2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
9 * ====================================================
13 Long double expansions are
14 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15 and are incorporated herein by permission of the author. The author
16 reserves the right to distribute this material elsewhere under different
17 copying permissions. These modifications are distributed here under
20 This library is free software; you can redistribute it and/or
21 modify it under the terms of the GNU Lesser General Public
22 License as published by the Free Software Foundation; either
23 version 2.1 of the License, or (at your option) any later version.
25 This library is distributed in the hope that it will be useful,
26 but WITHOUT ANY WARRANTY; without even the implied warranty of
27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28 Lesser General Public License for more details.
30 You should have received a copy of the GNU Lesser General Public
31 License along with this library; if not, write to the Free Software
32 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
34 /* __quadmath_kernel_tanq( x, y, k )
35 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
36 * Input x is assumed to be bounded by ~pi/4 in magnitude.
37 * Input y is the tail of x.
38 * Input k indicates whether tan (if k=1) or
39 * -1/tan (if k= -1) is returned.
42 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
43 * 2. if x < 2^-57, return x with inexact if x!=0.
44 * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
47 * Note: tan(x+y) = tan(x) + tan'(x)*y
48 * ~ tan(x) + (1+x*x)*y
49 * Therefore, for better accuracy in computing tan(x+y), let
52 * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
54 * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
55 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
56 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
59 #include "quadmath-imp.h"
63 static const __float128
65 pio4hi
= 7.8539816339744830961566084581987569936977E-1Q
,
66 pio4lo
= 2.1679525325309452561992610065108379921906E-35Q
,
68 /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
69 0 <= x <= 0.6743316650390625
70 Peak relative error 8.0e-36 */
71 TH
= 3.333333333333333333333333333333333333333E-1Q
,
72 T0
= -1.813014711743583437742363284336855889393E7Q
,
73 T1
= 1.320767960008972224312740075083259247618E6Q
,
74 T2
= -2.626775478255838182468651821863299023956E4Q
,
75 T3
= 1.764573356488504935415411383687150199315E2Q
,
76 T4
= -3.333267763822178690794678978979803526092E-1Q
,
78 U0
= -1.359761033807687578306772463253710042010E8Q
,
79 U1
= 6.494370630656893175666729313065113194784E7Q
,
80 U2
= -4.180787672237927475505536849168729386782E6Q
,
81 U3
= 8.031643765106170040139966622980914621521E4Q
,
82 U4
= -5.323131271912475695157127875560667378597E2Q
;
83 /* 1.000000000000000000000000000000000000000E0 */
87 __quadmath_kernel_tanq (__float128 x
, __float128 y
, int iy
)
89 __float128 z
, r
, v
, w
, s
;
91 ieee854_float128 u
, u1
;
94 ix
= u
.words32
.w0
& 0x7fffffff;
95 if (ix
< 0x3fc60000) /* x < 2**-57 */
98 { /* generate inexact */
99 if ((ix
| u
.words32
.w1
| u
.words32
.w2
| u
.words32
.w3
101 return one
/ fabsq (x
);
104 math_check_force_underflow (x
);
111 if (ix
>= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
113 if ((u
.words32
.w0
& 0x80000000) != 0)
127 r
= T0
+ z
* (T1
+ z
* (T2
+ z
* (T3
+ z
* T4
)));
128 v
= U0
+ z
* (U1
+ z
* (U2
+ z
* (U3
+ z
* (U4
+ z
))));
132 r
= y
+ z
* (s
* r
+ y
);
135 if (ix
>= 0x3ffe5942)
138 w
= (v
- 2.0Q
* (x
- (w
* w
/ (w
+ v
) - r
)));
146 { /* if allow error up to 2 ulp,
147 simply return -1.0/(x+r) here */
148 /* compute -1.0/(x+r) accurately */
152 v
= r
- (u1
.value
- x
); /* u1+v = r+x */
157 s
= 1.0 + u
.value
* u1
.value
;
158 return u
.value
+ z
* (s
+ u
.value
* v
);
168 /* tanq.c -- __float128 version of s_tan.c.
169 * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
172 /* @(#)s_tan.c 5.1 93/09/24 */
174 * ====================================================
175 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
177 * Developed at SunPro, a Sun Microsystems, Inc. business.
178 * Permission to use, copy, modify, and distribute this
179 * software is freely granted, provided that this notice
181 * ====================================================
185 * Return tangent function of x.
188 * __quadmath_kernel_tanq ... tangent function on [-pi/4,pi/4]
189 * __quadmath_rem_pio2q ... argument reduction routine
192 * Let S,C and T denote the sin, cos and tan respectively on
193 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
194 * in [-pi/4 , +pi/4], and let n = k mod 4.
197 * n sin(x) cos(x) tan(x)
198 * ----------------------------------------------------------
203 * ----------------------------------------------------------
206 * Let trig be any of sin, cos, or tan.
207 * trig(+-INF) is NaN, with signals;
208 * trig(NaN) is that NaN;
211 * TRIG(x) returns trig(x) nearly rounded
218 __float128 y
[2],z
=0.0Q
;
221 /* High word of x. */
222 GET_FLT128_MSW64(ix
,x
);
225 ix
&= 0x7fffffffffffffffLL
;
226 if(ix
<= 0x3ffe921fb54442d1LL
) return __quadmath_kernel_tanq(x
,z
,1);
228 /* tanl(Inf or NaN) is NaN */
229 else if (ix
>=0x7fff000000000000LL
) {
230 if (ix
== 0x7fff000000000000LL
) {
231 GET_FLT128_LSW64(n
,x
);
233 return x
-x
; /* NaN */
236 /* argument reduction needed */
238 n
= __quadmath_rem_pio2q(x
,y
);
239 /* 1 -- n even, -1 -- n odd */
240 return __quadmath_kernel_tanq(y
[0],y
[1],1-((n
&1)<<1));