PR c/39464
[official-gcc.git] / gcc / sched-rgn.c
blob7eed9ae19b7385727d49ea44deeafb0de6223b84
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* This pass implements list scheduling within basic blocks. It is
25 run twice: (1) after flow analysis, but before register allocation,
26 and (2) after register allocation.
28 The first run performs interblock scheduling, moving insns between
29 different blocks in the same "region", and the second runs only
30 basic block scheduling.
32 Interblock motions performed are useful motions and speculative
33 motions, including speculative loads. Motions requiring code
34 duplication are not supported. The identification of motion type
35 and the check for validity of speculative motions requires
36 construction and analysis of the function's control flow graph.
38 The main entry point for this pass is schedule_insns(), called for
39 each function. The work of the scheduler is organized in three
40 levels: (1) function level: insns are subject to splitting,
41 control-flow-graph is constructed, regions are computed (after
42 reload, each region is of one block), (2) region level: control
43 flow graph attributes required for interblock scheduling are
44 computed (dominators, reachability, etc.), data dependences and
45 priorities are computed, and (3) block level: insns in the block
46 are actually scheduled. */
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "diagnostic-core.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "function.h"
58 #include "flags.h"
59 #include "insn-config.h"
60 #include "insn-attr.h"
61 #include "except.h"
62 #include "recog.h"
63 #include "params.h"
64 #include "sched-int.h"
65 #include "sel-sched.h"
66 #include "target.h"
67 #include "tree-pass.h"
68 #include "dbgcnt.h"
70 #ifdef INSN_SCHEDULING
72 /* Some accessor macros for h_i_d members only used within this file. */
73 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
74 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
76 /* nr_inter/spec counts interblock/speculative motion for the function. */
77 static int nr_inter, nr_spec;
79 static int is_cfg_nonregular (void);
81 /* Number of regions in the procedure. */
82 int nr_regions = 0;
84 /* Table of region descriptions. */
85 region *rgn_table = NULL;
87 /* Array of lists of regions' blocks. */
88 int *rgn_bb_table = NULL;
90 /* Topological order of blocks in the region (if b2 is reachable from
91 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
92 always referred to by either block or b, while its topological
93 order name (in the region) is referred to by bb. */
94 int *block_to_bb = NULL;
96 /* The number of the region containing a block. */
97 int *containing_rgn = NULL;
99 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
100 Currently we can get a ebb only through splitting of currently
101 scheduling block, therefore, we don't need ebb_head array for every region,
102 hence, its sufficient to hold it for current one only. */
103 int *ebb_head = NULL;
105 /* The minimum probability of reaching a source block so that it will be
106 considered for speculative scheduling. */
107 static int min_spec_prob;
109 static void find_single_block_region (bool);
110 static void find_rgns (void);
111 static bool too_large (int, int *, int *);
113 /* Blocks of the current region being scheduled. */
114 int current_nr_blocks;
115 int current_blocks;
117 /* A speculative motion requires checking live information on the path
118 from 'source' to 'target'. The split blocks are those to be checked.
119 After a speculative motion, live information should be modified in
120 the 'update' blocks.
122 Lists of split and update blocks for each candidate of the current
123 target are in array bblst_table. */
124 static basic_block *bblst_table;
125 static int bblst_size, bblst_last;
127 /* Arrays that hold the DFA state at the end of a basic block, to re-use
128 as the initial state at the start of successor blocks. The BB_STATE
129 array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
130 into BB_STATE for basic block I. FIXME: This should be a vec. */
131 static char *bb_state_array = NULL;
132 static state_t *bb_state = NULL;
134 /* Target info declarations.
136 The block currently being scheduled is referred to as the "target" block,
137 while other blocks in the region from which insns can be moved to the
138 target are called "source" blocks. The candidate structure holds info
139 about such sources: are they valid? Speculative? Etc. */
140 typedef struct
142 basic_block *first_member;
143 int nr_members;
145 bblst;
147 typedef struct
149 char is_valid;
150 char is_speculative;
151 int src_prob;
152 bblst split_bbs;
153 bblst update_bbs;
155 candidate;
157 static candidate *candidate_table;
158 #define IS_VALID(src) (candidate_table[src].is_valid)
159 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
160 #define IS_SPECULATIVE_INSN(INSN) \
161 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
162 #define SRC_PROB(src) ( candidate_table[src].src_prob )
164 /* The bb being currently scheduled. */
165 int target_bb;
167 /* List of edges. */
168 typedef struct
170 edge *first_member;
171 int nr_members;
173 edgelst;
175 static edge *edgelst_table;
176 static int edgelst_last;
178 static void extract_edgelst (sbitmap, edgelst *);
180 /* Target info functions. */
181 static void split_edges (int, int, edgelst *);
182 static void compute_trg_info (int);
183 void debug_candidate (int);
184 void debug_candidates (int);
186 /* Dominators array: dom[i] contains the sbitmap of dominators of
187 bb i in the region. */
188 static sbitmap *dom;
190 /* bb 0 is the only region entry. */
191 #define IS_RGN_ENTRY(bb) (!bb)
193 /* Is bb_src dominated by bb_trg. */
194 #define IS_DOMINATED(bb_src, bb_trg) \
195 ( bitmap_bit_p (dom[bb_src], bb_trg) )
197 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
198 the probability of bb i relative to the region entry. */
199 static int *prob;
201 /* Bit-set of edges, where bit i stands for edge i. */
202 typedef sbitmap edgeset;
204 /* Number of edges in the region. */
205 static int rgn_nr_edges;
207 /* Array of size rgn_nr_edges. */
208 static edge *rgn_edges;
210 /* Mapping from each edge in the graph to its number in the rgn. */
211 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
212 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
214 /* The split edges of a source bb is different for each target
215 bb. In order to compute this efficiently, the 'potential-split edges'
216 are computed for each bb prior to scheduling a region. This is actually
217 the split edges of each bb relative to the region entry.
219 pot_split[bb] is the set of potential split edges of bb. */
220 static edgeset *pot_split;
222 /* For every bb, a set of its ancestor edges. */
223 static edgeset *ancestor_edges;
225 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
227 /* Speculative scheduling functions. */
228 static int check_live_1 (int, rtx);
229 static void update_live_1 (int, rtx);
230 static int is_pfree (rtx, int, int);
231 static int find_conditional_protection (rtx, int);
232 static int is_conditionally_protected (rtx, int, int);
233 static int is_prisky (rtx, int, int);
234 static int is_exception_free (rtx, int, int);
236 static bool sets_likely_spilled (rtx);
237 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
238 static void add_branch_dependences (rtx, rtx);
239 static void compute_block_dependences (int);
241 static void schedule_region (int);
242 static void concat_insn_mem_list (rtx, rtx, rtx *, rtx *);
243 static void propagate_deps (int, struct deps_desc *);
244 static void free_pending_lists (void);
246 /* Functions for construction of the control flow graph. */
248 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
250 We decide not to build the control flow graph if there is possibly more
251 than one entry to the function, if computed branches exist, if we
252 have nonlocal gotos, or if we have an unreachable loop. */
254 static int
255 is_cfg_nonregular (void)
257 basic_block b;
258 rtx insn;
260 /* If we have a label that could be the target of a nonlocal goto, then
261 the cfg is not well structured. */
262 if (nonlocal_goto_handler_labels)
263 return 1;
265 /* If we have any forced labels, then the cfg is not well structured. */
266 if (forced_labels)
267 return 1;
269 /* If we have exception handlers, then we consider the cfg not well
270 structured. ?!? We should be able to handle this now that we
271 compute an accurate cfg for EH. */
272 if (current_function_has_exception_handlers ())
273 return 1;
275 /* If we have insns which refer to labels as non-jumped-to operands,
276 then we consider the cfg not well structured. */
277 FOR_EACH_BB (b)
278 FOR_BB_INSNS (b, insn)
280 rtx note, next, set, dest;
282 /* If this function has a computed jump, then we consider the cfg
283 not well structured. */
284 if (JUMP_P (insn) && computed_jump_p (insn))
285 return 1;
287 if (!INSN_P (insn))
288 continue;
290 note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
291 if (note == NULL_RTX)
292 continue;
294 /* For that label not to be seen as a referred-to label, this
295 must be a single-set which is feeding a jump *only*. This
296 could be a conditional jump with the label split off for
297 machine-specific reasons or a casesi/tablejump. */
298 next = next_nonnote_insn (insn);
299 if (next == NULL_RTX
300 || !JUMP_P (next)
301 || (JUMP_LABEL (next) != XEXP (note, 0)
302 && find_reg_note (next, REG_LABEL_TARGET,
303 XEXP (note, 0)) == NULL_RTX)
304 || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
305 return 1;
307 set = single_set (insn);
308 if (set == NULL_RTX)
309 return 1;
311 dest = SET_DEST (set);
312 if (!REG_P (dest) || !dead_or_set_p (next, dest))
313 return 1;
316 /* Unreachable loops with more than one basic block are detected
317 during the DFS traversal in find_rgns.
319 Unreachable loops with a single block are detected here. This
320 test is redundant with the one in find_rgns, but it's much
321 cheaper to go ahead and catch the trivial case here. */
322 FOR_EACH_BB (b)
324 if (EDGE_COUNT (b->preds) == 0
325 || (single_pred_p (b)
326 && single_pred (b) == b))
327 return 1;
330 /* All the tests passed. Consider the cfg well structured. */
331 return 0;
334 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
336 static void
337 extract_edgelst (sbitmap set, edgelst *el)
339 unsigned int i = 0;
340 sbitmap_iterator sbi;
342 /* edgelst table space is reused in each call to extract_edgelst. */
343 edgelst_last = 0;
345 el->first_member = &edgelst_table[edgelst_last];
346 el->nr_members = 0;
348 /* Iterate over each word in the bitset. */
349 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, sbi)
351 edgelst_table[edgelst_last++] = rgn_edges[i];
352 el->nr_members++;
356 /* Functions for the construction of regions. */
358 /* Print the regions, for debugging purposes. Callable from debugger. */
360 DEBUG_FUNCTION void
361 debug_regions (void)
363 int rgn, bb;
365 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
366 for (rgn = 0; rgn < nr_regions; rgn++)
368 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
369 rgn_table[rgn].rgn_nr_blocks);
370 fprintf (sched_dump, ";;\tbb/block: ");
372 /* We don't have ebb_head initialized yet, so we can't use
373 BB_TO_BLOCK (). */
374 current_blocks = RGN_BLOCKS (rgn);
376 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
377 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
379 fprintf (sched_dump, "\n\n");
383 /* Print the region's basic blocks. */
385 DEBUG_FUNCTION void
386 debug_region (int rgn)
388 int bb;
390 fprintf (stderr, "\n;; ------------ REGION %d ----------\n\n", rgn);
391 fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
392 rgn_table[rgn].rgn_nr_blocks);
393 fprintf (stderr, ";;\tbb/block: ");
395 /* We don't have ebb_head initialized yet, so we can't use
396 BB_TO_BLOCK (). */
397 current_blocks = RGN_BLOCKS (rgn);
399 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
400 fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
402 fprintf (stderr, "\n\n");
404 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
406 dump_bb (stderr, BASIC_BLOCK (rgn_bb_table[current_blocks + bb]),
407 0, TDF_SLIM | TDF_BLOCKS);
408 fprintf (stderr, "\n");
411 fprintf (stderr, "\n");
415 /* True when a bb with index BB_INDEX contained in region RGN. */
416 static bool
417 bb_in_region_p (int bb_index, int rgn)
419 int i;
421 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
422 if (rgn_bb_table[current_blocks + i] == bb_index)
423 return true;
425 return false;
428 /* Dump region RGN to file F using dot syntax. */
429 void
430 dump_region_dot (FILE *f, int rgn)
432 int i;
434 fprintf (f, "digraph Region_%d {\n", rgn);
436 /* We don't have ebb_head initialized yet, so we can't use
437 BB_TO_BLOCK (). */
438 current_blocks = RGN_BLOCKS (rgn);
440 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
442 edge e;
443 edge_iterator ei;
444 int src_bb_num = rgn_bb_table[current_blocks + i];
445 basic_block bb = BASIC_BLOCK (src_bb_num);
447 FOR_EACH_EDGE (e, ei, bb->succs)
448 if (bb_in_region_p (e->dest->index, rgn))
449 fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
451 fprintf (f, "}\n");
454 /* The same, but first open a file specified by FNAME. */
455 void
456 dump_region_dot_file (const char *fname, int rgn)
458 FILE *f = fopen (fname, "wt");
459 dump_region_dot (f, rgn);
460 fclose (f);
463 /* Build a single block region for each basic block in the function.
