Discrs
8082 and then not Is_Empty_Elmt_List (Elist)
8083 and then not Is_Class_Wide_Type (T))
8084 or else Is_Constrained (T);
8086 begin
8087 if Ekind (T) = E_Record_Type then
8088 if For_Access then
8089 Set_Ekind (Def_Id, E_Private_Subtype);
8090 Set_Is_For_Access_Subtype (Def_Id, True);
8091 else
8092 Set_Ekind (Def_Id, E_Record_Subtype);
8093 end if;
8095 -- Inherit preelaboration flag from base, for types for which it
8096 -- may have been set: records, private types, protected types.
8098 Set_Known_To_Have_Preelab_Init
8099 (Def_Id, Known_To_Have_Preelab_Init (T));
8101 elsif Ekind (T) = E_Task_Type then
8102 Set_Ekind (Def_Id, E_Task_Subtype);
8104 elsif Ekind (T) = E_Protected_Type then
8105 Set_Ekind (Def_Id, E_Protected_Subtype);
8106 Set_Known_To_Have_Preelab_Init
8107 (Def_Id, Known_To_Have_Preelab_Init (T));
8109 elsif Is_Private_Type (T) then
8110 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
8111 Set_Known_To_Have_Preelab_Init
8112 (Def_Id, Known_To_Have_Preelab_Init (T));
8114 elsif Is_Class_Wide_Type (T) then
8115 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
8117 else
8118 -- Incomplete type. Attach subtype to list of dependents, to be
8119 -- completed with full view of parent type, unless is it the
8120 -- designated subtype of a record component within an init_proc.
8121 -- This last case arises for a component of an access type whose
8122 -- designated type is incomplete (e.g. a Taft Amendment type).
8123 -- The designated subtype is within an inner scope, and needs no
8124 -- elaboration, because only the access type is needed in the
8125 -- initialization procedure.
8127 Set_Ekind (Def_Id, Ekind (T));
8129 if For_Access and then Within_Init_Proc then
8130 null;
8131 else
8132 Append_Elmt (Def_Id, Private_Dependents (T));
8133 end if;
8134 end if;
8136 Set_Etype (Def_Id, T);
8137 Init_Size_Align (Def_Id);
8138 Set_Has_Discriminants (Def_Id, Has_Discrs);
8139 Set_Is_Constrained (Def_Id, Constrained);
8141 Set_First_Entity (Def_Id, First_Entity (T));
8142 Set_Last_Entity (Def_Id, Last_Entity (T));
8144 -- If the subtype is the completion of a private declaration, there may
8145 -- have been representation clauses for the partial view, and they must
8146 -- be preserved. Build_Derived_Type chains the inherited clauses with
8147 -- the ones appearing on the extension. If this comes from a subtype
8148 -- declaration, all clauses are inherited.
8150 if No (First_Rep_Item (Def_Id)) then
8151 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8152 end if;
8154 if Is_Tagged_Type (T) then
8155 Set_Is_Tagged_Type (Def_Id);
8156 Make_Class_Wide_Type (Def_Id);
8157 end if;
8159 Set_Stored_Constraint (Def_Id, No_Elist);
8161 if Has_Discrs then
8162 Set_Discriminant_Constraint (Def_Id, Elist);
8163 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
8164 end if;
8166 if Is_Tagged_Type (T) then
8168 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
8169 -- concurrent record type (which has the list of primitive
8170 -- operations).
8172 if Ada_Version >= Ada_05
8173 and then Is_Concurrent_Type (T)
8174 then
8175 Set_Corresponding_Record_Type (Def_Id,
8176 Corresponding_Record_Type (T));
8177 else
8178 Set_Primitive_Operations (Def_Id, Primitive_Operations (T));
8179 end if;
8181 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
8182 end if;
8184 -- Subtypes introduced by component declarations do not need to be
8185 -- marked as delayed, and do not get freeze nodes, because the semantics
8186 -- verifies that the parents of the subtypes are frozen before the
8187 -- enclosing record is frozen.
8189 if not Is_Type (Scope (Def_Id)) then
8190 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
8192 if Is_Private_Type (T)
8193 and then Present (Full_View (T))
8194 then
8195 Conditional_Delay (Def_Id, Full_View (T));
8196 else
8197 Conditional_Delay (Def_Id, T);
8198 end if;
8199 end if;
8201 if Is_Record_Type (T) then
8202 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
8204 if Has_Discrs
8205 and then not Is_Empty_Elmt_List (Elist)
8206 and then not For_Access
8207 then
8208 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
8209 elsif not For_Access then
8210 Set_Cloned_Subtype (Def_Id, T);
8211 end if;
8212 end if;
8213 end Build_Discriminated_Subtype;
8215 ---------------------------
8216 -- Build_Itype_Reference --
8217 ---------------------------
8219 procedure Build_Itype_Reference
8220 (Ityp : Entity_Id;
8221 Nod : Node_Id)
8223 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
8224 begin
8225 Set_Itype (IR, Ityp);
8226 Insert_After (Nod, IR);
8227 end Build_Itype_Reference;
8229 ------------------------
8230 -- Build_Scalar_Bound --
8231 ------------------------
8233 function Build_Scalar_Bound
8234 (Bound : Node_Id;
8235 Par_T : Entity_Id;
8236 Der_T : Entity_Id) return Node_Id
8238 New_Bound : Entity_Id;
8240 begin
8241 -- Note: not clear why this is needed, how can the original bound
8242 -- be unanalyzed at this point? and if it is, what business do we
8243 -- have messing around with it? and why is the base type of the
8244 -- parent type the right type for the resolution. It probably is
8245 -- not! It is OK for the new bound we are creating, but not for
8246 -- the old one??? Still if it never happens, no problem!
8248 Analyze_And_Resolve (Bound, Base_Type (Par_T));
8250 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
8251 New_Bound := New_Copy (Bound);
8252 Set_Etype (New_Bound, Der_T);
8253 Set_Analyzed (New_Bound);
8255 elsif Is_Entity_Name (Bound) then
8256 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
8258 -- The following is almost certainly wrong. What business do we have
8259 -- relocating a node (Bound) that is presumably still attached to
8260 -- the tree elsewhere???
8262 else
8263 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
8264 end if;
8266 Set_Etype (New_Bound, Der_T);
8267 return New_Bound;
8268 end Build_Scalar_Bound;
8270 --------------------------------
8271 -- Build_Underlying_Full_View --
8272 --------------------------------
8274 procedure Build_Underlying_Full_View
8275 (N : Node_Id;
8276 Typ : Entity_Id;
8277 Par : Entity_Id)
8279 Loc : constant Source_Ptr := Sloc (N);
8280 Subt : constant Entity_Id :=
8281 Make_Defining_Identifier
8282 (Loc, New_External_Name (Chars (Typ), 'S'));
8284 Constr : Node_Id;
8285 Indic : Node_Id;
8286 C : Node_Id;
8287 Id : Node_Id;
8289 procedure Set_Discriminant_Name (Id : Node_Id);
8290 -- If the derived type has discriminants, they may rename discriminants
8291 -- of the parent. When building the full view of the parent, we need to
8292 -- recover the names of the original discriminants if the constraint is
8293 -- given by named associations.
8295 ---------------------------
8296 -- Set_Discriminant_Name --
8297 ---------------------------
8299 procedure Set_Discriminant_Name (Id : Node_Id) is
8300 Disc : Entity_Id;
8302 begin
8303 Set_Original_Discriminant (Id, Empty);
8305 if Has_Discriminants (Typ) then
8306 Disc := First_Discriminant (Typ);
8307 while Present (Disc) loop
8308 if Chars (Disc) = Chars (Id)
8309 and then Present (Corresponding_Discriminant (Disc))
8310 then
8311 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
8312 end if;
8313 Next_Discriminant (Disc);
8314 end loop;
8315 end if;
8316 end Set_Discriminant_Name;
8318 -- Start of processing for Build_Underlying_Full_View
8320 begin
8321 if Nkind (N) = N_Full_Type_Declaration then
8322 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
8324 elsif Nkind (N) = N_Subtype_Declaration then
8325 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
8327 elsif Nkind (N) = N_Component_Declaration then
8328 Constr :=
8329 New_Copy_Tree
8330 (Constraint (Subtype_Indication (Component_Definition (N))));
8332 else
8333 raise Program_Error;
8334 end if;
8336 C := First (Constraints (Constr));
8337 while Present (C) loop
8338 if Nkind (C) = N_Discriminant_Association then
8339 Id := First (Selector_Names (C));
8340 while Present (Id) loop
8341 Set_Discriminant_Name (Id);
8342 Next (Id);
8343 end loop;
8344 end if;
8346 Next (C);
8347 end loop;
8349 Indic :=
8350 Make_Subtype_Declaration (Loc,
8351 Defining_Identifier => Subt,
8352 Subtype_Indication =>
8353 Make_Subtype_Indication (Loc,
8354 Subtype_Mark => New_Reference_To (Par, Loc),
8355 Constraint => New_Copy_Tree (Constr)));
8357 -- If this is a component subtype for an outer itype, it is not
8358 -- a list member, so simply set the parent link for analysis: if
8359 -- the enclosing type does not need to be in a declarative list,
8360 -- neither do the components.
8362 if Is_List_Member (N)
8363 and then Nkind (N) /= N_Component_Declaration
8364 then
8365 Insert_Before (N, Indic);
8366 else
8367 Set_Parent (Indic, Parent (N));
8368 end if;
8370 Analyze (Indic);
8371 Set_Underlying_Full_View (Typ, Full_View (Subt));
8372 end Build_Underlying_Full_View;
8374 -------------------------------
8375 -- Check_Abstract_Overriding --
8376 -------------------------------
8378 procedure Check_Abstract_Overriding (T : Entity_Id) is
8379 Alias_Subp : Entity_Id;
8380 Elmt : Elmt_Id;
8381 Op_List : Elist_Id;
8382 Subp : Entity_Id;
8383 Type_Def : Node_Id;
8385 begin
8386 Op_List := Primitive_Operations (T);
8388 -- Loop to check primitive operations
8390 Elmt := First_Elmt (Op_List);
8391 while Present (Elmt) loop
8392 Subp := Node (Elmt);
8393 Alias_Subp := Alias (Subp);
8395 -- Inherited subprograms are identified by the fact that they do not
8396 -- come from source, and the associated source location is the
8397 -- location of the first subtype of the derived type.
8399 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
8400 -- subprograms that "require overriding".
8402 -- Special exception, do not complain about failure to override the
8403 -- stream routines _Input and _Output, as well as the primitive
8404 -- operations used in dispatching selects since we always provide
8405 -- automatic overridings for these subprograms.
8407 -- Also ignore this rule for convention CIL since .NET libraries
8408 -- do bizarre things with interfaces???
8410 -- The partial view of T may have been a private extension, for
8411 -- which inherited functions dispatching on result are abstract.
8412 -- If the full view is a null extension, there is no need for
8413 -- overriding in Ada2005, but wrappers need to be built for them
8414 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
8416 if Is_Null_Extension (T)
8417 and then Has_Controlling_Result (Subp)
8418 and then Ada_Version >= Ada_05
8419 and then Present (Alias_Subp)
8420 and then not Comes_From_Source (Subp)
8421 and then not Is_Abstract_Subprogram (Alias_Subp)
8422 and then not Is_Access_Type (Etype (Subp))
8423 then
8424 null;
8426 -- Ada 2005 (AI-251): Internal entities of interfaces need no
8427 -- processing because this check is done with the aliased
8428 -- entity
8430 elsif Present (Interface_Alias (Subp)) then
8431 null;
8433 elsif (Is_Abstract_Subprogram (Subp)
8434 or else Requires_Overriding (Subp)
8435 or else
8436 (Has_Controlling_Result (Subp)
8437 and then Present (Alias_Subp)
8438 and then not Comes_From_Source (Subp)
8439 and then Sloc (Subp) = Sloc (First_Subtype (T))))
8440 and then not Is_TSS (Subp, TSS_Stream_Input)
8441 and then not Is_TSS (Subp, TSS_Stream_Output)
8442 and then not Is_Abstract_Type (T)
8443 and then Convention (T) /= Convention_CIL
8444 and then not Is_Predefined_Interface_Primitive (Subp)
8446 -- Ada 2005 (AI-251): Do not consider hidden entities associated
8447 -- with abstract interface types because the check will be done
8448 -- with the aliased entity (otherwise we generate a duplicated
8449 -- error message).
8451 and then not Present (Interface_Alias (Subp))
8452 then
8453 if Present (Alias_Subp) then
8455 -- Only perform the check for a derived subprogram when the
8456 -- type has an explicit record extension. This avoids incorrect
8457 -- flagging of abstract subprograms for the case of a type
8458 -- without an extension that is derived from a formal type
8459 -- with a tagged actual (can occur within a private part).
8461 -- Ada 2005 (AI-391): In the case of an inherited function with
8462 -- a controlling result of the type, the rule does not apply if
8463 -- the type is a null extension (unless the parent function
8464 -- itself is abstract, in which case the function must still be
8465 -- be overridden). The expander will generate an overriding
8466 -- wrapper function calling the parent subprogram (see
8467 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
8469 Type_Def := Type_Definition (Parent (T));
8471 if Nkind (Type_Def) = N_Derived_Type_Definition
8472 and then Present (Record_Extension_Part (Type_Def))
8473 and then
8474 (Ada_Version < Ada_05
8475 or else not Is_Null_Extension (T)
8476 or else Ekind (Subp) = E_Procedure
8477 or else not Has_Controlling_Result (Subp)
8478 or else Is_Abstract_Subprogram (Alias_Subp)
8479 or else Requires_Overriding (Subp)
8480 or else Is_Access_Type (Etype (Subp)))
8481 then
8482 -- Avoid reporting error in case of abstract predefined
8483 -- primitive inherited from interface type because the
8484 -- body of internally generated predefined primitives
8485 -- of tagged types are generated later by Freeze_Type
8487 if Is_Interface (Root_Type (T))
8488 and then Is_Abstract_Subprogram (Subp)
8489 and then Is_Predefined_Dispatching_Operation (Subp)
8490 and then not Comes_From_Source (Ultimate_Alias (Subp))
8491 then
8492 null;
8494 else
8495 Error_Msg_NE
8496 ("type must be declared abstract or & overridden",
8497 T, Subp);
8499 -- Traverse the whole chain of aliased subprograms to
8500 -- complete the error notification. This is especially
8501 -- useful for traceability of the chain of entities when
8502 -- the subprogram corresponds with an interface
8503 -- subprogram (which may be defined in another package).
8505 if Present (Alias_Subp) then
8506 declare
8507 E : Entity_Id;
8509 begin
8510 E := Subp;
8511 while Present (Alias (E)) loop
8512 Error_Msg_Sloc := Sloc (E);
8513 Error_Msg_NE
8514 ("\& has been inherited #", T, Subp);
8515 E := Alias (E);
8516 end loop;
8518 Error_Msg_Sloc := Sloc (E);
8519 Error_Msg_NE
8520 ("\& has been inherited from subprogram #",
8521 T, Subp);
8522 end;
8523 end if;
8524 end if;
8526 -- Ada 2005 (AI-345): Protected or task type implementing
8527 -- abstract interfaces.
8529 elsif Is_Concurrent_Record_Type (T)
8530 and then Present (Interfaces (T))
8531 then
8532 -- The controlling formal of Subp must be of mode "out",
8533 -- "in out" or an access-to-variable to be overridden.
8535 -- Error message below needs rewording (remember comma
8536 -- in -gnatj mode) ???
8538 if Ekind (First_Formal (Subp)) = E_In_Parameter
8539 and then Ekind (Subp) /= E_Function
8540 then
8541 if not Is_Predefined_Dispatching_Operation (Subp) then
8542 Error_Msg_NE
8543 ("first formal of & must be of mode `OUT`, " &
8544 "`IN OUT` or access-to-variable", T, Subp);
8545 Error_Msg_N
8546 ("\to be overridden by protected procedure or " &
8547 "entry (RM 9.4(11.9/2))", T);
8548 end if;
8550 -- Some other kind of overriding failure
8552 else
8553 Error_Msg_NE
8554 ("interface subprogram & must be overridden",
8555 T, Subp);
8557 -- Examine primitive operations of synchronized type,
8558 -- to find homonyms that have the wrong profile.
8560 declare
8561 Prim : Entity_Id;
8563 begin
8564 Prim :=
8565 First_Entity (Corresponding_Concurrent_Type (T));
8566 while Present (Prim) loop
8567 if Chars (Prim) = Chars (Subp) then
8568 Error_Msg_NE
8569 ("profile is not type conformant with "
8570 & "prefixed view profile of "
8571 & "inherited operation&", Prim, Subp);
8572 end if;
8574 Next_Entity (Prim);
8575 end loop;
8576 end;
8577 end if;
8578 end if;
8580 else
8581 Error_Msg_Node_2 := T;
8582 Error_Msg_N
8583 ("abstract subprogram& not allowed for type&", Subp);
8585 -- Also post unconditional warning on the type (unconditional
8586 -- so that if there are more than one of these cases, we get
8587 -- them all, and not just the first one).
8589 Error_Msg_Node_2 := Subp;
8590 Error_Msg_N
8591 ("nonabstract type& has abstract subprogram&!", T);
8592 end if;
8593 end if;
8595 -- Ada 2005 (AI05-0030): Inspect hidden subprograms which provide
8596 -- the mapping between interface and implementing type primitives.
8597 -- If the interface alias is marked as Implemented_By_Entry, the
8598 -- alias must be an entry wrapper.
8600 if Ada_Version >= Ada_05
8601 and then Is_Hidden (Subp)
8602 and then Present (Interface_Alias (Subp))
8603 and then Implemented_By_Entry (Interface_Alias (Subp))
8604 and then Present (Alias_Subp)
8605 and then
8606 (not Is_Primitive_Wrapper (Alias_Subp)
8607 or else Ekind (Wrapped_Entity (Alias_Subp)) /= E_Entry)
8608 then
8609 declare
8610 Error_Ent : Entity_Id := T;
8612 begin
8613 if Is_Concurrent_Record_Type (Error_Ent) then
8614 Error_Ent := Corresponding_Concurrent_Type (Error_Ent);
8615 end if;
8617 Error_Msg_Node_2 := Interface_Alias (Subp);
8618 Error_Msg_NE
8619 ("type & must implement abstract subprogram & with an entry",
8620 Error_Ent, Error_Ent);
8621 end;
8622 end if;
8624 Next_Elmt (Elmt);
8625 end loop;
8626 end Check_Abstract_Overriding;
8628 ------------------------------------------------
8629 -- Check_Access_Discriminant_Requires_Limited --
8630 ------------------------------------------------
8632 procedure Check_Access_Discriminant_Requires_Limited
8633 (D : Node_Id;
8634 Loc : Node_Id)
8636 begin
8637 -- A discriminant_specification for an access discriminant shall appear
8638 -- only in the declaration for a task or protected type, or for a type
8639 -- with the reserved word 'limited' in its definition or in one of its
8640 -- ancestors. (RM 3.7(10))
8642 if Nkind (Discriminant_Type (D)) = N_Access_Definition
8643 and then not Is_Concurrent_Type (Current_Scope)
8644 and then not Is_Concurrent_Record_Type (Current_Scope)
8645 and then not Is_Limited_Record (Current_Scope)
8646 and then Ekind (Current_Scope) /= E_Limited_Private_Type
8647 then
8648 Error_Msg_N
8649 ("access discriminants allowed only for limited types", Loc);
8650 end if;
8651 end Check_Access_Discriminant_Requires_Limited;
8653 -----------------------------------
8654 -- Check_Aliased_Component_Types --
8655 -----------------------------------
8657 procedure Check_Aliased_Component_Types (T : Entity_Id) is
8658 C : Entity_Id;
8660 begin
8661 -- ??? Also need to check components of record extensions, but not
8662 -- components of protected types (which are always limited).
8664 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
8665 -- types to be unconstrained. This is safe because it is illegal to
8666 -- create access subtypes to such types with explicit discriminant
8667 -- constraints.
8669 if not Is_Limited_Type (T) then
8670 if Ekind (T) = E_Record_Type then
8671 C := First_Component (T);
8672 while Present (C) loop
8673 if Is_Aliased (C)
8674 and then Has_Discriminants (Etype (C))
8675 and then not Is_Constrained (Etype (C))
8676 and then not In_Instance_Body
8677 and then Ada_Version < Ada_05
8678 then
8679 Error_Msg_N
8680 ("aliased component must be constrained (RM 3.6(11))",
8682 end if;
8684 Next_Component (C);
8685 end loop;
8687 elsif Ekind (T) = E_Array_Type then
8688 if Has_Aliased_Components (T)
8689 and then Has_Discriminants (Component_Type (T))
8690 and then not Is_Constrained (Component_Type (T))
8691 and then not In_Instance_Body
8692 and then Ada_Version < Ada_05
8693 then
8694 Error_Msg_N
8695 ("aliased component type must be constrained (RM 3.6(11))",
8697 end if;
8698 end if;
8699 end if;
8700 end Check_Aliased_Component_Types;
8702 ----------------------
8703 -- Check_Completion --
8704 ----------------------
8706 procedure Check_Completion (Body_Id : Node_Id := Empty) is
8707 E : Entity_Id;
8709 procedure Post_Error;
8710 -- Post error message for lack of completion for entity E
8712 ----------------
8713 -- Post_Error --
8714 ----------------
8716 procedure Post_Error is
8718 procedure Missing_Body;
8719 -- Output missing body message
8721 ------------------
8722 -- Missing_Body --
8723 ------------------
8725 procedure Missing_Body is
8726 begin
8727 -- Spec is in same unit, so we can post on spec
8729 if In_Same_Source_Unit (Body_Id, E) then
8730 Error_Msg_N ("missing body for &", E);
8732 -- Spec is in a separate unit, so we have to post on the body
8734 else
8735 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
8736 end if;
8737 end Missing_Body;
8739 -- Start of processing for Post_Error
8741 begin
8742 if not Comes_From_Source (E) then
8744 if Ekind (E) = E_Task_Type
8745 or else Ekind (E) = E_Protected_Type
8746 then
8747 -- It may be an anonymous protected type created for a
8748 -- single variable. Post error on variable, if present.
8750 declare
8751 Var : Entity_Id;
8753 begin
8754 Var := First_Entity (Current_Scope);
8755 while Present (Var) loop
8756 exit when Etype (Var) = E
8757 and then Comes_From_Source (Var);
8759 Next_Entity (Var);
8760 end loop;
8762 if Present (Var) then
8763 E := Var;
8764 end if;
8765 end;
8766 end if;
8767 end if;
8769 -- If a generated entity has no completion, then either previous
8770 -- semantic errors have disabled the expansion phase, or else we had
8771 -- missing subunits, or else we are compiling without expansion,
8772 -- or else something is very wrong.
8774 if not Comes_From_Source (E) then
8775 pragma Assert
8776 (Serious_Errors_Detected > 0
8777 or else Configurable_Run_Time_Violations > 0
8778 or else Subunits_Missing
8779 or else not Expander_Active);
8780 return;
8782 -- Here for source entity
8784 else
8785 -- Here if no body to post the error message, so we post the error
8786 -- on the declaration that has no completion. This is not really
8787 -- the right place to post it, think about this later ???
8789 if No (Body_Id) then
8790 if Is_Type (E) then
8791 Error_Msg_NE
8792 ("missing full declaration for }", Parent (E), E);
8793 else
8794 Error_Msg_NE
8795 ("missing body for &", Parent (E), E);
8796 end if;
8798 -- Package body has no completion for a declaration that appears
8799 -- in the corresponding spec. Post error on the body, with a
8800 -- reference to the non-completed declaration.
8802 else
8803 Error_Msg_Sloc := Sloc (E);
8805 if Is_Type (E) then
8806 Error_Msg_NE
8807 ("missing full declaration for }!", Body_Id, E);
8809 elsif Is_Overloadable (E)
8810 and then Current_Entity_In_Scope (E) /= E
8811 then
8812 -- It may be that the completion is mistyped and appears as
8813 -- a distinct overloading of the entity.
8815 declare
8816 Candidate : constant Entity_Id :=
8817 Current_Entity_In_Scope (E);
8818 Decl : constant Node_Id :=
8819 Unit_Declaration_Node (Candidate);
8821 begin
8822 if Is_Overloadable (Candidate)
8823 and then Ekind (Candidate) = Ekind (E)
8824 and then Nkind (Decl) = N_Subprogram_Body
8825 and then Acts_As_Spec (Decl)
8826 then
8827 Check_Type_Conformant (Candidate, E);
8829 else
8830 Missing_Body;
8831 end if;
8832 end;
8834 else
8835 Missing_Body;
8836 end if;
8837 end if;
8838 end if;
8839 end Post_Error;
8841 -- Start of processing for Check_Completion
8843 begin
8844 E := First_Entity (Current_Scope);
8845 while Present (E) loop
8846 if Is_Intrinsic_Subprogram (E) then
8847 null;
8849 -- The following situation requires special handling: a child unit
8850 -- that appears in the context clause of the body of its parent:
8852 -- procedure Parent.Child (...);
8854 -- with Parent.Child;
8855 -- package body Parent is
8857 -- Here Parent.Child appears as a local entity, but should not be
8858 -- flagged as requiring completion, because it is a compilation
8859 -- unit.
8861 -- Ignore missing completion for a subprogram that does not come from
8862 -- source (including the _Call primitive operation of RAS types,
8863 -- which has to have the flag Comes_From_Source for other purposes):
8864 -- we assume that the expander will provide the missing completion.
8865 -- In case of previous errors, other expansion actions that provide
8866 -- bodies for null procedures with not be invoked, so inhibit message
8867 -- in those cases.
8868 -- Note that E_Operator is not in the list that follows, because
8869 -- this kind is reserved for predefined operators, that are
8870 -- intrinsic and do not need completion.
8872 elsif Ekind (E) = E_Function
8873 or else Ekind (E) = E_Procedure
8874 or else Ekind (E) = E_Generic_Function
8875 or else Ekind (E) = E_Generic_Procedure
8876 then
8877 if Has_Completion (E) then
8878 null;
8880 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
8881 null;
8883 elsif Is_Subprogram (E)
8884 and then (not Comes_From_Source (E)
8885 or else Chars (E) = Name_uCall)
8886 then
8887 null;
8889 elsif
8890 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8891 then
8892 null;
8894 elsif Nkind (Parent (E)) = N_Procedure_Specification
8895 and then Null_Present (Parent (E))
8896 and then Serious_Errors_Detected > 0
8897 then
8898 null;
8900 else
8901 Post_Error;
8902 end if;
8904 elsif Is_Entry (E) then
8905 if not Has_Completion (E) and then
8906 (Ekind (Scope (E)) = E_Protected_Object
8907 or else Ekind (Scope (E)) = E_Protected_Type)
8908 then
8909 Post_Error;
8910 end if;
8912 elsif Is_Package_Or_Generic_Package (E) then
8913 if Unit_Requires_Body (E) then
8914 if not Has_Completion (E)
8915 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
8916 N_Compilation_Unit
8917 then
8918 Post_Error;
8919 end if;
8921 elsif not Is_Child_Unit (E) then
8922 May_Need_Implicit_Body (E);
8923 end if;
8925 elsif Ekind (E) = E_Incomplete_Type
8926 and then No (Underlying_Type (E))
8927 then
8928 Post_Error;
8930 elsif (Ekind (E) = E_Task_Type or else
8931 Ekind (E) = E_Protected_Type)
8932 and then not Has_Completion (E)
8933 then
8934 Post_Error;
8936 -- A single task declared in the current scope is a constant, verify
8937 -- that the body of its anonymous type is in the same scope. If the
8938 -- task is defined elsewhere, this may be a renaming declaration for
8939 -- which no completion is needed.
8941 elsif Ekind (E) = E_Constant
8942 and then Ekind (Etype (E)) = E_Task_Type
8943 and then not Has_Completion (Etype (E))
8944 and then Scope (Etype (E)) = Current_Scope
8945 then
8946 Post_Error;
8948 elsif Ekind (E) = E_Protected_Object
8949 and then not Has_Completion (Etype (E))
8950 then
8951 Post_Error;
8953 elsif Ekind (E) = E_Record_Type then
8954 if Is_Tagged_Type (E) then
8955 Check_Abstract_Overriding (E);
8956 Check_Conventions (E);
8957 end if;
8959 Check_Aliased_Component_Types (E);
8961 elsif Ekind (E) = E_Array_Type then
8962 Check_Aliased_Component_Types (E);
8964 end if;
8966 Next_Entity (E);
8967 end loop;
8968 end Check_Completion;
8970 ----------------------------
8971 -- Check_Delta_Expression --
8972 ----------------------------
8974 procedure Check_Delta_Expression (E : Node_Id) is
8975 begin
8976 if not (Is_Real_Type (Etype (E))) then
8977 Wrong_Type (E, Any_Real);
8979 elsif not Is_OK_Static_Expression (E) then
8980 Flag_Non_Static_Expr
8981 ("non-static expression used for delta value!", E);
8983 elsif not UR_Is_Positive (Expr_Value_R (E)) then
8984 Error_Msg_N ("delta expression must be positive", E);
8986 else
8987 return;
8988 end if;
8990 -- If any of above errors occurred, then replace the incorrect
8991 -- expression by the real 0.1, which should prevent further errors.
8993 Rewrite (E,
8994 Make_Real_Literal (Sloc (E), Ureal_Tenth));
8995 Analyze_And_Resolve (E, Standard_Float);
8996 end Check_Delta_Expression;
8998 -----------------------------
8999 -- Check_Digits_Expression --
9000 -----------------------------
9002 procedure Check_Digits_Expression (E : Node_Id) is
9003 begin
9004 if not (Is_Integer_Type (Etype (E))) then
9005 Wrong_Type (E, Any_Integer);
9007 elsif not Is_OK_Static_Expression (E) then
9008 Flag_Non_Static_Expr
9009 ("non-static expression used for digits value!", E);
9011 elsif Expr_Value (E) <= 0 then
9012 Error_Msg_N ("digits value must be greater than zero", E);
9014 else
9015 return;
9016 end if;
9018 -- If any of above errors occurred, then replace the incorrect
9019 -- expression by the integer 1, which should prevent further errors.
9021 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
9022 Analyze_And_Resolve (E, Standard_Integer);
9024 end Check_Digits_Expression;
9026 --------------------------
9027 -- Check_Initialization --
9028 --------------------------
9030 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
9031 begin
9032 if Is_Limited_Type (T)
9033 and then not In_Instance
9034 and then not In_Inlined_Body
9035 then
9036 if not OK_For_Limited_Init (T, Exp) then
9038 -- In GNAT mode, this is just a warning, to allow it to be evilly
9039 -- turned off. Otherwise it is a real error.
9041 if GNAT_Mode then
9042 Error_Msg_N
9043 ("?cannot initialize entities of limited type!", Exp);
9045 elsif Ada_Version < Ada_05 then
9046 Error_Msg_N
9047 ("cannot initialize entities of limited type", Exp);
9048 Explain_Limited_Type (T, Exp);
9050 else
9051 -- Specialize error message according to kind of illegal
9052 -- initial expression.
9054 if Nkind (Exp) = N_Type_Conversion
9055 and then Nkind (Expression (Exp)) = N_Function_Call
9056 then
9057 Error_Msg_N
9058 ("illegal context for call"
9059 & " to function with limited result", Exp);
9061 else
9062 Error_Msg_N
9063 ("initialization of limited object requires aggregate "
9064 & "or function call", Exp);
9065 end if;
9066 end if;
9067 end if;
9068 end if;
9069 end Check_Initialization;
9071 ----------------------
9072 -- Check_Interfaces --
9073 ----------------------
9075 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
9076 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
9078 Iface : Node_Id;
9079 Iface_Def : Node_Id;
9080 Iface_Typ : Entity_Id;
9081 Parent_Node : Node_Id;
9083 Is_Task : Boolean := False;
9084 -- Set True if parent type or any progenitor is a task interface
9086 Is_Protected : Boolean := False;
9087 -- Set True if parent type or any progenitor is a protected interface
9089 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
9090 -- Check that a progenitor is compatible with declaration.
9091 -- Error is posted on Error_Node.
9093 ------------------
9094 -- Check_Ifaces --
9095 ------------------
9097 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
9098 Iface_Id : constant Entity_Id :=
9099 Defining_Identifier (Parent (Iface_Def));
9100 Type_Def : Node_Id;
9102 begin
9103 if Nkind (N) = N_Private_Extension_Declaration then
9104 Type_Def := N;
9105 else
9106 Type_Def := Type_Definition (N);
9107 end if;
9109 if Is_Task_Interface (Iface_Id) then
9110 Is_Task := True;
9112 elsif Is_Protected_Interface (Iface_Id) then
9113 Is_Protected := True;
9114 end if;
9116 if Is_Synchronized_Interface (Iface_Id) then
9118 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
9119 -- extension derived from a synchronized interface must explicitly
9120 -- be declared synchronized, because the full view will be a
9121 -- synchronized type.
9123 if Nkind (N) = N_Private_Extension_Declaration then
9124 if not Synchronized_Present (N) then
9125 Error_Msg_NE
9126 ("private extension of& must be explicitly synchronized",
9127 N, Iface_Id);
9128 end if;
9130 -- However, by 3.9.4(16/2), a full type that is a record extension
9131 -- is never allowed to derive from a synchronized interface (note
9132 -- that interfaces must be excluded from this check, because those
9133 -- are represented by derived type definitions in some cases).
9135 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
9136 and then not Interface_Present (Type_Definition (N))
9137 then
9138 Error_Msg_N ("record extension cannot derive from synchronized"
9139 & " interface", Error_Node);
9140 end if;
9141 end if;
9143 -- Check that the characteristics of the progenitor are compatible
9144 -- with the explicit qualifier in the declaration.
9145 -- The check only applies to qualifiers that come from source.
9146 -- Limited_Present also appears in the declaration of corresponding
9147 -- records, and the check does not apply to them.
9149 if Limited_Present (Type_Def)
9150 and then not
9151 Is_Concurrent_Record_Type (Defining_Identifier (N))
9152 then
9153 if Is_Limited_Interface (Parent_Type)
9154 and then not Is_Limited_Interface (Iface_Id)
9155 then
9156 Error_Msg_NE
9157 ("progenitor& must be limited interface",
9158 Error_Node, Iface_Id);
9160 elsif
9161 (Task_Present (Iface_Def)
9162 or else Protected_Present (Iface_Def)
9163 or else Synchronized_Present (Iface_Def))
9164 and then Nkind (N) /= N_Private_Extension_Declaration
9165 and then not Error_Posted (N)
9166 then
9167 Error_Msg_NE
9168 ("progenitor& must be limited interface",
9169 Error_Node, Iface_Id);
9170 end if;
9172 -- Protected interfaces can only inherit from limited, synchronized
9173 -- or protected interfaces.
9175 elsif Nkind (N) = N_Full_Type_Declaration
9176 and then Protected_Present (Type_Def)
9177 then
9178 if Limited_Present (Iface_Def)
9179 or else Synchronized_Present (Iface_Def)
9180 or else Protected_Present (Iface_Def)
9181 then
9182 null;
9184 elsif Task_Present (Iface_Def) then
9185 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
9186 & " from task interface", Error_Node);
9188 else
9189 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
9190 & " from non-limited interface", Error_Node);
9191 end if;
9193 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
9194 -- limited and synchronized.
9196 elsif Synchronized_Present (Type_Def) then
9197 if Limited_Present (Iface_Def)
9198 or else Synchronized_Present (Iface_Def)
9199 then
9200 null;
9202 elsif Protected_Present (Iface_Def)
9203 and then Nkind (N) /= N_Private_Extension_Declaration
9204 then
9205 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
9206 & " from protected interface", Error_Node);
9208 elsif Task_Present (Iface_Def)
9209 and then Nkind (N) /= N_Private_Extension_Declaration
9210 then
9211 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
9212 & " from task interface", Error_Node);
9214 elsif not Is_Limited_Interface (Iface_Id) then
9215 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
9216 & " from non-limited interface", Error_Node);
9217 end if;
9219 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
9220 -- synchronized or task interfaces.
9222 elsif Nkind (N) = N_Full_Type_Declaration
9223 and then Task_Present (Type_Def)
9224 then
9225 if Limited_Present (Iface_Def)
9226 or else Synchronized_Present (Iface_Def)
9227 or else Task_Present (Iface_Def)
9228 then
9229 null;
9231 elsif Protected_Present (Iface_Def) then
9232 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
9233 & " protected interface", Error_Node);
9235 else
9236 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
9237 & " non-limited interface", Error_Node);
9238 end if;
9239 end if;
9240 end Check_Ifaces;
9242 -- Start of processing for Check_Interfaces
9244 begin
9245 if Is_Interface (Parent_Type) then
9246 if Is_Task_Interface (Parent_Type) then
9247 Is_Task := True;
9249 elsif Is_Protected_Interface (Parent_Type) then
9250 Is_Protected := True;
9251 end if;
9252 end if;
9254 if Nkind (N) = N_Private_Extension_Declaration then
9256 -- Check that progenitors are compatible with declaration
9258 Iface := First (Interface_List (Def));
9259 while Present (Iface) loop
9260 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
9262 Parent_Node := Parent (Base_Type (Iface_Typ));
9263 Iface_Def := Type_Definition (Parent_Node);
9265 if not Is_Interface (Iface_Typ) then
9266 Diagnose_Interface (Iface, Iface_Typ);
9268 else
9269 Check_Ifaces (Iface_Def, Iface);
9270 end if;
9272 Next (Iface);
9273 end loop;
9275 if Is_Task and Is_Protected then
9276 Error_Msg_N
9277 ("type cannot derive from task and protected interface", N);
9278 end if;
9280 return;
9281 end if;
9283 -- Full type declaration of derived type.
9284 -- Check compatibility with parent if it is interface type
9286 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
9287 and then Is_Interface (Parent_Type)
9288 then
9289 Parent_Node := Parent (Parent_Type);
9291 -- More detailed checks for interface varieties
9293 Check_Ifaces
9294 (Iface_Def => Type_Definition (Parent_Node),
9295 Error_Node => Subtype_Indication (Type_Definition (N)));
9296 end if;
9298 Iface := First (Interface_List (Def));
9299 while Present (Iface) loop
9300 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
9302 Parent_Node := Parent (Base_Type (Iface_Typ));
9303 Iface_Def := Type_Definition (Parent_Node);
9305 if not Is_Interface (Iface_Typ) then
9306 Diagnose_Interface (Iface, Iface_Typ);
9308 else
9309 -- "The declaration of a specific descendant of an interface
9310 -- type freezes the interface type" RM 13.14
9312 Freeze_Before (N, Iface_Typ);
9313 Check_Ifaces (Iface_Def, Error_Node => Iface);
9314 end if;
9316 Next (Iface);
9317 end loop;
9319 if Is_Task and Is_Protected then
9320 Error_Msg_N
9321 ("type cannot derive from task and protected interface", N);
9322 end if;
9323 end Check_Interfaces;
9325 ------------------------------------
9326 -- Check_Or_Process_Discriminants --
9327 ------------------------------------
9329 -- If an incomplete or private type declaration was already given for the
9330 -- type, the discriminants may have already been processed if they were
9331 -- present on the incomplete declaration. In this case a full conformance
9332 -- check is performed otherwise just process them.
9334 procedure Check_Or_Process_Discriminants
9335 (N : Node_Id;
9336 T : Entity_Id;
9337 Prev : Entity_Id := Empty)
9339 begin
9340 if Has_Discriminants (T) then
9342 -- Make the discriminants visible to component declarations
9344 declare
9345 D : Entity_Id;
9346 Prev : Entity_Id;
9348 begin
9349 D := First_Discriminant (T);
9350 while Present (D) loop
9351 Prev := Current_Entity (D);
9352 Set_Current_Entity (D);
9353 Set_Is_Immediately_Visible (D);
9354 Set_Homonym (D, Prev);
9356 -- Ada 2005 (AI-230): Access discriminant allowed in
9357 -- non-limited record types.
9359 if Ada_Version < Ada_05 then
9361 -- This restriction gets applied to the full type here. It
9362 -- has already been applied earlier to the partial view.
9364 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
9365 end if;
9367 Next_Discriminant (D);
9368 end loop;
9369 end;
9371 elsif Present (Discriminant_Specifications (N)) then
9372 Process_Discriminants (N, Prev);
9373 end if;
9374 end Check_Or_Process_Discriminants;
9376 ----------------------
9377 -- Check_Real_Bound --
9378 ----------------------
9380 procedure Check_Real_Bound (Bound : Node_Id) is
9381 begin
9382 if not Is_Real_Type (Etype (Bound)) then
9383 Error_Msg_N
9384 ("bound in real type definition must be of real type", Bound);
9386 elsif not Is_OK_Static_Expression (Bound) then
9387 Flag_Non_Static_Expr
9388 ("non-static expression used for real type bound!", Bound);
9390 else
9391 return;
9392 end if;
9394 Rewrite
9395 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
9396 Analyze (Bound);
9397 Resolve (Bound, Standard_Float);
9398 end Check_Real_Bound;
9400 ------------------------------
9401 -- Complete_Private_Subtype --
9402 ------------------------------
9404 procedure Complete_Private_Subtype
9405 (Priv : Entity_Id;
9406 Full : Entity_Id;
9407 Full_Base : Entity_Id;
9408 Related_Nod : Node_Id)
9410 Save_Next_Entity : Entity_Id;
9411 Save_Homonym : Entity_Id;
9413 begin
9414 -- Set semantic attributes for (implicit) private subtype completion.
