Remove redundant variable in hash_set.
[official-gcc.git] / gcc / haifa-sched.c
blob40350eb9b503e94f9d8eab89fff032ff1c908f32
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
57 The following list shows the order in which we want to break ties
58 among insns in the ready list:
60 1. choose insn with the longest path to end of bb, ties
61 broken by
62 2. choose insn with least contribution to register pressure,
63 ties broken by
64 3. prefer in-block upon interblock motion, ties broken by
65 4. prefer useful upon speculative motion, ties broken by
66 5. choose insn with largest control flow probability, ties
67 broken by
68 6. choose insn with the least dependences upon the previously
69 scheduled insn, or finally
70 7 choose the insn which has the most insns dependent on it.
71 8. choose insn with lowest UID.
73 Memory references complicate matters. Only if we can be certain
74 that memory references are not part of the data dependency graph
75 (via true, anti, or output dependence), can we move operations past
76 memory references. To first approximation, reads can be done
77 independently, while writes introduce dependencies. Better
78 approximations will yield fewer dependencies.
80 Before reload, an extended analysis of interblock data dependences
81 is required for interblock scheduling. This is performed in
82 compute_block_backward_dependences ().
84 Dependencies set up by memory references are treated in exactly the
85 same way as other dependencies, by using insn backward dependences
86 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
87 INSN_FORW_DEPS the purpose of forward list scheduling.
89 Having optimized the critical path, we may have also unduly
90 extended the lifetimes of some registers. If an operation requires
91 that constants be loaded into registers, it is certainly desirable
92 to load those constants as early as necessary, but no earlier.
93 I.e., it will not do to load up a bunch of registers at the
94 beginning of a basic block only to use them at the end, if they
95 could be loaded later, since this may result in excessive register
96 utilization.
98 Note that since branches are never in basic blocks, but only end
99 basic blocks, this pass will not move branches. But that is ok,
100 since we can use GNU's delayed branch scheduling pass to take care
101 of this case.
103 Also note that no further optimizations based on algebraic
104 identities are performed, so this pass would be a good one to
105 perform instruction splitting, such as breaking up a multiply
106 instruction into shifts and adds where that is profitable.
108 Given the memory aliasing analysis that this pass should perform,
109 it should be possible to remove redundant stores to memory, and to
110 load values from registers instead of hitting memory.
112 Before reload, speculative insns are moved only if a 'proof' exists
113 that no exception will be caused by this, and if no live registers
114 exist that inhibit the motion (live registers constraints are not
115 represented by data dependence edges).
117 This pass must update information that subsequent passes expect to
118 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
119 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
121 The information in the line number notes is carefully retained by
122 this pass. Notes that refer to the starting and ending of
123 exception regions are also carefully retained by this pass. All
124 other NOTE insns are grouped in their same relative order at the
125 beginning of basic blocks and regions that have been scheduled. */
127 #include "config.h"
128 #include "system.h"
129 #include "coretypes.h"
130 #include "tm.h"
131 #include "diagnostic-core.h"
132 #include "hard-reg-set.h"
133 #include "rtl.h"
134 #include "tm_p.h"
135 #include "regs.h"
136 #include "function.h"
137 #include "flags.h"
138 #include "insn-config.h"
139 #include "insn-attr.h"
140 #include "except.h"
141 #include "recog.h"
142 #include "sched-int.h"
143 #include "target.h"
144 #include "common/common-target.h"
145 #include "params.h"
146 #include "dbgcnt.h"
147 #include "cfgloop.h"
148 #include "ira.h"
149 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
150 #include "hashtab.h"
151 #include "dumpfile.h"
153 #ifdef INSN_SCHEDULING
155 /* issue_rate is the number of insns that can be scheduled in the same
156 machine cycle. It can be defined in the config/mach/mach.h file,
157 otherwise we set it to 1. */
159 int issue_rate;
161 /* This can be set to true by a backend if the scheduler should not
162 enable a DCE pass. */
163 bool sched_no_dce;
165 /* The current initiation interval used when modulo scheduling. */
166 static int modulo_ii;
168 /* The maximum number of stages we are prepared to handle. */
169 static int modulo_max_stages;
171 /* The number of insns that exist in each iteration of the loop. We use this
172 to detect when we've scheduled all insns from the first iteration. */
173 static int modulo_n_insns;
175 /* The current count of insns in the first iteration of the loop that have
176 already been scheduled. */
177 static int modulo_insns_scheduled;
179 /* The maximum uid of insns from the first iteration of the loop. */
180 static int modulo_iter0_max_uid;
182 /* The number of times we should attempt to backtrack when modulo scheduling.
183 Decreased each time we have to backtrack. */
184 static int modulo_backtracks_left;
186 /* The stage in which the last insn from the original loop was
187 scheduled. */
188 static int modulo_last_stage;
190 /* sched-verbose controls the amount of debugging output the
191 scheduler prints. It is controlled by -fsched-verbose=N:
192 N>0 and no -DSR : the output is directed to stderr.
193 N>=10 will direct the printouts to stderr (regardless of -dSR).
194 N=1: same as -dSR.
195 N=2: bb's probabilities, detailed ready list info, unit/insn info.
196 N=3: rtl at abort point, control-flow, regions info.
197 N=5: dependences info. */
199 int sched_verbose = 0;
201 /* Debugging file. All printouts are sent to dump, which is always set,
202 either to stderr, or to the dump listing file (-dRS). */
203 FILE *sched_dump = 0;
205 /* This is a placeholder for the scheduler parameters common
206 to all schedulers. */
207 struct common_sched_info_def *common_sched_info;
209 #define INSN_TICK(INSN) (HID (INSN)->tick)
210 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
211 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
212 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
213 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
214 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
215 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
216 /* Cached cost of the instruction. Use insn_cost to get cost of the
217 insn. -1 here means that the field is not initialized. */
218 #define INSN_COST(INSN) (HID (INSN)->cost)
220 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
221 then it should be recalculated from scratch. */
222 #define INVALID_TICK (-(max_insn_queue_index + 1))
223 /* The minimal value of the INSN_TICK of an instruction. */
224 #define MIN_TICK (-max_insn_queue_index)
226 /* List of important notes we must keep around. This is a pointer to the
227 last element in the list. */
228 rtx note_list;
230 static struct spec_info_def spec_info_var;
231 /* Description of the speculative part of the scheduling.
232 If NULL - no speculation. */
233 spec_info_t spec_info = NULL;
235 /* True, if recovery block was added during scheduling of current block.
236 Used to determine, if we need to fix INSN_TICKs. */
237 static bool haifa_recovery_bb_recently_added_p;
239 /* True, if recovery block was added during this scheduling pass.
240 Used to determine if we should have empty memory pools of dependencies
241 after finishing current region. */
242 bool haifa_recovery_bb_ever_added_p;
244 /* Counters of different types of speculative instructions. */
245 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
247 /* Array used in {unlink, restore}_bb_notes. */
248 static rtx *bb_header = 0;
250 /* Basic block after which recovery blocks will be created. */
251 static basic_block before_recovery;
253 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
254 created it. */
255 basic_block after_recovery;
257 /* FALSE if we add bb to another region, so we don't need to initialize it. */
258 bool adding_bb_to_current_region_p = true;
260 /* Queues, etc. */
262 /* An instruction is ready to be scheduled when all insns preceding it
263 have already been scheduled. It is important to ensure that all
264 insns which use its result will not be executed until its result
265 has been computed. An insn is maintained in one of four structures:
267 (P) the "Pending" set of insns which cannot be scheduled until
268 their dependencies have been satisfied.
269 (Q) the "Queued" set of insns that can be scheduled when sufficient
270 time has passed.
271 (R) the "Ready" list of unscheduled, uncommitted insns.
272 (S) the "Scheduled" list of insns.
274 Initially, all insns are either "Pending" or "Ready" depending on
275 whether their dependencies are satisfied.
277 Insns move from the "Ready" list to the "Scheduled" list as they
278 are committed to the schedule. As this occurs, the insns in the
279 "Pending" list have their dependencies satisfied and move to either
280 the "Ready" list or the "Queued" set depending on whether
281 sufficient time has passed to make them ready. As time passes,
282 insns move from the "Queued" set to the "Ready" list.
284 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
285 unscheduled insns, i.e., those that are ready, queued, and pending.
286 The "Queued" set (Q) is implemented by the variable `insn_queue'.
287 The "Ready" list (R) is implemented by the variables `ready' and
288 `n_ready'.
289 The "Scheduled" list (S) is the new insn chain built by this pass.
291 The transition (R->S) is implemented in the scheduling loop in
292 `schedule_block' when the best insn to schedule is chosen.
293 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
294 insns move from the ready list to the scheduled list.
295 The transition (Q->R) is implemented in 'queue_to_insn' as time
296 passes or stalls are introduced. */
298 /* Implement a circular buffer to delay instructions until sufficient
299 time has passed. For the new pipeline description interface,
300 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
301 than maximal time of instruction execution computed by genattr.c on
302 the base maximal time of functional unit reservations and getting a
303 result. This is the longest time an insn may be queued. */
305 static rtx *insn_queue;
306 static int q_ptr = 0;
307 static int q_size = 0;
308 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
309 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
311 #define QUEUE_SCHEDULED (-3)
312 #define QUEUE_NOWHERE (-2)
313 #define QUEUE_READY (-1)
314 /* QUEUE_SCHEDULED - INSN is scheduled.
315 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
316 queue or ready list.
317 QUEUE_READY - INSN is in ready list.
318 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
320 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
322 /* The following variable value refers for all current and future
323 reservations of the processor units. */
324 state_t curr_state;
326 /* The following variable value is size of memory representing all
327 current and future reservations of the processor units. */
328 size_t dfa_state_size;
330 /* The following array is used to find the best insn from ready when
331 the automaton pipeline interface is used. */
332 char *ready_try = NULL;
334 /* The ready list. */
335 struct ready_list ready = {NULL, 0, 0, 0, 0};
337 /* The pointer to the ready list (to be removed). */
338 static struct ready_list *readyp = &ready;
340 /* Scheduling clock. */
341 static int clock_var;
343 /* Clock at which the previous instruction was issued. */
344 static int last_clock_var;
346 /* Set to true if, when queuing a shadow insn, we discover that it would be
347 scheduled too late. */
348 static bool must_backtrack;
350 /* The following variable value is number of essential insns issued on
351 the current cycle. An insn is essential one if it changes the
352 processors state. */
353 int cycle_issued_insns;
355 /* This records the actual schedule. It is built up during the main phase
356 of schedule_block, and afterwards used to reorder the insns in the RTL. */
357 static vec<rtx> scheduled_insns;
359 static int may_trap_exp (const_rtx, int);
361 /* Nonzero iff the address is comprised from at most 1 register. */
362 #define CONST_BASED_ADDRESS_P(x) \
363 (REG_P (x) \
364 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
365 || (GET_CODE (x) == LO_SUM)) \
366 && (CONSTANT_P (XEXP (x, 0)) \
367 || CONSTANT_P (XEXP (x, 1)))))
369 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
370 as found by analyzing insn's expression. */
373 static int haifa_luid_for_non_insn (rtx x);
375 /* Haifa version of sched_info hooks common to all headers. */
376 const struct common_sched_info_def haifa_common_sched_info =
378 NULL, /* fix_recovery_cfg */
379 NULL, /* add_block */
380 NULL, /* estimate_number_of_insns */
381 haifa_luid_for_non_insn, /* luid_for_non_insn */
382 SCHED_PASS_UNKNOWN /* sched_pass_id */
385 /* Mapping from instruction UID to its Logical UID. */
386 vec<int> sched_luids = vNULL;
388 /* Next LUID to assign to an instruction. */
389 int sched_max_luid = 1;
391 /* Haifa Instruction Data. */
392 vec<haifa_insn_data_def> h_i_d = vNULL;
394 void (* sched_init_only_bb) (basic_block, basic_block);
396 /* Split block function. Different schedulers might use different functions
397 to handle their internal data consistent. */
398 basic_block (* sched_split_block) (basic_block, rtx);
400 /* Create empty basic block after the specified block. */
401 basic_block (* sched_create_empty_bb) (basic_block);
403 /* Return the number of cycles until INSN is expected to be ready.
404 Return zero if it already is. */
405 static int
406 insn_delay (rtx insn)
408 return MAX (INSN_TICK (insn) - clock_var, 0);
411 static int
412 may_trap_exp (const_rtx x, int is_store)
414 enum rtx_code code;
416 if (x == 0)
417 return TRAP_FREE;
418 code = GET_CODE (x);
419 if (is_store)
421 if (code == MEM && may_trap_p (x))
422 return TRAP_RISKY;
423 else
424 return TRAP_FREE;
426 if (code == MEM)
428 /* The insn uses memory: a volatile load. */
429 if (MEM_VOLATILE_P (x))
430 return IRISKY;
431 /* An exception-free load. */
432 if (!may_trap_p (x))
433 return IFREE;
434 /* A load with 1 base register, to be further checked. */
435 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
436 return PFREE_CANDIDATE;
437 /* No info on the load, to be further checked. */
438 return PRISKY_CANDIDATE;
440 else
442 const char *fmt;
443 int i, insn_class = TRAP_FREE;
445 /* Neither store nor load, check if it may cause a trap. */
446 if (may_trap_p (x))
447 return TRAP_RISKY;
448 /* Recursive step: walk the insn... */
449 fmt = GET_RTX_FORMAT (code);
450 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
452 if (fmt[i] == 'e')
454 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
455 insn_class = WORST_CLASS (insn_class, tmp_class);
457 else if (fmt[i] == 'E')
459 int j;
460 for (j = 0; j < XVECLEN (x, i); j++)
462 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
463 insn_class = WORST_CLASS (insn_class, tmp_class);
464 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
465 break;
468 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
469 break;
471 return insn_class;
475 /* Classifies rtx X of an insn for the purpose of verifying that X can be
476 executed speculatively (and consequently the insn can be moved
477 speculatively), by examining X, returning:
478 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
479 TRAP_FREE: non-load insn.
480 IFREE: load from a globally safe location.
481 IRISKY: volatile load.
482 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
483 being either PFREE or PRISKY. */
485 static int
486 haifa_classify_rtx (const_rtx x)
488 int tmp_class = TRAP_FREE;
489 int insn_class = TRAP_FREE;
490 enum rtx_code code;
492 if (GET_CODE (x) == PARALLEL)
494 int i, len = XVECLEN (x, 0);
496 for (i = len - 1; i >= 0; i--)
498 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
499 insn_class = WORST_CLASS (insn_class, tmp_class);
500 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
501 break;
504 else
506 code = GET_CODE (x);
507 switch (code)
509 case CLOBBER:
510 /* Test if it is a 'store'. */
511 tmp_class = may_trap_exp (XEXP (x, 0), 1);
512 break;
513 case SET:
514 /* Test if it is a store. */
515 tmp_class = may_trap_exp (SET_DEST (x), 1);
516 if (tmp_class == TRAP_RISKY)
517 break;
518 /* Test if it is a load. */
519 tmp_class =
520 WORST_CLASS (tmp_class,
521 may_trap_exp (SET_SRC (x), 0));
522 break;
523 case COND_EXEC:
524 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
525 if (tmp_class == TRAP_RISKY)
526 break;
527 tmp_class = WORST_CLASS (tmp_class,
528 may_trap_exp (COND_EXEC_TEST (x), 0));
529 break;
530 case TRAP_IF:
531 tmp_class = TRAP_RISKY;
532 break;
533 default:;
535 insn_class = tmp_class;
538 return insn_class;
542 haifa_classify_insn (const_rtx insn)
544 return haifa_classify_rtx (PATTERN (insn));
547 /* After the scheduler initialization function has been called, this function
548 can be called to enable modulo scheduling. II is the initiation interval
549 we should use, it affects the delays for delay_pairs that were recorded as
550 separated by a given number of stages.
552 MAX_STAGES provides us with a limit
553 after which we give up scheduling; the caller must have unrolled at least
554 as many copies of the loop body and recorded delay_pairs for them.
556 INSNS is the number of real (non-debug) insns in one iteration of
557 the loop. MAX_UID can be used to test whether an insn belongs to
558 the first iteration of the loop; all of them have a uid lower than
559 MAX_UID. */
560 void
561 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
563 modulo_ii = ii;
564 modulo_max_stages = max_stages;
565 modulo_n_insns = insns;
566 modulo_iter0_max_uid = max_uid;
567 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
570 /* A structure to record a pair of insns where the first one is a real
571 insn that has delay slots, and the second is its delayed shadow.
572 I1 is scheduled normally and will emit an assembly instruction,
573 while I2 describes the side effect that takes place at the
574 transition between cycles CYCLES and (CYCLES + 1) after I1. */
575 struct delay_pair
577 struct delay_pair *next_same_i1;
578 rtx i1, i2;
579 int cycles;
580 /* When doing modulo scheduling, we a delay_pair can also be used to
581 show that I1 and I2 are the same insn in a different stage. If that
582 is the case, STAGES will be nonzero. */
583 int stages;
586 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
587 indexed by I2. */
588 static htab_t delay_htab;
589 static htab_t delay_htab_i2;
591 /* Called through htab_traverse. Walk the hashtable using I2 as
592 index, and delete all elements involving an UID higher than
593 that pointed to by *DATA. */
594 static int
595 htab_i2_traverse (void **slot, void *data)
597 int maxuid = *(int *)data;
598 struct delay_pair *p = *(struct delay_pair **)slot;
599 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
601 htab_clear_slot (delay_htab_i2, slot);
603 return 1;
606 /* Called through htab_traverse. Walk the hashtable using I2 as
607 index, and delete all elements involving an UID higher than
608 that pointed to by *DATA. */
609 static int
610 htab_i1_traverse (void **slot, void *data)
612 int maxuid = *(int *)data;
613 struct delay_pair **pslot = (struct delay_pair **)slot;
614 struct delay_pair *p, *first, **pprev;
616 if (INSN_UID ((*pslot)->i1) >= maxuid)
618 htab_clear_slot (delay_htab, slot);
619 return 1;
621 pprev = &first;
622 for (p = *pslot; p; p = p->next_same_i1)
624 if (INSN_UID (p->i2) < maxuid)
626 *pprev = p;
627 pprev = &p->next_same_i1;
630 *pprev = NULL;
631 if (first == NULL)
632 htab_clear_slot (delay_htab, slot);
633 else
634 *pslot = first;
635 return 1;
638 /* Discard all delay pairs which involve an insn with an UID higher
639 than MAX_UID. */
640 void
641 discard_delay_pairs_above (int max_uid)
643 htab_traverse (delay_htab, htab_i1_traverse, &max_uid);
644 htab_traverse (delay_htab_i2, htab_i2_traverse, &max_uid);
647 /* Returns a hash value for X (which really is a delay_pair), based on
648 hashing just I1. */
649 static hashval_t
650 delay_hash_i1 (const void *x)
652 return htab_hash_pointer (((const struct delay_pair *) x)->i1);
655 /* Returns a hash value for X (which really is a delay_pair), based on
656 hashing just I2. */
657 static hashval_t
658 delay_hash_i2 (const void *x)
660 return htab_hash_pointer (((const struct delay_pair *) x)->i2);
663 /* Return nonzero if I1 of pair X is the same as that of pair Y. */
664 static int
665 delay_i1_eq (const void *x, const void *y)
667 return ((const struct delay_pair *) x)->i1 == y;
670 /* Return nonzero if I2 of pair X is the same as that of pair Y. */
671 static int
672 delay_i2_eq (const void *x, const void *y)
674 return ((const struct delay_pair *) x)->i2 == y;
677 /* This function can be called by a port just before it starts the final
678 scheduling pass. It records the fact that an instruction with delay
679 slots has been split into two insns, I1 and I2. The first one will be
680 scheduled normally and initiates the operation. The second one is a
681 shadow which must follow a specific number of cycles after I1; its only
682 purpose is to show the side effect that occurs at that cycle in the RTL.
683 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
684 while I2 retains the original insn type.
686 There are two ways in which the number of cycles can be specified,
687 involving the CYCLES and STAGES arguments to this function. If STAGES
688 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
689 which is multiplied by MODULO_II to give the number of cycles. This is
690 only useful if the caller also calls set_modulo_params to enable modulo
691 scheduling. */
693 void
694 record_delay_slot_pair (rtx i1, rtx i2, int cycles, int stages)
696 struct delay_pair *p = XNEW (struct delay_pair);
697 struct delay_pair **slot;
699 p->i1 = i1;
700 p->i2 = i2;
701 p->cycles = cycles;
702 p->stages = stages;
704 if (!delay_htab)
706 delay_htab = htab_create (10, delay_hash_i1, delay_i1_eq, NULL);
707 delay_htab_i2 = htab_create (10, delay_hash_i2, delay_i2_eq, free);
709 slot = ((struct delay_pair **)
710 htab_find_slot_with_hash (delay_htab, i1, htab_hash_pointer (i1),
711 INSERT));
712 p->next_same_i1 = *slot;
713 *slot = p;
714 slot = ((struct delay_pair **)
715 htab_find_slot_with_hash (delay_htab_i2, i2, htab_hash_pointer (i2),
716 INSERT));
717 *slot = p;
720 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
721 and return the other insn if so. Return NULL otherwise. */
723 real_insn_for_shadow (rtx insn)
725 struct delay_pair *pair;
727 if (delay_htab == NULL)
728 return NULL_RTX;
730 pair
731 = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, insn,
732 htab_hash_pointer (insn));
733 if (!pair || pair->stages > 0)
734 return NULL_RTX;
735 return pair->i1;
738 /* For a pair P of insns, return the fixed distance in cycles from the first
739 insn after which the second must be scheduled. */
740 static int
741 pair_delay (struct delay_pair *p)
743 if (p->stages == 0)
744 return p->cycles;
745 else
746 return p->stages * modulo_ii;
749 /* Given an insn INSN, add a dependence on its delayed shadow if it
750 has one. Also try to find situations where shadows depend on each other
751 and add dependencies to the real insns to limit the amount of backtracking
752 needed. */
753 void
754 add_delay_dependencies (rtx insn)
756 struct delay_pair *pair;
757 sd_iterator_def sd_it;
758 dep_t dep;
760 if (!delay_htab)
761 return;
763 pair
764 = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, insn,
765 htab_hash_pointer (insn));
766 if (!pair)
767 return;
768 add_dependence (insn, pair->i1, REG_DEP_ANTI);
769 if (pair->stages)
770 return;
772 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
774 rtx pro = DEP_PRO (dep);
775 struct delay_pair *other_pair
776 = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, pro,
777 htab_hash_pointer (pro));
778 if (!other_pair || other_pair->stages)
779 continue;
780 if (pair_delay (other_pair) >= pair_delay (pair))
782 if (sched_verbose >= 4)
784 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
785 INSN_UID (other_pair->i1),
786 INSN_UID (pair->i1));
787 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
788 INSN_UID (pair->i1),
789 INSN_UID (pair->i2),
790 pair_delay (pair));
791 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
792 INSN_UID (other_pair->i1),
793 INSN_UID (other_pair->i2),
794 pair_delay (other_pair));
796 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
801 /* Forward declarations. */
803 static int priority (rtx);
804 static int rank_for_schedule (const void *, const void *);
805 static void swap_sort (rtx *, int);
806 static void queue_insn (rtx, int, const char *);
807 static int schedule_insn (rtx);
808 static void adjust_priority (rtx);
809 static void advance_one_cycle (void);
810 static void extend_h_i_d (void);
813 /* Notes handling mechanism:
814 =========================
815 Generally, NOTES are saved before scheduling and restored after scheduling.
816 The scheduler distinguishes between two types of notes:
818 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
819 Before scheduling a region, a pointer to the note is added to the insn
820 that follows or precedes it. (This happens as part of the data dependence
821 computation). After scheduling an insn, the pointer contained in it is
822 used for regenerating the corresponding note (in reemit_notes).
824 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
825 these notes are put in a list (in rm_other_notes() and
826 unlink_other_notes ()). After scheduling the block, these notes are
827 inserted at the beginning of the block (in schedule_block()). */
829 static void ready_add (struct ready_list *, rtx, bool);
830 static rtx ready_remove_first (struct ready_list *);
831 static rtx ready_remove_first_dispatch (struct ready_list *ready);
833 static void queue_to_ready (struct ready_list *);
834 static int early_queue_to_ready (state_t, struct ready_list *);
836 static void debug_ready_list (struct ready_list *);
838 /* The following functions are used to implement multi-pass scheduling
839 on the first cycle. */
840 static rtx ready_remove (struct ready_list *, int);
841 static void ready_remove_insn (rtx);
843 static void fix_inter_tick (rtx, rtx);
844 static int fix_tick_ready (rtx);
845 static void change_queue_index (rtx, int);
847 /* The following functions are used to implement scheduling of data/control
848 speculative instructions. */
850 static void extend_h_i_d (void);
851 static void init_h_i_d (rtx);
852 static int haifa_speculate_insn (rtx, ds_t, rtx *);
853 static void generate_recovery_code (rtx);
854 static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
855 static void begin_speculative_block (rtx);
856 static void add_to_speculative_block (rtx);
857 static void init_before_recovery (basic_block *);
858 static void create_check_block_twin (rtx, bool);
859 static void fix_recovery_deps (basic_block);
860 static bool haifa_change_pattern (rtx, rtx);
861 static void dump_new_block_header (int, basic_block, rtx, rtx);
862 static void restore_bb_notes (basic_block);
863 static void fix_jump_move (rtx);
864 static void move_block_after_check (rtx);
865 static void move_succs (vec<edge, va_gc> **, basic_block);
866 static void sched_remove_insn (rtx);
867 static void clear_priorities (rtx, rtx_vec_t *);
868 static void calc_priorities (rtx_vec_t);
869 static void add_jump_dependencies (rtx, rtx);
871 #endif /* INSN_SCHEDULING */
873 /* Point to state used for the current scheduling pass. */
874 struct haifa_sched_info *current_sched_info;
876 #ifndef INSN_SCHEDULING
877 void
878 schedule_insns (void)
881 #else
883 /* Do register pressure sensitive insn scheduling if the flag is set
884 up. */
885 enum sched_pressure_algorithm sched_pressure;
887 /* Map regno -> its pressure class. The map defined only when
888 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
889 enum reg_class *sched_regno_pressure_class;
891 /* The current register pressure. Only elements corresponding pressure
892 classes are defined. */
893 static int curr_reg_pressure[N_REG_CLASSES];
895 /* Saved value of the previous array. */
896 static int saved_reg_pressure[N_REG_CLASSES];
898 /* Register living at given scheduling point. */
899 static bitmap curr_reg_live;
901 /* Saved value of the previous array. */
902 static bitmap saved_reg_live;
904 /* Registers mentioned in the current region. */
905 static bitmap region_ref_regs;
907 /* Initiate register pressure relative info for scheduling the current
908 region. Currently it is only clearing register mentioned in the
909 current region. */
910 void
911 sched_init_region_reg_pressure_info (void)
913 bitmap_clear (region_ref_regs);
916 /* PRESSURE[CL] describes the pressure on register class CL. Update it
917 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
918 LIVE tracks the set of live registers; if it is null, assume that
919 every birth or death is genuine. */
920 static inline void
921 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
923 enum reg_class pressure_class;
925 pressure_class = sched_regno_pressure_class[regno];
926 if (regno >= FIRST_PSEUDO_REGISTER)
928 if (pressure_class != NO_REGS)
930 if (birth_p)
932 if (!live || bitmap_set_bit (live, regno))
933 pressure[pressure_class]
934 += (ira_reg_class_max_nregs
935 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
937 else
939 if (!live || bitmap_clear_bit (live, regno))
940 pressure[pressure_class]
941 -= (ira_reg_class_max_nregs
942 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
946 else if (pressure_class != NO_REGS
947 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
949 if (birth_p)
951 if (!live || bitmap_set_bit (live, regno))
952 pressure[pressure_class]++;
954 else
956 if (!live || bitmap_clear_bit (live, regno))
957 pressure[pressure_class]--;
962 /* Initiate current register pressure related info from living
963 registers given by LIVE. */
964 static void
965 initiate_reg_pressure_info (bitmap live)
967 int i;
968 unsigned int j;
969 bitmap_iterator bi;
971 for (i = 0; i < ira_pressure_classes_num; i++)
972 curr_reg_pressure[ira_pressure_classes[i]] = 0;
973 bitmap_clear (curr_reg_live);
974 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
975 if (sched_pressure == SCHED_PRESSURE_MODEL
976 || current_nr_blocks == 1
977 || bitmap_bit_p (region_ref_regs, j))
978 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
981 /* Mark registers in X as mentioned in the current region. */
982 static void
983 setup_ref_regs (rtx x)
985 int i, j, regno;
986 const RTX_CODE code = GET_CODE (x);
987 const char *fmt;
989 if (REG_P (x))
991 regno = REGNO (x);
992 if (HARD_REGISTER_NUM_P (regno))
993 bitmap_set_range (region_ref_regs, regno,
994 hard_regno_nregs[regno][GET_MODE (x)]);
995 else
996 bitmap_set_bit (region_ref_regs, REGNO (x));
997 return;
999 fmt = GET_RTX_FORMAT (code);
1000 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1001 if (fmt[i] == 'e')
1002 setup_ref_regs (XEXP (x, i));
1003 else if (fmt[i] == 'E')
1005 for (j = 0; j < XVECLEN (x, i); j++)
1006 setup_ref_regs (XVECEXP (x, i, j));
1010 /* Initiate current register pressure related info at the start of
1011 basic block BB. */
1012 static void
1013 initiate_bb_reg_pressure_info (basic_block bb)
1015 unsigned int i ATTRIBUTE_UNUSED;
1016 rtx insn;
1018 if (current_nr_blocks > 1)
1019 FOR_BB_INSNS (bb, insn)
1020 if (NONDEBUG_INSN_P (insn))
1021 setup_ref_regs (PATTERN (insn));
1022 initiate_reg_pressure_info (df_get_live_in (bb));
1023 #ifdef EH_RETURN_DATA_REGNO
1024 if (bb_has_eh_pred (bb))
1025 for (i = 0; ; ++i)
1027 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1029 if (regno == INVALID_REGNUM)
1030 break;
1031 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1032 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1033 regno, true);
1035 #endif
1038 /* Save current register pressure related info. */
1039 static void
1040 save_reg_pressure (void)
1042 int i;
1044 for (i = 0; i < ira_pressure_classes_num; i++)
1045 saved_reg_pressure[ira_pressure_classes[i]]
1046 = curr_reg_pressure[ira_pressure_classes[i]];
1047 bitmap_copy (saved_reg_live, curr_reg_live);
1050 /* Restore saved register pressure related info. */
1051 static void
1052 restore_reg_pressure (void)
1054 int i;
1056 for (i = 0; i < ira_pressure_classes_num; i++)
1057 curr_reg_pressure[ira_pressure_classes[i]]
1058 = saved_reg_pressure[ira_pressure_classes[i]];
1059 bitmap_copy (curr_reg_live, saved_reg_live);
1062 /* Return TRUE if the register is dying after its USE. */
1063 static bool
1064 dying_use_p (struct reg_use_data *use)
1066 struct reg_use_data *next;
1068 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1069 if (NONDEBUG_INSN_P (next->insn)
1070 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1071 return false;
1072 return true;
1075 /* Print info about the current register pressure and its excess for
1076 each pressure class. */
1077 static void
1078 print_curr_reg_pressure (void)
1080 int i;
1081 enum reg_class cl;
1083 fprintf (sched_dump, ";;\t");
1084 for (i = 0; i < ira_pressure_classes_num; i++)
1086 cl = ira_pressure_classes[i];
1087 gcc_assert (curr_reg_pressure[cl] >= 0);
1088 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1089 curr_reg_pressure[cl],
1090 curr_reg_pressure[cl] - ira_class_hard_regs_num[cl]);
1092 fprintf (sched_dump, "\n");
1095 /* Determine if INSN has a condition that is clobbered if a register
1096 in SET_REGS is modified. */
1097 static bool
1098 cond_clobbered_p (rtx insn, HARD_REG_SET set_regs)
1100 rtx pat = PATTERN (insn);
1101 gcc_assert (GET_CODE (pat) == COND_EXEC);
1102 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1104 sd_iterator_def sd_it;
1105 dep_t dep;
1106 haifa_change_pattern (insn, ORIG_PAT (insn));
1107 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1108 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1109 TODO_SPEC (insn) = HARD_DEP;
1110 if (sched_verbose >= 2)
1111 fprintf (sched_dump,
1112 ";;\t\tdequeue insn %s because of clobbered condition\n",
1113 (*current_sched_info->print_insn) (insn, 0));
1114 return true;
1117 return false;
1120 /* This function should be called after modifying the pattern of INSN,
1121 to update scheduler data structures as needed. */
1122 static void
1123 update_insn_after_change (rtx insn)
1125 sd_iterator_def sd_it;
1126 dep_t dep;
1128 dfa_clear_single_insn_cache (insn);
1130 sd_it = sd_iterator_start (insn,
1131 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1132 while (sd_iterator_cond (&sd_it, &dep))
1134 DEP_COST (dep) = UNKNOWN_DEP_COST;
1135 sd_iterator_next (&sd_it);
1138 /* Invalidate INSN_COST, so it'll be recalculated. */
1139 INSN_COST (insn) = -1;
1140 /* Invalidate INSN_TICK, so it'll be recalculated. */
1141 INSN_TICK (insn) = INVALID_TICK;
1145 /* Two VECs, one to hold dependencies for which pattern replacements
1146 need to be applied or restored at the start of the next cycle, and
1147 another to hold an integer that is either one, to apply the
1148 corresponding replacement, or zero to restore it. */
1149 static vec<dep_t> next_cycle_replace_deps;
1150 static vec<int> next_cycle_apply;
1152 static void apply_replacement (dep_t, bool);
1153 static void restore_pattern (dep_t, bool);