464 This allows for using the same code for interblock and basic block
465 scheduling. */
467 static void
468 find_single_block_region (bool ebbs_p)
470 basic_block bb, ebb_start;
471 int i = 0;
473 nr_regions = 0;
475 if (ebbs_p) {
476 int probability_cutoff;
477 if (profile_info && flag_branch_probabilities)
478 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
479 else
480 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
481 probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
483 FOR_EACH_BB (ebb_start)
485 RGN_NR_BLOCKS (nr_regions) = 0;
486 RGN_BLOCKS (nr_regions) = i;
487 RGN_DONT_CALC_DEPS (nr_regions) = 0;
488 RGN_HAS_REAL_EBB (nr_regions) = 0;
490 for (bb = ebb_start; ; bb = bb->next_bb)
492 edge e;
494 rgn_bb_table[i] = bb->index;
495 RGN_NR_BLOCKS (nr_regions)++;
496 CONTAINING_RGN (bb->index) = nr_regions;
497 BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
498 i++;
500 if (bb->next_bb == EXIT_BLOCK_PTR
501 || LABEL_P (BB_HEAD (bb->next_bb)))
502 break;
504 e = find_fallthru_edge (bb->succs);
505 if (! e)
506 break;
507 if (e->probability <= probability_cutoff)
508 break;
511 ebb_start = bb;
512 nr_regions++;
515 else
516 FOR_EACH_BB (bb)
518 rgn_bb_table[nr_regions] = bb->index;
519 RGN_NR_BLOCKS (nr_regions) = 1;
520 RGN_BLOCKS (nr_regions) = nr_regions;
521 RGN_DONT_CALC_DEPS (nr_regions) = 0;
522 RGN_HAS_REAL_EBB (nr_regions) = 0;
524 CONTAINING_RGN (bb->index) = nr_regions;
525 BLOCK_TO_BB (bb->index) = 0;
526 nr_regions++;
530 /* Estimate number of the insns in the BB. */
531 static int
532 rgn_estimate_number_of_insns (basic_block bb)
534 int count;
536 count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
538 if (MAY_HAVE_DEBUG_INSNS)
540 rtx insn;
542 FOR_BB_INSNS (bb, insn)
543 if (DEBUG_INSN_P (insn))
544 count--;
547 return count;
550 /* Update number of blocks and the estimate for number of insns
551 in the region. Return true if the region is "too large" for interblock
552 scheduling (compile time considerations). */
554 static bool
555 too_large (int block, int *num_bbs, int *num_insns)
557 (*num_bbs)++;
558 (*num_insns) += (common_sched_info->estimate_number_of_insns
559 (BASIC_BLOCK (block)));
561 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
562 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
565 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
566 is still an inner loop. Put in max_hdr[blk] the header of the most inner
567 loop containing blk. */
568 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
570 if (max_hdr[blk] == -1) \
571 max_hdr[blk] = hdr; \
572 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
573 bitmap_clear_bit (inner, hdr); \
574 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
576 bitmap_clear_bit (inner,max_hdr[blk]); \
577 max_hdr[blk] = hdr; \
581 /* Find regions for interblock scheduling.
583 A region for scheduling can be:
585 * A loop-free procedure, or
587 * A reducible inner loop, or
589 * A basic block not contained in any other region.
591 ?!? In theory we could build other regions based on extended basic
592 blocks or reverse extended basic blocks. Is it worth the trouble?
594 Loop blocks that form a region are put into the region's block list
595 in topological order.
597 This procedure stores its results into the following global (ick) variables
599 * rgn_nr
600 * rgn_table
601 * rgn_bb_table
602 * block_to_bb
603 * containing region
605 We use dominator relationships to avoid making regions out of non-reducible
606 loops.
608 This procedure needs to be converted to work on pred/succ lists instead
609 of edge tables. That would simplify it somewhat. */
611 static void
612 haifa_find_rgns (void)
614 int *max_hdr, *dfs_nr, *degree;
615 char no_loops = 1;
616 int node, child, loop_head, i, head, tail;
617 int count = 0, sp, idx = 0;
618 edge_iterator current_edge;
619 edge_iterator *stack;
620 int num_bbs, num_insns, unreachable;
621 int too_large_failure;
622 basic_block bb;
624 /* Note if a block is a natural loop header. */
625 sbitmap header;
627 /* Note if a block is a natural inner loop header. */
628 sbitmap inner;
630 /* Note if a block is in the block queue. */
631 sbitmap in_queue;
633 /* Note if a block is in the block queue. */
634 sbitmap in_stack;
636 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
637 and a mapping from block to its loop header (if the block is contained
638 in a loop, else -1).
640 Store results in HEADER, INNER, and MAX_HDR respectively, these will
641 be used as inputs to the second traversal.
643 STACK, SP and DFS_NR are only used during the first traversal. */
645 /* Allocate and initialize variables for the first traversal. */
646 max_hdr = XNEWVEC (int, last_basic_block);
647 dfs_nr = XCNEWVEC (int, last_basic_block);
648 stack = XNEWVEC (edge_iterator, n_edges);
650 inner = sbitmap_alloc (last_basic_block);
651 bitmap_ones (inner);
653 header = sbitmap_alloc (last_basic_block);
654 bitmap_clear (header);
656 in_queue = sbitmap_alloc (last_basic_block);
657 bitmap_clear (in_queue);
659 in_stack = sbitmap_alloc (last_basic_block);
660 bitmap_clear (in_stack);
662 for (i = 0; i < last_basic_block; i++)
663 max_hdr[i] = -1;
665 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
666 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
668 /* DFS traversal to find inner loops in the cfg. */
670 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR)->succs);
671 sp = -1;
673 while (1)
675 if (EDGE_PASSED (current_edge))
677 /* We have reached a leaf node or a node that was already
678 processed. Pop edges off the stack until we find
679 an edge that has not yet been processed. */
680 while (sp >= 0 && EDGE_PASSED (current_edge))
682 /* Pop entry off the stack. */
683 current_edge = stack[sp--];
684 node = ei_edge (current_edge)->src->index;
685 gcc_assert (node != ENTRY_BLOCK);
686 child = ei_edge (current_edge)->dest->index;
687 gcc_assert (child != EXIT_BLOCK);
688 bitmap_clear_bit (in_stack, child);
689 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
690 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
691 ei_next (&current_edge);
694 /* See if have finished the DFS tree traversal. */
695 if (sp < 0 && EDGE_PASSED (current_edge))
696 break;
698 /* Nope, continue the traversal with the popped node. */
699 continue;
702 /* Process a node. */
703 node = ei_edge (current_edge)->src->index;
704 gcc_assert (node != ENTRY_BLOCK);
705 bitmap_set_bit (in_stack, node);
706 dfs_nr[node] = ++count;
708 /* We don't traverse to the exit block. */
709 child = ei_edge (current_edge)->dest->index;
710 if (child == EXIT_BLOCK)
712 SET_EDGE_PASSED (current_edge);
713 ei_next (&current_edge);
714 continue;
717 /* If the successor is in the stack, then we've found a loop.
718 Mark the loop, if it is not a natural loop, then it will
719 be rejected during the second traversal. */
720 if (bitmap_bit_p (in_stack, child))
722 no_loops = 0;
723 bitmap_set_bit (header, child);
724 UPDATE_LOOP_RELATIONS (node, child);
725 SET_EDGE_PASSED (current_edge);
726 ei_next (&current_edge);
727 continue;
730 /* If the child was already visited, then there is no need to visit
731 it again. Just update the loop relationships and restart
732 with a new edge. */
733 if (dfs_nr[child])
735 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
736 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
737 SET_EDGE_PASSED (current_edge);
738 ei_next (&current_edge);
739 continue;
742 /* Push an entry on the stack and continue DFS traversal. */
743 stack[++sp] = current_edge;
744 SET_EDGE_PASSED (current_edge);
745 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
748 /* Reset ->aux field used by EDGE_PASSED. */
749 FOR_ALL_BB (bb)
751 edge_iterator ei;
752 edge e;
753 FOR_EACH_EDGE (e, ei, bb->succs)
754 e->aux = NULL;
758 /* Another check for unreachable blocks. The earlier test in
759 is_cfg_nonregular only finds unreachable blocks that do not
760 form a loop.
762 The DFS traversal will mark every block that is reachable from
763 the entry node by placing a nonzero value in dfs_nr. Thus if
764 dfs_nr is zero for any block, then it must be unreachable. */
765 unreachable = 0;
766 FOR_EACH_BB (bb)
767 if (dfs_nr[bb->index] == 0)
769 unreachable = 1;
770 break;
773 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
774 to hold degree counts. */
775 degree = dfs_nr;
777 FOR_EACH_BB (bb)
778 degree[bb->index] = EDGE_COUNT (bb->preds);
780 /* Do not perform region scheduling if there are any unreachable
781 blocks. */
782 if (!unreachable)
784 int *queue, *degree1 = NULL;
785 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
786 there basic blocks, which are forced to be region heads.
787 This is done to try to assemble few smaller regions
788 from a too_large region. */
789 sbitmap extended_rgn_header = NULL;
790 bool extend_regions_p;
792 if (no_loops)
793 bitmap_set_bit (header, 0);
795 /* Second traversal:find reducible inner loops and topologically sort
796 block of each region. */
798 queue = XNEWVEC (int, n_basic_blocks);
800 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
801 if (extend_regions_p)
803 degree1 = XNEWVEC (int, last_basic_block);
804 extended_rgn_header = sbitmap_alloc (last_basic_block);
805 bitmap_clear (extended_rgn_header);
808 /* Find blocks which are inner loop headers. We still have non-reducible
809 loops to consider at this point. */
810 FOR_EACH_BB (bb)
812 if (bitmap_bit_p (header, bb->index) && bitmap_bit_p (inner, bb->index))
814 edge e;
815 edge_iterator ei;
816 basic_block jbb;
818 /* Now check that the loop is reducible. We do this separate
819 from finding inner loops so that we do not find a reducible
820 loop which contains an inner non-reducible loop.
822 A simple way to find reducible/natural loops is to verify
823 that each block in the loop is dominated by the loop
824 header.
826 If there exists a block that is not dominated by the loop
827 header, then the block is reachable from outside the loop
828 and thus the loop is not a natural loop. */
829 FOR_EACH_BB (jbb)
831 /* First identify blocks in the loop, except for the loop
832 entry block. */
833 if (bb->index == max_hdr[jbb->index] && bb != jbb)
835 /* Now verify that the block is dominated by the loop
836 header. */
837 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
838 break;
842 /* If we exited the loop early, then I is the header of
843 a non-reducible loop and we should quit processing it
844 now. */
845 if (jbb != EXIT_BLOCK_PTR)
846 continue;
848 /* I is a header of an inner loop, or block 0 in a subroutine
849 with no loops at all. */
850 head = tail = -1;
851 too_large_failure = 0;
852 loop_head = max_hdr[bb->index];
854 if (extend_regions_p)
855 /* We save degree in case when we meet a too_large region
856 and cancel it. We need a correct degree later when
857 calling extend_rgns. */
858 memcpy (degree1, degree, last_basic_block * sizeof (int));
860 /* Decrease degree of all I's successors for topological
861 ordering. */
862 FOR_EACH_EDGE (e, ei, bb->succs)
863 if (e->dest != EXIT_BLOCK_PTR)
864 --degree[e->dest->index];
866 /* Estimate # insns, and count # blocks in the region. */
867 num_bbs = 1;
868 num_insns = common_sched_info->estimate_number_of_insns (bb);
870 /* Find all loop latches (blocks with back edges to the loop
871 header) or all the leaf blocks in the cfg has no loops.
873 Place those blocks into the queue. */
874 if (no_loops)
876 FOR_EACH_BB (jbb)
877 /* Leaf nodes have only a single successor which must
878 be EXIT_BLOCK. */
879 if (single_succ_p (jbb)
880 && single_succ (jbb) == EXIT_BLOCK_PTR)
882 queue[++tail] = jbb->index;
883 bitmap_set_bit (in_queue, jbb->index);
885 if (too_large (jbb->index, &num_bbs, &num_insns))
887 too_large_failure = 1;
888 break;
892 else
894 edge e;
896 FOR_EACH_EDGE (e, ei, bb->preds)
898 if (e->src == ENTRY_BLOCK_PTR)
899 continue;
901 node = e->src->index;
903 if (max_hdr[node] == loop_head && node != bb->index)
905 /* This is a loop latch. */
906 queue[++tail] = node;
907 bitmap_set_bit (in_queue, node);
909 if (too_large (node, &num_bbs, &num_insns))
911 too_large_failure = 1;
912 break;
918 /* Now add all the blocks in the loop to the queue.