9415 -- If the full type has no discriminants, then it is a copy of the full
9416 -- view of the base. Otherwise, it is a subtype of the base with a
9417 -- possible discriminant constraint. Save and restore the original
9418 -- Next_Entity field of full to ensure that the calls to Copy_Node
9419 -- do not corrupt the entity chain.
9421 -- Note that the type of the full view is the same entity as the type of
9422 -- the partial view. In this fashion, the subtype has access to the
9423 -- correct view of the parent.
9425 Save_Next_Entity := Next_Entity (Full);
9426 Save_Homonym := Homonym (Priv);
9428 case Ekind (Full_Base) is
9429 when E_Record_Type |
9430 E_Record_Subtype |
9431 Class_Wide_Kind |
9432 Private_Kind |
9433 Task_Kind |
9434 Protected_Kind =>
9435 Copy_Node (Priv, Full);
9437 Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
9438 Set_First_Entity (Full, First_Entity (Full_Base));
9439 Set_Last_Entity (Full, Last_Entity (Full_Base));
9441 when others =>
9442 Copy_Node (Full_Base, Full);
9443 Set_Chars (Full, Chars (Priv));
9444 Conditional_Delay (Full, Priv);
9445 Set_Sloc (Full, Sloc (Priv));
9446 end case;
9448 Set_Next_Entity (Full, Save_Next_Entity);
9449 Set_Homonym (Full, Save_Homonym);
9450 Set_Associated_Node_For_Itype (Full, Related_Nod);
9452 -- Set common attributes for all subtypes
9454 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
9456 -- The Etype of the full view is inconsistent. Gigi needs to see the
9457 -- structural full view, which is what the current scheme gives:
9458 -- the Etype of the full view is the etype of the full base. However,
9459 -- if the full base is a derived type, the full view then looks like
9460 -- a subtype of the parent, not a subtype of the full base. If instead
9461 -- we write:
9463 -- Set_Etype (Full, Full_Base);
9465 -- then we get inconsistencies in the front-end (confusion between
9466 -- views). Several outstanding bugs are related to this ???
9468 Set_Is_First_Subtype (Full, False);
9469 Set_Scope (Full, Scope (Priv));
9470 Set_Size_Info (Full, Full_Base);
9471 Set_RM_Size (Full, RM_Size (Full_Base));
9472 Set_Is_Itype (Full);
9474 -- A subtype of a private-type-without-discriminants, whose full-view
9475 -- has discriminants with default expressions, is not constrained!
9477 if not Has_Discriminants (Priv) then
9478 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
9480 if Has_Discriminants (Full_Base) then
9481 Set_Discriminant_Constraint
9482 (Full, Discriminant_Constraint (Full_Base));
9484 -- The partial view may have been indefinite, the full view
9485 -- might not be.
9487 Set_Has_Unknown_Discriminants
9488 (Full, Has_Unknown_Discriminants (Full_Base));
9489 end if;
9490 end if;
9492 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
9493 Set_Depends_On_Private (Full, Has_Private_Component (Full));
9495 -- Freeze the private subtype entity if its parent is delayed, and not
9496 -- already frozen. We skip this processing if the type is an anonymous
9497 -- subtype of a record component, or is the corresponding record of a
9498 -- protected type, since ???
9500 if not Is_Type (Scope (Full)) then
9501 Set_Has_Delayed_Freeze (Full,
9502 Has_Delayed_Freeze (Full_Base)
9503 and then (not Is_Frozen (Full_Base)));
9504 end if;
9506 Set_Freeze_Node (Full, Empty);
9507 Set_Is_Frozen (Full, False);
9508 Set_Full_View (Priv, Full);
9510 if Has_Discriminants (Full) then
9511 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
9512 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
9514 if Has_Unknown_Discriminants (Full) then
9515 Set_Discriminant_Constraint (Full, No_Elist);
9516 end if;
9517 end if;
9519 if Ekind (Full_Base) = E_Record_Type
9520 and then Has_Discriminants (Full_Base)
9521 and then Has_Discriminants (Priv) -- might not, if errors
9522 and then not Has_Unknown_Discriminants (Priv)
9523 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
9524 then
9525 Create_Constrained_Components
9526 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
9528 -- If the full base is itself derived from private, build a congruent
9529 -- subtype of its underlying type, for use by the back end. For a
9530 -- constrained record component, the declaration cannot be placed on
9531 -- the component list, but it must nevertheless be built an analyzed, to
9532 -- supply enough information for Gigi to compute the size of component.
9534 elsif Ekind (Full_Base) in Private_Kind
9535 and then Is_Derived_Type (Full_Base)
9536 and then Has_Discriminants (Full_Base)
9537 and then (Ekind (Current_Scope) /= E_Record_Subtype)
9538 then
9539 if not Is_Itype (Priv)
9540 and then
9541 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
9542 then
9543 Build_Underlying_Full_View
9544 (Parent (Priv), Full, Etype (Full_Base));
9546 elsif Nkind (Related_Nod) = N_Component_Declaration then
9547 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
9548 end if;
9550 elsif Is_Record_Type (Full_Base) then
9552 -- Show Full is simply a renaming of Full_Base
9554 Set_Cloned_Subtype (Full, Full_Base);
9555 end if;
9557 -- It is unsafe to share to bounds of a scalar type, because the Itype
9558 -- is elaborated on demand, and if a bound is non-static then different
9559 -- orders of elaboration in different units will lead to different
9560 -- external symbols.
9562 if Is_Scalar_Type (Full_Base) then
9563 Set_Scalar_Range (Full,
9564 Make_Range (Sloc (Related_Nod),
9565 Low_Bound =>
9566 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
9567 High_Bound =>
9568 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
9570 -- This completion inherits the bounds of the full parent, but if
9571 -- the parent is an unconstrained floating point type, so is the
9572 -- completion.
9574 if Is_Floating_Point_Type (Full_Base) then
9575 Set_Includes_Infinities
9576 (Scalar_Range (Full), Has_Infinities (Full_Base));
9577 end if;
9578 end if;
9580 -- ??? It seems that a lot of fields are missing that should be copied
9581 -- from Full_Base to Full. Here are some that are introduced in a
9582 -- non-disruptive way but a cleanup is necessary.
9584 if Is_Tagged_Type (Full_Base) then
9585 Set_Is_Tagged_Type (Full);
9586 Set_Primitive_Operations (Full, Primitive_Operations (Full_Base));
9587 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
9589 -- If this is a subtype of a protected or task type, constrain its
9590 -- corresponding record, unless this is a subtype without constraints,
9591 -- i.e. a simple renaming as with an actual subtype in an instance.
9593 elsif Is_Concurrent_Type (Full_Base) then
9594 if Has_Discriminants (Full)
9595 and then Present (Corresponding_Record_Type (Full_Base))
9596 and then
9597 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
9598 then
9599 Set_Corresponding_Record_Type (Full,
9600 Constrain_Corresponding_Record
9601 (Full, Corresponding_Record_Type (Full_Base),
9602 Related_Nod, Full_Base));
9604 else
9605 Set_Corresponding_Record_Type (Full,
9606 Corresponding_Record_Type (Full_Base));
9607 end if;
9608 end if;
9609 end Complete_Private_Subtype;
9611 ----------------------------
9612 -- Constant_Redeclaration --
9613 ----------------------------
9615 procedure Constant_Redeclaration
9616 (Id : Entity_Id;
9617 N : Node_Id;
9618 T : out Entity_Id)
9620 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
9621 Obj_Def : constant Node_Id := Object_Definition (N);
9622 New_T : Entity_Id;
9624 procedure Check_Possible_Deferred_Completion
9625 (Prev_Id : Entity_Id;
9626 Prev_Obj_Def : Node_Id;
9627 Curr_Obj_Def : Node_Id);
9628 -- Determine whether the two object definitions describe the partial
9629 -- and the full view of a constrained deferred constant. Generate
9630 -- a subtype for the full view and verify that it statically matches
9631 -- the subtype of the partial view.
9633 procedure Check_Recursive_Declaration (Typ : Entity_Id);
9634 -- If deferred constant is an access type initialized with an allocator,
9635 -- check whether there is an illegal recursion in the definition,
9636 -- through a default value of some record subcomponent. This is normally
9637 -- detected when generating init procs, but requires this additional
9638 -- mechanism when expansion is disabled.
9640 ----------------------------------------
9641 -- Check_Possible_Deferred_Completion --
9642 ----------------------------------------
9644 procedure Check_Possible_Deferred_Completion
9645 (Prev_Id : Entity_Id;
9646 Prev_Obj_Def : Node_Id;
9647 Curr_Obj_Def : Node_Id)
9649 begin
9650 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
9651 and then Present (Constraint (Prev_Obj_Def))
9652 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
9653 and then Present (Constraint (Curr_Obj_Def))
9654 then
9655 declare
9656 Loc : constant Source_Ptr := Sloc (N);
9657 Def_Id : constant Entity_Id :=
9658 Make_Defining_Identifier (Loc,
9659 New_Internal_Name ('S'));
9660 Decl : constant Node_Id :=
9661 Make_Subtype_Declaration (Loc,
9662 Defining_Identifier =>
9663 Def_Id,
9664 Subtype_Indication =>
9665 Relocate_Node (Curr_Obj_Def));
9667 begin
9668 Insert_Before_And_Analyze (N, Decl);
9669 Set_Etype (Id, Def_Id);
9671 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
9672 Error_Msg_Sloc := Sloc (Prev_Id);
9673 Error_Msg_N ("subtype does not statically match deferred " &
9674 "declaration#", N);
9675 end if;
9676 end;
9677 end if;
9678 end Check_Possible_Deferred_Completion;
9680 ---------------------------------
9681 -- Check_Recursive_Declaration --
9682 ---------------------------------
9684 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
9685 Comp : Entity_Id;
9687 begin
9688 if Is_Record_Type (Typ) then
9689 Comp := First_Component (Typ);
9690 while Present (Comp) loop
9691 if Comes_From_Source (Comp) then
9692 if Present (Expression (Parent (Comp)))
9693 and then Is_Entity_Name (Expression (Parent (Comp)))
9694 and then Entity (Expression (Parent (Comp))) = Prev
9695 then
9696 Error_Msg_Sloc := Sloc (Parent (Comp));
9697 Error_Msg_NE
9698 ("illegal circularity with declaration for&#",
9699 N, Comp);
9700 return;
9702 elsif Is_Record_Type (Etype (Comp)) then
9703 Check_Recursive_Declaration (Etype (Comp));
9704 end if;
9705 end if;
9707 Next_Component (Comp);
9708 end loop;
9709 end if;
9710 end Check_Recursive_Declaration;
9712 -- Start of processing for Constant_Redeclaration
9714 begin
9715 if Nkind (Parent (Prev)) = N_Object_Declaration then
9716 if Nkind (Object_Definition
9717 (Parent (Prev))) = N_Subtype_Indication
9718 then
9719 -- Find type of new declaration. The constraints of the two
9720 -- views must match statically, but there is no point in
9721 -- creating an itype for the full view.
9723 if Nkind (Obj_Def) = N_Subtype_Indication then
9724 Find_Type (Subtype_Mark (Obj_Def));
9725 New_T := Entity (Subtype_Mark (Obj_Def));
9727 else
9728 Find_Type (Obj_Def);
9729 New_T := Entity (Obj_Def);
9730 end if;
9732 T := Etype (Prev);
9734 else
9735 -- The full view may impose a constraint, even if the partial
9736 -- view does not, so construct the subtype.
9738 New_T := Find_Type_Of_Object (Obj_Def, N);
9739 T := New_T;
9740 end if;
9742 else
9743 -- Current declaration is illegal, diagnosed below in Enter_Name
9745 T := Empty;
9746 New_T := Any_Type;
9747 end if;
9749 -- If previous full declaration or a renaming declaration exists, or if
9750 -- a homograph is present, let Enter_Name handle it, either with an
9751 -- error or with the removal of an overridden implicit subprogram.
9753 if Ekind (Prev) /= E_Constant
9754 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
9755 or else Present (Expression (Parent (Prev)))
9756 or else Present (Full_View (Prev))
9757 then
9758 Enter_Name (Id);
9760 -- Verify that types of both declarations match, or else that both types
9761 -- are anonymous access types whose designated subtypes statically match
9762 -- (as allowed in Ada 2005 by AI-385).
9764 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
9765 and then
9766 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
9767 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
9768 or else Is_Access_Constant (Etype (New_T)) /=
9769 Is_Access_Constant (Etype (Prev))
9770 or else Can_Never_Be_Null (Etype (New_T)) /=
9771 Can_Never_Be_Null (Etype (Prev))
9772 or else Null_Exclusion_Present (Parent (Prev)) /=
9773 Null_Exclusion_Present (Parent (Id))
9774 or else not Subtypes_Statically_Match
9775 (Designated_Type (Etype (Prev)),
9776 Designated_Type (Etype (New_T))))
9777 then
9778 Error_Msg_Sloc := Sloc (Prev);
9779 Error_Msg_N ("type does not match declaration#", N);
9780 Set_Full_View (Prev, Id);
9781 Set_Etype (Id, Any_Type);
9783 elsif
9784 Null_Exclusion_Present (Parent (Prev))
9785 and then not Null_Exclusion_Present (N)
9786 then
9787 Error_Msg_Sloc := Sloc (Prev);
9788 Error_Msg_N ("null-exclusion does not match declaration#", N);
9789 Set_Full_View (Prev, Id);
9790 Set_Etype (Id, Any_Type);
9792 -- If so, process the full constant declaration
9794 else
9795 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
9796 -- the deferred declaration is constrained, then the subtype defined
9797 -- by the subtype_indication in the full declaration shall match it
9798 -- statically.
9800 Check_Possible_Deferred_Completion
9801 (Prev_Id => Prev,
9802 Prev_Obj_Def => Object_Definition (Parent (Prev)),
9803 Curr_Obj_Def => Obj_Def);
9805 Set_Full_View (Prev, Id);
9806 Set_Is_Public (Id, Is_Public (Prev));
9807 Set_Is_Internal (Id);
9808 Append_Entity (Id, Current_Scope);
9810 -- Check ALIASED present if present before (RM 7.4(7))
9812 if Is_Aliased (Prev)
9813 and then not Aliased_Present (N)
9814 then
9815 Error_Msg_Sloc := Sloc (Prev);
9816 Error_Msg_N ("ALIASED required (see declaration#)", N);
9817 end if;
9819 -- Check that placement is in private part and that the incomplete
9820 -- declaration appeared in the visible part.
9822 if Ekind (Current_Scope) = E_Package
9823 and then not In_Private_Part (Current_Scope)
9824 then
9825 Error_Msg_Sloc := Sloc (Prev);
9826 Error_Msg_N ("full constant for declaration#"
9827 & " must be in private part", N);
9829 elsif Ekind (Current_Scope) = E_Package
9830 and then List_Containing (Parent (Prev))
9831 /= Visible_Declarations
9832 (Specification (Unit_Declaration_Node (Current_Scope)))
9833 then
9834 Error_Msg_N
9835 ("deferred constant must be declared in visible part",
9836 Parent (Prev));
9837 end if;
9839 if Is_Access_Type (T)
9840 and then Nkind (Expression (N)) = N_Allocator
9841 then
9842 Check_Recursive_Declaration (Designated_Type (T));
9843 end if;
9844 end if;
9845 end Constant_Redeclaration;
9847 ----------------------
9848 -- Constrain_Access --
9849 ----------------------
9851 procedure Constrain_Access
9852 (Def_Id : in out Entity_Id;
9853 S : Node_Id;
9854 Related_Nod : Node_Id)
9856 T : constant Entity_Id := Entity (Subtype_Mark (S));
9857 Desig_Type : constant Entity_Id := Designated_Type (T);
9858 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
9859 Constraint_OK : Boolean := True;
9861 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
9862 -- Simple predicate to test for defaulted discriminants
9863 -- Shouldn't this be in sem_util???
9865 ---------------------------------
9866 -- Has_Defaulted_Discriminants --
9867 ---------------------------------
9869 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
9870 begin
9871 return Has_Discriminants (Typ)
9872 and then Present (First_Discriminant (Typ))
9873 and then Present
9874 (Discriminant_Default_Value (First_Discriminant (Typ)));
9875 end Has_Defaulted_Discriminants;
9877 -- Start of processing for Constrain_Access
9879 begin
9880 if Is_Array_Type (Desig_Type) then
9881 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
9883 elsif (Is_Record_Type (Desig_Type)
9884 or else Is_Incomplete_Or_Private_Type (Desig_Type))
9885 and then not Is_Constrained (Desig_Type)
9886 then
9887 -- ??? The following code is a temporary kludge to ignore a
9888 -- discriminant constraint on access type if it is constraining
9889 -- the current record. Avoid creating the implicit subtype of the
9890 -- record we are currently compiling since right now, we cannot
9891 -- handle these. For now, just return the access type itself.
9893 if Desig_Type = Current_Scope
9894 and then No (Def_Id)
9895 then
9896 Set_Ekind (Desig_Subtype, E_Record_Subtype);
9897 Def_Id := Entity (Subtype_Mark (S));
9899 -- This call added to ensure that the constraint is analyzed
9900 -- (needed for a B test). Note that we still return early from
9901 -- this procedure to avoid recursive processing. ???
9903 Constrain_Discriminated_Type
9904 (Desig_Subtype, S, Related_Nod, For_Access => True);
9905 return;
9906 end if;
9908 if (Ekind (T) = E_General_Access_Type
9909 or else Ada_Version >= Ada_05)
9910 and then Has_Private_Declaration (Desig_Type)
9911 and then In_Open_Scopes (Scope (Desig_Type))
9912 and then Has_Discriminants (Desig_Type)
9913 then
9914 -- Enforce rule that the constraint is illegal if there is
9915 -- an unconstrained view of the designated type. This means
9916 -- that the partial view (either a private type declaration or
9917 -- a derivation from a private type) has no discriminants.
9918 -- (Defect Report 8652/0008, Technical Corrigendum 1, checked
9919 -- by ACATS B371001).
9921 -- Rule updated for Ada 2005: the private type is said to have
9922 -- a constrained partial view, given that objects of the type
9923 -- can be declared. Furthermore, the rule applies to all access
9924 -- types, unlike the rule concerning default discriminants.
9926 declare
9927 Pack : constant Node_Id :=
9928 Unit_Declaration_Node (Scope (Desig_Type));
9929 Decls : List_Id;
9930 Decl : Node_Id;
9932 begin
9933 if Nkind (Pack) = N_Package_Declaration then
9934 Decls := Visible_Declarations (Specification (Pack));
9935 Decl := First (Decls);
9936 while Present (Decl) loop
9937 if (Nkind (Decl) = N_Private_Type_Declaration
9938 and then
9939 Chars (Defining_Identifier (Decl)) =
9940 Chars (Desig_Type))
9942 or else
9943 (Nkind (Decl) = N_Full_Type_Declaration
9944 and then
9945 Chars (Defining_Identifier (Decl)) =
9946 Chars (Desig_Type)
9947 and then Is_Derived_Type (Desig_Type)
9948 and then
9949 Has_Private_Declaration (Etype (Desig_Type)))
9950 then
9951 if No (Discriminant_Specifications (Decl)) then
9952 Error_Msg_N
9953 ("cannot constrain general access type if " &
9954 "designated type has constrained partial view",
9956 end if;
9958 exit;
9959 end if;
9961 Next (Decl);
9962 end loop;
9963 end if;
9964 end;
9965 end if;
9967 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
9968 For_Access => True);
9970 elsif (Is_Task_Type (Desig_Type)
9971 or else Is_Protected_Type (Desig_Type))
9972 and then not Is_Constrained (Desig_Type)
9973 then
9974 Constrain_Concurrent
9975 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
9977 else
9978 Error_Msg_N ("invalid constraint on access type", S);
9979 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
9980 Constraint_OK := False;
9981 end if;
9983 if No (Def_Id) then
9984 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
9985 else
9986 Set_Ekind (Def_Id, E_Access_Subtype);
9987 end if;
9989 if Constraint_OK then
9990 Set_Etype (Def_Id, Base_Type (T));
9992 if Is_Private_Type (Desig_Type) then
9993 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
9994 end if;
9995 else
9996 Set_Etype (Def_Id, Any_Type);
9997 end if;
9999 Set_Size_Info (Def_Id, T);
10000 Set_Is_Constrained (Def_Id, Constraint_OK);
10001 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
10002 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
10003 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
10005 Conditional_Delay (Def_Id, T);
10007 -- AI-363 : Subtypes of general access types whose designated types have
10008 -- default discriminants are disallowed. In instances, the rule has to
10009 -- be checked against the actual, of which T is the subtype. In a
10010 -- generic body, the rule is checked assuming that the actual type has
10011 -- defaulted discriminants.
10013 if Ada_Version >= Ada_05 or else Warn_On_Ada_2005_Compatibility then
10014 if Ekind (Base_Type (T)) = E_General_Access_Type
10015 and then Has_Defaulted_Discriminants (Desig_Type)
10016 then
10017 if Ada_Version < Ada_05 then
10018 Error_Msg_N
10019 ("access subtype of general access type would not " &
10020 "be allowed in Ada 2005?", S);
10021 else
10022 Error_Msg_N
10023 ("access subype of general access type not allowed", S);
10024 end if;
10026 Error_Msg_N ("\discriminants have defaults", S);
10028 elsif Is_Access_Type (T)
10029 and then Is_Generic_Type (Desig_Type)
10030 and then Has_Discriminants (Desig_Type)
10031 and then In_Package_Body (Current_Scope)
10032 then
10033 if Ada_Version < Ada_05 then
10034 Error_Msg_N
10035 ("access subtype would not be allowed in generic body " &
10036 "in Ada 2005?", S);
10037 else
10038 Error_Msg_N
10039 ("access subtype not allowed in generic body", S);
10040 end if;
10042 Error_Msg_N
10043 ("\designated type is a discriminated formal", S);
10044 end if;
10045 end if;
10046 end Constrain_Access;
10048 ---------------------
10049 -- Constrain_Array --
10050 ---------------------
10052 procedure Constrain_Array
10053 (Def_Id : in out Entity_Id;
10054 SI : Node_Id;
10055 Related_Nod : Node_Id;
10056 Related_Id : Entity_Id;
10057 Suffix : Character)
10059 C : constant Node_Id := Constraint (SI);
10060 Number_Of_Constraints : Nat := 0;
10061 Index : Node_Id;
10062 S, T : Entity_Id;
10063 Constraint_OK : Boolean := True;
10065 begin
10066 T := Entity (Subtype_Mark (SI));
10068 if Ekind (T) in Access_Kind then
10069 T := Designated_Type (T);
10070 end if;
10072 -- If an index constraint follows a subtype mark in a subtype indication
10073 -- then the type or subtype denoted by the subtype mark must not already
10074 -- impose an index constraint. The subtype mark must denote either an
10075 -- unconstrained array type or an access type whose designated type
10076 -- is such an array type... (RM 3.6.1)
10078 if Is_Constrained (T) then
10079 Error_Msg_N
10080 ("array type is already constrained", Subtype_Mark (SI));
10081 Constraint_OK := False;
10083 else
10084 S := First (Constraints (C));
10085 while Present (S) loop
10086 Number_Of_Constraints := Number_Of_Constraints + 1;
10087 Next (S);
10088 end loop;
10090 -- In either case, the index constraint must provide a discrete
10091 -- range for each index of the array type and the type of each
10092 -- discrete range must be the same as that of the corresponding
10093 -- index. (RM 3.6.1)
10095 if Number_Of_Constraints /= Number_Dimensions (T) then
10096 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
10097 Constraint_OK := False;
10099 else
10100 S := First (Constraints (C));
10101 Index := First_Index (T);
10102 Analyze (Index);
10104 -- Apply constraints to each index type
10106 for J in 1 .. Number_Of_Constraints loop
10107 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
10108 Next (Index);
10109 Next (S);
10110 end loop;
10112 end if;
10113 end if;
10115 if No (Def_Id) then
10116 Def_Id :=
10117 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
10118 Set_Parent (Def_Id, Related_Nod);
10120 else
10121 Set_Ekind (Def_Id, E_Array_Subtype);
10122 end if;
10124 Set_Size_Info (Def_Id, (T));
10125 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10126 Set_Etype (Def_Id, Base_Type (T));
10128 if Constraint_OK then
10129 Set_First_Index (Def_Id, First (Constraints (C)));
10130 else
10131 Set_First_Index (Def_Id, First_Index (T));
10132 end if;
10134 Set_Is_Constrained (Def_Id, True);
10135 Set_Is_Aliased (Def_Id, Is_Aliased (T));
10136 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
10138 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
10139 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
10141 -- A subtype does not inherit the packed_array_type of is parent. We
10142 -- need to initialize the attribute because if Def_Id is previously
10143 -- analyzed through a limited_with clause, it will have the attributes
10144 -- of an incomplete type, one of which is an Elist that overlaps the
10145 -- Packed_Array_Type field.
10147 Set_Packed_Array_Type (Def_Id, Empty);
10149 -- Build a freeze node if parent still needs one. Also make sure that
10150 -- the Depends_On_Private status is set because the subtype will need
10151 -- reprocessing at the time the base type does, and also we must set a
10152 -- conditional delay.
10154 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10155 Conditional_Delay (Def_Id, T);
10156 end Constrain_Array;
10158 ------------------------------
10159 -- Constrain_Component_Type --
10160 ------------------------------
10162 function Constrain_Component_Type
10163 (Comp : Entity_Id;
10164 Constrained_Typ : Entity_Id;
10165 Related_Node : Node_Id;
10166 Typ : Entity_Id;
10167 Constraints : Elist_Id) return Entity_Id
10169 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
10170 Compon_Type : constant Entity_Id := Etype (Comp);
10172 function Build_Constrained_Array_Type
10173 (Old_Type : Entity_Id) return Entity_Id;
10174 -- If Old_Type is an array type, one of whose indices is constrained
10175 -- by a discriminant, build an Itype whose constraint replaces the
10176 -- discriminant with its value in the constraint.
10178 function Build_Constrained_Discriminated_Type
10179 (Old_Type : Entity_Id) return Entity_Id;
10180 -- Ditto for record components
10182 function Build_Constrained_Access_Type
10183 (Old_Type : Entity_Id) return Entity_Id;
10184 -- Ditto for access types. Makes use of previous two functions, to
10185 -- constrain designated type.
10187 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
10188 -- T is an array or discriminated type, C is a list of constraints
10189 -- that apply to T. This routine builds the constrained subtype.
10191 function Is_Discriminant (Expr : Node_Id) return Boolean;
10192 -- Returns True if Expr is a discriminant
10194 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
10195 -- Find the value of discriminant Discrim in Constraint
10197 -----------------------------------
10198 -- Build_Constrained_Access_Type --
10199 -----------------------------------
10201 function Build_Constrained_Access_Type
10202 (Old_Type : Entity_Id) return Entity_Id
10204 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
10205 Itype : Entity_Id;
10206 Desig_Subtype : Entity_Id;
10207 Scop : Entity_Id;
10209 begin
10210 -- if the original access type was not embedded in the enclosing
10211 -- type definition, there is no need to produce a new access
10212 -- subtype. In fact every access type with an explicit constraint
10213 -- generates an itype whose scope is the enclosing record.
10215 if not Is_Type (Scope (Old_Type)) then
10216 return Old_Type;
10218 elsif Is_Array_Type (Desig_Type) then
10219 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
10221 elsif Has_Discriminants (Desig_Type) then
10223 -- This may be an access type to an enclosing record type for
10224 -- which we are constructing the constrained components. Return
10225 -- the enclosing record subtype. This is not always correct,
10226 -- but avoids infinite recursion. ???
10228 Desig_Subtype := Any_Type;
10230 for J in reverse 0 .. Scope_Stack.Last loop
10231 Scop := Scope_Stack.Table (J).Entity;
10233 if Is_Type (Scop)
10234 and then Base_Type (Scop) = Base_Type (Desig_Type)
10235 then
10236 Desig_Subtype := Scop;
10237 end if;
10239 exit when not Is_Type (Scop);
10240 end loop;
10242 if Desig_Subtype = Any_Type then
10243 Desig_Subtype :=
10244 Build_Constrained_Discriminated_Type (Desig_Type);
10245 end if;
10247 else
10248 return Old_Type;
10249 end if;
10251 if Desig_Subtype /= Desig_Type then
10253 -- The Related_Node better be here or else we won't be able
10254 -- to attach new itypes to a node in the tree.
10256 pragma Assert (Present (Related_Node));
10258 Itype := Create_Itype (E_Access_Subtype, Related_Node);
10260 Set_Etype (Itype, Base_Type (Old_Type));
10261 Set_Size_Info (Itype, (Old_Type));
10262 Set_Directly_Designated_Type (Itype, Desig_Subtype);
10263 Set_Depends_On_Private (Itype, Has_Private_Component
10264 (Old_Type));
10265 Set_Is_Access_Constant (Itype, Is_Access_Constant
10266 (Old_Type));
10268 -- The new itype needs freezing when it depends on a not frozen
10269 -- type and the enclosing subtype needs freezing.
10271 if Has_Delayed_Freeze (Constrained_Typ)
10272 and then not Is_Frozen (Constrained_Typ)
10273 then
10274 Conditional_Delay (Itype, Base_Type (Old_Type));
10275 end if;
10277 return Itype;
10279 else
10280 return Old_Type;
10281 end if;
10282 end Build_Constrained_Access_Type;
10284 ----------------------------------
10285 -- Build_Constrained_Array_Type --
10286 ----------------------------------
10288 function Build_Constrained_Array_Type
10289 (Old_Type : Entity_Id) return Entity_Id
10291 Lo_Expr : Node_Id;
10292 Hi_Expr : Node_Id;
10293 Old_Index : Node_Id;
10294 Range_Node : Node_Id;
10295 Constr_List : List_Id;
10297 Need_To_Create_Itype : Boolean := False;
10299 begin
10300 Old_Index := First_Index (Old_Type);
10301 while Present (Old_Index) loop
10302 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
10304 if Is_Discriminant (Lo_Expr)
10305 or else Is_Discriminant (Hi_Expr)
10306 then
10307 Need_To_Create_Itype := True;
10308 end if;
10310 Next_Index (Old_Index);
10311 end loop;
10313 if Need_To_Create_Itype then
10314 Constr_List := New_List;
10316 Old_Index := First_Index (Old_Type);
10317 while Present (Old_Index) loop
10318 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
10320 if Is_Discriminant (Lo_Expr) then
10321 Lo_Expr := Get_Discr_Value (Lo_Expr);
10322 end if;
10324 if Is_Discriminant (Hi_Expr) then
10325 Hi_Expr := Get_Discr_Value (Hi_Expr);
10326 end if;
10328 Range_Node :=
10329 Make_Range
10330 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
10332 Append (Range_Node, To => Constr_List);
10334 Next_Index (Old_Index);
10335 end loop;
10337 return Build_Subtype (Old_Type, Constr_List);
10339 else
10340 return Old_Type;
10341 end if;
10342 end Build_Constrained_Array_Type;
10344 ------------------------------------------
10345 -- Build_Constrained_Discriminated_Type --
10346 ------------------------------------------
10348 function Build_Constrained_Discriminated_Type
10349 (Old_Type : Entity_Id) return Entity_Id
10351 Expr : Node_Id;
10352 Constr_List : List_Id;
10353 Old_Constraint : Elmt_Id;
10355 Need_To_Create_Itype : Boolean := False;
10357 begin
10358 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
10359 while Present (Old_Constraint) loop
10360 Expr := Node (Old_Constraint);
10362 if Is_Discriminant (Expr) then
10363 Need_To_Create_Itype := True;
10364 end if;
10366 Next_Elmt (Old_Constraint);
10367 end loop;
10369 if Need_To_Create_Itype then
10370 Constr_List := New_List;
10372 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
10373 while Present (Old_Constraint) loop
10374 Expr := Node (Old_Constraint);
10376 if Is_Discriminant (Expr) then
10377 Expr := Get_Discr_Value (Expr);
10378 end if;
10380 Append (New_Copy_Tree (Expr), To => Constr_List);
10382 Next_Elmt (Old_Constraint);
10383 end loop;
10385 return Build_Subtype (Old_Type, Constr_List);
10387 else
10388 return Old_Type;
10389 end if;
10390 end Build_Constrained_Discriminated_Type;
10392 -------------------
10393 -- Build_Subtype --
10394 -------------------
10396 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
10397 Indic : Node_Id;
10398 Subtyp_Decl : Node_Id;
10399 Def_Id : Entity_Id;
10400 Btyp : Entity_Id := Base_Type (T);
10402 begin
10403 -- The Related_Node better be here or else we won't be able to
10404 -- attach new itypes to a node in the tree.
10406 pragma Assert (Present (Related_Node));
10408 -- If the view of the component's type is incomplete or private
10409 -- with unknown discriminants, then the constraint must be applied
10410 -- to the full type.
10412 if Has_Unknown_Discriminants (Btyp)
10413 and then Present (Underlying_Type (Btyp))
10414 then
10415 Btyp := Underlying_Type (Btyp);
10416 end if;
10418 Indic :=
10419 Make_Subtype_Indication (Loc,
10420 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
10421 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
10423 Def_Id := Create_Itype (Ekind (T), Related_Node);
10425 Subtyp_Decl :=
10426 Make_Subtype_Declaration (Loc,
10427 Defining_Identifier => Def_Id,
10428 Subtype_Indication => Indic);
10430 Set_Parent (Subtyp_Decl, Parent (Related_Node));
10432 -- Itypes must be analyzed with checks off (see package Itypes)
10434 Analyze (Subtyp_Decl, Suppress => All_Checks);
10436 return Def_Id;
10437 end Build_Subtype;
10439 ---------------------
10440 -- Get_Discr_Value --
10441 ---------------------
10443 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
10444 D : Entity_Id;
10445 E : Elmt_Id;
10447 begin
10448 -- The discriminant may be declared for the type, in which case we
10449 -- find it by iterating over the list of discriminants. If the
10450 -- discriminant is inherited from a parent type, it appears as the
10451 -- corresponding discriminant of the current type. This will be the
10452 -- case when constraining an inherited component whose constraint is
10453 -- given by a discriminant of the parent.
10455 D := First_Discriminant (Typ);
10456 E := First_Elmt (Constraints);
10458 while Present (D) loop
10459 if D = Entity (Discrim)
10460 or else D = CR_Discriminant (Entity (Discrim))
10461 or else Corresponding_Discriminant (D) = Entity (Discrim)
10462 then
10463 return Node (E);
10464 end if;
10466 Next_Discriminant (D);
10467 Next_Elmt (E);
10468 end loop;
10470 -- The corresponding_Discriminant mechanism is incomplete, because
10471 -- the correspondence between new and old discriminants is not one
10472 -- to one: one new discriminant can constrain several old ones. In
10473 -- that case, scan sequentially the stored_constraint, the list of
10474 -- discriminants of the parents, and the constraints.
10475 -- Previous code checked for the present of the Stored_Constraint
10476 -- list for the derived type, but did not use it at all. Should it
10477 -- be present when the component is a discriminated task type?
10479 if Is_Derived_Type (Typ)
10480 and then Scope (Entity (Discrim)) = Etype (Typ)
10481 then
10482 D := First_Discriminant (Etype (Typ));
10483 E := First_Elmt (Constraints);
10484 while Present (D) loop
10485 if D = Entity (Discrim) then
10486 return Node (E);
10487 end if;
10489 Next_Discriminant (D);
10490 Next_Elmt (E);
10491 end loop;
10492 end if;
10494 -- Something is wrong if we did not find the value
10496 raise Program_Error;
10497 end Get_Discr_Value;
10499 ---------------------
10500 -- Is_Discriminant --
10501 ---------------------
10503 function Is_Discriminant (Expr : Node_Id) return Boolean is
10504 Discrim_Scope : Entity_Id;
10506 begin
10507 if Denotes_Discriminant (Expr) then
10508 Discrim_Scope := Scope (Entity (Expr));
10510 -- Either we have a reference to one of Typ's discriminants,
10512 pragma Assert (Discrim_Scope = Typ
10514 -- or to the discriminants of the parent type, in the case
10515 -- of a derivation of a tagged type with variants.
10517 or else Discrim_Scope = Etype (Typ)
10518 or else Full_View (Discrim_Scope) = Etype (Typ)
10520 -- or same as above for the case where the discriminants
10521 -- were declared in Typ's private view.
10523 or else (Is_Private_Type (Discrim_Scope)
10524 and then Chars (Discrim_Scope) = Chars (Typ))
10526 -- or else we are deriving from the full view and the
10527 -- discriminant is declared in the private entity.
10529 or else (Is_Private_Type (Typ)
10530 and then Chars (Discrim_Scope) = Chars (Typ))
10532 -- Or we are constrained the corresponding record of a
10533 -- synchronized type that completes a private declaration.
10535 or else (Is_Concurrent_Record_Type (Typ)
10536 and then
10537 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
10539 -- or we have a class-wide type, in which case make sure the
10540 -- discriminant found belongs to the root type.
10542 or else (Is_Class_Wide_Type (Typ)
10543 and then Etype (Typ) = Discrim_Scope));
10545 return True;
10546 end if;
10548 -- In all other cases we have something wrong
10550 return False;
10551 end Is_Discriminant;
10553 -- Start of processing for Constrain_Component_Type
10555 begin
10556 if Nkind (Parent (Comp)) = N_Component_Declaration
10557 and then Comes_From_Source (Parent (Comp))
10558 and then Comes_From_Source
10559 (Subtype_Indication (Component_Definition (Parent (Comp))))
10560 and then
10561 Is_Entity_Name
10562 (Subtype_Indication (Component_Definition (Parent (Comp))))
10563 then
10564 return Compon_Type;
10566 elsif Is_Array_Type (Compon_Type) then
10567 return Build_Constrained_Array_Type (Compon_Type);
10569 elsif Has_Discriminants (Compon_Type) then
10570 return Build_Constrained_Discriminated_Type (Compon_Type);
10572 elsif Is_Access_Type (Compon_Type) then
10573 return Build_Constrained_Access_Type (Compon_Type);
10575 else
10576 return Compon_Type;
10577 end if;
10578 end Constrain_Component_Type;
10580 --------------------------
10581 -- Constrain_Concurrent --
10582 --------------------------
10584 -- For concurrent types, the associated record value type carries the same
10585 -- discriminants, so when we constrain a concurrent type, we must constrain
10586 -- the corresponding record type as well.
10588 procedure Constrain_Concurrent
10589 (Def_Id : in out Entity_Id;
10590 SI : Node_Id;
10591 Related_Nod : Node_Id;
10592 Related_Id : Entity_Id;
10593 Suffix : Character)
10595 T_Ent : Entity_Id := Entity (Subtype_Mark (SI));
10596 T_Val : Entity_Id;
10598 begin
10599 if Ekind (T_Ent) in Access_Kind then
10600 T_Ent := Designated_Type (T_Ent);
10601 end if;
10603 T_Val := Corresponding_Record_Type (T_Ent);
10605 if Present (T_Val) then
10607 if No (Def_Id) then
10608 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
10609 end if;
10611 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
10613 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
10614 Set_Corresponding_Record_Type (Def_Id,
10615 Constrain_Corresponding_Record
10616 (Def_Id, T_Val, Related_Nod, Related_Id));
10618 else
10619 -- If there is no associated record, expansion is disabled and this
10620 -- is a generic context. Create a subtype in any case, so that
10621 -- semantic analysis can proceed.
10623 if No (Def_Id) then
10624 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
10625 end if;
10627 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
10628 end if;
10629 end Constrain_Concurrent;
10631 ------------------------------------
10632 -- Constrain_Corresponding_Record --
10633 ------------------------------------
10635 function Constrain_Corresponding_Record
10636 (Prot_Subt : Entity_Id;
10637 Corr_Rec : Entity_Id;
10638 Related_Nod : Node_Id;
10639 Related_Id : Entity_Id) return Entity_Id
10641 T_Sub : constant Entity_Id :=
10642 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
10644 begin
10645 Set_Etype (T_Sub, Corr_Rec);
10646 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
10647 Set_Is_Constrained (T_Sub, True);
10648 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
10649 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
10651 -- As elsewhere, we do not want to create a freeze node for this itype
10652 -- if it is created for a constrained component of an enclosing record
10653 -- because references to outer discriminants will appear out of scope.
10655 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
10656 Conditional_Delay (T_Sub, Corr_Rec);
10657 else
10658 Set_Is_Frozen (T_Sub);
10659 end if;
10661 if Has_Discriminants (Prot_Subt) then -- False only if errors.