1155 /* Look at the remaining dependencies for insn NEXT, and compute and return
1156 the TODO_SPEC value we should use for it. This is called after one of
1157 NEXT's dependencies has been resolved.
1158 We also perform pattern replacements for predication, and for broken
1159 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1160 false. */
1162 static ds_t
1163 recompute_todo_spec (rtx next, bool for_backtrack)
1165 ds_t new_ds;
1166 sd_iterator_def sd_it;
1167 dep_t dep, modify_dep = NULL;
1168 int n_spec = 0;
1169 int n_control = 0;
1170 int n_replace = 0;
1171 bool first_p = true;
1173 if (sd_lists_empty_p (next, SD_LIST_BACK))
1174 /* NEXT has all its dependencies resolved. */
1175 return 0;
1177 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1178 return HARD_DEP;
1180 /* Now we've got NEXT with speculative deps only.
1181 1. Look at the deps to see what we have to do.
1182 2. Check if we can do 'todo'. */
1183 new_ds = 0;
1185 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1187 rtx pro = DEP_PRO (dep);
1188 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1190 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1191 continue;
1193 if (ds)
1195 n_spec++;
1196 if (first_p)
1198 first_p = false;
1200 new_ds = ds;
1202 else
1203 new_ds = ds_merge (new_ds, ds);
1205 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1207 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1209 n_control++;
1210 modify_dep = dep;
1212 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1214 else if (DEP_REPLACE (dep) != NULL)
1216 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1218 n_replace++;
1219 modify_dep = dep;
1221 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1225 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1227 if (!dbg_cnt (sched_breakdep))
1228 return HARD_DEP;
1229 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1231 struct dep_replacement *desc = DEP_REPLACE (dep);
1232 if (desc != NULL)
1234 if (desc->insn == next && !for_backtrack)
1236 gcc_assert (n_replace == 1);
1237 apply_replacement (dep, true);
1239 DEP_STATUS (dep) |= DEP_CANCELLED;
1242 return 0;
1245 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1247 rtx pro, other, new_pat;
1248 rtx cond = NULL_RTX;
1249 bool success;
1250 rtx prev = NULL_RTX;
1251 int i;
1252 unsigned regno;
1254 if ((current_sched_info->flags & DO_PREDICATION) == 0
1255 || (ORIG_PAT (next) != NULL_RTX
1256 && PREDICATED_PAT (next) == NULL_RTX))
1257 return HARD_DEP;
1259 pro = DEP_PRO (modify_dep);
1260 other = real_insn_for_shadow (pro);
1261 if (other != NULL_RTX)
1262 pro = other;
1264 cond = sched_get_reverse_condition_uncached (pro);
1265 regno = REGNO (XEXP (cond, 0));
1267 /* Find the last scheduled insn that modifies the condition register.
1268 We can stop looking once we find the insn we depend on through the
1269 REG_DEP_CONTROL; if the condition register isn't modified after it,
1270 we know that it still has the right value. */
1271 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1272 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1274 HARD_REG_SET t;
1276 find_all_hard_reg_sets (prev, &t);
1277 if (TEST_HARD_REG_BIT (t, regno))
1278 return HARD_DEP;
1279 if (prev == pro)
1280 break;
1282 if (ORIG_PAT (next) == NULL_RTX)
1284 ORIG_PAT (next) = PATTERN (next);
1286 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1287 success = haifa_change_pattern (next, new_pat);
1288 if (!success)
1289 return HARD_DEP;
1290 PREDICATED_PAT (next) = new_pat;
1292 else if (PATTERN (next) != PREDICATED_PAT (next))
1294 bool success = haifa_change_pattern (next,
1295 PREDICATED_PAT (next));
1296 gcc_assert (success);
1298 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1299 return DEP_CONTROL;
1302 if (PREDICATED_PAT (next) != NULL_RTX)
1304 int tick = INSN_TICK (next);
1305 bool success = haifa_change_pattern (next,
1306 ORIG_PAT (next));
1307 INSN_TICK (next) = tick;
1308 gcc_assert (success);
1311 /* We can't handle the case where there are both speculative and control
1312 dependencies, so we return HARD_DEP in such a case. Also fail if
1313 we have speculative dependencies with not enough points, or more than
1314 one control dependency. */
1315 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1316 || (n_spec > 0
1317 /* Too few points? */
1318 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1319 || n_control > 0
1320 || n_replace > 0)
1321 return HARD_DEP;
1323 return new_ds;
1326 /* Pointer to the last instruction scheduled. */
1327 static rtx last_scheduled_insn;
1329 /* Pointer to the last nondebug instruction scheduled within the
1330 block, or the prev_head of the scheduling block. Used by
1331 rank_for_schedule, so that insns independent of the last scheduled
1332 insn will be preferred over dependent instructions. */
1333 static rtx last_nondebug_scheduled_insn;
1335 /* Pointer that iterates through the list of unscheduled insns if we
1336 have a dbg_cnt enabled. It always points at an insn prior to the
1337 first unscheduled one. */
1338 static rtx nonscheduled_insns_begin;
1340 /* Compute cost of executing INSN.
1341 This is the number of cycles between instruction issue and
1342 instruction results. */
1344 insn_cost (rtx insn)
1346 int cost;
1348 if (sel_sched_p ())
1350 if (recog_memoized (insn) < 0)
1351 return 0;
1353 cost = insn_default_latency (insn);
1354 if (cost < 0)
1355 cost = 0;
1357 return cost;
1360 cost = INSN_COST (insn);
1362 if (cost < 0)
1364 /* A USE insn, or something else we don't need to
1365 understand. We can't pass these directly to
1366 result_ready_cost or insn_default_latency because it will
1367 trigger a fatal error for unrecognizable insns. */
1368 if (recog_memoized (insn) < 0)
1370 INSN_COST (insn) = 0;
1371 return 0;
1373 else
1375 cost = insn_default_latency (insn);
1376 if (cost < 0)
1377 cost = 0;
1379 INSN_COST (insn) = cost;
1383 return cost;
1386 /* Compute cost of dependence LINK.
1387 This is the number of cycles between instruction issue and
1388 instruction results.
1389 ??? We also use this function to call recog_memoized on all insns. */
1391 dep_cost_1 (dep_t link, dw_t dw)
1393 rtx insn = DEP_PRO (link);
1394 rtx used = DEP_CON (link);
1395 int cost;
1397 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1398 return DEP_COST (link);
1400 if (delay_htab)
1402 struct delay_pair *delay_entry;
1403 delay_entry
1404 = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, used,
1405 htab_hash_pointer (used));
1406 if (delay_entry)
1408 if (delay_entry->i1 == insn)
1410 DEP_COST (link) = pair_delay (delay_entry);
1411 return DEP_COST (link);
1416 /* A USE insn should never require the value used to be computed.
1417 This allows the computation of a function's result and parameter
1418 values to overlap the return and call. We don't care about the
1419 dependence cost when only decreasing register pressure. */
1420 if (recog_memoized (used) < 0)
1422 cost = 0;
1423 recog_memoized (insn);
1425 else
1427 enum reg_note dep_type = DEP_TYPE (link);
1429 cost = insn_cost (insn);
1431 if (INSN_CODE (insn) >= 0)
1433 if (dep_type == REG_DEP_ANTI)
1434 cost = 0;
1435 else if (dep_type == REG_DEP_OUTPUT)
1437 cost = (insn_default_latency (insn)
1438 - insn_default_latency (used));
1439 if (cost <= 0)
1440 cost = 1;
1442 else if (bypass_p (insn))
1443 cost = insn_latency (insn, used);
1447 if (targetm.sched.adjust_cost_2)
1448 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1449 dw);
1450 else if (targetm.sched.adjust_cost != NULL)
1452 /* This variable is used for backward compatibility with the
1453 targets. */
1454 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
1456 /* Make it self-cycled, so that if some tries to walk over this
1457 incomplete list he/she will be caught in an endless loop. */
1458 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1460 /* Targets use only REG_NOTE_KIND of the link. */
1461 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1463 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1464 insn, cost);
1466 free_INSN_LIST_node (dep_cost_rtx_link);
1469 if (cost < 0)
1470 cost = 0;
1473 DEP_COST (link) = cost;
1474 return cost;
1477 /* Compute cost of dependence LINK.
1478 This is the number of cycles between instruction issue and
1479 instruction results. */
1481 dep_cost (dep_t link)
1483 return dep_cost_1 (link, 0);
1486 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1487 INSN_PRIORITY explicitly. */
1488 void
1489 increase_insn_priority (rtx insn, int amount)
1491 if (!sel_sched_p ())
1493 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1494 if (INSN_PRIORITY_KNOWN (insn))
1495 INSN_PRIORITY (insn) += amount;
1497 else
1499 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1500 Use EXPR_PRIORITY instead. */
1501 sel_add_to_insn_priority (insn, amount);
1505 /* Return 'true' if DEP should be included in priority calculations. */
1506 static bool
1507 contributes_to_priority_p (dep_t dep)
1509 if (DEBUG_INSN_P (DEP_CON (dep))
1510 || DEBUG_INSN_P (DEP_PRO (dep)))
1511 return false;
1513 /* Critical path is meaningful in block boundaries only. */
1514 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1515 DEP_PRO (dep)))
1516 return false;
1518 if (DEP_REPLACE (dep) != NULL)
1519 return false;
1521 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1522 then speculative instructions will less likely be
1523 scheduled. That is because the priority of
1524 their producers will increase, and, thus, the
1525 producers will more likely be scheduled, thus,
1526 resolving the dependence. */
1527 if (sched_deps_info->generate_spec_deps
1528 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1529 && (DEP_STATUS (dep) & SPECULATIVE))
1530 return false;
1532 return true;
1535 /* Compute the number of nondebug deps in list LIST for INSN. */
1537 static int
1538 dep_list_size (rtx insn, sd_list_types_def list)
1540 sd_iterator_def sd_it;
1541 dep_t dep;
1542 int dbgcount = 0, nodbgcount = 0;
1544 if (!MAY_HAVE_DEBUG_INSNS)
1545 return sd_lists_size (insn, list);
1547 FOR_EACH_DEP (insn, list, sd_it, dep)
1549 if (DEBUG_INSN_P (DEP_CON (dep)))
1550 dbgcount++;
1551 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1552 nodbgcount++;
1555 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1557 return nodbgcount;
1560 /* Compute the priority number for INSN. */
1561 static int
1562 priority (rtx insn)
1564 if (! INSN_P (insn))
1565 return 0;
1567 /* We should not be interested in priority of an already scheduled insn. */
1568 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1570 if (!INSN_PRIORITY_KNOWN (insn))
1572 int this_priority = -1;
1574 if (dep_list_size (insn, SD_LIST_FORW) == 0)
1575 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1576 some forward deps but all of them are ignored by
1577 contributes_to_priority hook. At the moment we set priority of
1578 such insn to 0. */
1579 this_priority = insn_cost (insn);
1580 else
1582 rtx prev_first, twin;
1583 basic_block rec;
1585 /* For recovery check instructions we calculate priority slightly
1586 different than that of normal instructions. Instead of walking
1587 through INSN_FORW_DEPS (check) list, we walk through
1588 INSN_FORW_DEPS list of each instruction in the corresponding
1589 recovery block. */
1591 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1592 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1593 if (!rec || rec == EXIT_BLOCK_PTR)
1595 prev_first = PREV_INSN (insn);
1596 twin = insn;
1598 else
1600 prev_first = NEXT_INSN (BB_HEAD (rec));
1601 twin = PREV_INSN (BB_END (rec));
1606 sd_iterator_def sd_it;
1607 dep_t dep;
1609 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1611 rtx next;
1612 int next_priority;
1614 next = DEP_CON (dep);
1616 if (BLOCK_FOR_INSN (next) != rec)
1618 int cost;
1620 if (!contributes_to_priority_p (dep))
1621 continue;
1623 if (twin == insn)
1624 cost = dep_cost (dep);
1625 else
1627 struct _dep _dep1, *dep1 = &_dep1;
1629 init_dep (dep1, insn, next, REG_DEP_ANTI);
1631 cost = dep_cost (dep1);
1634 next_priority = cost + priority (next);
1636 if (next_priority > this_priority)
1637 this_priority = next_priority;
1641 twin = PREV_INSN (twin);
1643 while (twin != prev_first);
1646 if (this_priority < 0)
1648 gcc_assert (this_priority == -1);
1650 this_priority = insn_cost (insn);
1653 INSN_PRIORITY (insn) = this_priority;
1654 INSN_PRIORITY_STATUS (insn) = 1;
1657 return INSN_PRIORITY (insn);
1660 /* Macros and functions for keeping the priority queue sorted, and
1661 dealing with queuing and dequeuing of instructions. */
1663 #define SCHED_SORT(READY, N_READY) \
1664 do { if ((N_READY) == 2) \
1665 swap_sort (READY, N_READY); \
1666 else if ((N_READY) > 2) \
1667 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
1668 while (0)
1670 /* For each pressure class CL, set DEATH[CL] to the number of registers
1671 in that class that die in INSN. */
1673 static void
1674 calculate_reg_deaths (rtx insn, int *death)
1676 int i;
1677 struct reg_use_data *use;
1679 for (i = 0; i < ira_pressure_classes_num; i++)
1680 death[ira_pressure_classes[i]] = 0;
1681 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1682 if (dying_use_p (use))
1683 mark_regno_birth_or_death (0, death, use->regno, true);
1686 /* Setup info about the current register pressure impact of scheduling
1687 INSN at the current scheduling point. */
1688 static void
1689 setup_insn_reg_pressure_info (rtx insn)
1691 int i, change, before, after, hard_regno;
1692 int excess_cost_change;
1693 enum machine_mode mode;
1694 enum reg_class cl;
1695 struct reg_pressure_data *pressure_info;
1696 int *max_reg_pressure;
1697 static int death[N_REG_CLASSES];
1699 gcc_checking_assert (!DEBUG_INSN_P (insn));
1701 excess_cost_change = 0;
1702 calculate_reg_deaths (insn, death);
1703 pressure_info = INSN_REG_PRESSURE (insn);
1704 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1705 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1706 for (i = 0; i < ira_pressure_classes_num; i++)
1708 cl = ira_pressure_classes[i];
1709 gcc_assert (curr_reg_pressure[cl] >= 0);
1710 change = (int) pressure_info[i].set_increase - death[cl];
1711 before = MAX (0, max_reg_pressure[i] - ira_class_hard_regs_num[cl]);
1712 after = MAX (0, max_reg_pressure[i] + change
1713 - ira_class_hard_regs_num[cl]);
1714 hard_regno = ira_class_hard_regs[cl][0];
1715 gcc_assert (hard_regno >= 0);
1716 mode = reg_raw_mode[hard_regno];
1717 excess_cost_change += ((after - before)
1718 * (ira_memory_move_cost[mode][cl][0]
1719 + ira_memory_move_cost[mode][cl][1]));
1721 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1724 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1725 It tries to make the scheduler take register pressure into account
1726 without introducing too many unnecessary stalls. It hooks into the
1727 main scheduling algorithm at several points:
1729 - Before scheduling starts, model_start_schedule constructs a
1730 "model schedule" for the current block. This model schedule is
1731 chosen solely to keep register pressure down. It does not take the
1732 target's pipeline or the original instruction order into account,
1733 except as a tie-breaker. It also doesn't work to a particular
1734 pressure limit.
1736 This model schedule gives us an idea of what pressure can be
1737 achieved for the block and gives us an example of a schedule that
1738 keeps to that pressure. It also makes the final schedule less
1739 dependent on the original instruction order. This is important
1740 because the original order can either be "wide" (many values live
1741 at once, such as in user-scheduled code) or "narrow" (few values
1742 live at once, such as after loop unrolling, where several
1743 iterations are executed sequentially).
1745 We do not apply this model schedule to the rtx stream. We simply
1746 record it in model_schedule. We also compute the maximum pressure,
1747 MP, that was seen during this schedule.
1749 - Instructions are added to the ready queue even if they require
1750 a stall. The length of the stall is instead computed as:
1752 MAX (INSN_TICK (INSN) - clock_var, 0)
1754 (= insn_delay). This allows rank_for_schedule to choose between
1755 introducing a deliberate stall or increasing pressure.
1757 - Before sorting the ready queue, model_set_excess_costs assigns
1758 a pressure-based cost to each ready instruction in the queue.
1759 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1760 (ECC for short) and is effectively measured in cycles.
1762 - rank_for_schedule ranks instructions based on:
1764 ECC (insn) + insn_delay (insn)
1766 then as:
1768 insn_delay (insn)
1770 So, for example, an instruction X1 with an ECC of 1 that can issue
1771 now will win over an instruction X0 with an ECC of zero that would
1772 introduce a stall of one cycle. However, an instruction X2 with an
1773 ECC of 2 that can issue now will lose to both X0 and X1.
1775 - When an instruction is scheduled, model_recompute updates the model
1776 schedule with the new pressures (some of which might now exceed the
1777 original maximum pressure MP). model_update_limit_points then searches
1778 for the new point of maximum pressure, if not already known. */
1780 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1781 from surrounding debug information. */
1782 #define MODEL_BAR \
1783 ";;\t\t+------------------------------------------------------\n"
1785 /* Information about the pressure on a particular register class at a
1786 particular point of the model schedule. */
1787 struct model_pressure_data {
1788 /* The pressure at this point of the model schedule, or -1 if the
1789 point is associated with an instruction that has already been
1790 scheduled. */
1791 int ref_pressure;
1793 /* The maximum pressure during or after this point of the model schedule. */
1794 int max_pressure;
1797 /* Per-instruction information that is used while building the model
1798 schedule. Here, "schedule" refers to the model schedule rather
1799 than the main schedule. */
1800 struct model_insn_info {
1801 /* The instruction itself. */
1802 rtx insn;
1804 /* If this instruction is in model_worklist, these fields link to the
1805 previous (higher-priority) and next (lower-priority) instructions
1806 in the list. */
1807 struct model_insn_info *prev;
1808 struct model_insn_info *next;
1810 /* While constructing the schedule, QUEUE_INDEX describes whether an
1811 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1812 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1813 old_queue records the value that QUEUE_INDEX had before scheduling
1814 started, so that we can restore it once the schedule is complete. */
1815 int old_queue;
1817 /* The relative importance of an unscheduled instruction. Higher
1818 values indicate greater importance. */
1819 unsigned int model_priority;
1821 /* The length of the longest path of satisfied true dependencies
1822 that leads to this instruction. */
1823 unsigned int depth;
1825 /* The length of the longest path of dependencies of any kind
1826 that leads from this instruction. */
1827 unsigned int alap;
1829 /* The number of predecessor nodes that must still be scheduled. */
1830 int unscheduled_preds;
1833 /* Information about the pressure limit for a particular register class.
1834 This structure is used when applying a model schedule to the main
1835 schedule. */
1836 struct model_pressure_limit {
1837 /* The maximum register pressure seen in the original model schedule. */
1838 int orig_pressure;
1840 /* The maximum register pressure seen in the current model schedule
1841 (which excludes instructions that have already been scheduled). */
1842 int pressure;
1844 /* The point of the current model schedule at which PRESSURE is first
1845 reached. It is set to -1 if the value needs to be recomputed. */
1846 int point;
1849 /* Describes a particular way of measuring register pressure. */
1850 struct model_pressure_group {
1851 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1852 struct model_pressure_limit limits[N_REG_CLASSES];
1854 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1855 on register class ira_pressure_classes[PCI] at point POINT of the
1856 current model schedule. A POINT of model_num_insns describes the
1857 pressure at the end of the schedule. */
1858 struct model_pressure_data *model;
1861 /* Index POINT gives the instruction at point POINT of the model schedule.
1862 This array doesn't change during main scheduling. */
1863 static vec<rtx> model_schedule;
1865 /* The list of instructions in the model worklist, sorted in order of
1866 decreasing priority. */
1867 static struct model_insn_info *model_worklist;
1869 /* Index I describes the instruction with INSN_LUID I. */
1870 static struct model_insn_info *model_insns;
1872 /* The number of instructions in the model schedule. */
1873 static int model_num_insns;
1875 /* The index of the first instruction in model_schedule that hasn't yet been
1876 added to the main schedule, or model_num_insns if all of them have. */
1877 static int model_curr_point;
1879 /* Describes the pressure before each instruction in the model schedule. */
1880 static struct model_pressure_group model_before_pressure;
1882 /* The first unused model_priority value (as used in model_insn_info). */
1883 static unsigned int model_next_priority;
1886 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1887 at point POINT of the model schedule. */
1888 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1889 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1891 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1892 after point POINT of the model schedule. */
1893 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1894 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1896 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1897 of the model schedule. */
1898 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1899 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1901 /* Information about INSN that is used when creating the model schedule. */
1902 #define MODEL_INSN_INFO(INSN) \
1903 (&model_insns[INSN_LUID (INSN)])
1905 /* The instruction at point POINT of the model schedule. */
1906 #define MODEL_INSN(POINT) \
1907 (model_schedule[POINT])
1910 /* Return INSN's index in the model schedule, or model_num_insns if it
1911 doesn't belong to that schedule. */
1913 static int
1914 model_index (rtx insn)
1916 if (INSN_MODEL_INDEX (insn) == 0)
1917 return model_num_insns;
1918 return INSN_MODEL_INDEX (insn) - 1;
1921 /* Make sure that GROUP->limits is up-to-date for the current point
1922 of the model schedule. */
1924 static void
1925 model_update_limit_points_in_group (struct model_pressure_group *group)
1927 int pci, max_pressure, point;
1929 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1931 /* We may have passed the final point at which the pressure in
1932 group->limits[pci].pressure was reached. Update the limit if so. */
1933 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1934 group->limits[pci].pressure = max_pressure;
1936 /* Find the point at which MAX_PRESSURE is first reached. We need
1937 to search in three cases:
1939 - We've already moved past the previous pressure point.
1940 In this case we search forward from model_curr_point.
1942 - We scheduled the previous point of maximum pressure ahead of
1943 its position in the model schedule, but doing so didn't bring
1944 the pressure point earlier. In this case we search forward
1945 from that previous pressure point.
1947 - Scheduling an instruction early caused the maximum pressure
1948 to decrease. In this case we will have set the pressure
1949 point to -1, and we search forward from model_curr_point. */
1950 point = MAX (group->limits[pci].point, model_curr_point);
1951 while (point < model_num_insns
1952 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1953 point++;
1954 group->limits[pci].point = point;
1956 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1957 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1961 /* Make sure that all register-pressure limits are up-to-date for the
1962 current position in the model schedule. */
1964 static void
1965 model_update_limit_points (void)
1967 model_update_limit_points_in_group (&model_before_pressure);
1970 /* Return the model_index of the last unscheduled use in chain USE
1971 outside of USE's instruction. Return -1 if there are no other uses,
1972 or model_num_insns if the register is live at the end of the block. */
1974 static int
1975 model_last_use_except (struct reg_use_data *use)
1977 struct reg_use_data *next;
1978 int last, index;
1980 last = -1;
1981 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1982 if (NONDEBUG_INSN_P (next->insn)
1983 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1985 index = model_index (next->insn);
1986 if (index == model_num_insns)
1987 return model_num_insns;
1988 if (last < index)
1989 last = index;
1991 return last;
1994 /* An instruction with model_index POINT has just been scheduled, and it
1995 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
1996 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
1997 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
1999 static void
2000 model_start_update_pressure (struct model_pressure_group *group,
2001 int point, int pci, int delta)
2003 int next_max_pressure;
2005 if (point == model_num_insns)
2007 /* The instruction wasn't part of the model schedule; it was moved
2008 from a different block. Update the pressure for the end of
2009 the model schedule. */
2010 MODEL_REF_PRESSURE (group, point, pci) += delta;
2011 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2013 else
2015 /* Record that this instruction has been scheduled. Nothing now
2016 changes between POINT and POINT + 1, so get the maximum pressure
2017 from the latter. If the maximum pressure decreases, the new
2018 pressure point may be before POINT. */
2019 MODEL_REF_PRESSURE (group, point, pci) = -1;
2020 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2021 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2023 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2024 if (group->limits[pci].point == point)
2025 group->limits[pci].point = -1;
2030 /* Record that scheduling a later instruction has changed the pressure
2031 at point POINT of the model schedule by DELTA (which might be 0).