920 We know the loop is a natural loop; however the algorithm
921 above will not always mark certain blocks as being in the
922 loop. Consider:
923 node children
924 a b,c
926 c a,d
929 The algorithm in the DFS traversal may not mark B & D as part
930 of the loop (i.e. they will not have max_hdr set to A).
932 We know they can not be loop latches (else they would have
933 had max_hdr set since they'd have a backedge to a dominator
934 block). So we don't need them on the initial queue.
936 We know they are part of the loop because they are dominated
937 by the loop header and can be reached by a backwards walk of
938 the edges starting with nodes on the initial queue.
940 It is safe and desirable to include those nodes in the
941 loop/scheduling region. To do so we would need to decrease
942 the degree of a node if it is the target of a backedge
943 within the loop itself as the node is placed in the queue.
945 We do not do this because I'm not sure that the actual
946 scheduling code will properly handle this case. ?!? */
948 while (head < tail && !too_large_failure)
950 edge e;
951 child = queue[++head];
953 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->preds)
955 node = e->src->index;
957 /* See discussion above about nodes not marked as in
958 this loop during the initial DFS traversal. */
959 if (e->src == ENTRY_BLOCK_PTR
960 || max_hdr[node] != loop_head)
962 tail = -1;
963 break;
965 else if (!bitmap_bit_p (in_queue, node) && node != bb->index)
967 queue[++tail] = node;
968 bitmap_set_bit (in_queue, node);
970 if (too_large (node, &num_bbs, &num_insns))
972 too_large_failure = 1;
973 break;
979 if (tail >= 0 && !too_large_failure)
981 /* Place the loop header into list of region blocks. */
982 degree[bb->index] = -1;
983 rgn_bb_table[idx] = bb->index;
984 RGN_NR_BLOCKS (nr_regions) = num_bbs;
985 RGN_BLOCKS (nr_regions) = idx++;
986 RGN_DONT_CALC_DEPS (nr_regions) = 0;
987 RGN_HAS_REAL_EBB (nr_regions) = 0;
988 CONTAINING_RGN (bb->index) = nr_regions;
989 BLOCK_TO_BB (bb->index) = count = 0;
991 /* Remove blocks from queue[] when their in degree
992 becomes zero. Repeat until no blocks are left on the
993 list. This produces a topological list of blocks in
994 the region. */
995 while (tail >= 0)
997 if (head < 0)
998 head = tail;
999 child = queue[head];
1000 if (degree[child] == 0)
1002 edge e;
1004 degree[child] = -1;
1005 rgn_bb_table[idx++] = child;
1006 BLOCK_TO_BB (child) = ++count;
1007 CONTAINING_RGN (child) = nr_regions;
1008 queue[head] = queue[tail--];
1010 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->succs)
1011 if (e->dest != EXIT_BLOCK_PTR)
1012 --degree[e->dest->index];
1014 else
1015 --head;
1017 ++nr_regions;
1019 else if (extend_regions_p)
1021 /* Restore DEGREE. */
1022 int *t = degree;
1024 degree = degree1;
1025 degree1 = t;
1027 /* And force successors of BB to be region heads.
1028 This may provide several smaller regions instead
1029 of one too_large region. */
1030 FOR_EACH_EDGE (e, ei, bb->succs)
1031 if (e->dest != EXIT_BLOCK_PTR)
1032 bitmap_set_bit (extended_rgn_header, e->dest->index);
1036 free (queue);
1038 if (extend_regions_p)
1040 free (degree1);
1042 bitmap_ior (header, header, extended_rgn_header);
1043 sbitmap_free (extended_rgn_header);
1045 extend_rgns (degree, &idx, header, max_hdr);
1049 /* Any block that did not end up in a region is placed into a region
1050 by itself. */
1051 FOR_EACH_BB (bb)
1052 if (degree[bb->index] >= 0)
1054 rgn_bb_table[idx] = bb->index;
1055 RGN_NR_BLOCKS (nr_regions) = 1;
1056 RGN_BLOCKS (nr_regions) = idx++;
1057 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1058 RGN_HAS_REAL_EBB (nr_regions) = 0;
1059 CONTAINING_RGN (bb->index) = nr_regions++;
1060 BLOCK_TO_BB (bb->index) = 0;
1063 free (max_hdr);
1064 free (degree);
1065 free (stack);
1066 sbitmap_free (header);
1067 sbitmap_free (inner);
1068 sbitmap_free (in_queue);
1069 sbitmap_free (in_stack);
1073 /* Wrapper function.
1074 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1075 regions. Otherwise just call find_rgns_haifa. */
1076 static void
1077 find_rgns (void)
1079 if (sel_sched_p () && flag_sel_sched_pipelining)
1080 sel_find_rgns ();
1081 else
1082 haifa_find_rgns ();
1085 static int gather_region_statistics (int **);
1086 static void print_region_statistics (int *, int, int *, int);
1088 /* Calculate the histogram that shows the number of regions having the
1089 given number of basic blocks, and store it in the RSP array. Return
1090 the size of this array. */
1091 static int
1092 gather_region_statistics (int **rsp)
1094 int i, *a = 0, a_sz = 0;
1096 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1097 for (i = 0; i < nr_regions; i++)
1099 int nr_blocks = RGN_NR_BLOCKS (i);
1101 gcc_assert (nr_blocks >= 1);
1103 if (nr_blocks > a_sz)
1105 a = XRESIZEVEC (int, a, nr_blocks);
1107 a[a_sz++] = 0;
1108 while (a_sz != nr_blocks);
1111 a[nr_blocks - 1]++;
1114 *rsp = a;
1115 return a_sz;
1118 /* Print regions statistics. S1 and S2 denote the data before and after
1119 calling extend_rgns, respectively. */
1120 static void
1121 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1123 int i;
1125 /* We iterate until s2_sz because extend_rgns does not decrease
1126 the maximal region size. */
1127 for (i = 1; i < s2_sz; i++)
1129 int n1, n2;
1131 n2 = s2[i];
1133 if (n2 == 0)
1134 continue;
1136 if (i >= s1_sz)
1137 n1 = 0;
1138 else
1139 n1 = s1[i];
1141 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1142 "was %d + %d more\n", i + 1, n1, n2 - n1);
1146 /* Extend regions.
1147 DEGREE - Array of incoming edge count, considering only
1148 the edges, that don't have their sources in formed regions yet.
1149 IDXP - pointer to the next available index in rgn_bb_table.
1150 HEADER - set of all region heads.
1151 LOOP_HDR - mapping from block to the containing loop
1152 (two blocks can reside within one region if they have
1153 the same loop header). */
1154 void
1155 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1157 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1158 int nblocks = n_basic_blocks - NUM_FIXED_BLOCKS;
1160 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1162 max_hdr = XNEWVEC (int, last_basic_block);
1164 order = XNEWVEC (int, last_basic_block);
1165 post_order_compute (order, false, false);
1167 for (i = nblocks - 1; i >= 0; i--)
1169 int bbn = order[i];
1170 if (degree[bbn] >= 0)
1172 max_hdr[bbn] = bbn;
1173 rescan = 1;
1175 else
1176 /* This block already was processed in find_rgns. */
1177 max_hdr[bbn] = -1;
1180 /* The idea is to topologically walk through CFG in top-down order.
1181 During the traversal, if all the predecessors of a node are
1182 marked to be in the same region (they all have the same max_hdr),
1183 then current node is also marked to be a part of that region.
1184 Otherwise the node starts its own region.
1185 CFG should be traversed until no further changes are made. On each
1186 iteration the set of the region heads is extended (the set of those
1187 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1188 set of all basic blocks, thus the algorithm is guaranteed to
1189 terminate. */
1191 while (rescan && iter < max_iter)
1193 rescan = 0;
1195 for (i = nblocks - 1; i >= 0; i--)
1197 edge e;
1198 edge_iterator ei;
1199 int bbn = order[i];
1201 if (max_hdr[bbn] != -1 && !bitmap_bit_p (header, bbn))
1203 int hdr = -1;
1205 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->preds)
1207 int predn = e->src->index;
1209 if (predn != ENTRY_BLOCK
1210 /* If pred wasn't processed in find_rgns. */
1211 && max_hdr[predn] != -1
1212 /* And pred and bb reside in the same loop.
1213 (Or out of any loop). */
1214 && loop_hdr[bbn] == loop_hdr[predn])
1216 if (hdr == -1)
1217 /* Then bb extends the containing region of pred. */
1218 hdr = max_hdr[predn];
1219 else if (hdr != max_hdr[predn])
1220 /* Too bad, there are at least two predecessors
1221 that reside in different regions. Thus, BB should
1222 begin its own region. */
1224 hdr = bbn;
1225 break;
1228 else
1229 /* BB starts its own region. */
1231 hdr = bbn;
1232 break;
1236 if (hdr == bbn)
1238 /* If BB start its own region,
1239 update set of headers with BB. */
1240 bitmap_set_bit (header, bbn);
1241 rescan = 1;
1243 else
1244 gcc_assert (hdr != -1);
1246 max_hdr[bbn] = hdr;
1250 iter++;
1253 /* Statistics were gathered on the SPEC2000 package of tests with
1254 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1256 Statistics for SPECint:
1257 1 iteration : 1751 cases (38.7%)
1258 2 iterations: 2770 cases (61.3%)
1259 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1260 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1261 (We don't count single block regions here).
1263 Statistics for SPECfp:
1264 1 iteration : 621 cases (35.9%)
1265 2 iterations: 1110 cases (64.1%)
1266 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1267 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1268 (We don't count single block regions here).
1270 By default we do at most 2 iterations.
1271 This can be overridden with max-sched-extend-regions-iters parameter:
1272 0 - disable region extension,
1273 N > 0 - do at most N iterations. */
1275 if (sched_verbose && iter != 0)
1276 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1277 rescan ? "... failed" : "");
1279 if (!rescan && iter != 0)
1281 int *s1 = NULL, s1_sz = 0;
1283 /* Save the old statistics for later printout. */
1284 if (sched_verbose >= 6)
1285 s1_sz = gather_region_statistics (&s1);
1287 /* We have succeeded. Now assemble the regions. */
1288 for (i = nblocks - 1; i >= 0; i--)
1290 int bbn = order[i];
1292 if (max_hdr[bbn] == bbn)
1293 /* BBN is a region head. */
1295 edge e;
1296 edge_iterator ei;
1297 int num_bbs = 0, j, num_insns = 0, large;
1299 large = too_large (bbn, &num_bbs, &num_insns);
1301 degree[bbn] = -1;
1302 rgn_bb_table[idx] = bbn;
1303 RGN_BLOCKS (nr_regions) = idx++;
1304 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1305 RGN_HAS_REAL_EBB (nr_regions) = 0;
1306 CONTAINING_RGN (bbn) = nr_regions;
1307 BLOCK_TO_BB (bbn) = 0;
1309 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->succs)
1310 if (e->dest != EXIT_BLOCK_PTR)
1311 degree[e->dest->index]--;
1313 if (!large)
1314 /* Here we check whether the region is too_large. */
1315 for (j = i - 1; j >= 0; j--)
1317 int succn = order[j];
1318 if (max_hdr[succn] == bbn)
1320 if ((large = too_large (succn, &num_bbs, &num_insns)))
1321 break;
1325 if (large)
1326 /* If the region is too_large, then wrap every block of
1327 the region into single block region.
1328 Here we wrap region head only. Other blocks are
1329 processed in the below cycle. */
1331 RGN_NR_BLOCKS (nr_regions) = 1;
1332 nr_regions++;
1335 num_bbs = 1;
1337 for (j = i - 1; j >= 0; j--)
1339 int succn = order[j];
1341 if (max_hdr[succn] == bbn)
1342 /* This cycle iterates over all basic blocks, that
1343 are supposed to be in the region with head BBN,
1344 and wraps them into that region (or in single
1345 block region). */
1347 gcc_assert (degree[succn] == 0);
1349 degree[succn] = -1;
1350 rgn_bb_table[idx] = succn;
1351 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1352 CONTAINING_RGN (succn) = nr_regions;
1354 if (large)
1355 /* Wrap SUCCN into single block region. */
1357 RGN_BLOCKS (nr_regions) = idx;
1358 RGN_NR_BLOCKS (nr_regions) = 1;
1359 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1360 RGN_HAS_REAL_EBB (nr_regions) = 0;
1361 nr_regions++;
1364 idx++;
1366 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (succn)->succs)
1367 if (e->dest != EXIT_BLOCK_PTR)
1368 degree[e->dest->index]--;
1372 if (!large)
1374 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1375 nr_regions++;
1380 if (sched_verbose >= 6)
1382 int *s2, s2_sz;
1384 /* Get the new statistics and print the comparison with the
1385 one before calling this function. */
1386 s2_sz = gather_region_statistics (&s2);
1387 print_region_statistics (s1, s1_sz, s2, s2_sz);
1388 free (s1);
1389 free (s2);
1393 free (order);
1394 free (max_hdr);
1396 *idxp = idx;
1399 /* Functions for regions scheduling information. */
1401 /* Compute dominators, probability, and potential-split-edges of bb.