10662 Set_Discriminant_Constraint
10663 (T_Sub, Discriminant_Constraint (Prot_Subt));
10664 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
10665 Create_Constrained_Components
10666 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
10667 end if;
10669 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
10671 return T_Sub;
10672 end Constrain_Corresponding_Record;
10674 -----------------------
10675 -- Constrain_Decimal --
10676 -----------------------
10678 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
10679 T : constant Entity_Id := Entity (Subtype_Mark (S));
10680 C : constant Node_Id := Constraint (S);
10681 Loc : constant Source_Ptr := Sloc (C);
10682 Range_Expr : Node_Id;
10683 Digits_Expr : Node_Id;
10684 Digits_Val : Uint;
10685 Bound_Val : Ureal;
10687 begin
10688 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
10690 if Nkind (C) = N_Range_Constraint then
10691 Range_Expr := Range_Expression (C);
10692 Digits_Val := Digits_Value (T);
10694 else
10695 pragma Assert (Nkind (C) = N_Digits_Constraint);
10696 Digits_Expr := Digits_Expression (C);
10697 Analyze_And_Resolve (Digits_Expr, Any_Integer);
10699 Check_Digits_Expression (Digits_Expr);
10700 Digits_Val := Expr_Value (Digits_Expr);
10702 if Digits_Val > Digits_Value (T) then
10703 Error_Msg_N
10704 ("digits expression is incompatible with subtype", C);
10705 Digits_Val := Digits_Value (T);
10706 end if;
10708 if Present (Range_Constraint (C)) then
10709 Range_Expr := Range_Expression (Range_Constraint (C));
10710 else
10711 Range_Expr := Empty;
10712 end if;
10713 end if;
10715 Set_Etype (Def_Id, Base_Type (T));
10716 Set_Size_Info (Def_Id, (T));
10717 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10718 Set_Delta_Value (Def_Id, Delta_Value (T));
10719 Set_Scale_Value (Def_Id, Scale_Value (T));
10720 Set_Small_Value (Def_Id, Small_Value (T));
10721 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
10722 Set_Digits_Value (Def_Id, Digits_Val);
10724 -- Manufacture range from given digits value if no range present
10726 if No (Range_Expr) then
10727 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
10728 Range_Expr :=
10729 Make_Range (Loc,
10730 Low_Bound =>
10731 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
10732 High_Bound =>
10733 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
10734 end if;
10736 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
10737 Set_Discrete_RM_Size (Def_Id);
10739 -- Unconditionally delay the freeze, since we cannot set size
10740 -- information in all cases correctly until the freeze point.
10742 Set_Has_Delayed_Freeze (Def_Id);
10743 end Constrain_Decimal;
10745 ----------------------------------
10746 -- Constrain_Discriminated_Type --
10747 ----------------------------------
10749 procedure Constrain_Discriminated_Type
10750 (Def_Id : Entity_Id;
10751 S : Node_Id;
10752 Related_Nod : Node_Id;
10753 For_Access : Boolean := False)
10755 E : constant Entity_Id := Entity (Subtype_Mark (S));
10756 T : Entity_Id;
10757 C : Node_Id;
10758 Elist : Elist_Id := New_Elmt_List;
10760 procedure Fixup_Bad_Constraint;
10761 -- This is called after finding a bad constraint, and after having
10762 -- posted an appropriate error message. The mission is to leave the
10763 -- entity T in as reasonable state as possible!
10765 --------------------------
10766 -- Fixup_Bad_Constraint --
10767 --------------------------
10769 procedure Fixup_Bad_Constraint is
10770 begin
10771 -- Set a reasonable Ekind for the entity. For an incomplete type,
10772 -- we can't do much, but for other types, we can set the proper
10773 -- corresponding subtype kind.
10775 if Ekind (T) = E_Incomplete_Type then
10776 Set_Ekind (Def_Id, Ekind (T));
10777 else
10778 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10779 end if;
10781 -- Set Etype to the known type, to reduce chances of cascaded errors
10783 Set_Etype (Def_Id, E);
10784 Set_Error_Posted (Def_Id);
10785 end Fixup_Bad_Constraint;
10787 -- Start of processing for Constrain_Discriminated_Type
10789 begin
10790 C := Constraint (S);
10792 -- A discriminant constraint is only allowed in a subtype indication,
10793 -- after a subtype mark. This subtype mark must denote either a type
10794 -- with discriminants, or an access type whose designated type is a
10795 -- type with discriminants. A discriminant constraint specifies the
10796 -- values of these discriminants (RM 3.7.2(5)).
10798 T := Base_Type (Entity (Subtype_Mark (S)));
10800 if Ekind (T) in Access_Kind then
10801 T := Designated_Type (T);
10802 end if;
10804 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
10805 -- Avoid generating an error for access-to-incomplete subtypes.
10807 if Ada_Version >= Ada_05
10808 and then Ekind (T) = E_Incomplete_Type
10809 and then Nkind (Parent (S)) = N_Subtype_Declaration
10810 and then not Is_Itype (Def_Id)
10811 then
10812 -- A little sanity check, emit an error message if the type
10813 -- has discriminants to begin with. Type T may be a regular
10814 -- incomplete type or imported via a limited with clause.
10816 if Has_Discriminants (T)
10817 or else
10818 (From_With_Type (T)
10819 and then Present (Non_Limited_View (T))
10820 and then Nkind (Parent (Non_Limited_View (T))) =
10821 N_Full_Type_Declaration
10822 and then Present (Discriminant_Specifications
10823 (Parent (Non_Limited_View (T)))))
10824 then
10825 Error_Msg_N
10826 ("(Ada 2005) incomplete subtype may not be constrained", C);
10827 else
10828 Error_Msg_N
10829 ("invalid constraint: type has no discriminant", C);
10830 end if;
10832 Fixup_Bad_Constraint;
10833 return;
10835 -- Check that the type has visible discriminants. The type may be
10836 -- a private type with unknown discriminants whose full view has
10837 -- discriminants which are invisible.
10839 elsif not Has_Discriminants (T)
10840 or else
10841 (Has_Unknown_Discriminants (T)
10842 and then Is_Private_Type (T))
10843 then
10844 Error_Msg_N ("invalid constraint: type has no discriminant", C);
10845 Fixup_Bad_Constraint;
10846 return;
10848 elsif Is_Constrained (E)
10849 or else (Ekind (E) = E_Class_Wide_Subtype
10850 and then Present (Discriminant_Constraint (E)))
10851 then
10852 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
10853 Fixup_Bad_Constraint;
10854 return;
10855 end if;
10857 -- T may be an unconstrained subtype (e.g. a generic actual).
10858 -- Constraint applies to the base type.
10860 T := Base_Type (T);
10862 Elist := Build_Discriminant_Constraints (T, S);
10864 -- If the list returned was empty we had an error in building the
10865 -- discriminant constraint. We have also already signalled an error
10866 -- in the incomplete type case
10868 if Is_Empty_Elmt_List (Elist) then
10869 Fixup_Bad_Constraint;
10870 return;
10871 end if;
10873 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
10874 end Constrain_Discriminated_Type;
10876 ---------------------------
10877 -- Constrain_Enumeration --
10878 ---------------------------
10880 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
10881 T : constant Entity_Id := Entity (Subtype_Mark (S));
10882 C : constant Node_Id := Constraint (S);
10884 begin
10885 Set_Ekind (Def_Id, E_Enumeration_Subtype);
10887 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
10889 Set_Etype (Def_Id, Base_Type (T));
10890 Set_Size_Info (Def_Id, (T));
10891 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10892 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
10894 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
10896 Set_Discrete_RM_Size (Def_Id);
10897 end Constrain_Enumeration;
10899 ----------------------
10900 -- Constrain_Float --
10901 ----------------------
10903 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
10904 T : constant Entity_Id := Entity (Subtype_Mark (S));
10905 C : Node_Id;
10906 D : Node_Id;
10907 Rais : Node_Id;
10909 begin
10910 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
10912 Set_Etype (Def_Id, Base_Type (T));
10913 Set_Size_Info (Def_Id, (T));
10914 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10916 -- Process the constraint
10918 C := Constraint (S);
10920 -- Digits constraint present
10922 if Nkind (C) = N_Digits_Constraint then
10923 Check_Restriction (No_Obsolescent_Features, C);
10925 if Warn_On_Obsolescent_Feature then
10926 Error_Msg_N
10927 ("subtype digits constraint is an " &
10928 "obsolescent feature (RM J.3(8))?", C);
10929 end if;
10931 D := Digits_Expression (C);
10932 Analyze_And_Resolve (D, Any_Integer);
10933 Check_Digits_Expression (D);
10934 Set_Digits_Value (Def_Id, Expr_Value (D));
10936 -- Check that digits value is in range. Obviously we can do this
10937 -- at compile time, but it is strictly a runtime check, and of
10938 -- course there is an ACVC test that checks this!
10940 if Digits_Value (Def_Id) > Digits_Value (T) then
10941 Error_Msg_Uint_1 := Digits_Value (T);
10942 Error_Msg_N ("?digits value is too large, maximum is ^", D);
10943 Rais :=
10944 Make_Raise_Constraint_Error (Sloc (D),
10945 Reason => CE_Range_Check_Failed);
10946 Insert_Action (Declaration_Node (Def_Id), Rais);
10947 end if;
10949 C := Range_Constraint (C);
10951 -- No digits constraint present
10953 else
10954 Set_Digits_Value (Def_Id, Digits_Value (T));
10955 end if;
10957 -- Range constraint present
10959 if Nkind (C) = N_Range_Constraint then
10960 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
10962 -- No range constraint present
10964 else
10965 pragma Assert (No (C));
10966 Set_Scalar_Range (Def_Id, Scalar_Range (T));
10967 end if;
10969 Set_Is_Constrained (Def_Id);
10970 end Constrain_Float;
10972 ---------------------
10973 -- Constrain_Index --
10974 ---------------------
10976 procedure Constrain_Index
10977 (Index : Node_Id;
10978 S : Node_Id;
10979 Related_Nod : Node_Id;
10980 Related_Id : Entity_Id;
10981 Suffix : Character;
10982 Suffix_Index : Nat)
10984 Def_Id : Entity_Id;
10985 R : Node_Id := Empty;
10986 T : constant Entity_Id := Etype (Index);
10988 begin
10989 if Nkind (S) = N_Range
10990 or else
10991 (Nkind (S) = N_Attribute_Reference
10992 and then Attribute_Name (S) = Name_Range)
10993 then
10994 -- A Range attribute will transformed into N_Range by Resolve
10996 Analyze (S);
10997 Set_Etype (S, T);
10998 R := S;
11000 Process_Range_Expr_In_Decl (R, T, Empty_List);
11002 if not Error_Posted (S)
11003 and then
11004 (Nkind (S) /= N_Range
11005 or else not Covers (T, (Etype (Low_Bound (S))))
11006 or else not Covers (T, (Etype (High_Bound (S)))))
11007 then
11008 if Base_Type (T) /= Any_Type
11009 and then Etype (Low_Bound (S)) /= Any_Type
11010 and then Etype (High_Bound (S)) /= Any_Type
11011 then
11012 Error_Msg_N ("range expected", S);
11013 end if;
11014 end if;
11016 elsif Nkind (S) = N_Subtype_Indication then
11018 -- The parser has verified that this is a discrete indication
11020 Resolve_Discrete_Subtype_Indication (S, T);
11021 R := Range_Expression (Constraint (S));
11023 elsif Nkind (S) = N_Discriminant_Association then
11025 -- Syntactically valid in subtype indication
11027 Error_Msg_N ("invalid index constraint", S);
11028 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
11029 return;
11031 -- Subtype_Mark case, no anonymous subtypes to construct
11033 else
11034 Analyze (S);
11036 if Is_Entity_Name (S) then
11037 if not Is_Type (Entity (S)) then
11038 Error_Msg_N ("expect subtype mark for index constraint", S);
11040 elsif Base_Type (Entity (S)) /= Base_Type (T) then
11041 Wrong_Type (S, Base_Type (T));
11042 end if;
11044 return;
11046 else
11047 Error_Msg_N ("invalid index constraint", S);
11048 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
11049 return;
11050 end if;
11051 end if;
11053 Def_Id :=
11054 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
11056 Set_Etype (Def_Id, Base_Type (T));
11058 if Is_Modular_Integer_Type (T) then
11059 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
11061 elsif Is_Integer_Type (T) then
11062 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
11064 else
11065 Set_Ekind (Def_Id, E_Enumeration_Subtype);
11066 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
11067 end if;
11069 Set_Size_Info (Def_Id, (T));
11070 Set_RM_Size (Def_Id, RM_Size (T));
11071 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11073 Set_Scalar_Range (Def_Id, R);
11075 Set_Etype (S, Def_Id);
11076 Set_Discrete_RM_Size (Def_Id);
11077 end Constrain_Index;
11079 -----------------------
11080 -- Constrain_Integer --
11081 -----------------------
11083 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
11084 T : constant Entity_Id := Entity (Subtype_Mark (S));
11085 C : constant Node_Id := Constraint (S);
11087 begin
11088 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
11090 if Is_Modular_Integer_Type (T) then
11091 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
11092 else
11093 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
11094 end if;
11096 Set_Etype (Def_Id, Base_Type (T));
11097 Set_Size_Info (Def_Id, (T));
11098 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11099 Set_Discrete_RM_Size (Def_Id);
11100 end Constrain_Integer;
11102 ------------------------------
11103 -- Constrain_Ordinary_Fixed --
11104 ------------------------------
11106 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
11107 T : constant Entity_Id := Entity (Subtype_Mark (S));
11108 C : Node_Id;
11109 D : Node_Id;
11110 Rais : Node_Id;
11112 begin
11113 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
11114 Set_Etype (Def_Id, Base_Type (T));
11115 Set_Size_Info (Def_Id, (T));
11116 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11117 Set_Small_Value (Def_Id, Small_Value (T));
11119 -- Process the constraint
11121 C := Constraint (S);
11123 -- Delta constraint present
11125 if Nkind (C) = N_Delta_Constraint then
11126 Check_Restriction (No_Obsolescent_Features, C);
11128 if Warn_On_Obsolescent_Feature then
11129 Error_Msg_S
11130 ("subtype delta constraint is an " &
11131 "obsolescent feature (RM J.3(7))?");
11132 end if;
11134 D := Delta_Expression (C);
11135 Analyze_And_Resolve (D, Any_Real);
11136 Check_Delta_Expression (D);
11137 Set_Delta_Value (Def_Id, Expr_Value_R (D));
11139 -- Check that delta value is in range. Obviously we can do this
11140 -- at compile time, but it is strictly a runtime check, and of
11141 -- course there is an ACVC test that checks this!
11143 if Delta_Value (Def_Id) < Delta_Value (T) then
11144 Error_Msg_N ("?delta value is too small", D);
11145 Rais :=
11146 Make_Raise_Constraint_Error (Sloc (D),
11147 Reason => CE_Range_Check_Failed);
11148 Insert_Action (Declaration_Node (Def_Id), Rais);
11149 end if;
11151 C := Range_Constraint (C);
11153 -- No delta constraint present
11155 else
11156 Set_Delta_Value (Def_Id, Delta_Value (T));
11157 end if;
11159 -- Range constraint present
11161 if Nkind (C) = N_Range_Constraint then
11162 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
11164 -- No range constraint present
11166 else
11167 pragma Assert (No (C));
11168 Set_Scalar_Range (Def_Id, Scalar_Range (T));
11170 end if;
11172 Set_Discrete_RM_Size (Def_Id);
11174 -- Unconditionally delay the freeze, since we cannot set size
11175 -- information in all cases correctly until the freeze point.
11177 Set_Has_Delayed_Freeze (Def_Id);
11178 end Constrain_Ordinary_Fixed;
11180 -----------------------
11181 -- Contain_Interface --
11182 -----------------------
11184 function Contain_Interface
11185 (Iface : Entity_Id;
11186 Ifaces : Elist_Id) return Boolean
11188 Iface_Elmt : Elmt_Id;
11190 begin
11191 if Present (Ifaces) then
11192 Iface_Elmt := First_Elmt (Ifaces);
11193 while Present (Iface_Elmt) loop
11194 if Node (Iface_Elmt) = Iface then
11195 return True;
11196 end if;
11198 Next_Elmt (Iface_Elmt);
11199 end loop;
11200 end if;
11202 return False;
11203 end Contain_Interface;
11205 ---------------------------
11206 -- Convert_Scalar_Bounds --
11207 ---------------------------
11209 procedure Convert_Scalar_Bounds
11210 (N : Node_Id;
11211 Parent_Type : Entity_Id;
11212 Derived_Type : Entity_Id;
11213 Loc : Source_Ptr)
11215 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
11217 Lo : Node_Id;
11218 Hi : Node_Id;
11219 Rng : Node_Id;
11221 begin
11222 Lo := Build_Scalar_Bound
11223 (Type_Low_Bound (Derived_Type),
11224 Parent_Type, Implicit_Base);
11226 Hi := Build_Scalar_Bound
11227 (Type_High_Bound (Derived_Type),
11228 Parent_Type, Implicit_Base);
11230 Rng :=
11231 Make_Range (Loc,
11232 Low_Bound => Lo,
11233 High_Bound => Hi);
11235 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
11237 Set_Parent (Rng, N);
11238 Set_Scalar_Range (Derived_Type, Rng);
11240 -- Analyze the bounds
11242 Analyze_And_Resolve (Lo, Implicit_Base);
11243 Analyze_And_Resolve (Hi, Implicit_Base);
11245 -- Analyze the range itself, except that we do not analyze it if
11246 -- the bounds are real literals, and we have a fixed-point type.
11247 -- The reason for this is that we delay setting the bounds in this
11248 -- case till we know the final Small and Size values (see circuit
11249 -- in Freeze.Freeze_Fixed_Point_Type for further details).
11251 if Is_Fixed_Point_Type (Parent_Type)
11252 and then Nkind (Lo) = N_Real_Literal
11253 and then Nkind (Hi) = N_Real_Literal
11254 then
11255 return;
11257 -- Here we do the analysis of the range
11259 -- Note: we do this manually, since if we do a normal Analyze and
11260 -- Resolve call, there are problems with the conversions used for
11261 -- the derived type range.
11263 else
11264 Set_Etype (Rng, Implicit_Base);
11265 Set_Analyzed (Rng, True);
11266 end if;
11267 end Convert_Scalar_Bounds;
11269 -------------------
11270 -- Copy_And_Swap --
11271 -------------------
11273 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
11274 begin
11275 -- Initialize new full declaration entity by copying the pertinent
11276 -- fields of the corresponding private declaration entity.
11278 -- We temporarily set Ekind to a value appropriate for a type to
11279 -- avoid assert failures in Einfo from checking for setting type
11280 -- attributes on something that is not a type. Ekind (Priv) is an
11281 -- appropriate choice, since it allowed the attributes to be set
11282 -- in the first place. This Ekind value will be modified later.
11284 Set_Ekind (Full, Ekind (Priv));
11286 -- Also set Etype temporarily to Any_Type, again, in the absence
11287 -- of errors, it will be properly reset, and if there are errors,
11288 -- then we want a value of Any_Type to remain.
11290 Set_Etype (Full, Any_Type);
11292 -- Now start copying attributes
11294 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
11296 if Has_Discriminants (Full) then
11297 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
11298 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
11299 end if;
11301 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11302 Set_Homonym (Full, Homonym (Priv));
11303 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
11304 Set_Is_Public (Full, Is_Public (Priv));
11305 Set_Is_Pure (Full, Is_Pure (Priv));
11306 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
11307 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
11308 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
11309 Set_Has_Pragma_Unreferenced_Objects
11310 (Full, Has_Pragma_Unreferenced_Objects
11311 (Priv));
11313 Conditional_Delay (Full, Priv);
11315 if Is_Tagged_Type (Full) then
11316 Set_Primitive_Operations (Full, Primitive_Operations (Priv));
11318 if Priv = Base_Type (Priv) then
11319 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
11320 end if;
11321 end if;
11323 Set_Is_Volatile (Full, Is_Volatile (Priv));
11324 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
11325 Set_Scope (Full, Scope (Priv));
11326 Set_Next_Entity (Full, Next_Entity (Priv));
11327 Set_First_Entity (Full, First_Entity (Priv));
11328 Set_Last_Entity (Full, Last_Entity (Priv));
11330 -- If access types have been recorded for later handling, keep them in
11331 -- the full view so that they get handled when the full view freeze
11332 -- node is expanded.
11334 if Present (Freeze_Node (Priv))
11335 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
11336 then
11337 Ensure_Freeze_Node (Full);
11338 Set_Access_Types_To_Process
11339 (Freeze_Node (Full),
11340 Access_Types_To_Process (Freeze_Node (Priv)));
11341 end if;
11343 -- Swap the two entities. Now Privat is the full type entity and Full is
11344 -- the private one. They will be swapped back at the end of the private
11345 -- part. This swapping ensures that the entity that is visible in the
11346 -- private part is the full declaration.
11348 Exchange_Entities (Priv, Full);
11349 Append_Entity (Full, Scope (Full));
11350 end Copy_And_Swap;
11352 -------------------------------------
11353 -- Copy_Array_Base_Type_Attributes --
11354 -------------------------------------
11356 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
11357 begin
11358 Set_Component_Alignment (T1, Component_Alignment (T2));
11359 Set_Component_Type (T1, Component_Type (T2));
11360 Set_Component_Size (T1, Component_Size (T2));
11361 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
11362 Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
11363 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
11364 Set_Has_Task (T1, Has_Task (T2));
11365 Set_Is_Packed (T1, Is_Packed (T2));
11366 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
11367 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
11368 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
11369 end Copy_Array_Base_Type_Attributes;
11371 -----------------------------------
11372 -- Copy_Array_Subtype_Attributes --
11373 -----------------------------------
11375 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
11376 begin
11377 Set_Size_Info (T1, T2);
11379 Set_First_Index (T1, First_Index (T2));
11380 Set_Is_Aliased (T1, Is_Aliased (T2));
11381 Set_Is_Atomic (T1, Is_Atomic (T2));
11382 Set_Is_Volatile (T1, Is_Volatile (T2));
11383 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
11384 Set_Is_Constrained (T1, Is_Constrained (T2));
11385 Set_Depends_On_Private (T1, Has_Private_Component (T2));
11386 Set_First_Rep_Item (T1, First_Rep_Item (T2));
11387 Set_Convention (T1, Convention (T2));
11388 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
11389 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
11390 Set_Packed_Array_Type (T1, Packed_Array_Type (T2));
11391 end Copy_Array_Subtype_Attributes;
11393 -----------------------------------
11394 -- Create_Constrained_Components --
11395 -----------------------------------
11397 procedure Create_Constrained_Components
11398 (Subt : Entity_Id;
11399 Decl_Node : Node_Id;
11400 Typ : Entity_Id;
11401 Constraints : Elist_Id)
11403 Loc : constant Source_Ptr := Sloc (Subt);
11404 Comp_List : constant Elist_Id := New_Elmt_List;
11405 Parent_Type : constant Entity_Id := Etype (Typ);
11406 Assoc_List : constant List_Id := New_List;
11407 Discr_Val : Elmt_Id;
11408 Errors : Boolean;
11409 New_C : Entity_Id;
11410 Old_C : Entity_Id;
11411 Is_Static : Boolean := True;
11413 procedure Collect_Fixed_Components (Typ : Entity_Id);
11414 -- Collect parent type components that do not appear in a variant part
11416 procedure Create_All_Components;
11417 -- Iterate over Comp_List to create the components of the subtype
11419 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
11420 -- Creates a new component from Old_Compon, copying all the fields from
11421 -- it, including its Etype, inserts the new component in the Subt entity
11422 -- chain and returns the new component.
11424 function Is_Variant_Record (T : Entity_Id) return Boolean;
11425 -- If true, and discriminants are static, collect only components from
11426 -- variants selected by discriminant values.
11428 ------------------------------
11429 -- Collect_Fixed_Components --
11430 ------------------------------
11432 procedure Collect_Fixed_Components (Typ : Entity_Id) is
11433 begin
11434 -- Build association list for discriminants, and find components of the
11435 -- variant part selected by the values of the discriminants.
11437 Old_C := First_Discriminant (Typ);
11438 Discr_Val := First_Elmt (Constraints);
11439 while Present (Old_C) loop
11440 Append_To (Assoc_List,
11441 Make_Component_Association (Loc,
11442 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
11443 Expression => New_Copy (Node (Discr_Val))));
11445 Next_Elmt (Discr_Val);
11446 Next_Discriminant (Old_C);
11447 end loop;
11449 -- The tag, and the possible parent and controller components
11450 -- are unconditionally in the subtype.
11452 if Is_Tagged_Type (Typ)
11453 or else Has_Controlled_Component (Typ)
11454 then
11455 Old_C := First_Component (Typ);
11456 while Present (Old_C) loop
11457 if Chars ((Old_C)) = Name_uTag
11458 or else Chars ((Old_C)) = Name_uParent
11459 or else Chars ((Old_C)) = Name_uController
11460 then
11461 Append_Elmt (Old_C, Comp_List);
11462 end if;
11464 Next_Component (Old_C);
11465 end loop;
11466 end if;
11467 end Collect_Fixed_Components;
11469 ---------------------------
11470 -- Create_All_Components --
11471 ---------------------------
11473 procedure Create_All_Components is
11474 Comp : Elmt_Id;
11476 begin
11477 Comp := First_Elmt (Comp_List);
11478 while Present (Comp) loop
11479 Old_C := Node (Comp);
11480 New_C := Create_Component (Old_C);
11482 Set_Etype
11483 (New_C,
11484 Constrain_Component_Type
11485 (Old_C, Subt, Decl_Node, Typ, Constraints));
11486 Set_Is_Public (New_C, Is_Public (Subt));
11488 Next_Elmt (Comp);
11489 end loop;
11490 end Create_All_Components;
11492 ----------------------
11493 -- Create_Component --
11494 ----------------------
11496 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
11497 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
11499 begin
11500 if Ekind (Old_Compon) = E_Discriminant
11501 and then Is_Completely_Hidden (Old_Compon)
11502 then
11503 -- This is a shadow discriminant created for a discriminant of
11504 -- the parent type, which needs to be present in the subtype.
11505 -- Give the shadow discriminant an internal name that cannot
11506 -- conflict with that of visible components.
11508 Set_Chars (New_Compon, New_Internal_Name ('C'));
11509 end if;
11511 -- Set the parent so we have a proper link for freezing etc. This is
11512 -- not a real parent pointer, since of course our parent does not own
11513 -- up to us and reference us, we are an illegitimate child of the
11514 -- original parent!
11516 Set_Parent (New_Compon, Parent (Old_Compon));
11518 -- If the old component's Esize was already determined and is a
11519 -- static value, then the new component simply inherits it. Otherwise
11520 -- the old component's size may require run-time determination, but
11521 -- the new component's size still might be statically determinable
11522 -- (if, for example it has a static constraint). In that case we want
11523 -- Layout_Type to recompute the component's size, so we reset its
11524 -- size and positional fields.
11526 if Frontend_Layout_On_Target
11527 and then not Known_Static_Esize (Old_Compon)
11528 then
11529 Set_Esize (New_Compon, Uint_0);
11530 Init_Normalized_First_Bit (New_Compon);
11531 Init_Normalized_Position (New_Compon);
11532 Init_Normalized_Position_Max (New_Compon);
11533 end if;
11535 -- We do not want this node marked as Comes_From_Source, since
11536 -- otherwise it would get first class status and a separate cross-
11537 -- reference line would be generated. Illegitimate children do not
11538 -- rate such recognition.
11540 Set_Comes_From_Source (New_Compon, False);
11542 -- But it is a real entity, and a birth certificate must be properly
11543 -- registered by entering it into the entity list.
11545 Enter_Name (New_Compon);
11547 return New_Compon;
11548 end Create_Component;
11550 -----------------------
11551 -- Is_Variant_Record --
11552 -----------------------
11554 function Is_Variant_Record (T : Entity_Id) return Boolean is
11555 begin
11556 return Nkind (Parent (T)) = N_Full_Type_Declaration
11557 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
11558 and then Present (Component_List (Type_Definition (Parent (T))))
11559 and then
11560 Present
11561 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
11562 end Is_Variant_Record;
11564 -- Start of processing for Create_Constrained_Components
11566 begin
11567 pragma Assert (Subt /= Base_Type (Subt));
11568 pragma Assert (Typ = Base_Type (Typ));
11570 Set_First_Entity (Subt, Empty);
11571 Set_Last_Entity (Subt, Empty);
11573 -- Check whether constraint is fully static, in which case we can
11574 -- optimize the list of components.
11576 Discr_Val := First_Elmt (Constraints);
11577 while Present (Discr_Val) loop
11578 if not Is_OK_Static_Expression (Node (Discr_Val)) then
11579 Is_Static := False;
11580 exit;
11581 end if;
11583 Next_Elmt (Discr_Val);
11584 end loop;
11586 Set_Has_Static_Discriminants (Subt, Is_Static);
11588 Push_Scope (Subt);
11590 -- Inherit the discriminants of the parent type
11592 Add_Discriminants : declare
11593 Num_Disc : Int;
11594 Num_Gird : Int;
11596 begin
11597 Num_Disc := 0;
11598 Old_C := First_Discriminant (Typ);
11600 while Present (Old_C) loop
11601 Num_Disc := Num_Disc + 1;
11602 New_C := Create_Component (Old_C);
11603 Set_Is_Public (New_C, Is_Public (Subt));
11604 Next_Discriminant (Old_C);
11605 end loop;
11607 -- For an untagged derived subtype, the number of discriminants may
11608 -- be smaller than the number of inherited discriminants, because
11609 -- several of them may be renamed by a single new discriminant or
11610 -- constrained. In this case, add the hidden discriminants back into
11611 -- the subtype, because they need to be present if the optimizer of
11612 -- the GCC 4.x back-end decides to break apart assignments between
11613 -- objects using the parent view into member-wise assignments.
11615 Num_Gird := 0;
11617 if Is_Derived_Type (Typ)
11618 and then not Is_Tagged_Type (Typ)
11619 then
11620 Old_C := First_Stored_Discriminant (Typ);
11622 while Present (Old_C) loop
11623 Num_Gird := Num_Gird + 1;
11624 Next_Stored_Discriminant (Old_C);
11625 end loop;
11626 end if;
11628 if Num_Gird > Num_Disc then
11630 -- Find out multiple uses of new discriminants, and add hidden
11631 -- components for the extra renamed discriminants. We recognize
11632 -- multiple uses through the Corresponding_Discriminant of a
11633 -- new discriminant: if it constrains several old discriminants,
11634 -- this field points to the last one in the parent type. The
11635 -- stored discriminants of the derived type have the same name
11636 -- as those of the parent.
11638 declare
11639 Constr : Elmt_Id;
11640 New_Discr : Entity_Id;
11641 Old_Discr : Entity_Id;
11643 begin
11644 Constr := First_Elmt (Stored_Constraint (Typ));
11645 Old_Discr := First_Stored_Discriminant (Typ);
11646 while Present (Constr) loop
11647 if Is_Entity_Name (Node (Constr))
11648 and then Ekind (Entity (Node (Constr))) = E_Discriminant
11649 then
11650 New_Discr := Entity (Node (Constr));
11652 if Chars (Corresponding_Discriminant (New_Discr)) /=
11653 Chars (Old_Discr)
11654 then
11655 -- The new discriminant has been used to rename a
11656 -- subsequent old discriminant. Introduce a shadow
11657 -- component for the current old discriminant.
11659 New_C := Create_Component (Old_Discr);
11660 Set_Original_Record_Component (New_C, Old_Discr);
11661 end if;
11663 else
11664 -- The constraint has eliminated the old discriminant.
11665 -- Introduce a shadow component.
11667 New_C := Create_Component (Old_Discr);
11668 Set_Original_Record_Component (New_C, Old_Discr);
11669 end if;
11671 Next_Elmt (Constr);
11672 Next_Stored_Discriminant (Old_Discr);
11673 end loop;
11674 end;
11675 end if;
11676 end Add_Discriminants;
11678 if Is_Static
11679 and then Is_Variant_Record (Typ)
11680 then
11681 Collect_Fixed_Components (Typ);
11683 Gather_Components (
11684 Typ,
11685 Component_List (Type_Definition (Parent (Typ))),
11686 Governed_By => Assoc_List,
11687 Into => Comp_List,
11688 Report_Errors => Errors);
11689 pragma Assert (not Errors);
11691 Create_All_Components;
11693 -- If the subtype declaration is created for a tagged type derivation
11694 -- with constraints, we retrieve the record definition of the parent
11695 -- type to select the components of the proper variant.
11697 elsif Is_Static
11698 and then Is_Tagged_Type (Typ)
11699 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
11700 and then
11701 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
11702 and then Is_Variant_Record (Parent_Type)
11703 then
11704 Collect_Fixed_Components (Typ);
11706 Gather_Components (
11707 Typ,
11708 Component_List (Type_Definition (Parent (Parent_Type))),
11709 Governed_By => Assoc_List,
11710 Into => Comp_List,
11711 Report_Errors => Errors);
11712 pragma Assert (not Errors);
11714 -- If the tagged derivation has a type extension, collect all the
11715 -- new components therein.
11717 if Present
11718 (Record_Extension_Part (Type_Definition (Parent (Typ))))
11719 then
11720 Old_C := First_Component (Typ);
11721 while Present (Old_C) loop
11722 if Original_Record_Component (Old_C) = Old_C
11723 and then Chars (Old_C) /= Name_uTag
11724 and then Chars (Old_C) /= Name_uParent
11725 and then Chars (Old_C) /= Name_uController
11726 then
11727 Append_Elmt (Old_C, Comp_List);
11728 end if;
11730 Next_Component (Old_C);
11731 end loop;
11732 end if;
11734 Create_All_Components;
11736 else
11737 -- If discriminants are not static, or if this is a multi-level type
11738 -- extension, we have to include all components of the parent type.
11740 Old_C := First_Component (Typ);
11741 while Present (Old_C) loop
11742 New_C := Create_Component (Old_C);
11744 Set_Etype
11745 (New_C,
11746 Constrain_Component_Type
11747 (Old_C, Subt, Decl_Node, Typ, Constraints));
11748 Set_Is_Public (New_C, Is_Public (Subt));
11750 Next_Component (Old_C);
11751 end loop;
11752 end if;
11754 End_Scope;
11755 end Create_Constrained_Components;
11757 ------------------------------------------
11758 -- Decimal_Fixed_Point_Type_Declaration --
11759 ------------------------------------------
11761 procedure Decimal_Fixed_Point_Type_Declaration
11762 (T : Entity_Id;
11763 Def : Node_Id)
11765 Loc : constant Source_Ptr := Sloc (Def);
11766 Digs_Expr : constant Node_Id := Digits_Expression (Def);
11767 Delta_Expr : constant Node_Id := Delta_Expression (Def);
11768 Implicit_Base : Entity_Id;
11769 Digs_Val : Uint;
11770 Delta_Val : Ureal;
11771 Scale_Val : Uint;
11772 Bound_Val : Ureal;
11774 begin
11775 Check_Restriction (No_Fixed_Point, Def);
11777 -- Create implicit base type
11779 Implicit_Base :=
11780 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
11781 Set_Etype (Implicit_Base, Implicit_Base);
11783 -- Analyze and process delta expression
11785 Analyze_And_Resolve (Delta_Expr, Universal_Real);
11787 Check_Delta_Expression (Delta_Expr);
11788 Delta_Val := Expr_Value_R (Delta_Expr);
11790 -- Check delta is power of 10, and determine scale value from it
11792 declare
11793 Val : Ureal;
11795 begin
11796 Scale_Val := Uint_0;
11797 Val := Delta_Val;
11799 if Val < Ureal_1 then
11800 while Val < Ureal_1 loop
11801 Val := Val * Ureal_10;
11802 Scale_Val := Scale_Val + 1;
11803 end loop;
11805 if Scale_Val > 18 then
11806 Error_Msg_N ("scale exceeds maximum value of 18", Def);
11807 Scale_Val := UI_From_Int (+18);
11808 end if;
11810 else
11811 while Val > Ureal_1 loop
11812 Val := Val / Ureal_10;
11813 Scale_Val := Scale_Val - 1;
11814 end loop;
11816 if Scale_Val < -18 then
11817 Error_Msg_N ("scale is less than minimum value of -18", Def);
11818 Scale_Val := UI_From_Int (-18);
11819 end if;
11820 end if;
11822 if Val /= Ureal_1 then
11823 Error_Msg_N ("delta expression must be a power of 10", Def);
11824 Delta_Val := Ureal_10 ** (-Scale_Val);
11825 end if;
11826 end;
11828 -- Set delta, scale and small (small = delta for decimal type)
11830 Set_Delta_Value (Implicit_Base, Delta_Val);
11831 Set_Scale_Value (Implicit_Base, Scale_Val);
11832 Set_Small_Value (Implicit_Base, Delta_Val);
11834 -- Analyze and process digits expression
11836 Analyze_And_Resolve (Digs_Expr, Any_Integer);
11837 Check_Digits_Expression (Digs_Expr);
11838 Digs_Val := Expr_Value (Digs_Expr);
11840 if Digs_Val > 18 then
11841 Digs_Val := UI_From_Int (+18);
11842 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
11843 end if;
11845 Set_Digits_Value (Implicit_Base, Digs_Val);
11846 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
11848 -- Set range of base type from digits value for now. This will be
11849 -- expanded to represent the true underlying base range by Freeze.
11851 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
11853 -- Note: We leave size as zero for now, size will be set at freeze
11854 -- time. We have to do this for ordinary fixed-point, because the size
11855 -- depends on the specified small, and we might as well do the same for
11856 -- decimal fixed-point.
11858 pragma Assert (Esize (Implicit_Base) = Uint_0);
11860 -- If there are bounds given in the declaration use them as the
11861 -- bounds of the first named subtype.
11863 if Present (Real_Range_Specification (Def)) then
11864 declare
11865 RRS : constant Node_Id := Real_Range_Specification (Def);
11866 Low : constant Node_Id := Low_Bound (RRS);
11867 High : constant Node_Id := High_Bound (RRS);
11868 Low_Val : Ureal;
11869 High_Val : Ureal;
11871 begin
11872 Analyze_And_Resolve (Low, Any_Real);
11873 Analyze_And_Resolve (High, Any_Real);
11874 Check_Real_Bound (Low);
11875 Check_Real_Bound (High);
11876 Low_Val := Expr_Value_R (Low);
11877 High_Val := Expr_Value_R (High);
11879 if Low_Val < (-Bound_Val) then
11880 Error_Msg_N
11881 ("range low bound too small for digits value", Low);
11882 Low_Val := -Bound_Val;
11883 end if;
11885 if High_Val > Bound_Val then
11886 Error_Msg_N
11887 ("range high bound too large for digits value", High);
11888 High_Val := Bound_Val;
11889 end if;
11891 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
11892 end;
11894 -- If no explicit range, use range that corresponds to given
11895 -- digits value. This will end up as the final range for the
11896 -- first subtype.
11898 else
11899 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
11900 end if;
11902 -- Complete entity for first subtype
11904 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
11905 Set_Etype (T, Implicit_Base);
11906 Set_Size_Info (T, Implicit_Base);
11907 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
11908 Set_Digits_Value (T, Digs_Val);
11909 Set_Delta_Value (T, Delta_Val);
11910 Set_Small_Value (T, Delta_Val);
11911 Set_Scale_Value (T, Scale_Val);
11912 Set_Is_Constrained (T);
11913 end Decimal_Fixed_Point_Type_Declaration;
11915 -----------------------------------
11916 -- Derive_Progenitor_Subprograms --
11917 -----------------------------------
11919 procedure Derive_Progenitor_Subprograms
11920 (Parent_Type : Entity_Id;
11921 Tagged_Type : Entity_Id)
11923 E : Entity_Id;
11924 Elmt : Elmt_Id;
11925 Iface : Entity_Id;
11926 Iface_Elmt : Elmt_Id;
11927 Iface_Subp : Entity_Id;
11928 New_Subp : Entity_Id := Empty;
11929 Prim_Elmt : Elmt_Id;
11930 Subp : Entity_Id;
11931 Typ : Entity_Id;
11933 begin
11934 pragma Assert (Ada_Version >= Ada_05
11935 and then Is_Record_Type (Tagged_Type)
11936 and then Is_Tagged_Type (Tagged_Type)
11937 and then Has_Interfaces (Tagged_Type));
11939 -- Step 1: Transfer to the full-view primitives associated with the
11940 -- partial-view that cover interface primitives. Conceptually this
11941 -- work should be done later by Process_Full_View; done here to
11942 -- simplify its implementation at later stages. It can be safely
11943 -- done here because interfaces must be visible in the partial and
11944 -- private view (RM 7.3(7.3/2)).
