1 /* Combining of if-expressions on trees.
2 Copyright (C) 2007-2017 Free Software Foundation, Inc.
3 Contributed by Richard Guenther <rguenther@suse.de>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "tree-pass.h"
33 #include "tree-pretty-print.h"
34 /* rtl is needed only because arm back-end requires it for
36 #include "fold-const.h"
38 #include "gimple-fold.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
44 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
45 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
46 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
50 /* This pass combines COND_EXPRs to simplify control flow. It
51 currently recognizes bit tests and comparisons in chains that
52 represent logical and or logical or of two COND_EXPRs.
54 It does so by walking basic blocks in a approximate reverse
55 post-dominator order and trying to match CFG patterns that
56 represent logical and or logical or of two COND_EXPRs.
57 Transformations are done if the COND_EXPR conditions match
60 1. two single bit tests X & (1 << Yn) (for logical and)
62 2. two bit tests X & Yn (for logical or)
64 3. two comparisons X OPn Y (for logical or)
66 To simplify this pass, removing basic blocks and dead code
67 is left to CFG cleanup and DCE. */
70 /* Recognize a if-then-else CFG pattern starting to match with the
71 COND_BB basic-block containing the COND_EXPR. The recognized
72 then end else blocks are stored to *THEN_BB and *ELSE_BB. If
73 *THEN_BB and/or *ELSE_BB are already set, they are required to
74 match the then and else basic-blocks to make the pattern match.
75 Returns true if the pattern matched, false otherwise. */
78 recognize_if_then_else (basic_block cond_bb
,
79 basic_block
*then_bb
, basic_block
*else_bb
)
83 if (EDGE_COUNT (cond_bb
->succs
) != 2)
86 /* Find the then/else edges. */
87 t
= EDGE_SUCC (cond_bb
, 0);
88 e
= EDGE_SUCC (cond_bb
, 1);
89 if (!(t
->flags
& EDGE_TRUE_VALUE
))
91 if (!(t
->flags
& EDGE_TRUE_VALUE
)
92 || !(e
->flags
& EDGE_FALSE_VALUE
))
95 /* Check if the edge destinations point to the required block. */
97 && t
->dest
!= *then_bb
)
100 && e
->dest
!= *else_bb
)
111 /* Verify if the basic block BB does not have side-effects. Return
112 true in this case, else false. */
115 bb_no_side_effects_p (basic_block bb
)
117 gimple_stmt_iterator gsi
;
119 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
121 gimple
*stmt
= gsi_stmt (gsi
);
123 if (is_gimple_debug (stmt
))
126 if (gimple_has_side_effects (stmt
)
127 || gimple_uses_undefined_value_p (stmt
)
128 || gimple_could_trap_p (stmt
)
129 || gimple_vuse (stmt
)
130 /* const calls don't match any of the above, yet they could
131 still have some side-effects - they could contain
132 gimple_could_trap_p statements, like floating point
133 exceptions or integer division by zero. See PR70586.
134 FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p
135 should handle this. */
136 || is_gimple_call (stmt
))
143 /* Return true if BB is an empty forwarder block to TO_BB. */
146 forwarder_block_to (basic_block bb
, basic_block to_bb
)
148 return empty_block_p (bb
)
149 && single_succ_p (bb
)
150 && single_succ (bb
) == to_bb
;
153 /* Verify if all PHI node arguments in DEST for edges from BB1 or
154 BB2 to DEST are the same. This makes the CFG merge point
155 free from side-effects. Return true in this case, else false. */
158 same_phi_args_p (basic_block bb1
, basic_block bb2
, basic_block dest
)
160 edge e1
= find_edge (bb1
, dest
);
161 edge e2
= find_edge (bb2
, dest
);
165 for (gsi
= gsi_start_phis (dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
168 if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi
, e1
),
169 PHI_ARG_DEF_FROM_EDGE (phi
, e2
), 0))
176 /* Return the best representative SSA name for CANDIDATE which is used
180 get_name_for_bit_test (tree candidate
)
182 /* Skip single-use names in favor of using the name from a
183 non-widening conversion definition. */
184 if (TREE_CODE (candidate
) == SSA_NAME
185 && has_single_use (candidate
))
187 gimple
*def_stmt
= SSA_NAME_DEF_STMT (candidate
);
188 if (is_gimple_assign (def_stmt
)
189 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
191 if (TYPE_PRECISION (TREE_TYPE (candidate
))
192 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
193 return gimple_assign_rhs1 (def_stmt
);
200 /* Recognize a single bit test pattern in GIMPLE_COND and its defining
201 statements. Store the name being tested in *NAME and the bit
202 in *BIT. The GIMPLE_COND computes *NAME & (1 << *BIT).