1402 Assume that these values were already computed for bb's predecessors. */
1404 static void
1405 compute_dom_prob_ps (int bb)
1407 edge_iterator in_ei;
1408 edge in_edge;
1410 /* We shouldn't have any real ebbs yet. */
1411 gcc_assert (ebb_head [bb] == bb + current_blocks);
1413 if (IS_RGN_ENTRY (bb))
1415 bitmap_set_bit (dom[bb], 0);
1416 prob[bb] = REG_BR_PROB_BASE;
1417 return;
1420 prob[bb] = 0;
1422 /* Initialize dom[bb] to '111..1'. */
1423 bitmap_ones (dom[bb]);
1425 FOR_EACH_EDGE (in_edge, in_ei, BASIC_BLOCK (BB_TO_BLOCK (bb))->preds)
1427 int pred_bb;
1428 edge out_edge;
1429 edge_iterator out_ei;
1431 if (in_edge->src == ENTRY_BLOCK_PTR)
1432 continue;
1434 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1435 bitmap_and (dom[bb], dom[bb], dom[pred_bb]);
1436 bitmap_ior (ancestor_edges[bb],
1437 ancestor_edges[bb], ancestor_edges[pred_bb]);
1439 bitmap_set_bit (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1441 bitmap_ior (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1443 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1444 bitmap_set_bit (pot_split[bb], EDGE_TO_BIT (out_edge));
1446 prob[bb] += ((prob[pred_bb] * in_edge->probability) / REG_BR_PROB_BASE);
1449 bitmap_set_bit (dom[bb], bb);
1450 bitmap_and_compl (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1452 if (sched_verbose >= 2)
1453 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1454 (100 * prob[bb]) / REG_BR_PROB_BASE);
1457 /* Functions for target info. */
1459 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1460 Note that bb_trg dominates bb_src. */
1462 static void
1463 split_edges (int bb_src, int bb_trg, edgelst *bl)
1465 sbitmap src = sbitmap_alloc (SBITMAP_SIZE (pot_split[bb_src]));
1466 bitmap_copy (src, pot_split[bb_src]);
1468 bitmap_and_compl (src, src, pot_split[bb_trg]);
1469 extract_edgelst (src, bl);
1470 sbitmap_free (src);
1473 /* Find the valid candidate-source-blocks for the target block TRG, compute
1474 their probability, and check if they are speculative or not.
1475 For speculative sources, compute their update-blocks and split-blocks. */
1477 static void
1478 compute_trg_info (int trg)
1480 candidate *sp;
1481 edgelst el = { NULL, 0 };
1482 int i, j, k, update_idx;
1483 basic_block block;
1484 sbitmap visited;
1485 edge_iterator ei;
1486 edge e;
1488 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1490 bblst_last = 0;
1491 /* bblst_table holds split blocks and update blocks for each block after
1492 the current one in the region. split blocks and update blocks are
1493 the TO blocks of region edges, so there can be at most rgn_nr_edges
1494 of them. */
1495 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1496 bblst_table = XNEWVEC (basic_block, bblst_size);
1498 edgelst_last = 0;
1499 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1501 /* Define some of the fields for the target bb as well. */
1502 sp = candidate_table + trg;
1503 sp->is_valid = 1;
1504 sp->is_speculative = 0;
1505 sp->src_prob = REG_BR_PROB_BASE;
1507 visited = sbitmap_alloc (last_basic_block);
1509 for (i = trg + 1; i < current_nr_blocks; i++)
1511 sp = candidate_table + i;
1513 sp->is_valid = IS_DOMINATED (i, trg);
1514 if (sp->is_valid)
1516 int tf = prob[trg], cf = prob[i];
1518 /* In CFGs with low probability edges TF can possibly be zero. */
1519 sp->src_prob = (tf ? ((cf * REG_BR_PROB_BASE) / tf) : 0);
1520 sp->is_valid = (sp->src_prob >= min_spec_prob);
1523 if (sp->is_valid)
1525 split_edges (i, trg, &el);
1526 sp->is_speculative = (el.nr_members) ? 1 : 0;
1527 if (sp->is_speculative && !flag_schedule_speculative)
1528 sp->is_valid = 0;
1531 if (sp->is_valid)
1533 /* Compute split blocks and store them in bblst_table.
1534 The TO block of every split edge is a split block. */
1535 sp->split_bbs.first_member = &bblst_table[bblst_last];
1536 sp->split_bbs.nr_members = el.nr_members;
1537 for (j = 0; j < el.nr_members; bblst_last++, j++)
1538 bblst_table[bblst_last] = el.first_member[j]->dest;
1539 sp->update_bbs.first_member = &bblst_table[bblst_last];
1541 /* Compute update blocks and store them in bblst_table.
1542 For every split edge, look at the FROM block, and check
1543 all out edges. For each out edge that is not a split edge,
1544 add the TO block to the update block list. This list can end
1545 up with a lot of duplicates. We need to weed them out to avoid
1546 overrunning the end of the bblst_table. */
1548 update_idx = 0;
1549 bitmap_clear (visited);
1550 for (j = 0; j < el.nr_members; j++)
1552 block = el.first_member[j]->src;
1553 FOR_EACH_EDGE (e, ei, block->succs)
1555 if (!bitmap_bit_p (visited, e->dest->index))
1557 for (k = 0; k < el.nr_members; k++)
1558 if (e == el.first_member[k])
1559 break;
1561 if (k >= el.nr_members)
1563 bblst_table[bblst_last++] = e->dest;
1564 bitmap_set_bit (visited, e->dest->index);
1565 update_idx++;
1570 sp->update_bbs.nr_members = update_idx;
1572 /* Make sure we didn't overrun the end of bblst_table. */
1573 gcc_assert (bblst_last <= bblst_size);
1575 else
1577 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1579 sp->is_speculative = 0;
1580 sp->src_prob = 0;
1584 sbitmap_free (visited);
1587 /* Free the computed target info. */
1588 static void
1589 free_trg_info (void)
1591 free (candidate_table);
1592 free (bblst_table);
1593 free (edgelst_table);
1596 /* Print candidates info, for debugging purposes. Callable from debugger. */
1598 DEBUG_FUNCTION void
1599 debug_candidate (int i)
1601 if (!candidate_table[i].is_valid)
1602 return;
1604 if (candidate_table[i].is_speculative)
1606 int j;
1607 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1609 fprintf (sched_dump, "split path: ");
1610 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1612 int b = candidate_table[i].split_bbs.first_member[j]->index;
1614 fprintf (sched_dump, " %d ", b);
1616 fprintf (sched_dump, "\n");
1618 fprintf (sched_dump, "update path: ");
1619 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1621 int b = candidate_table[i].update_bbs.first_member[j]->index;
1623 fprintf (sched_dump, " %d ", b);
1625 fprintf (sched_dump, "\n");
1627 else
1629 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1633 /* Print candidates info, for debugging purposes. Callable from debugger. */
1635 DEBUG_FUNCTION void
1636 debug_candidates (int trg)
1638 int i;
1640 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1641 BB_TO_BLOCK (trg), trg);
1642 for (i = trg + 1; i < current_nr_blocks; i++)
1643 debug_candidate (i);
1646 /* Functions for speculative scheduling. */
1648 static bitmap_head not_in_df;
1650 /* Return 0 if x is a set of a register alive in the beginning of one
1651 of the split-blocks of src, otherwise return 1. */
1653 static int
1654 check_live_1 (int src, rtx x)
1656 int i;
1657 int regno;
1658 rtx reg = SET_DEST (x);
1660 if (reg == 0)
1661 return 1;
1663 while (GET_CODE (reg) == SUBREG
1664 || GET_CODE (reg) == ZERO_EXTRACT
1665 || GET_CODE (reg) == STRICT_LOW_PART)
1666 reg = XEXP (reg, 0);
1668 if (GET_CODE (reg) == PARALLEL)
1670 int i;
1672 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1673 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1674 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1675 return 1;
1677 return 0;
1680 if (!REG_P (reg))
1681 return 1;
1683 regno = REGNO (reg);
1685 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1687 /* Global registers are assumed live. */
1688 return 0;
1690 else
1692 if (regno < FIRST_PSEUDO_REGISTER)
1694 /* Check for hard registers. */
1695 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1696 while (--j >= 0)
1698 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1700 basic_block b = candidate_table[src].split_bbs.first_member[i];
1701 int t = bitmap_bit_p (&not_in_df, b->index);
1703 /* We can have split blocks, that were recently generated.
1704 Such blocks are always outside current region. */
1705 gcc_assert (!t || (CONTAINING_RGN (b->index)
1706 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1708 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1709 return 0;
1713 else
1715 /* Check for pseudo registers. */
1716 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1718 basic_block b = candidate_table[src].split_bbs.first_member[i];
1719 int t = bitmap_bit_p (&not_in_df, b->index);
1721 gcc_assert (!t || (CONTAINING_RGN (b->index)
1722 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1724 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1725 return 0;
1730 return 1;
1733 /* If x is a set of a register R, mark that R is alive in the beginning
1734 of every update-block of src. */
1736 static void
1737 update_live_1 (int src, rtx x)
1739 int i;
1740 int regno;
1741 rtx reg = SET_DEST (x);
1743 if (reg == 0)
1744 return;
1746 while (GET_CODE (reg) == SUBREG
1747 || GET_CODE (reg) == ZERO_EXTRACT
1748 || GET_CODE (reg) == STRICT_LOW_PART)
1749 reg = XEXP (reg, 0);
1751 if (GET_CODE (reg) == PARALLEL)
1753 int i;
1755 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1756 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1757 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1759 return;
1762 if (!REG_P (reg))
1763 return;
1765 /* Global registers are always live, so the code below does not apply
1766 to them. */
1768 regno = REGNO (reg);
1770 if (! HARD_REGISTER_NUM_P (regno)
1771 || !global_regs[regno])
1773 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1775 basic_block b = candidate_table[src].update_bbs.first_member[i];
1777 if (HARD_REGISTER_NUM_P (regno))
1778 bitmap_set_range (df_get_live_in (b), regno,
1779 hard_regno_nregs[regno][GET_MODE (reg)]);
1780 else
1781 bitmap_set_bit (df_get_live_in (b), regno);
1786 /* Return 1 if insn can be speculatively moved from block src to trg,
1787 otherwise return 0. Called before first insertion of insn to
1788 ready-list or before the scheduling. */
1790 static int
1791 check_live (rtx insn, int src)
1793 /* Find the registers set by instruction. */
1794 if (GET_CODE (PATTERN (insn)) == SET
1795 || GET_CODE (PATTERN (insn)) == CLOBBER)
1796 return check_live_1 (src, PATTERN (insn));
1797 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1799 int j;
1800 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1801 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1802 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1803 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1804 return 0;
1806 return 1;
1809 return 1;
1812 /* Update the live registers info after insn was moved speculatively from
1813 block src to trg. */
1815 static void
1816 update_live (rtx insn, int src)
1818 /* Find the registers set by instruction. */
1819 if (GET_CODE (PATTERN (insn)) == SET
1820 || GET_CODE (PATTERN (insn)) == CLOBBER)
1821 update_live_1 (src, PATTERN (insn));
1822 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1824 int j;
1825 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1826 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1827 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1828 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1832 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1833 #define IS_REACHABLE(bb_from, bb_to) \
1834 (bb_from == bb_to \
1835 || IS_RGN_ENTRY (bb_from) \
1836 || (bitmap_bit_p (ancestor_edges[bb_to], \
1837 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK (BB_TO_BLOCK (bb_from)))))))
1839 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1841 static void
1842 set_spec_fed (rtx load_insn)
1844 sd_iterator_def sd_it;
1845 dep_t dep;
1847 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1848 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1849 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1852 /* On the path from the insn to load_insn_bb, find a conditional
1853 branch depending on insn, that guards the speculative load. */
1855 static int
1856 find_conditional_protection (rtx insn, int load_insn_bb)
1858 sd_iterator_def sd_it;
1859 dep_t dep;
1861 /* Iterate through DEF-USE forward dependences. */
1862 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1864 rtx next = DEP_CON (dep);
1866 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1867 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1868 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1869 && load_insn_bb != INSN_BB (next)
1870 && DEP_TYPE (dep) == REG_DEP_TRUE
1871 && (JUMP_P (next)
1872 || find_conditional_protection (next, load_insn_bb)))
1873 return 1;
1875 return 0;
1876 } /* find_conditional_protection */
1878 /* Returns 1 if the same insn1 that participates in the computation
1879 of load_insn's address is feeding a conditional branch that is
1880 guarding on load_insn. This is true if we find two DEF-USE
1881 chains:
1882 insn1 -> ... -> conditional-branch
1883 insn1 -> ... -> load_insn,
1884 and if a flow path exists:
1885 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1886 and if insn1 is on the path
1887 region-entry -> ... -> bb_trg -> ... load_insn.