11946 -- Small optimization: This work is only required if the parent is
11947 -- abstract. If the tagged type is not abstract, it cannot have
11948 -- abstract primitives (the only entities in the list of primitives of
11949 -- non-abstract tagged types that can reference abstract primitives
11950 -- through its Alias attribute are the internal entities that have
11951 -- attribute Interface_Alias, and these entities are generated later
11952 -- by Freeze_Record_Type).
11954 if In_Private_Part (Current_Scope)
11955 and then Is_Abstract_Type (Parent_Type)
11956 then
11957 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
11958 while Present (Elmt) loop
11959 Subp := Node (Elmt);
11961 -- At this stage it is not possible to have entities in the list
11962 -- of primitives that have attribute Interface_Alias
11964 pragma Assert (No (Interface_Alias (Subp)));
11966 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
11968 if Is_Interface (Typ) then
11969 E := Find_Primitive_Covering_Interface
11970 (Tagged_Type => Tagged_Type,
11971 Iface_Prim => Subp);
11973 if Present (E)
11974 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
11975 then
11976 Replace_Elmt (Elmt, E);
11977 Remove_Homonym (Subp);
11978 end if;
11979 end if;
11981 Next_Elmt (Elmt);
11982 end loop;
11983 end if;
11985 -- Step 2: Add primitives of progenitors that are not implemented by
11986 -- parents of Tagged_Type
11988 if Present (Interfaces (Base_Type (Tagged_Type))) then
11989 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
11990 while Present (Iface_Elmt) loop
11991 Iface := Node (Iface_Elmt);
11993 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
11994 while Present (Prim_Elmt) loop
11995 Iface_Subp := Node (Prim_Elmt);
11997 -- Exclude derivation of predefined primitives except those
11998 -- that come from source. Required to catch declarations of
11999 -- equality operators of interfaces. For example:
12001 -- type Iface is interface;
12002 -- function "=" (Left, Right : Iface) return Boolean;
12004 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
12005 or else Comes_From_Source (Iface_Subp)
12006 then
12007 E := Find_Primitive_Covering_Interface
12008 (Tagged_Type => Tagged_Type,
12009 Iface_Prim => Iface_Subp);
12011 -- If not found we derive a new primitive leaving its alias
12012 -- attribute referencing the interface primitive
12014 if No (E) then
12015 Derive_Subprogram
12016 (New_Subp, Iface_Subp, Tagged_Type, Iface);
12018 -- Propagate to the full view interface entities associated
12019 -- with the partial view
12021 elsif In_Private_Part (Current_Scope)
12022 and then Present (Alias (E))
12023 and then Alias (E) = Iface_Subp
12024 and then
12025 List_Containing (Parent (E)) /=
12026 Private_Declarations
12027 (Specification
12028 (Unit_Declaration_Node (Current_Scope)))
12029 then
12030 Append_Elmt (E, Primitive_Operations (Tagged_Type));
12031 end if;
12032 end if;
12034 Next_Elmt (Prim_Elmt);
12035 end loop;
12037 Next_Elmt (Iface_Elmt);
12038 end loop;
12039 end if;
12040 end Derive_Progenitor_Subprograms;
12042 -----------------------
12043 -- Derive_Subprogram --
12044 -----------------------
12046 procedure Derive_Subprogram
12047 (New_Subp : in out Entity_Id;
12048 Parent_Subp : Entity_Id;
12049 Derived_Type : Entity_Id;
12050 Parent_Type : Entity_Id;
12051 Actual_Subp : Entity_Id := Empty)
12053 Formal : Entity_Id;
12054 -- Formal parameter of parent primitive operation
12056 Formal_Of_Actual : Entity_Id;
12057 -- Formal parameter of actual operation, when the derivation is to
12058 -- create a renaming for a primitive operation of an actual in an
12059 -- instantiation.
12061 New_Formal : Entity_Id;
12062 -- Formal of inherited operation
12064 Visible_Subp : Entity_Id := Parent_Subp;
12066 function Is_Private_Overriding return Boolean;
12067 -- If Subp is a private overriding of a visible operation, the inherited
12068 -- operation derives from the overridden op (even though its body is the
12069 -- overriding one) and the inherited operation is visible now. See
12070 -- sem_disp to see the full details of the handling of the overridden
12071 -- subprogram, which is removed from the list of primitive operations of
12072 -- the type. The overridden subprogram is saved locally in Visible_Subp,
12073 -- and used to diagnose abstract operations that need overriding in the
12074 -- derived type.
12076 procedure Replace_Type (Id, New_Id : Entity_Id);
12077 -- When the type is an anonymous access type, create a new access type
12078 -- designating the derived type.
12080 procedure Set_Derived_Name;
12081 -- This procedure sets the appropriate Chars name for New_Subp. This
12082 -- is normally just a copy of the parent name. An exception arises for
12083 -- type support subprograms, where the name is changed to reflect the
12084 -- name of the derived type, e.g. if type foo is derived from type bar,
12085 -- then a procedure barDA is derived with a name fooDA.
12087 ---------------------------
12088 -- Is_Private_Overriding --
12089 ---------------------------
12091 function Is_Private_Overriding return Boolean is
12092 Prev : Entity_Id;
12094 begin
12095 -- If the parent is not a dispatching operation there is no
12096 -- need to investigate overridings
12098 if not Is_Dispatching_Operation (Parent_Subp) then
12099 return False;
12100 end if;
12102 -- The visible operation that is overridden is a homonym of the
12103 -- parent subprogram. We scan the homonym chain to find the one
12104 -- whose alias is the subprogram we are deriving.
12106 Prev := Current_Entity (Parent_Subp);
12107 while Present (Prev) loop
12108 if Ekind (Prev) = Ekind (Parent_Subp)
12109 and then Alias (Prev) = Parent_Subp
12110 and then Scope (Parent_Subp) = Scope (Prev)
12111 and then not Is_Hidden (Prev)
12112 then
12113 Visible_Subp := Prev;
12114 return True;
12115 end if;
12117 Prev := Homonym (Prev);
12118 end loop;
12120 return False;
12121 end Is_Private_Overriding;
12123 ------------------
12124 -- Replace_Type --
12125 ------------------
12127 procedure Replace_Type (Id, New_Id : Entity_Id) is
12128 Acc_Type : Entity_Id;
12129 Par : constant Node_Id := Parent (Derived_Type);
12131 begin
12132 -- When the type is an anonymous access type, create a new access
12133 -- type designating the derived type. This itype must be elaborated
12134 -- at the point of the derivation, not on subsequent calls that may
12135 -- be out of the proper scope for Gigi, so we insert a reference to
12136 -- it after the derivation.
12138 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
12139 declare
12140 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
12142 begin
12143 if Ekind (Desig_Typ) = E_Record_Type_With_Private
12144 and then Present (Full_View (Desig_Typ))
12145 and then not Is_Private_Type (Parent_Type)
12146 then
12147 Desig_Typ := Full_View (Desig_Typ);
12148 end if;
12150 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
12152 -- Ada 2005 (AI-251): Handle also derivations of abstract
12153 -- interface primitives.
12155 or else (Is_Interface (Desig_Typ)
12156 and then not Is_Class_Wide_Type (Desig_Typ))
12157 then
12158 Acc_Type := New_Copy (Etype (Id));
12159 Set_Etype (Acc_Type, Acc_Type);
12160 Set_Scope (Acc_Type, New_Subp);
12162 -- Compute size of anonymous access type
12164 if Is_Array_Type (Desig_Typ)
12165 and then not Is_Constrained (Desig_Typ)
12166 then
12167 Init_Size (Acc_Type, 2 * System_Address_Size);
12168 else
12169 Init_Size (Acc_Type, System_Address_Size);
12170 end if;
12172 Init_Alignment (Acc_Type);
12173 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
12175 Set_Etype (New_Id, Acc_Type);
12176 Set_Scope (New_Id, New_Subp);
12178 -- Create a reference to it
12179 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
12181 else
12182 Set_Etype (New_Id, Etype (Id));
12183 end if;
12184 end;
12186 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
12187 or else
12188 (Ekind (Etype (Id)) = E_Record_Type_With_Private
12189 and then Present (Full_View (Etype (Id)))
12190 and then
12191 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
12192 then
12193 -- Constraint checks on formals are generated during expansion,
12194 -- based on the signature of the original subprogram. The bounds
12195 -- of the derived type are not relevant, and thus we can use
12196 -- the base type for the formals. However, the return type may be
12197 -- used in a context that requires that the proper static bounds
12198 -- be used (a case statement, for example) and for those cases
12199 -- we must use the derived type (first subtype), not its base.
12201 -- If the derived_type_definition has no constraints, we know that
12202 -- the derived type has the same constraints as the first subtype
12203 -- of the parent, and we can also use it rather than its base,
12204 -- which can lead to more efficient code.
12206 if Etype (Id) = Parent_Type then
12207 if Is_Scalar_Type (Parent_Type)
12208 and then
12209 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
12210 then
12211 Set_Etype (New_Id, Derived_Type);
12213 elsif Nkind (Par) = N_Full_Type_Declaration
12214 and then
12215 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
12216 and then
12217 Is_Entity_Name
12218 (Subtype_Indication (Type_Definition (Par)))
12219 then
12220 Set_Etype (New_Id, Derived_Type);
12222 else
12223 Set_Etype (New_Id, Base_Type (Derived_Type));
12224 end if;
12226 else
12227 Set_Etype (New_Id, Base_Type (Derived_Type));
12228 end if;
12230 -- Ada 2005 (AI-251): Handle derivations of abstract interface
12231 -- primitives.
12233 elsif Is_Interface (Etype (Id))
12234 and then not Is_Class_Wide_Type (Etype (Id))
12235 and then Is_Progenitor (Etype (Id), Derived_Type)
12236 then
12237 Set_Etype (New_Id, Derived_Type);
12239 else
12240 Set_Etype (New_Id, Etype (Id));
12241 end if;
12242 end Replace_Type;
12244 ----------------------
12245 -- Set_Derived_Name --
12246 ----------------------
12248 procedure Set_Derived_Name is
12249 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
12250 begin
12251 if Nm = TSS_Null then
12252 Set_Chars (New_Subp, Chars (Parent_Subp));
12253 else
12254 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
12255 end if;
12256 end Set_Derived_Name;
12258 -- Local variables
12260 Parent_Overrides_Interface_Primitive : Boolean := False;
12262 -- Start of processing for Derive_Subprogram
12264 begin
12265 New_Subp :=
12266 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
12267 Set_Ekind (New_Subp, Ekind (Parent_Subp));
12269 -- Check whether the parent overrides an interface primitive
12271 if Is_Overriding_Operation (Parent_Subp) then
12272 declare
12273 E : Entity_Id := Parent_Subp;
12274 begin
12275 while Present (Overridden_Operation (E)) loop
12276 E := Ultimate_Alias (Overridden_Operation (E));
12277 end loop;
12279 Parent_Overrides_Interface_Primitive :=
12280 Is_Dispatching_Operation (E)
12281 and then Present (Find_Dispatching_Type (E))
12282 and then Is_Interface (Find_Dispatching_Type (E));
12283 end;
12284 end if;
12286 -- Check whether the inherited subprogram is a private operation that
12287 -- should be inherited but not yet made visible. Such subprograms can
12288 -- become visible at a later point (e.g., the private part of a public
12289 -- child unit) via Declare_Inherited_Private_Subprograms. If the
12290 -- following predicate is true, then this is not such a private
12291 -- operation and the subprogram simply inherits the name of the parent
12292 -- subprogram. Note the special check for the names of controlled
12293 -- operations, which are currently exempted from being inherited with
12294 -- a hidden name because they must be findable for generation of
12295 -- implicit run-time calls.
12297 if not Is_Hidden (Parent_Subp)
12298 or else Is_Internal (Parent_Subp)
12299 or else Is_Private_Overriding
12300 or else Is_Internal_Name (Chars (Parent_Subp))
12301 or else Chars (Parent_Subp) = Name_Initialize
12302 or else Chars (Parent_Subp) = Name_Adjust
12303 or else Chars (Parent_Subp) = Name_Finalize
12304 then
12305 Set_Derived_Name;
12307 -- An inherited dispatching equality will be overridden by an internally
12308 -- generated one, or by an explicit one, so preserve its name and thus
12309 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
12310 -- private operation it may become invisible if the full view has
12311 -- progenitors, and the dispatch table will be malformed.
12312 -- We check that the type is limited to handle the anomalous declaration
12313 -- of Limited_Controlled, which is derived from a non-limited type, and
12314 -- which is handled specially elsewhere as well.
12316 elsif Chars (Parent_Subp) = Name_Op_Eq
12317 and then Is_Dispatching_Operation (Parent_Subp)
12318 and then Etype (Parent_Subp) = Standard_Boolean
12319 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
12320 and then
12321 Etype (First_Formal (Parent_Subp)) =
12322 Etype (Next_Formal (First_Formal (Parent_Subp)))
12323 then
12324 Set_Derived_Name;
12326 -- If parent is hidden, this can be a regular derivation if the
12327 -- parent is immediately visible in a non-instantiating context,
12328 -- or if we are in the private part of an instance. This test
12329 -- should still be refined ???
12331 -- The test for In_Instance_Not_Visible avoids inheriting the derived
12332 -- operation as a non-visible operation in cases where the parent
12333 -- subprogram might not be visible now, but was visible within the
12334 -- original generic, so it would be wrong to make the inherited
12335 -- subprogram non-visible now. (Not clear if this test is fully
12336 -- correct; are there any cases where we should declare the inherited
12337 -- operation as not visible to avoid it being overridden, e.g., when
12338 -- the parent type is a generic actual with private primitives ???)
12340 -- (they should be treated the same as other private inherited
12341 -- subprograms, but it's not clear how to do this cleanly). ???
12343 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
12344 and then Is_Immediately_Visible (Parent_Subp)
12345 and then not In_Instance)
12346 or else In_Instance_Not_Visible
12347 then
12348 Set_Derived_Name;
12350 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
12351 -- overrides an interface primitive because interface primitives
12352 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
12354 elsif Parent_Overrides_Interface_Primitive then
12355 Set_Derived_Name;
12357 -- Otherwise, the type is inheriting a private operation, so enter
12358 -- it with a special name so it can't be overridden.
12360 else
12361 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
12362 end if;
12364 Set_Parent (New_Subp, Parent (Derived_Type));
12366 if Present (Actual_Subp) then
12367 Replace_Type (Actual_Subp, New_Subp);
12368 else
12369 Replace_Type (Parent_Subp, New_Subp);
12370 end if;
12372 Conditional_Delay (New_Subp, Parent_Subp);
12374 -- If we are creating a renaming for a primitive operation of an
12375 -- actual of a generic derived type, we must examine the signature
12376 -- of the actual primitive, not that of the generic formal, which for
12377 -- example may be an interface. However the name and initial value
12378 -- of the inherited operation are those of the formal primitive.
12380 Formal := First_Formal (Parent_Subp);
12382 if Present (Actual_Subp) then
12383 Formal_Of_Actual := First_Formal (Actual_Subp);
12384 else
12385 Formal_Of_Actual := Empty;
12386 end if;
12388 while Present (Formal) loop
12389 New_Formal := New_Copy (Formal);
12391 -- Normally we do not go copying parents, but in the case of
12392 -- formals, we need to link up to the declaration (which is the
12393 -- parameter specification), and it is fine to link up to the
12394 -- original formal's parameter specification in this case.
12396 Set_Parent (New_Formal, Parent (Formal));
12397 Append_Entity (New_Formal, New_Subp);
12399 if Present (Formal_Of_Actual) then
12400 Replace_Type (Formal_Of_Actual, New_Formal);
12401 Next_Formal (Formal_Of_Actual);
12402 else
12403 Replace_Type (Formal, New_Formal);
12404 end if;
12406 Next_Formal (Formal);
12407 end loop;
12409 -- If this derivation corresponds to a tagged generic actual, then
12410 -- primitive operations rename those of the actual. Otherwise the
12411 -- primitive operations rename those of the parent type, If the parent
12412 -- renames an intrinsic operator, so does the new subprogram. We except
12413 -- concatenation, which is always properly typed, and does not get
12414 -- expanded as other intrinsic operations.
12416 if No (Actual_Subp) then
12417 if Is_Intrinsic_Subprogram (Parent_Subp) then
12418 Set_Is_Intrinsic_Subprogram (New_Subp);
12420 if Present (Alias (Parent_Subp))
12421 and then Chars (Parent_Subp) /= Name_Op_Concat
12422 then
12423 Set_Alias (New_Subp, Alias (Parent_Subp));
12424 else
12425 Set_Alias (New_Subp, Parent_Subp);
12426 end if;
12428 else
12429 Set_Alias (New_Subp, Parent_Subp);
12430 end if;
12432 else
12433 Set_Alias (New_Subp, Actual_Subp);
12434 end if;
12436 -- Derived subprograms of a tagged type must inherit the convention
12437 -- of the parent subprogram (a requirement of AI-117). Derived
12438 -- subprograms of untagged types simply get convention Ada by default.
12440 if Is_Tagged_Type (Derived_Type) then
12441 Set_Convention (New_Subp, Convention (Parent_Subp));
12442 end if;
12444 -- Predefined controlled operations retain their name even if the parent
12445 -- is hidden (see above), but they are not primitive operations if the
12446 -- ancestor is not visible, for example if the parent is a private
12447 -- extension completed with a controlled extension. Note that a full
12448 -- type that is controlled can break privacy: the flag Is_Controlled is
12449 -- set on both views of the type.
12451 if Is_Controlled (Parent_Type)
12452 and then
12453 (Chars (Parent_Subp) = Name_Initialize
12454 or else Chars (Parent_Subp) = Name_Adjust
12455 or else Chars (Parent_Subp) = Name_Finalize)
12456 and then Is_Hidden (Parent_Subp)
12457 and then not Is_Visibly_Controlled (Parent_Type)
12458 then
12459 Set_Is_Hidden (New_Subp);
12460 end if;
12462 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
12463 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
12465 if Ekind (Parent_Subp) = E_Procedure then
12466 Set_Is_Valued_Procedure
12467 (New_Subp, Is_Valued_Procedure (Parent_Subp));
12468 end if;
12470 -- No_Return must be inherited properly. If this is overridden in the
12471 -- case of a dispatching operation, then a check is made in Sem_Disp
12472 -- that the overriding operation is also No_Return (no such check is
12473 -- required for the case of non-dispatching operation.
12475 Set_No_Return (New_Subp, No_Return (Parent_Subp));
12477 -- A derived function with a controlling result is abstract. If the
12478 -- Derived_Type is a nonabstract formal generic derived type, then
12479 -- inherited operations are not abstract: the required check is done at
12480 -- instantiation time. If the derivation is for a generic actual, the
12481 -- function is not abstract unless the actual is.
12483 if Is_Generic_Type (Derived_Type)
12484 and then not Is_Abstract_Type (Derived_Type)
12485 then
12486 null;
12488 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
12489 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
12491 elsif Ada_Version >= Ada_05
12492 and then (Is_Abstract_Subprogram (Alias (New_Subp))
12493 or else (Is_Tagged_Type (Derived_Type)
12494 and then Etype (New_Subp) = Derived_Type
12495 and then not Is_Null_Extension (Derived_Type))
12496 or else (Is_Tagged_Type (Derived_Type)
12497 and then Ekind (Etype (New_Subp)) =
12498 E_Anonymous_Access_Type
12499 and then Designated_Type (Etype (New_Subp)) =
12500 Derived_Type
12501 and then not Is_Null_Extension (Derived_Type)))
12502 and then No (Actual_Subp)
12503 then
12504 if not Is_Tagged_Type (Derived_Type)
12505 or else Is_Abstract_Type (Derived_Type)
12506 or else Is_Abstract_Subprogram (Alias (New_Subp))
12507 then
12508 Set_Is_Abstract_Subprogram (New_Subp);
12509 else
12510 Set_Requires_Overriding (New_Subp);
12511 end if;
12513 elsif Ada_Version < Ada_05
12514 and then (Is_Abstract_Subprogram (Alias (New_Subp))
12515 or else (Is_Tagged_Type (Derived_Type)
12516 and then Etype (New_Subp) = Derived_Type
12517 and then No (Actual_Subp)))
12518 then
12519 Set_Is_Abstract_Subprogram (New_Subp);
12521 -- Finally, if the parent type is abstract we must verify that all
12522 -- inherited operations are either non-abstract or overridden, or that
12523 -- the derived type itself is abstract (this check is performed at the
12524 -- end of a package declaration, in Check_Abstract_Overriding). A
12525 -- private overriding in the parent type will not be visible in the
12526 -- derivation if we are not in an inner package or in a child unit of
12527 -- the parent type, in which case the abstractness of the inherited
12528 -- operation is carried to the new subprogram.
12530 elsif Is_Abstract_Type (Parent_Type)
12531 and then not In_Open_Scopes (Scope (Parent_Type))
12532 and then Is_Private_Overriding
12533 and then Is_Abstract_Subprogram (Visible_Subp)
12534 then
12535 if No (Actual_Subp) then
12536 Set_Alias (New_Subp, Visible_Subp);
12537 Set_Is_Abstract_Subprogram (New_Subp, True);
12539 else
12540 -- If this is a derivation for an instance of a formal derived
12541 -- type, abstractness comes from the primitive operation of the
12542 -- actual, not from the operation inherited from the ancestor.
12544 Set_Is_Abstract_Subprogram
12545 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
12546 end if;
12547 end if;
12549 New_Overloaded_Entity (New_Subp, Derived_Type);
12551 -- Check for case of a derived subprogram for the instantiation of a
12552 -- formal derived tagged type, if so mark the subprogram as dispatching
12553 -- and inherit the dispatching attributes of the parent subprogram. The
12554 -- derived subprogram is effectively renaming of the actual subprogram,
12555 -- so it needs to have the same attributes as the actual.
12557 if Present (Actual_Subp)
12558 and then Is_Dispatching_Operation (Parent_Subp)
12559 then
12560 Set_Is_Dispatching_Operation (New_Subp);
12562 if Present (DTC_Entity (Parent_Subp)) then
12563 Set_DTC_Entity (New_Subp, DTC_Entity (Parent_Subp));
12564 Set_DT_Position (New_Subp, DT_Position (Parent_Subp));
12565 end if;
12566 end if;
12568 -- Indicate that a derived subprogram does not require a body and that
12569 -- it does not require processing of default expressions.
12571 Set_Has_Completion (New_Subp);
12572 Set_Default_Expressions_Processed (New_Subp);
12574 if Ekind (New_Subp) = E_Function then
12575 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
12576 end if;
12577 end Derive_Subprogram;
12579 ------------------------
12580 -- Derive_Subprograms --
12581 ------------------------
12583 procedure Derive_Subprograms
12584 (Parent_Type : Entity_Id;
12585 Derived_Type : Entity_Id;
12586 Generic_Actual : Entity_Id := Empty)
12588 Op_List : constant Elist_Id :=
12589 Collect_Primitive_Operations (Parent_Type);
12591 function Check_Derived_Type return Boolean;
12592 -- Check that all primitive inherited from Parent_Type are found in
12593 -- the list of primitives of Derived_Type exactly in the same order.
12595 function Check_Derived_Type return Boolean is
12596 E : Entity_Id;
12597 Elmt : Elmt_Id;
12598 List : Elist_Id;
12599 New_Subp : Entity_Id;
12600 Op_Elmt : Elmt_Id;
12601 Subp : Entity_Id;
12603 begin
12604 -- Traverse list of entities in the current scope searching for
12605 -- an incomplete type whose full-view is derived type
12607 E := First_Entity (Scope (Derived_Type));
12608 while Present (E)
12609 and then E /= Derived_Type
12610 loop
12611 if Ekind (E) = E_Incomplete_Type
12612 and then Present (Full_View (E))
12613 and then Full_View (E) = Derived_Type
12614 then
12615 -- Disable this test if Derived_Type completes an incomplete
12616 -- type because in such case more primitives can be added
12617 -- later to the list of primitives of Derived_Type by routine
12618 -- Process_Incomplete_Dependents
12620 return True;
12621 end if;
12623 E := Next_Entity (E);
12624 end loop;
12626 List := Collect_Primitive_Operations (Derived_Type);
12627 Elmt := First_Elmt (List);
12629 Op_Elmt := First_Elmt (Op_List);
12630 while Present (Op_Elmt) loop
12631 Subp := Node (Op_Elmt);
12632 New_Subp := Node (Elmt);
12634 -- At this early stage Derived_Type has no entities with attribute
12635 -- Interface_Alias. In addition, such primitives are always
12636 -- located at the end of the list of primitives of Parent_Type.
12637 -- Therefore, if found we can safely stop processing pending
12638 -- entities.
12640 exit when Present (Interface_Alias (Subp));
12642 -- Handle hidden entities
12644 if not Is_Predefined_Dispatching_Operation (Subp)
12645 and then Is_Hidden (Subp)
12646 then
12647 if Present (New_Subp)
12648 and then Primitive_Names_Match (Subp, New_Subp)
12649 then
12650 Next_Elmt (Elmt);
12651 end if;
12653 else
12654 if not Present (New_Subp)
12655 or else Ekind (Subp) /= Ekind (New_Subp)
12656 or else not Primitive_Names_Match (Subp, New_Subp)
12657 then
12658 return False;
12659 end if;
12661 Next_Elmt (Elmt);
12662 end if;
12664 Next_Elmt (Op_Elmt);
12665 end loop;
12667 return True;
12668 end Check_Derived_Type;
12670 -- Local variables
12672 Alias_Subp : Entity_Id;
12673 Act_List : Elist_Id;
12674 Act_Elmt : Elmt_Id := No_Elmt;
12675 Act_Subp : Entity_Id := Empty;
12676 Elmt : Elmt_Id;
12677 Need_Search : Boolean := False;
12678 New_Subp : Entity_Id := Empty;
12679 Parent_Base : Entity_Id;
12680 Subp : Entity_Id;
12682 -- Start of processing for Derive_Subprograms
12684 begin
12685 if Ekind (Parent_Type) = E_Record_Type_With_Private
12686 and then Has_Discriminants (Parent_Type)
12687 and then Present (Full_View (Parent_Type))
12688 then
12689 Parent_Base := Full_View (Parent_Type);
12690 else
12691 Parent_Base := Parent_Type;
12692 end if;
12694 if Present (Generic_Actual) then
12695 Act_List := Collect_Primitive_Operations (Generic_Actual);
12696 Act_Elmt := First_Elmt (Act_List);
12697 end if;
12699 -- Derive primitives inherited from the parent. Note that if the generic
12700 -- actual is present, this is not really a type derivation, it is a
12701 -- completion within an instance.
12703 -- Case 1: Derived_Type does not implement interfaces
12705 if not Is_Tagged_Type (Derived_Type)
12706 or else (not Has_Interfaces (Derived_Type)
12707 and then not (Present (Generic_Actual)
12708 and then
12709 Has_Interfaces (Generic_Actual)))
12710 then
12711 Elmt := First_Elmt (Op_List);
12712 while Present (Elmt) loop
12713 Subp := Node (Elmt);
12715 -- Literals are derived earlier in the process of building the
12716 -- derived type, and are skipped here.
12718 if Ekind (Subp) = E_Enumeration_Literal then
12719 null;
12721 -- The actual is a direct descendant and the common primitive
12722 -- operations appear in the same order.
12724 -- If the generic parent type is present, the derived type is an
12725 -- instance of a formal derived type, and within the instance its
12726 -- operations are those of the actual. We derive from the formal
12727 -- type but make the inherited operations aliases of the
12728 -- corresponding operations of the actual.
12730 else
12731 Derive_Subprogram
12732 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
12734 if Present (Act_Elmt) then
12735 Next_Elmt (Act_Elmt);
12736 end if;
12737 end if;
12739 Next_Elmt (Elmt);
12740 end loop;
12742 -- Case 2: Derived_Type implements interfaces
12744 else
12745 -- If the parent type has no predefined primitives we remove
12746 -- predefined primitives from the list of primitives of generic
12747 -- actual to simplify the complexity of this algorithm.
12749 if Present (Generic_Actual) then
12750 declare
12751 Has_Predefined_Primitives : Boolean := False;
12753 begin
12754 -- Check if the parent type has predefined primitives
12756 Elmt := First_Elmt (Op_List);
12757 while Present (Elmt) loop
12758 Subp := Node (Elmt);
12760 if Is_Predefined_Dispatching_Operation (Subp)
12761 and then not Comes_From_Source (Ultimate_Alias (Subp))
12762 then
12763 Has_Predefined_Primitives := True;
12764 exit;
12765 end if;
12767 Next_Elmt (Elmt);
12768 end loop;
12770 -- Remove predefined primitives of Generic_Actual. We must use
12771 -- an auxiliary list because in case of tagged types the value
12772 -- returned by Collect_Primitive_Operations is the value stored
12773 -- in its Primitive_Operations attribute (and we don't want to
12774 -- modify its current contents).
12776 if not Has_Predefined_Primitives then
12777 declare
12778 Aux_List : constant Elist_Id := New_Elmt_List;
12780 begin
12781 Elmt := First_Elmt (Act_List);
12782 while Present (Elmt) loop
12783 Subp := Node (Elmt);
12785 if not Is_Predefined_Dispatching_Operation (Subp)
12786 or else Comes_From_Source (Subp)
12787 then
12788 Append_Elmt (Subp, Aux_List);
12789 end if;
12791 Next_Elmt (Elmt);
12792 end loop;
12794 Act_List := Aux_List;
12795 end;
12796 end if;
12798 Act_Elmt := First_Elmt (Act_List);
12799 Act_Subp := Node (Act_Elmt);
12800 end;
12801 end if;
12803 -- Stage 1: If the generic actual is not present we derive the
12804 -- primitives inherited from the parent type. If the generic parent
12805 -- type is present, the derived type is an instance of a formal
12806 -- derived type, and within the instance its operations are those of
12807 -- the actual. We derive from the formal type but make the inherited
12808 -- operations aliases of the corresponding operations of the actual.
12810 Elmt := First_Elmt (Op_List);
12811 while Present (Elmt) loop
12812 Subp := Node (Elmt);
12813 Alias_Subp := Ultimate_Alias (Subp);
12815 -- At this early stage Derived_Type has no entities with attribute
12816 -- Interface_Alias. In addition, such primitives are always
12817 -- located at the end of the list of primitives of Parent_Type.
12818 -- Therefore, if found we can safely stop processing pending
12819 -- entities.
12821 exit when Present (Interface_Alias (Subp));
12823 -- If the generic actual is present find the corresponding
12824 -- operation in the generic actual. If the parent type is a
12825 -- direct ancestor of the derived type then, even if it is an
12826 -- interface, the operations are inherited from the primary
12827 -- dispatch table and are in the proper order. If we detect here
12828 -- that primitives are not in the same order we traverse the list
12829 -- of primitive operations of the actual to find the one that
12830 -- implements the interface primitive.
12832 if Need_Search
12833 or else
12834 (Present (Generic_Actual)
12835 and then Present (Act_Subp)
12836 and then not Primitive_Names_Match (Subp, Act_Subp))
12837 then
12838 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual));
12840 -- Remember that we need searching for all pending primitives
12842 Need_Search := True;
12844 -- Handle entities associated with interface primitives
12846 if Present (Alias (Subp))
12847 and then Is_Interface (Find_Dispatching_Type (Alias (Subp)))
12848 and then not Is_Predefined_Dispatching_Operation (Subp)
12849 then
12850 Act_Subp :=
12851 Find_Primitive_Covering_Interface
12852 (Tagged_Type => Generic_Actual,
12853 Iface_Prim => Subp);
12855 -- Handle predefined primitives plus the rest of user-defined
12856 -- primitives
12858 else
12859 Act_Elmt := First_Elmt (Act_List);
12860 while Present (Act_Elmt) loop
12861 Act_Subp := Node (Act_Elmt);
12863 exit when Primitive_Names_Match (Subp, Act_Subp)
12864 and then Type_Conformant
12865 (Subp, Act_Subp,
12866 Skip_Controlling_Formals => True)
12867 and then No (Interface_Alias (Act_Subp));
12869 Next_Elmt (Act_Elmt);
12870 end loop;
12871 end if;
12872 end if;
12874 -- Case 1: If the parent is a limited interface then it has the
12875 -- predefined primitives of synchronized interfaces. However, the
12876 -- actual type may be a non-limited type and hence it does not
12877 -- have such primitives.
12879 if Present (Generic_Actual)
12880 and then not Present (Act_Subp)
12881 and then Is_Limited_Interface (Parent_Base)
12882 and then Is_Predefined_Interface_Primitive (Subp)
12883 then
12884 null;
12886 -- Case 2: Inherit entities associated with interfaces that
12887 -- were not covered by the parent type. We exclude here null
12888 -- interface primitives because they do not need special
12889 -- management.
12891 elsif Present (Alias (Subp))
12892 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
12893 and then not
12894 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
12895 and then Null_Present (Parent (Alias_Subp)))
12896 then
12897 Derive_Subprogram
12898 (New_Subp => New_Subp,
12899 Parent_Subp => Alias_Subp,
12900 Derived_Type => Derived_Type,
12901 Parent_Type => Find_Dispatching_Type (Alias_Subp),
12902 Actual_Subp => Act_Subp);
12904 if No (Generic_Actual) then
12905 Set_Alias (New_Subp, Subp);
12906 end if;
12908 -- Case 3: Common derivation
12910 else
12911 Derive_Subprogram
12912 (New_Subp => New_Subp,
12913 Parent_Subp => Subp,
12914 Derived_Type => Derived_Type,
12915 Parent_Type => Parent_Base,
12916 Actual_Subp => Act_Subp);
12917 end if;
12919 -- No need to update Act_Elm if we must search for the
12920 -- corresponding operation in the generic actual
12922 if not Need_Search
12923 and then Present (Act_Elmt)
12924 then
12925 Next_Elmt (Act_Elmt);
12926 Act_Subp := Node (Act_Elmt);
12927 end if;
12929 Next_Elmt (Elmt);
12930 end loop;
12932 -- Inherit additional operations from progenitors. If the derived
12933 -- type is a generic actual, there are not new primitive operations
12934 -- for the type because it has those of the actual, and therefore
12935 -- nothing needs to be done. The renamings generated above are not
12936 -- primitive operations, and their purpose is simply to make the
12937 -- proper operations visible within an instantiation.
12939 if No (Generic_Actual) then
12940 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
12941 end if;
12942 end if;
12944 -- Final check: Direct descendants must have their primitives in the
12945 -- same order. We exclude from this test non-tagged types and instances
12946 -- of formal derived types. We skip this test if we have already
12947 -- reported serious errors in the sources.
12949 pragma Assert (not Is_Tagged_Type (Derived_Type)
12950 or else Present (Generic_Actual)
12951 or else Serious_Errors_Detected > 0
12952 or else Check_Derived_Type);
12953 end Derive_Subprograms;
12955 --------------------------------
12956 -- Derived_Standard_Character --
12957 --------------------------------
12959 procedure Derived_Standard_Character
12960 (N : Node_Id;
12961 Parent_Type : Entity_Id;
12962 Derived_Type : Entity_Id)
12964 Loc : constant Source_Ptr := Sloc (N);
12965 Def : constant Node_Id := Type_Definition (N);
12966 Indic : constant Node_Id := Subtype_Indication (Def);
12967 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
12968 Implicit_Base : constant Entity_Id :=
12969 Create_Itype
12970 (E_Enumeration_Type, N, Derived_Type, 'B');
12972 Lo : Node_Id;
12973 Hi : Node_Id;
12975 begin
12976 Discard_Node (Process_Subtype (Indic, N));
12978 Set_Etype (Implicit_Base, Parent_Base);
12979 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
12980 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
12982 Set_Is_Character_Type (Implicit_Base, True);
12983 Set_Has_Delayed_Freeze (Implicit_Base);
12985 -- The bounds of the implicit base are the bounds of the parent base.
12986 -- Note that their type is the parent base.
12988 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
12989 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
12991 Set_Scalar_Range (Implicit_Base,
12992 Make_Range (Loc,
12993 Low_Bound => Lo,
12994 High_Bound => Hi));
12996 Conditional_Delay (Derived_Type, Parent_Type);
12998 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
12999 Set_Etype (Derived_Type, Implicit_Base);
13000 Set_Size_Info (Derived_Type, Parent_Type);
13002 if Unknown_RM_Size (Derived_Type) then
13003 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
13004 end if;
13006 Set_Is_Character_Type (Derived_Type, True);
13008 if Nkind (Indic) /= N_Subtype_Indication then
13010 -- If no explicit constraint, the bounds are those
13011 -- of the parent type.
13013 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
13014 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
13015 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
13016 end if;
13018 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
13020 -- Because the implicit base is used in the conversion of the bounds, we
13021 -- have to freeze it now. This is similar to what is done for numeric
13022 -- types, and it equally suspicious, but otherwise a non-static bound
13023 -- will have a reference to an unfrozen type, which is rejected by Gigi
13024 -- (???). This requires specific care for definition of stream
13025 -- attributes. For details, see comments at the end of
13026 -- Build_Derived_Numeric_Type.
13028 Freeze_Before (N, Implicit_Base);
13029 end Derived_Standard_Character;
13031 ------------------------------
13032 -- Derived_Type_Declaration --
13033 ------------------------------
13035 procedure Derived_Type_Declaration
13036 (T : Entity_Id;
13037 N : Node_Id;
13038 Is_Completion : Boolean)
13040 Parent_Type : Entity_Id;
13042 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
13043 -- Check whether the parent type is a generic formal, or derives
13044 -- directly or indirectly from one.
13046 ------------------------
13047 -- Comes_From_Generic --
13048 ------------------------
13050 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
13051 begin
13052 if Is_Generic_Type (Typ) then
13053 return True;
13055 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
13056 return True;
13058 elsif Is_Private_Type (Typ)
13059 and then Present (Full_View (Typ))
13060 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
13061 then
13062 return True;
13064 elsif Is_Generic_Actual_Type (Typ) then
13065 return True;
13067 else
13068 return False;
13069 end if;
13070 end Comes_From_Generic;
13072 -- Local variables
13074 Def : constant Node_Id := Type_Definition (N);
13075 Iface_Def : Node_Id;
13076 Indic : constant Node_Id := Subtype_Indication (Def);
13077 Extension : constant Node_Id := Record_Extension_Part (Def);
13078 Parent_Node : Node_Id;
13079 Parent_Scope : Entity_Id;
13080 Taggd : Boolean;
13082 -- Start of processing for Derived_Type_Declaration
13084 begin
13085 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
13087 -- Ada 2005 (AI-251): In case of interface derivation check that the
13088 -- parent is also an interface.
13090 if Interface_Present (Def) then
13091 if not Is_Interface (Parent_Type) then
13092 Diagnose_Interface (Indic, Parent_Type);
13094 else
13095 Parent_Node := Parent (Base_Type (Parent_Type));
13096 Iface_Def := Type_Definition (Parent_Node);
13098 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
13099 -- other limited interfaces.
13101 if Limited_Present (Def) then
13102 if Limited_Present (Iface_Def) then
13103 null;
13105 elsif Protected_Present (Iface_Def) then
13106 Error_Msg_NE
13107 ("descendant of& must be declared"
13108 & " as a protected interface",
13109 N, Parent_Type);
13111 elsif Synchronized_Present (Iface_Def) then
13112 Error_Msg_NE
13113 ("descendant of& must be declared"
13114 & " as a synchronized interface",
13115 N, Parent_Type);
13117 elsif Task_Present (Iface_Def) then
13118 Error_Msg_NE
13119 ("descendant of& must be declared as a task interface",
13120 N, Parent_Type);
13122 else
13123 Error_Msg_N
13124 ("(Ada 2005) limited interface cannot "
13125 & "inherit from non-limited interface", Indic);
13126 end if;
13128 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
13129 -- from non-limited or limited interfaces.
13131 elsif not Protected_Present (Def)
13132 and then not Synchronized_Present (Def)
13133 and then not Task_Present (Def)
13134 then
13135 if Limited_Present (Iface_Def) then
13136 null;
13138 elsif Protected_Present (Iface_Def) then
13139 Error_Msg_NE
13140 ("descendant of& must be declared"
13141 & " as a protected interface",
13142 N, Parent_Type);
13144 elsif Synchronized_Present (Iface_Def) then
13145 Error_Msg_NE
13146 ("descendant of& must be declared"
13147 & " as a synchronized interface",
13148 N, Parent_Type);
13150 elsif Task_Present (Iface_Def) then
13151 Error_Msg_NE
13152 ("descendant of& must be declared as a task interface",
13153 N, Parent_Type);
13154 else
13155 null;
13156 end if;
13157 end if;
13158 end if;
13159 end if;
13161 if Is_Tagged_Type (Parent_Type)
13162 and then Is_Concurrent_Type (Parent_Type)
13163 and then not Is_Interface (Parent_Type)
13164 then
13165 Error_Msg_N
13166 ("parent type of a record extension cannot be "
13167 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
13168 Set_Etype (T, Any_Type);
13169 return;
13170 end if;
13172 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
13173 -- interfaces
13175 if Is_Tagged_Type (Parent_Type)
13176 and then Is_Non_Empty_List (Interface_List (Def))
13177 then
13178 declare
13179 Intf : Node_Id;
13180 T : Entity_Id;
13182 begin
13183 Intf := First (Interface_List (Def));
13184 while Present (Intf) loop
13185 T := Find_Type_Of_Subtype_Indic (Intf);
13187 if not Is_Interface (T) then
13188 Diagnose_Interface (Intf, T);
13190 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
13191 -- a limited type from having a nonlimited progenitor.