2032 Update GROUP accordingly. Return nonzero if these changes might
2033 trigger changes to previous points as well. */
2035 static int
2036 model_update_pressure (struct model_pressure_group *group,
2037 int point, int pci, int delta)
2039 int ref_pressure, max_pressure, next_max_pressure;
2041 /* If POINT hasn't yet been scheduled, update its pressure. */
2042 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2043 if (ref_pressure >= 0 && delta != 0)
2045 ref_pressure += delta;
2046 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2048 /* Check whether the maximum pressure in the overall schedule
2049 has increased. (This means that the MODEL_MAX_PRESSURE of
2050 every point <= POINT will need to increae too; see below.) */
2051 if (group->limits[pci].pressure < ref_pressure)
2052 group->limits[pci].pressure = ref_pressure;
2054 /* If we are at maximum pressure, and the maximum pressure
2055 point was previously unknown or later than POINT,
2056 bring it forward. */
2057 if (group->limits[pci].pressure == ref_pressure
2058 && !IN_RANGE (group->limits[pci].point, 0, point))
2059 group->limits[pci].point = point;
2061 /* If POINT used to be the point of maximum pressure, but isn't
2062 any longer, we need to recalculate it using a forward walk. */
2063 if (group->limits[pci].pressure > ref_pressure
2064 && group->limits[pci].point == point)
2065 group->limits[pci].point = -1;
2068 /* Update the maximum pressure at POINT. Changes here might also
2069 affect the maximum pressure at POINT - 1. */
2070 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2071 max_pressure = MAX (ref_pressure, next_max_pressure);
2072 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2074 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2075 return 1;
2077 return 0;
2080 /* INSN has just been scheduled. Update the model schedule accordingly. */
2082 static void
2083 model_recompute (rtx insn)
2085 struct {
2086 int last_use;
2087 int regno;
2088 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2089 struct reg_use_data *use;
2090 struct reg_pressure_data *reg_pressure;
2091 int delta[N_REG_CLASSES];
2092 int pci, point, mix, new_last, cl, ref_pressure, queue;
2093 unsigned int i, num_uses, num_pending_births;
2094 bool print_p;
2096 /* The destinations of INSN were previously live from POINT onwards, but are
2097 now live from model_curr_point onwards. Set up DELTA accordingly. */
2098 point = model_index (insn);
2099 reg_pressure = INSN_REG_PRESSURE (insn);
2100 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2102 cl = ira_pressure_classes[pci];
2103 delta[cl] = reg_pressure[pci].set_increase;
2106 /* Record which registers previously died at POINT, but which now die
2107 before POINT. Adjust DELTA so that it represents the effect of
2108 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2109 registers that will be born in the range [model_curr_point, POINT). */
2110 num_uses = 0;
2111 num_pending_births = 0;
2112 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2114 new_last = model_last_use_except (use);
2115 if (new_last < point)
2117 gcc_assert (num_uses < ARRAY_SIZE (uses));
2118 uses[num_uses].last_use = new_last;
2119 uses[num_uses].regno = use->regno;
2120 /* This register is no longer live after POINT - 1. */
2121 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2122 num_uses++;
2123 if (new_last >= 0)
2124 num_pending_births++;
2128 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2129 Also set each group pressure limit for POINT. */
2130 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2132 cl = ira_pressure_classes[pci];
2133 model_start_update_pressure (&model_before_pressure,
2134 point, pci, delta[cl]);
2137 /* Walk the model schedule backwards, starting immediately before POINT. */
2138 print_p = false;
2139 if (point != model_curr_point)
2142 point--;
2143 insn = MODEL_INSN (point);
2144 queue = QUEUE_INDEX (insn);
2146 if (queue != QUEUE_SCHEDULED)
2148 /* DELTA describes the effect of the move on the register pressure
2149 after POINT. Make it describe the effect on the pressure
2150 before POINT. */
2151 i = 0;
2152 while (i < num_uses)
2154 if (uses[i].last_use == point)
2156 /* This register is now live again. */
2157 mark_regno_birth_or_death (NULL, delta,
2158 uses[i].regno, true);
2160 /* Remove this use from the array. */
2161 uses[i] = uses[num_uses - 1];
2162 num_uses--;
2163 num_pending_births--;
2165 else
2166 i++;
2169 if (sched_verbose >= 5)
2171 char buf[2048];
2173 if (!print_p)
2175 fprintf (sched_dump, MODEL_BAR);
2176 fprintf (sched_dump, ";;\t\t| New pressure for model"
2177 " schedule\n");
2178 fprintf (sched_dump, MODEL_BAR);
2179 print_p = true;
2182 print_pattern (buf, PATTERN (insn), 0);
2183 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2184 point, INSN_UID (insn), buf);
2185 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2187 cl = ira_pressure_classes[pci];
2188 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2189 point, pci);
2190 fprintf (sched_dump, " %s:[%d->%d]",
2191 reg_class_names[ira_pressure_classes[pci]],
2192 ref_pressure, ref_pressure + delta[cl]);
2194 fprintf (sched_dump, "\n");
2198 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2199 might have changed as well. */
2200 mix = num_pending_births;
2201 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2203 cl = ira_pressure_classes[pci];
2204 mix |= delta[cl];
2205 mix |= model_update_pressure (&model_before_pressure,
2206 point, pci, delta[cl]);
2209 while (mix && point > model_curr_point);
2211 if (print_p)
2212 fprintf (sched_dump, MODEL_BAR);
2215 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2216 check whether the insn's pattern needs restoring. */
2217 static bool
2218 must_restore_pattern_p (rtx next, dep_t dep)
2220 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2221 return false;
2223 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2225 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2226 gcc_assert (next == DEP_CON (dep));
2228 else
2230 struct dep_replacement *desc = DEP_REPLACE (dep);
2231 if (desc->insn != next)
2233 gcc_assert (*desc->loc == desc->orig);
2234 return false;
2237 return true;
2240 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2241 pressure on CL from P to P'. We use this to calculate a "base ECC",
2242 baseECC (CL, X), for each pressure class CL and each instruction X.
2243 Supposing X changes the pressure on CL from P to P', and that the
2244 maximum pressure on CL in the current model schedule is MP', then:
2246 * if X occurs before or at the next point of maximum pressure in
2247 the model schedule and P' > MP', then:
2249 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2251 The idea is that the pressure after scheduling a fixed set of
2252 instructions -- in this case, the set up to and including the
2253 next maximum pressure point -- is going to be the same regardless
2254 of the order; we simply want to keep the intermediate pressure
2255 under control. Thus X has a cost of zero unless scheduling it
2256 now would exceed MP'.
2258 If all increases in the set are by the same amount, no zero-cost
2259 instruction will ever cause the pressure to exceed MP'. However,
2260 if X is instead moved past an instruction X' with pressure in the
2261 range (MP' - (P' - P), MP'), the pressure at X' will increase
2262 beyond MP'. Since baseECC is very much a heuristic anyway,
2263 it doesn't seem worth the overhead of tracking cases like these.
2265 The cost of exceeding MP' is always based on the original maximum
2266 pressure MP. This is so that going 2 registers over the original
2267 limit has the same cost regardless of whether it comes from two
2268 separate +1 deltas or from a single +2 delta.
2270 * if X occurs after the next point of maximum pressure in the model
2271 schedule and P' > P, then:
2273 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2275 That is, if we move X forward across a point of maximum pressure,
2276 and if X increases the pressure by P' - P, then we conservatively
2277 assume that scheduling X next would increase the maximum pressure
2278 by P' - P. Again, the cost of doing this is based on the original
2279 maximum pressure MP, for the same reason as above.
2281 * if P' < P, P > MP, and X occurs at or after the next point of
2282 maximum pressure, then:
2284 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2286 That is, if we have already exceeded the original maximum pressure MP,
2287 and if X might reduce the maximum pressure again -- or at least push
2288 it further back, and thus allow more scheduling freedom -- it is given
2289 a negative cost to reflect the improvement.
2291 * otherwise,
2293 baseECC (CL, X) = 0
2295 In this case, X is not expected to affect the maximum pressure MP',
2296 so it has zero cost.
2298 We then create a combined value baseECC (X) that is the sum of
2299 baseECC (CL, X) for each pressure class CL.
2301 baseECC (X) could itself be used as the ECC value described above.
2302 However, this is often too conservative, in the sense that it
2303 tends to make high-priority instructions that increase pressure
2304 wait too long in cases where introducing a spill would be better.
2305 For this reason the final ECC is a priority-adjusted form of
2306 baseECC (X). Specifically, we calculate:
2308 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2309 baseP = MAX { P (X) | baseECC (X) <= 0 }
2311 Then:
2313 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2315 Thus an instruction's effect on pressure is ignored if it has a high
2316 enough priority relative to the ones that don't increase pressure.
2317 Negative values of baseECC (X) do not increase the priority of X
2318 itself, but they do make it harder for other instructions to
2319 increase the pressure further.
2321 This pressure cost is deliberately timid. The intention has been
2322 to choose a heuristic that rarely interferes with the normal list
2323 scheduler in cases where that scheduler would produce good code.
2324 We simply want to curb some of its worst excesses. */
2326 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2328 Here we use the very simplistic cost model that every register above
2329 ira_class_hard_regs_num[CL] has a spill cost of 1. We could use other
2330 measures instead, such as one based on MEMORY_MOVE_COST. However:
2332 (1) In order for an instruction to be scheduled, the higher cost
2333 would need to be justified in a single saving of that many stalls.
2334 This is overly pessimistic, because the benefit of spilling is
2335 often to avoid a sequence of several short stalls rather than
2336 a single long one.
2338 (2) The cost is still arbitrary. Because we are not allocating
2339 registers during scheduling, we have no way of knowing for
2340 sure how many memory accesses will be required by each spill,
2341 where the spills will be placed within the block, or even
2342 which block(s) will contain the spills.
2344 So a higher cost than 1 is often too conservative in practice,
2345 forcing blocks to contain unnecessary stalls instead of spill code.
2346 The simple cost below seems to be the best compromise. It reduces
2347 the interference with the normal list scheduler, which helps make
2348 it more suitable for a default-on option. */
2350 static int
2351 model_spill_cost (int cl, int from, int to)
2353 from = MAX (from, ira_class_hard_regs_num[cl]);
2354 return MAX (to, from) - from;
2357 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2358 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2359 P' = P + DELTA. */
2361 static int
2362 model_excess_group_cost (struct model_pressure_group *group,
2363 int point, int pci, int delta)
2365 int pressure, cl;
2367 cl = ira_pressure_classes[pci];
2368 if (delta < 0 && point >= group->limits[pci].point)
2370 pressure = MAX (group->limits[pci].orig_pressure,
2371 curr_reg_pressure[cl] + delta);
2372 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2375 if (delta > 0)
2377 if (point > group->limits[pci].point)
2378 pressure = group->limits[pci].pressure + delta;
2379 else
2380 pressure = curr_reg_pressure[cl] + delta;
2382 if (pressure > group->limits[pci].pressure)
2383 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2384 pressure);
2387 return 0;
2390 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2391 if PRINT_P. */
2393 static int
2394 model_excess_cost (rtx insn, bool print_p)
2396 int point, pci, cl, cost, this_cost, delta;
2397 struct reg_pressure_data *insn_reg_pressure;
2398 int insn_death[N_REG_CLASSES];
2400 calculate_reg_deaths (insn, insn_death);
2401 point = model_index (insn);
2402 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2403 cost = 0;
2405 if (print_p)
2406 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2407 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2409 /* Sum up the individual costs for each register class. */
2410 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2412 cl = ira_pressure_classes[pci];
2413 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2414 this_cost = model_excess_group_cost (&model_before_pressure,
2415 point, pci, delta);
2416 cost += this_cost;
2417 if (print_p)
2418 fprintf (sched_dump, " %s:[%d base cost %d]",
2419 reg_class_names[cl], delta, this_cost);
2422 if (print_p)
2423 fprintf (sched_dump, "\n");
2425 return cost;
2428 /* Dump the next points of maximum pressure for GROUP. */
2430 static void
2431 model_dump_pressure_points (struct model_pressure_group *group)
2433 int pci, cl;
2435 fprintf (sched_dump, ";;\t\t| pressure points");
2436 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2438 cl = ira_pressure_classes[pci];
2439 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2440 curr_reg_pressure[cl], group->limits[pci].pressure);
2441 if (group->limits[pci].point < model_num_insns)
2442 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2443 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2444 else
2445 fprintf (sched_dump, "end]");
2447 fprintf (sched_dump, "\n");
2450 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2452 static void
2453 model_set_excess_costs (rtx *insns, int count)
2455 int i, cost, priority_base, priority;
2456 bool print_p;
2458 /* Record the baseECC value for each instruction in the model schedule,
2459 except that negative costs are converted to zero ones now rather thatn
2460 later. Do not assign a cost to debug instructions, since they must
2461 not change code-generation decisions. Experiments suggest we also
2462 get better results by not assigning a cost to instructions from
2463 a different block.
2465 Set PRIORITY_BASE to baseP in the block comment above. This is the
2466 maximum priority of the "cheap" instructions, which should always
2467 include the next model instruction. */
2468 priority_base = 0;
2469 print_p = false;
2470 for (i = 0; i < count; i++)
2471 if (INSN_MODEL_INDEX (insns[i]))
2473 if (sched_verbose >= 6 && !print_p)
2475 fprintf (sched_dump, MODEL_BAR);
2476 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2477 model_dump_pressure_points (&model_before_pressure);
2478 fprintf (sched_dump, MODEL_BAR);
2479 print_p = true;
2481 cost = model_excess_cost (insns[i], print_p);
2482 if (cost <= 0)
2484 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2485 priority_base = MAX (priority_base, priority);
2486 cost = 0;
2488 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2490 if (print_p)
2491 fprintf (sched_dump, MODEL_BAR);
2493 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2494 instruction. */
2495 for (i = 0; i < count; i++)
2497 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2498 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2499 if (cost > 0 && priority > priority_base)
2501 cost += priority_base - priority;
2502 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2507 /* Returns a positive value if x is preferred; returns a negative value if
2508 y is preferred. Should never return 0, since that will make the sort
2509 unstable. */
2511 static int
2512 rank_for_schedule (const void *x, const void *y)
2514 rtx tmp = *(const rtx *) y;
2515 rtx tmp2 = *(const rtx *) x;
2516 int tmp_class, tmp2_class;
2517 int val, priority_val, info_val;
2519 if (MAY_HAVE_DEBUG_INSNS)
2521 /* Schedule debug insns as early as possible. */
2522 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2523 return -1;
2524 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2525 return 1;
2526 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2527 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2530 /* The insn in a schedule group should be issued the first. */
2531 if (flag_sched_group_heuristic &&
2532 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2533 return SCHED_GROUP_P (tmp2) ? 1 : -1;
2535 /* Make sure that priority of TMP and TMP2 are initialized. */
2536 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2538 if (sched_pressure != SCHED_PRESSURE_NONE)
2540 int diff;
2542 /* Prefer insn whose scheduling results in the smallest register
2543 pressure excess. */
2544 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2545 + insn_delay (tmp)
2546 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2547 - insn_delay (tmp2))))
2548 return diff;
2551 if (sched_pressure != SCHED_PRESSURE_NONE
2552 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
2554 if (INSN_TICK (tmp) <= clock_var)
2555 return -1;
2556 else if (INSN_TICK (tmp2) <= clock_var)
2557 return 1;
2558 else
2559 return INSN_TICK (tmp) - INSN_TICK (tmp2);
2562 /* If we are doing backtracking in this schedule, prefer insns that
2563 have forward dependencies with negative cost against an insn that
2564 was already scheduled. */
2565 if (current_sched_info->flags & DO_BACKTRACKING)
2567 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2568 if (priority_val)
2569 return priority_val;
2572 /* Prefer insn with higher priority. */
2573 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2575 if (flag_sched_critical_path_heuristic && priority_val)
2576 return priority_val;
2578 /* Prefer speculative insn with greater dependencies weakness. */
2579 if (flag_sched_spec_insn_heuristic && spec_info)
2581 ds_t ds1, ds2;
2582 dw_t dw1, dw2;
2583 int dw;
2585 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2586 if (ds1)
2587 dw1 = ds_weak (ds1);
2588 else
2589 dw1 = NO_DEP_WEAK;
2591 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2592 if (ds2)
2593 dw2 = ds_weak (ds2);
2594 else
2595 dw2 = NO_DEP_WEAK;
2597 dw = dw2 - dw1;
2598 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2599 return dw;
2602 info_val = (*current_sched_info->rank) (tmp, tmp2);
2603 if(flag_sched_rank_heuristic && info_val)
2604 return info_val;
2606 /* Compare insns based on their relation to the last scheduled
2607 non-debug insn. */
2608 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2610 dep_t dep1;
2611 dep_t dep2;
2612 rtx last = last_nondebug_scheduled_insn;
2614 /* Classify the instructions into three classes:
2615 1) Data dependent on last schedule insn.
2616 2) Anti/Output dependent on last scheduled insn.
2617 3) Independent of last scheduled insn, or has latency of one.
2618 Choose the insn from the highest numbered class if different. */
2619 dep1 = sd_find_dep_between (last, tmp, true);
2621 if (dep1 == NULL || dep_cost (dep1) == 1)
2622 tmp_class = 3;
2623 else if (/* Data dependence. */
2624 DEP_TYPE (dep1) == REG_DEP_TRUE)
2625 tmp_class = 1;
2626 else
2627 tmp_class = 2;
2629 dep2 = sd_find_dep_between (last, tmp2, true);
2631 if (dep2 == NULL || dep_cost (dep2) == 1)
2632 tmp2_class = 3;
2633 else if (/* Data dependence. */
2634 DEP_TYPE (dep2) == REG_DEP_TRUE)
2635 tmp2_class = 1;
2636 else
2637 tmp2_class = 2;
2639 if ((val = tmp2_class - tmp_class))
2640 return val;
2643 /* Prefer instructions that occur earlier in the model schedule. */
2644 if (sched_pressure == SCHED_PRESSURE_MODEL)
2646 int diff;
2648 diff = model_index (tmp) - model_index (tmp2);
2649 if (diff != 0)
2650 return diff;
2653 /* Prefer the insn which has more later insns that depend on it.
2654 This gives the scheduler more freedom when scheduling later
2655 instructions at the expense of added register pressure. */
2657 val = (dep_list_size (tmp2, SD_LIST_FORW)
2658 - dep_list_size (tmp, SD_LIST_FORW));
2660 if (flag_sched_dep_count_heuristic && val != 0)
2661 return val;
2663 /* If insns are equally good, sort by INSN_LUID (original insn order),
2664 so that we make the sort stable. This minimizes instruction movement,
2665 thus minimizing sched's effect on debugging and cross-jumping. */
2666 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2669 /* Resort the array A in which only element at index N may be out of order. */
2671 HAIFA_INLINE static void
2672 swap_sort (rtx *a, int n)
2674 rtx insn = a[n - 1];
2675 int i = n - 2;
2677 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2679 a[i + 1] = a[i];
2680 i -= 1;
2682 a[i + 1] = insn;
2685 /* Add INSN to the insn queue so that it can be executed at least
2686 N_CYCLES after the currently executing insn. Preserve insns
2687 chain for debugging purposes. REASON will be printed in debugging
2688 output. */
2690 HAIFA_INLINE static void
2691 queue_insn (rtx insn, int n_cycles, const char *reason)
2693 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2694 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2695 int new_tick;
2697 gcc_assert (n_cycles <= max_insn_queue_index);
2698 gcc_assert (!DEBUG_INSN_P (insn));
2700 insn_queue[next_q] = link;
2701 q_size += 1;
2703 if (sched_verbose >= 2)
2705 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2706 (*current_sched_info->print_insn) (insn, 0));
2708 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2711 QUEUE_INDEX (insn) = next_q;
2713 if (current_sched_info->flags & DO_BACKTRACKING)
2715 new_tick = clock_var + n_cycles;
2716 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2717 INSN_TICK (insn) = new_tick;
2719 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2720 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2722 must_backtrack = true;
2723 if (sched_verbose >= 2)
2724 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2729 /* Remove INSN from queue. */
2730 static void
2731 queue_remove (rtx insn)
2733 gcc_assert (QUEUE_INDEX (insn) >= 0);
2734 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2735 q_size--;
2736 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2739 /* Return a pointer to the bottom of the ready list, i.e. the insn
2740 with the lowest priority. */
2742 rtx *
2743 ready_lastpos (struct ready_list *ready)
2745 gcc_assert (ready->n_ready >= 1);
2746 return ready->vec + ready->first - ready->n_ready + 1;
2749 /* Add an element INSN to the ready list so that it ends up with the
2750 lowest/highest priority depending on FIRST_P. */
2752 HAIFA_INLINE static void
2753 ready_add (struct ready_list *ready, rtx insn, bool first_p)
2755 if (!first_p)
2757 if (ready->first == ready->n_ready)
2759 memmove (ready->vec + ready->veclen - ready->n_ready,
2760 ready_lastpos (ready),
2761 ready->n_ready * sizeof (rtx));
2762 ready->first = ready->veclen - 1;
2764 ready->vec[ready->first - ready->n_ready] = insn;
2766 else
2768 if (ready->first == ready->veclen - 1)
2770 if (ready->n_ready)
2771 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2772 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2773 ready_lastpos (ready),
2774 ready->n_ready * sizeof (rtx));
2775 ready->first = ready->veclen - 2;
2777 ready->vec[++(ready->first)] = insn;
2780 ready->n_ready++;
2781 if (DEBUG_INSN_P (insn))
2782 ready->n_debug++;
2784 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2785 QUEUE_INDEX (insn) = QUEUE_READY;
2787 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2788 && INSN_EXACT_TICK (insn) < clock_var)
2790 must_backtrack = true;
2794 /* Remove the element with the highest priority from the ready list and
2795 return it. */
2797 HAIFA_INLINE static rtx
2798 ready_remove_first (struct ready_list *ready)
2800 rtx t;
2802 gcc_assert (ready->n_ready);
2803 t = ready->vec[ready->first--];
2804 ready->n_ready--;
2805 if (DEBUG_INSN_P (t))
2806 ready->n_debug--;
2807 /* If the queue becomes empty, reset it. */
2808 if (ready->n_ready == 0)
2809 ready->first = ready->veclen - 1;
2811 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2812 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2814 return t;
2817 /* The following code implements multi-pass scheduling for the first
2818 cycle. In other words, we will try to choose ready insn which
2819 permits to start maximum number of insns on the same cycle. */
2821 /* Return a pointer to the element INDEX from the ready. INDEX for
2822 insn with the highest priority is 0, and the lowest priority has
2823 N_READY - 1. */
2826 ready_element (struct ready_list *ready, int index)
2828 gcc_assert (ready->n_ready && index < ready->n_ready);
2830 return ready->vec[ready->first - index];
2833 /* Remove the element INDEX from the ready list and return it. INDEX
2834 for insn with the highest priority is 0, and the lowest priority
2835 has N_READY - 1. */
2837 HAIFA_INLINE static rtx
2838 ready_remove (struct ready_list *ready, int index)
2840 rtx t;
2841 int i;
2843 if (index == 0)
2844 return ready_remove_first (ready);
2845 gcc_assert (ready->n_ready && index < ready->n_ready);
2846 t = ready->vec[ready->first - index];
2847 ready->n_ready--;
2848 if (DEBUG_INSN_P (t))
2849 ready->n_debug--;
2850 for (i = index; i < ready->n_ready; i++)
2851 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2852 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2853 return t;
2856 /* Remove INSN from the ready list. */
2857 static void
2858 ready_remove_insn (rtx insn)
2860 int i;
2862 for (i = 0; i < readyp->n_ready; i++)
2863 if (ready_element (readyp, i) == insn)
2865 ready_remove (readyp, i);
2866 return;
2868 gcc_unreachable ();
2871 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
2872 macro. */
2874 void
2875 ready_sort (struct ready_list *ready)
2877 int i;
2878 rtx *first = ready_lastpos (ready);
2880 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2882 for (i = 0; i < ready->n_ready; i++)
2883 if (!DEBUG_INSN_P (first[i]))
2884 setup_insn_reg_pressure_info (first[i]);
2886 if (sched_pressure == SCHED_PRESSURE_MODEL
2887 && model_curr_point < model_num_insns)
2888 model_set_excess_costs (first, ready->n_ready);
2889 SCHED_SORT (first, ready->n_ready);
2892 /* PREV is an insn that is ready to execute. Adjust its priority if that
2893 will help shorten or lengthen register lifetimes as appropriate. Also
2894 provide a hook for the target to tweak itself. */
2896 HAIFA_INLINE static void
2897 adjust_priority (rtx prev)
2899 /* ??? There used to be code here to try and estimate how an insn
2900 affected register lifetimes, but it did it by looking at REG_DEAD
2901 notes, which we removed in schedule_region. Nor did it try to
2902 take into account register pressure or anything useful like that.
2904 Revisit when we have a machine model to work with and not before. */
2906 if (targetm.sched.adjust_priority)
2907 INSN_PRIORITY (prev) =
2908 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
2911 /* Advance DFA state STATE on one cycle. */
2912 void
2913 advance_state (state_t state)
2915 if (targetm.sched.dfa_pre_advance_cycle)
2916 targetm.sched.dfa_pre_advance_cycle ();
2918 if (targetm.sched.dfa_pre_cycle_insn)
2919 state_transition (state,
2920 targetm.sched.dfa_pre_cycle_insn ());
2922 state_transition (state, NULL);
2924 if (targetm.sched.dfa_post_cycle_insn)
2925 state_transition (state,
2926 targetm.sched.dfa_post_cycle_insn ());
2928 if (targetm.sched.dfa_post_advance_cycle)
2929 targetm.sched.dfa_post_advance_cycle ();
2932 /* Advance time on one cycle. */
2933 HAIFA_INLINE static void
2934 advance_one_cycle (void)
2936 advance_state (curr_state);
2937 if (sched_verbose >= 6)
2938 fprintf (sched_dump, ";;\tAdvanced a state.\n");
2941 /* Update register pressure after scheduling INSN. */
2942 static void
2943 update_register_pressure (rtx insn)
2945 struct reg_use_data *use;
2946 struct reg_set_data *set;
2948 gcc_checking_assert (!DEBUG_INSN_P (insn));
2950 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2951 if (dying_use_p (use))
2952 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
2953 use->regno, false);
2954 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
2955 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
2956 set->regno, true);
2959 /* Set up or update (if UPDATE_P) max register pressure (see its
2960 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
2961 after insn AFTER. */
2962 static void
2963 setup_insn_max_reg_pressure (rtx after, bool update_p)
2965 int i, p;
2966 bool eq_p;
2967 rtx insn;
2968 static int max_reg_pressure[N_REG_CLASSES];
2970 save_reg_pressure ();
2971 for (i = 0; i < ira_pressure_classes_num; i++)
2972 max_reg_pressure[ira_pressure_classes[i]]
2973 = curr_reg_pressure[ira_pressure_classes[i]];
2974 for (insn = NEXT_INSN (after);
2975 insn != NULL_RTX && ! BARRIER_P (insn)
2976 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
2977 insn = NEXT_INSN (insn))
2978 if (NONDEBUG_INSN_P (insn))
2980 eq_p = true;
2981 for (i = 0; i < ira_pressure_classes_num; i++)
2983 p = max_reg_pressure[ira_pressure_classes[i]];
2984 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
2986 eq_p = false;
2987 INSN_MAX_REG_PRESSURE (insn)[i]
2988 = max_reg_pressure[ira_pressure_classes[i]];
2991 if (update_p && eq_p)
2992 break;
2993 update_register_pressure (insn);
2994 for (i = 0; i < ira_pressure_classes_num; i++)
2995 if (max_reg_pressure[ira_pressure_classes[i]]
2996 < curr_reg_pressure[ira_pressure_classes[i]])
2997 max_reg_pressure[ira_pressure_classes[i]]
2998 = curr_reg_pressure[ira_pressure_classes[i]];
3000 restore_reg_pressure ();
3003 /* Update the current register pressure after scheduling INSN. Update
3004 also max register pressure for unscheduled insns of the current
3005 BB. */
3006 static void
3007 update_reg_and_insn_max_reg_pressure (rtx insn)
3009 int i;
3010 int before[N_REG_CLASSES];
3012 for (i = 0; i < ira_pressure_classes_num; i++)
3013 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3014 update_register_pressure (insn);
3015 for (i = 0; i < ira_pressure_classes_num; i++)
3016 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3017 break;
3018 if (i < ira_pressure_classes_num)
3019 setup_insn_max_reg_pressure (insn, true);
3022 /* Set up register pressure at the beginning of basic block BB whose
3023 insns starting after insn AFTER. Set up also max register pressure
3024 for all insns of the basic block. */
3025 void
3026 sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
3028 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3029 initiate_bb_reg_pressure_info (bb);
3030 setup_insn_max_reg_pressure (after, false);
3033 /* If doing predication while scheduling, verify whether INSN, which
3034 has just been scheduled, clobbers the conditions of any
3035 instructions that must be predicated in order to break their
3036 dependencies. If so, remove them from the queues so that they will
3037 only be scheduled once their control dependency is resolved. */
3039 static void
3040 check_clobbered_conditions (rtx insn)
3042 HARD_REG_SET t;
3043 int i;
3045 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3046 return;
3048 find_all_hard_reg_sets (insn, &t);
3050 restart:
3051 for (i = 0; i < ready.n_ready; i++)
3053 rtx x = ready_element (&ready, i);
3054 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3056 ready_remove_insn (x);
3057 goto restart;
3060 for (i = 0; i <= max_insn_queue_index; i++)
3062 rtx link;
3063 int q = NEXT_Q_AFTER (q_ptr, i);
3065 restart_queue:
3066 for (link = insn_queue[q]; link; link = XEXP (link, 1))
3068 rtx x = XEXP (link, 0);
3069 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3071 queue_remove (x);
3072 goto restart_queue;
3078 /* Return (in order):
3080 - positive if INSN adversely affects the pressure on one
3081 register class
3083 - negative if INSN reduces the pressure on one register class
3085 - 0 if INSN doesn't affect the pressure on any register class. */
3087 static int
3088 model_classify_pressure (struct model_insn_info *insn)
3090 struct reg_pressure_data *reg_pressure;
3091 int death[N_REG_CLASSES];
3092 int pci, cl, sum;
3094 calculate_reg_deaths (insn->insn, death);
3095 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3096 sum = 0;
3097 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3099 cl = ira_pressure_classes[pci];
3100 if (death[cl] < reg_pressure[pci].set_increase)
3101 return 1;
3102 sum += reg_pressure[pci].set_increase - death[cl];
3104 return sum;
3107 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3109 static int
3110 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3112 unsigned int height1, height2;
3113 unsigned int priority1, priority2;
3115 /* Prefer instructions with a higher model priority. */
3116 if (insn1->model_priority != insn2->model_priority)
3117 return insn1->model_priority > insn2->model_priority;
3119 /* Combine the length of the longest path of satisfied true dependencies
3120 that leads to each instruction (depth) with the length of the longest
3121 path of any dependencies that leads from the instruction (alap).