1889 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1890 Locate the branch by following INSN_FORW_DEPS from insn1. */
1892 static int
1893 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1895 sd_iterator_def sd_it;
1896 dep_t dep;
1898 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1900 rtx insn1 = DEP_PRO (dep);
1902 /* Must be a DEF-USE dependence upon non-branch. */
1903 if (DEP_TYPE (dep) != REG_DEP_TRUE
1904 || JUMP_P (insn1))
1905 continue;
1907 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1908 if (INSN_BB (insn1) == bb_src
1909 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1910 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1911 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1912 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1913 continue;
1915 /* Now search for the conditional-branch. */
1916 if (find_conditional_protection (insn1, bb_src))
1917 return 1;
1919 /* Recursive step: search another insn1, "above" current insn1. */
1920 return is_conditionally_protected (insn1, bb_src, bb_trg);
1923 /* The chain does not exist. */
1924 return 0;
1925 } /* is_conditionally_protected */
1927 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1928 load_insn can move speculatively from bb_src to bb_trg. All the
1929 following must hold:
1931 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1932 (2) load_insn and load1 have a def-use dependence upon
1933 the same insn 'insn1'.
1934 (3) either load2 is in bb_trg, or:
1935 - there's only one split-block, and
1936 - load1 is on the escape path, and
1938 From all these we can conclude that the two loads access memory
1939 addresses that differ at most by a constant, and hence if moving
1940 load_insn would cause an exception, it would have been caused by
1941 load2 anyhow. */
1943 static int
1944 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1946 sd_iterator_def back_sd_it;
1947 dep_t back_dep;
1948 candidate *candp = candidate_table + bb_src;
1950 if (candp->split_bbs.nr_members != 1)
1951 /* Must have exactly one escape block. */
1952 return 0;
1954 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1956 rtx insn1 = DEP_PRO (back_dep);
1958 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1959 /* Found a DEF-USE dependence (insn1, load_insn). */
1961 sd_iterator_def fore_sd_it;
1962 dep_t fore_dep;
1964 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1966 rtx insn2 = DEP_CON (fore_dep);
1968 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1970 /* Found a DEF-USE dependence (insn1, insn2). */
1971 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1972 /* insn2 not guaranteed to be a 1 base reg load. */
1973 continue;
1975 if (INSN_BB (insn2) == bb_trg)
1976 /* insn2 is the similar load, in the target block. */
1977 return 1;
1979 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
1980 /* insn2 is a similar load, in a split-block. */
1981 return 1;
1987 /* Couldn't find a similar load. */
1988 return 0;
1989 } /* is_pfree */
1991 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1992 a load moved speculatively, or if load_insn is protected by
1993 a compare on load_insn's address). */
1995 static int
1996 is_prisky (rtx load_insn, int bb_src, int bb_trg)
1998 if (FED_BY_SPEC_LOAD (load_insn))
1999 return 1;
2001 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
2002 /* Dependence may 'hide' out of the region. */
2003 return 1;
2005 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2006 return 1;
2008 return 0;
2011 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2012 Return 1 if insn is exception-free (and the motion is valid)
2013 and 0 otherwise. */
2015 static int
2016 is_exception_free (rtx insn, int bb_src, int bb_trg)
2018 int insn_class = haifa_classify_insn (insn);
2020 /* Handle non-load insns. */
2021 switch (insn_class)
2023 case TRAP_FREE:
2024 return 1;
2025 case TRAP_RISKY:
2026 return 0;
2027 default:;
2030 /* Handle loads. */
2031 if (!flag_schedule_speculative_load)
2032 return 0;
2033 IS_LOAD_INSN (insn) = 1;
2034 switch (insn_class)
2036 case IFREE:
2037 return (1);
2038 case IRISKY:
2039 return 0;
2040 case PFREE_CANDIDATE:
2041 if (is_pfree (insn, bb_src, bb_trg))
2042 return 1;
2043 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2044 case PRISKY_CANDIDATE:
2045 if (!flag_schedule_speculative_load_dangerous
2046 || is_prisky (insn, bb_src, bb_trg))
2047 return 0;
2048 break;
2049 default:;
2052 return flag_schedule_speculative_load_dangerous;
2055 /* The number of insns from the current block scheduled so far. */
2056 static int sched_target_n_insns;
2057 /* The number of insns from the current block to be scheduled in total. */
2058 static int target_n_insns;
2059 /* The number of insns from the entire region scheduled so far. */
2060 static int sched_n_insns;
2062 /* Implementations of the sched_info functions for region scheduling. */
2063 static void init_ready_list (void);
2064 static int can_schedule_ready_p (rtx);
2065 static void begin_schedule_ready (rtx);
2066 static ds_t new_ready (rtx, ds_t);
2067 static int schedule_more_p (void);
2068 static const char *rgn_print_insn (const_rtx, int);
2069 static int rgn_rank (rtx, rtx);
2070 static void compute_jump_reg_dependencies (rtx, regset);
2072 /* Functions for speculative scheduling. */
2073 static void rgn_add_remove_insn (rtx, int);
2074 static void rgn_add_block (basic_block, basic_block);
2075 static void rgn_fix_recovery_cfg (int, int, int);
2076 static basic_block advance_target_bb (basic_block, rtx);
2078 /* Return nonzero if there are more insns that should be scheduled. */
2080 static int
2081 schedule_more_p (void)
2083 return sched_target_n_insns < target_n_insns;
2086 /* Add all insns that are initially ready to the ready list READY. Called
2087 once before scheduling a set of insns. */
2089 static void
2090 init_ready_list (void)
2092 rtx prev_head = current_sched_info->prev_head;
2093 rtx next_tail = current_sched_info->next_tail;
2094 int bb_src;
2095 rtx insn;
2097 target_n_insns = 0;
2098 sched_target_n_insns = 0;
2099 sched_n_insns = 0;
2101 /* Print debugging information. */
2102 if (sched_verbose >= 5)
2103 debug_rgn_dependencies (target_bb);
2105 /* Prepare current target block info. */
2106 if (current_nr_blocks > 1)
2107 compute_trg_info (target_bb);
2109 /* Initialize ready list with all 'ready' insns in target block.
2110 Count number of insns in the target block being scheduled. */
2111 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2113 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2114 TODO_SPEC (insn) = HARD_DEP;
2115 try_ready (insn);
2116 target_n_insns++;
2118 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2121 /* Add to ready list all 'ready' insns in valid source blocks.
2122 For speculative insns, check-live, exception-free, and
2123 issue-delay. */
2124 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2125 if (IS_VALID (bb_src))
2127 rtx src_head;
2128 rtx src_next_tail;
2129 rtx tail, head;
2131 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2132 &head, &tail);
2133 src_next_tail = NEXT_INSN (tail);
2134 src_head = head;
2136 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2137 if (INSN_P (insn))
2139 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2140 TODO_SPEC (insn) = HARD_DEP;
2141 try_ready (insn);
2146 /* Called after taking INSN from the ready list. Returns nonzero if this
2147 insn can be scheduled, nonzero if we should silently discard it. */
2149 static int
2150 can_schedule_ready_p (rtx insn)
2152 /* An interblock motion? */
2153 if (INSN_BB (insn) != target_bb
2154 && IS_SPECULATIVE_INSN (insn)
2155 && !check_live (insn, INSN_BB (insn)))
2156 return 0;
2157 else
2158 return 1;
2161 /* Updates counter and other information. Split from can_schedule_ready_p ()
2162 because when we schedule insn speculatively then insn passed to
2163 can_schedule_ready_p () differs from the one passed to
2164 begin_schedule_ready (). */
2165 static void
2166 begin_schedule_ready (rtx insn)
2168 /* An interblock motion? */
2169 if (INSN_BB (insn) != target_bb)
2171 if (IS_SPECULATIVE_INSN (insn))
2173 gcc_assert (check_live (insn, INSN_BB (insn)));
2175 update_live (insn, INSN_BB (insn));
2177 /* For speculative load, mark insns fed by it. */
2178 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2179 set_spec_fed (insn);
2181 nr_spec++;
2183 nr_inter++;
2185 else
2187 /* In block motion. */
2188 sched_target_n_insns++;
2190 sched_n_insns++;
2193 /* Called after INSN has all its hard dependencies resolved and the speculation
2194 of type TS is enough to overcome them all.
2195 Return nonzero if it should be moved to the ready list or the queue, or zero
2196 if we should silently discard it. */
2197 static ds_t
2198 new_ready (rtx next, ds_t ts)
2200 if (INSN_BB (next) != target_bb)
2202 int not_ex_free = 0;
2204 /* For speculative insns, before inserting to ready/queue,
2205 check live, exception-free, and issue-delay. */
2206 if (!IS_VALID (INSN_BB (next))
2207 || CANT_MOVE (next)
2208 || (IS_SPECULATIVE_INSN (next)
2209 && ((recog_memoized (next) >= 0
2210 && min_insn_conflict_delay (curr_state, next, next)
2211 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2212 || IS_SPECULATION_CHECK_P (next)
2213 || !check_live (next, INSN_BB (next))
2214 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2215 target_bb)))))
2217 if (not_ex_free
2218 /* We are here because is_exception_free () == false.