13193 elsif (Limited_Present (Def)
13194 or else (not Is_Interface (Parent_Type)
13195 and then Is_Limited_Type (Parent_Type)))
13196 and then not Is_Limited_Interface (T)
13197 then
13198 Error_Msg_NE
13199 ("progenitor interface& of limited type must be limited",
13200 N, T);
13201 end if;
13203 Next (Intf);
13204 end loop;
13205 end;
13206 end if;
13208 if Parent_Type = Any_Type
13209 or else Etype (Parent_Type) = Any_Type
13210 or else (Is_Class_Wide_Type (Parent_Type)
13211 and then Etype (Parent_Type) = T)
13212 then
13213 -- If Parent_Type is undefined or illegal, make new type into a
13214 -- subtype of Any_Type, and set a few attributes to prevent cascaded
13215 -- errors. If this is a self-definition, emit error now.
13217 if T = Parent_Type
13218 or else T = Etype (Parent_Type)
13219 then
13220 Error_Msg_N ("type cannot be used in its own definition", Indic);
13221 end if;
13223 Set_Ekind (T, Ekind (Parent_Type));
13224 Set_Etype (T, Any_Type);
13225 Set_Scalar_Range (T, Scalar_Range (Any_Type));
13227 if Is_Tagged_Type (T) then
13228 Set_Primitive_Operations (T, New_Elmt_List);
13229 end if;
13231 return;
13232 end if;
13234 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
13235 -- an interface is special because the list of interfaces in the full
13236 -- view can be given in any order. For example:
13238 -- type A is interface;
13239 -- type B is interface and A;
13240 -- type D is new B with private;
13241 -- private
13242 -- type D is new A and B with null record; -- 1 --
13244 -- In this case we perform the following transformation of -1-:
13246 -- type D is new B and A with null record;
13248 -- If the parent of the full-view covers the parent of the partial-view
13249 -- we have two possible cases:
13251 -- 1) They have the same parent
13252 -- 2) The parent of the full-view implements some further interfaces
13254 -- In both cases we do not need to perform the transformation. In the
13255 -- first case the source program is correct and the transformation is
13256 -- not needed; in the second case the source program does not fulfill
13257 -- the no-hidden interfaces rule (AI-396) and the error will be reported
13258 -- later.
13260 -- This transformation not only simplifies the rest of the analysis of
13261 -- this type declaration but also simplifies the correct generation of
13262 -- the object layout to the expander.
13264 if In_Private_Part (Current_Scope)
13265 and then Is_Interface (Parent_Type)
13266 then
13267 declare
13268 Iface : Node_Id;
13269 Partial_View : Entity_Id;
13270 Partial_View_Parent : Entity_Id;
13271 New_Iface : Node_Id;
13273 begin
13274 -- Look for the associated private type declaration
13276 Partial_View := First_Entity (Current_Scope);
13277 loop
13278 exit when No (Partial_View)
13279 or else (Has_Private_Declaration (Partial_View)
13280 and then Full_View (Partial_View) = T);
13282 Next_Entity (Partial_View);
13283 end loop;
13285 -- If the partial view was not found then the source code has
13286 -- errors and the transformation is not needed.
13288 if Present (Partial_View) then
13289 Partial_View_Parent := Etype (Partial_View);
13291 -- If the parent of the full-view covers the parent of the
13292 -- partial-view we have nothing else to do.
13294 if Interface_Present_In_Ancestor
13295 (Parent_Type, Partial_View_Parent)
13296 then
13297 null;
13299 -- Traverse the list of interfaces of the full-view to look
13300 -- for the parent of the partial-view and perform the tree
13301 -- transformation.
13303 else
13304 Iface := First (Interface_List (Def));
13305 while Present (Iface) loop
13306 if Etype (Iface) = Etype (Partial_View) then
13307 Rewrite (Subtype_Indication (Def),
13308 New_Copy (Subtype_Indication
13309 (Parent (Partial_View))));
13311 New_Iface := Make_Identifier (Sloc (N),
13312 Chars (Parent_Type));
13313 Append (New_Iface, Interface_List (Def));
13315 -- Analyze the transformed code
13317 Derived_Type_Declaration (T, N, Is_Completion);
13318 return;
13319 end if;
13321 Next (Iface);
13322 end loop;
13323 end if;
13324 end if;
13325 end;
13326 end if;
13328 -- Only composite types other than array types are allowed to have
13329 -- discriminants.
13331 if Present (Discriminant_Specifications (N))
13332 and then (Is_Elementary_Type (Parent_Type)
13333 or else Is_Array_Type (Parent_Type))
13334 and then not Error_Posted (N)
13335 then
13336 Error_Msg_N
13337 ("elementary or array type cannot have discriminants",
13338 Defining_Identifier (First (Discriminant_Specifications (N))));
13339 Set_Has_Discriminants (T, False);
13340 end if;
13342 -- In Ada 83, a derived type defined in a package specification cannot
13343 -- be used for further derivation until the end of its visible part.
13344 -- Note that derivation in the private part of the package is allowed.
13346 if Ada_Version = Ada_83
13347 and then Is_Derived_Type (Parent_Type)
13348 and then In_Visible_Part (Scope (Parent_Type))
13349 then
13350 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
13351 Error_Msg_N
13352 ("(Ada 83): premature use of type for derivation", Indic);
13353 end if;
13354 end if;
13356 -- Check for early use of incomplete or private type
13358 if Ekind (Parent_Type) = E_Void
13359 or else Ekind (Parent_Type) = E_Incomplete_Type
13360 then
13361 Error_Msg_N ("premature derivation of incomplete type", Indic);
13362 return;
13364 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
13365 and then not Comes_From_Generic (Parent_Type))
13366 or else Has_Private_Component (Parent_Type)
13367 then
13368 -- The ancestor type of a formal type can be incomplete, in which
13369 -- case only the operations of the partial view are available in
13370 -- the generic. Subsequent checks may be required when the full
13371 -- view is analyzed, to verify that derivation from a tagged type
13372 -- has an extension.
13374 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
13375 null;
13377 elsif No (Underlying_Type (Parent_Type))
13378 or else Has_Private_Component (Parent_Type)
13379 then
13380 Error_Msg_N
13381 ("premature derivation of derived or private type", Indic);
13383 -- Flag the type itself as being in error, this prevents some
13384 -- nasty problems with subsequent uses of the malformed type.
13386 Set_Error_Posted (T);
13388 -- Check that within the immediate scope of an untagged partial
13389 -- view it's illegal to derive from the partial view if the
13390 -- full view is tagged. (7.3(7))
13392 -- We verify that the Parent_Type is a partial view by checking
13393 -- that it is not a Full_Type_Declaration (i.e. a private type or
13394 -- private extension declaration), to distinguish a partial view
13395 -- from a derivation from a private type which also appears as
13396 -- E_Private_Type.
13398 elsif Present (Full_View (Parent_Type))
13399 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
13400 and then not Is_Tagged_Type (Parent_Type)
13401 and then Is_Tagged_Type (Full_View (Parent_Type))
13402 then
13403 Parent_Scope := Scope (T);
13404 while Present (Parent_Scope)
13405 and then Parent_Scope /= Standard_Standard
13406 loop
13407 if Parent_Scope = Scope (Parent_Type) then
13408 Error_Msg_N
13409 ("premature derivation from type with tagged full view",
13410 Indic);
13411 end if;
13413 Parent_Scope := Scope (Parent_Scope);
13414 end loop;
13415 end if;
13416 end if;
13418 -- Check that form of derivation is appropriate
13420 Taggd := Is_Tagged_Type (Parent_Type);
13422 -- Perhaps the parent type should be changed to the class-wide type's
13423 -- specific type in this case to prevent cascading errors ???
13425 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
13426 Error_Msg_N ("parent type must not be a class-wide type", Indic);
13427 return;
13428 end if;
13430 if Present (Extension) and then not Taggd then
13431 Error_Msg_N
13432 ("type derived from untagged type cannot have extension", Indic);
13434 elsif No (Extension) and then Taggd then
13436 -- If this declaration is within a private part (or body) of a
13437 -- generic instantiation then the derivation is allowed (the parent
13438 -- type can only appear tagged in this case if it's a generic actual
13439 -- type, since it would otherwise have been rejected in the analysis
13440 -- of the generic template).
13442 if not Is_Generic_Actual_Type (Parent_Type)
13443 or else In_Visible_Part (Scope (Parent_Type))
13444 then
13445 Error_Msg_N
13446 ("type derived from tagged type must have extension", Indic);
13447 end if;
13448 end if;
13450 -- AI-443: Synchronized formal derived types require a private
13451 -- extension. There is no point in checking the ancestor type or
13452 -- the progenitors since the construct is wrong to begin with.
13454 if Ada_Version >= Ada_05
13455 and then Is_Generic_Type (T)
13456 and then Present (Original_Node (N))
13457 then
13458 declare
13459 Decl : constant Node_Id := Original_Node (N);
13461 begin
13462 if Nkind (Decl) = N_Formal_Type_Declaration
13463 and then Nkind (Formal_Type_Definition (Decl)) =
13464 N_Formal_Derived_Type_Definition
13465 and then Synchronized_Present (Formal_Type_Definition (Decl))
13466 and then No (Extension)
13468 -- Avoid emitting a duplicate error message
13470 and then not Error_Posted (Indic)
13471 then
13472 Error_Msg_N
13473 ("synchronized derived type must have extension", N);
13474 end if;
13475 end;
13476 end if;
13478 if Null_Exclusion_Present (Def)
13479 and then not Is_Access_Type (Parent_Type)
13480 then
13481 Error_Msg_N ("null exclusion can only apply to an access type", N);
13482 end if;
13484 -- Avoid deriving parent primitives of underlying record views
13486 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
13487 Derive_Subps => not Is_Underlying_Record_View (T));
13489 -- AI-419: The parent type of an explicitly limited derived type must
13490 -- be a limited type or a limited interface.
13492 if Limited_Present (Def) then
13493 Set_Is_Limited_Record (T);
13495 if Is_Interface (T) then
13496 Set_Is_Limited_Interface (T);
13497 end if;
13499 if not Is_Limited_Type (Parent_Type)
13500 and then
13501 (not Is_Interface (Parent_Type)
13502 or else not Is_Limited_Interface (Parent_Type))
13503 then
13504 Error_Msg_NE ("parent type& of limited type must be limited",
13505 N, Parent_Type);
13506 end if;
13507 end if;
13508 end Derived_Type_Declaration;
13510 ------------------------
13511 -- Diagnose_Interface --
13512 ------------------------
13514 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
13515 begin
13516 if not Is_Interface (E)
13517 and then E /= Any_Type
13518 then
13519 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
13520 end if;
13521 end Diagnose_Interface;
13523 ----------------------------------
13524 -- Enumeration_Type_Declaration --
13525 ----------------------------------
13527 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
13528 Ev : Uint;
13529 L : Node_Id;
13530 R_Node : Node_Id;
13531 B_Node : Node_Id;
13533 begin
13534 -- Create identifier node representing lower bound
13536 B_Node := New_Node (N_Identifier, Sloc (Def));
13537 L := First (Literals (Def));
13538 Set_Chars (B_Node, Chars (L));
13539 Set_Entity (B_Node, L);
13540 Set_Etype (B_Node, T);
13541 Set_Is_Static_Expression (B_Node, True);
13543 R_Node := New_Node (N_Range, Sloc (Def));
13544 Set_Low_Bound (R_Node, B_Node);
13546 Set_Ekind (T, E_Enumeration_Type);
13547 Set_First_Literal (T, L);
13548 Set_Etype (T, T);
13549 Set_Is_Constrained (T);
13551 Ev := Uint_0;
13553 -- Loop through literals of enumeration type setting pos and rep values
13554 -- except that if the Ekind is already set, then it means the literal
13555 -- was already constructed (case of a derived type declaration and we
13556 -- should not disturb the Pos and Rep values.
13558 while Present (L) loop
13559 if Ekind (L) /= E_Enumeration_Literal then
13560 Set_Ekind (L, E_Enumeration_Literal);
13561 Set_Enumeration_Pos (L, Ev);
13562 Set_Enumeration_Rep (L, Ev);
13563 Set_Is_Known_Valid (L, True);
13564 end if;
13566 Set_Etype (L, T);
13567 New_Overloaded_Entity (L);
13568 Generate_Definition (L);
13569 Set_Convention (L, Convention_Intrinsic);
13571 if Nkind (L) = N_Defining_Character_Literal then
13572 Set_Is_Character_Type (T, True);
13573 end if;
13575 Ev := Ev + 1;
13576 Next (L);
13577 end loop;
13579 -- Now create a node representing upper bound
13581 B_Node := New_Node (N_Identifier, Sloc (Def));
13582 Set_Chars (B_Node, Chars (Last (Literals (Def))));
13583 Set_Entity (B_Node, Last (Literals (Def)));
13584 Set_Etype (B_Node, T);
13585 Set_Is_Static_Expression (B_Node, True);
13587 Set_High_Bound (R_Node, B_Node);
13589 -- Initialize various fields of the type. Some of this information
13590 -- may be overwritten later through rep.clauses.
13592 Set_Scalar_Range (T, R_Node);
13593 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
13594 Set_Enum_Esize (T);
13595 Set_Enum_Pos_To_Rep (T, Empty);
13597 -- Set Discard_Names if configuration pragma set, or if there is
13598 -- a parameterless pragma in the current declarative region
13600 if Global_Discard_Names
13601 or else Discard_Names (Scope (T))
13602 then
13603 Set_Discard_Names (T);
13604 end if;
13606 -- Process end label if there is one
13608 if Present (Def) then
13609 Process_End_Label (Def, 'e', T);
13610 end if;
13611 end Enumeration_Type_Declaration;
13613 ---------------------------------
13614 -- Expand_To_Stored_Constraint --
13615 ---------------------------------
13617 function Expand_To_Stored_Constraint
13618 (Typ : Entity_Id;
13619 Constraint : Elist_Id) return Elist_Id
13621 Explicitly_Discriminated_Type : Entity_Id;
13622 Expansion : Elist_Id;
13623 Discriminant : Entity_Id;
13625 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
13626 -- Find the nearest type that actually specifies discriminants
13628 ---------------------------------
13629 -- Type_With_Explicit_Discrims --
13630 ---------------------------------
13632 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
13633 Typ : constant E := Base_Type (Id);
13635 begin
13636 if Ekind (Typ) in Incomplete_Or_Private_Kind then
13637 if Present (Full_View (Typ)) then
13638 return Type_With_Explicit_Discrims (Full_View (Typ));
13639 end if;
13641 else
13642 if Has_Discriminants (Typ) then
13643 return Typ;
13644 end if;
13645 end if;
13647 if Etype (Typ) = Typ then
13648 return Empty;
13649 elsif Has_Discriminants (Typ) then
13650 return Typ;
13651 else
13652 return Type_With_Explicit_Discrims (Etype (Typ));
13653 end if;
13655 end Type_With_Explicit_Discrims;
13657 -- Start of processing for Expand_To_Stored_Constraint
13659 begin
13660 if No (Constraint)
13661 or else Is_Empty_Elmt_List (Constraint)
13662 then
13663 return No_Elist;
13664 end if;
13666 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
13668 if No (Explicitly_Discriminated_Type) then
13669 return No_Elist;
13670 end if;
13672 Expansion := New_Elmt_List;
13674 Discriminant :=
13675 First_Stored_Discriminant (Explicitly_Discriminated_Type);
13676 while Present (Discriminant) loop
13677 Append_Elmt (
13678 Get_Discriminant_Value (
13679 Discriminant, Explicitly_Discriminated_Type, Constraint),
13680 Expansion);
13681 Next_Stored_Discriminant (Discriminant);
13682 end loop;
13684 return Expansion;
13685 end Expand_To_Stored_Constraint;
13687 ---------------------------
13688 -- Find_Hidden_Interface --
13689 ---------------------------
13691 function Find_Hidden_Interface
13692 (Src : Elist_Id;
13693 Dest : Elist_Id) return Entity_Id
13695 Iface : Entity_Id;
13696 Iface_Elmt : Elmt_Id;
13698 begin
13699 if Present (Src) and then Present (Dest) then
13700 Iface_Elmt := First_Elmt (Src);
13701 while Present (Iface_Elmt) loop
13702 Iface := Node (Iface_Elmt);
13704 if Is_Interface (Iface)
13705 and then not Contain_Interface (Iface, Dest)
13706 then
13707 return Iface;
13708 end if;
13710 Next_Elmt (Iface_Elmt);
13711 end loop;
13712 end if;
13714 return Empty;
13715 end Find_Hidden_Interface;
13717 --------------------
13718 -- Find_Type_Name --
13719 --------------------
13721 function Find_Type_Name (N : Node_Id) return Entity_Id is
13722 Id : constant Entity_Id := Defining_Identifier (N);
13723 Prev : Entity_Id;
13724 New_Id : Entity_Id;
13725 Prev_Par : Node_Id;
13727 procedure Tag_Mismatch;
13728 -- Diagnose a tagged partial view whose full view is untagged.
13729 -- We post the message on the full view, with a reference to
13730 -- the previous partial view. The partial view can be private
13731 -- or incomplete, and these are handled in a different manner,
13732 -- so we determine the position of the error message from the
13733 -- respective slocs of both.
13735 ------------------
13736 -- Tag_Mismatch --
13737 ------------------
13739 procedure Tag_Mismatch is
13740 begin
13741 if Sloc (Prev) < Sloc (Id) then
13742 Error_Msg_NE
13743 ("full declaration of } must be a tagged type ", Id, Prev);
13744 else
13745 Error_Msg_NE
13746 ("full declaration of } must be a tagged type ", Prev, Id);
13747 end if;
13748 end Tag_Mismatch;
13750 -- Start of processing for Find_Type_Name
13752 begin
13753 -- Find incomplete declaration, if one was given
13755 Prev := Current_Entity_In_Scope (Id);
13757 if Present (Prev) then
13759 -- Previous declaration exists. Error if not incomplete/private case
13760 -- except if previous declaration is implicit, etc. Enter_Name will
13761 -- emit error if appropriate.
13763 Prev_Par := Parent (Prev);
13765 if not Is_Incomplete_Or_Private_Type (Prev) then
13766 Enter_Name (Id);
13767 New_Id := Id;
13769 elsif not Nkind_In (N, N_Full_Type_Declaration,
13770 N_Task_Type_Declaration,
13771 N_Protected_Type_Declaration)
13772 then
13773 -- Completion must be a full type declarations (RM 7.3(4))
13775 Error_Msg_Sloc := Sloc (Prev);
13776 Error_Msg_NE ("invalid completion of }", Id, Prev);
13778 -- Set scope of Id to avoid cascaded errors. Entity is never
13779 -- examined again, except when saving globals in generics.
13781 Set_Scope (Id, Current_Scope);
13782 New_Id := Id;
13784 -- If this is a repeated incomplete declaration, no further
13785 -- checks are possible.
13787 if Nkind (N) = N_Incomplete_Type_Declaration then
13788 return Prev;
13789 end if;
13791 -- Case of full declaration of incomplete type
13793 elsif Ekind (Prev) = E_Incomplete_Type then
13795 -- Indicate that the incomplete declaration has a matching full
13796 -- declaration. The defining occurrence of the incomplete
13797 -- declaration remains the visible one, and the procedure
13798 -- Get_Full_View dereferences it whenever the type is used.
13800 if Present (Full_View (Prev)) then
13801 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
13802 end if;
13804 Set_Full_View (Prev, Id);
13805 Append_Entity (Id, Current_Scope);
13806 Set_Is_Public (Id, Is_Public (Prev));
13807 Set_Is_Internal (Id);
13808 New_Id := Prev;
13810 -- Case of full declaration of private type
13812 else
13813 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
13814 if Etype (Prev) /= Prev then
13816 -- Prev is a private subtype or a derived type, and needs
13817 -- no completion.
13819 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
13820 New_Id := Id;
13822 elsif Ekind (Prev) = E_Private_Type
13823 and then Nkind_In (N, N_Task_Type_Declaration,
13824 N_Protected_Type_Declaration)
13825 then
13826 Error_Msg_N
13827 ("completion of nonlimited type cannot be limited", N);
13829 elsif Ekind (Prev) = E_Record_Type_With_Private
13830 and then Nkind_In (N, N_Task_Type_Declaration,
13831 N_Protected_Type_Declaration)
13832 then
13833 if not Is_Limited_Record (Prev) then
13834 Error_Msg_N
13835 ("completion of nonlimited type cannot be limited", N);
13837 elsif No (Interface_List (N)) then
13838 Error_Msg_N
13839 ("completion of tagged private type must be tagged",
13841 end if;
13843 elsif Nkind (N) = N_Full_Type_Declaration
13844 and then
13845 Nkind (Type_Definition (N)) = N_Record_Definition
13846 and then Interface_Present (Type_Definition (N))
13847 then
13848 Error_Msg_N
13849 ("completion of private type cannot be an interface", N);
13850 end if;
13852 -- Ada 2005 (AI-251): Private extension declaration of a task
13853 -- type or a protected type. This case arises when covering
13854 -- interface types.
13856 elsif Nkind_In (N, N_Task_Type_Declaration,
13857 N_Protected_Type_Declaration)
13858 then
13859 null;
13861 elsif Nkind (N) /= N_Full_Type_Declaration
13862 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
13863 then
13864 Error_Msg_N
13865 ("full view of private extension must be an extension", N);
13867 elsif not (Abstract_Present (Parent (Prev)))
13868 and then Abstract_Present (Type_Definition (N))
13869 then
13870 Error_Msg_N
13871 ("full view of non-abstract extension cannot be abstract", N);
13872 end if;
13874 if not In_Private_Part (Current_Scope) then
13875 Error_Msg_N
13876 ("declaration of full view must appear in private part", N);
13877 end if;
13879 Copy_And_Swap (Prev, Id);
13880 Set_Has_Private_Declaration (Prev);
13881 Set_Has_Private_Declaration (Id);
13883 -- If no error, propagate freeze_node from private to full view.
13884 -- It may have been generated for an early operational item.
13886 if Present (Freeze_Node (Id))
13887 and then Serious_Errors_Detected = 0
13888 and then No (Full_View (Id))
13889 then
13890 Set_Freeze_Node (Prev, Freeze_Node (Id));
13891 Set_Freeze_Node (Id, Empty);
13892 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
13893 end if;
13895 Set_Full_View (Id, Prev);
13896 New_Id := Prev;
13897 end if;
13899 -- Verify that full declaration conforms to partial one
13901 if Is_Incomplete_Or_Private_Type (Prev)
13902 and then Present (Discriminant_Specifications (Prev_Par))
13903 then
13904 if Present (Discriminant_Specifications (N)) then
13905 if Ekind (Prev) = E_Incomplete_Type then
13906 Check_Discriminant_Conformance (N, Prev, Prev);
13907 else
13908 Check_Discriminant_Conformance (N, Prev, Id);
13909 end if;
13911 else
13912 Error_Msg_N
13913 ("missing discriminants in full type declaration", N);
13915 -- To avoid cascaded errors on subsequent use, share the
13916 -- discriminants of the partial view.
13918 Set_Discriminant_Specifications (N,
13919 Discriminant_Specifications (Prev_Par));
13920 end if;
13921 end if;
13923 -- A prior untagged partial view can have an associated class-wide
13924 -- type due to use of the class attribute, and in this case the full
13925 -- type must also be tagged. This Ada 95 usage is deprecated in favor
13926 -- of incomplete tagged declarations, but we check for it.
13928 if Is_Type (Prev)
13929 and then (Is_Tagged_Type (Prev)
13930 or else Present (Class_Wide_Type (Prev)))
13931 then
13932 -- The full declaration is either a tagged type (including
13933 -- a synchronized type that implements interfaces) or a
13934 -- type extension, otherwise this is an error.
13936 if Nkind_In (N, N_Task_Type_Declaration,
13937 N_Protected_Type_Declaration)
13938 then
13939 if No (Interface_List (N))
13940 and then not Error_Posted (N)
13941 then
13942 Tag_Mismatch;
13943 end if;
13945 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
13947 -- Indicate that the previous declaration (tagged incomplete
13948 -- or private declaration) requires the same on the full one.
13950 if not Tagged_Present (Type_Definition (N)) then
13951 Tag_Mismatch;
13952 Set_Is_Tagged_Type (Id);
13953 Set_Primitive_Operations (Id, New_Elmt_List);
13954 end if;
13956 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
13957 if No (Record_Extension_Part (Type_Definition (N))) then
13958 Error_Msg_NE (
13959 "full declaration of } must be a record extension",
13960 Prev, Id);
13962 -- Set some attributes to produce a usable full view
13964 Set_Is_Tagged_Type (Id);
13965 Set_Primitive_Operations (Id, New_Elmt_List);
13966 end if;
13968 else
13969 Tag_Mismatch;
13970 end if;
13971 end if;
13973 return New_Id;
13975 else
13976 -- New type declaration
13978 Enter_Name (Id);
13979 return Id;
13980 end if;
13981 end Find_Type_Name;
13983 -------------------------
13984 -- Find_Type_Of_Object --
13985 -------------------------
13987 function Find_Type_Of_Object
13988 (Obj_Def : Node_Id;
13989 Related_Nod : Node_Id) return Entity_Id
13991 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
13992 P : Node_Id := Parent (Obj_Def);
13993 T : Entity_Id;
13994 Nam : Name_Id;
13996 begin
13997 -- If the parent is a component_definition node we climb to the
13998 -- component_declaration node
14000 if Nkind (P) = N_Component_Definition then
14001 P := Parent (P);
14002 end if;
14004 -- Case of an anonymous array subtype
14006 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
14007 N_Unconstrained_Array_Definition)
14008 then
14009 T := Empty;
14010 Array_Type_Declaration (T, Obj_Def);
14012 -- Create an explicit subtype whenever possible
14014 elsif Nkind (P) /= N_Component_Declaration
14015 and then Def_Kind = N_Subtype_Indication
14016 then
14017 -- Base name of subtype on object name, which will be unique in
14018 -- the current scope.
14020 -- If this is a duplicate declaration, return base type, to avoid
14021 -- generating duplicate anonymous types.
14023 if Error_Posted (P) then
14024 Analyze (Subtype_Mark (Obj_Def));
14025 return Entity (Subtype_Mark (Obj_Def));
14026 end if;
14028 Nam :=
14029 New_External_Name
14030 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
14032 T := Make_Defining_Identifier (Sloc (P), Nam);
14034 Insert_Action (Obj_Def,
14035 Make_Subtype_Declaration (Sloc (P),
14036 Defining_Identifier => T,
14037 Subtype_Indication => Relocate_Node (Obj_Def)));
14039 -- This subtype may need freezing, and this will not be done
14040 -- automatically if the object declaration is not in declarative
14041 -- part. Since this is an object declaration, the type cannot always
14042 -- be frozen here. Deferred constants do not freeze their type
14043 -- (which often enough will be private).
14045 if Nkind (P) = N_Object_Declaration
14046 and then Constant_Present (P)
14047 and then No (Expression (P))
14048 then
14049 null;
14050 else
14051 Insert_Actions (Obj_Def, Freeze_Entity (T, Sloc (P)));
14052 end if;
14054 -- Ada 2005 AI-406: the object definition in an object declaration
14055 -- can be an access definition.
14057 elsif Def_Kind = N_Access_Definition then
14058 T := Access_Definition (Related_Nod, Obj_Def);
14059 Set_Is_Local_Anonymous_Access (T);
14061 -- Otherwise, the object definition is just a subtype_mark
14063 else
14064 T := Process_Subtype (Obj_Def, Related_Nod);
14065 end if;
14067 return T;
14068 end Find_Type_Of_Object;
14070 --------------------------------
14071 -- Find_Type_Of_Subtype_Indic --
14072 --------------------------------
14074 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
14075 Typ : Entity_Id;
14077 begin
14078 -- Case of subtype mark with a constraint
14080 if Nkind (S) = N_Subtype_Indication then
14081 Find_Type (Subtype_Mark (S));
14082 Typ := Entity (Subtype_Mark (S));
14084 if not
14085 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
14086 then
14087 Error_Msg_N
14088 ("incorrect constraint for this kind of type", Constraint (S));
14089 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
14090 end if;
14092 -- Otherwise we have a subtype mark without a constraint
14094 elsif Error_Posted (S) then
14095 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
14096 return Any_Type;
14098 else
14099 Find_Type (S);
14100 Typ := Entity (S);
14101 end if;
14103 -- Check No_Wide_Characters restriction
14105 if Typ = Standard_Wide_Character
14106 or else Typ = Standard_Wide_Wide_Character
14107 or else Typ = Standard_Wide_String
14108 or else Typ = Standard_Wide_Wide_String
14109 then
14110 Check_Restriction (No_Wide_Characters, S);
14111 end if;
14113 return Typ;
14114 end Find_Type_Of_Subtype_Indic;
14116 -------------------------------------
14117 -- Floating_Point_Type_Declaration --
14118 -------------------------------------
14120 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
14121 Digs : constant Node_Id := Digits_Expression (Def);
14122 Digs_Val : Uint;
14123 Base_Typ : Entity_Id;
14124 Implicit_Base : Entity_Id;
14125 Bound : Node_Id;
14127 function Can_Derive_From (E : Entity_Id) return Boolean;
14128 -- Find if given digits value allows derivation from specified type
14130 ---------------------
14131 -- Can_Derive_From --
14132 ---------------------
14134 function Can_Derive_From (E : Entity_Id) return Boolean is
14135 Spec : constant Entity_Id := Real_Range_Specification (Def);
14137 begin
14138 if Digs_Val > Digits_Value (E) then
14139 return False;
14140 end if;
14142 if Present (Spec) then
14143 if Expr_Value_R (Type_Low_Bound (E)) >
14144 Expr_Value_R (Low_Bound (Spec))
14145 then
14146 return False;
14147 end if;
14149 if Expr_Value_R (Type_High_Bound (E)) <
14150 Expr_Value_R (High_Bound (Spec))
14151 then
14152 return False;
14153 end if;
14154 end if;
14156 return True;
14157 end Can_Derive_From;
14159 -- Start of processing for Floating_Point_Type_Declaration
14161 begin
14162 Check_Restriction (No_Floating_Point, Def);
14164 -- Create an implicit base type
14166 Implicit_Base :=
14167 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
14169 -- Analyze and verify digits value
14171 Analyze_And_Resolve (Digs, Any_Integer);
14172 Check_Digits_Expression (Digs);
14173 Digs_Val := Expr_Value (Digs);
14175 -- Process possible range spec and find correct type to derive from
14177 Process_Real_Range_Specification (Def);
14179 if Can_Derive_From (Standard_Short_Float) then
14180 Base_Typ := Standard_Short_Float;
14181 elsif Can_Derive_From (Standard_Float) then
14182 Base_Typ := Standard_Float;
14183 elsif Can_Derive_From (Standard_Long_Float) then
14184 Base_Typ := Standard_Long_Float;
14185 elsif Can_Derive_From (Standard_Long_Long_Float) then
14186 Base_Typ := Standard_Long_Long_Float;
14188 -- If we can't derive from any existing type, use long_long_float
14189 -- and give appropriate message explaining the problem.
14191 else
14192 Base_Typ := Standard_Long_Long_Float;
14194 if Digs_Val >= Digits_Value (Standard_Long_Long_Float) then
14195 Error_Msg_Uint_1 := Digits_Value (Standard_Long_Long_Float);
14196 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
14198 else
14199 Error_Msg_N
14200 ("range too large for any predefined type",
14201 Real_Range_Specification (Def));
14202 end if;
14203 end if;
14205 -- If there are bounds given in the declaration use them as the bounds
14206 -- of the type, otherwise use the bounds of the predefined base type
14207 -- that was chosen based on the Digits value.
14209 if Present (Real_Range_Specification (Def)) then
14210 Set_Scalar_Range (T, Real_Range_Specification (Def));
14211 Set_Is_Constrained (T);
14213 -- The bounds of this range must be converted to machine numbers
14214 -- in accordance with RM 4.9(38).
14216 Bound := Type_Low_Bound (T);
14218 if Nkind (Bound) = N_Real_Literal then
14219 Set_Realval
14220 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
14221 Set_Is_Machine_Number (Bound);
14222 end if;
14224 Bound := Type_High_Bound (T);
14226 if Nkind (Bound) = N_Real_Literal then
14227 Set_Realval
14228 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
14229 Set_Is_Machine_Number (Bound);
14230 end if;
14232 else
14233 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
14234 end if;
14236 -- Complete definition of implicit base and declared first subtype
14238 Set_Etype (Implicit_Base, Base_Typ);
14240 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
14241 Set_Size_Info (Implicit_Base, (Base_Typ));
14242 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
14243 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
14244 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
14245 Set_Vax_Float (Implicit_Base, Vax_Float (Base_Typ));
14247 Set_Ekind (T, E_Floating_Point_Subtype);
14248 Set_Etype (T, Implicit_Base);
14250 Set_Size_Info (T, (Implicit_Base));
14251 Set_RM_Size (T, RM_Size (Implicit_Base));
14252 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
14253 Set_Digits_Value (T, Digs_Val);
14254 end Floating_Point_Type_Declaration;
14256 ----------------------------
14257 -- Get_Discriminant_Value --
14258 ----------------------------
14260 -- This is the situation:
14262 -- There is a non-derived type
14264 -- type T0 (Dx, Dy, Dz...)
14266 -- There are zero or more levels of derivation, with each derivation
14267 -- either purely inheriting the discriminants, or defining its own.
14269 -- type Ti is new Ti-1
14270 -- or
14271 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
14272 -- or
14273 -- subtype Ti is ...
14275 -- The subtype issue is avoided by the use of Original_Record_Component,
14276 -- and the fact that derived subtypes also derive the constraints.
14278 -- This chain leads back from
14280 -- Typ_For_Constraint
14282 -- Typ_For_Constraint has discriminants, and the value for each
14283 -- discriminant is given by its corresponding Elmt of Constraints.
14285 -- Discriminant is some discriminant in this hierarchy
14287 -- We need to return its value
14289 -- We do this by recursively searching each level, and looking for
14290 -- Discriminant. Once we get to the bottom, we start backing up
14291 -- returning the value for it which may in turn be a discriminant
14292 -- further up, so on the backup we continue the substitution.
14294 function Get_Discriminant_Value
14295 (Discriminant : Entity_Id;
14296 Typ_For_Constraint : Entity_Id;
14297 Constraint : Elist_Id) return Node_Id
14299 function Search_Derivation_Levels
14300 (Ti : Entity_Id;
14301 Discrim_Values : Elist_Id;
14302 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
14303 -- This is the routine that performs the recursive search of levels
14304 -- as described above.
14306 ------------------------------
14307 -- Search_Derivation_Levels --
14308 ------------------------------
14310 function Search_Derivation_Levels
14311 (Ti : Entity_Id;
14312 Discrim_Values : Elist_Id;
14313 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
14315 Assoc : Elmt_Id;
14316 Disc : Entity_Id;
14317 Result : Node_Or_Entity_Id;
14318 Result_Entity : Node_Id;
14320 begin
14321 -- If inappropriate type, return Error, this happens only in
14322 -- cascaded error situations, and we want to avoid a blow up.
14324 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
14325 return Error;
14326 end if;
14328 -- Look deeper if possible. Use Stored_Constraints only for
14329 -- untagged types. For tagged types use the given constraint.
14330 -- This asymmetry needs explanation???
14332 if not Stored_Discrim_Values
14333 and then Present (Stored_Constraint (Ti))
14334 and then not Is_Tagged_Type (Ti)
14335 then
14336 Result :=
14337 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
14338 else
14339 declare
14340 Td : constant Entity_Id := Etype (Ti);
14342 begin
14343 if Td = Ti then
14344 Result := Discriminant;
14346 else
14347 if Present (Stored_Constraint (Ti)) then
14348 Result :=
14349 Search_Derivation_Levels
14350 (Td, Stored_Constraint (Ti), True);
14351 else
14352 Result :=
14353 Search_Derivation_Levels
14354 (Td, Discrim_Values, Stored_Discrim_Values);
14355 end if;
14356 end if;
14357 end;
14358 end if;
14360 -- Extra underlying places to search, if not found above. For
14361 -- concurrent types, the relevant discriminant appears in the
14362 -- corresponding record. For a type derived from a private type
14363 -- without discriminant, the full view inherits the discriminants
14364 -- of the full view of the parent.
14366 if Result = Discriminant then
14367 if Is_Concurrent_Type (Ti)
14368 and then Present (Corresponding_Record_Type (Ti))
14369 then
14370 Result :=
14371 Search_Derivation_Levels (
14372 Corresponding_Record_Type (Ti),
14373 Discrim_Values,
14374 Stored_Discrim_Values);
14376 elsif Is_Private_Type (Ti)
14377 and then not Has_Discriminants (Ti)
14378 and then Present (Full_View (Ti))
14379 and then Etype (Full_View (Ti)) /= Ti
14380 then
14381 Result :=
14382 Search_Derivation_Levels (
14383 Full_View (Ti),
14384 Discrim_Values,
14385 Stored_Discrim_Values);
14386 end if;
14387 end if;
14389 -- If Result is not a (reference to a) discriminant, return it,
14390 -- otherwise set Result_Entity to the discriminant.
14392 if Nkind (Result) = N_Defining_Identifier then
14393 pragma Assert (Result = Discriminant);
14394 Result_Entity := Result;
14396 else
14397 if not Denotes_Discriminant (Result) then
14398 return Result;
14399 end if;
14401 Result_Entity := Entity (Result);
14402 end if;
14404 -- See if this level of derivation actually has discriminants
14405 -- because tagged derivations can add them, hence the lower
14406 -- levels need not have any.
14408 if not Has_Discriminants (Ti) then
14409 return Result;
14410 end if;
14412 -- Scan Ti's discriminants for Result_Entity,
14413 -- and return its corresponding value, if any.
14415 Result_Entity := Original_Record_Component (Result_Entity);
14417 Assoc := First_Elmt (Discrim_Values);
14419 if Stored_Discrim_Values then
14420 Disc := First_Stored_Discriminant (Ti);
14421 else
14422 Disc := First_Discriminant (Ti);
14423 end if;
14425 while Present (Disc) loop
14426 pragma Assert (Present (Assoc));
14428 if Original_Record_Component (Disc) = Result_Entity then
14429 return Node (Assoc);
14430 end if;
14432 Next_Elmt (Assoc);
14434 if Stored_Discrim_Values then
14435 Next_Stored_Discriminant (Disc);
14436 else
14437 Next_Discriminant (Disc);
14438 end if;
14439 end loop;
14441 -- Could not find it
14443 return Result;
14444 end Search_Derivation_Levels;
14446 -- Local Variables
14448 Result : Node_Or_Entity_Id;
14450 -- Start of processing for Get_Discriminant_Value
14452 begin
14453 -- ??? This routine is a gigantic mess and will be deleted. For the
14454 -- time being just test for the trivial case before calling recurse.
14456 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
14457 declare
14458 D : Entity_Id;
14459 E : Elmt_Id;
14461 begin
14462 D := First_Discriminant (Typ_For_Constraint);
14463 E := First_Elmt (Constraint);
14464 while Present (D) loop
14465 if Chars (D) = Chars (Discriminant) then
14466 return Node (E);
14467 end if;
14469 Next_Discriminant (D);
14470 Next_Elmt (E);
14471 end loop;
14472 end;
14473 end if;
14475 Result := Search_Derivation_Levels
14476 (Typ_For_Constraint, Constraint, False);
14478 -- ??? hack to disappear when this routine is gone
14480 if Nkind (Result) = N_Defining_Identifier then
14481 declare
14482 D : Entity_Id;
14483 E : Elmt_Id;
14485 begin
14486 D := First_Discriminant (Typ_For_Constraint);
14487 E := First_Elmt (Constraint);
14488 while Present (D) loop
14489 if Corresponding_Discriminant (D) = Discriminant then
14490 return Node (E);
14491 end if;
14493 Next_Discriminant (D);
14494 Next_Elmt (E);
14495 end loop;
14496 end;
14497 end if;
14499 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
14500 return Result;
14501 end Get_Discriminant_Value;
14503 --------------------------
14504 -- Has_Range_Constraint --
14505 --------------------------
14507 function Has_Range_Constraint (N : Node_Id) return Boolean is
14508 C : constant Node_Id := Constraint (N);
14510 begin
14511 if Nkind (C) = N_Range_Constraint then
14512 return True;
14514 elsif Nkind (C) = N_Digits_Constraint then
14515 return
14516 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
14517 or else
14518 Present (Range_Constraint (C));
14520 elsif Nkind (C) = N_Delta_Constraint then
14521 return Present (Range_Constraint (C));
14523 else
14524 return False;
14525 end if;
14526 end Has_Range_Constraint;
14528 ------------------------
14529 -- Inherit_Components --
14530 ------------------------
14532 function Inherit_Components
14533 (N : Node_Id;
14534 Parent_Base : Entity_Id;
14535 Derived_Base : Entity_Id;
14536 Is_Tagged : Boolean;
14537 Inherit_Discr : Boolean;
14538 Discs : Elist_Id) return Elist_Id
14540 Assoc_List : constant Elist_Id := New_Elmt_List;
14542 procedure Inherit_Component
14543 (Old_C : Entity_Id;
14544 Plain_Discrim : Boolean := False;
14545 Stored_Discrim : Boolean := False);
14546 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
14547 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
14548 -- True, Old_C is a stored discriminant. If they are both false then
14549 -- Old_C is a regular component.