3122 Prefer instructions with the greatest combined length. If the combined
3123 lengths are equal, prefer instructions with the greatest depth.
3125 The idea is that, if we have a set S of "equal" instructions that each
3126 have ALAP value X, and we pick one such instruction I, any true-dependent
3127 successors of I that have ALAP value X - 1 should be preferred over S.
3128 This encourages the schedule to be "narrow" rather than "wide".
3129 However, if I is a low-priority instruction that we decided to
3130 schedule because of its model_classify_pressure, and if there
3131 is a set of higher-priority instructions T, the aforementioned
3132 successors of I should not have the edge over T. */
3133 height1 = insn1->depth + insn1->alap;
3134 height2 = insn2->depth + insn2->alap;
3135 if (height1 != height2)
3136 return height1 > height2;
3137 if (insn1->depth != insn2->depth)
3138 return insn1->depth > insn2->depth;
3140 /* We have no real preference between INSN1 an INSN2 as far as attempts
3141 to reduce pressure go. Prefer instructions with higher priorities. */
3142 priority1 = INSN_PRIORITY (insn1->insn);
3143 priority2 = INSN_PRIORITY (insn2->insn);
3144 if (priority1 != priority2)
3145 return priority1 > priority2;
3147 /* Use the original rtl sequence as a tie-breaker. */
3148 return insn1 < insn2;
3151 /* Add INSN to the model worklist immediately after PREV. Add it to the
3152 beginning of the list if PREV is null. */
3154 static void
3155 model_add_to_worklist_at (struct model_insn_info *insn,
3156 struct model_insn_info *prev)
3158 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3159 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3161 insn->prev = prev;
3162 if (prev)
3164 insn->next = prev->next;
3165 prev->next = insn;
3167 else
3169 insn->next = model_worklist;
3170 model_worklist = insn;
3172 if (insn->next)
3173 insn->next->prev = insn;
3176 /* Remove INSN from the model worklist. */
3178 static void
3179 model_remove_from_worklist (struct model_insn_info *insn)
3181 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3182 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3184 if (insn->prev)
3185 insn->prev->next = insn->next;
3186 else
3187 model_worklist = insn->next;
3188 if (insn->next)
3189 insn->next->prev = insn->prev;
3192 /* Add INSN to the model worklist. Start looking for a suitable position
3193 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3194 insns either side. A null PREV indicates the beginning of the list and
3195 a null NEXT indicates the end. */
3197 static void
3198 model_add_to_worklist (struct model_insn_info *insn,
3199 struct model_insn_info *prev,
3200 struct model_insn_info *next)
3202 int count;
3204 count = MAX_SCHED_READY_INSNS;
3205 if (count > 0 && prev && model_order_p (insn, prev))
3208 count--;
3209 prev = prev->prev;
3211 while (count > 0 && prev && model_order_p (insn, prev));
3212 else
3213 while (count > 0 && next && model_order_p (next, insn))
3215 count--;
3216 prev = next;
3217 next = next->next;
3219 model_add_to_worklist_at (insn, prev);
3222 /* INSN may now have a higher priority (in the model_order_p sense)
3223 than before. Move it up the worklist if necessary. */
3225 static void
3226 model_promote_insn (struct model_insn_info *insn)
3228 struct model_insn_info *prev;
3229 int count;
3231 prev = insn->prev;
3232 count = MAX_SCHED_READY_INSNS;
3233 while (count > 0 && prev && model_order_p (insn, prev))
3235 count--;
3236 prev = prev->prev;
3238 if (prev != insn->prev)
3240 model_remove_from_worklist (insn);
3241 model_add_to_worklist_at (insn, prev);
3245 /* Add INSN to the end of the model schedule. */
3247 static void
3248 model_add_to_schedule (rtx insn)
3250 unsigned int point;
3252 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3253 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3255 point = model_schedule.length ();
3256 model_schedule.quick_push (insn);
3257 INSN_MODEL_INDEX (insn) = point + 1;
3260 /* Analyze the instructions that are to be scheduled, setting up
3261 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3262 instructions to model_worklist. */
3264 static void
3265 model_analyze_insns (void)
3267 rtx start, end, iter;
3268 sd_iterator_def sd_it;
3269 dep_t dep;
3270 struct model_insn_info *insn, *con;
3272 model_num_insns = 0;
3273 start = PREV_INSN (current_sched_info->next_tail);
3274 end = current_sched_info->prev_head;
3275 for (iter = start; iter != end; iter = PREV_INSN (iter))
3276 if (NONDEBUG_INSN_P (iter))
3278 insn = MODEL_INSN_INFO (iter);
3279 insn->insn = iter;
3280 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3282 con = MODEL_INSN_INFO (DEP_CON (dep));
3283 if (con->insn && insn->alap < con->alap + 1)
3284 insn->alap = con->alap + 1;
3287 insn->old_queue = QUEUE_INDEX (iter);
3288 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3290 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3291 if (insn->unscheduled_preds == 0)
3292 model_add_to_worklist (insn, NULL, model_worklist);
3294 model_num_insns++;
3298 /* The global state describes the register pressure at the start of the
3299 model schedule. Initialize GROUP accordingly. */
3301 static void
3302 model_init_pressure_group (struct model_pressure_group *group)
3304 int pci, cl;
3306 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3308 cl = ira_pressure_classes[pci];
3309 group->limits[pci].pressure = curr_reg_pressure[cl];
3310 group->limits[pci].point = 0;
3312 /* Use index model_num_insns to record the state after the last
3313 instruction in the model schedule. */
3314 group->model = XNEWVEC (struct model_pressure_data,
3315 (model_num_insns + 1) * ira_pressure_classes_num);
3318 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3319 Update the maximum pressure for the whole schedule. */
3321 static void
3322 model_record_pressure (struct model_pressure_group *group,
3323 int point, int pci, int pressure)
3325 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3326 if (group->limits[pci].pressure < pressure)
3328 group->limits[pci].pressure = pressure;
3329 group->limits[pci].point = point;
3333 /* INSN has just been added to the end of the model schedule. Record its
3334 register-pressure information. */
3336 static void
3337 model_record_pressures (struct model_insn_info *insn)
3339 struct reg_pressure_data *reg_pressure;
3340 int point, pci, cl, delta;
3341 int death[N_REG_CLASSES];
3343 point = model_index (insn->insn);
3344 if (sched_verbose >= 2)
3346 char buf[2048];
3348 if (point == 0)
3350 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3351 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3353 print_pattern (buf, PATTERN (insn->insn), 0);
3354 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3355 point, INSN_UID (insn->insn), insn->model_priority,
3356 insn->depth + insn->alap, insn->depth,
3357 INSN_PRIORITY (insn->insn), buf);
3359 calculate_reg_deaths (insn->insn, death);
3360 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3361 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3363 cl = ira_pressure_classes[pci];
3364 delta = reg_pressure[pci].set_increase - death[cl];
3365 if (sched_verbose >= 2)
3366 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3367 curr_reg_pressure[cl], delta);
3368 model_record_pressure (&model_before_pressure, point, pci,
3369 curr_reg_pressure[cl]);
3371 if (sched_verbose >= 2)
3372 fprintf (sched_dump, "\n");
3375 /* All instructions have been added to the model schedule. Record the
3376 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3378 static void
3379 model_record_final_pressures (struct model_pressure_group *group)
3381 int point, pci, max_pressure, ref_pressure, cl;
3383 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3385 /* Record the final pressure for this class. */
3386 cl = ira_pressure_classes[pci];
3387 point = model_num_insns;
3388 ref_pressure = curr_reg_pressure[cl];
3389 model_record_pressure (group, point, pci, ref_pressure);
3391 /* Record the original maximum pressure. */
3392 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3394 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3395 max_pressure = ref_pressure;
3396 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3397 while (point > 0)
3399 point--;
3400 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3401 max_pressure = MAX (max_pressure, ref_pressure);
3402 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3407 /* Update all successors of INSN, given that INSN has just been scheduled. */
3409 static void
3410 model_add_successors_to_worklist (struct model_insn_info *insn)
3412 sd_iterator_def sd_it;
3413 struct model_insn_info *con;
3414 dep_t dep;
3416 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3418 con = MODEL_INSN_INFO (DEP_CON (dep));
3419 /* Ignore debug instructions, and instructions from other blocks. */
3420 if (con->insn)
3422 con->unscheduled_preds--;
3424 /* Update the depth field of each true-dependent successor.
3425 Increasing the depth gives them a higher priority than
3426 before. */
3427 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3429 con->depth = insn->depth + 1;
3430 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3431 model_promote_insn (con);
3434 /* If this is a true dependency, or if there are no remaining
3435 dependencies for CON (meaning that CON only had non-true
3436 dependencies), make sure that CON is on the worklist.
3437 We don't bother otherwise because it would tend to fill the
3438 worklist with a lot of low-priority instructions that are not
3439 yet ready to issue. */
3440 if ((con->depth > 0 || con->unscheduled_preds == 0)
3441 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3442 model_add_to_worklist (con, insn, insn->next);
3447 /* Give INSN a higher priority than any current instruction, then give
3448 unscheduled predecessors of INSN a higher priority still. If any of
3449 those predecessors are not on the model worklist, do the same for its
3450 predecessors, and so on. */
3452 static void
3453 model_promote_predecessors (struct model_insn_info *insn)
3455 struct model_insn_info *pro, *first;
3456 sd_iterator_def sd_it;
3457 dep_t dep;
3459 if (sched_verbose >= 7)
3460 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3461 INSN_UID (insn->insn), model_next_priority);
3462 insn->model_priority = model_next_priority++;
3463 model_remove_from_worklist (insn);
3464 model_add_to_worklist_at (insn, NULL);
3466 first = NULL;
3467 for (;;)
3469 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3471 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3472 /* The first test is to ignore debug instructions, and instructions
3473 from other blocks. */
3474 if (pro->insn
3475 && pro->model_priority != model_next_priority
3476 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3478 pro->model_priority = model_next_priority;
3479 if (sched_verbose >= 7)
3480 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3481 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3483 /* PRO is already in the worklist, but it now has
3484 a higher priority than before. Move it at the
3485 appropriate place. */
3486 model_remove_from_worklist (pro);
3487 model_add_to_worklist (pro, NULL, model_worklist);
3489 else
3491 /* PRO isn't in the worklist. Recursively process
3492 its predecessors until we find one that is. */
3493 pro->next = first;
3494 first = pro;
3498 if (!first)
3499 break;
3500 insn = first;
3501 first = insn->next;
3503 if (sched_verbose >= 7)
3504 fprintf (sched_dump, " = %d\n", model_next_priority);
3505 model_next_priority++;
3508 /* Pick one instruction from model_worklist and process it. */
3510 static void
3511 model_choose_insn (void)
3513 struct model_insn_info *insn, *fallback;
3514 int count;
3516 if (sched_verbose >= 7)
3518 fprintf (sched_dump, ";;\t+--- worklist:\n");
3519 insn = model_worklist;
3520 count = MAX_SCHED_READY_INSNS;
3521 while (count > 0 && insn)
3523 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3524 INSN_UID (insn->insn), insn->model_priority,
3525 insn->depth + insn->alap, insn->depth,
3526 INSN_PRIORITY (insn->insn));
3527 count--;
3528 insn = insn->next;
3532 /* Look for a ready instruction whose model_classify_priority is zero
3533 or negative, picking the highest-priority one. Adding such an
3534 instruction to the schedule now should do no harm, and may actually
3535 do some good.
3537 Failing that, see whether there is an instruction with the highest
3538 extant model_priority that is not yet ready, but which would reduce
3539 pressure if it became ready. This is designed to catch cases like:
3541 (set (mem (reg R1)) (reg R2))
3543 where the instruction is the last remaining use of R1 and where the
3544 value of R2 is not yet available (or vice versa). The death of R1
3545 means that this instruction already reduces pressure. It is of
3546 course possible that the computation of R2 involves other registers
3547 that are hard to kill, but such cases are rare enough for this
3548 heuristic to be a win in general.
3550 Failing that, just pick the highest-priority instruction in the
3551 worklist. */
3552 count = MAX_SCHED_READY_INSNS;
3553 insn = model_worklist;
3554 fallback = 0;
3555 for (;;)
3557 if (count == 0 || !insn)
3559 insn = fallback ? fallback : model_worklist;
3560 break;
3562 if (insn->unscheduled_preds)
3564 if (model_worklist->model_priority == insn->model_priority
3565 && !fallback
3566 && model_classify_pressure (insn) < 0)
3567 fallback = insn;
3569 else
3571 if (model_classify_pressure (insn) <= 0)
3572 break;
3574 count--;
3575 insn = insn->next;
3578 if (sched_verbose >= 7 && insn != model_worklist)
3580 if (insn->unscheduled_preds)
3581 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3582 INSN_UID (insn->insn));
3583 else
3584 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3585 INSN_UID (insn->insn));
3587 if (insn->unscheduled_preds)
3588 /* INSN isn't yet ready to issue. Give all its predecessors the
3589 highest priority. */
3590 model_promote_predecessors (insn);
3591 else
3593 /* INSN is ready. Add it to the end of model_schedule and
3594 process its successors. */
3595 model_add_successors_to_worklist (insn);
3596 model_remove_from_worklist (insn);
3597 model_add_to_schedule (insn->insn);
3598 model_record_pressures (insn);
3599 update_register_pressure (insn->insn);
3603 /* Restore all QUEUE_INDEXs to the values that they had before
3604 model_start_schedule was called. */
3606 static void
3607 model_reset_queue_indices (void)
3609 unsigned int i;
3610 rtx insn;
3612 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3613 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3616 /* We have calculated the model schedule and spill costs. Print a summary
3617 to sched_dump. */
3619 static void
3620 model_dump_pressure_summary (void)
3622 int pci, cl;
3624 fprintf (sched_dump, ";; Pressure summary:");
3625 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3627 cl = ira_pressure_classes[pci];
3628 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3629 model_before_pressure.limits[pci].pressure);
3631 fprintf (sched_dump, "\n\n");
3634 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3635 scheduling region. */
3637 static void
3638 model_start_schedule (void)
3640 basic_block bb;
3642 model_next_priority = 1;
3643 model_schedule.create (sched_max_luid);
3644 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3646 bb = BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head));
3647 initiate_reg_pressure_info (df_get_live_in (bb));
3649 model_analyze_insns ();
3650 model_init_pressure_group (&model_before_pressure);
3651 while (model_worklist)
3652 model_choose_insn ();
3653 gcc_assert (model_num_insns == (int) model_schedule.length ());
3654 if (sched_verbose >= 2)
3655 fprintf (sched_dump, "\n");
3657 model_record_final_pressures (&model_before_pressure);
3658 model_reset_queue_indices ();
3660 XDELETEVEC (model_insns);
3662 model_curr_point = 0;
3663 initiate_reg_pressure_info (df_get_live_in (bb));
3664 if (sched_verbose >= 1)
3665 model_dump_pressure_summary ();
3668 /* Free the information associated with GROUP. */
3670 static void
3671 model_finalize_pressure_group (struct model_pressure_group *group)
3673 XDELETEVEC (group->model);
3676 /* Free the information created by model_start_schedule. */
3678 static void
3679 model_end_schedule (void)
3681 model_finalize_pressure_group (&model_before_pressure);
3682 model_schedule.release ();
3685 /* A structure that holds local state for the loop in schedule_block. */
3686 struct sched_block_state
3688 /* True if no real insns have been scheduled in the current cycle. */
3689 bool first_cycle_insn_p;
3690 /* True if a shadow insn has been scheduled in the current cycle, which
3691 means that no more normal insns can be issued. */
3692 bool shadows_only_p;
3693 /* True if we're winding down a modulo schedule, which means that we only
3694 issue insns with INSN_EXACT_TICK set. */
3695 bool modulo_epilogue;
3696 /* Initialized with the machine's issue rate every cycle, and updated
3697 by calls to the variable_issue hook. */
3698 int can_issue_more;
3701 /* INSN is the "currently executing insn". Launch each insn which was
3702 waiting on INSN. READY is the ready list which contains the insns
3703 that are ready to fire. CLOCK is the current cycle. The function
3704 returns necessary cycle advance after issuing the insn (it is not
3705 zero for insns in a schedule group). */
3707 static int
3708 schedule_insn (rtx insn)
3710 sd_iterator_def sd_it;
3711 dep_t dep;
3712 int i;
3713 int advance = 0;
3715 if (sched_verbose >= 1)
3717 struct reg_pressure_data *pressure_info;
3718 char buf[2048];
3720 print_insn (buf, insn, 0);
3721 buf[40] = 0;
3722 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
3724 if (recog_memoized (insn) < 0)
3725 fprintf (sched_dump, "nothing");
3726 else
3727 print_reservation (sched_dump, insn);
3728 pressure_info = INSN_REG_PRESSURE (insn);
3729 if (pressure_info != NULL)
3731 fputc (':', sched_dump);
3732 for (i = 0; i < ira_pressure_classes_num; i++)
3733 fprintf (sched_dump, "%s%+d(%d)",
3734 reg_class_names[ira_pressure_classes[i]],
3735 pressure_info[i].set_increase, pressure_info[i].change);
3737 if (sched_pressure == SCHED_PRESSURE_MODEL
3738 && model_curr_point < model_num_insns
3739 && model_index (insn) == model_curr_point)
3740 fprintf (sched_dump, ":model %d", model_curr_point);
3741 fputc ('\n', sched_dump);
3744 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
3745 update_reg_and_insn_max_reg_pressure (insn);
3747 /* Scheduling instruction should have all its dependencies resolved and
3748 should have been removed from the ready list. */
3749 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
3751 /* Reset debug insns invalidated by moving this insn. */
3752 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
3753 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
3754 sd_iterator_cond (&sd_it, &dep);)
3756 rtx dbg = DEP_PRO (dep);
3757 struct reg_use_data *use, *next;
3759 if (DEP_STATUS (dep) & DEP_CANCELLED)
3761 sd_iterator_next (&sd_it);
3762 continue;
3765 gcc_assert (DEBUG_INSN_P (dbg));
3767 if (sched_verbose >= 6)
3768 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
3769 INSN_UID (dbg));
3771 /* ??? Rather than resetting the debug insn, we might be able
3772 to emit a debug temp before the just-scheduled insn, but
3773 this would involve checking that the expression at the
3774 point of the debug insn is equivalent to the expression
3775 before the just-scheduled insn. They might not be: the
3776 expression in the debug insn may depend on other insns not
3777 yet scheduled that set MEMs, REGs or even other debug
3778 insns. It's not clear that attempting to preserve debug
3779 information in these cases is worth the effort, given how
3780 uncommon these resets are and the likelihood that the debug
3781 temps introduced won't survive the schedule change. */
3782 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
3783 df_insn_rescan (dbg);
3785 /* Unknown location doesn't use any registers. */
3786 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
3788 struct reg_use_data *prev = use;
3790 /* Remove use from the cyclic next_regno_use chain first. */
3791 while (prev->next_regno_use != use)
3792 prev = prev->next_regno_use;
3793 prev->next_regno_use = use->next_regno_use;
3794 next = use->next_insn_use;
3795 free (use);
3797 INSN_REG_USE_LIST (dbg) = NULL;
3799 /* We delete rather than resolve these deps, otherwise we
3800 crash in sched_free_deps(), because forward deps are
3801 expected to be released before backward deps. */
3802 sd_delete_dep (sd_it);
3805 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3806 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3808 if (sched_pressure == SCHED_PRESSURE_MODEL
3809 && model_curr_point < model_num_insns
3810 && NONDEBUG_INSN_P (insn))
3812 if (model_index (insn) == model_curr_point)
3814 model_curr_point++;
3815 while (model_curr_point < model_num_insns
3816 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
3817 == QUEUE_SCHEDULED));
3818 else
3819 model_recompute (insn);
3820 model_update_limit_points ();
3821 update_register_pressure (insn);
3822 if (sched_verbose >= 2)
3823 print_curr_reg_pressure ();
3826 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
3827 if (INSN_TICK (insn) > clock_var)
3828 /* INSN has been prematurely moved from the queue to the ready list.
3829 This is possible only if following flag is set. */
3830 gcc_assert (flag_sched_stalled_insns);
3832 /* ??? Probably, if INSN is scheduled prematurely, we should leave
3833 INSN_TICK untouched. This is a machine-dependent issue, actually. */
3834 INSN_TICK (insn) = clock_var;
3836 check_clobbered_conditions (insn);
3838 /* Update dependent instructions. First, see if by scheduling this insn
3839 now we broke a dependence in a way that requires us to change another
3840 insn. */
3841 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3842 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
3844 struct dep_replacement *desc = DEP_REPLACE (dep);
3845 rtx pro = DEP_PRO (dep);
3846 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
3847 && desc != NULL && desc->insn == pro)
3848 apply_replacement (dep, false);
3851 /* Go through and resolve forward dependencies. */
3852 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
3853 sd_iterator_cond (&sd_it, &dep);)
3855 rtx next = DEP_CON (dep);
3856 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
3858 /* Resolve the dependence between INSN and NEXT.
3859 sd_resolve_dep () moves current dep to another list thus
3860 advancing the iterator. */
3861 sd_resolve_dep (sd_it);
3863 if (cancelled)
3865 if (must_restore_pattern_p (next, dep))
3866 restore_pattern (dep, false);
3867 continue;
3870 /* Don't bother trying to mark next as ready if insn is a debug
3871 insn. If insn is the last hard dependency, it will have
3872 already been discounted. */
3873 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
3874 continue;
3876 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
3878 int effective_cost;
3880 effective_cost = try_ready (next);
3882 if (effective_cost >= 0
3883 && SCHED_GROUP_P (next)
3884 && advance < effective_cost)
3885 advance = effective_cost;
3887 else
3888 /* Check always has only one forward dependence (to the first insn in
3889 the recovery block), therefore, this will be executed only once. */
3891 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
3892 fix_recovery_deps (RECOVERY_BLOCK (insn));
3896 /* Annotate the instruction with issue information -- TImode
3897 indicates that the instruction is expected not to be able
3898 to issue on the same cycle as the previous insn. A machine
3899 may use this information to decide how the instruction should
3900 be aligned. */
3901 if (issue_rate > 1
3902 && GET_CODE (PATTERN (insn)) != USE
3903 && GET_CODE (PATTERN (insn)) != CLOBBER
3904 && !DEBUG_INSN_P (insn))
3906 if (reload_completed)
3907 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
3908 last_clock_var = clock_var;
3911 return advance;
3914 /* Functions for handling of notes. */
3916 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
3917 void
3918 concat_note_lists (rtx from_end, rtx *to_endp)
3920 rtx from_start;
3922 /* It's easy when have nothing to concat. */
3923 if (from_end == NULL)
3924 return;
3926 /* It's also easy when destination is empty. */
3927 if (*to_endp == NULL)
3929 *to_endp = from_end;
3930 return;
3933 from_start = from_end;
3934 while (PREV_INSN (from_start) != NULL)
3935 from_start = PREV_INSN (from_start);
3937 PREV_INSN (from_start) = *to_endp;
3938 NEXT_INSN (*to_endp) = from_start;
3939 *to_endp = from_end;
3942 /* Delete notes between HEAD and TAIL and put them in the chain
3943 of notes ended by NOTE_LIST. */
3944 void
3945 remove_notes (rtx head, rtx tail)
3947 rtx next_tail, insn, next;
3949 note_list = 0;
3950 if (head == tail && !INSN_P (head))
3951 return;
3953 next_tail = NEXT_INSN (tail);
3954 for (insn = head; insn != next_tail; insn = next)
3956 next = NEXT_INSN (insn);
3957 if (!NOTE_P (insn))
3958 continue;
3960 switch (NOTE_KIND (insn))
3962 case NOTE_INSN_BASIC_BLOCK:
3963 continue;
3965 case NOTE_INSN_EPILOGUE_BEG:
3966 if (insn != tail)
3968 remove_insn (insn);
3969 add_reg_note (next, REG_SAVE_NOTE,
3970 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
3971 break;
3973 /* FALLTHRU */
3975 default:
3976 remove_insn (insn);
3978 /* Add the note to list that ends at NOTE_LIST. */
3979 PREV_INSN (insn) = note_list;
3980 NEXT_INSN (insn) = NULL_RTX;
3981 if (note_list)
3982 NEXT_INSN (note_list) = insn;
3983 note_list = insn;
3984 break;
3987 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
3991 /* A structure to record enough data to allow us to backtrack the scheduler to
3992 a previous state. */
3993 struct haifa_saved_data
3995 /* Next entry on the list. */
3996 struct haifa_saved_data *next;
3998 /* Backtracking is associated with scheduling insns that have delay slots.
3999 DELAY_PAIR points to the structure that contains the insns involved, and
4000 the number of cycles between them. */
4001 struct delay_pair *delay_pair;
4003 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4004 void *fe_saved_data;
4005 /* Data used by the backend. */
4006 void *be_saved_data;
4008 /* Copies of global state. */
4009 int clock_var, last_clock_var;
4010 struct ready_list ready;
4011 state_t curr_state;
4013 rtx last_scheduled_insn;
4014 rtx last_nondebug_scheduled_insn;
4015 int cycle_issued_insns;
4017 /* Copies of state used in the inner loop of schedule_block. */
4018 struct sched_block_state sched_block;
4020 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4021 to 0 when restoring. */
4022 int q_size;
4023 rtx *insn_queue;
4025 /* Describe pattern replacements that occurred since this backtrack point
4026 was queued. */
4027 vec<dep_t> replacement_deps;
4028 vec<int> replace_apply;
4030 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4031 point. */
4032 vec<dep_t> next_cycle_deps;
4033 vec<int> next_cycle_apply;
4036 /* A record, in reverse order, of all scheduled insns which have delay slots
4037 and may require backtracking. */
4038 static struct haifa_saved_data *backtrack_queue;
4040 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4041 to SET_P. */
4042 static void
4043 mark_backtrack_feeds (rtx insn, int set_p)
4045 sd_iterator_def sd_it;
4046 dep_t dep;
4047 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4049 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4053 /* Save the current scheduler state so that we can backtrack to it
4054 later if necessary. PAIR gives the insns that make it necessary to
4055 save this point. SCHED_BLOCK is the local state of schedule_block
4056 that need to be saved. */
4057 static void
4058 save_backtrack_point (struct delay_pair *pair,
4059 struct sched_block_state sched_block)
4061 int i;
4062 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4064 save->curr_state = xmalloc (dfa_state_size);
4065 memcpy (save->curr_state, curr_state, dfa_state_size);
4067 save->ready.first = ready.first;
4068 save->ready.n_ready = ready.n_ready;
4069 save->ready.n_debug = ready.n_debug;
4070 save->ready.veclen = ready.veclen;
4071 save->ready.vec = XNEWVEC (rtx, ready.veclen);
4072 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4074 save->insn_queue = XNEWVEC (rtx, max_insn_queue_index + 1);
4075 save->q_size = q_size;
4076 for (i = 0; i <= max_insn_queue_index; i++)
4078 int q = NEXT_Q_AFTER (q_ptr, i);
4079 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4082 save->clock_var = clock_var;
4083 save->last_clock_var = last_clock_var;
4084 save->cycle_issued_insns = cycle_issued_insns;
4085 save->last_scheduled_insn = last_scheduled_insn;
4086 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4088 save->sched_block = sched_block;
4090 save->replacement_deps.create (0);
4091 save->replace_apply.create (0);
4092 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4093 save->next_cycle_apply = next_cycle_apply.copy ();
4095 if (current_sched_info->save_state)
4096 save->fe_saved_data = (*current_sched_info->save_state) ();
4098 if (targetm.sched.alloc_sched_context)
4100 save->be_saved_data = targetm.sched.alloc_sched_context ();
4101 targetm.sched.init_sched_context (save->be_saved_data, false);
4103 else
4104 save->be_saved_data = NULL;
4106 save->delay_pair = pair;
4108 save->next = backtrack_queue;
4109 backtrack_queue = save;
4111 while (pair)
4113 mark_backtrack_feeds (pair->i2, 1);
4114 INSN_TICK (pair->i2) = INVALID_TICK;
4115 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4116 SHADOW_P (pair->i2) = pair->stages == 0;
4117 pair = pair->next_same_i1;
4121 /* Walk the ready list and all queues. If any insns have unresolved backwards
4122 dependencies, these must be cancelled deps, broken by predication. Set or
4123 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4125 static void
4126 toggle_cancelled_flags (bool set)
4128 int i;
4129 sd_iterator_def sd_it;
4130 dep_t dep;
4132 if (ready.n_ready > 0)
4134 rtx *first = ready_lastpos (&ready);
4135 for (i = 0; i < ready.n_ready; i++)
4136 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4137 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4139 if (set)
4140 DEP_STATUS (dep) |= DEP_CANCELLED;
4141 else
4142 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4145 for (i = 0; i <= max_insn_queue_index; i++)
4147 int q = NEXT_Q_AFTER (q_ptr, i);
4148 rtx link;
4149 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4151 rtx insn = XEXP (link, 0);
4152 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4153 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4155 if (set)
4156 DEP_STATUS (dep) |= DEP_CANCELLED;
4157 else
4158 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4164 /* Undo the replacements that have occurred after backtrack point SAVE
4165 was placed. */
4166 static void
4167 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4169 while (!save->replacement_deps.is_empty ())
4171 dep_t dep = save->replacement_deps.pop ();
4172 int apply_p = save->replace_apply.pop ();
4174 if (apply_p)
4175 restore_pattern (dep, true);
4176 else
4177 apply_replacement (dep, true);
4179 save->replacement_deps.release ();
4180 save->replace_apply.release ();
4183 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4184 Restore their dependencies to an unresolved state, and mark them as
4185 queued nowhere. */
4187 static void
4188 unschedule_insns_until (rtx insn)
4190 vec<rtx> recompute_vec = vNULL;
4192 /* Make two passes over the insns to be unscheduled. First, we clear out
4193 dependencies and other trivial bookkeeping. */
4194 for (;;)
4196 rtx last;
4197 sd_iterator_def sd_it;
4198 dep_t dep;
4200 last = scheduled_insns.pop ();
4202 /* This will be changed by restore_backtrack_point if the insn is in
4203 any queue. */
4204 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4205 if (last != insn)
4206 INSN_TICK (last) = INVALID_TICK;
4208 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4209 modulo_insns_scheduled--;
4211 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4212 sd_iterator_cond (&sd_it, &dep);)
4214 rtx con = DEP_CON (dep);
4215 sd_unresolve_dep (sd_it);
4216 if (!MUST_RECOMPUTE_SPEC_P (con))
4218 MUST_RECOMPUTE_SPEC_P (con) = 1;
4219 recompute_vec.safe_push (con);
4223 if (last == insn)
4224 break;
4227 /* A second pass, to update ready and speculation status for insns
4228 depending on the unscheduled ones. The first pass must have
4229 popped the scheduled_insns vector up to the point where we
4230 restart scheduling, as recompute_todo_spec requires it to be
4231 up-to-date. */
4232 while (!recompute_vec.is_empty ())
4234 rtx con;
4236 con = recompute_vec.pop ();
4237 MUST_RECOMPUTE_SPEC_P (con) = 0;
4238 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4240 TODO_SPEC (con) = HARD_DEP;
4241 INSN_TICK (con) = INVALID_TICK;
4242 if (PREDICATED_PAT (con) != NULL_RTX)
4243 haifa_change_pattern (con, ORIG_PAT (con));
4245 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4246 TODO_SPEC (con) = recompute_todo_spec (con, true);
4248 recompute_vec.release ();
4251 /* Restore scheduler state from the topmost entry on the backtracking queue.