2219 But we possibly can handle that with control speculation. */
2220 && sched_deps_info->generate_spec_deps
2221 && spec_info->mask & BEGIN_CONTROL)
2223 ds_t new_ds;
2225 /* Add control speculation to NEXT's dependency type. */
2226 new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2228 /* Check if NEXT can be speculated with new dependency type. */
2229 if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2230 /* Here we got new control-speculative instruction. */
2231 ts = new_ds;
2232 else
2233 /* NEXT isn't ready yet. */
2234 ts = DEP_POSTPONED;
2236 else
2237 /* NEXT isn't ready yet. */
2238 ts = DEP_POSTPONED;
2242 return ts;
2245 /* Return a string that contains the insn uid and optionally anything else
2246 necessary to identify this insn in an output. It's valid to use a
2247 static buffer for this. The ALIGNED parameter should cause the string
2248 to be formatted so that multiple output lines will line up nicely. */
2250 static const char *
2251 rgn_print_insn (const_rtx insn, int aligned)
2253 static char tmp[80];
2255 if (aligned)
2256 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2257 else
2259 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2260 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2261 else
2262 sprintf (tmp, "%d", INSN_UID (insn));
2264 return tmp;
2267 /* Compare priority of two insns. Return a positive number if the second
2268 insn is to be preferred for scheduling, and a negative one if the first
2269 is to be preferred. Zero if they are equally good. */
2271 static int
2272 rgn_rank (rtx insn1, rtx insn2)
2274 /* Some comparison make sense in interblock scheduling only. */
2275 if (INSN_BB (insn1) != INSN_BB (insn2))
2277 int spec_val, prob_val;
2279 /* Prefer an inblock motion on an interblock motion. */
2280 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2281 return 1;
2282 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2283 return -1;
2285 /* Prefer a useful motion on a speculative one. */
2286 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2287 if (spec_val)
2288 return spec_val;
2290 /* Prefer a more probable (speculative) insn. */
2291 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2292 if (prob_val)
2293 return prob_val;
2295 return 0;
2298 /* NEXT is an instruction that depends on INSN (a backward dependence);
2299 return nonzero if we should include this dependence in priority
2300 calculations. */
2303 contributes_to_priority (rtx next, rtx insn)
2305 /* NEXT and INSN reside in one ebb. */
2306 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2309 /* INSN is a JUMP_INSN. Store the set of registers that must be
2310 considered as used by this jump in USED. */
2312 static void
2313 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2314 regset used ATTRIBUTE_UNUSED)
2316 /* Nothing to do here, since we postprocess jumps in
2317 add_branch_dependences. */
2320 /* This variable holds common_sched_info hooks and data relevant to
2321 the interblock scheduler. */
2322 static struct common_sched_info_def rgn_common_sched_info;
2325 /* This holds data for the dependence analysis relevant to
2326 the interblock scheduler. */
2327 static struct sched_deps_info_def rgn_sched_deps_info;
2329 /* This holds constant data used for initializing the above structure
2330 for the Haifa scheduler. */
2331 static const struct sched_deps_info_def rgn_const_sched_deps_info =
2333 compute_jump_reg_dependencies,
2334 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2335 0, 0, 0
2338 /* Same as above, but for the selective scheduler. */
2339 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2341 compute_jump_reg_dependencies,
2342 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2343 0, 0, 0
2346 /* Return true if scheduling INSN will trigger finish of scheduling
2347 current block. */
2348 static bool
2349 rgn_insn_finishes_block_p (rtx insn)
2351 if (INSN_BB (insn) == target_bb
2352 && sched_target_n_insns + 1 == target_n_insns)
2353 /* INSN is the last not-scheduled instruction in the current block. */
2354 return true;
2356 return false;
2359 /* Used in schedule_insns to initialize current_sched_info for scheduling
2360 regions (or single basic blocks). */
2362 static const struct haifa_sched_info rgn_const_sched_info =
2364 init_ready_list,
2365 can_schedule_ready_p,
2366 schedule_more_p,
2367 new_ready,
2368 rgn_rank,
2369 rgn_print_insn,
2370 contributes_to_priority,
2371 rgn_insn_finishes_block_p,
2373 NULL, NULL,
2374 NULL, NULL,
2375 0, 0,
2377 rgn_add_remove_insn,
2378 begin_schedule_ready,
2379 NULL,
2380 advance_target_bb,
2381 NULL, NULL,
2382 SCHED_RGN
2385 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2386 for the interblock scheduler frontend. */
2387 static struct haifa_sched_info rgn_sched_info;
2389 /* Returns maximum priority that an insn was assigned to. */
2392 get_rgn_sched_max_insns_priority (void)
2394 return rgn_sched_info.sched_max_insns_priority;
2397 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2399 static bool
2400 sets_likely_spilled (rtx pat)
2402 bool ret = false;
2403 note_stores (pat, sets_likely_spilled_1, &ret);
2404 return ret;
2407 static void
2408 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2410 bool *ret = (bool *) data;
2412 if (GET_CODE (pat) == SET
2413 && REG_P (x)
2414 && HARD_REGISTER_P (x)
2415 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2416 *ret = true;
2419 /* A bitmap to note insns that participate in any dependency. Used in
2420 add_branch_dependences. */
2421 static sbitmap insn_referenced;
2423 /* Add dependences so that branches are scheduled to run last in their
2424 block. */
2425 static void
2426 add_branch_dependences (rtx head, rtx tail)
2428 rtx insn, last;
2430 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2431 that can throw exceptions, force them to remain in order at the end of
2432 the block by adding dependencies and giving the last a high priority.
2433 There may be notes present, and prev_head may also be a note.
2435 Branches must obviously remain at the end. Calls should remain at the
2436 end since moving them results in worse register allocation. Uses remain
2437 at the end to ensure proper register allocation.
2439 cc0 setters remain at the end because they can't be moved away from
2440 their cc0 user.
2442 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2444 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2445 values) are not moved before reload because we can wind up with register
2446 allocation failures. */
2448 while (tail != head && DEBUG_INSN_P (tail))
2449 tail = PREV_INSN (tail);
2451 insn = tail;
2452 last = 0;
2453 while (CALL_P (insn)
2454 || JUMP_P (insn)
2455 || (NONJUMP_INSN_P (insn)
2456 && (GET_CODE (PATTERN (insn)) == USE
2457 || GET_CODE (PATTERN (insn)) == CLOBBER
2458 || can_throw_internal (insn)
2459 #ifdef HAVE_cc0
2460 || sets_cc0_p (PATTERN (insn))
2461 #endif
2462 || (!reload_completed
2463 && sets_likely_spilled (PATTERN (insn)))))
2464 || NOTE_P (insn))
2466 if (!NOTE_P (insn))
2468 if (last != 0
2469 && sd_find_dep_between (insn, last, false) == NULL)
2471 if (! sched_insns_conditions_mutex_p (last, insn))
2472 add_dependence (last, insn, REG_DEP_ANTI);
2473 bitmap_set_bit (insn_referenced, INSN_LUID (insn));
2476 CANT_MOVE (insn) = 1;
2478 last = insn;
2481 /* Don't overrun the bounds of the basic block. */
2482 if (insn == head)
2483 break;
2486 insn = PREV_INSN (insn);
2487 while (insn != head && DEBUG_INSN_P (insn));
2490 /* Make sure these insns are scheduled last in their block. */
2491 insn = last;
2492 if (insn != 0)
2493 while (insn != head)
2495 insn = prev_nonnote_insn (insn);
2497 if (bitmap_bit_p (insn_referenced, INSN_LUID (insn))
2498 || DEBUG_INSN_P (insn))
2499 continue;
2501 if (! sched_insns_conditions_mutex_p (last, insn))
2502 add_dependence (last, insn, REG_DEP_ANTI);
2505 if (!targetm.have_conditional_execution ())
2506 return;
2508 /* Finally, if the block ends in a jump, and we are doing intra-block
2509 scheduling, make sure that the branch depends on any COND_EXEC insns
2510 inside the block to avoid moving the COND_EXECs past the branch insn.
2512 We only have to do this after reload, because (1) before reload there
2513 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2514 scheduler after reload.
2516 FIXME: We could in some cases move COND_EXEC insns past the branch if
2517 this scheduler would be a little smarter. Consider this code:
2519 T = [addr]
2520 C ? addr += 4
2521 !C ? X += 12
2522 C ? T += 1
2523 C ? jump foo
2525 On a target with a one cycle stall on a memory access the optimal
2526 sequence would be:
2528 T = [addr]
2529 C ? addr += 4
2530 C ? T += 1
2531 C ? jump foo
2532 !C ? X += 12
2534 We don't want to put the 'X += 12' before the branch because it just
2535 wastes a cycle of execution time when the branch is taken.
2537 Note that in the example "!C" will always be true. That is another
2538 possible improvement for handling COND_EXECs in this scheduler: it
2539 could remove always-true predicates. */
2541 if (!reload_completed || ! JUMP_P (tail))
2542 return;
2544 insn = tail;
2545 while (insn != head)
2547 insn = PREV_INSN (insn);
2549 /* Note that we want to add this dependency even when
2550 sched_insns_conditions_mutex_p returns true. The whole point
2551 is that we _want_ this dependency, even if these insns really
2552 are independent. */
2553 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2554 add_dependence (tail, insn, REG_DEP_ANTI);
2558 /* Data structures for the computation of data dependences in a regions. We
2559 keep one `deps' structure for every basic block. Before analyzing the
2560 data dependences for a bb, its variables are initialized as a function of
2561 the variables of its predecessors. When the analysis for a bb completes,
2562 we save the contents to the corresponding bb_deps[bb] variable. */
2564 static struct deps_desc *bb_deps;
2566 static void
2567 concat_insn_mem_list (rtx copy_insns, rtx copy_mems, rtx *old_insns_p,
2568 rtx *old_mems_p)
2570 rtx new_insns = *old_insns_p;
2571 rtx new_mems = *old_mems_p;
2573 while (copy_insns)
2575 new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
2576 new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
2577 copy_insns = XEXP (copy_insns, 1);
2578 copy_mems = XEXP (copy_mems, 1);
2581 *old_insns_p = new_insns;
2582 *old_mems_p = new_mems;
2585 /* Join PRED_DEPS to the SUCC_DEPS. */
2586 void
2587 deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
2589 unsigned reg;
2590 reg_set_iterator rsi;
2592 /* The reg_last lists are inherited by successor. */
2593 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2595 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2596 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2598 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2599 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2600 succ_rl->implicit_sets
2601 = concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2602 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2603 succ_rl->clobbers);
2604 succ_rl->uses_length += pred_rl->uses_length;
2605 succ_rl->clobbers_length += pred_rl->clobbers_length;
2607 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2609 /* Mem read/write lists are inherited by successor. */
2610 concat_insn_mem_list (pred_deps->pending_read_insns,
2611 pred_deps->pending_read_mems,
2612 &succ_deps->pending_read_insns,
2613 &succ_deps->pending_read_mems);
2614 concat_insn_mem_list (pred_deps->pending_write_insns,
2615 pred_deps->pending_write_mems,
2616 &succ_deps->pending_write_insns,
2617 &succ_deps->pending_write_mems);
2619 succ_deps->pending_jump_insns
2620 = concat_INSN_LIST (pred_deps->pending_jump_insns,
2621 succ_deps->pending_jump_insns);
2622 succ_deps->last_pending_memory_flush
2623 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2624 succ_deps->last_pending_memory_flush);
2626 succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2627 succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2628 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2630 /* last_function_call is inherited by successor. */
2631 succ_deps->last_function_call
2632 = concat_INSN_LIST (pred_deps->last_function_call,
2633 succ_deps->last_function_call);
2635 /* last_function_call_may_noreturn is inherited by successor. */
2636 succ_deps->last_function_call_may_noreturn
2637 = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2638 succ_deps->last_function_call_may_noreturn);
2640 /* sched_before_next_call is inherited by successor. */
2641 succ_deps->sched_before_next_call
2642 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2643 succ_deps->sched_before_next_call);
2646 /* After computing the dependencies for block BB, propagate the dependencies
2647 found in TMP_DEPS to the successors of the block. */
2648 static void
2649 propagate_deps (int bb, struct deps_desc *pred_deps)
2651 basic_block block = BASIC_BLOCK (BB_TO_BLOCK (bb));
2652 edge_iterator ei;
2653 edge e;
2655 /* bb's structures are inherited by its successors. */
2656 FOR_EACH_EDGE (e, ei, block->succs)
2658 /* Only bbs "below" bb, in the same region, are interesting. */
2659 if (e->dest == EXIT_BLOCK_PTR
2660 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2661 || BLOCK_TO_BB (e->dest->index) <= bb)
2662 continue;
2664 deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2667 /* These lists should point to the right place, for correct
2668 freeing later. */
2669 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2670 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2671 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2672 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2673 bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
2675 /* Can't allow these to be freed twice. */
2676 pred_deps->pending_read_insns = 0;
2677 pred_deps->pending_read_mems = 0;
2678 pred_deps->pending_write_insns = 0;
2679 pred_deps->pending_write_mems = 0;
2680 pred_deps->pending_jump_insns = 0;
2683 /* Compute dependences inside bb. In a multiple blocks region:
2684 (1) a bb is analyzed after its predecessors, and (2) the lists in
2685 effect at the end of bb (after analyzing for bb) are inherited by
2686 bb's successors.
2688 Specifically for reg-reg data dependences, the block insns are
2689 scanned by sched_analyze () top-to-bottom. Three lists are
2690 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2691 reg_last[].implicit_sets for implicit hard register DEFs, and
2692 reg_last[].uses for register USEs.
2694 When analysis is completed for bb, we update for its successors:
2695 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2696 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2697 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2699 The mechanism for computing mem-mem data dependence is very
2700 similar, and the result is interblock dependences in the region. */
2702 static void
2703 compute_block_dependences (int bb)
2705 rtx head, tail;
2706 struct deps_desc tmp_deps;
2708 tmp_deps = bb_deps[bb];
2710 /* Do the analysis for this block. */
2711 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2712 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2714 sched_analyze (&tmp_deps, head, tail);
2716 /* Selective scheduling handles control dependencies by itself. */
2717 if (!sel_sched_p ())
2718 add_branch_dependences (head, tail);
2720 if (current_nr_blocks > 1)
2721 propagate_deps (bb, &tmp_deps);
2723 /* Free up the INSN_LISTs. */
2724 free_deps (&tmp_deps);
2726 if (targetm.sched.dependencies_evaluation_hook)
2727 targetm.sched.dependencies_evaluation_hook (head, tail);
2730 /* Free dependencies of instructions inside BB. */
2731 static void
2732 free_block_dependencies (int bb)
2734 rtx head;
2735 rtx tail;
2737 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2739 if (no_real_insns_p (head, tail))
2740 return;
2742 sched_free_deps (head, tail, true);
2745 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2746 them to the unused_*_list variables, so that they can be reused. */
2748 static void
2749 free_pending_lists (void)
2751 int bb;
2753 for (bb = 0; bb < current_nr_blocks; bb++)
2755 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2756 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2757 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2758 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2759 free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
2763 /* Print dependences for debugging starting from FROM_BB.