14551 -----------------------
14552 -- Inherit_Component --
14553 -----------------------
14555 procedure Inherit_Component
14556 (Old_C : Entity_Id;
14557 Plain_Discrim : Boolean := False;
14558 Stored_Discrim : Boolean := False)
14560 New_C : constant Entity_Id := New_Copy (Old_C);
14562 Discrim : Entity_Id;
14563 Corr_Discrim : Entity_Id;
14565 begin
14566 pragma Assert (not Is_Tagged or else not Stored_Discrim);
14568 Set_Parent (New_C, Parent (Old_C));
14570 -- Regular discriminants and components must be inserted in the scope
14571 -- of the Derived_Base. Do it here.
14573 if not Stored_Discrim then
14574 Enter_Name (New_C);
14575 end if;
14577 -- For tagged types the Original_Record_Component must point to
14578 -- whatever this field was pointing to in the parent type. This has
14579 -- already been achieved by the call to New_Copy above.
14581 if not Is_Tagged then
14582 Set_Original_Record_Component (New_C, New_C);
14583 end if;
14585 -- If we have inherited a component then see if its Etype contains
14586 -- references to Parent_Base discriminants. In this case, replace
14587 -- these references with the constraints given in Discs. We do not
14588 -- do this for the partial view of private types because this is
14589 -- not needed (only the components of the full view will be used
14590 -- for code generation) and cause problem. We also avoid this
14591 -- transformation in some error situations.
14593 if Ekind (New_C) = E_Component then
14594 if (Is_Private_Type (Derived_Base)
14595 and then not Is_Generic_Type (Derived_Base))
14596 or else (Is_Empty_Elmt_List (Discs)
14597 and then not Expander_Active)
14598 then
14599 Set_Etype (New_C, Etype (Old_C));
14601 else
14602 -- The current component introduces a circularity of the
14603 -- following kind:
14605 -- limited with Pack_2;
14606 -- package Pack_1 is
14607 -- type T_1 is tagged record
14608 -- Comp : access Pack_2.T_2;
14609 -- ...
14610 -- end record;
14611 -- end Pack_1;
14613 -- with Pack_1;
14614 -- package Pack_2 is
14615 -- type T_2 is new Pack_1.T_1 with ...;
14616 -- end Pack_2;
14618 Set_Etype
14619 (New_C,
14620 Constrain_Component_Type
14621 (Old_C, Derived_Base, N, Parent_Base, Discs));
14622 end if;
14623 end if;
14625 -- In derived tagged types it is illegal to reference a non
14626 -- discriminant component in the parent type. To catch this, mark
14627 -- these components with an Ekind of E_Void. This will be reset in
14628 -- Record_Type_Definition after processing the record extension of
14629 -- the derived type.
14631 -- If the declaration is a private extension, there is no further
14632 -- record extension to process, and the components retain their
14633 -- current kind, because they are visible at this point.
14635 if Is_Tagged and then Ekind (New_C) = E_Component
14636 and then Nkind (N) /= N_Private_Extension_Declaration
14637 then
14638 Set_Ekind (New_C, E_Void);
14639 end if;
14641 if Plain_Discrim then
14642 Set_Corresponding_Discriminant (New_C, Old_C);
14643 Build_Discriminal (New_C);
14645 -- If we are explicitly inheriting a stored discriminant it will be
14646 -- completely hidden.
14648 elsif Stored_Discrim then
14649 Set_Corresponding_Discriminant (New_C, Empty);
14650 Set_Discriminal (New_C, Empty);
14651 Set_Is_Completely_Hidden (New_C);
14653 -- Set the Original_Record_Component of each discriminant in the
14654 -- derived base to point to the corresponding stored that we just
14655 -- created.
14657 Discrim := First_Discriminant (Derived_Base);
14658 while Present (Discrim) loop
14659 Corr_Discrim := Corresponding_Discriminant (Discrim);
14661 -- Corr_Discrim could be missing in an error situation
14663 if Present (Corr_Discrim)
14664 and then Original_Record_Component (Corr_Discrim) = Old_C
14665 then
14666 Set_Original_Record_Component (Discrim, New_C);
14667 end if;
14669 Next_Discriminant (Discrim);
14670 end loop;
14672 Append_Entity (New_C, Derived_Base);
14673 end if;
14675 if not Is_Tagged then
14676 Append_Elmt (Old_C, Assoc_List);
14677 Append_Elmt (New_C, Assoc_List);
14678 end if;
14679 end Inherit_Component;
14681 -- Variables local to Inherit_Component
14683 Loc : constant Source_Ptr := Sloc (N);
14685 Parent_Discrim : Entity_Id;
14686 Stored_Discrim : Entity_Id;
14687 D : Entity_Id;
14688 Component : Entity_Id;
14690 -- Start of processing for Inherit_Components
14692 begin
14693 if not Is_Tagged then
14694 Append_Elmt (Parent_Base, Assoc_List);
14695 Append_Elmt (Derived_Base, Assoc_List);
14696 end if;
14698 -- Inherit parent discriminants if needed
14700 if Inherit_Discr then
14701 Parent_Discrim := First_Discriminant (Parent_Base);
14702 while Present (Parent_Discrim) loop
14703 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
14704 Next_Discriminant (Parent_Discrim);
14705 end loop;
14706 end if;
14708 -- Create explicit stored discrims for untagged types when necessary
14710 if not Has_Unknown_Discriminants (Derived_Base)
14711 and then Has_Discriminants (Parent_Base)
14712 and then not Is_Tagged
14713 and then
14714 (not Inherit_Discr
14715 or else First_Discriminant (Parent_Base) /=
14716 First_Stored_Discriminant (Parent_Base))
14717 then
14718 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
14719 while Present (Stored_Discrim) loop
14720 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
14721 Next_Stored_Discriminant (Stored_Discrim);
14722 end loop;
14723 end if;
14725 -- See if we can apply the second transformation for derived types, as
14726 -- explained in point 6. in the comments above Build_Derived_Record_Type
14727 -- This is achieved by appending Derived_Base discriminants into Discs,
14728 -- which has the side effect of returning a non empty Discs list to the
14729 -- caller of Inherit_Components, which is what we want. This must be
14730 -- done for private derived types if there are explicit stored
14731 -- discriminants, to ensure that we can retrieve the values of the
14732 -- constraints provided in the ancestors.
14734 if Inherit_Discr
14735 and then Is_Empty_Elmt_List (Discs)
14736 and then Present (First_Discriminant (Derived_Base))
14737 and then
14738 (not Is_Private_Type (Derived_Base)
14739 or else Is_Completely_Hidden
14740 (First_Stored_Discriminant (Derived_Base))
14741 or else Is_Generic_Type (Derived_Base))
14742 then
14743 D := First_Discriminant (Derived_Base);
14744 while Present (D) loop
14745 Append_Elmt (New_Reference_To (D, Loc), Discs);
14746 Next_Discriminant (D);
14747 end loop;
14748 end if;
14750 -- Finally, inherit non-discriminant components unless they are not
14751 -- visible because defined or inherited from the full view of the
14752 -- parent. Don't inherit the _parent field of the parent type.
14754 Component := First_Entity (Parent_Base);
14755 while Present (Component) loop
14757 -- Ada 2005 (AI-251): Do not inherit components associated with
14758 -- secondary tags of the parent.
14760 if Ekind (Component) = E_Component
14761 and then Present (Related_Type (Component))
14762 then
14763 null;
14765 elsif Ekind (Component) /= E_Component
14766 or else Chars (Component) = Name_uParent
14767 then
14768 null;
14770 -- If the derived type is within the parent type's declarative
14771 -- region, then the components can still be inherited even though
14772 -- they aren't visible at this point. This can occur for cases
14773 -- such as within public child units where the components must
14774 -- become visible upon entering the child unit's private part.
14776 elsif not Is_Visible_Component (Component)
14777 and then not In_Open_Scopes (Scope (Parent_Base))
14778 then
14779 null;
14781 elsif Ekind (Derived_Base) = E_Private_Type
14782 or else Ekind (Derived_Base) = E_Limited_Private_Type
14783 then
14784 null;
14786 else
14787 Inherit_Component (Component);
14788 end if;
14790 Next_Entity (Component);
14791 end loop;
14793 -- For tagged derived types, inherited discriminants cannot be used in
14794 -- component declarations of the record extension part. To achieve this
14795 -- we mark the inherited discriminants as not visible.
14797 if Is_Tagged and then Inherit_Discr then
14798 D := First_Discriminant (Derived_Base);
14799 while Present (D) loop
14800 Set_Is_Immediately_Visible (D, False);
14801 Next_Discriminant (D);
14802 end loop;
14803 end if;
14805 return Assoc_List;
14806 end Inherit_Components;
14808 -----------------------
14809 -- Is_Null_Extension --
14810 -----------------------
14812 function Is_Null_Extension (T : Entity_Id) return Boolean is
14813 Type_Decl : constant Node_Id := Parent (Base_Type (T));
14814 Comp_List : Node_Id;
14815 Comp : Node_Id;
14817 begin
14818 if Nkind (Type_Decl) /= N_Full_Type_Declaration
14819 or else not Is_Tagged_Type (T)
14820 or else Nkind (Type_Definition (Type_Decl)) /=
14821 N_Derived_Type_Definition
14822 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
14823 then
14824 return False;
14825 end if;
14827 Comp_List :=
14828 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
14830 if Present (Discriminant_Specifications (Type_Decl)) then
14831 return False;
14833 elsif Present (Comp_List)
14834 and then Is_Non_Empty_List (Component_Items (Comp_List))
14835 then
14836 Comp := First (Component_Items (Comp_List));
14838 -- Only user-defined components are relevant. The component list
14839 -- may also contain a parent component and internal components
14840 -- corresponding to secondary tags, but these do not determine
14841 -- whether this is a null extension.
14843 while Present (Comp) loop
14844 if Comes_From_Source (Comp) then
14845 return False;
14846 end if;
14848 Next (Comp);
14849 end loop;
14851 return True;
14852 else
14853 return True;
14854 end if;
14855 end Is_Null_Extension;
14857 --------------------
14858 -- Is_Progenitor --
14859 --------------------
14861 function Is_Progenitor
14862 (Iface : Entity_Id;
14863 Typ : Entity_Id) return Boolean
14865 begin
14866 return Implements_Interface (Typ, Iface,
14867 Exclude_Parents => True);
14868 end Is_Progenitor;
14870 ------------------------------
14871 -- Is_Valid_Constraint_Kind --
14872 ------------------------------
14874 function Is_Valid_Constraint_Kind
14875 (T_Kind : Type_Kind;
14876 Constraint_Kind : Node_Kind) return Boolean
14878 begin
14879 case T_Kind is
14880 when Enumeration_Kind |
14881 Integer_Kind =>
14882 return Constraint_Kind = N_Range_Constraint;
14884 when Decimal_Fixed_Point_Kind =>
14885 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
14886 N_Range_Constraint);
14888 when Ordinary_Fixed_Point_Kind =>
14889 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
14890 N_Range_Constraint);
14892 when Float_Kind =>
14893 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
14894 N_Range_Constraint);
14896 when Access_Kind |
14897 Array_Kind |
14898 E_Record_Type |
14899 E_Record_Subtype |
14900 Class_Wide_Kind |
14901 E_Incomplete_Type |
14902 Private_Kind |
14903 Concurrent_Kind =>
14904 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
14906 when others =>
14907 return True; -- Error will be detected later
14908 end case;
14909 end Is_Valid_Constraint_Kind;
14911 --------------------------
14912 -- Is_Visible_Component --
14913 --------------------------
14915 function Is_Visible_Component (C : Entity_Id) return Boolean is
14916 Original_Comp : Entity_Id := Empty;
14917 Original_Scope : Entity_Id;
14918 Type_Scope : Entity_Id;
14920 function Is_Local_Type (Typ : Entity_Id) return Boolean;
14921 -- Check whether parent type of inherited component is declared locally,
14922 -- possibly within a nested package or instance. The current scope is
14923 -- the derived record itself.
14925 -------------------
14926 -- Is_Local_Type --
14927 -------------------
14929 function Is_Local_Type (Typ : Entity_Id) return Boolean is
14930 Scop : Entity_Id;
14932 begin
14933 Scop := Scope (Typ);
14934 while Present (Scop)
14935 and then Scop /= Standard_Standard
14936 loop
14937 if Scop = Scope (Current_Scope) then
14938 return True;
14939 end if;
14941 Scop := Scope (Scop);
14942 end loop;
14944 return False;
14945 end Is_Local_Type;
14947 -- Start of processing for Is_Visible_Component
14949 begin
14950 if Ekind (C) = E_Component
14951 or else Ekind (C) = E_Discriminant
14952 then
14953 Original_Comp := Original_Record_Component (C);
14954 end if;
14956 if No (Original_Comp) then
14958 -- Premature usage, or previous error
14960 return False;
14962 else
14963 Original_Scope := Scope (Original_Comp);
14964 Type_Scope := Scope (Base_Type (Scope (C)));
14965 end if;
14967 -- This test only concerns tagged types
14969 if not Is_Tagged_Type (Original_Scope) then
14970 return True;
14972 -- If it is _Parent or _Tag, there is no visibility issue
14974 elsif not Comes_From_Source (Original_Comp) then
14975 return True;
14977 -- If we are in the body of an instantiation, the component is visible
14978 -- even when the parent type (possibly defined in an enclosing unit or
14979 -- in a parent unit) might not.
14981 elsif In_Instance_Body then
14982 return True;
14984 -- Discriminants are always visible
14986 elsif Ekind (Original_Comp) = E_Discriminant
14987 and then not Has_Unknown_Discriminants (Original_Scope)
14988 then
14989 return True;
14991 -- If the component has been declared in an ancestor which is currently
14992 -- a private type, then it is not visible. The same applies if the
14993 -- component's containing type is not in an open scope and the original
14994 -- component's enclosing type is a visible full view of a private type
14995 -- (which can occur in cases where an attempt is being made to reference
14996 -- a component in a sibling package that is inherited from a visible
14997 -- component of a type in an ancestor package; the component in the
14998 -- sibling package should not be visible even though the component it
14999 -- inherited from is visible). This does not apply however in the case
15000 -- where the scope of the type is a private child unit, or when the
15001 -- parent comes from a local package in which the ancestor is currently
15002 -- visible. The latter suppression of visibility is needed for cases
15003 -- that are tested in B730006.
15005 elsif Is_Private_Type (Original_Scope)
15006 or else
15007 (not Is_Private_Descendant (Type_Scope)
15008 and then not In_Open_Scopes (Type_Scope)
15009 and then Has_Private_Declaration (Original_Scope))
15010 then
15011 -- If the type derives from an entity in a formal package, there
15012 -- are no additional visible components.
15014 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
15015 N_Formal_Package_Declaration
15016 then
15017 return False;
15019 -- if we are not in the private part of the current package, there
15020 -- are no additional visible components.
15022 elsif Ekind (Scope (Current_Scope)) = E_Package
15023 and then not In_Private_Part (Scope (Current_Scope))
15024 then
15025 return False;
15026 else
15027 return
15028 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
15029 and then In_Open_Scopes (Scope (Original_Scope))
15030 and then Is_Local_Type (Type_Scope);
15031 end if;
15033 -- There is another weird way in which a component may be invisible
15034 -- when the private and the full view are not derived from the same
15035 -- ancestor. Here is an example :
15037 -- type A1 is tagged record F1 : integer; end record;
15038 -- type A2 is new A1 with record F2 : integer; end record;
15039 -- type T is new A1 with private;
15040 -- private
15041 -- type T is new A2 with null record;
15043 -- In this case, the full view of T inherits F1 and F2 but the private
15044 -- view inherits only F1
15046 else
15047 declare
15048 Ancestor : Entity_Id := Scope (C);
15050 begin
15051 loop
15052 if Ancestor = Original_Scope then
15053 return True;
15054 elsif Ancestor = Etype (Ancestor) then
15055 return False;
15056 end if;
15058 Ancestor := Etype (Ancestor);
15059 end loop;
15060 end;
15061 end if;
15062 end Is_Visible_Component;
15064 --------------------------
15065 -- Make_Class_Wide_Type --
15066 --------------------------
15068 procedure Make_Class_Wide_Type (T : Entity_Id) is
15069 CW_Type : Entity_Id;
15070 CW_Name : Name_Id;
15071 Next_E : Entity_Id;
15073 begin
15074 -- The class wide type can have been defined by the partial view, in
15075 -- which case everything is already done.
15077 if Present (Class_Wide_Type (T)) then
15078 return;
15079 end if;
15081 CW_Type :=
15082 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
15084 -- Inherit root type characteristics
15086 CW_Name := Chars (CW_Type);
15087 Next_E := Next_Entity (CW_Type);
15088 Copy_Node (T, CW_Type);
15089 Set_Comes_From_Source (CW_Type, False);
15090 Set_Chars (CW_Type, CW_Name);
15091 Set_Parent (CW_Type, Parent (T));
15092 Set_Next_Entity (CW_Type, Next_E);
15094 -- Ensure we have a new freeze node for the class-wide type. The partial
15095 -- view may have freeze action of its own, requiring a proper freeze
15096 -- node, and the same freeze node cannot be shared between the two
15097 -- types.
15099 Set_Has_Delayed_Freeze (CW_Type);
15100 Set_Freeze_Node (CW_Type, Empty);
15102 -- Customize the class-wide type: It has no prim. op., it cannot be
15103 -- abstract and its Etype points back to the specific root type.
15105 Set_Ekind (CW_Type, E_Class_Wide_Type);
15106 Set_Is_Tagged_Type (CW_Type, True);
15107 Set_Primitive_Operations (CW_Type, New_Elmt_List);
15108 Set_Is_Abstract_Type (CW_Type, False);
15109 Set_Is_Constrained (CW_Type, False);
15110 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
15112 if Ekind (T) = E_Class_Wide_Subtype then
15113 Set_Etype (CW_Type, Etype (Base_Type (T)));
15114 else
15115 Set_Etype (CW_Type, T);
15116 end if;
15118 -- If this is the class_wide type of a constrained subtype, it does
15119 -- not have discriminants.
15121 Set_Has_Discriminants (CW_Type,
15122 Has_Discriminants (T) and then not Is_Constrained (T));
15124 Set_Has_Unknown_Discriminants (CW_Type, True);
15125 Set_Class_Wide_Type (T, CW_Type);
15126 Set_Equivalent_Type (CW_Type, Empty);
15128 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
15130 Set_Class_Wide_Type (CW_Type, CW_Type);
15131 end Make_Class_Wide_Type;
15133 ----------------
15134 -- Make_Index --
15135 ----------------
15137 procedure Make_Index
15138 (I : Node_Id;
15139 Related_Nod : Node_Id;
15140 Related_Id : Entity_Id := Empty;
15141 Suffix_Index : Nat := 1)
15143 R : Node_Id;
15144 T : Entity_Id;
15145 Def_Id : Entity_Id := Empty;
15146 Found : Boolean := False;
15148 begin
15149 -- For a discrete range used in a constrained array definition and
15150 -- defined by a range, an implicit conversion to the predefined type
15151 -- INTEGER is assumed if each bound is either a numeric literal, a named
15152 -- number, or an attribute, and the type of both bounds (prior to the
15153 -- implicit conversion) is the type universal_integer. Otherwise, both
15154 -- bounds must be of the same discrete type, other than universal
15155 -- integer; this type must be determinable independently of the
15156 -- context, but using the fact that the type must be discrete and that
15157 -- both bounds must have the same type.
15159 -- Character literals also have a universal type in the absence of
15160 -- of additional context, and are resolved to Standard_Character.
15162 if Nkind (I) = N_Range then
15164 -- The index is given by a range constraint. The bounds are known
15165 -- to be of a consistent type.
15167 if not Is_Overloaded (I) then
15168 T := Etype (I);
15170 -- For universal bounds, choose the specific predefined type
15172 if T = Universal_Integer then
15173 T := Standard_Integer;
15175 elsif T = Any_Character then
15176 Ambiguous_Character (Low_Bound (I));
15178 T := Standard_Character;
15179 end if;
15181 -- The node may be overloaded because some user-defined operators
15182 -- are available, but if a universal interpretation exists it is
15183 -- also the selected one.
15185 elsif Universal_Interpretation (I) = Universal_Integer then
15186 T := Standard_Integer;
15188 else
15189 T := Any_Type;
15191 declare
15192 Ind : Interp_Index;
15193 It : Interp;
15195 begin
15196 Get_First_Interp (I, Ind, It);
15197 while Present (It.Typ) loop
15198 if Is_Discrete_Type (It.Typ) then
15200 if Found
15201 and then not Covers (It.Typ, T)
15202 and then not Covers (T, It.Typ)
15203 then
15204 Error_Msg_N ("ambiguous bounds in discrete range", I);
15205 exit;
15206 else
15207 T := It.Typ;
15208 Found := True;
15209 end if;
15210 end if;
15212 Get_Next_Interp (Ind, It);
15213 end loop;
15215 if T = Any_Type then
15216 Error_Msg_N ("discrete type required for range", I);
15217 Set_Etype (I, Any_Type);
15218 return;
15220 elsif T = Universal_Integer then
15221 T := Standard_Integer;
15222 end if;
15223 end;
15224 end if;
15226 if not Is_Discrete_Type (T) then
15227 Error_Msg_N ("discrete type required for range", I);
15228 Set_Etype (I, Any_Type);
15229 return;
15230 end if;
15232 if Nkind (Low_Bound (I)) = N_Attribute_Reference
15233 and then Attribute_Name (Low_Bound (I)) = Name_First
15234 and then Is_Entity_Name (Prefix (Low_Bound (I)))
15235 and then Is_Type (Entity (Prefix (Low_Bound (I))))
15236 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
15237 then
15238 -- The type of the index will be the type of the prefix, as long
15239 -- as the upper bound is 'Last of the same type.
15241 Def_Id := Entity (Prefix (Low_Bound (I)));
15243 if Nkind (High_Bound (I)) /= N_Attribute_Reference
15244 or else Attribute_Name (High_Bound (I)) /= Name_Last
15245 or else not Is_Entity_Name (Prefix (High_Bound (I)))
15246 or else Entity (Prefix (High_Bound (I))) /= Def_Id
15247 then
15248 Def_Id := Empty;
15249 end if;
15250 end if;
15252 R := I;
15253 Process_Range_Expr_In_Decl (R, T);
15255 elsif Nkind (I) = N_Subtype_Indication then
15257 -- The index is given by a subtype with a range constraint
15259 T := Base_Type (Entity (Subtype_Mark (I)));
15261 if not Is_Discrete_Type (T) then
15262 Error_Msg_N ("discrete type required for range", I);
15263 Set_Etype (I, Any_Type);
15264 return;
15265 end if;
15267 R := Range_Expression (Constraint (I));
15269 Resolve (R, T);
15270 Process_Range_Expr_In_Decl (R, Entity (Subtype_Mark (I)));
15272 elsif Nkind (I) = N_Attribute_Reference then
15274 -- The parser guarantees that the attribute is a RANGE attribute
15276 -- If the node denotes the range of a type mark, that is also the
15277 -- resulting type, and we do no need to create an Itype for it.
15279 if Is_Entity_Name (Prefix (I))
15280 and then Comes_From_Source (I)
15281 and then Is_Type (Entity (Prefix (I)))
15282 and then Is_Discrete_Type (Entity (Prefix (I)))
15283 then
15284 Def_Id := Entity (Prefix (I));
15285 end if;
15287 Analyze_And_Resolve (I);
15288 T := Etype (I);
15289 R := I;
15291 -- If none of the above, must be a subtype. We convert this to a
15292 -- range attribute reference because in the case of declared first
15293 -- named subtypes, the types in the range reference can be different
15294 -- from the type of the entity. A range attribute normalizes the
15295 -- reference and obtains the correct types for the bounds.
15297 -- This transformation is in the nature of an expansion, is only
15298 -- done if expansion is active. In particular, it is not done on
15299 -- formal generic types, because we need to retain the name of the
15300 -- original index for instantiation purposes.
15302 else
15303 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
15304 Error_Msg_N ("invalid subtype mark in discrete range ", I);
15305 Set_Etype (I, Any_Integer);
15306 return;
15308 else
15309 -- The type mark may be that of an incomplete type. It is only
15310 -- now that we can get the full view, previous analysis does
15311 -- not look specifically for a type mark.
15313 Set_Entity (I, Get_Full_View (Entity (I)));
15314 Set_Etype (I, Entity (I));
15315 Def_Id := Entity (I);
15317 if not Is_Discrete_Type (Def_Id) then
15318 Error_Msg_N ("discrete type required for index", I);
15319 Set_Etype (I, Any_Type);
15320 return;
15321 end if;
15322 end if;
15324 if Expander_Active then
15325 Rewrite (I,
15326 Make_Attribute_Reference (Sloc (I),
15327 Attribute_Name => Name_Range,
15328 Prefix => Relocate_Node (I)));
15330 -- The original was a subtype mark that does not freeze. This
15331 -- means that the rewritten version must not freeze either.
15333 Set_Must_Not_Freeze (I);
15334 Set_Must_Not_Freeze (Prefix (I));
15336 -- Is order critical??? if so, document why, if not
15337 -- use Analyze_And_Resolve
15339 Analyze_And_Resolve (I);
15340 T := Etype (I);
15341 R := I;
15343 -- If expander is inactive, type is legal, nothing else to construct
15345 else
15346 return;
15347 end if;
15348 end if;
15350 if not Is_Discrete_Type (T) then
15351 Error_Msg_N ("discrete type required for range", I);
15352 Set_Etype (I, Any_Type);
15353 return;
15355 elsif T = Any_Type then
15356 Set_Etype (I, Any_Type);
15357 return;
15358 end if;
15360 -- We will now create the appropriate Itype to describe the range, but
15361 -- first a check. If we originally had a subtype, then we just label
15362 -- the range with this subtype. Not only is there no need to construct
15363 -- a new subtype, but it is wrong to do so for two reasons:
15365 -- 1. A legality concern, if we have a subtype, it must not freeze,
15366 -- and the Itype would cause freezing incorrectly
15368 -- 2. An efficiency concern, if we created an Itype, it would not be
15369 -- recognized as the same type for the purposes of eliminating
15370 -- checks in some circumstances.
15372 -- We signal this case by setting the subtype entity in Def_Id
15374 if No (Def_Id) then
15375 Def_Id :=
15376 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
15377 Set_Etype (Def_Id, Base_Type (T));
15379 if Is_Signed_Integer_Type (T) then
15380 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
15382 elsif Is_Modular_Integer_Type (T) then
15383 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
15385 else
15386 Set_Ekind (Def_Id, E_Enumeration_Subtype);
15387 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
15388 Set_First_Literal (Def_Id, First_Literal (T));
15389 end if;
15391 Set_Size_Info (Def_Id, (T));
15392 Set_RM_Size (Def_Id, RM_Size (T));
15393 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
15395 Set_Scalar_Range (Def_Id, R);
15396 Conditional_Delay (Def_Id, T);
15398 -- In the subtype indication case, if the immediate parent of the
15399 -- new subtype is non-static, then the subtype we create is non-
15400 -- static, even if its bounds are static.
15402 if Nkind (I) = N_Subtype_Indication
15403 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
15404 then
15405 Set_Is_Non_Static_Subtype (Def_Id);
15406 end if;
15407 end if;
15409 -- Final step is to label the index with this constructed type
15411 Set_Etype (I, Def_Id);
15412 end Make_Index;
15414 ------------------------------
15415 -- Modular_Type_Declaration --
15416 ------------------------------
15418 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15419 Mod_Expr : constant Node_Id := Expression (Def);
15420 M_Val : Uint;
15422 procedure Set_Modular_Size (Bits : Int);
15423 -- Sets RM_Size to Bits, and Esize to normal word size above this
15425 ----------------------
15426 -- Set_Modular_Size --
15427 ----------------------
15429 procedure Set_Modular_Size (Bits : Int) is
15430 begin
15431 Set_RM_Size (T, UI_From_Int (Bits));
15433 if Bits <= 8 then
15434 Init_Esize (T, 8);
15436 elsif Bits <= 16 then
15437 Init_Esize (T, 16);
15439 elsif Bits <= 32 then
15440 Init_Esize (T, 32);
15442 else
15443 Init_Esize (T, System_Max_Binary_Modulus_Power);
15444 end if;
15446 if not Non_Binary_Modulus (T)
15447 and then Esize (T) = RM_Size (T)
15448 then
15449 Set_Is_Known_Valid (T);
15450 end if;
15451 end Set_Modular_Size;
15453 -- Start of processing for Modular_Type_Declaration
15455 begin
15456 Analyze_And_Resolve (Mod_Expr, Any_Integer);
15457 Set_Etype (T, T);
15458 Set_Ekind (T, E_Modular_Integer_Type);
15459 Init_Alignment (T);
15460 Set_Is_Constrained (T);
15462 if not Is_OK_Static_Expression (Mod_Expr) then
15463 Flag_Non_Static_Expr
15464 ("non-static expression used for modular type bound!", Mod_Expr);
15465 M_Val := 2 ** System_Max_Binary_Modulus_Power;
15466 else
15467 M_Val := Expr_Value (Mod_Expr);
15468 end if;
15470 if M_Val < 1 then
15471 Error_Msg_N ("modulus value must be positive", Mod_Expr);
15472 M_Val := 2 ** System_Max_Binary_Modulus_Power;
15473 end if;
15475 Set_Modulus (T, M_Val);
15477 -- Create bounds for the modular type based on the modulus given in
15478 -- the type declaration and then analyze and resolve those bounds.
15480 Set_Scalar_Range (T,
15481 Make_Range (Sloc (Mod_Expr),
15482 Low_Bound =>
15483 Make_Integer_Literal (Sloc (Mod_Expr), 0),
15484 High_Bound =>
15485 Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
15487 -- Properly analyze the literals for the range. We do this manually
15488 -- because we can't go calling Resolve, since we are resolving these
15489 -- bounds with the type, and this type is certainly not complete yet!
15491 Set_Etype (Low_Bound (Scalar_Range (T)), T);
15492 Set_Etype (High_Bound (Scalar_Range (T)), T);
15493 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
15494 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
15496 -- Loop through powers of two to find number of bits required
15498 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
15500 -- Binary case
15502 if M_Val = 2 ** Bits then
15503 Set_Modular_Size (Bits);
15504 return;
15506 -- Non-binary case
15508 elsif M_Val < 2 ** Bits then
15509 Set_Non_Binary_Modulus (T);
15511 if Bits > System_Max_Nonbinary_Modulus_Power then
15512 Error_Msg_Uint_1 :=
15513 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
15514 Error_Msg_F
15515 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
15516 Set_Modular_Size (System_Max_Binary_Modulus_Power);
15517 return;
15519 else
15520 -- In the non-binary case, set size as per RM 13.3(55)
15522 Set_Modular_Size (Bits);
15523 return;
15524 end if;
15525 end if;
15527 end loop;
15529 -- If we fall through, then the size exceed System.Max_Binary_Modulus
15530 -- so we just signal an error and set the maximum size.
15532 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
15533 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
15535 Set_Modular_Size (System_Max_Binary_Modulus_Power);
15536 Init_Alignment (T);
15538 end Modular_Type_Declaration;
15540 --------------------------
15541 -- New_Concatenation_Op --
15542 --------------------------
15544 procedure New_Concatenation_Op (Typ : Entity_Id) is
15545 Loc : constant Source_Ptr := Sloc (Typ);
15546 Op : Entity_Id;
15548 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
15549 -- Create abbreviated declaration for the formal of a predefined
15550 -- Operator 'Op' of type 'Typ'
15552 --------------------
15553 -- Make_Op_Formal --
15554 --------------------
15556 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
15557 Formal : Entity_Id;
15558 begin
15559 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
15560 Set_Etype (Formal, Typ);
15561 Set_Mechanism (Formal, Default_Mechanism);
15562 return Formal;
15563 end Make_Op_Formal;
15565 -- Start of processing for New_Concatenation_Op
15567 begin
15568 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
15570 Set_Ekind (Op, E_Operator);
15571 Set_Scope (Op, Current_Scope);
15572 Set_Etype (Op, Typ);
15573 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
15574 Set_Is_Immediately_Visible (Op);
15575 Set_Is_Intrinsic_Subprogram (Op);
15576 Set_Has_Completion (Op);
15577 Append_Entity (Op, Current_Scope);
15579 Set_Name_Entity_Id (Name_Op_Concat, Op);
15581 Append_Entity (Make_Op_Formal (Typ, Op), Op);
15582 Append_Entity (Make_Op_Formal (Typ, Op), Op);
15583 end New_Concatenation_Op;
15585 -------------------------
15586 -- OK_For_Limited_Init --
15587 -------------------------
15589 -- ???Check all calls of this, and compare the conditions under which it's
15590 -- called.
15592 function OK_For_Limited_Init
15593 (Typ : Entity_Id;
15594 Exp : Node_Id) return Boolean
15596 begin
15597 return Is_CPP_Constructor_Call (Exp)
15598 or else (Ada_Version >= Ada_05
15599 and then not Debug_Flag_Dot_L
15600 and then OK_For_Limited_Init_In_05 (Typ, Exp));
15601 end OK_For_Limited_Init;
15603 -------------------------------
15604 -- OK_For_Limited_Init_In_05 --
15605 -------------------------------
15607 function OK_For_Limited_Init_In_05
15608 (Typ : Entity_Id;
15609 Exp : Node_Id) return Boolean
15611 begin
15612 -- An object of a limited interface type can be initialized with any
15613 -- expression of a nonlimited descendant type.
15615 if Is_Class_Wide_Type (Typ)
15616 and then Is_Limited_Interface (Typ)
15617 and then not Is_Limited_Type (Etype (Exp))
15618 then
15619 return True;
15620 end if;
15622 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
15623 -- case of limited aggregates (including extension aggregates), and
15624 -- function calls. The function call may have been give in prefixed
15625 -- notation, in which case the original node is an indexed component.
15627 case Nkind (Original_Node (Exp)) is
15628 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
15629 return True;
15631 when N_Qualified_Expression =>
15632 return
15633 OK_For_Limited_Init_In_05
15634 (Typ, Expression (Original_Node (Exp)));
15636 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
15637 -- with a function call, the expander has rewritten the call into an
15638 -- N_Type_Conversion node to force displacement of the pointer to
15639 -- reference the component containing the secondary dispatch table.
15640 -- Otherwise a type conversion is not a legal context.
15641 -- A return statement for a build-in-place function returning a
15642 -- synchronized type also introduces an unchecked conversion.
15644 when N_Type_Conversion | N_Unchecked_Type_Conversion =>
15645 return not Comes_From_Source (Exp)
15646 and then
15647 OK_For_Limited_Init_In_05
15648 (Typ, Expression (Original_Node (Exp)));
15650 when N_Indexed_Component | N_Selected_Component =>
15651 return Nkind (Exp) = N_Function_Call;
15653 -- A use of 'Input is a function call, hence allowed. Normally the
15654 -- attribute will be changed to a call, but the attribute by itself
15655 -- can occur with -gnatc.
15657 when N_Attribute_Reference =>
15658 return Attribute_Name (Original_Node (Exp)) = Name_Input;
15660 when others =>
15661 return False;
15662 end case;
15663 end OK_For_Limited_Init_In_05;
15665 -------------------------------------------
15666 -- Ordinary_Fixed_Point_Type_Declaration --
15667 -------------------------------------------
15669 procedure Ordinary_Fixed_Point_Type_Declaration
15670 (T : Entity_Id;
15671 Def : Node_Id)
15673 Loc : constant Source_Ptr := Sloc (Def);
15674 Delta_Expr : constant Node_Id := Delta_Expression (Def);
15675 RRS : constant Node_Id := Real_Range_Specification (Def);
15676 Implicit_Base : Entity_Id;
15677 Delta_Val : Ureal;
15678 Small_Val : Ureal;
15679 Low_Val : Ureal;
15680 High_Val : Ureal;
15682 begin
15683 Check_Restriction (No_Fixed_Point, Def);
15685 -- Create implicit base type
15687 Implicit_Base :=
15688 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
15689 Set_Etype (Implicit_Base, Implicit_Base);
15691 -- Analyze and process delta expression
15693 Analyze_And_Resolve (Delta_Expr, Any_Real);
15695 Check_Delta_Expression (Delta_Expr);
15696 Delta_Val := Expr_Value_R (Delta_Expr);
15698 Set_Delta_Value (Implicit_Base, Delta_Val);
15700 -- Compute default small from given delta, which is the largest power
15701 -- of two that does not exceed the given delta value.
15703 declare
15704 Tmp : Ureal;
15705 Scale : Int;
15707 begin
15708 Tmp := Ureal_1;
15709 Scale := 0;
15711 if Delta_Val < Ureal_1 then
15712 while Delta_Val < Tmp loop
15713 Tmp := Tmp / Ureal_2;
15714 Scale := Scale + 1;
15715 end loop;
15717 else
15718 loop
15719 Tmp := Tmp * Ureal_2;
15720 exit when Tmp > Delta_Val;
15721 Scale := Scale - 1;
15722 end loop;
15723 end if;
15725 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
15726 end;
15728 Set_Small_Value (Implicit_Base, Small_Val);
15730 -- If no range was given, set a dummy range
15732 if RRS <= Empty_Or_Error then
15733 Low_Val := -Small_Val;
15734 High_Val := Small_Val;
15736 -- Otherwise analyze and process given range
15738 else
15739 declare
15740 Low : constant Node_Id := Low_Bound (RRS);
15741 High : constant Node_Id := High_Bound (RRS);
15743 begin
15744 Analyze_And_Resolve (Low, Any_Real);
15745 Analyze_And_Resolve (High, Any_Real);
15746 Check_Real_Bound (Low);
15747 Check_Real_Bound (High);
15749 -- Obtain and set the range
15751 Low_Val := Expr_Value_R (Low);
15752 High_Val := Expr_Value_R (High);
15754 if Low_Val > High_Val then
15755 Error_Msg_NE ("?fixed point type& has null range", Def, T);
15756 end if;
15757 end;
15758 end if;
15760 -- The range for both the implicit base and the declared first subtype
15761 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
15762 -- set a temporary range in place. Note that the bounds of the base
15763 -- type will be widened to be symmetrical and to fill the available
15764 -- bits when the type is frozen.
15766 -- We could do this with all discrete types, and probably should, but
15767 -- we absolutely have to do it for fixed-point, since the end-points
15768 -- of the range and the size are determined by the small value, which
15769 -- could be reset before the freeze point.
15771 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
15772 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
15774 -- Complete definition of first subtype
15776 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
15777 Set_Etype (T, Implicit_Base);
15778 Init_Size_Align (T);
15779 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
15780 Set_Small_Value (T, Small_Val);
15781 Set_Delta_Value (T, Delta_Val);
15782 Set_Is_Constrained (T);
15784 end Ordinary_Fixed_Point_Type_Declaration;
15786 ----------------------------------------
15787 -- Prepare_Private_Subtype_Completion --
15788 ----------------------------------------
15790 procedure Prepare_Private_Subtype_Completion
15791 (Id : Entity_Id;
15792 Related_Nod : Node_Id)
15794 Id_B : constant Entity_Id := Base_Type (Id);
15795 Full_B : constant Entity_Id := Full_View (Id_B);
15796 Full : Entity_Id;
15798 begin
15799 if Present (Full_B) then
15801 -- The Base_Type is already completed, we can complete the subtype
15802 -- now. We have to create a new entity with the same name, Thus we
15803 -- can't use Create_Itype.
15805 -- This is messy, should be fixed ???
15807 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
15808 Set_Is_Itype (Full);
15809 Set_Associated_Node_For_Itype (Full, Related_Nod);
15810 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
15811 end if;
15813 -- The parent subtype may be private, but the base might not, in some
15814 -- nested instances. In that case, the subtype does not need to be
15815 -- exchanged. It would still be nice to make private subtypes and their
15816 -- bases consistent at all times ???