4252 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4253 overwrite with the saved data.
4254 The caller must already have called unschedule_insns_until. */
4256 static void
4257 restore_last_backtrack_point (struct sched_block_state *psched_block)
4259 rtx link;
4260 int i;
4261 struct haifa_saved_data *save = backtrack_queue;
4263 backtrack_queue = save->next;
4265 if (current_sched_info->restore_state)
4266 (*current_sched_info->restore_state) (save->fe_saved_data);
4268 if (targetm.sched.alloc_sched_context)
4270 targetm.sched.set_sched_context (save->be_saved_data);
4271 targetm.sched.free_sched_context (save->be_saved_data);
4274 /* Do this first since it clobbers INSN_TICK of the involved
4275 instructions. */
4276 undo_replacements_for_backtrack (save);
4278 /* Clear the QUEUE_INDEX of everything in the ready list or one
4279 of the queues. */
4280 if (ready.n_ready > 0)
4282 rtx *first = ready_lastpos (&ready);
4283 for (i = 0; i < ready.n_ready; i++)
4285 rtx insn = first[i];
4286 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4287 INSN_TICK (insn) = INVALID_TICK;
4290 for (i = 0; i <= max_insn_queue_index; i++)
4292 int q = NEXT_Q_AFTER (q_ptr, i);
4294 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4296 rtx x = XEXP (link, 0);
4297 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4298 INSN_TICK (x) = INVALID_TICK;
4300 free_INSN_LIST_list (&insn_queue[q]);
4303 free (ready.vec);
4304 ready = save->ready;
4306 if (ready.n_ready > 0)
4308 rtx *first = ready_lastpos (&ready);
4309 for (i = 0; i < ready.n_ready; i++)
4311 rtx insn = first[i];
4312 QUEUE_INDEX (insn) = QUEUE_READY;
4313 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4314 INSN_TICK (insn) = save->clock_var;
4318 q_ptr = 0;
4319 q_size = save->q_size;
4320 for (i = 0; i <= max_insn_queue_index; i++)
4322 int q = NEXT_Q_AFTER (q_ptr, i);
4324 insn_queue[q] = save->insn_queue[q];
4326 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4328 rtx x = XEXP (link, 0);
4329 QUEUE_INDEX (x) = i;
4330 TODO_SPEC (x) = recompute_todo_spec (x, true);
4331 INSN_TICK (x) = save->clock_var + i;
4334 free (save->insn_queue);
4336 toggle_cancelled_flags (true);
4338 clock_var = save->clock_var;
4339 last_clock_var = save->last_clock_var;
4340 cycle_issued_insns = save->cycle_issued_insns;
4341 last_scheduled_insn = save->last_scheduled_insn;
4342 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4344 *psched_block = save->sched_block;
4346 memcpy (curr_state, save->curr_state, dfa_state_size);
4347 free (save->curr_state);
4349 mark_backtrack_feeds (save->delay_pair->i2, 0);
4351 gcc_assert (next_cycle_replace_deps.is_empty ());
4352 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4353 next_cycle_apply = save->next_cycle_apply.copy ();
4355 free (save);
4357 for (save = backtrack_queue; save; save = save->next)
4359 mark_backtrack_feeds (save->delay_pair->i2, 1);
4363 /* Discard all data associated with the topmost entry in the backtrack
4364 queue. If RESET_TICK is false, we just want to free the data. If true,
4365 we are doing this because we discovered a reason to backtrack. In the
4366 latter case, also reset the INSN_TICK for the shadow insn. */
4367 static void
4368 free_topmost_backtrack_point (bool reset_tick)
4370 struct haifa_saved_data *save = backtrack_queue;
4371 int i;
4373 backtrack_queue = save->next;
4375 if (reset_tick)
4377 struct delay_pair *pair = save->delay_pair;
4378 while (pair)
4380 INSN_TICK (pair->i2) = INVALID_TICK;
4381 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4382 pair = pair->next_same_i1;
4384 undo_replacements_for_backtrack (save);
4386 else
4388 save->replacement_deps.release ();
4389 save->replace_apply.release ();
4392 if (targetm.sched.free_sched_context)
4393 targetm.sched.free_sched_context (save->be_saved_data);
4394 if (current_sched_info->restore_state)
4395 free (save->fe_saved_data);
4396 for (i = 0; i <= max_insn_queue_index; i++)
4397 free_INSN_LIST_list (&save->insn_queue[i]);
4398 free (save->insn_queue);
4399 free (save->curr_state);
4400 free (save->ready.vec);
4401 free (save);
4404 /* Free the entire backtrack queue. */
4405 static void
4406 free_backtrack_queue (void)
4408 while (backtrack_queue)
4409 free_topmost_backtrack_point (false);
4412 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4413 may have to postpone the replacement until the start of the next cycle,
4414 at which point we will be called again with IMMEDIATELY true. This is
4415 only done for machines which have instruction packets with explicit
4416 parallelism however. */
4417 static void
4418 apply_replacement (dep_t dep, bool immediately)
4420 struct dep_replacement *desc = DEP_REPLACE (dep);
4421 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4423 next_cycle_replace_deps.safe_push (dep);
4424 next_cycle_apply.safe_push (1);
4426 else
4428 bool success;
4430 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4431 return;
4433 if (sched_verbose >= 5)
4434 fprintf (sched_dump, "applying replacement for insn %d\n",
4435 INSN_UID (desc->insn));
4437 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4438 gcc_assert (success);
4440 update_insn_after_change (desc->insn);
4441 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4442 fix_tick_ready (desc->insn);
4444 if (backtrack_queue != NULL)
4446 backtrack_queue->replacement_deps.safe_push (dep);
4447 backtrack_queue->replace_apply.safe_push (1);
4452 /* We have determined that a pattern involved in DEP must be restored.
4453 If IMMEDIATELY is false, we may have to postpone the replacement
4454 until the start of the next cycle, at which point we will be called
4455 again with IMMEDIATELY true. */
4456 static void
4457 restore_pattern (dep_t dep, bool immediately)
4459 rtx next = DEP_CON (dep);
4460 int tick = INSN_TICK (next);
4462 /* If we already scheduled the insn, the modified version is
4463 correct. */
4464 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4465 return;
4467 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4469 next_cycle_replace_deps.safe_push (dep);
4470 next_cycle_apply.safe_push (0);
4471 return;
4475 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4477 if (sched_verbose >= 5)
4478 fprintf (sched_dump, "restoring pattern for insn %d\n",
4479 INSN_UID (next));
4480 haifa_change_pattern (next, ORIG_PAT (next));
4482 else
4484 struct dep_replacement *desc = DEP_REPLACE (dep);
4485 bool success;
4487 if (sched_verbose >= 5)
4488 fprintf (sched_dump, "restoring pattern for insn %d\n",
4489 INSN_UID (desc->insn));
4490 tick = INSN_TICK (desc->insn);
4492 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4493 gcc_assert (success);
4494 update_insn_after_change (desc->insn);
4495 if (backtrack_queue != NULL)
4497 backtrack_queue->replacement_deps.safe_push (dep);
4498 backtrack_queue->replace_apply.safe_push (0);
4501 INSN_TICK (next) = tick;
4502 if (TODO_SPEC (next) == DEP_POSTPONED)
4503 return;
4505 if (sd_lists_empty_p (next, SD_LIST_BACK))
4506 TODO_SPEC (next) = 0;
4507 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4508 TODO_SPEC (next) = HARD_DEP;
4511 /* Perform pattern replacements that were queued up until the next
4512 cycle. */
4513 static void
4514 perform_replacements_new_cycle (void)
4516 int i;
4517 dep_t dep;
4518 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4520 int apply_p = next_cycle_apply[i];
4521 if (apply_p)
4522 apply_replacement (dep, true);
4523 else
4524 restore_pattern (dep, true);
4526 next_cycle_replace_deps.truncate (0);
4527 next_cycle_apply.truncate (0);
4530 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4531 instructions we've previously encountered, a set bit prevents
4532 recursion. BUDGET is a limit on how far ahead we look, it is
4533 reduced on recursive calls. Return true if we produced a good
4534 estimate, or false if we exceeded the budget. */
4535 static bool
4536 estimate_insn_tick (bitmap processed, rtx insn, int budget)
4538 sd_iterator_def sd_it;
4539 dep_t dep;
4540 int earliest = INSN_TICK (insn);
4542 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4544 rtx pro = DEP_PRO (dep);
4545 int t;
4547 if (DEP_STATUS (dep) & DEP_CANCELLED)
4548 continue;
4550 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4551 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4552 else
4554 int cost = dep_cost (dep);
4555 if (cost >= budget)
4556 return false;
4557 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4559 if (!estimate_insn_tick (processed, pro, budget - cost))
4560 return false;
4562 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4563 t = INSN_TICK_ESTIMATE (pro) + cost;
4564 if (earliest == INVALID_TICK || t > earliest)
4565 earliest = t;
4568 bitmap_set_bit (processed, INSN_LUID (insn));
4569 INSN_TICK_ESTIMATE (insn) = earliest;
4570 return true;
4573 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4574 infinite resources) the cycle in which the delayed shadow can be issued.
4575 Return the number of cycles that must pass before the real insn can be
4576 issued in order to meet this constraint. */
4577 static int
4578 estimate_shadow_tick (struct delay_pair *p)
4580 bitmap_head processed;
4581 int t;
4582 bool cutoff;
4583 bitmap_initialize (&processed, 0);
4585 cutoff = !estimate_insn_tick (&processed, p->i2,
4586 max_insn_queue_index + pair_delay (p));
4587 bitmap_clear (&processed);
4588 if (cutoff)
4589 return max_insn_queue_index;
4590 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4591 if (t > 0)
4592 return t;
4593 return 0;
4596 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4597 recursively resolve all its forward dependencies. */
4598 static void
4599 resolve_dependencies (rtx insn)
4601 sd_iterator_def sd_it;
4602 dep_t dep;
4604 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4605 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4606 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4607 return;
4609 if (sched_verbose >= 4)
4610 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4612 if (QUEUE_INDEX (insn) >= 0)
4613 queue_remove (insn);
4615 scheduled_insns.safe_push (insn);
4617 /* Update dependent instructions. */
4618 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4619 sd_iterator_cond (&sd_it, &dep);)
4621 rtx next = DEP_CON (dep);
4623 if (sched_verbose >= 4)
4624 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4625 INSN_UID (next));
4627 /* Resolve the dependence between INSN and NEXT.
4628 sd_resolve_dep () moves current dep to another list thus
4629 advancing the iterator. */
4630 sd_resolve_dep (sd_it);
4632 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4634 resolve_dependencies (next);
4636 else
4637 /* Check always has only one forward dependence (to the first insn in
4638 the recovery block), therefore, this will be executed only once. */
4640 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4646 /* Return the head and tail pointers of ebb starting at BEG and ending
4647 at END. */
4648 void
4649 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
4651 rtx beg_head = BB_HEAD (beg);
4652 rtx beg_tail = BB_END (beg);
4653 rtx end_head = BB_HEAD (end);
4654 rtx end_tail = BB_END (end);
4656 /* Don't include any notes or labels at the beginning of the BEG
4657 basic block, or notes at the end of the END basic blocks. */
4659 if (LABEL_P (beg_head))
4660 beg_head = NEXT_INSN (beg_head);
4662 while (beg_head != beg_tail)
4663 if (NOTE_P (beg_head))
4664 beg_head = NEXT_INSN (beg_head);
4665 else if (DEBUG_INSN_P (beg_head))
4667 rtx note, next;
4669 for (note = NEXT_INSN (beg_head);
4670 note != beg_tail;
4671 note = next)
4673 next = NEXT_INSN (note);
4674 if (NOTE_P (note))
4676 if (sched_verbose >= 9)
4677 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4679 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4681 if (BLOCK_FOR_INSN (note) != beg)
4682 df_insn_change_bb (note, beg);
4684 else if (!DEBUG_INSN_P (note))
4685 break;
4688 break;
4690 else
4691 break;
4693 *headp = beg_head;
4695 if (beg == end)
4696 end_head = beg_head;
4697 else if (LABEL_P (end_head))
4698 end_head = NEXT_INSN (end_head);
4700 while (end_head != end_tail)
4701 if (NOTE_P (end_tail))
4702 end_tail = PREV_INSN (end_tail);
4703 else if (DEBUG_INSN_P (end_tail))
4705 rtx note, prev;
4707 for (note = PREV_INSN (end_tail);
4708 note != end_head;
4709 note = prev)
4711 prev = PREV_INSN (note);
4712 if (NOTE_P (note))
4714 if (sched_verbose >= 9)
4715 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4717 reorder_insns_nobb (note, note, end_tail);
4719 if (end_tail == BB_END (end))
4720 BB_END (end) = note;
4722 if (BLOCK_FOR_INSN (note) != end)
4723 df_insn_change_bb (note, end);
4725 else if (!DEBUG_INSN_P (note))
4726 break;
4729 break;
4731 else
4732 break;
4734 *tailp = end_tail;
4737 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
4740 no_real_insns_p (const_rtx head, const_rtx tail)
4742 while (head != NEXT_INSN (tail))
4744 if (!NOTE_P (head) && !LABEL_P (head))
4745 return 0;
4746 head = NEXT_INSN (head);
4748 return 1;
4751 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
4752 previously found among the insns. Insert them just before HEAD. */
4754 restore_other_notes (rtx head, basic_block head_bb)
4756 if (note_list != 0)
4758 rtx note_head = note_list;
4760 if (head)
4761 head_bb = BLOCK_FOR_INSN (head);
4762 else
4763 head = NEXT_INSN (bb_note (head_bb));
4765 while (PREV_INSN (note_head))
4767 set_block_for_insn (note_head, head_bb);
4768 note_head = PREV_INSN (note_head);
4770 /* In the above cycle we've missed this note. */
4771 set_block_for_insn (note_head, head_bb);
4773 PREV_INSN (note_head) = PREV_INSN (head);
4774 NEXT_INSN (PREV_INSN (head)) = note_head;
4775 PREV_INSN (head) = note_list;
4776 NEXT_INSN (note_list) = head;
4778 if (BLOCK_FOR_INSN (head) != head_bb)
4779 BB_END (head_bb) = note_list;
4781 head = note_head;
4784 return head;
4787 /* When we know we are going to discard the schedule due to a failed attempt
4788 at modulo scheduling, undo all replacements. */
4789 static void
4790 undo_all_replacements (void)
4792 rtx insn;
4793 int i;
4795 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
4797 sd_iterator_def sd_it;
4798 dep_t dep;
4800 /* See if we must undo a replacement. */
4801 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
4802 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4804 struct dep_replacement *desc = DEP_REPLACE (dep);
4805 if (desc != NULL)
4806 validate_change (desc->insn, desc->loc, desc->orig, 0);
4811 /* Move insns that became ready to fire from queue to ready list. */
4813 static void
4814 queue_to_ready (struct ready_list *ready)
4816 rtx insn;
4817 rtx link;
4818 rtx skip_insn;
4820 q_ptr = NEXT_Q (q_ptr);
4822 if (dbg_cnt (sched_insn) == false)
4824 /* If debug counter is activated do not requeue the first
4825 nonscheduled insn. */
4826 skip_insn = nonscheduled_insns_begin;
4829 skip_insn = next_nonnote_nondebug_insn (skip_insn);
4831 while (QUEUE_INDEX (skip_insn) == QUEUE_SCHEDULED);
4833 else
4834 skip_insn = NULL_RTX;
4836 /* Add all pending insns that can be scheduled without stalls to the
4837 ready list. */
4838 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
4840 insn = XEXP (link, 0);
4841 q_size -= 1;
4843 if (sched_verbose >= 2)
4844 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
4845 (*current_sched_info->print_insn) (insn, 0));
4847 /* If the ready list is full, delay the insn for 1 cycle.
4848 See the comment in schedule_block for the rationale. */
4849 if (!reload_completed
4850 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
4851 || (sched_pressure == SCHED_PRESSURE_MODEL
4852 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
4853 instructions too. */
4854 && model_index (insn) > (model_curr_point
4855 + MAX_SCHED_READY_INSNS)))
4856 && !(sched_pressure == SCHED_PRESSURE_MODEL
4857 && model_curr_point < model_num_insns
4858 /* Always allow the next model instruction to issue. */
4859 && model_index (insn) == model_curr_point)
4860 && !SCHED_GROUP_P (insn)
4861 && insn != skip_insn)
4862 queue_insn (insn, 1, "ready full");
4863 else
4865 ready_add (ready, insn, false);
4866 if (sched_verbose >= 2)
4867 fprintf (sched_dump, "moving to ready without stalls\n");
4870 free_INSN_LIST_list (&insn_queue[q_ptr]);
4872 /* If there are no ready insns, stall until one is ready and add all
4873 of the pending insns at that point to the ready list. */
4874 if (ready->n_ready == 0)
4876 int stalls;
4878 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
4880 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
4882 for (; link; link = XEXP (link, 1))
4884 insn = XEXP (link, 0);
4885 q_size -= 1;
4887 if (sched_verbose >= 2)
4888 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
4889 (*current_sched_info->print_insn) (insn, 0));
4891 ready_add (ready, insn, false);
4892 if (sched_verbose >= 2)
4893 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
4895 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
4897 advance_one_cycle ();
4899 break;
4902 advance_one_cycle ();
4905 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
4906 clock_var += stalls;
4910 /* Used by early_queue_to_ready. Determines whether it is "ok" to
4911 prematurely move INSN from the queue to the ready list. Currently,
4912 if a target defines the hook 'is_costly_dependence', this function
4913 uses the hook to check whether there exist any dependences which are
4914 considered costly by the target, between INSN and other insns that
4915 have already been scheduled. Dependences are checked up to Y cycles
4916 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
4917 controlling this value.
4918 (Other considerations could be taken into account instead (or in
4919 addition) depending on user flags and target hooks. */
4921 static bool
4922 ok_for_early_queue_removal (rtx insn)
4924 if (targetm.sched.is_costly_dependence)
4926 rtx prev_insn;
4927 int n_cycles;
4928 int i = scheduled_insns.length ();
4929 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
4931 while (i-- > 0)
4933 int cost;
4935 prev_insn = scheduled_insns[i];
4937 if (!NOTE_P (prev_insn))
4939 dep_t dep;
4941 dep = sd_find_dep_between (prev_insn, insn, true);
4943 if (dep != NULL)
4945 cost = dep_cost (dep);
4947 if (targetm.sched.is_costly_dependence (dep, cost,
4948 flag_sched_stalled_insns_dep - n_cycles))
4949 return false;
4953 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
4954 break;
4957 if (i == 0)
4958 break;
4962 return true;
4966 /* Remove insns from the queue, before they become "ready" with respect
4967 to FU latency considerations. */
4969 static int
4970 early_queue_to_ready (state_t state, struct ready_list *ready)
4972 rtx insn;
4973 rtx link;
4974 rtx next_link;
4975 rtx prev_link;
4976 bool move_to_ready;
4977 int cost;
4978 state_t temp_state = alloca (dfa_state_size);
4979 int stalls;
4980 int insns_removed = 0;
4983 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
4984 function:
4986 X == 0: There is no limit on how many queued insns can be removed
4987 prematurely. (flag_sched_stalled_insns = -1).
4989 X >= 1: Only X queued insns can be removed prematurely in each
4990 invocation. (flag_sched_stalled_insns = X).
4992 Otherwise: Early queue removal is disabled.
4993 (flag_sched_stalled_insns = 0)
4996 if (! flag_sched_stalled_insns)
4997 return 0;
4999 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5001 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5003 if (sched_verbose > 6)
5004 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5006 prev_link = 0;
5007 while (link)
5009 next_link = XEXP (link, 1);
5010 insn = XEXP (link, 0);
5011 if (insn && sched_verbose > 6)
5012 print_rtl_single (sched_dump, insn);
5014 memcpy (temp_state, state, dfa_state_size);
5015 if (recog_memoized (insn) < 0)
5016 /* non-negative to indicate that it's not ready
5017 to avoid infinite Q->R->Q->R... */
5018 cost = 0;
5019 else
5020 cost = state_transition (temp_state, insn);
5022 if (sched_verbose >= 6)
5023 fprintf (sched_dump, "transition cost = %d\n", cost);
5025 move_to_ready = false;
5026 if (cost < 0)
5028 move_to_ready = ok_for_early_queue_removal (insn);
5029 if (move_to_ready == true)
5031 /* move from Q to R */
5032 q_size -= 1;
5033 ready_add (ready, insn, false);
5035 if (prev_link)
5036 XEXP (prev_link, 1) = next_link;
5037 else
5038 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5040 free_INSN_LIST_node (link);
5042 if (sched_verbose >= 2)
5043 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5044 (*current_sched_info->print_insn) (insn, 0));
5046 insns_removed++;
5047 if (insns_removed == flag_sched_stalled_insns)
5048 /* Remove no more than flag_sched_stalled_insns insns
5049 from Q at a time. */
5050 return insns_removed;
5054 if (move_to_ready == false)
5055 prev_link = link;
5057 link = next_link;
5058 } /* while link */
5059 } /* if link */
5061 } /* for stalls.. */
5063 return insns_removed;
5067 /* Print the ready list for debugging purposes. Callable from debugger. */
5069 static void
5070 debug_ready_list (struct ready_list *ready)
5072 rtx *p;
5073 int i;
5075 if (ready->n_ready == 0)
5077 fprintf (sched_dump, "\n");
5078 return;
5081 p = ready_lastpos (ready);
5082 for (i = 0; i < ready->n_ready; i++)
5084 fprintf (sched_dump, " %s:%d",
5085 (*current_sched_info->print_insn) (p[i], 0),
5086 INSN_LUID (p[i]));
5087 if (sched_pressure != SCHED_PRESSURE_NONE)
5088 fprintf (sched_dump, "(cost=%d",
5089 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5090 if (INSN_TICK (p[i]) > clock_var)
5091 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5092 if (sched_pressure != SCHED_PRESSURE_NONE)
5093 fprintf (sched_dump, ")");
5095 fprintf (sched_dump, "\n");
5098 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5099 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5100 replaces the epilogue note in the correct basic block. */
5101 void
5102 reemit_notes (rtx insn)
5104 rtx note, last = insn;
5106 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5108 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5110 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5112 last = emit_note_before (note_type, last);
5113 remove_note (insn, note);
5118 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5119 static void
5120 move_insn (rtx insn, rtx last, rtx nt)
5122 if (PREV_INSN (insn) != last)
5124 basic_block bb;
5125 rtx note;
5126 int jump_p = 0;
5128 bb = BLOCK_FOR_INSN (insn);
5130 /* BB_HEAD is either LABEL or NOTE. */
5131 gcc_assert (BB_HEAD (bb) != insn);
5133 if (BB_END (bb) == insn)
5134 /* If this is last instruction in BB, move end marker one
5135 instruction up. */
5137 /* Jumps are always placed at the end of basic block. */
5138 jump_p = control_flow_insn_p (insn);
5140 gcc_assert (!jump_p
5141 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5142 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5143 || (common_sched_info->sched_pass_id
5144 == SCHED_EBB_PASS));
5146 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5148 BB_END (bb) = PREV_INSN (insn);
5151 gcc_assert (BB_END (bb) != last);
5153 if (jump_p)
5154 /* We move the block note along with jump. */
5156 gcc_assert (nt);
5158 note = NEXT_INSN (insn);
5159 while (NOTE_NOT_BB_P (note) && note != nt)
5160 note = NEXT_INSN (note);
5162 if (note != nt
5163 && (LABEL_P (note)
5164 || BARRIER_P (note)))
5165 note = NEXT_INSN (note);
5167 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5169 else
5170 note = insn;
5172 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5173 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5175 NEXT_INSN (note) = NEXT_INSN (last);
5176 PREV_INSN (NEXT_INSN (last)) = note;
5178 NEXT_INSN (last) = insn;
5179 PREV_INSN (insn) = last;
5181 bb = BLOCK_FOR_INSN (last);
5183 if (jump_p)
5185 fix_jump_move (insn);
5187 if (BLOCK_FOR_INSN (insn) != bb)
5188 move_block_after_check (insn);
5190 gcc_assert (BB_END (bb) == last);
5193 df_insn_change_bb (insn, bb);
5195 /* Update BB_END, if needed. */
5196 if (BB_END (bb) == last)
5197 BB_END (bb) = insn;
5200 SCHED_GROUP_P (insn) = 0;
5203 /* Return true if scheduling INSN will finish current clock cycle. */
5204 static bool
5205 insn_finishes_cycle_p (rtx insn)
5207 if (SCHED_GROUP_P (insn))
5208 /* After issuing INSN, rest of the sched_group will be forced to issue
5209 in order. Don't make any plans for the rest of cycle. */
5210 return true;
5212 /* Finishing the block will, apparently, finish the cycle. */
5213 if (current_sched_info->insn_finishes_block_p
5214 && current_sched_info->insn_finishes_block_p (insn))
5215 return true;
5217 return false;
5220 /* Define type for target data used in multipass scheduling. */
5221 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5222 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5223 #endif
5224 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5226 /* The following structure describe an entry of the stack of choices. */
5227 struct choice_entry
5229 /* Ordinal number of the issued insn in the ready queue. */
5230 int index;
5231 /* The number of the rest insns whose issues we should try. */
5232 int rest;
5233 /* The number of issued essential insns. */
5234 int n;
5235 /* State after issuing the insn. */
5236 state_t state;
5237 /* Target-specific data. */
5238 first_cycle_multipass_data_t target_data;
5241 /* The following array is used to implement a stack of choices used in
5242 function max_issue. */
5243 static struct choice_entry *choice_stack;
5245 /* This holds the value of the target dfa_lookahead hook. */
5246 int dfa_lookahead;
5248 /* The following variable value is maximal number of tries of issuing
5249 insns for the first cycle multipass insn scheduling. We define
5250 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5251 need this constraint if all real insns (with non-negative codes)
5252 had reservations because in this case the algorithm complexity is
5253 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5254 might be incomplete and such insn might occur. For such
5255 descriptions, the complexity of algorithm (without the constraint)
5256 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5257 static int max_lookahead_tries;
5259 /* The following value is value of hook
5260 `first_cycle_multipass_dfa_lookahead' at the last call of
5261 `max_issue'. */
5262 static int cached_first_cycle_multipass_dfa_lookahead = 0;
5264 /* The following value is value of `issue_rate' at the last call of
5265 `sched_init'. */
5266 static int cached_issue_rate = 0;
5268 /* The following function returns maximal (or close to maximal) number
5269 of insns which can be issued on the same cycle and one of which
5270 insns is insns with the best rank (the first insn in READY). To
5271 make this function tries different samples of ready insns. READY
5272 is current queue `ready'. Global array READY_TRY reflects what
5273 insns are already issued in this try. The function stops immediately,
5274 if it reached the such a solution, that all instruction can be issued.