2764 Callable from debugger. */
2765 /* Print dependences for debugging starting from FROM_BB.
2766 Callable from debugger. */
2767 DEBUG_FUNCTION void
2768 debug_rgn_dependencies (int from_bb)
2770 int bb;
2772 fprintf (sched_dump,
2773 ";; --------------- forward dependences: ------------ \n");
2775 for (bb = from_bb; bb < current_nr_blocks; bb++)
2777 rtx head, tail;
2779 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2780 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2781 BB_TO_BLOCK (bb), bb);
2783 debug_dependencies (head, tail);
2787 /* Print dependencies information for instructions between HEAD and TAIL.
2788 ??? This function would probably fit best in haifa-sched.c. */
2789 void debug_dependencies (rtx head, rtx tail)
2791 rtx insn;
2792 rtx next_tail = NEXT_INSN (tail);
2794 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2795 "insn", "code", "bb", "dep", "prio", "cost",
2796 "reservation");
2797 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2798 "----", "----", "--", "---", "----", "----",
2799 "-----------");
2801 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2803 if (! INSN_P (insn))
2805 int n;
2806 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2807 if (NOTE_P (insn))
2809 n = NOTE_KIND (insn);
2810 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2812 else
2813 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2814 continue;
2817 fprintf (sched_dump,
2818 ";; %s%5d%6d%6d%6d%6d%6d ",
2819 (SCHED_GROUP_P (insn) ? "+" : " "),
2820 INSN_UID (insn),
2821 INSN_CODE (insn),
2822 BLOCK_NUM (insn),
2823 sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2824 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2825 : INSN_PRIORITY (insn))
2826 : INSN_PRIORITY (insn)),
2827 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2828 : insn_cost (insn))
2829 : insn_cost (insn)));
2831 if (recog_memoized (insn) < 0)
2832 fprintf (sched_dump, "nothing");
2833 else
2834 print_reservation (sched_dump, insn);
2836 fprintf (sched_dump, "\t: ");
2838 sd_iterator_def sd_it;
2839 dep_t dep;
2841 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2842 fprintf (sched_dump, "%d%s%s ", INSN_UID (DEP_CON (dep)),
2843 DEP_NONREG (dep) ? "n" : "",
2844 DEP_MULTIPLE (dep) ? "m" : "");
2846 fprintf (sched_dump, "\n");
2849 fprintf (sched_dump, "\n");
2852 /* Returns true if all the basic blocks of the current region have
2853 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2854 bool
2855 sched_is_disabled_for_current_region_p (void)
2857 int bb;
2859 for (bb = 0; bb < current_nr_blocks; bb++)
2860 if (!(BASIC_BLOCK (BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2861 return false;
2863 return true;
2866 /* Free all region dependencies saved in INSN_BACK_DEPS and
2867 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2868 when scheduling, so this function is supposed to be called from
2869 the selective scheduling only. */
2870 void
2871 free_rgn_deps (void)
2873 int bb;
2875 for (bb = 0; bb < current_nr_blocks; bb++)
2877 rtx head, tail;
2879 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2880 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2882 sched_free_deps (head, tail, false);
2886 static int rgn_n_insns;
2888 /* Compute insn priority for a current region. */
2889 void
2890 compute_priorities (void)
2892 int bb;
2894 current_sched_info->sched_max_insns_priority = 0;
2895 for (bb = 0; bb < current_nr_blocks; bb++)
2897 rtx head, tail;
2899 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2900 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2902 if (no_real_insns_p (head, tail))
2903 continue;
2905 rgn_n_insns += set_priorities (head, tail);
2907 current_sched_info->sched_max_insns_priority++;
2910 /* (Re-)initialize the arrays of DFA states at the end of each basic block.
2912 SAVED_LAST_BASIC_BLOCK is the previous length of the arrays. It must be
2913 zero for the first call to this function, to allocate the arrays for the
2914 first time.
2916 This function is called once during initialization of the scheduler, and
2917 called again to resize the arrays if new basic blocks have been created,
2918 for example for speculation recovery code. */
2920 static void
2921 realloc_bb_state_array (int saved_last_basic_block)
2923 char *old_bb_state_array = bb_state_array;
2924 size_t lbb = (size_t) last_basic_block;
2925 size_t slbb = (size_t) saved_last_basic_block;
2927 /* Nothing to do if nothing changed since the last time this was called. */
2928 if (saved_last_basic_block == last_basic_block)
2929 return;
2931 /* The selective scheduler doesn't use the state arrays. */
2932 if (sel_sched_p ())
2934 gcc_assert (bb_state_array == NULL && bb_state == NULL);
2935 return;
2938 gcc_checking_assert (saved_last_basic_block == 0
2939 || (bb_state_array != NULL && bb_state != NULL));
2941 bb_state_array = XRESIZEVEC (char, bb_state_array, lbb * dfa_state_size);
2942 bb_state = XRESIZEVEC (state_t, bb_state, lbb);
2944 /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
2945 Otherwise only fixup the newly allocated ones. For the state
2946 array itself, only initialize the new entries. */
2947 bool bb_state_array_moved = (bb_state_array != old_bb_state_array);
2948 for (size_t i = bb_state_array_moved ? 0 : slbb; i < lbb; i++)
2949 bb_state[i] = (state_t) (bb_state_array + i * dfa_state_size);
2950 for (size_t i = slbb; i < lbb; i++)
2951 state_reset (bb_state[i]);
2954 /* Free the arrays of DFA states at the end of each basic block. */
2956 static void
2957 free_bb_state_array (void)
2959 free (bb_state_array);
2960 free (bb_state);
2961 bb_state_array = NULL;
2962 bb_state = NULL;
2965 /* Schedule a region. A region is either an inner loop, a loop-free
2966 subroutine, or a single basic block. Each bb in the region is
2967 scheduled after its flow predecessors. */
2969 static void
2970 schedule_region (int rgn)
2972 int bb;
2973 int sched_rgn_n_insns = 0;
2975 rgn_n_insns = 0;
2977 rgn_setup_region (rgn);
2979 /* Don't schedule region that is marked by
2980 NOTE_DISABLE_SCHED_OF_BLOCK. */
2981 if (sched_is_disabled_for_current_region_p ())
2982 return;
2984 sched_rgn_compute_dependencies (rgn);
2986 sched_rgn_local_init (rgn);
2988 /* Set priorities. */
2989 compute_priorities ();
2991 sched_extend_ready_list (rgn_n_insns);
2993 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2995 sched_init_region_reg_pressure_info ();
2996 for (bb = 0; bb < current_nr_blocks; bb++)
2998 basic_block first_bb, last_bb;
2999 rtx head, tail;
3001 first_bb = EBB_FIRST_BB (bb);
3002 last_bb = EBB_LAST_BB (bb);
3004 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3006 if (no_real_insns_p (head, tail))
3008 gcc_assert (first_bb == last_bb);
3009 continue;
3011 sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
3015 /* Now we can schedule all blocks. */
3016 for (bb = 0; bb < current_nr_blocks; bb++)
3018 basic_block first_bb, last_bb, curr_bb;
3019 rtx head, tail;
3021 first_bb = EBB_FIRST_BB (bb);
3022 last_bb = EBB_LAST_BB (bb);
3024 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3026 if (no_real_insns_p (head, tail))
3028 gcc_assert (first_bb == last_bb);
3029 continue;
3032 current_sched_info->prev_head = PREV_INSN (head);
3033 current_sched_info->next_tail = NEXT_INSN (tail);
3035 remove_notes (head, tail);
3037 unlink_bb_notes (first_bb, last_bb);
3039 target_bb = bb;
3041 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
3042 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
3044 curr_bb = first_bb;
3045 if (dbg_cnt (sched_block))
3047 edge f;
3048 int saved_last_basic_block = last_basic_block;
3050 schedule_block (&curr_bb, bb_state[first_bb->index]);
3051 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
3052 sched_rgn_n_insns += sched_n_insns;
3053 realloc_bb_state_array (saved_last_basic_block);
3054 f = find_fallthru_edge (last_bb->succs);
3055 if (f && f->probability * 100 / REG_BR_PROB_BASE >=
3056 PARAM_VALUE (PARAM_SCHED_STATE_EDGE_PROB_CUTOFF))
3058 memcpy (bb_state[f->dest->index], curr_state,
3059 dfa_state_size);
3060 if (sched_verbose >= 5)
3061 fprintf (sched_dump, "saving state for edge %d->%d\n",
3062 f->src->index, f->dest->index);
3065 else
3067 sched_rgn_n_insns += rgn_n_insns;
3070 /* Clean up. */
3071 if (current_nr_blocks > 1)
3072 free_trg_info ();
3075 /* Sanity check: verify that all region insns were scheduled. */
3076 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
3078 sched_finish_ready_list ();
3080 /* Done with this region. */
3081 sched_rgn_local_finish ();
3083 /* Free dependencies. */
3084 for (bb = 0; bb < current_nr_blocks; ++bb)
3085 free_block_dependencies (bb);
3087 gcc_assert (haifa_recovery_bb_ever_added_p
3088 || deps_pools_are_empty_p ());
3091 /* Initialize data structures for region scheduling. */
3093 void
3094 sched_rgn_init (bool single_blocks_p)
3096 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3097 / 100);
3099 nr_inter = 0;
3100 nr_spec = 0;
3102 extend_regions ();
3104 CONTAINING_RGN (ENTRY_BLOCK) = -1;
3105 CONTAINING_RGN (EXIT_BLOCK) = -1;
3107 realloc_bb_state_array (0);
3109 /* Compute regions for scheduling. */
3110 if (single_blocks_p
3111 || n_basic_blocks == NUM_FIXED_BLOCKS + 1
3112 || !flag_schedule_interblock
3113 || is_cfg_nonregular ())
3115 find_single_block_region (sel_sched_p ());
3117 else
3119 /* Compute the dominators and post dominators. */
3120 if (!sel_sched_p ())
3121 calculate_dominance_info (CDI_DOMINATORS);
3123 /* Find regions. */
3124 find_rgns ();
3126 if (sched_verbose >= 3)
3127 debug_regions ();
3129 /* For now. This will move as more and more of haifa is converted
3130 to using the cfg code. */
3131 if (!sel_sched_p ())
3132 free_dominance_info (CDI_DOMINATORS);
3135 gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks);
3137 RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3138 RGN_NR_BLOCKS (nr_regions - 1));
3141 /* Free data structures for region scheduling. */
3142 void
3143 sched_rgn_finish (void)
3145 free_bb_state_array ();
3147 /* Reposition the prologue and epilogue notes in case we moved the
3148 prologue/epilogue insns. */
3149 if (reload_completed)
3150 reposition_prologue_and_epilogue_notes ();
3152 if (sched_verbose)
3154 if (reload_completed == 0
3155 && flag_schedule_interblock)
3157 fprintf (sched_dump,
3158 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3159 nr_inter, nr_spec);
3161 else
3162 gcc_assert (nr_inter <= 0);
3163 fprintf (sched_dump, "\n\n");
3166 nr_regions = 0;
3168 free (rgn_table);
3169 rgn_table = NULL;
3171 free (rgn_bb_table);
3172 rgn_bb_table = NULL;
3174 free (block_to_bb);
3175 block_to_bb = NULL;
3177 free (containing_rgn);
3178 containing_rgn = NULL;
3180 free (ebb_head);
3181 ebb_head = NULL;
3184 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3185 point to the region RGN. */
3186 void
3187 rgn_setup_region (int rgn)
3189 int bb;
3191 /* Set variables for the current region. */
3192 current_nr_blocks = RGN_NR_BLOCKS (rgn);
3193 current_blocks = RGN_BLOCKS (rgn);
3195 /* EBB_HEAD is a region-scope structure. But we realloc it for
3196 each region to save time/memory/something else.