15818 if Is_Private_Type (Id_B) then
15819 Append_Elmt (Id, Private_Dependents (Id_B));
15820 end if;
15822 end Prepare_Private_Subtype_Completion;
15824 ---------------------------
15825 -- Process_Discriminants --
15826 ---------------------------
15828 procedure Process_Discriminants
15829 (N : Node_Id;
15830 Prev : Entity_Id := Empty)
15832 Elist : constant Elist_Id := New_Elmt_List;
15833 Id : Node_Id;
15834 Discr : Node_Id;
15835 Discr_Number : Uint;
15836 Discr_Type : Entity_Id;
15837 Default_Present : Boolean := False;
15838 Default_Not_Present : Boolean := False;
15840 begin
15841 -- A composite type other than an array type can have discriminants.
15842 -- On entry, the current scope is the composite type.
15844 -- The discriminants are initially entered into the scope of the type
15845 -- via Enter_Name with the default Ekind of E_Void to prevent premature
15846 -- use, as explained at the end of this procedure.
15848 Discr := First (Discriminant_Specifications (N));
15849 while Present (Discr) loop
15850 Enter_Name (Defining_Identifier (Discr));
15852 -- For navigation purposes we add a reference to the discriminant
15853 -- in the entity for the type. If the current declaration is a
15854 -- completion, place references on the partial view. Otherwise the
15855 -- type is the current scope.
15857 if Present (Prev) then
15859 -- The references go on the partial view, if present. If the
15860 -- partial view has discriminants, the references have been
15861 -- generated already.
15863 if not Has_Discriminants (Prev) then
15864 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
15865 end if;
15866 else
15867 Generate_Reference
15868 (Current_Scope, Defining_Identifier (Discr), 'd');
15869 end if;
15871 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
15872 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
15874 -- Ada 2005 (AI-254)
15876 if Present (Access_To_Subprogram_Definition
15877 (Discriminant_Type (Discr)))
15878 and then Protected_Present (Access_To_Subprogram_Definition
15879 (Discriminant_Type (Discr)))
15880 then
15881 Discr_Type :=
15882 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
15883 end if;
15885 else
15886 Find_Type (Discriminant_Type (Discr));
15887 Discr_Type := Etype (Discriminant_Type (Discr));
15889 if Error_Posted (Discriminant_Type (Discr)) then
15890 Discr_Type := Any_Type;
15891 end if;
15892 end if;
15894 if Is_Access_Type (Discr_Type) then
15896 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
15897 -- record types
15899 if Ada_Version < Ada_05 then
15900 Check_Access_Discriminant_Requires_Limited
15901 (Discr, Discriminant_Type (Discr));
15902 end if;
15904 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
15905 Error_Msg_N
15906 ("(Ada 83) access discriminant not allowed", Discr);
15907 end if;
15909 elsif not Is_Discrete_Type (Discr_Type) then
15910 Error_Msg_N ("discriminants must have a discrete or access type",
15911 Discriminant_Type (Discr));
15912 end if;
15914 Set_Etype (Defining_Identifier (Discr), Discr_Type);
15916 -- If a discriminant specification includes the assignment compound
15917 -- delimiter followed by an expression, the expression is the default
15918 -- expression of the discriminant; the default expression must be of
15919 -- the type of the discriminant. (RM 3.7.1) Since this expression is
15920 -- a default expression, we do the special preanalysis, since this
15921 -- expression does not freeze (see "Handling of Default and Per-
15922 -- Object Expressions" in spec of package Sem).
15924 if Present (Expression (Discr)) then
15925 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
15927 if Nkind (N) = N_Formal_Type_Declaration then
15928 Error_Msg_N
15929 ("discriminant defaults not allowed for formal type",
15930 Expression (Discr));
15932 -- Tagged types cannot have defaulted discriminants, but a
15933 -- non-tagged private type with defaulted discriminants
15934 -- can have a tagged completion.
15936 elsif Is_Tagged_Type (Current_Scope)
15937 and then Comes_From_Source (N)
15938 then
15939 Error_Msg_N
15940 ("discriminants of tagged type cannot have defaults",
15941 Expression (Discr));
15943 else
15944 Default_Present := True;
15945 Append_Elmt (Expression (Discr), Elist);
15947 -- Tag the defining identifiers for the discriminants with
15948 -- their corresponding default expressions from the tree.
15950 Set_Discriminant_Default_Value
15951 (Defining_Identifier (Discr), Expression (Discr));
15952 end if;
15954 else
15955 Default_Not_Present := True;
15956 end if;
15958 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
15959 -- Discr_Type but with the null-exclusion attribute
15961 if Ada_Version >= Ada_05 then
15963 -- Ada 2005 (AI-231): Static checks
15965 if Can_Never_Be_Null (Discr_Type) then
15966 Null_Exclusion_Static_Checks (Discr);
15968 elsif Is_Access_Type (Discr_Type)
15969 and then Null_Exclusion_Present (Discr)
15971 -- No need to check itypes because in their case this check
15972 -- was done at their point of creation
15974 and then not Is_Itype (Discr_Type)
15975 then
15976 if Can_Never_Be_Null (Discr_Type) then
15977 Error_Msg_NE
15978 ("`NOT NULL` not allowed (& already excludes null)",
15979 Discr,
15980 Discr_Type);
15981 end if;
15983 Set_Etype (Defining_Identifier (Discr),
15984 Create_Null_Excluding_Itype
15985 (T => Discr_Type,
15986 Related_Nod => Discr));
15988 -- Check for improper null exclusion if the type is otherwise
15989 -- legal for a discriminant.
15991 elsif Null_Exclusion_Present (Discr)
15992 and then Is_Discrete_Type (Discr_Type)
15993 then
15994 Error_Msg_N
15995 ("null exclusion can only apply to an access type", Discr);
15996 end if;
15998 -- Ada 2005 (AI-402): access discriminants of nonlimited types
15999 -- can't have defaults. Synchronized types, or types that are
16000 -- explicitly limited are fine, but special tests apply to derived
16001 -- types in generics: in a generic body we have to assume the
16002 -- worst, and therefore defaults are not allowed if the parent is
16003 -- a generic formal private type (see ACATS B370001).
16005 if Is_Access_Type (Discr_Type) then
16006 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
16007 or else not Default_Present
16008 or else Is_Limited_Record (Current_Scope)
16009 or else Is_Concurrent_Type (Current_Scope)
16010 or else Is_Concurrent_Record_Type (Current_Scope)
16011 or else Ekind (Current_Scope) = E_Limited_Private_Type
16012 then
16013 if not Is_Derived_Type (Current_Scope)
16014 or else not Is_Generic_Type (Etype (Current_Scope))
16015 or else not In_Package_Body (Scope (Etype (Current_Scope)))
16016 or else Limited_Present
16017 (Type_Definition (Parent (Current_Scope)))
16018 then
16019 null;
16021 else
16022 Error_Msg_N ("access discriminants of nonlimited types",
16023 Expression (Discr));
16024 Error_Msg_N ("\cannot have defaults", Expression (Discr));
16025 end if;
16027 elsif Present (Expression (Discr)) then
16028 Error_Msg_N
16029 ("(Ada 2005) access discriminants of nonlimited types",
16030 Expression (Discr));
16031 Error_Msg_N ("\cannot have defaults", Expression (Discr));
16032 end if;
16033 end if;
16034 end if;
16036 Next (Discr);
16037 end loop;
16039 -- An element list consisting of the default expressions of the
16040 -- discriminants is constructed in the above loop and used to set
16041 -- the Discriminant_Constraint attribute for the type. If an object
16042 -- is declared of this (record or task) type without any explicit
16043 -- discriminant constraint given, this element list will form the
16044 -- actual parameters for the corresponding initialization procedure
16045 -- for the type.
16047 Set_Discriminant_Constraint (Current_Scope, Elist);
16048 Set_Stored_Constraint (Current_Scope, No_Elist);
16050 -- Default expressions must be provided either for all or for none
16051 -- of the discriminants of a discriminant part. (RM 3.7.1)
16053 if Default_Present and then Default_Not_Present then
16054 Error_Msg_N
16055 ("incomplete specification of defaults for discriminants", N);
16056 end if;
16058 -- The use of the name of a discriminant is not allowed in default
16059 -- expressions of a discriminant part if the specification of the
16060 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
16062 -- To detect this, the discriminant names are entered initially with an
16063 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
16064 -- attempt to use a void entity (for example in an expression that is
16065 -- type-checked) produces the error message: premature usage. Now after
16066 -- completing the semantic analysis of the discriminant part, we can set
16067 -- the Ekind of all the discriminants appropriately.
16069 Discr := First (Discriminant_Specifications (N));
16070 Discr_Number := Uint_1;
16071 while Present (Discr) loop
16072 Id := Defining_Identifier (Discr);
16073 Set_Ekind (Id, E_Discriminant);
16074 Init_Component_Location (Id);
16075 Init_Esize (Id);
16076 Set_Discriminant_Number (Id, Discr_Number);
16078 -- Make sure this is always set, even in illegal programs
16080 Set_Corresponding_Discriminant (Id, Empty);
16082 -- Initialize the Original_Record_Component to the entity itself.
16083 -- Inherit_Components will propagate the right value to
16084 -- discriminants in derived record types.
16086 Set_Original_Record_Component (Id, Id);
16088 -- Create the discriminal for the discriminant
16090 Build_Discriminal (Id);
16092 Next (Discr);
16093 Discr_Number := Discr_Number + 1;
16094 end loop;
16096 Set_Has_Discriminants (Current_Scope);
16097 end Process_Discriminants;
16099 -----------------------
16100 -- Process_Full_View --
16101 -----------------------
16103 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
16104 Priv_Parent : Entity_Id;
16105 Full_Parent : Entity_Id;
16106 Full_Indic : Node_Id;
16108 procedure Collect_Implemented_Interfaces
16109 (Typ : Entity_Id;
16110 Ifaces : Elist_Id);
16111 -- Ada 2005: Gather all the interfaces that Typ directly or
16112 -- inherently implements. Duplicate entries are not added to
16113 -- the list Ifaces.
16115 ------------------------------------
16116 -- Collect_Implemented_Interfaces --
16117 ------------------------------------
16119 procedure Collect_Implemented_Interfaces
16120 (Typ : Entity_Id;
16121 Ifaces : Elist_Id)
16123 Iface : Entity_Id;
16124 Iface_Elmt : Elmt_Id;
16126 begin
16127 -- Abstract interfaces are only associated with tagged record types
16129 if not Is_Tagged_Type (Typ)
16130 or else not Is_Record_Type (Typ)
16131 then
16132 return;
16133 end if;
16135 -- Recursively climb to the ancestors
16137 if Etype (Typ) /= Typ
16139 -- Protect the frontend against wrong cyclic declarations like:
16141 -- type B is new A with private;
16142 -- type C is new A with private;
16143 -- private
16144 -- type B is new C with null record;
16145 -- type C is new B with null record;
16147 and then Etype (Typ) /= Priv_T
16148 and then Etype (Typ) /= Full_T
16149 then
16150 -- Keep separate the management of private type declarations
16152 if Ekind (Typ) = E_Record_Type_With_Private then
16154 -- Handle the following erronous case:
16155 -- type Private_Type is tagged private;
16156 -- private
16157 -- type Private_Type is new Type_Implementing_Iface;
16159 if Present (Full_View (Typ))
16160 and then Etype (Typ) /= Full_View (Typ)
16161 then
16162 if Is_Interface (Etype (Typ)) then
16163 Append_Unique_Elmt (Etype (Typ), Ifaces);
16164 end if;
16166 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
16167 end if;
16169 -- Non-private types
16171 else
16172 if Is_Interface (Etype (Typ)) then
16173 Append_Unique_Elmt (Etype (Typ), Ifaces);
16174 end if;
16176 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
16177 end if;
16178 end if;
16180 -- Handle entities in the list of abstract interfaces
16182 if Present (Interfaces (Typ)) then
16183 Iface_Elmt := First_Elmt (Interfaces (Typ));
16184 while Present (Iface_Elmt) loop
16185 Iface := Node (Iface_Elmt);
16187 pragma Assert (Is_Interface (Iface));
16189 if not Contain_Interface (Iface, Ifaces) then
16190 Append_Elmt (Iface, Ifaces);
16191 Collect_Implemented_Interfaces (Iface, Ifaces);
16192 end if;
16194 Next_Elmt (Iface_Elmt);
16195 end loop;
16196 end if;
16197 end Collect_Implemented_Interfaces;
16199 -- Start of processing for Process_Full_View
16201 begin
16202 -- First some sanity checks that must be done after semantic
16203 -- decoration of the full view and thus cannot be placed with other
16204 -- similar checks in Find_Type_Name
16206 if not Is_Limited_Type (Priv_T)
16207 and then (Is_Limited_Type (Full_T)
16208 or else Is_Limited_Composite (Full_T))
16209 then
16210 Error_Msg_N
16211 ("completion of nonlimited type cannot be limited", Full_T);
16212 Explain_Limited_Type (Full_T, Full_T);
16214 elsif Is_Abstract_Type (Full_T)
16215 and then not Is_Abstract_Type (Priv_T)
16216 then
16217 Error_Msg_N
16218 ("completion of nonabstract type cannot be abstract", Full_T);
16220 elsif Is_Tagged_Type (Priv_T)
16221 and then Is_Limited_Type (Priv_T)
16222 and then not Is_Limited_Type (Full_T)
16223 then
16224 -- If pragma CPP_Class was applied to the private declaration
16225 -- propagate the limitedness to the full-view
16227 if Is_CPP_Class (Priv_T) then
16228 Set_Is_Limited_Record (Full_T);
16230 -- GNAT allow its own definition of Limited_Controlled to disobey
16231 -- this rule in order in ease the implementation. The next test is
16232 -- safe because Root_Controlled is defined in a private system child
16234 elsif Etype (Full_T) = Full_View (RTE (RE_Root_Controlled)) then
16235 Set_Is_Limited_Composite (Full_T);
16236 else
16237 Error_Msg_N
16238 ("completion of limited tagged type must be limited", Full_T);
16239 end if;
16241 elsif Is_Generic_Type (Priv_T) then
16242 Error_Msg_N ("generic type cannot have a completion", Full_T);
16243 end if;
16245 -- Check that ancestor interfaces of private and full views are
16246 -- consistent. We omit this check for synchronized types because
16247 -- they are performed on the corresponding record type when frozen.
16249 if Ada_Version >= Ada_05
16250 and then Is_Tagged_Type (Priv_T)
16251 and then Is_Tagged_Type (Full_T)
16252 and then not Is_Concurrent_Type (Full_T)
16253 then
16254 declare
16255 Iface : Entity_Id;
16256 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
16257 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
16259 begin
16260 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
16261 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
16263 -- Ada 2005 (AI-251): The partial view shall be a descendant of
16264 -- an interface type if and only if the full type is descendant
16265 -- of the interface type (AARM 7.3 (7.3/2).
16267 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
16269 if Present (Iface) then
16270 Error_Msg_NE ("interface & not implemented by full type " &
16271 "(RM-2005 7.3 (7.3/2))", Priv_T, Iface);
16272 end if;
16274 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
16276 if Present (Iface) then
16277 Error_Msg_NE ("interface & not implemented by partial view " &
16278 "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
16279 end if;
16280 end;
16281 end if;
16283 if Is_Tagged_Type (Priv_T)
16284 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
16285 and then Is_Derived_Type (Full_T)
16286 then
16287 Priv_Parent := Etype (Priv_T);
16289 -- The full view of a private extension may have been transformed
16290 -- into an unconstrained derived type declaration and a subtype
16291 -- declaration (see build_derived_record_type for details).
16293 if Nkind (N) = N_Subtype_Declaration then
16294 Full_Indic := Subtype_Indication (N);
16295 Full_Parent := Etype (Base_Type (Full_T));
16296 else
16297 Full_Indic := Subtype_Indication (Type_Definition (N));
16298 Full_Parent := Etype (Full_T);
16299 end if;
16301 -- Check that the parent type of the full type is a descendant of
16302 -- the ancestor subtype given in the private extension. If either
16303 -- entity has an Etype equal to Any_Type then we had some previous
16304 -- error situation [7.3(8)].
16306 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
16307 return;
16309 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
16310 -- any order. Therefore we don't have to check that its parent must
16311 -- be a descendant of the parent of the private type declaration.
16313 elsif Is_Interface (Priv_Parent)
16314 and then Is_Interface (Full_Parent)
16315 then
16316 null;
16318 -- Ada 2005 (AI-251): If the parent of the private type declaration
16319 -- is an interface there is no need to check that it is an ancestor
16320 -- of the associated full type declaration. The required tests for
16321 -- this case are performed by Build_Derived_Record_Type.
16323 elsif not Is_Interface (Base_Type (Priv_Parent))
16324 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
16325 then
16326 Error_Msg_N
16327 ("parent of full type must descend from parent"
16328 & " of private extension", Full_Indic);
16330 -- Check the rules of 7.3(10): if the private extension inherits
16331 -- known discriminants, then the full type must also inherit those
16332 -- discriminants from the same (ancestor) type, and the parent
16333 -- subtype of the full type must be constrained if and only if
16334 -- the ancestor subtype of the private extension is constrained.
16336 elsif No (Discriminant_Specifications (Parent (Priv_T)))
16337 and then not Has_Unknown_Discriminants (Priv_T)
16338 and then Has_Discriminants (Base_Type (Priv_Parent))
16339 then
16340 declare
16341 Priv_Indic : constant Node_Id :=
16342 Subtype_Indication (Parent (Priv_T));
16344 Priv_Constr : constant Boolean :=
16345 Is_Constrained (Priv_Parent)
16346 or else
16347 Nkind (Priv_Indic) = N_Subtype_Indication
16348 or else Is_Constrained (Entity (Priv_Indic));
16350 Full_Constr : constant Boolean :=
16351 Is_Constrained (Full_Parent)
16352 or else
16353 Nkind (Full_Indic) = N_Subtype_Indication
16354 or else Is_Constrained (Entity (Full_Indic));
16356 Priv_Discr : Entity_Id;
16357 Full_Discr : Entity_Id;
16359 begin
16360 Priv_Discr := First_Discriminant (Priv_Parent);
16361 Full_Discr := First_Discriminant (Full_Parent);
16362 while Present (Priv_Discr) and then Present (Full_Discr) loop
16363 if Original_Record_Component (Priv_Discr) =
16364 Original_Record_Component (Full_Discr)
16365 or else
16366 Corresponding_Discriminant (Priv_Discr) =
16367 Corresponding_Discriminant (Full_Discr)
16368 then
16369 null;
16370 else
16371 exit;
16372 end if;
16374 Next_Discriminant (Priv_Discr);
16375 Next_Discriminant (Full_Discr);
16376 end loop;
16378 if Present (Priv_Discr) or else Present (Full_Discr) then
16379 Error_Msg_N
16380 ("full view must inherit discriminants of the parent type"
16381 & " used in the private extension", Full_Indic);
16383 elsif Priv_Constr and then not Full_Constr then
16384 Error_Msg_N
16385 ("parent subtype of full type must be constrained",
16386 Full_Indic);
16388 elsif Full_Constr and then not Priv_Constr then
16389 Error_Msg_N
16390 ("parent subtype of full type must be unconstrained",
16391 Full_Indic);
16392 end if;
16393 end;
16395 -- Check the rules of 7.3(12): if a partial view has neither known
16396 -- or unknown discriminants, then the full type declaration shall
16397 -- define a definite subtype.
16399 elsif not Has_Unknown_Discriminants (Priv_T)
16400 and then not Has_Discriminants (Priv_T)
16401 and then not Is_Constrained (Full_T)
16402 then
16403 Error_Msg_N
16404 ("full view must define a constrained type if partial view"
16405 & " has no discriminants", Full_T);
16406 end if;
16408 -- ??????? Do we implement the following properly ?????
16409 -- If the ancestor subtype of a private extension has constrained
16410 -- discriminants, then the parent subtype of the full view shall
16411 -- impose a statically matching constraint on those discriminants
16412 -- [7.3(13)].
16414 else
16415 -- For untagged types, verify that a type without discriminants
16416 -- is not completed with an unconstrained type.
16418 if not Is_Indefinite_Subtype (Priv_T)
16419 and then Is_Indefinite_Subtype (Full_T)
16420 then
16421 Error_Msg_N ("full view of type must be definite subtype", Full_T);
16422 end if;
16423 end if;
16425 -- AI-419: verify that the use of "limited" is consistent
16427 declare
16428 Orig_Decl : constant Node_Id := Original_Node (N);
16430 begin
16431 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
16432 and then not Limited_Present (Parent (Priv_T))
16433 and then not Synchronized_Present (Parent (Priv_T))
16434 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
16435 and then Nkind
16436 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
16437 and then Limited_Present (Type_Definition (Orig_Decl))
16438 then
16439 Error_Msg_N
16440 ("full view of non-limited extension cannot be limited", N);
16441 end if;
16442 end;
16444 -- Ada 2005 (AI-443): A synchronized private extension must be
16445 -- completed by a task or protected type.
16447 if Ada_Version >= Ada_05
16448 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
16449 and then Synchronized_Present (Parent (Priv_T))
16450 and then not Is_Concurrent_Type (Full_T)
16451 then
16452 Error_Msg_N ("full view of synchronized extension must " &
16453 "be synchronized type", N);
16454 end if;
16456 -- Ada 2005 AI-363: if the full view has discriminants with
16457 -- defaults, it is illegal to declare constrained access subtypes
16458 -- whose designated type is the current type. This allows objects
16459 -- of the type that are declared in the heap to be unconstrained.
16461 if not Has_Unknown_Discriminants (Priv_T)
16462 and then not Has_Discriminants (Priv_T)
16463 and then Has_Discriminants (Full_T)
16464 and then
16465 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
16466 then
16467 Set_Has_Constrained_Partial_View (Full_T);
16468 Set_Has_Constrained_Partial_View (Priv_T);
16469 end if;
16471 -- Create a full declaration for all its subtypes recorded in
16472 -- Private_Dependents and swap them similarly to the base type. These
16473 -- are subtypes that have been define before the full declaration of
16474 -- the private type. We also swap the entry in Private_Dependents list
16475 -- so we can properly restore the private view on exit from the scope.
16477 declare
16478 Priv_Elmt : Elmt_Id;
16479 Priv : Entity_Id;
16480 Full : Entity_Id;
16482 begin
16483 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
16484 while Present (Priv_Elmt) loop
16485 Priv := Node (Priv_Elmt);
16487 if Ekind (Priv) = E_Private_Subtype
16488 or else Ekind (Priv) = E_Limited_Private_Subtype
16489 or else Ekind (Priv) = E_Record_Subtype_With_Private
16490 then
16491 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
16492 Set_Is_Itype (Full);
16493 Set_Parent (Full, Parent (Priv));
16494 Set_Associated_Node_For_Itype (Full, N);
16496 -- Now we need to complete the private subtype, but since the
16497 -- base type has already been swapped, we must also swap the
16498 -- subtypes (and thus, reverse the arguments in the call to
16499 -- Complete_Private_Subtype).
16501 Copy_And_Swap (Priv, Full);
16502 Complete_Private_Subtype (Full, Priv, Full_T, N);
16503 Replace_Elmt (Priv_Elmt, Full);
16504 end if;
16506 Next_Elmt (Priv_Elmt);
16507 end loop;
16508 end;
16510 -- If the private view was tagged, copy the new primitive operations
16511 -- from the private view to the full view.
16513 if Is_Tagged_Type (Full_T) then
16514 declare
16515 Disp_Typ : Entity_Id;
16516 Full_List : Elist_Id;
16517 Prim : Entity_Id;
16518 Prim_Elmt : Elmt_Id;
16519 Priv_List : Elist_Id;
16521 function Contains
16522 (E : Entity_Id;
16523 L : Elist_Id) return Boolean;
16524 -- Determine whether list L contains element E
16526 --------------
16527 -- Contains --
16528 --------------
16530 function Contains
16531 (E : Entity_Id;
16532 L : Elist_Id) return Boolean
16534 List_Elmt : Elmt_Id;
16536 begin
16537 List_Elmt := First_Elmt (L);
16538 while Present (List_Elmt) loop
16539 if Node (List_Elmt) = E then
16540 return True;
16541 end if;
16543 Next_Elmt (List_Elmt);
16544 end loop;
16546 return False;
16547 end Contains;
16549 -- Start of processing
16551 begin
16552 if Is_Tagged_Type (Priv_T) then
16553 Priv_List := Primitive_Operations (Priv_T);
16554 Prim_Elmt := First_Elmt (Priv_List);
16556 -- In the case of a concurrent type completing a private tagged
16557 -- type, primitives may have been declared in between the two
16558 -- views. These subprograms need to be wrapped the same way
16559 -- entries and protected procedures are handled because they
16560 -- cannot be directly shared by the two views.
16562 if Is_Concurrent_Type (Full_T) then
16563 declare
16564 Conc_Typ : constant Entity_Id :=
16565 Corresponding_Record_Type (Full_T);
16566 Curr_Nod : Node_Id := Parent (Conc_Typ);
16567 Wrap_Spec : Node_Id;
16569 begin
16570 while Present (Prim_Elmt) loop
16571 Prim := Node (Prim_Elmt);
16573 if Comes_From_Source (Prim)
16574 and then not Is_Abstract_Subprogram (Prim)
16575 then
16576 Wrap_Spec :=
16577 Make_Subprogram_Declaration (Sloc (Prim),
16578 Specification =>
16579 Build_Wrapper_Spec
16580 (Subp_Id => Prim,
16581 Obj_Typ => Conc_Typ,
16582 Formals =>
16583 Parameter_Specifications (
16584 Parent (Prim))));
16586 Insert_After (Curr_Nod, Wrap_Spec);
16587 Curr_Nod := Wrap_Spec;
16589 Analyze (Wrap_Spec);
16590 end if;
16592 Next_Elmt (Prim_Elmt);
16593 end loop;
16595 return;
16596 end;
16598 -- For non-concurrent types, transfer explicit primitives, but
16599 -- omit those inherited from the parent of the private view
16600 -- since they will be re-inherited later on.
16602 else
16603 Full_List := Primitive_Operations (Full_T);
16605 while Present (Prim_Elmt) loop
16606 Prim := Node (Prim_Elmt);
16608 if Comes_From_Source (Prim)
16609 and then not Contains (Prim, Full_List)
16610 then
16611 Append_Elmt (Prim, Full_List);
16612 end if;
16614 Next_Elmt (Prim_Elmt);
16615 end loop;
16616 end if;
16618 -- Untagged private view
16620 else
16621 Full_List := Primitive_Operations (Full_T);
16623 -- In this case the partial view is untagged, so here we locate
16624 -- all of the earlier primitives that need to be treated as
16625 -- dispatching (those that appear between the two views). Note
16626 -- that these additional operations must all be new operations
16627 -- (any earlier operations that override inherited operations
16628 -- of the full view will already have been inserted in the
16629 -- primitives list, marked by Check_Operation_From_Private_View
16630 -- as dispatching. Note that implicit "/=" operators are
16631 -- excluded from being added to the primitives list since they
16632 -- shouldn't be treated as dispatching (tagged "/=" is handled
16633 -- specially).
16635 Prim := Next_Entity (Full_T);
16636 while Present (Prim) and then Prim /= Priv_T loop
16637 if Ekind (Prim) = E_Procedure
16638 or else
16639 Ekind (Prim) = E_Function
16640 then
16641 Disp_Typ := Find_Dispatching_Type (Prim);
16643 if Disp_Typ = Full_T
16644 and then (Chars (Prim) /= Name_Op_Ne
16645 or else Comes_From_Source (Prim))
16646 then
16647 Check_Controlling_Formals (Full_T, Prim);
16649 if not Is_Dispatching_Operation (Prim) then
16650 Append_Elmt (Prim, Full_List);
16651 Set_Is_Dispatching_Operation (Prim, True);
16652 Set_DT_Position (Prim, No_Uint);
16653 end if;
16655 elsif Is_Dispatching_Operation (Prim)
16656 and then Disp_Typ /= Full_T
16657 then
16659 -- Verify that it is not otherwise controlled by a
16660 -- formal or a return value of type T.
16662 Check_Controlling_Formals (Disp_Typ, Prim);
16663 end if;
16664 end if;
16666 Next_Entity (Prim);
16667 end loop;
16668 end if;
16670 -- For the tagged case, the two views can share the same
16671 -- Primitive Operation list and the same class wide type.
16672 -- Update attributes of the class-wide type which depend on
16673 -- the full declaration.
16675 if Is_Tagged_Type (Priv_T) then
16676 Set_Primitive_Operations (Priv_T, Full_List);
16677 Set_Class_Wide_Type
16678 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
16680 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
16681 end if;
16682 end;
16683 end if;
16685 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
16687 if Known_To_Have_Preelab_Init (Priv_T) then
16689 -- Case where there is a pragma Preelaborable_Initialization. We
16690 -- always allow this in predefined units, which is a bit of a kludge,
16691 -- but it means we don't have to struggle to meet the requirements in
16692 -- the RM for having Preelaborable Initialization. Otherwise we
16693 -- require that the type meets the RM rules. But we can't check that
16694 -- yet, because of the rule about overriding Ininitialize, so we
16695 -- simply set a flag that will be checked at freeze time.
16697 if not In_Predefined_Unit (Full_T) then
16698 Set_Must_Have_Preelab_Init (Full_T);
16699 end if;
16700 end if;
16702 -- If pragma CPP_Class was applied to the private type declaration,
16703 -- propagate it now to the full type declaration.
16705 if Is_CPP_Class (Priv_T) then
16706 Set_Is_CPP_Class (Full_T);
16707 Set_Convention (Full_T, Convention_CPP);
16708 end if;
16710 -- If the private view has user specified stream attributes, then so has
16711 -- the full view.
16713 if Has_Specified_Stream_Read (Priv_T) then
16714 Set_Has_Specified_Stream_Read (Full_T);
16715 end if;
16716 if Has_Specified_Stream_Write (Priv_T) then
16717 Set_Has_Specified_Stream_Write (Full_T);
16718 end if;
16719 if Has_Specified_Stream_Input (Priv_T) then
16720 Set_Has_Specified_Stream_Input (Full_T);
16721 end if;
16722 if Has_Specified_Stream_Output (Priv_T) then
16723 Set_Has_Specified_Stream_Output (Full_T);
16724 end if;
16725 end Process_Full_View;
16727 -----------------------------------
16728 -- Process_Incomplete_Dependents --
16729 -----------------------------------
16731 procedure Process_Incomplete_Dependents
16732 (N : Node_Id;
16733 Full_T : Entity_Id;
16734 Inc_T : Entity_Id)
16736 Inc_Elmt : Elmt_Id;
16737 Priv_Dep : Entity_Id;
16738 New_Subt : Entity_Id;
16740 Disc_Constraint : Elist_Id;
16742 begin
16743 if No (Private_Dependents (Inc_T)) then
16744 return;
16745 end if;
16747 -- Itypes that may be generated by the completion of an incomplete
16748 -- subtype are not used by the back-end and not attached to the tree.
16749 -- They are created only for constraint-checking purposes.
16751 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
16752 while Present (Inc_Elmt) loop
16753 Priv_Dep := Node (Inc_Elmt);
16755 if Ekind (Priv_Dep) = E_Subprogram_Type then
16757 -- An Access_To_Subprogram type may have a return type or a
16758 -- parameter type that is incomplete. Replace with the full view.
16760 if Etype (Priv_Dep) = Inc_T then
16761 Set_Etype (Priv_Dep, Full_T);
16762 end if;
16764 declare
16765 Formal : Entity_Id;
16767 begin
16768 Formal := First_Formal (Priv_Dep);
16769 while Present (Formal) loop
16770 if Etype (Formal) = Inc_T then
16771 Set_Etype (Formal, Full_T);
16772 end if;
16774 Next_Formal (Formal);
16775 end loop;
16776 end;
16778 elsif Is_Overloadable (Priv_Dep) then
16780 -- A protected operation is never dispatching: only its
16781 -- wrapper operation (which has convention Ada) is.
16783 if Is_Tagged_Type (Full_T)
16784 and then Convention (Priv_Dep) /= Convention_Protected
16785 then
16787 -- Subprogram has an access parameter whose designated type
16788 -- was incomplete. Reexamine declaration now, because it may
16789 -- be a primitive operation of the full type.
16791 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
16792 Set_Is_Dispatching_Operation (Priv_Dep);
16793 Check_Controlling_Formals (Full_T, Priv_Dep);
16794 end if;
16796 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
16798 -- Can happen during processing of a body before the completion
16799 -- of a TA type. Ignore, because spec is also on dependent list.
16801 return;
16803 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
16804 -- corresponding subtype of the full view.
16806 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
16807 Set_Subtype_Indication
16808 (Parent (Priv_Dep), New_Reference_To (Full_T, Sloc (Priv_Dep)));
16809 Set_Etype (Priv_Dep, Full_T);
16810 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
16811 Set_Analyzed (Parent (Priv_Dep), False);
16813 -- Reanalyze the declaration, suppressing the call to
16814 -- Enter_Name to avoid duplicate names.
16816 Analyze_Subtype_Declaration
16817 (N => Parent (Priv_Dep),
16818 Skip => True);
16820 -- Dependent is a subtype
16822 else
16823 -- We build a new subtype indication using the full view of the
16824 -- incomplete parent. The discriminant constraints have been
16825 -- elaborated already at the point of the subtype declaration.
16827 New_Subt := Create_Itype (E_Void, N);
16829 if Has_Discriminants (Full_T) then
16830 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
16831 else
16832 Disc_Constraint := No_Elist;
16833 end if;
16835 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
16836 Set_Full_View (Priv_Dep, New_Subt);
16837 end if;
16839 Next_Elmt (Inc_Elmt);
16840 end loop;
16841 end Process_Incomplete_Dependents;
16843 --------------------------------
16844 -- Process_Range_Expr_In_Decl --
16845 --------------------------------
16847 procedure Process_Range_Expr_In_Decl
16848 (R : Node_Id;
16849 T : Entity_Id;
16850 Check_List : List_Id := Empty_List;
16851 R_Check_Off : Boolean := False)
16853 Lo, Hi : Node_Id;
16854 R_Checks : Check_Result;
16855 Type_Decl : Node_Id;
16856 Def_Id : Entity_Id;
16858 begin
16859 Analyze_And_Resolve (R, Base_Type (T));
16861 if Nkind (R) = N_Range then
16862 Lo := Low_Bound (R);
16863 Hi := High_Bound (R);
16865 -- We need to ensure validity of the bounds here, because if we
16866 -- go ahead and do the expansion, then the expanded code will get
16867 -- analyzed with range checks suppressed and we miss the check.
16869 Validity_Check_Range (R);
16871 -- If there were errors in the declaration, try and patch up some
16872 -- common mistakes in the bounds. The cases handled are literals
16873 -- which are Integer where the expected type is Real and vice versa.
16874 -- These corrections allow the compilation process to proceed further
16875 -- along since some basic assumptions of the format of the bounds
16876 -- are guaranteed.
16878 if Etype (R) = Any_Type then
16880 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
16881 Rewrite (Lo,
16882 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
16884 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
16885 Rewrite (Hi,
16886 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
16888 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
16889 Rewrite (Lo,
16890 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
16892 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
16893 Rewrite (Hi,
16894 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
16895 end if;
16897 Set_Etype (Lo, T);
16898 Set_Etype (Hi, T);
16899 end if;
16901 -- If the bounds of the range have been mistakenly given as string
16902 -- literals (perhaps in place of character literals), then an error
16903 -- has already been reported, but we rewrite the string literal as a
16904 -- bound of the range's type to avoid blowups in later processing
16905 -- that looks at static values.
16907 if Nkind (Lo) = N_String_Literal then
16908 Rewrite (Lo,
16909 Make_Attribute_Reference (Sloc (Lo),
16910 Attribute_Name => Name_First,
16911 Prefix => New_Reference_To (T, Sloc (Lo))));
16912 Analyze_And_Resolve (Lo);
16913 end if;
16915 if Nkind (Hi) = N_String_Literal then
16916 Rewrite (Hi,
16917 Make_Attribute_Reference (Sloc (Hi),
16918 Attribute_Name => Name_First,
16919 Prefix => New_Reference_To (T, Sloc (Hi))));
16920 Analyze_And_Resolve (Hi);
16921 end if;
16923 -- If bounds aren't scalar at this point then exit, avoiding
16924 -- problems with further processing of the range in this procedure.
16926 if not Is_Scalar_Type (Etype (Lo)) then
16927 return;
16928 end if;
16930 -- Resolve (actually Sem_Eval) has checked that the bounds are in
16931 -- then range of the base type. Here we check whether the bounds
16932 -- are in the range of the subtype itself. Note that if the bounds
16933 -- represent the null range the Constraint_Error exception should
16934 -- not be raised.
16936 -- ??? The following code should be cleaned up as follows
16938 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
16939 -- is done in the call to Range_Check (R, T); below
16941 -- 2. The use of R_Check_Off should be investigated and possibly
16942 -- removed, this would clean up things a bit.
16944 if Is_Null_Range (Lo, Hi) then
16945 null;
16947 else
16948 -- Capture values of bounds and generate temporaries for them
16949 -- if needed, before applying checks, since checks may cause
16950 -- duplication of the expression without forcing evaluation.
16952 if Expander_Active then
16953 Force_Evaluation (Lo);
16954 Force_Evaluation (Hi);
16955 end if;
16957 -- We use a flag here instead of suppressing checks on the
16958 -- type because the type we check against isn't necessarily
16959 -- the place where we put the check.
16961 if not R_Check_Off then
16962 R_Checks := Get_Range_Checks (R, T);
16964 -- Look up tree to find an appropriate insertion point.
16965 -- This seems really junk code, and very brittle, couldn't
16966 -- we just use an insert actions call of some kind ???
16968 Type_Decl := Parent (R);
16969 while Present (Type_Decl) and then not
16970 (Nkind_In (Type_Decl, N_Full_Type_Declaration,
16971 N_Subtype_Declaration,
16972 N_Loop_Statement,
16973 N_Task_Type_Declaration)
16974 or else
16975 Nkind_In (Type_Decl, N_Single_Task_Declaration,
16976 N_Protected_Type_Declaration,
16977 N_Single_Protected_Declaration))
16978 loop
16979 Type_Decl := Parent (Type_Decl);
16980 end loop;
16982 -- Why would Type_Decl not be present??? Without this test,
16983 -- short regression tests fail.
16985 if Present (Type_Decl) then
16987 -- Case of loop statement (more comments ???)
16989 if Nkind (Type_Decl) = N_Loop_Statement then
16990 declare
16991 Indic : Node_Id;
16993 begin
16994 Indic := Parent (R);
16995 while Present (Indic)
16996 and then Nkind (Indic) /= N_Subtype_Indication
16997 loop
16998 Indic := Parent (Indic);
16999 end loop;
17001 if Present (Indic) then
17002 Def_Id := Etype (Subtype_Mark (Indic));
17004 Insert_Range_Checks
17005 (R_Checks,
17006 Type_Decl,
17007 Def_Id,
17008 Sloc (Type_Decl),
17010 Do_Before => True);
17011 end if;
17012 end;
17014 -- All other cases (more comments ???)