5275 INDEX will contain index of the best insn in READY. The following
5276 function is used only for first cycle multipass scheduling.
5278 PRIVILEGED_N >= 0
5280 This function expects recognized insns only. All USEs,
5281 CLOBBERs, etc must be filtered elsewhere. */
5283 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5284 bool first_cycle_insn_p, int *index)
5286 int n, i, all, n_ready, best, delay, tries_num;
5287 int more_issue;
5288 struct choice_entry *top;
5289 rtx insn;
5291 n_ready = ready->n_ready;
5292 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5293 && privileged_n <= n_ready);
5295 /* Init MAX_LOOKAHEAD_TRIES. */
5296 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
5298 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
5299 max_lookahead_tries = 100;
5300 for (i = 0; i < issue_rate; i++)
5301 max_lookahead_tries *= dfa_lookahead;
5304 /* Init max_points. */
5305 more_issue = issue_rate - cycle_issued_insns;
5306 gcc_assert (more_issue >= 0);
5308 /* The number of the issued insns in the best solution. */
5309 best = 0;
5311 top = choice_stack;
5313 /* Set initial state of the search. */
5314 memcpy (top->state, state, dfa_state_size);
5315 top->rest = dfa_lookahead;
5316 top->n = 0;
5317 if (targetm.sched.first_cycle_multipass_begin)
5318 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5319 ready_try, n_ready,
5320 first_cycle_insn_p);
5322 /* Count the number of the insns to search among. */
5323 for (all = i = 0; i < n_ready; i++)
5324 if (!ready_try [i])
5325 all++;
5327 /* I is the index of the insn to try next. */
5328 i = 0;
5329 tries_num = 0;
5330 for (;;)
5332 if (/* If we've reached a dead end or searched enough of what we have
5333 been asked... */
5334 top->rest == 0
5335 /* or have nothing else to try... */
5336 || i >= n_ready
5337 /* or should not issue more. */
5338 || top->n >= more_issue)
5340 /* ??? (... || i == n_ready). */
5341 gcc_assert (i <= n_ready);
5343 /* We should not issue more than issue_rate instructions. */
5344 gcc_assert (top->n <= more_issue);
5346 if (top == choice_stack)
5347 break;
5349 if (best < top - choice_stack)
5351 if (privileged_n)
5353 n = privileged_n;
5354 /* Try to find issued privileged insn. */
5355 while (n && !ready_try[--n])
5359 if (/* If all insns are equally good... */
5360 privileged_n == 0
5361 /* Or a privileged insn will be issued. */
5362 || ready_try[n])
5363 /* Then we have a solution. */
5365 best = top - choice_stack;
5366 /* This is the index of the insn issued first in this
5367 solution. */
5368 *index = choice_stack [1].index;
5369 if (top->n == more_issue || best == all)
5370 break;
5374 /* Set ready-list index to point to the last insn
5375 ('i++' below will advance it to the next insn). */
5376 i = top->index;
5378 /* Backtrack. */
5379 ready_try [i] = 0;
5381 if (targetm.sched.first_cycle_multipass_backtrack)
5382 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5383 ready_try, n_ready);
5385 top--;
5386 memcpy (state, top->state, dfa_state_size);
5388 else if (!ready_try [i])
5390 tries_num++;
5391 if (tries_num > max_lookahead_tries)
5392 break;
5393 insn = ready_element (ready, i);
5394 delay = state_transition (state, insn);
5395 if (delay < 0)
5397 if (state_dead_lock_p (state)
5398 || insn_finishes_cycle_p (insn))
5399 /* We won't issue any more instructions in the next
5400 choice_state. */
5401 top->rest = 0;
5402 else
5403 top->rest--;
5405 n = top->n;
5406 if (memcmp (top->state, state, dfa_state_size) != 0)
5407 n++;
5409 /* Advance to the next choice_entry. */
5410 top++;
5411 /* Initialize it. */
5412 top->rest = dfa_lookahead;
5413 top->index = i;
5414 top->n = n;
5415 memcpy (top->state, state, dfa_state_size);
5416 ready_try [i] = 1;
5418 if (targetm.sched.first_cycle_multipass_issue)
5419 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5420 ready_try, n_ready,
5421 insn,
5422 &((top - 1)
5423 ->target_data));
5425 i = -1;
5429 /* Increase ready-list index. */
5430 i++;
5433 if (targetm.sched.first_cycle_multipass_end)
5434 targetm.sched.first_cycle_multipass_end (best != 0
5435 ? &choice_stack[1].target_data
5436 : NULL);
5438 /* Restore the original state of the DFA. */
5439 memcpy (state, choice_stack->state, dfa_state_size);
5441 return best;
5444 /* The following function chooses insn from READY and modifies
5445 READY. The following function is used only for first
5446 cycle multipass scheduling.
5447 Return:
5448 -1 if cycle should be advanced,
5449 0 if INSN_PTR is set to point to the desirable insn,
5450 1 if choose_ready () should be restarted without advancing the cycle. */
5451 static int
5452 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
5453 rtx *insn_ptr)
5455 int lookahead;
5457 if (dbg_cnt (sched_insn) == false)
5459 rtx insn = nonscheduled_insns_begin;
5462 insn = next_nonnote_insn (insn);
5464 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5466 if (QUEUE_INDEX (insn) == QUEUE_READY)
5467 /* INSN is in the ready_list. */
5469 nonscheduled_insns_begin = insn;
5470 ready_remove_insn (insn);
5471 *insn_ptr = insn;
5472 return 0;
5475 /* INSN is in the queue. Advance cycle to move it to the ready list. */
5476 return -1;
5479 lookahead = 0;
5481 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
5482 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
5483 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
5484 || DEBUG_INSN_P (ready_element (ready, 0)))
5486 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
5487 *insn_ptr = ready_remove_first_dispatch (ready);
5488 else
5489 *insn_ptr = ready_remove_first (ready);
5491 return 0;
5493 else
5495 /* Try to choose the better insn. */
5496 int index = 0, i, n;
5497 rtx insn;
5498 int try_data = 1, try_control = 1;
5499 ds_t ts;
5501 insn = ready_element (ready, 0);
5502 if (INSN_CODE (insn) < 0)
5504 *insn_ptr = ready_remove_first (ready);
5505 return 0;
5508 if (spec_info
5509 && spec_info->flags & (PREFER_NON_DATA_SPEC
5510 | PREFER_NON_CONTROL_SPEC))
5512 for (i = 0, n = ready->n_ready; i < n; i++)
5514 rtx x;
5515 ds_t s;
5517 x = ready_element (ready, i);
5518 s = TODO_SPEC (x);
5520 if (spec_info->flags & PREFER_NON_DATA_SPEC
5521 && !(s & DATA_SPEC))
5523 try_data = 0;
5524 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
5525 || !try_control)
5526 break;
5529 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
5530 && !(s & CONTROL_SPEC))
5532 try_control = 0;
5533 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
5534 break;
5539 ts = TODO_SPEC (insn);
5540 if ((ts & SPECULATIVE)
5541 && (((!try_data && (ts & DATA_SPEC))
5542 || (!try_control && (ts & CONTROL_SPEC)))
5543 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
5544 && !targetm.sched
5545 .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
5546 /* Discard speculative instruction that stands first in the ready
5547 list. */
5549 change_queue_index (insn, 1);
5550 return 1;
5553 ready_try[0] = 0;
5555 for (i = 1; i < ready->n_ready; i++)
5557 insn = ready_element (ready, i);
5559 ready_try [i]
5560 = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
5561 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
5564 /* Let the target filter the search space. */
5565 for (i = 1; i < ready->n_ready; i++)
5566 if (!ready_try[i])
5568 insn = ready_element (ready, i);
5570 /* If this insn is recognizable we should have already
5571 recognized it earlier.
5572 ??? Not very clear where this is supposed to be done.
5573 See dep_cost_1. */
5574 gcc_checking_assert (INSN_CODE (insn) >= 0
5575 || recog_memoized (insn) < 0);
5577 ready_try [i]
5578 = (/* INSN_CODE check can be omitted here as it is also done later
5579 in max_issue (). */
5580 INSN_CODE (insn) < 0
5581 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5582 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5583 (insn)));
5586 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
5588 *insn_ptr = ready_remove_first (ready);
5589 if (sched_verbose >= 4)
5590 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
5591 (*current_sched_info->print_insn) (*insn_ptr, 0));
5592 return 0;
5594 else
5596 if (sched_verbose >= 4)
5597 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
5598 (*current_sched_info->print_insn)
5599 (ready_element (ready, index), 0));
5601 *insn_ptr = ready_remove (ready, index);
5602 return 0;
5607 /* This function is called when we have successfully scheduled a
5608 block. It uses the schedule stored in the scheduled_insns vector
5609 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
5610 append the scheduled insns; TAIL is the insn after the scheduled
5611 block. TARGET_BB is the argument passed to schedule_block. */
5613 static void
5614 commit_schedule (rtx prev_head, rtx tail, basic_block *target_bb)
5616 unsigned int i;
5617 rtx insn;
5619 last_scheduled_insn = prev_head;
5620 for (i = 0;
5621 scheduled_insns.iterate (i, &insn);
5622 i++)
5624 if (control_flow_insn_p (last_scheduled_insn)
5625 || current_sched_info->advance_target_bb (*target_bb, insn))
5627 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
5629 if (sched_verbose)
5631 rtx x;
5633 x = next_real_insn (last_scheduled_insn);
5634 gcc_assert (x);
5635 dump_new_block_header (1, *target_bb, x, tail);
5638 last_scheduled_insn = bb_note (*target_bb);
5641 if (current_sched_info->begin_move_insn)
5642 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
5643 move_insn (insn, last_scheduled_insn,
5644 current_sched_info->next_tail);
5645 if (!DEBUG_INSN_P (insn))
5646 reemit_notes (insn);
5647 last_scheduled_insn = insn;
5650 scheduled_insns.truncate (0);
5653 /* Examine all insns on the ready list and queue those which can't be
5654 issued in this cycle. TEMP_STATE is temporary scheduler state we
5655 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
5656 have been issued for the current cycle, which means it is valid to
5657 issue an asm statement.
5659 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
5660 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
5661 we only leave insns which have an INSN_EXACT_TICK. */
5663 static void
5664 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
5665 bool shadows_only_p, bool modulo_epilogue_p)
5667 int i, pass;
5668 bool sched_group_found = false;
5669 int min_cost_group = 1;
5671 for (i = 0; i < ready.n_ready; i++)
5673 rtx insn = ready_element (&ready, i);
5674 if (SCHED_GROUP_P (insn))
5676 sched_group_found = true;
5677 break;
5681 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
5682 such an insn first and note its cost, then schedule all other insns
5683 for one cycle later. */
5684 for (pass = sched_group_found ? 0 : 1; pass < 2; )
5686 int n = ready.n_ready;
5687 for (i = 0; i < n; i++)
5689 rtx insn = ready_element (&ready, i);
5690 int cost = 0;
5691 const char *reason = "resource conflict";
5693 if (DEBUG_INSN_P (insn))
5694 continue;
5696 if (sched_group_found && !SCHED_GROUP_P (insn))
5698 if (pass == 0)
5699 continue;
5700 cost = min_cost_group;
5701 reason = "not in sched group";
5703 else if (modulo_epilogue_p
5704 && INSN_EXACT_TICK (insn) == INVALID_TICK)
5706 cost = max_insn_queue_index;
5707 reason = "not an epilogue insn";
5709 else if (shadows_only_p && !SHADOW_P (insn))
5711 cost = 1;
5712 reason = "not a shadow";
5714 else if (recog_memoized (insn) < 0)
5716 if (!first_cycle_insn_p
5717 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
5718 || asm_noperands (PATTERN (insn)) >= 0))
5719 cost = 1;
5720 reason = "asm";
5722 else if (sched_pressure != SCHED_PRESSURE_NONE)
5724 if (sched_pressure == SCHED_PRESSURE_MODEL
5725 && INSN_TICK (insn) <= clock_var)
5727 memcpy (temp_state, curr_state, dfa_state_size);
5728 if (state_transition (temp_state, insn) >= 0)
5729 INSN_TICK (insn) = clock_var + 1;
5731 cost = 0;
5733 else
5735 int delay_cost = 0;
5737 if (delay_htab)
5739 struct delay_pair *delay_entry;
5740 delay_entry
5741 = (struct delay_pair *)htab_find_with_hash (delay_htab, insn,
5742 htab_hash_pointer (insn));
5743 while (delay_entry && delay_cost == 0)
5745 delay_cost = estimate_shadow_tick (delay_entry);
5746 if (delay_cost > max_insn_queue_index)
5747 delay_cost = max_insn_queue_index;
5748 delay_entry = delay_entry->next_same_i1;
5752 memcpy (temp_state, curr_state, dfa_state_size);
5753 cost = state_transition (temp_state, insn);
5754 if (cost < 0)
5755 cost = 0;
5756 else if (cost == 0)
5757 cost = 1;
5758 if (cost < delay_cost)
5760 cost = delay_cost;
5761 reason = "shadow tick";
5764 if (cost >= 1)
5766 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
5767 min_cost_group = cost;
5768 ready_remove (&ready, i);
5769 queue_insn (insn, cost, reason);
5770 if (i + 1 < n)
5771 break;
5774 if (i == n)
5775 pass++;
5779 /* Called when we detect that the schedule is impossible. We examine the
5780 backtrack queue to find the earliest insn that caused this condition. */
5782 static struct haifa_saved_data *
5783 verify_shadows (void)
5785 struct haifa_saved_data *save, *earliest_fail = NULL;
5786 for (save = backtrack_queue; save; save = save->next)
5788 int t;
5789 struct delay_pair *pair = save->delay_pair;
5790 rtx i1 = pair->i1;
5792 for (; pair; pair = pair->next_same_i1)
5794 rtx i2 = pair->i2;
5796 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
5797 continue;
5799 t = INSN_TICK (i1) + pair_delay (pair);
5800 if (t < clock_var)
5802 if (sched_verbose >= 2)
5803 fprintf (sched_dump,
5804 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
5805 ", not ready\n",
5806 INSN_UID (pair->i1), INSN_UID (pair->i2),
5807 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5808 earliest_fail = save;
5809 break;
5811 if (QUEUE_INDEX (i2) >= 0)
5813 int queued_for = INSN_TICK (i2);
5815 if (t < queued_for)
5817 if (sched_verbose >= 2)
5818 fprintf (sched_dump,
5819 ";;\t\tfailed delay requirements for %d/%d"
5820 " (%d->%d), queued too late\n",
5821 INSN_UID (pair->i1), INSN_UID (pair->i2),
5822 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5823 earliest_fail = save;
5824 break;
5830 return earliest_fail;
5833 /* Use forward list scheduling to rearrange insns of block pointed to by
5834 TARGET_BB, possibly bringing insns from subsequent blocks in the same
5835 region. */
5837 bool
5838 schedule_block (basic_block *target_bb, state_t init_state)
5840 int i;
5841 bool success = modulo_ii == 0;
5842 struct sched_block_state ls;
5843 state_t temp_state = NULL; /* It is used for multipass scheduling. */
5844 int sort_p, advance, start_clock_var;
5846 /* Head/tail info for this block. */
5847 rtx prev_head = current_sched_info->prev_head;
5848 rtx next_tail = current_sched_info->next_tail;
5849 rtx head = NEXT_INSN (prev_head);
5850 rtx tail = PREV_INSN (next_tail);
5852 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
5853 && sched_pressure != SCHED_PRESSURE_MODEL)
5854 find_modifiable_mems (head, tail);
5856 /* We used to have code to avoid getting parameters moved from hard
5857 argument registers into pseudos.
5859 However, it was removed when it proved to be of marginal benefit
5860 and caused problems because schedule_block and compute_forward_dependences
5861 had different notions of what the "head" insn was. */
5863 gcc_assert (head != tail || INSN_P (head));
5865 haifa_recovery_bb_recently_added_p = false;
5867 backtrack_queue = NULL;
5869 /* Debug info. */
5870 if (sched_verbose)
5871 dump_new_block_header (0, *target_bb, head, tail);
5873 if (init_state == NULL)
5874 state_reset (curr_state);
5875 else
5876 memcpy (curr_state, init_state, dfa_state_size);
5878 /* Clear the ready list. */
5879 ready.first = ready.veclen - 1;
5880 ready.n_ready = 0;
5881 ready.n_debug = 0;
5883 /* It is used for first cycle multipass scheduling. */
5884 temp_state = alloca (dfa_state_size);
5886 if (targetm.sched.init)
5887 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
5889 /* We start inserting insns after PREV_HEAD. */
5890 last_scheduled_insn = nonscheduled_insns_begin = prev_head;
5891 last_nondebug_scheduled_insn = NULL_RTX;
5893 gcc_assert ((NOTE_P (last_scheduled_insn)
5894 || DEBUG_INSN_P (last_scheduled_insn))
5895 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
5897 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
5898 queue. */
5899 q_ptr = 0;
5900 q_size = 0;
5902 insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
5903 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
5905 /* Start just before the beginning of time. */
5906 clock_var = -1;
5908 /* We need queue and ready lists and clock_var be initialized
5909 in try_ready () (which is called through init_ready_list ()). */
5910 (*current_sched_info->init_ready_list) ();
5912 if (sched_pressure == SCHED_PRESSURE_MODEL)
5913 model_start_schedule ();
5915 /* The algorithm is O(n^2) in the number of ready insns at any given
5916 time in the worst case. Before reload we are more likely to have
5917 big lists so truncate them to a reasonable size. */
5918 if (!reload_completed
5919 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
5921 ready_sort (&ready);
5923 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
5924 If there are debug insns, we know they're first. */
5925 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
5926 if (!SCHED_GROUP_P (ready_element (&ready, i)))
5927 break;
5929 if (sched_verbose >= 2)
5931 fprintf (sched_dump,
5932 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
5933 fprintf (sched_dump,
5934 ";;\t\t before reload => truncated to %d insns\n", i);
5937 /* Delay all insns past it for 1 cycle. If debug counter is
5938 activated make an exception for the insn right after
5939 nonscheduled_insns_begin. */
5941 rtx skip_insn;
5943 if (dbg_cnt (sched_insn) == false)
5944 skip_insn = next_nonnote_insn (nonscheduled_insns_begin);
5945 else
5946 skip_insn = NULL_RTX;
5948 while (i < ready.n_ready)
5950 rtx insn;
5952 insn = ready_remove (&ready, i);
5954 if (insn != skip_insn)
5955 queue_insn (insn, 1, "list truncated");
5957 if (skip_insn)
5958 ready_add (&ready, skip_insn, true);
5962 /* Now we can restore basic block notes and maintain precise cfg. */
5963 restore_bb_notes (*target_bb);
5965 last_clock_var = -1;
5967 advance = 0;
5969 gcc_assert (scheduled_insns.length () == 0);
5970 sort_p = TRUE;
5971 must_backtrack = false;
5972 modulo_insns_scheduled = 0;
5974 ls.modulo_epilogue = false;
5976 /* Loop until all the insns in BB are scheduled. */
5977 while ((*current_sched_info->schedule_more_p) ())
5979 perform_replacements_new_cycle ();
5982 start_clock_var = clock_var;
5984 clock_var++;
5986 advance_one_cycle ();
5988 /* Add to the ready list all pending insns that can be issued now.
5989 If there are no ready insns, increment clock until one
5990 is ready and add all pending insns at that point to the ready
5991 list. */
5992 queue_to_ready (&ready);
5994 gcc_assert (ready.n_ready);
5996 if (sched_verbose >= 2)
5998 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
5999 debug_ready_list (&ready);
6001 advance -= clock_var - start_clock_var;
6003 while (advance > 0);
6005 if (ls.modulo_epilogue)
6007 int stage = clock_var / modulo_ii;
6008 if (stage > modulo_last_stage * 2 + 2)
6010 if (sched_verbose >= 2)
6011 fprintf (sched_dump,
6012 ";;\t\tmodulo scheduled succeeded at II %d\n",
6013 modulo_ii);
6014 success = true;
6015 goto end_schedule;
6018 else if (modulo_ii > 0)
6020 int stage = clock_var / modulo_ii;
6021 if (stage > modulo_max_stages)
6023 if (sched_verbose >= 2)
6024 fprintf (sched_dump,
6025 ";;\t\tfailing schedule due to excessive stages\n");
6026 goto end_schedule;
6028 if (modulo_n_insns == modulo_insns_scheduled
6029 && stage > modulo_last_stage)
6031 if (sched_verbose >= 2)
6032 fprintf (sched_dump,
6033 ";;\t\tfound kernel after %d stages, II %d\n",
6034 stage, modulo_ii);
6035 ls.modulo_epilogue = true;
6039 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6040 if (ready.n_ready == 0)
6041 continue;
6042 if (must_backtrack)
6043 goto do_backtrack;
6045 ls.first_cycle_insn_p = true;
6046 ls.shadows_only_p = false;
6047 cycle_issued_insns = 0;
6048 ls.can_issue_more = issue_rate;
6049 for (;;)
6051 rtx insn;
6052 int cost;
6053 bool asm_p;
6055 if (sort_p && ready.n_ready > 0)
6057 /* Sort the ready list based on priority. This must be
6058 done every iteration through the loop, as schedule_insn
6059 may have readied additional insns that will not be
6060 sorted correctly. */
6061 ready_sort (&ready);
6063 if (sched_verbose >= 2)
6065 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
6066 debug_ready_list (&ready);
6070 /* We don't want md sched reorder to even see debug isns, so put
6071 them out right away. */
6072 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6073 && (*current_sched_info->schedule_more_p) ())
6075 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6077 rtx insn = ready_remove_first (&ready);
6078 gcc_assert (DEBUG_INSN_P (insn));
6079 (*current_sched_info->begin_schedule_ready) (insn);
6080 scheduled_insns.safe_push (insn);
6081 last_scheduled_insn = insn;
6082 advance = schedule_insn (insn);
6083 gcc_assert (advance == 0);
6084 if (ready.n_ready > 0)
6085 ready_sort (&ready);
6089 if (ls.first_cycle_insn_p && !ready.n_ready)
6090 break;
6092 resume_after_backtrack:
6093 /* Allow the target to reorder the list, typically for
6094 better instruction bundling. */
6095 if (sort_p
6096 && (ready.n_ready == 0
6097 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6099 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6100 ls.can_issue_more
6101 = targetm.sched.reorder (sched_dump, sched_verbose,
6102 ready_lastpos (&ready),
6103 &ready.n_ready, clock_var);
6104 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6105 ls.can_issue_more
6106 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6107 ready.n_ready
6108 ? ready_lastpos (&ready) : NULL,
6109 &ready.n_ready, clock_var);
6112 restart_choose_ready:
6113 if (sched_verbose >= 2)
6115 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6116 clock_var);
6117 debug_ready_list (&ready);
6118 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6119 print_curr_reg_pressure ();
6122 if (ready.n_ready == 0
6123 && ls.can_issue_more
6124 && reload_completed)
6126 /* Allow scheduling insns directly from the queue in case
6127 there's nothing better to do (ready list is empty) but
6128 there are still vacant dispatch slots in the current cycle. */
6129 if (sched_verbose >= 6)
6130 fprintf (sched_dump,";;\t\tSecond chance\n");
6131 memcpy (temp_state, curr_state, dfa_state_size);
6132 if (early_queue_to_ready (temp_state, &ready))
6133 ready_sort (&ready);
6136 if (ready.n_ready == 0
6137 || !ls.can_issue_more
6138 || state_dead_lock_p (curr_state)
6139 || !(*current_sched_info->schedule_more_p) ())
6140 break;
6142 /* Select and remove the insn from the ready list. */
6143 if (sort_p)
6145 int res;
6147 insn = NULL_RTX;
6148 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6150 if (res < 0)
6151 /* Finish cycle. */
6152 break;
6153 if (res > 0)
6154 goto restart_choose_ready;
6156 gcc_assert (insn != NULL_RTX);
6158 else
6159 insn = ready_remove_first (&ready);
6161 if (sched_pressure != SCHED_PRESSURE_NONE
6162 && INSN_TICK (insn) > clock_var)
6164 ready_add (&ready, insn, true);
6165 advance = 1;
6166 break;
6169 if (targetm.sched.dfa_new_cycle
6170 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6171 insn, last_clock_var,
6172 clock_var, &sort_p))
6173 /* SORT_P is used by the target to override sorting
6174 of the ready list. This is needed when the target
6175 has modified its internal structures expecting that
6176 the insn will be issued next. As we need the insn
6177 to have the highest priority (so it will be returned by
6178 the ready_remove_first call above), we invoke
6179 ready_add (&ready, insn, true).
6180 But, still, there is one issue: INSN can be later
6181 discarded by scheduler's front end through
6182 current_sched_info->can_schedule_ready_p, hence, won't
6183 be issued next. */
6185 ready_add (&ready, insn, true);
6186 break;
6189 sort_p = TRUE;
6191 if (current_sched_info->can_schedule_ready_p
6192 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6193 /* We normally get here only if we don't want to move
6194 insn from the split block. */
6196 TODO_SPEC (insn) = DEP_POSTPONED;
6197 goto restart_choose_ready;
6200 if (delay_htab)
6202 /* If this insn is the first part of a delay-slot pair, record a
6203 backtrack point. */
6204 struct delay_pair *delay_entry;
6205 delay_entry
6206 = (struct delay_pair *)htab_find_with_hash (delay_htab, insn,
6207 htab_hash_pointer (insn));
6208 if (delay_entry)
6210 save_backtrack_point (delay_entry, ls);
6211 if (sched_verbose >= 2)
6212 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6216 /* DECISION is made. */
6218 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6220 modulo_insns_scheduled++;
6221 modulo_last_stage = clock_var / modulo_ii;
6223 if (TODO_SPEC (insn) & SPECULATIVE)
6224 generate_recovery_code (insn);
6226 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
6227 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6229 /* Update counters, etc in the scheduler's front end. */
6230 (*current_sched_info->begin_schedule_ready) (insn);
6231 scheduled_insns.safe_push (insn);
6232 gcc_assert (NONDEBUG_INSN_P (insn));
6233 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6235 if (recog_memoized (insn) >= 0)
6237 memcpy (temp_state, curr_state, dfa_state_size);
6238 cost = state_transition (curr_state, insn);
6239 if (sched_pressure != SCHED_PRESSURE_WEIGHTED)
6240 gcc_assert (cost < 0);
6241 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6242 cycle_issued_insns++;
6243 asm_p = false;
6245 else
6246 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6247 || asm_noperands (PATTERN (insn)) >= 0);
6249 if (targetm.sched.variable_issue)
6250 ls.can_issue_more =
6251 targetm.sched.variable_issue (sched_dump, sched_verbose,
6252 insn, ls.can_issue_more);
6253 /* A naked CLOBBER or USE generates no instruction, so do
6254 not count them against the issue rate. */
6255 else if (GET_CODE (PATTERN (insn)) != USE
6256 && GET_CODE (PATTERN (insn)) != CLOBBER)
6257 ls.can_issue_more--;
6258 advance = schedule_insn (insn);
6260 if (SHADOW_P (insn))
6261 ls.shadows_only_p = true;
6263 /* After issuing an asm insn we should start a new cycle. */
6264 if (advance == 0 && asm_p)
6265 advance = 1;
6267 if (must_backtrack)
6268 break;
6270 if (advance != 0)
6271 break;
6273 ls.first_cycle_insn_p = false;
6274 if (ready.n_ready > 0)
6275 prune_ready_list (temp_state, false, ls.shadows_only_p,
6276 ls.modulo_epilogue);
6279 do_backtrack:
6280 if (!must_backtrack)
6281 for (i = 0; i < ready.n_ready; i++)
6283 rtx insn = ready_element (&ready, i);
6284 if (INSN_EXACT_TICK (insn) == clock_var)
6286 must_backtrack = true;
6287 clock_var++;
6288 break;
6291 if (must_backtrack && modulo_ii > 0)
6293 if (modulo_backtracks_left == 0)
6294 goto end_schedule;
6295 modulo_backtracks_left--;
6297 while (must_backtrack)
6299 struct haifa_saved_data *failed;
6300 rtx failed_insn;
6302 must_backtrack = false;
6303 failed = verify_shadows ();
6304 gcc_assert (failed);
6306 failed_insn = failed->delay_pair->i1;
6307 /* Clear these queues. */
6308 perform_replacements_new_cycle ();
6309 toggle_cancelled_flags (false);
6310 unschedule_insns_until (failed_insn);
6311 while (failed != backtrack_queue)
6312 free_topmost_backtrack_point (true);
6313 restore_last_backtrack_point (&ls);
6314 if (sched_verbose >= 2)
6315 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6316 /* Delay by at least a cycle. This could cause additional
6317 backtracking. */
6318 queue_insn (failed_insn, 1, "backtracked");
6319 advance = 0;
6320 if (must_backtrack)
6321 continue;
6322 if (ready.n_ready > 0)
6323 goto resume_after_backtrack;
6324 else
6326 if (clock_var == 0 && ls.first_cycle_insn_p)
6327 goto end_schedule;
6328 advance = 1;
6329 break;
6333 if (ls.modulo_epilogue)
6334 success = true;
6335 end_schedule:
6336 advance_one_cycle ();
6337 perform_replacements_new_cycle ();
6338 if (modulo_ii > 0)
6340 /* Once again, debug insn suckiness: they can be on the ready list
6341 even if they have unresolved dependencies. To make our view
6342 of the world consistent, remove such "ready" insns. */
6343 restart_debug_insn_loop:
6344 for (i = ready.n_ready - 1; i >= 0; i--)
6346 rtx x;
6348 x = ready_element (&ready, i);
6349 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6350 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6352 ready_remove (&ready, i);
6353 goto restart_debug_insn_loop;
6356 for (i = ready.n_ready - 1; i >= 0; i--)
6358 rtx x;
6360 x = ready_element (&ready, i);
6361 resolve_dependencies (x);
6363 for (i = 0; i <= max_insn_queue_index; i++)
6365 rtx link;
6366 while ((link = insn_queue[i]) != NULL)
6368 rtx x = XEXP (link, 0);
6369 insn_queue[i] = XEXP (link, 1);
6370 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6371 free_INSN_LIST_node (link);
6372 resolve_dependencies (x);
6377 if (!success)
6378 undo_all_replacements ();
6380 /* Debug info. */
6381 if (sched_verbose)
6383 fprintf (sched_dump, ";;\tReady list (final): ");
6384 debug_ready_list (&ready);
6387 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6388 /* Sanity check -- queue must be empty now. Meaningless if region has
6389 multiple bbs. */
6390 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6391 else if (modulo_ii == 0)
6393 /* We must maintain QUEUE_INDEX between blocks in region. */
6394 for (i = ready.n_ready - 1; i >= 0; i--)
6396 rtx x;
6398 x = ready_element (&ready, i);
6399 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6400 TODO_SPEC (x) = HARD_DEP;
6403 if (q_size)
6404 for (i = 0; i <= max_insn_queue_index; i++)
6406 rtx link;
6407 for (link = insn_queue[i]; link; link = XEXP (link, 1))
6409 rtx x;
6411 x = XEXP (link, 0);
6412 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6413 TODO_SPEC (x) = HARD_DEP;
6415 free_INSN_LIST_list (&insn_queue[i]);
6419 if (sched_pressure == SCHED_PRESSURE_MODEL)
6420 model_end_schedule ();
6422 if (success)
6424 commit_schedule (prev_head, tail, target_bb);
6425 if (sched_verbose)
6426 fprintf (sched_dump, ";; total time = %d\n", clock_var);
6428 else
6429 last_scheduled_insn = tail;
6431 scheduled_insns.truncate (0);
6433 if (!current_sched_info->queue_must_finish_empty
6434 || haifa_recovery_bb_recently_added_p)
6436 /* INSN_TICK (minimum clock tick at which the insn becomes
6437 ready) may be not correct for the insn in the subsequent
6438 blocks of the region. We should use a correct value of
6439 `clock_var' or modify INSN_TICK. It is better to keep
6440 clock_var value equal to 0 at the start of a basic block.