3197 See comments in add_block1, for what reasons we allocate +1 element. */
3198 ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3199 for (bb = 0; bb <= current_nr_blocks; bb++)
3200 ebb_head[bb] = current_blocks + bb;
3203 /* Compute instruction dependencies in region RGN. */
3204 void
3205 sched_rgn_compute_dependencies (int rgn)
3207 if (!RGN_DONT_CALC_DEPS (rgn))
3209 int bb;
3211 if (sel_sched_p ())
3212 sched_emulate_haifa_p = 1;
3214 init_deps_global ();
3216 /* Initializations for region data dependence analysis. */
3217 bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
3218 for (bb = 0; bb < current_nr_blocks; bb++)
3219 init_deps (bb_deps + bb, false);
3221 /* Initialize bitmap used in add_branch_dependences. */
3222 insn_referenced = sbitmap_alloc (sched_max_luid);
3223 bitmap_clear (insn_referenced);
3225 /* Compute backward dependencies. */
3226 for (bb = 0; bb < current_nr_blocks; bb++)
3227 compute_block_dependences (bb);
3229 sbitmap_free (insn_referenced);
3230 free_pending_lists ();
3231 finish_deps_global ();
3232 free (bb_deps);
3234 /* We don't want to recalculate this twice. */
3235 RGN_DONT_CALC_DEPS (rgn) = 1;
3237 if (sel_sched_p ())
3238 sched_emulate_haifa_p = 0;
3240 else
3241 /* (This is a recovery block. It is always a single block region.)
3242 OR (We use selective scheduling.) */
3243 gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3246 /* Init region data structures. Returns true if this region should
3247 not be scheduled. */
3248 void
3249 sched_rgn_local_init (int rgn)
3251 int bb;
3253 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3254 if (current_nr_blocks > 1)
3256 basic_block block;
3257 edge e;
3258 edge_iterator ei;
3260 prob = XNEWVEC (int, current_nr_blocks);
3262 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3263 bitmap_vector_clear (dom, current_nr_blocks);
3265 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3266 rgn_nr_edges = 0;
3267 FOR_EACH_BB (block)
3269 if (CONTAINING_RGN (block->index) != rgn)
3270 continue;
3271 FOR_EACH_EDGE (e, ei, block->succs)
3272 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3275 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3276 rgn_nr_edges = 0;
3277 FOR_EACH_BB (block)
3279 if (CONTAINING_RGN (block->index) != rgn)
3280 continue;
3281 FOR_EACH_EDGE (e, ei, block->succs)
3282 rgn_edges[rgn_nr_edges++] = e;
3285 /* Split edges. */
3286 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3287 bitmap_vector_clear (pot_split, current_nr_blocks);
3288 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3289 bitmap_vector_clear (ancestor_edges, current_nr_blocks);
3291 /* Compute probabilities, dominators, split_edges. */
3292 for (bb = 0; bb < current_nr_blocks; bb++)
3293 compute_dom_prob_ps (bb);
3295 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3296 /* We don't need them anymore. But we want to avoid duplication of
3297 aux fields in the newly created edges. */
3298 FOR_EACH_BB (block)
3300 if (CONTAINING_RGN (block->index) != rgn)
3301 continue;
3302 FOR_EACH_EDGE (e, ei, block->succs)
3303 e->aux = NULL;
3308 /* Free data computed for the finished region. */
3309 void
3310 sched_rgn_local_free (void)
3312 free (prob);
3313 sbitmap_vector_free (dom);
3314 sbitmap_vector_free (pot_split);
3315 sbitmap_vector_free (ancestor_edges);
3316 free (rgn_edges);
3319 /* Free data computed for the finished region. */
3320 void
3321 sched_rgn_local_finish (void)
3323 if (current_nr_blocks > 1 && !sel_sched_p ())
3325 sched_rgn_local_free ();
3329 /* Setup scheduler infos. */
3330 void
3331 rgn_setup_common_sched_info (void)
3333 memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3334 sizeof (rgn_common_sched_info));
3336 rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3337 rgn_common_sched_info.add_block = rgn_add_block;
3338 rgn_common_sched_info.estimate_number_of_insns
3339 = rgn_estimate_number_of_insns;
3340 rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3342 common_sched_info = &rgn_common_sched_info;
3345 /* Setup all *_sched_info structures (for the Haifa frontend
3346 and for the dependence analysis) in the interblock scheduler. */
3347 void
3348 rgn_setup_sched_infos (void)
3350 if (!sel_sched_p ())
3351 memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3352 sizeof (rgn_sched_deps_info));
3353 else
3354 memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3355 sizeof (rgn_sched_deps_info));
3357 sched_deps_info = &rgn_sched_deps_info;
3359 memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3360 current_sched_info = &rgn_sched_info;
3363 /* The one entry point in this file. */
3364 void
3365 schedule_insns (void)
3367 int rgn;
3369 /* Taking care of this degenerate case makes the rest of
3370 this code simpler. */
3371 if (n_basic_blocks == NUM_FIXED_BLOCKS)
3372 return;
3374 rgn_setup_common_sched_info ();
3375 rgn_setup_sched_infos ();
3377 haifa_sched_init ();
3378 sched_rgn_init (reload_completed);
3380 bitmap_initialize (&not_in_df, 0);
3381 bitmap_clear (&not_in_df);
3383 /* Schedule every region in the subroutine. */
3384 for (rgn = 0; rgn < nr_regions; rgn++)
3385 if (dbg_cnt (sched_region))
3386 schedule_region (rgn);
3388 /* Clean up. */
3389 sched_rgn_finish ();
3390 bitmap_clear (&not_in_df);
3392 haifa_sched_finish ();
3395 /* INSN has been added to/removed from current region. */
3396 static void
3397 rgn_add_remove_insn (rtx insn, int remove_p)
3399 if (!remove_p)
3400 rgn_n_insns++;
3401 else
3402 rgn_n_insns--;
3404 if (INSN_BB (insn) == target_bb)
3406 if (!remove_p)
3407 target_n_insns++;
3408 else
3409 target_n_insns--;
3413 /* Extend internal data structures. */
3414 void
3415 extend_regions (void)
3417 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks);
3418 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table, n_basic_blocks);
3419 block_to_bb = XRESIZEVEC (int, block_to_bb, last_basic_block);
3420 containing_rgn = XRESIZEVEC (int, containing_rgn, last_basic_block);
3423 void
3424 rgn_make_new_region_out_of_new_block (basic_block bb)
3426 int i;
3428 i = RGN_BLOCKS (nr_regions);
3429 /* I - first free position in rgn_bb_table. */
3431 rgn_bb_table[i] = bb->index;
3432 RGN_NR_BLOCKS (nr_regions) = 1;
3433 RGN_HAS_REAL_EBB (nr_regions) = 0;
3434 RGN_DONT_CALC_DEPS (nr_regions) = 0;
3435 CONTAINING_RGN (bb->index) = nr_regions;
3436 BLOCK_TO_BB (bb->index) = 0;
3438 nr_regions++;
3440 RGN_BLOCKS (nr_regions) = i + 1;
3443 /* BB was added to ebb after AFTER. */
3444 static void
3445 rgn_add_block (basic_block bb, basic_block after)
3447 extend_regions ();
3448 bitmap_set_bit (&not_in_df, bb->index);
3450 if (after == 0 || after == EXIT_BLOCK_PTR)
3452 rgn_make_new_region_out_of_new_block (bb);
3453 RGN_DONT_CALC_DEPS (nr_regions - 1) = (after == EXIT_BLOCK_PTR);
3455 else
3457 int i, pos;
3459 /* We need to fix rgn_table, block_to_bb, containing_rgn
3460 and ebb_head. */
3462 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3464 /* We extend ebb_head to one more position to
3465 easily find the last position of the last ebb in
3466 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3467 is _always_ valid for access. */
3469 i = BLOCK_TO_BB (after->index) + 1;
3470 pos = ebb_head[i] - 1;
3471 /* Now POS is the index of the last block in the region. */
3473 /* Find index of basic block AFTER. */
3474 for (; rgn_bb_table[pos] != after->index; pos--)
3477 pos++;
3478 gcc_assert (pos > ebb_head[i - 1]);
3480 /* i - ebb right after "AFTER". */
3481 /* ebb_head[i] - VALID. */
3483 /* Source position: ebb_head[i]
3484 Destination position: ebb_head[i] + 1
3485 Last position:
3486 RGN_BLOCKS (nr_regions) - 1
3487 Number of elements to copy: (last_position) - (source_position) + 1
3490 memmove (rgn_bb_table + pos + 1,
3491 rgn_bb_table + pos,
3492 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3493 * sizeof (*rgn_bb_table));
3495 rgn_bb_table[pos] = bb->index;
3497 for (; i <= current_nr_blocks; i++)
3498 ebb_head [i]++;
3500 i = CONTAINING_RGN (after->index);
3501 CONTAINING_RGN (bb->index) = i;
3503 RGN_HAS_REAL_EBB (i) = 1;
3505 for (++i; i <= nr_regions; i++)
3506 RGN_BLOCKS (i)++;
3510 /* Fix internal data after interblock movement of jump instruction.
3511 For parameter meaning please refer to
3512 sched-int.h: struct sched_info: fix_recovery_cfg. */
3513 static void
3514 rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3516 int old_pos, new_pos, i;
3518 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3520 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3521 rgn_bb_table[old_pos] != check_bb_nexti;
3522 old_pos--)
3524 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3526 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3527 rgn_bb_table[new_pos] != bbi;
3528 new_pos--)
3530 new_pos++;
3531 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3533 gcc_assert (new_pos < old_pos);
3535 memmove (rgn_bb_table + new_pos + 1,
3536 rgn_bb_table + new_pos,
3537 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3539 rgn_bb_table[new_pos] = check_bb_nexti;
3541 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3542 ebb_head[i]++;
3545 /* Return next block in ebb chain. For parameter meaning please refer to
3546 sched-int.h: struct sched_info: advance_target_bb. */
3547 static basic_block
3548 advance_target_bb (basic_block bb, rtx insn)
3550 if (insn)
3551 return 0;
3553 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3554 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3555 return bb->next_bb;
3558 #endif
3560 static bool
3561 gate_handle_sched (void)
3563 #ifdef INSN_SCHEDULING
3564 return optimize > 0 && flag_schedule_insns && dbg_cnt (sched_func);
3565 #else
3566 return 0;
3567 #endif
3570 /* Run instruction scheduler. */
3571 static unsigned int
3572 rest_of_handle_sched (void)
3574 #ifdef INSN_SCHEDULING
3575 if (flag_selective_scheduling
3576 && ! maybe_skip_selective_scheduling ())
3577 run_selective_scheduling ();
3578 else
3579 schedule_insns ();
3580 #endif
3581 return 0;
3584 static bool
3585 gate_handle_sched2 (void)
3587 #ifdef INSN_SCHEDULING
3588 return optimize > 0 && flag_schedule_insns_after_reload
3589 && !targetm.delay_sched2 && dbg_cnt (sched2_func);
3590 #else
3591 return 0;
3592 #endif
3595 /* Run second scheduling pass after reload. */
3596 static unsigned int
3597 rest_of_handle_sched2 (void)
3599 #ifdef INSN_SCHEDULING
3600 if (flag_selective_scheduling2
3601 && ! maybe_skip_selective_scheduling ())
3602 run_selective_scheduling ();
3603 else
3605 /* Do control and data sched analysis again,
3606 and write some more of the results to dump file. */
3607 if (flag_sched2_use_superblocks)
3608 schedule_ebbs ();
3609 else
3610 schedule_insns ();
3612 #endif
3613 return 0;
3616 struct rtl_opt_pass pass_sched =
3619 RTL_PASS,
3620 "sched1", /* name */
3621 OPTGROUP_NONE, /* optinfo_flags */
3622 gate_handle_sched, /* gate */
3623 rest_of_handle_sched, /* execute */
3624 NULL, /* sub */
3625 NULL, /* next */
3626 0, /* static_pass_number */
3627 TV_SCHED, /* tv_id */
3628 0, /* properties_required */
3629 0, /* properties_provided */
3630 0, /* properties_destroyed */
3631 0, /* todo_flags_start */
3632 TODO_df_finish | TODO_verify_rtl_sharing |
3633 TODO_verify_flow |
3634 TODO_ggc_collect /* todo_flags_finish */
3638 struct rtl_opt_pass pass_sched2 =
3641 RTL_PASS,
3642 "sched2", /* name */
3643 OPTGROUP_NONE, /* optinfo_flags */
3644 gate_handle_sched2, /* gate */
3645 rest_of_handle_sched2, /* execute */
3646 NULL, /* sub */
3647 NULL, /* next */
3648 0, /* static_pass_number */
3649 TV_SCHED2, /* tv_id */
3650 0, /* properties_required */
3651 0, /* properties_provided */
3652 0, /* properties_destroyed */
3653 0, /* todo_flags_start */
3654 TODO_df_finish | TODO_verify_rtl_sharing |
3655 TODO_verify_flow |
3656 TODO_ggc_collect /* todo_flags_finish */