17016 else
17017 Def_Id := Defining_Identifier (Type_Decl);
17019 if (Ekind (Def_Id) = E_Record_Type
17020 and then Depends_On_Discriminant (R))
17021 or else
17022 (Ekind (Def_Id) = E_Protected_Type
17023 and then Has_Discriminants (Def_Id))
17024 then
17025 Append_Range_Checks
17026 (R_Checks, Check_List, Def_Id, Sloc (Type_Decl), R);
17028 else
17029 Insert_Range_Checks
17030 (R_Checks, Type_Decl, Def_Id, Sloc (Type_Decl), R);
17032 end if;
17033 end if;
17034 end if;
17035 end if;
17036 end if;
17038 elsif Expander_Active then
17039 Get_Index_Bounds (R, Lo, Hi);
17040 Force_Evaluation (Lo);
17041 Force_Evaluation (Hi);
17042 end if;
17043 end Process_Range_Expr_In_Decl;
17045 --------------------------------------
17046 -- Process_Real_Range_Specification --
17047 --------------------------------------
17049 procedure Process_Real_Range_Specification (Def : Node_Id) is
17050 Spec : constant Node_Id := Real_Range_Specification (Def);
17051 Lo : Node_Id;
17052 Hi : Node_Id;
17053 Err : Boolean := False;
17055 procedure Analyze_Bound (N : Node_Id);
17056 -- Analyze and check one bound
17058 -------------------
17059 -- Analyze_Bound --
17060 -------------------
17062 procedure Analyze_Bound (N : Node_Id) is
17063 begin
17064 Analyze_And_Resolve (N, Any_Real);
17066 if not Is_OK_Static_Expression (N) then
17067 Flag_Non_Static_Expr
17068 ("bound in real type definition is not static!", N);
17069 Err := True;
17070 end if;
17071 end Analyze_Bound;
17073 -- Start of processing for Process_Real_Range_Specification
17075 begin
17076 if Present (Spec) then
17077 Lo := Low_Bound (Spec);
17078 Hi := High_Bound (Spec);
17079 Analyze_Bound (Lo);
17080 Analyze_Bound (Hi);
17082 -- If error, clear away junk range specification
17084 if Err then
17085 Set_Real_Range_Specification (Def, Empty);
17086 end if;
17087 end if;
17088 end Process_Real_Range_Specification;
17090 ---------------------
17091 -- Process_Subtype --
17092 ---------------------
17094 function Process_Subtype
17095 (S : Node_Id;
17096 Related_Nod : Node_Id;
17097 Related_Id : Entity_Id := Empty;
17098 Suffix : Character := ' ') return Entity_Id
17100 P : Node_Id;
17101 Def_Id : Entity_Id;
17102 Error_Node : Node_Id;
17103 Full_View_Id : Entity_Id;
17104 Subtype_Mark_Id : Entity_Id;
17106 May_Have_Null_Exclusion : Boolean;
17108 procedure Check_Incomplete (T : Entity_Id);
17109 -- Called to verify that an incomplete type is not used prematurely
17111 ----------------------
17112 -- Check_Incomplete --
17113 ----------------------
17115 procedure Check_Incomplete (T : Entity_Id) is
17116 begin
17117 -- Ada 2005 (AI-412): Incomplete subtypes are legal
17119 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
17120 and then
17121 not (Ada_Version >= Ada_05
17122 and then
17123 (Nkind (Parent (T)) = N_Subtype_Declaration
17124 or else
17125 (Nkind (Parent (T)) = N_Subtype_Indication
17126 and then Nkind (Parent (Parent (T))) =
17127 N_Subtype_Declaration)))
17128 then
17129 Error_Msg_N ("invalid use of type before its full declaration", T);
17130 end if;
17131 end Check_Incomplete;
17133 -- Start of processing for Process_Subtype
17135 begin
17136 -- Case of no constraints present
17138 if Nkind (S) /= N_Subtype_Indication then
17139 Find_Type (S);
17140 Check_Incomplete (S);
17141 P := Parent (S);
17143 -- Ada 2005 (AI-231): Static check
17145 if Ada_Version >= Ada_05
17146 and then Present (P)
17147 and then Null_Exclusion_Present (P)
17148 and then Nkind (P) /= N_Access_To_Object_Definition
17149 and then not Is_Access_Type (Entity (S))
17150 then
17151 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
17152 end if;
17154 -- The following is ugly, can't we have a range or even a flag???
17156 May_Have_Null_Exclusion :=
17157 Nkind_In (P, N_Access_Definition,
17158 N_Access_Function_Definition,
17159 N_Access_Procedure_Definition,
17160 N_Access_To_Object_Definition,
17161 N_Allocator,
17162 N_Component_Definition)
17163 or else
17164 Nkind_In (P, N_Derived_Type_Definition,
17165 N_Discriminant_Specification,
17166 N_Formal_Object_Declaration,
17167 N_Object_Declaration,
17168 N_Object_Renaming_Declaration,
17169 N_Parameter_Specification,
17170 N_Subtype_Declaration);
17172 -- Create an Itype that is a duplicate of Entity (S) but with the
17173 -- null-exclusion attribute
17175 if May_Have_Null_Exclusion
17176 and then Is_Access_Type (Entity (S))
17177 and then Null_Exclusion_Present (P)
17179 -- No need to check the case of an access to object definition.
17180 -- It is correct to define double not-null pointers.
17182 -- Example:
17183 -- type Not_Null_Int_Ptr is not null access Integer;
17184 -- type Acc is not null access Not_Null_Int_Ptr;
17186 and then Nkind (P) /= N_Access_To_Object_Definition
17187 then
17188 if Can_Never_Be_Null (Entity (S)) then
17189 case Nkind (Related_Nod) is
17190 when N_Full_Type_Declaration =>
17191 if Nkind (Type_Definition (Related_Nod))
17192 in N_Array_Type_Definition
17193 then
17194 Error_Node :=
17195 Subtype_Indication
17196 (Component_Definition
17197 (Type_Definition (Related_Nod)));
17198 else
17199 Error_Node :=
17200 Subtype_Indication (Type_Definition (Related_Nod));
17201 end if;
17203 when N_Subtype_Declaration =>
17204 Error_Node := Subtype_Indication (Related_Nod);
17206 when N_Object_Declaration =>
17207 Error_Node := Object_Definition (Related_Nod);
17209 when N_Component_Declaration =>
17210 Error_Node :=
17211 Subtype_Indication (Component_Definition (Related_Nod));
17213 when N_Allocator =>
17214 Error_Node := Expression (Related_Nod);
17216 when others =>
17217 pragma Assert (False);
17218 Error_Node := Related_Nod;
17219 end case;
17221 Error_Msg_NE
17222 ("`NOT NULL` not allowed (& already excludes null)",
17223 Error_Node,
17224 Entity (S));
17225 end if;
17227 Set_Etype (S,
17228 Create_Null_Excluding_Itype
17229 (T => Entity (S),
17230 Related_Nod => P));
17231 Set_Entity (S, Etype (S));
17232 end if;
17234 return Entity (S);
17236 -- Case of constraint present, so that we have an N_Subtype_Indication
17237 -- node (this node is created only if constraints are present).
17239 else
17240 Find_Type (Subtype_Mark (S));
17242 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
17243 and then not
17244 (Nkind (Parent (S)) = N_Subtype_Declaration
17245 and then Is_Itype (Defining_Identifier (Parent (S))))
17246 then
17247 Check_Incomplete (Subtype_Mark (S));
17248 end if;
17250 P := Parent (S);
17251 Subtype_Mark_Id := Entity (Subtype_Mark (S));
17253 -- Explicit subtype declaration case
17255 if Nkind (P) = N_Subtype_Declaration then
17256 Def_Id := Defining_Identifier (P);
17258 -- Explicit derived type definition case
17260 elsif Nkind (P) = N_Derived_Type_Definition then
17261 Def_Id := Defining_Identifier (Parent (P));
17263 -- Implicit case, the Def_Id must be created as an implicit type.
17264 -- The one exception arises in the case of concurrent types, array
17265 -- and access types, where other subsidiary implicit types may be
17266 -- created and must appear before the main implicit type. In these
17267 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
17268 -- has not yet been called to create Def_Id.
17270 else
17271 if Is_Array_Type (Subtype_Mark_Id)
17272 or else Is_Concurrent_Type (Subtype_Mark_Id)
17273 or else Is_Access_Type (Subtype_Mark_Id)
17274 then
17275 Def_Id := Empty;
17277 -- For the other cases, we create a new unattached Itype,
17278 -- and set the indication to ensure it gets attached later.
17280 else
17281 Def_Id :=
17282 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
17283 end if;
17284 end if;
17286 -- If the kind of constraint is invalid for this kind of type,
17287 -- then give an error, and then pretend no constraint was given.
17289 if not Is_Valid_Constraint_Kind
17290 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
17291 then
17292 Error_Msg_N
17293 ("incorrect constraint for this kind of type", Constraint (S));
17295 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17297 -- Set Ekind of orphan itype, to prevent cascaded errors
17299 if Present (Def_Id) then
17300 Set_Ekind (Def_Id, Ekind (Any_Type));
17301 end if;
17303 -- Make recursive call, having got rid of the bogus constraint
17305 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
17306 end if;
17308 -- Remaining processing depends on type
17310 case Ekind (Subtype_Mark_Id) is
17311 when Access_Kind =>
17312 Constrain_Access (Def_Id, S, Related_Nod);
17314 if Expander_Active
17315 and then Is_Itype (Designated_Type (Def_Id))
17316 and then Nkind (Related_Nod) = N_Subtype_Declaration
17317 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
17318 then
17319 Build_Itype_Reference
17320 (Designated_Type (Def_Id), Related_Nod);
17321 end if;
17323 when Array_Kind =>
17324 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
17326 when Decimal_Fixed_Point_Kind =>
17327 Constrain_Decimal (Def_Id, S);
17329 when Enumeration_Kind =>
17330 Constrain_Enumeration (Def_Id, S);
17332 when Ordinary_Fixed_Point_Kind =>
17333 Constrain_Ordinary_Fixed (Def_Id, S);
17335 when Float_Kind =>
17336 Constrain_Float (Def_Id, S);
17338 when Integer_Kind =>
17339 Constrain_Integer (Def_Id, S);
17341 when E_Record_Type |
17342 E_Record_Subtype |
17343 Class_Wide_Kind |
17344 E_Incomplete_Type =>
17345 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
17347 if Ekind (Def_Id) = E_Incomplete_Type then
17348 Set_Private_Dependents (Def_Id, New_Elmt_List);
17349 end if;
17351 when Private_Kind =>
17352 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
17353 Set_Private_Dependents (Def_Id, New_Elmt_List);
17355 -- In case of an invalid constraint prevent further processing
17356 -- since the type constructed is missing expected fields.
17358 if Etype (Def_Id) = Any_Type then
17359 return Def_Id;
17360 end if;
17362 -- If the full view is that of a task with discriminants,
17363 -- we must constrain both the concurrent type and its
17364 -- corresponding record type. Otherwise we will just propagate
17365 -- the constraint to the full view, if available.
17367 if Present (Full_View (Subtype_Mark_Id))
17368 and then Has_Discriminants (Subtype_Mark_Id)
17369 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
17370 then
17371 Full_View_Id :=
17372 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
17374 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
17375 Constrain_Concurrent (Full_View_Id, S,
17376 Related_Nod, Related_Id, Suffix);
17377 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
17378 Set_Full_View (Def_Id, Full_View_Id);
17380 -- Introduce an explicit reference to the private subtype,
17381 -- to prevent scope anomalies in gigi if first use appears
17382 -- in a nested context, e.g. a later function body.
17383 -- Should this be generated in other contexts than a full
17384 -- type declaration?
17386 if Is_Itype (Def_Id)
17387 and then
17388 Nkind (Parent (P)) = N_Full_Type_Declaration
17389 then
17390 Build_Itype_Reference (Def_Id, Parent (P));
17391 end if;
17393 else
17394 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
17395 end if;
17397 when Concurrent_Kind =>
17398 Constrain_Concurrent (Def_Id, S,
17399 Related_Nod, Related_Id, Suffix);
17401 when others =>
17402 Error_Msg_N ("invalid subtype mark in subtype indication", S);
17403 end case;
17405 -- Size and Convention are always inherited from the base type
17407 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
17408 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
17410 return Def_Id;
17411 end if;
17412 end Process_Subtype;
17414 ---------------------------------------
17415 -- Check_Anonymous_Access_Components --
17416 ---------------------------------------
17418 procedure Check_Anonymous_Access_Components
17419 (Typ_Decl : Node_Id;
17420 Typ : Entity_Id;
17421 Prev : Entity_Id;
17422 Comp_List : Node_Id)
17424 Loc : constant Source_Ptr := Sloc (Typ_Decl);
17425 Anon_Access : Entity_Id;
17426 Acc_Def : Node_Id;
17427 Comp : Node_Id;
17428 Comp_Def : Node_Id;
17429 Decl : Node_Id;
17430 Type_Def : Node_Id;
17432 procedure Build_Incomplete_Type_Declaration;
17433 -- If the record type contains components that include an access to the
17434 -- current record, then create an incomplete type declaration for the
17435 -- record, to be used as the designated type of the anonymous access.
17436 -- This is done only once, and only if there is no previous partial
17437 -- view of the type.
17439 function Designates_T (Subt : Node_Id) return Boolean;
17440 -- Check whether a node designates the enclosing record type, or 'Class
17441 -- of that type
17443 function Mentions_T (Acc_Def : Node_Id) return Boolean;
17444 -- Check whether an access definition includes a reference to
17445 -- the enclosing record type. The reference can be a subtype mark
17446 -- in the access definition itself, a 'Class attribute reference, or
17447 -- recursively a reference appearing in a parameter specification
17448 -- or result definition of an access_to_subprogram definition.
17450 --------------------------------------
17451 -- Build_Incomplete_Type_Declaration --
17452 --------------------------------------
17454 procedure Build_Incomplete_Type_Declaration is
17455 Decl : Node_Id;
17456 Inc_T : Entity_Id;
17457 H : Entity_Id;
17459 -- Is_Tagged indicates whether the type is tagged. It is tagged if
17460 -- it's "is new ... with record" or else "is tagged record ...".
17462 Is_Tagged : constant Boolean :=
17463 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
17464 and then
17465 Present
17466 (Record_Extension_Part (Type_Definition (Typ_Decl))))
17467 or else
17468 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
17469 and then Tagged_Present (Type_Definition (Typ_Decl)));
17471 begin
17472 -- If there is a previous partial view, no need to create a new one
17473 -- If the partial view, given by Prev, is incomplete, If Prev is
17474 -- a private declaration, full declaration is flagged accordingly.
17476 if Prev /= Typ then
17477 if Is_Tagged then
17478 Make_Class_Wide_Type (Prev);
17479 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
17480 Set_Etype (Class_Wide_Type (Typ), Typ);
17481 end if;
17483 return;
17485 elsif Has_Private_Declaration (Typ) then
17487 -- If we refer to T'Class inside T, and T is the completion of a
17488 -- private type, then we need to make sure the class-wide type
17489 -- exists.
17491 if Is_Tagged then
17492 Make_Class_Wide_Type (Typ);
17493 end if;
17495 return;
17497 -- If there was a previous anonymous access type, the incomplete
17498 -- type declaration will have been created already.
17500 elsif Present (Current_Entity (Typ))
17501 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
17502 and then Full_View (Current_Entity (Typ)) = Typ
17503 then
17504 return;
17506 else
17507 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
17508 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
17510 -- Type has already been inserted into the current scope.
17511 -- Remove it, and add incomplete declaration for type, so
17512 -- that subsequent anonymous access types can use it.
17513 -- The entity is unchained from the homonym list and from
17514 -- immediate visibility. After analysis, the entity in the
17515 -- incomplete declaration becomes immediately visible in the
17516 -- record declaration that follows.
17518 H := Current_Entity (Typ);
17520 if H = Typ then
17521 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
17522 else
17523 while Present (H)
17524 and then Homonym (H) /= Typ
17525 loop
17526 H := Homonym (Typ);
17527 end loop;
17529 Set_Homonym (H, Homonym (Typ));
17530 end if;
17532 Insert_Before (Typ_Decl, Decl);
17533 Analyze (Decl);
17534 Set_Full_View (Inc_T, Typ);
17536 if Is_Tagged then
17537 -- Create a common class-wide type for both views, and set
17538 -- the Etype of the class-wide type to the full view.
17540 Make_Class_Wide_Type (Inc_T);
17541 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
17542 Set_Etype (Class_Wide_Type (Typ), Typ);
17543 end if;
17544 end if;
17545 end Build_Incomplete_Type_Declaration;
17547 ------------------
17548 -- Designates_T --
17549 ------------------
17551 function Designates_T (Subt : Node_Id) return Boolean is
17552 Type_Id : constant Name_Id := Chars (Typ);
17554 function Names_T (Nam : Node_Id) return Boolean;
17555 -- The record type has not been introduced in the current scope
17556 -- yet, so we must examine the name of the type itself, either
17557 -- an identifier T, or an expanded name of the form P.T, where
17558 -- P denotes the current scope.
17560 -------------
17561 -- Names_T --
17562 -------------
17564 function Names_T (Nam : Node_Id) return Boolean is
17565 begin
17566 if Nkind (Nam) = N_Identifier then
17567 return Chars (Nam) = Type_Id;
17569 elsif Nkind (Nam) = N_Selected_Component then
17570 if Chars (Selector_Name (Nam)) = Type_Id then
17571 if Nkind (Prefix (Nam)) = N_Identifier then
17572 return Chars (Prefix (Nam)) = Chars (Current_Scope);
17574 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
17575 return Chars (Selector_Name (Prefix (Nam))) =
17576 Chars (Current_Scope);
17577 else
17578 return False;
17579 end if;
17581 else
17582 return False;
17583 end if;
17585 else
17586 return False;
17587 end if;
17588 end Names_T;
17590 -- Start of processing for Designates_T
17592 begin
17593 if Nkind (Subt) = N_Identifier then
17594 return Chars (Subt) = Type_Id;
17596 -- Reference can be through an expanded name which has not been
17597 -- analyzed yet, and which designates enclosing scopes.
17599 elsif Nkind (Subt) = N_Selected_Component then
17600 if Names_T (Subt) then
17601 return True;
17603 -- Otherwise it must denote an entity that is already visible.
17604 -- The access definition may name a subtype of the enclosing
17605 -- type, if there is a previous incomplete declaration for it.
17607 else
17608 Find_Selected_Component (Subt);
17609 return
17610 Is_Entity_Name (Subt)
17611 and then Scope (Entity (Subt)) = Current_Scope
17612 and then
17613 (Chars (Base_Type (Entity (Subt))) = Type_Id
17614 or else
17615 (Is_Class_Wide_Type (Entity (Subt))
17616 and then
17617 Chars (Etype (Base_Type (Entity (Subt)))) =
17618 Type_Id));
17619 end if;
17621 -- A reference to the current type may appear as the prefix of
17622 -- a 'Class attribute.
17624 elsif Nkind (Subt) = N_Attribute_Reference
17625 and then Attribute_Name (Subt) = Name_Class
17626 then
17627 return Names_T (Prefix (Subt));
17629 else
17630 return False;
17631 end if;
17632 end Designates_T;
17634 ----------------
17635 -- Mentions_T --
17636 ----------------
17638 function Mentions_T (Acc_Def : Node_Id) return Boolean is
17639 Param_Spec : Node_Id;
17641 Acc_Subprg : constant Node_Id :=
17642 Access_To_Subprogram_Definition (Acc_Def);
17644 begin
17645 if No (Acc_Subprg) then
17646 return Designates_T (Subtype_Mark (Acc_Def));
17647 end if;
17649 -- Component is an access_to_subprogram: examine its formals,
17650 -- and result definition in the case of an access_to_function.
17652 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
17653 while Present (Param_Spec) loop
17654 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
17655 and then Mentions_T (Parameter_Type (Param_Spec))
17656 then
17657 return True;
17659 elsif Designates_T (Parameter_Type (Param_Spec)) then
17660 return True;
17661 end if;
17663 Next (Param_Spec);
17664 end loop;
17666 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
17667 if Nkind (Result_Definition (Acc_Subprg)) =
17668 N_Access_Definition
17669 then
17670 return Mentions_T (Result_Definition (Acc_Subprg));
17671 else
17672 return Designates_T (Result_Definition (Acc_Subprg));
17673 end if;
17674 end if;
17676 return False;
17677 end Mentions_T;
17679 -- Start of processing for Check_Anonymous_Access_Components
17681 begin
17682 if No (Comp_List) then
17683 return;
17684 end if;
17686 Comp := First (Component_Items (Comp_List));
17687 while Present (Comp) loop
17688 if Nkind (Comp) = N_Component_Declaration
17689 and then Present
17690 (Access_Definition (Component_Definition (Comp)))
17691 and then
17692 Mentions_T (Access_Definition (Component_Definition (Comp)))
17693 then
17694 Comp_Def := Component_Definition (Comp);
17695 Acc_Def :=
17696 Access_To_Subprogram_Definition
17697 (Access_Definition (Comp_Def));
17699 Build_Incomplete_Type_Declaration;
17700 Anon_Access :=
17701 Make_Defining_Identifier (Loc,
17702 Chars => New_Internal_Name ('S'));
17704 -- Create a declaration for the anonymous access type: either
17705 -- an access_to_object or an access_to_subprogram.
17707 if Present (Acc_Def) then
17708 if Nkind (Acc_Def) = N_Access_Function_Definition then
17709 Type_Def :=
17710 Make_Access_Function_Definition (Loc,
17711 Parameter_Specifications =>
17712 Parameter_Specifications (Acc_Def),
17713 Result_Definition => Result_Definition (Acc_Def));
17714 else
17715 Type_Def :=
17716 Make_Access_Procedure_Definition (Loc,
17717 Parameter_Specifications =>
17718 Parameter_Specifications (Acc_Def));
17719 end if;
17721 else
17722 Type_Def :=
17723 Make_Access_To_Object_Definition (Loc,
17724 Subtype_Indication =>
17725 Relocate_Node
17726 (Subtype_Mark
17727 (Access_Definition (Comp_Def))));
17729 Set_Constant_Present
17730 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
17731 Set_All_Present
17732 (Type_Def, All_Present (Access_Definition (Comp_Def)));
17733 end if;
17735 Set_Null_Exclusion_Present
17736 (Type_Def,
17737 Null_Exclusion_Present (Access_Definition (Comp_Def)));
17739 Decl :=
17740 Make_Full_Type_Declaration (Loc,
17741 Defining_Identifier => Anon_Access,
17742 Type_Definition => Type_Def);
17744 Insert_Before (Typ_Decl, Decl);
17745 Analyze (Decl);
17747 -- If an access to object, Preserve entity of designated type,
17748 -- for ASIS use, before rewriting the component definition.
17750 if No (Acc_Def) then
17751 declare
17752 Desig : Entity_Id;
17754 begin
17755 Desig := Entity (Subtype_Indication (Type_Def));
17757 -- If the access definition is to the current record,
17758 -- the visible entity at this point is an incomplete
17759 -- type. Retrieve the full view to simplify ASIS queries
17761 if Ekind (Desig) = E_Incomplete_Type then
17762 Desig := Full_View (Desig);
17763 end if;
17765 Set_Entity
17766 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
17767 end;
17768 end if;
17770 Rewrite (Comp_Def,
17771 Make_Component_Definition (Loc,
17772 Subtype_Indication =>
17773 New_Occurrence_Of (Anon_Access, Loc)));
17775 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
17776 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
17777 else
17778 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
17779 end if;
17781 Set_Is_Local_Anonymous_Access (Anon_Access);
17782 end if;
17784 Next (Comp);
17785 end loop;
17787 if Present (Variant_Part (Comp_List)) then
17788 declare
17789 V : Node_Id;
17790 begin
17791 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
17792 while Present (V) loop
17793 Check_Anonymous_Access_Components
17794 (Typ_Decl, Typ, Prev, Component_List (V));
17795 Next_Non_Pragma (V);
17796 end loop;
17797 end;
17798 end if;
17799 end Check_Anonymous_Access_Components;
17801 --------------------------------
17802 -- Preanalyze_Spec_Expression --
17803 --------------------------------
17805 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
17806 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
17807 begin
17808 In_Spec_Expression := True;
17809 Preanalyze_And_Resolve (N, T);
17810 In_Spec_Expression := Save_In_Spec_Expression;
17811 end Preanalyze_Spec_Expression;
17813 -----------------------------
17814 -- Record_Type_Declaration --
17815 -----------------------------
17817 procedure Record_Type_Declaration
17818 (T : Entity_Id;
17819 N : Node_Id;
17820 Prev : Entity_Id)
17822 Def : constant Node_Id := Type_Definition (N);
17823 Is_Tagged : Boolean;
17824 Tag_Comp : Entity_Id;
17826 begin
17827 -- These flags must be initialized before calling Process_Discriminants
17828 -- because this routine makes use of them.
17830 Set_Ekind (T, E_Record_Type);
17831 Set_Etype (T, T);
17832 Init_Size_Align (T);
17833 Set_Interfaces (T, No_Elist);
17834 Set_Stored_Constraint (T, No_Elist);
17836 -- Normal case
17838 if Ada_Version < Ada_05
17839 or else not Interface_Present (Def)
17840 then
17841 -- The flag Is_Tagged_Type might have already been set by
17842 -- Find_Type_Name if it detected an error for declaration T. This
17843 -- arises in the case of private tagged types where the full view
17844 -- omits the word tagged.
17846 Is_Tagged :=
17847 Tagged_Present (Def)
17848 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
17850 Set_Is_Tagged_Type (T, Is_Tagged);
17851 Set_Is_Limited_Record (T, Limited_Present (Def));
17853 -- Type is abstract if full declaration carries keyword, or if
17854 -- previous partial view did.
17856 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
17857 or else Abstract_Present (Def));
17859 else
17860 Is_Tagged := True;
17861 Analyze_Interface_Declaration (T, Def);
17863 if Present (Discriminant_Specifications (N)) then
17864 Error_Msg_N
17865 ("interface types cannot have discriminants",
17866 Defining_Identifier
17867 (First (Discriminant_Specifications (N))));
17868 end if;
17869 end if;
17871 -- First pass: if there are self-referential access components,
17872 -- create the required anonymous access type declarations, and if
17873 -- need be an incomplete type declaration for T itself.
17875 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
17877 if Ada_Version >= Ada_05
17878 and then Present (Interface_List (Def))
17879 then
17880 Check_Interfaces (N, Def);
17882 declare
17883 Ifaces_List : Elist_Id;
17885 begin
17886 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
17887 -- already in the parents.
17889 Collect_Interfaces
17890 (T => T,
17891 Ifaces_List => Ifaces_List,
17892 Exclude_Parents => True);
17894 Set_Interfaces (T, Ifaces_List);
17895 end;
17896 end if;
17898 -- Records constitute a scope for the component declarations within.
17899 -- The scope is created prior to the processing of these declarations.
17900 -- Discriminants are processed first, so that they are visible when
17901 -- processing the other components. The Ekind of the record type itself
17902 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
17904 -- Enter record scope
17906 Push_Scope (T);
17908 -- If an incomplete or private type declaration was already given for
17909 -- the type, then this scope already exists, and the discriminants have
17910 -- been declared within. We must verify that the full declaration
17911 -- matches the incomplete one.
17913 Check_Or_Process_Discriminants (N, T, Prev);
17915 Set_Is_Constrained (T, not Has_Discriminants (T));
17916 Set_Has_Delayed_Freeze (T, True);
17918 -- For tagged types add a manually analyzed component corresponding
17919 -- to the component _tag, the corresponding piece of tree will be
17920 -- expanded as part of the freezing actions if it is not a CPP_Class.
17922 if Is_Tagged then
17924 -- Do not add the tag unless we are in expansion mode
17926 if Expander_Active then
17927 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
17928 Enter_Name (Tag_Comp);
17930 Set_Ekind (Tag_Comp, E_Component);
17931 Set_Is_Tag (Tag_Comp);
17932 Set_Is_Aliased (Tag_Comp);
17933 Set_Etype (Tag_Comp, RTE (RE_Tag));
17934 Set_DT_Entry_Count (Tag_Comp, No_Uint);
17935 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
17936 Init_Component_Location (Tag_Comp);
17938 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
17939 -- implemented interfaces.
17941 if Has_Interfaces (T) then
17942 Add_Interface_Tag_Components (N, T);
17943 end if;
17944 end if;
17946 Make_Class_Wide_Type (T);
17947 Set_Primitive_Operations (T, New_Elmt_List);
17948 end if;
17950 -- We must suppress range checks when processing the components
17951 -- of a record in the presence of discriminants, since we don't
17952 -- want spurious checks to be generated during their analysis, but
17953 -- must reset the Suppress_Range_Checks flags after having processed
17954 -- the record definition.
17956 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
17957 -- couldn't we just use the normal range check suppression method here.
17958 -- That would seem cleaner ???
17960 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
17961 Set_Kill_Range_Checks (T, True);
17962 Record_Type_Definition (Def, Prev);
17963 Set_Kill_Range_Checks (T, False);
17964 else
17965 Record_Type_Definition (Def, Prev);
17966 end if;
17968 -- Exit from record scope
17970 End_Scope;
17972 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
17973 -- the implemented interfaces and associate them an aliased entity.
17975 if Is_Tagged
17976 and then not Is_Empty_List (Interface_List (Def))
17977 then
17978 Derive_Progenitor_Subprograms (T, T);
17979 end if;
17980 end Record_Type_Declaration;
17982 ----------------------------
17983 -- Record_Type_Definition --
17984 ----------------------------
17986 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
17987 Component : Entity_Id;
17988 Ctrl_Components : Boolean := False;
17989 Final_Storage_Only : Boolean;
17990 T : Entity_Id;
17992 begin
17993 if Ekind (Prev_T) = E_Incomplete_Type then
17994 T := Full_View (Prev_T);
17995 else
17996 T := Prev_T;
17997 end if;
17999 Final_Storage_Only := not Is_Controlled (T);
18001 -- Ada 2005: check whether an explicit Limited is present in a derived
18002 -- type declaration.
18004 if Nkind (Parent (Def)) = N_Derived_Type_Definition
18005 and then Limited_Present (Parent (Def))
18006 then
18007 Set_Is_Limited_Record (T);
18008 end if;
18010 -- If the component list of a record type is defined by the reserved
18011 -- word null and there is no discriminant part, then the record type has
18012 -- no components and all records of the type are null records (RM 3.7)
18013 -- This procedure is also called to process the extension part of a
18014 -- record extension, in which case the current scope may have inherited
18015 -- components.
18017 if No (Def)
18018 or else No (Component_List (Def))
18019 or else Null_Present (Component_List (Def))
18020 then
18021 null;
18023 else
18024 Analyze_Declarations (Component_Items (Component_List (Def)));
18026 if Present (Variant_Part (Component_List (Def))) then
18027 Analyze (Variant_Part (Component_List (Def)));
18028 end if;
18029 end if;
18031 -- After completing the semantic analysis of the record definition,
18032 -- record components, both new and inherited, are accessible. Set their
18033 -- kind accordingly. Exclude malformed itypes from illegal declarations,
18034 -- whose Ekind may be void.
18036 Component := First_Entity (Current_Scope);
18037 while Present (Component) loop
18038 if Ekind (Component) = E_Void
18039 and then not Is_Itype (Component)
18040 then
18041 Set_Ekind (Component, E_Component);
18042 Init_Component_Location (Component);
18043 end if;
18045 if Has_Task (Etype (Component)) then
18046 Set_Has_Task (T);
18047 end if;
18049 if Ekind (Component) /= E_Component then
18050 null;
18052 -- Do not set Has_Controlled_Component on a class-wide equivalent
18053 -- type. See Make_CW_Equivalent_Type.
18055 elsif not Is_Class_Wide_Equivalent_Type (T)
18056 and then (Has_Controlled_Component (Etype (Component))
18057 or else (Chars (Component) /= Name_uParent
18058 and then Is_Controlled (Etype (Component))))
18059 then
18060 Set_Has_Controlled_Component (T, True);
18061 Final_Storage_Only :=
18062 Final_Storage_Only
18063 and then Finalize_Storage_Only (Etype (Component));
18064 Ctrl_Components := True;
18065 end if;
18067 Next_Entity (Component);
18068 end loop;
18070 -- A Type is Finalize_Storage_Only only if all its controlled components
18071 -- are also.
18073 if Ctrl_Components then
18074 Set_Finalize_Storage_Only (T, Final_Storage_Only);
18075 end if;
18077 -- Place reference to end record on the proper entity, which may
18078 -- be a partial view.
18080 if Present (Def) then
18081 Process_End_Label (Def, 'e', Prev_T);
18082 end if;
18083 end Record_Type_Definition;
18085 ------------------------
18086 -- Replace_Components --
18087 ------------------------
18089 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
18090 function Process (N : Node_Id) return Traverse_Result;
18092 -------------
18093 -- Process --
18094 -------------
18096 function Process (N : Node_Id) return Traverse_Result is
18097 Comp : Entity_Id;
18099 begin
18100 if Nkind (N) = N_Discriminant_Specification then
18101 Comp := First_Discriminant (Typ);
18102 while Present (Comp) loop
18103 if Chars (Comp) = Chars (Defining_Identifier (N)) then
18104 Set_Defining_Identifier (N, Comp);
18105 exit;
18106 end if;
18108 Next_Discriminant (Comp);
18109 end loop;
18111 elsif Nkind (N) = N_Component_Declaration then
18112 Comp := First_Component (Typ);
18113 while Present (Comp) loop
18114 if Chars (Comp) = Chars (Defining_Identifier (N)) then
18115 Set_Defining_Identifier (N, Comp);
18116 exit;
18117 end if;
18119 Next_Component (Comp);
18120 end loop;
18121 end if;
18123 return OK;
18124 end Process;
18126 procedure Replace is new Traverse_Proc (Process);
18128 -- Start of processing for Replace_Components
18130 begin
18131 Replace (Decl);
18132 end Replace_Components;
18134 -------------------------------
18135 -- Set_Completion_Referenced --
18136 -------------------------------
18138 procedure Set_Completion_Referenced (E : Entity_Id) is
18139 begin
18140 -- If in main unit, mark entity that is a completion as referenced,
18141 -- warnings go on the partial view when needed.
18143 if In_Extended_Main_Source_Unit (E) then
18144 Set_Referenced (E);
18145 end if;
18146 end Set_Completion_Referenced;
18148 ---------------------
18149 -- Set_Fixed_Range --
18150 ---------------------
18152 -- The range for fixed-point types is complicated by the fact that we
18153 -- do not know the exact end points at the time of the declaration. This
18154 -- is true for three reasons:
18156 -- A size clause may affect the fudging of the end-points
18157 -- A small clause may affect the values of the end-points
18158 -- We try to include the end-points if it does not affect the size
18160 -- This means that the actual end-points must be established at the point
18161 -- when the type is frozen. Meanwhile, we first narrow the range as
18162 -- permitted (so that it will fit if necessary in a small specified size),
18163 -- and then build a range subtree with these narrowed bounds.
18165 -- Set_Fixed_Range constructs the range from real literal values, and sets
18166 -- the range as the Scalar_Range of the given fixed-point type entity.
18168 -- The parent of this range is set to point to the entity so that it is
18169 -- properly hooked into the tree (unlike normal Scalar_Range entries for
18170 -- other scalar types, which are just pointers to the range in the
18171 -- original tree, this would otherwise be an orphan).
18173 -- The tree is left unanalyzed. When the type is frozen, the processing
18174 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
18175 -- analyzed, and uses this as an indication that it should complete
18176 -- work on the range (it will know the final small and size values).
18178 procedure Set_Fixed_Range
18179 (E : Entity_Id;
18180 Loc : Source_Ptr;
18181 Lo : Ureal;
18182 Hi : Ureal)
18184 S : constant Node_Id :=
18185 Make_Range (Loc,
18186 Low_Bound => Make_Real_Literal (Loc, Lo),
18187 High_Bound => Make_Real_Literal (Loc, Hi));
18188 begin
18189 Set_Scalar_Range (E, S);
18190 Set_Parent (S, E);
18191 end Set_Fixed_Range;
18193 ----------------------------------
18194 -- Set_Scalar_Range_For_Subtype --
18195 ----------------------------------
18197 procedure Set_Scalar_Range_For_Subtype
18198 (Def_Id : Entity_Id;
18199 R : Node_Id;
18200 Subt : Entity_Id)
18202 Kind : constant Entity_Kind := Ekind (Def_Id);
18204 begin
18205 Set_Scalar_Range (Def_Id, R);
18207 -- We need to link the range into the tree before resolving it so
18208 -- that types that are referenced, including importantly the subtype
18209 -- itself, are properly frozen (Freeze_Expression requires that the
18210 -- expression be properly linked into the tree). Of course if it is
18211 -- already linked in, then we do not disturb the current link.
18213 if No (Parent (R)) then
18214 Set_Parent (R, Def_Id);
18215 end if;
18217 -- Reset the kind of the subtype during analysis of the range, to
18218 -- catch possible premature use in the bounds themselves.
18220 Set_Ekind (Def_Id, E_Void);
18221 Process_Range_Expr_In_Decl (R, Subt);
18222 Set_Ekind (Def_Id, Kind);
18223 end Set_Scalar_Range_For_Subtype;
18225 --------------------------------------------------------
18226 -- Set_Stored_Constraint_From_Discriminant_Constraint --
18227 --------------------------------------------------------
18229 procedure Set_Stored_Constraint_From_Discriminant_Constraint
18230 (E : Entity_Id)
18232 begin
18233 -- Make sure set if encountered during Expand_To_Stored_Constraint
18235 Set_Stored_Constraint (E, No_Elist);
18237 -- Give it the right value
18239 if Is_Constrained (E) and then Has_Discriminants (E) then
18240 Set_Stored_Constraint (E,
18241 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
18242 end if;
18243 end Set_Stored_Constraint_From_Discriminant_Constraint;
18245 -------------------------------------
18246 -- Signed_Integer_Type_Declaration --
18247 -------------------------------------
18249 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18250 Implicit_Base : Entity_Id;
18251 Base_Typ : Entity_Id;
18252 Lo_Val : Uint;
18253 Hi_Val : Uint;
18254 Errs : Boolean := False;
18255 Lo : Node_Id;
18256 Hi : Node_Id;
18258 function Can_Derive_From (E : Entity_Id) return Boolean;
18259 -- Determine whether given bounds allow derivation from specified type
18261 procedure Check_Bound (Expr : Node_Id);
18262 -- Check bound to make sure it is integral and static. If not, post
18263 -- appropriate error message and set Errs flag
18265 ---------------------
18266 -- Can_Derive_From --
18267 ---------------------
18269 -- Note we check both bounds against both end values, to deal with
18270 -- strange types like ones with a range of 0 .. -12341234.
18272 function Can_Derive_From (E : Entity_Id) return Boolean is
18273 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
18274 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
18275 begin
18276 return Lo <= Lo_Val and then Lo_Val <= Hi
18277 and then
18278 Lo <= Hi_Val and then Hi_Val <= Hi;
18279 end Can_Derive_From;
18281 -----------------
18282 -- Check_Bound --
18283 -----------------
18285 procedure Check_Bound (Expr : Node_Id) is
18286 begin
18287 -- If a range constraint is used as an integer type definition, each
18288 -- bound of the range must be defined by a static expression of some
18289 -- integer type, but the two bounds need not have the same integer
18290 -- type (Negative bounds are allowed.) (RM 3.5.4)
18292 if not Is_Integer_Type (Etype (Expr)) then
18293 Error_Msg_N
18294 ("integer type definition bounds must be of integer type", Expr);
18295 Errs := True;
18297 elsif not Is_OK_Static_Expression (Expr) then
18298 Flag_Non_Static_Expr
18299 ("non-static expression used for integer type bound!", Expr);
18300 Errs := True;
18302 -- The bounds are folded into literals, and we set their type to be
18303 -- universal, to avoid typing difficulties: we cannot set the type
18304 -- of the literal to the new type, because this would be a forward
18305 -- reference for the back end, and if the original type is user-
18306 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
18308 else
18309 if Is_Entity_Name (Expr) then
18310 Fold_Uint (Expr, Expr_Value (Expr), True);
18311 end if;
18313 Set_Etype (Expr, Universal_Integer);
18314 end if;
18315 end Check_Bound;
18317 -- Start of processing for Signed_Integer_Type_Declaration
18319 begin
18320 -- Create an anonymous base type
18322 Implicit_Base :=
18323 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
18325 -- Analyze and check the bounds, they can be of any integer type
18327 Lo := Low_Bound (Def);
18328 Hi := High_Bound (Def);
18330 -- Arbitrarily use Integer as the type if either bound had an error
18332 if Hi = Error or else Lo = Error then
18333 Base_Typ := Any_Integer;
18334 Set_Error_Posted (T, True);
18336 -- Here both bounds are OK expressions
18338 else
18339 Analyze_And_Resolve (Lo, Any_Integer);
18340 Analyze_And_Resolve (Hi, Any_Integer);
18342 Check_Bound (Lo);
18343 Check_Bound (Hi);
18345 if Errs then
18346 Hi := Type_High_Bound (Standard_Long_Long_Integer);
18347 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
18348 end if;
18350 -- Find type to derive from
18352 Lo_Val := Expr_Value (Lo);
18353 Hi_Val := Expr_Value (Hi);
18355 if Can_Derive_From (Standard_Short_Short_Integer) then
18356 Base_Typ := Base_Type (Standard_Short_Short_Integer);
18358 elsif Can_Derive_From (Standard_Short_Integer) then
18359 Base_Typ := Base_Type (Standard_Short_Integer);
18361 elsif Can_Derive_From (Standard_Integer) then
18362 Base_Typ := Base_Type (Standard_Integer);
18364 elsif Can_Derive_From (Standard_Long_Integer) then
18365 Base_Typ := Base_Type (Standard_Long_Integer);
18367 elsif Can_Derive_From (Standard_Long_Long_Integer) then
18368 Base_Typ := Base_Type (Standard_Long_Long_Integer);
18370 else
18371 Base_Typ := Base_Type (Standard_Long_Long_Integer);
18372 Error_Msg_N ("integer type definition bounds out of range", Def);
18373 Hi := Type_High_Bound (Standard_Long_Long_Integer);
18374 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
18375 end if;
18376 end if;
18378 -- Complete both implicit base and declared first subtype entities
18380 Set_Etype (Implicit_Base, Base_Typ);
18381 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
18382 Set_Size_Info (Implicit_Base, (Base_Typ));
18383 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
18384 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
18386 Set_Ekind (T, E_Signed_Integer_Subtype);
18387 Set_Etype (T, Implicit_Base);
18389 Set_Size_Info (T, (Implicit_Base));
18390 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
18391 Set_Scalar_Range (T, Def);
18392 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
18393 Set_Is_Constrained (T);
18394 end Signed_Integer_Type_Declaration;
18396 end Sem_Ch3;