6441 Therefore we modify INSN_TICK here. */
6442 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
6445 if (targetm.sched.finish)
6447 targetm.sched.finish (sched_dump, sched_verbose);
6448 /* Target might have added some instructions to the scheduled block
6449 in its md_finish () hook. These new insns don't have any data
6450 initialized and to identify them we extend h_i_d so that they'll
6451 get zero luids. */
6452 sched_extend_luids ();
6455 if (sched_verbose)
6456 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n\n",
6457 INSN_UID (head), INSN_UID (tail));
6459 /* Update head/tail boundaries. */
6460 head = NEXT_INSN (prev_head);
6461 tail = last_scheduled_insn;
6463 head = restore_other_notes (head, NULL);
6465 current_sched_info->head = head;
6466 current_sched_info->tail = tail;
6468 free_backtrack_queue ();
6470 return success;
6473 /* Set_priorities: compute priority of each insn in the block. */
6476 set_priorities (rtx head, rtx tail)
6478 rtx insn;
6479 int n_insn;
6480 int sched_max_insns_priority =
6481 current_sched_info->sched_max_insns_priority;
6482 rtx prev_head;
6484 if (head == tail && ! INSN_P (head))
6485 gcc_unreachable ();
6487 n_insn = 0;
6489 prev_head = PREV_INSN (head);
6490 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
6492 if (!INSN_P (insn))
6493 continue;
6495 n_insn++;
6496 (void) priority (insn);
6498 gcc_assert (INSN_PRIORITY_KNOWN (insn));
6500 sched_max_insns_priority = MAX (sched_max_insns_priority,
6501 INSN_PRIORITY (insn));
6504 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
6506 return n_insn;
6509 /* Set dump and sched_verbose for the desired debugging output. If no
6510 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
6511 For -fsched-verbose=N, N>=10, print everything to stderr. */
6512 void
6513 setup_sched_dump (void)
6515 sched_verbose = sched_verbose_param;
6516 if (sched_verbose_param == 0 && dump_file)
6517 sched_verbose = 1;
6518 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
6519 ? stderr : dump_file);
6522 /* Initialize some global state for the scheduler. This function works
6523 with the common data shared between all the schedulers. It is called
6524 from the scheduler specific initialization routine. */
6526 void
6527 sched_init (void)
6529 /* Disable speculative loads in their presence if cc0 defined. */
6530 #ifdef HAVE_cc0
6531 flag_schedule_speculative_load = 0;
6532 #endif
6534 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
6535 targetm.sched.dispatch_do (NULL_RTX, DISPATCH_INIT);
6537 if (flag_sched_pressure
6538 && !reload_completed
6539 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
6540 sched_pressure = ((enum sched_pressure_algorithm)
6541 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
6542 else
6543 sched_pressure = SCHED_PRESSURE_NONE;
6545 if (sched_pressure != SCHED_PRESSURE_NONE)
6546 ira_setup_eliminable_regset (false);
6548 /* Initialize SPEC_INFO. */
6549 if (targetm.sched.set_sched_flags)
6551 spec_info = &spec_info_var;
6552 targetm.sched.set_sched_flags (spec_info);
6554 if (spec_info->mask != 0)
6556 spec_info->data_weakness_cutoff =
6557 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
6558 spec_info->control_weakness_cutoff =
6559 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
6560 * REG_BR_PROB_BASE) / 100;
6562 else
6563 /* So we won't read anything accidentally. */
6564 spec_info = NULL;
6567 else
6568 /* So we won't read anything accidentally. */
6569 spec_info = 0;
6571 /* Initialize issue_rate. */
6572 if (targetm.sched.issue_rate)
6573 issue_rate = targetm.sched.issue_rate ();
6574 else
6575 issue_rate = 1;
6577 if (cached_issue_rate != issue_rate)
6579 cached_issue_rate = issue_rate;
6580 /* To invalidate max_lookahead_tries: */
6581 cached_first_cycle_multipass_dfa_lookahead = 0;
6584 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
6585 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
6586 else
6587 dfa_lookahead = 0;
6589 if (targetm.sched.init_dfa_pre_cycle_insn)
6590 targetm.sched.init_dfa_pre_cycle_insn ();
6592 if (targetm.sched.init_dfa_post_cycle_insn)
6593 targetm.sched.init_dfa_post_cycle_insn ();
6595 dfa_start ();
6596 dfa_state_size = state_size ();
6598 init_alias_analysis ();
6600 if (!sched_no_dce)
6601 df_set_flags (DF_LR_RUN_DCE);
6602 df_note_add_problem ();
6604 /* More problems needed for interloop dep calculation in SMS. */
6605 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
6607 df_rd_add_problem ();
6608 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
6611 df_analyze ();
6613 /* Do not run DCE after reload, as this can kill nops inserted
6614 by bundling. */
6615 if (reload_completed)
6616 df_clear_flags (DF_LR_RUN_DCE);
6618 regstat_compute_calls_crossed ();
6620 if (targetm.sched.init_global)
6621 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
6623 if (sched_pressure != SCHED_PRESSURE_NONE)
6625 int i, max_regno = max_reg_num ();
6627 if (sched_dump != NULL)
6628 /* We need info about pseudos for rtl dumps about pseudo
6629 classes and costs. */
6630 regstat_init_n_sets_and_refs ();
6631 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
6632 sched_regno_pressure_class
6633 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
6634 for (i = 0; i < max_regno; i++)
6635 sched_regno_pressure_class[i]
6636 = (i < FIRST_PSEUDO_REGISTER
6637 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
6638 : ira_pressure_class_translate[reg_allocno_class (i)]);
6639 curr_reg_live = BITMAP_ALLOC (NULL);
6640 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6642 saved_reg_live = BITMAP_ALLOC (NULL);
6643 region_ref_regs = BITMAP_ALLOC (NULL);
6647 curr_state = xmalloc (dfa_state_size);
6650 static void haifa_init_only_bb (basic_block, basic_block);
6652 /* Initialize data structures specific to the Haifa scheduler. */
6653 void
6654 haifa_sched_init (void)
6656 setup_sched_dump ();
6657 sched_init ();
6659 scheduled_insns.create (0);
6661 if (spec_info != NULL)
6663 sched_deps_info->use_deps_list = 1;
6664 sched_deps_info->generate_spec_deps = 1;
6667 /* Initialize luids, dependency caches, target and h_i_d for the
6668 whole function. */
6670 bb_vec_t bbs;
6671 bbs.create (n_basic_blocks);
6672 basic_block bb;
6674 sched_init_bbs ();
6676 FOR_EACH_BB (bb)
6677 bbs.quick_push (bb);
6678 sched_init_luids (bbs);
6679 sched_deps_init (true);
6680 sched_extend_target ();
6681 haifa_init_h_i_d (bbs);
6683 bbs.release ();
6686 sched_init_only_bb = haifa_init_only_bb;
6687 sched_split_block = sched_split_block_1;
6688 sched_create_empty_bb = sched_create_empty_bb_1;
6689 haifa_recovery_bb_ever_added_p = false;
6691 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
6692 before_recovery = 0;
6693 after_recovery = 0;
6695 modulo_ii = 0;
6698 /* Finish work with the data specific to the Haifa scheduler. */
6699 void
6700 haifa_sched_finish (void)
6702 sched_create_empty_bb = NULL;
6703 sched_split_block = NULL;
6704 sched_init_only_bb = NULL;
6706 if (spec_info && spec_info->dump)
6708 char c = reload_completed ? 'a' : 'b';
6710 fprintf (spec_info->dump,
6711 ";; %s:\n", current_function_name ());
6713 fprintf (spec_info->dump,
6714 ";; Procedure %cr-begin-data-spec motions == %d\n",
6715 c, nr_begin_data);
6716 fprintf (spec_info->dump,
6717 ";; Procedure %cr-be-in-data-spec motions == %d\n",
6718 c, nr_be_in_data);
6719 fprintf (spec_info->dump,
6720 ";; Procedure %cr-begin-control-spec motions == %d\n",
6721 c, nr_begin_control);
6722 fprintf (spec_info->dump,
6723 ";; Procedure %cr-be-in-control-spec motions == %d\n",
6724 c, nr_be_in_control);
6727 scheduled_insns.release ();
6729 /* Finalize h_i_d, dependency caches, and luids for the whole
6730 function. Target will be finalized in md_global_finish (). */
6731 sched_deps_finish ();
6732 sched_finish_luids ();
6733 current_sched_info = NULL;
6734 sched_finish ();
6737 /* Free global data used during insn scheduling. This function works with
6738 the common data shared between the schedulers. */
6740 void
6741 sched_finish (void)
6743 haifa_finish_h_i_d ();
6744 if (sched_pressure != SCHED_PRESSURE_NONE)
6746 if (regstat_n_sets_and_refs != NULL)
6747 regstat_free_n_sets_and_refs ();
6748 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6750 BITMAP_FREE (region_ref_regs);
6751 BITMAP_FREE (saved_reg_live);
6753 BITMAP_FREE (curr_reg_live);
6754 free (sched_regno_pressure_class);
6756 free (curr_state);
6758 if (targetm.sched.finish_global)
6759 targetm.sched.finish_global (sched_dump, sched_verbose);
6761 end_alias_analysis ();
6763 regstat_free_calls_crossed ();
6765 dfa_finish ();
6768 /* Free all delay_pair structures that were recorded. */
6769 void
6770 free_delay_pairs (void)
6772 if (delay_htab)
6774 htab_empty (delay_htab);
6775 htab_empty (delay_htab_i2);
6779 /* Fix INSN_TICKs of the instructions in the current block as well as
6780 INSN_TICKs of their dependents.
6781 HEAD and TAIL are the begin and the end of the current scheduled block. */
6782 static void
6783 fix_inter_tick (rtx head, rtx tail)
6785 /* Set of instructions with corrected INSN_TICK. */
6786 bitmap_head processed;
6787 /* ??? It is doubtful if we should assume that cycle advance happens on
6788 basic block boundaries. Basically insns that are unconditionally ready
6789 on the start of the block are more preferable then those which have
6790 a one cycle dependency over insn from the previous block. */
6791 int next_clock = clock_var + 1;
6793 bitmap_initialize (&processed, 0);
6795 /* Iterates over scheduled instructions and fix their INSN_TICKs and
6796 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
6797 across different blocks. */
6798 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
6800 if (INSN_P (head))
6802 int tick;
6803 sd_iterator_def sd_it;
6804 dep_t dep;
6806 tick = INSN_TICK (head);
6807 gcc_assert (tick >= MIN_TICK);
6809 /* Fix INSN_TICK of instruction from just scheduled block. */
6810 if (bitmap_set_bit (&processed, INSN_LUID (head)))
6812 tick -= next_clock;
6814 if (tick < MIN_TICK)
6815 tick = MIN_TICK;
6817 INSN_TICK (head) = tick;
6820 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
6822 rtx next;
6824 next = DEP_CON (dep);
6825 tick = INSN_TICK (next);
6827 if (tick != INVALID_TICK
6828 /* If NEXT has its INSN_TICK calculated, fix it.
6829 If not - it will be properly calculated from
6830 scratch later in fix_tick_ready. */
6831 && bitmap_set_bit (&processed, INSN_LUID (next)))
6833 tick -= next_clock;
6835 if (tick < MIN_TICK)
6836 tick = MIN_TICK;
6838 if (tick > INTER_TICK (next))
6839 INTER_TICK (next) = tick;
6840 else
6841 tick = INTER_TICK (next);
6843 INSN_TICK (next) = tick;
6848 bitmap_clear (&processed);
6851 /* Check if NEXT is ready to be added to the ready or queue list.
6852 If "yes", add it to the proper list.
6853 Returns:
6854 -1 - is not ready yet,
6855 0 - added to the ready list,
6856 0 < N - queued for N cycles. */
6858 try_ready (rtx next)
6860 ds_t old_ts, new_ts;
6862 old_ts = TODO_SPEC (next);
6864 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
6865 && (old_ts == HARD_DEP
6866 || old_ts == DEP_POSTPONED
6867 || (old_ts & SPECULATIVE)
6868 || old_ts == DEP_CONTROL));
6870 new_ts = recompute_todo_spec (next, false);
6872 if (new_ts & (HARD_DEP | DEP_POSTPONED))
6873 gcc_assert (new_ts == old_ts
6874 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
6875 else if (current_sched_info->new_ready)
6876 new_ts = current_sched_info->new_ready (next, new_ts);
6878 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
6879 have its original pattern or changed (speculative) one. This is due
6880 to changing ebb in region scheduling.
6881 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
6882 has speculative pattern.
6884 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
6885 control-speculative NEXT could have been discarded by sched-rgn.c
6886 (the same case as when discarded by can_schedule_ready_p ()). */
6888 if ((new_ts & SPECULATIVE)
6889 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
6890 need to change anything. */
6891 && new_ts != old_ts)
6893 int res;
6894 rtx new_pat;
6896 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
6898 res = haifa_speculate_insn (next, new_ts, &new_pat);
6900 switch (res)
6902 case -1:
6903 /* It would be nice to change DEP_STATUS of all dependences,
6904 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
6905 so we won't reanalyze anything. */
6906 new_ts = HARD_DEP;
6907 break;
6909 case 0:
6910 /* We follow the rule, that every speculative insn
6911 has non-null ORIG_PAT. */
6912 if (!ORIG_PAT (next))
6913 ORIG_PAT (next) = PATTERN (next);
6914 break;
6916 case 1:
6917 if (!ORIG_PAT (next))
6918 /* If we gonna to overwrite the original pattern of insn,
6919 save it. */
6920 ORIG_PAT (next) = PATTERN (next);
6922 res = haifa_change_pattern (next, new_pat);
6923 gcc_assert (res);
6924 break;
6926 default:
6927 gcc_unreachable ();
6931 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
6932 either correct (new_ts & SPECULATIVE),
6933 or we simply don't care (new_ts & HARD_DEP). */
6935 gcc_assert (!ORIG_PAT (next)
6936 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
6938 TODO_SPEC (next) = new_ts;
6940 if (new_ts & (HARD_DEP | DEP_POSTPONED))
6942 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
6943 control-speculative NEXT could have been discarded by sched-rgn.c
6944 (the same case as when discarded by can_schedule_ready_p ()). */
6945 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
6947 change_queue_index (next, QUEUE_NOWHERE);
6949 return -1;
6951 else if (!(new_ts & BEGIN_SPEC)
6952 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
6953 && !IS_SPECULATION_CHECK_P (next))
6954 /* We should change pattern of every previously speculative
6955 instruction - and we determine if NEXT was speculative by using
6956 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
6957 pat too, so skip them. */
6959 bool success = haifa_change_pattern (next, ORIG_PAT (next));
6960 gcc_assert (success);
6961 ORIG_PAT (next) = 0;
6964 if (sched_verbose >= 2)
6966 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
6967 (*current_sched_info->print_insn) (next, 0));
6969 if (spec_info && spec_info->dump)
6971 if (new_ts & BEGIN_DATA)
6972 fprintf (spec_info->dump, "; data-spec;");
6973 if (new_ts & BEGIN_CONTROL)
6974 fprintf (spec_info->dump, "; control-spec;");
6975 if (new_ts & BE_IN_CONTROL)
6976 fprintf (spec_info->dump, "; in-control-spec;");
6978 if (TODO_SPEC (next) & DEP_CONTROL)
6979 fprintf (sched_dump, " predicated");
6980 fprintf (sched_dump, "\n");
6983 adjust_priority (next);
6985 return fix_tick_ready (next);
6988 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
6989 static int
6990 fix_tick_ready (rtx next)
6992 int tick, delay;
6994 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
6996 int full_p;
6997 sd_iterator_def sd_it;
6998 dep_t dep;
7000 tick = INSN_TICK (next);
7001 /* if tick is not equal to INVALID_TICK, then update
7002 INSN_TICK of NEXT with the most recent resolved dependence
7003 cost. Otherwise, recalculate from scratch. */
7004 full_p = (tick == INVALID_TICK);
7006 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7008 rtx pro = DEP_PRO (dep);
7009 int tick1;
7011 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7013 tick1 = INSN_TICK (pro) + dep_cost (dep);
7014 if (tick1 > tick)
7015 tick = tick1;
7017 if (!full_p)
7018 break;
7021 else
7022 tick = -1;
7024 INSN_TICK (next) = tick;
7026 delay = tick - clock_var;
7027 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE)
7028 delay = QUEUE_READY;
7030 change_queue_index (next, delay);
7032 return delay;
7035 /* Move NEXT to the proper queue list with (DELAY >= 1),
7036 or add it to the ready list (DELAY == QUEUE_READY),
7037 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7038 static void
7039 change_queue_index (rtx next, int delay)
7041 int i = QUEUE_INDEX (next);
7043 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7044 && delay != 0);
7045 gcc_assert (i != QUEUE_SCHEDULED);
7047 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7048 || (delay < 0 && delay == i))
7049 /* We have nothing to do. */
7050 return;
7052 /* Remove NEXT from wherever it is now. */
7053 if (i == QUEUE_READY)
7054 ready_remove_insn (next);
7055 else if (i >= 0)
7056 queue_remove (next);
7058 /* Add it to the proper place. */
7059 if (delay == QUEUE_READY)
7060 ready_add (readyp, next, false);
7061 else if (delay >= 1)
7062 queue_insn (next, delay, "change queue index");
7064 if (sched_verbose >= 2)
7066 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7067 (*current_sched_info->print_insn) (next, 0));
7069 if (delay == QUEUE_READY)
7070 fprintf (sched_dump, " into ready\n");
7071 else if (delay >= 1)
7072 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7073 else
7074 fprintf (sched_dump, " removed from ready or queue lists\n");
7078 static int sched_ready_n_insns = -1;
7080 /* Initialize per region data structures. */
7081 void
7082 sched_extend_ready_list (int new_sched_ready_n_insns)
7084 int i;
7086 if (sched_ready_n_insns == -1)
7087 /* At the first call we need to initialize one more choice_stack
7088 entry. */
7090 i = 0;
7091 sched_ready_n_insns = 0;
7092 scheduled_insns.reserve (new_sched_ready_n_insns);
7094 else
7095 i = sched_ready_n_insns + 1;
7097 ready.veclen = new_sched_ready_n_insns + issue_rate;
7098 ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
7100 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7102 ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7103 sched_ready_n_insns, sizeof (*ready_try));
7105 /* We allocate +1 element to save initial state in the choice_stack[0]
7106 entry. */
7107 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7108 new_sched_ready_n_insns + 1);
7110 for (; i <= new_sched_ready_n_insns; i++)
7112 choice_stack[i].state = xmalloc (dfa_state_size);
7114 if (targetm.sched.first_cycle_multipass_init)
7115 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7116 .target_data));
7119 sched_ready_n_insns = new_sched_ready_n_insns;
7122 /* Free per region data structures. */
7123 void
7124 sched_finish_ready_list (void)
7126 int i;
7128 free (ready.vec);
7129 ready.vec = NULL;
7130 ready.veclen = 0;
7132 free (ready_try);
7133 ready_try = NULL;
7135 for (i = 0; i <= sched_ready_n_insns; i++)
7137 if (targetm.sched.first_cycle_multipass_fini)
7138 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7139 .target_data));
7141 free (choice_stack [i].state);
7143 free (choice_stack);
7144 choice_stack = NULL;
7146 sched_ready_n_insns = -1;
7149 static int
7150 haifa_luid_for_non_insn (rtx x)
7152 gcc_assert (NOTE_P (x) || LABEL_P (x));
7154 return 0;
7157 /* Generates recovery code for INSN. */
7158 static void
7159 generate_recovery_code (rtx insn)
7161 if (TODO_SPEC (insn) & BEGIN_SPEC)
7162 begin_speculative_block (insn);
7164 /* Here we have insn with no dependencies to
7165 instructions other then CHECK_SPEC ones. */
7167 if (TODO_SPEC (insn) & BE_IN_SPEC)
7168 add_to_speculative_block (insn);
7171 /* Helper function.
7172 Tries to add speculative dependencies of type FS between instructions
7173 in deps_list L and TWIN. */
7174 static void
7175 process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
7177 sd_iterator_def sd_it;
7178 dep_t dep;
7180 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7182 ds_t ds;
7183 rtx consumer;
7185 consumer = DEP_CON (dep);
7187 ds = DEP_STATUS (dep);
7189 if (/* If we want to create speculative dep. */
7191 /* And we can do that because this is a true dep. */
7192 && (ds & DEP_TYPES) == DEP_TRUE)
7194 gcc_assert (!(ds & BE_IN_SPEC));
7196 if (/* If this dep can be overcome with 'begin speculation'. */
7197 ds & BEGIN_SPEC)
7198 /* Then we have a choice: keep the dep 'begin speculative'
7199 or transform it into 'be in speculative'. */
7201 if (/* In try_ready we assert that if insn once became ready
7202 it can be removed from the ready (or queue) list only
7203 due to backend decision. Hence we can't let the
7204 probability of the speculative dep to decrease. */
7205 ds_weak (ds) <= ds_weak (fs))
7207 ds_t new_ds;
7209 new_ds = (ds & ~BEGIN_SPEC) | fs;
7211 if (/* consumer can 'be in speculative'. */
7212 sched_insn_is_legitimate_for_speculation_p (consumer,
7213 new_ds))
7214 /* Transform it to be in speculative. */
7215 ds = new_ds;
7218 else
7219 /* Mark the dep as 'be in speculative'. */
7220 ds |= fs;
7224 dep_def _new_dep, *new_dep = &_new_dep;
7226 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7227 sd_add_dep (new_dep, false);
7232 /* Generates recovery code for BEGIN speculative INSN. */
7233 static void
7234 begin_speculative_block (rtx insn)
7236 if (TODO_SPEC (insn) & BEGIN_DATA)
7237 nr_begin_data++;
7238 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7239 nr_begin_control++;
7241 create_check_block_twin (insn, false);
7243 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7246 static void haifa_init_insn (rtx);
7248 /* Generates recovery code for BE_IN speculative INSN. */
7249 static void
7250 add_to_speculative_block (rtx insn)
7252 ds_t ts;
7253 sd_iterator_def sd_it;
7254 dep_t dep;
7255 rtx twins = NULL;
7256 rtx_vec_t priorities_roots;
7258 ts = TODO_SPEC (insn);
7259 gcc_assert (!(ts & ~BE_IN_SPEC));
7261 if (ts & BE_IN_DATA)
7262 nr_be_in_data++;
7263 if (ts & BE_IN_CONTROL)
7264 nr_be_in_control++;
7266 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7267 gcc_assert (!TODO_SPEC (insn));
7269 DONE_SPEC (insn) |= ts;
7271 /* First we convert all simple checks to branchy. */
7272 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7273 sd_iterator_cond (&sd_it, &dep);)
7275 rtx check = DEP_PRO (dep);
7277 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7279 create_check_block_twin (check, true);
7281 /* Restart search. */
7282 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7284 else
7285 /* Continue search. */
7286 sd_iterator_next (&sd_it);
7289 priorities_roots.create (0);
7290 clear_priorities (insn, &priorities_roots);
7292 while (1)
7294 rtx check, twin;
7295 basic_block rec;
7297 /* Get the first backward dependency of INSN. */
7298 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7299 if (!sd_iterator_cond (&sd_it, &dep))
7300 /* INSN has no backward dependencies left. */
7301 break;
7303 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7304 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7305 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7307 check = DEP_PRO (dep);
7309 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7310 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7312 rec = BLOCK_FOR_INSN (check);
7314 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7315 haifa_init_insn (twin);
7317 sd_copy_back_deps (twin, insn, true);
7319 if (sched_verbose && spec_info->dump)
7320 /* INSN_BB (insn) isn't determined for twin insns yet.
7321 So we can't use current_sched_info->print_insn. */
7322 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7323 INSN_UID (twin), rec->index);
7325 twins = alloc_INSN_LIST (twin, twins);
7327 /* Add dependences between TWIN and all appropriate
7328 instructions from REC. */
7329 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7331 rtx pro = DEP_PRO (dep);
7333 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7335 /* INSN might have dependencies from the instructions from
7336 several recovery blocks. At this iteration we process those
7337 producers that reside in REC. */
7338 if (BLOCK_FOR_INSN (pro) == rec)
7340 dep_def _new_dep, *new_dep = &_new_dep;
7342 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7343 sd_add_dep (new_dep, false);
7347 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7349 /* Remove all dependencies between INSN and insns in REC. */
7350 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7351 sd_iterator_cond (&sd_it, &dep);)
7353 rtx pro = DEP_PRO (dep);
7355 if (BLOCK_FOR_INSN (pro) == rec)
7356 sd_delete_dep (sd_it);
7357 else
7358 sd_iterator_next (&sd_it);
7362 /* We couldn't have added the dependencies between INSN and TWINS earlier
7363 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7364 while (twins)
7366 rtx twin;
7368 twin = XEXP (twins, 0);
7371 dep_def _new_dep, *new_dep = &_new_dep;
7373 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7374 sd_add_dep (new_dep, false);
7377 twin = XEXP (twins, 1);
7378 free_INSN_LIST_node (twins);
7379 twins = twin;
7382 calc_priorities (priorities_roots);
7383 priorities_roots.release ();
7386 /* Extends and fills with zeros (only the new part) array pointed to by P. */
7387 void *
7388 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
7390 gcc_assert (new_nmemb >= old_nmemb);
7391 p = XRESIZEVAR (void, p, new_nmemb * size);
7392 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
7393 return p;
7396 /* Helper function.
7397 Find fallthru edge from PRED. */
7398 edge
7399 find_fallthru_edge_from (basic_block pred)
7401 edge e;
7402 basic_block succ;
7404 succ = pred->next_bb;
7405 gcc_assert (succ->prev_bb == pred);
7407 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
7409 e = find_fallthru_edge (pred->succs);
7411 if (e)
7413 gcc_assert (e->dest == succ);
7414 return e;
7417 else
7419 e = find_fallthru_edge (succ->preds);
7421 if (e)
7423 gcc_assert (e->src == pred);
7424 return e;
7428 return NULL;
7431 /* Extend per basic block data structures. */
7432 static void
7433 sched_extend_bb (void)
7435 rtx insn;
7437 /* The following is done to keep current_sched_info->next_tail non null. */
7438 insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
7439 if (NEXT_INSN (insn) == 0
7440 || (!NOTE_P (insn)
7441 && !LABEL_P (insn)
7442 /* Don't emit a NOTE if it would end up before a BARRIER. */
7443 && !BARRIER_P (NEXT_INSN (insn))))
7445 rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
7446 /* Make insn appear outside BB. */
7447 set_block_for_insn (note, NULL);
7448 BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
7452 /* Init per basic block data structures. */
7453 void
7454 sched_init_bbs (void)
7456 sched_extend_bb ();
7459 /* Initialize BEFORE_RECOVERY variable. */
7460 static void
7461 init_before_recovery (basic_block *before_recovery_ptr)
7463 basic_block last;
7464 edge e;
7466 last = EXIT_BLOCK_PTR->prev_bb;
7467 e = find_fallthru_edge_from (last);
7469 if (e)
7471 /* We create two basic blocks:
7472 1. Single instruction block is inserted right after E->SRC
7473 and has jump to
7474 2. Empty block right before EXIT_BLOCK.
7475 Between these two blocks recovery blocks will be emitted. */
7477 basic_block single, empty;
7478 rtx x, label;
7480 /* If the fallthrough edge to exit we've found is from the block we've
7481 created before, don't do anything more. */
7482 if (last == after_recovery)
7483 return;
7485 adding_bb_to_current_region_p = false;
7487 single = sched_create_empty_bb (last);
7488 empty = sched_create_empty_bb (single);
7490 /* Add new blocks to the root loop. */
7491 if (current_loops != NULL)
7493 add_bb_to_loop (single, (*current_loops->larray)[0]);
7494 add_bb_to_loop (empty, (*current_loops->larray)[0]);
7497 single->count = last->count;
7498 empty->count = last->count;
7499 single->frequency = last->frequency;
7500 empty->frequency = last->frequency;
7501 BB_COPY_PARTITION (single, last);
7502 BB_COPY_PARTITION (empty, last);
7504 redirect_edge_succ (e, single);
7505 make_single_succ_edge (single, empty, 0);
7506 make_single_succ_edge (empty, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
7508 label = block_label (empty);
7509 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
7510 JUMP_LABEL (x) = label;
7511 LABEL_NUSES (label)++;
7512 haifa_init_insn (x);
7514 emit_barrier_after (x);
7516 sched_init_only_bb (empty, NULL);
7517 sched_init_only_bb (single, NULL);
7518 sched_extend_bb ();
7520 adding_bb_to_current_region_p = true;
7521 before_recovery = single;
7522 after_recovery = empty;
7524 if (before_recovery_ptr)
7525 *before_recovery_ptr = before_recovery;
7527 if (sched_verbose >= 2 && spec_info->dump)
7528 fprintf (spec_info->dump,
7529 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
7530 last->index, single->index, empty->index);
7532 else
7533 before_recovery = last;
7536 /* Returns new recovery block. */
7537 basic_block
7538 sched_create_recovery_block (basic_block *before_recovery_ptr)
7540 rtx label;
7541 rtx barrier;
7542 basic_block rec;
7544 haifa_recovery_bb_recently_added_p = true;
7545 haifa_recovery_bb_ever_added_p = true;
7547 init_before_recovery (before_recovery_ptr);
7549 barrier = get_last_bb_insn (before_recovery);
7550 gcc_assert (BARRIER_P (barrier));
7552 label = emit_label_after (gen_label_rtx (), barrier);
7554 rec = create_basic_block (label, label, before_recovery);
7556 /* A recovery block always ends with an unconditional jump. */
7557 emit_barrier_after (BB_END (rec));
7559 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
7560 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
7562 if (sched_verbose && spec_info->dump)
7563 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
7564 rec->index);
7566 return rec;
7569 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
7570 and emit necessary jumps. */
7571 void
7572 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
7573 basic_block second_bb)
7575 rtx label;
7576 rtx jump;
7577 int edge_flags;
7579 /* This is fixing of incoming edge. */
7580 /* ??? Which other flags should be specified? */
7581 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
7582 /* Partition type is the same, if it is "unpartitioned". */
7583 edge_flags = EDGE_CROSSING;
7584 else
7585 edge_flags = 0;
7587 make_edge (first_bb, rec, edge_flags);
7588 label = block_label (second_bb);
7589 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
7590 JUMP_LABEL (jump) = label;
7591 LABEL_NUSES (label)++;
7593 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
7594 /* Partition type is the same, if it is "unpartitioned". */
7596 /* Rewritten from cfgrtl.c. */
7597 if (flag_reorder_blocks_and_partition
7598 && targetm_common.have_named_sections)
7600 /* We don't need the same note for the check because
7601 any_condjump_p (check) == true. */
7602 add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
7604 edge_flags = EDGE_CROSSING;
7606 else
7607 edge_flags = 0;
7609 make_single_succ_edge (rec, second_bb, edge_flags);
7610 if (dom_info_available_p (CDI_DOMINATORS))
7611 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
7614 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
7615 INSN is a simple check, that should be converted to branchy one. */
7616 static void
7617 create_check_block_twin (rtx insn, bool mutate_p)
7619 basic_block rec;
7620 rtx label, check, twin;
7621 ds_t fs;
7622 sd_iterator_def sd_it;
7623 dep_t dep;
7624 dep_def _new_dep, *new_dep = &_new_dep;
7625 ds_t todo_spec;
7627 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
7629 if (!mutate_p)
7630 todo_spec = TODO_SPEC (insn);
7631 else
7633 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
7634 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
7636 todo_spec = CHECK_SPEC (insn);
7639 todo_spec &= SPECULATIVE;
7641 /* Create recovery block. */
7642 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
7644 rec = sched_create_recovery_block (NULL);
7645 label = BB_HEAD (rec);
7647 else
7649 rec = EXIT_BLOCK_PTR;
7650 label = NULL_RTX;
7653 /* Emit CHECK. */
7654 check = targetm.sched.gen_spec_check (insn, label, todo_spec);
7656 if (rec != EXIT_BLOCK_PTR)
7658 /* To have mem_reg alive at the beginning of second_bb,
7659 we emit check BEFORE insn, so insn after splitting
7660 insn will be at the beginning of second_bb, which will
7661 provide us with the correct life information. */
7662 check = emit_jump_insn_before (check, insn);
7663 JUMP_LABEL (check) = label;
7664 LABEL_NUSES (label)++;
7666 else
7667 check = emit_insn_before (check, insn);
7669 /* Extend data structures. */
7670 haifa_init_insn (check);
7672 /* CHECK is being added to current region. Extend ready list. */
7673 gcc_assert (sched_ready_n_insns != -1);
7674 sched_extend_ready_list (sched_ready_n_insns + 1);
7676 if (current_sched_info->add_remove_insn)
7677 current_sched_info->add_remove_insn (insn, 0);
7679 RECOVERY_BLOCK (check) = rec;
7681 if (sched_verbose && spec_info->dump)
7682 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
7683 (*current_sched_info->print_insn) (check, 0));
7685 gcc_assert (ORIG_PAT (insn));
7687 /* Initialize TWIN (twin is a duplicate of original instruction
7688 in the recovery block). */
7689 if (rec != EXIT_BLOCK_PTR)
7691 sd_iterator_def sd_it;
7692 dep_t dep;
7694 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
7695 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
7697 struct _dep _dep2, *dep2 = &_dep2;
7699 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
7701 sd_add_dep (dep2, true);
7704 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
7705 haifa_init_insn (twin);
7707 if (sched_verbose && spec_info->dump)
7708 /* INSN_BB (insn) isn't determined for twin insns yet.
7709 So we can't use current_sched_info->print_insn. */
7710 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7711 INSN_UID (twin), rec->index);
7713 else
7715 ORIG_PAT (check) = ORIG_PAT (insn);
7716 HAS_INTERNAL_DEP (check) = 1;
7717 twin = check;
7718 /* ??? We probably should change all OUTPUT dependencies to
7719 (TRUE | OUTPUT). */
7722 /* Copy all resolved back dependencies of INSN to TWIN. This will
7723 provide correct value for INSN_TICK (TWIN). */
7724 sd_copy_back_deps (twin, insn, true);
7726 if (rec != EXIT_BLOCK_PTR)
7727 /* In case of branchy check, fix CFG. */
7729 basic_block first_bb, second_bb;
7730 rtx jump;
7732 first_bb = BLOCK_FOR_INSN (check);
7733 second_bb = sched_split_block (first_bb, check);
7735 sched_create_recovery_edges (first_bb, rec, second_bb);
7737 sched_init_only_bb (second_bb, first_bb);
7738 sched_init_only_bb (rec, EXIT_BLOCK_PTR);
7740 jump = BB_END (rec);
7741 haifa_init_insn (jump);
7744 /* Move backward dependences from INSN to CHECK and
7745 move forward dependences from INSN to TWIN. */
7747 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
7748 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
7750 rtx pro = DEP_PRO (dep);
7751 ds_t ds;
7753 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
7754 check --TRUE--> producer ??? or ANTI ???
7755 twin --TRUE--> producer
7756 twin --ANTI--> check
7758 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
7759 check --ANTI--> producer
7760 twin --ANTI--> producer
7761 twin --ANTI--> check
7763 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
7764 check ~~TRUE~~> producer
7765 twin ~~TRUE~~> producer
7766 twin --ANTI--> check */
7768 ds = DEP_STATUS (dep);
7770 if (ds & BEGIN_SPEC)
7772 gcc_assert (!mutate_p);
7773 ds &= ~BEGIN_SPEC;
7776 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
7777 sd_add_dep (new_dep, false);
7779 if (rec != EXIT_BLOCK_PTR)
7781 DEP_CON (new_dep) = twin;
7782 sd_add_dep (new_dep, false);
7786 /* Second, remove backward dependencies of INSN. */
7787 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7788 sd_iterator_cond (&sd_it, &dep);)
7790 if ((DEP_STATUS (dep) & BEGIN_SPEC)
7791 || mutate_p)
7792 /* We can delete this dep because we overcome it with
7793 BEGIN_SPECULATION. */
7794 sd_delete_dep (sd_it);
7795 else
7796 sd_iterator_next (&sd_it);
7799 /* Future Speculations. Determine what BE_IN speculations will be like. */
7800 fs = 0;
7802 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
7803 here. */
7805 gcc_assert (!DONE_SPEC (insn));
7807 if (!mutate_p)
7809 ds_t ts = TODO_SPEC (insn);
7811 DONE_SPEC (insn) = ts & BEGIN_SPEC;
7812 CHECK_SPEC (check) = ts & BEGIN_SPEC;
7814 /* Luckiness of future speculations solely depends upon initial
7815 BEGIN speculation. */
7816 if (ts & BEGIN_DATA)
7817 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
7818 if (ts & BEGIN_CONTROL)
7819 fs = set_dep_weak (fs, BE_IN_CONTROL,
7820 get_dep_weak (ts, BEGIN_CONTROL));
7822 else
7823 CHECK_SPEC (check) = CHECK_SPEC (insn);
7825 /* Future speculations: call the helper. */
7826 process_insn_forw_deps_be_in_spec (insn, twin, fs);
7828 if (rec != EXIT_BLOCK_PTR)
7830 /* Which types of dependencies should we use here is,
7831 generally, machine-dependent question... But, for now,
7832 it is not. */
7834 if (!mutate_p)
7836 init_dep (new_dep, insn, check, REG_DEP_TRUE);
7837 sd_add_dep (new_dep, false);
7839 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7840 sd_add_dep (new_dep, false);
7842 else
7844 if (spec_info->dump)
7845 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
7846 (*current_sched_info->print_insn) (insn, 0));
7848 /* Remove all dependencies of the INSN. */
7850 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
7851 | SD_LIST_BACK
7852 | SD_LIST_RES_BACK));
7853 while (sd_iterator_cond (&sd_it, &dep))
7854 sd_delete_dep (sd_it);
7857 /* If former check (INSN) already was moved to the ready (or queue)
7858 list, add new check (CHECK) there too. */
7859 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
7860 try_ready (check);
7862 /* Remove old check from instruction stream and free its
7863 data. */
7864 sched_remove_insn (insn);
7867 init_dep (new_dep, check, twin, REG_DEP_ANTI);
7868 sd_add_dep (new_dep, false);
7870 else
7872 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
7873 sd_add_dep (new_dep, false);
7876 if (!mutate_p)
7877 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
7878 because it'll be done later in add_to_speculative_block. */
7880 rtx_vec_t priorities_roots = rtx_vec_t();
7882 clear_priorities (twin, &priorities_roots);
7883 calc_priorities (priorities_roots);
7884 priorities_roots.release ();
7888 /* Removes dependency between instructions in the recovery block REC
7889 and usual region instructions. It keeps inner dependences so it
7890 won't be necessary to recompute them. */
7891 static void
7892 fix_recovery_deps (basic_block rec)
7894 rtx note, insn, jump, ready_list = 0;
7895 bitmap_head in_ready;
7896 rtx link;
7898 bitmap_initialize (&in_ready, 0);
7900 /* NOTE - a basic block note. */
7901 note = NEXT_INSN (BB_HEAD (rec));
7902 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
7903 insn = BB_END (rec);
7904 gcc_assert (JUMP_P (insn));
7905 insn = PREV_INSN (insn);
7909 sd_iterator_def sd_it;
7910 dep_t dep;
7912 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
7913 sd_iterator_cond (&sd_it, &dep);)
7915 rtx consumer = DEP_CON (dep);
7917 if (BLOCK_FOR_INSN (consumer) != rec)
7919 sd_delete_dep (sd_it);
7921 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
7922 ready_list = alloc_INSN_LIST (consumer, ready_list);
7924 else
7926 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7928 sd_iterator_next (&sd_it);
7932 insn = PREV_INSN (insn);
7934 while (insn != note);
7936 bitmap_clear (&in_ready);
7938 /* Try to add instructions to the ready or queue list. */
7939 for (link = ready_list; link; link = XEXP (link, 1))
7940 try_ready (XEXP (link, 0));
7941 free_INSN_LIST_list (&ready_list);
7943 /* Fixing jump's dependences. */
7944 insn = BB_HEAD (rec);
7945 jump = BB_END (rec);
7947 gcc_assert (LABEL_P (insn));
7948 insn = NEXT_INSN (insn);
7950 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
7951 add_jump_dependencies (insn, jump);
7954 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
7955 instruction data. */
7956 static bool
7957 haifa_change_pattern (rtx insn, rtx new_pat)
7959 int t;
7961 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
7962 if (!t)
7963 return false;
7965 update_insn_after_change (insn);
7966 return true;
7969 /* -1 - can't speculate,
7970 0 - for speculation with REQUEST mode it is OK to use
7971 current instruction pattern,
7972 1 - need to change pattern for *NEW_PAT to be speculative. */
7974 sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
7976 gcc_assert (current_sched_info->flags & DO_SPECULATION
7977 && (request & SPECULATIVE)
7978 && sched_insn_is_legitimate_for_speculation_p (insn, request));
7980 if ((request & spec_info->mask) != request)
7981 return -1;
7983 if (request & BE_IN_SPEC
7984 && !(request & BEGIN_SPEC))
7985 return 0;
7987 return targetm.sched.speculate_insn (insn, request, new_pat);
7990 static int
7991 haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
7993 gcc_assert (sched_deps_info->generate_spec_deps
7994 && !IS_SPECULATION_CHECK_P (insn));
7996 if (HAS_INTERNAL_DEP (insn)
7997 || SCHED_GROUP_P (insn))
7998 return -1;
8000 return sched_speculate_insn (insn, request, new_pat);
8003 /* Print some information about block BB, which starts with HEAD and
8004 ends with TAIL, before scheduling it.
8005 I is zero, if scheduler is about to start with the fresh ebb. */
8006 static void
8007 dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
8009 if (!i)
8010 fprintf (sched_dump,
8011 ";; ======================================================\n");
8012 else
8013 fprintf (sched_dump,
8014 ";; =====================ADVANCING TO=====================\n");
8015 fprintf (sched_dump,
8016 ";; -- basic block %d from %d to %d -- %s reload\n",
8017 bb->index, INSN_UID (head), INSN_UID (tail),
8018 (reload_completed ? "after" : "before"));
8019 fprintf (sched_dump,
8020 ";; ======================================================\n");
8021 fprintf (sched_dump, "\n");
8024 /* Unlink basic block notes and labels and saves them, so they
8025 can be easily restored. We unlink basic block notes in EBB to
8026 provide back-compatibility with the previous code, as target backends
8027 assume, that there'll be only instructions between
8028 current_sched_info->{head and tail}. We restore these notes as soon
8029 as we can.
8030 FIRST (LAST) is the first (last) basic block in the ebb.
8031 NB: In usual case (FIRST == LAST) nothing is really done. */
8032 void
8033 unlink_bb_notes (basic_block first, basic_block last)
8035 /* We DON'T unlink basic block notes of the first block in the ebb. */
8036 if (first == last)
8037 return;
8039 bb_header = XNEWVEC (rtx, last_basic_block);
8041 /* Make a sentinel. */
8042 if (last->next_bb != EXIT_BLOCK_PTR)
8043 bb_header[last->next_bb->index] = 0;
8045 first = first->next_bb;
8048 rtx prev, label, note, next;
8050 label = BB_HEAD (last);
8051 if (LABEL_P (label))
8052 note = NEXT_INSN (label);
8053 else
8054 note = label;
8055 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8057 prev = PREV_INSN (label);
8058 next = NEXT_INSN (note);
8059 gcc_assert (prev && next);
8061 NEXT_INSN (prev) = next;
8062 PREV_INSN (next) = prev;
8064 bb_header[last->index] = label;
8066 if (last == first)
8067 break;
8069 last = last->prev_bb;
8071 while (1);
8074 /* Restore basic block notes.
8075 FIRST is the first basic block in the ebb. */
8076 static void
8077 restore_bb_notes (basic_block first)
8079 if (!bb_header)
8080 return;
8082 /* We DON'T unlink basic block notes of the first block in the ebb. */
8083 first = first->next_bb;
8084 /* Remember: FIRST is actually a second basic block in the ebb. */
8086 while (first != EXIT_BLOCK_PTR
8087 && bb_header[first->index])
8089 rtx prev, label, note, next;
8091 label = bb_header[first->index];
8092 prev = PREV_INSN (label);
8093 next = NEXT_INSN (prev);
8095 if (LABEL_P (label))
8096 note = NEXT_INSN (label);
8097 else
8098 note = label;
8099 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8101 bb_header[first->index] = 0;
8103 NEXT_INSN (prev) = label;
8104 NEXT_INSN (note) = next;
8105 PREV_INSN (next) = note;
8107 first = first->next_bb;
8110 free (bb_header);
8111 bb_header = 0;
8114 /* Helper function.
8115 Fix CFG after both in- and inter-block movement of
8116 control_flow_insn_p JUMP. */
8117 static void
8118 fix_jump_move (rtx jump)
8120 basic_block bb, jump_bb, jump_bb_next;
8122 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8123 jump_bb = BLOCK_FOR_INSN (jump);
8124 jump_bb_next = jump_bb->next_bb;
8126 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8127 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8129 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8130 /* if jump_bb_next is not empty. */
8131 BB_END (jump_bb) = BB_END (jump_bb_next);
8133 if (BB_END (bb) != PREV_INSN (jump))
8134 /* Then there are instruction after jump that should be placed
8135 to jump_bb_next. */
8136 BB_END (jump_bb_next) = BB_END (bb);
8137 else
8138 /* Otherwise jump_bb_next is empty. */
8139 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8141 /* To make assertion in move_insn happy. */
8142 BB_END (bb) = PREV_INSN (jump);
8144 update_bb_for_insn (jump_bb_next);
8147 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8148 static void
8149 move_block_after_check (rtx jump)
8151 basic_block bb, jump_bb, jump_bb_next;
8152 vec<edge, va_gc> *t;
8154 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8155 jump_bb = BLOCK_FOR_INSN (jump);
8156 jump_bb_next = jump_bb->next_bb;
8158 update_bb_for_insn (jump_bb);
8160 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8161 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8163 unlink_block (jump_bb_next);
8164 link_block (jump_bb_next, bb);
8166 t = bb->succs;
8167 bb->succs = 0;
8168 move_succs (&(jump_bb->succs), bb);
8169 move_succs (&(jump_bb_next->succs), jump_bb);
8170 move_succs (&t, jump_bb_next);
8172 df_mark_solutions_dirty ();
8174 common_sched_info->fix_recovery_cfg
8175 (bb->index, jump_bb->index, jump_bb_next->index);
8178 /* Helper function for move_block_after_check.
8179 This functions attaches edge vector pointed to by SUCCSP to
8180 block TO. */
8181 static void
8182 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8184 edge e;
8185 edge_iterator ei;
8187 gcc_assert (to->succs == 0);
8189 to->succs = *succsp;
8191 FOR_EACH_EDGE (e, ei, to->succs)
8192 e->src = to;
8194 *succsp = 0;
8197 /* Remove INSN from the instruction stream.
8198 INSN should have any dependencies. */
8199 static void
8200 sched_remove_insn (rtx insn)
8202 sd_finish_insn (insn);
8204 change_queue_index (insn, QUEUE_NOWHERE);
8205 current_sched_info->add_remove_insn (insn, 1);
8206 remove_insn (insn);
8209 /* Clear priorities of all instructions, that are forward dependent on INSN.
8210 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8211 be invoked to initialize all cleared priorities. */
8212 static void
8213 clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
8215 sd_iterator_def sd_it;
8216 dep_t dep;
8217 bool insn_is_root_p = true;
8219 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8221 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8223 rtx pro = DEP_PRO (dep);
8225 if (INSN_PRIORITY_STATUS (pro) >= 0
8226 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8228 /* If DEP doesn't contribute to priority then INSN itself should
8229 be added to priority roots. */
8230 if (contributes_to_priority_p (dep))
8231 insn_is_root_p = false;
8233 INSN_PRIORITY_STATUS (pro) = -1;
8234 clear_priorities (pro, roots_ptr);
8238 if (insn_is_root_p)
8239 roots_ptr->safe_push (insn);
8242 /* Recompute priorities of instructions, whose priorities might have been
8243 changed. ROOTS is a vector of instructions whose priority computation will
8244 trigger initialization of all cleared priorities. */
8245 static void
8246 calc_priorities (rtx_vec_t roots)
8248 int i;
8249 rtx insn;
8251 FOR_EACH_VEC_ELT (roots, i, insn)
8252 priority (insn);
8256 /* Add dependences between JUMP and other instructions in the recovery
8257 block. INSN is the first insn the recovery block. */
8258 static void
8259 add_jump_dependencies (rtx insn, rtx jump)
8263 insn = NEXT_INSN (insn);
8264 if (insn == jump)
8265 break;
8267 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8269 dep_def _new_dep, *new_dep = &_new_dep;
8271 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8272 sd_add_dep (new_dep, false);
8275 while (1);
8277 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8280 /* Extend data structures for logical insn UID. */
8281 void
8282 sched_extend_luids (void)
8284 int new_luids_max_uid = get_max_uid () + 1;
8286 sched_luids.safe_grow_cleared (new_luids_max_uid);
8289 /* Initialize LUID for INSN. */
8290 void
8291 sched_init_insn_luid (rtx insn)
8293 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8294 int luid;
8296 if (i >= 0)
8298 luid = sched_max_luid;
8299 sched_max_luid += i;
8301 else
8302 luid = -1;
8304 SET_INSN_LUID (insn, luid);
8307 /* Initialize luids for BBS.
8308 The hook common_sched_info->luid_for_non_insn () is used to determine
8309 if notes, labels, etc. need luids. */
8310 void
8311 sched_init_luids (bb_vec_t bbs)
8313 int i;
8314 basic_block bb;
8316 sched_extend_luids ();
8317 FOR_EACH_VEC_ELT (bbs, i, bb)
8319 rtx insn;
8321 FOR_BB_INSNS (bb, insn)
8322 sched_init_insn_luid (insn);
8326 /* Free LUIDs. */
8327 void
8328 sched_finish_luids (void)
8330 sched_luids.release ();
8331 sched_max_luid = 1;
8334 /* Return logical uid of INSN. Helpful while debugging. */
8336 insn_luid (rtx insn)
8338 return INSN_LUID (insn);
8341 /* Extend per insn data in the target. */
8342 void
8343 sched_extend_target (void)
8345 if (targetm.sched.h_i_d_extended)
8346 targetm.sched.h_i_d_extended ();
8349 /* Extend global scheduler structures (those, that live across calls to
8350 schedule_block) to include information about just emitted INSN. */
8351 static void
8352 extend_h_i_d (void)
8354 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8355 if (reserve > 0
8356 && ! h_i_d.space (reserve))
8358 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8359 sched_extend_target ();
8363 /* Initialize h_i_d entry of the INSN with default values.
8364 Values, that are not explicitly initialized here, hold zero. */
8365 static void
8366 init_h_i_d (rtx insn)
8368 if (INSN_LUID (insn) > 0)
8370 INSN_COST (insn) = -1;
8371 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8372 INSN_TICK (insn) = INVALID_TICK;
8373 INSN_EXACT_TICK (insn) = INVALID_TICK;
8374 INTER_TICK (insn) = INVALID_TICK;
8375 TODO_SPEC (insn) = HARD_DEP;
8379 /* Initialize haifa_insn_data for BBS. */
8380 void
8381 haifa_init_h_i_d (bb_vec_t bbs)
8383 int i;
8384 basic_block bb;
8386 extend_h_i_d ();
8387 FOR_EACH_VEC_ELT (bbs, i, bb)
8389 rtx insn;
8391 FOR_BB_INSNS (bb, insn)
8392 init_h_i_d (insn);
8396 /* Finalize haifa_insn_data. */
8397 void
8398 haifa_finish_h_i_d (void)
8400 int i;
8401 haifa_insn_data_t data;
8402 struct reg_use_data *use, *next;
8404 FOR_EACH_VEC_ELT (h_i_d, i, data)
8406 free (data->max_reg_pressure);
8407 free (data->reg_pressure);
8408 for (use = data->reg_use_list; use != NULL; use = next)
8410 next = use->next_insn_use;
8411 free (use);
8414 h_i_d.release ();
8417 /* Init data for the new insn INSN. */
8418 static void
8419 haifa_init_insn (rtx insn)
8421 gcc_assert (insn != NULL);
8423 sched_extend_luids ();
8424 sched_init_insn_luid (insn);
8425 sched_extend_target ();
8426 sched_deps_init (false);
8427 extend_h_i_d ();
8428 init_h_i_d (insn);
8430 if (adding_bb_to_current_region_p)
8432 sd_init_insn (insn);
8434 /* Extend dependency caches by one element. */
8435 extend_dependency_caches (1, false);
8437 if (sched_pressure != SCHED_PRESSURE_NONE)
8438 init_insn_reg_pressure_info (insn);
8441 /* Init data for the new basic block BB which comes after AFTER. */
8442 static void
8443 haifa_init_only_bb (basic_block bb, basic_block after)
8445 gcc_assert (bb != NULL);
8447 sched_init_bbs ();
8449 if (common_sched_info->add_block)
8450 /* This changes only data structures of the front-end. */
8451 common_sched_info->add_block (bb, after);
8454 /* A generic version of sched_split_block (). */
8455 basic_block
8456 sched_split_block_1 (basic_block first_bb, rtx after)
8458 edge e;
8460 e = split_block (first_bb, after);
8461 gcc_assert (e->src == first_bb);
8463 /* sched_split_block emits note if *check == BB_END. Probably it
8464 is better to rip that note off. */
8466 return e->dest;
8469 /* A generic version of sched_create_empty_bb (). */
8470 basic_block
8471 sched_create_empty_bb_1 (basic_block after)
8473 return create_empty_bb (after);
8476 /* Insert PAT as an INSN into the schedule and update the necessary data
8477 structures to account for it. */
8479 sched_emit_insn (rtx pat)
8481 rtx insn = emit_insn_before (pat, nonscheduled_insns_begin);
8482 haifa_init_insn (insn);
8484 if (current_sched_info->add_remove_insn)
8485 current_sched_info->add_remove_insn (insn, 0);
8487 (*current_sched_info->begin_schedule_ready) (insn);
8488 scheduled_insns.safe_push (insn);
8490 last_scheduled_insn = insn;
8491 return insn;
8494 /* This function returns a candidate satisfying dispatch constraints from
8495 the ready list. */
8497 static rtx
8498 ready_remove_first_dispatch (struct ready_list *ready)
8500 int i;
8501 rtx insn = ready_element (ready, 0);
8503 if (ready->n_ready == 1
8504 || INSN_CODE (insn) < 0
8505 || !INSN_P (insn)
8506 || !active_insn_p (insn)
8507 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8508 return ready_remove_first (ready);
8510 for (i = 1; i < ready->n_ready; i++)
8512 insn = ready_element (ready, i);
8514 if (INSN_CODE (insn) < 0
8515 || !INSN_P (insn)
8516 || !active_insn_p (insn))
8517 continue;
8519 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8521 /* Return ith element of ready. */
8522 insn = ready_remove (ready, i);
8523 return insn;
8527 if (targetm.sched.dispatch (NULL_RTX, DISPATCH_VIOLATION))
8528 return ready_remove_first (ready);
8530 for (i = 1; i < ready->n_ready; i++)
8532 insn = ready_element (ready, i);
8534 if (INSN_CODE (insn) < 0
8535 || !INSN_P (insn)
8536 || !active_insn_p (insn))
8537 continue;
8539 /* Return i-th element of ready. */
8540 if (targetm.sched.dispatch (insn, IS_CMP))
8541 return ready_remove (ready, i);
8544 return ready_remove_first (ready);
8547 /* Get number of ready insn in the ready list. */
8550 number_in_ready (void)
8552 return ready.n_ready;
8555 /* Get number of ready's in the ready list. */
8558 get_ready_element (int i)
8560 return ready_element (&ready, i);
8563 #endif /* INSN_SCHEDULING */