203 Returns true if the pattern matched, false otherwise. */
206 recognize_single_bit_test (gcond
*cond
, tree
*name
, tree
*bit
, bool inv
)
210 /* Get at the definition of the result of the bit test. */
211 if (gimple_cond_code (cond
) != (inv
? EQ_EXPR
: NE_EXPR
)
212 || TREE_CODE (gimple_cond_lhs (cond
)) != SSA_NAME
213 || !integer_zerop (gimple_cond_rhs (cond
)))
215 stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (cond
));
216 if (!is_gimple_assign (stmt
))
219 /* Look at which bit is tested. One form to recognize is
220 D.1985_5 = state_3(D) >> control1_4(D);
221 D.1986_6 = (int) D.1985_5;
223 if (D.1987_7 != 0) */
224 if (gimple_assign_rhs_code (stmt
) == BIT_AND_EXPR
225 && integer_onep (gimple_assign_rhs2 (stmt
))
226 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
228 tree orig_name
= gimple_assign_rhs1 (stmt
);
230 /* Look through copies and conversions to eventually
231 find the stmt that computes the shift. */
232 stmt
= SSA_NAME_DEF_STMT (orig_name
);
234 while (is_gimple_assign (stmt
)
235 && ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt
))
236 && (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (stmt
)))
237 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt
))))
238 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
239 || gimple_assign_ssa_name_copy_p (stmt
)))
240 stmt
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
242 /* If we found such, decompose it. */
243 if (is_gimple_assign (stmt
)
244 && gimple_assign_rhs_code (stmt
) == RSHIFT_EXPR
)
246 /* op0 & (1 << op1) */
247 *bit
= gimple_assign_rhs2 (stmt
);
248 *name
= gimple_assign_rhs1 (stmt
);
253 *bit
= integer_zero_node
;
254 *name
= get_name_for_bit_test (orig_name
);
261 D.1987_7 = op0 & (1 << CST)
262 if (D.1987_7 != 0) */
263 if (gimple_assign_rhs_code (stmt
) == BIT_AND_EXPR
264 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
265 && integer_pow2p (gimple_assign_rhs2 (stmt
)))
267 *name
= gimple_assign_rhs1 (stmt
);
268 *bit
= build_int_cst (integer_type_node
,
269 tree_log2 (gimple_assign_rhs2 (stmt
)));
274 D.1986_6 = 1 << control1_4(D)
275 D.1987_7 = op0 & D.1986_6
276 if (D.1987_7 != 0) */
277 if (gimple_assign_rhs_code (stmt
) == BIT_AND_EXPR
278 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
279 && TREE_CODE (gimple_assign_rhs2 (stmt
)) == SSA_NAME
)
283 /* Both arguments of the BIT_AND_EXPR can be the single-bit
284 specifying expression. */
285 tmp
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
286 if (is_gimple_assign (tmp
)
287 && gimple_assign_rhs_code (tmp
) == LSHIFT_EXPR
288 && integer_onep (gimple_assign_rhs1 (tmp
)))
290 *name
= gimple_assign_rhs2 (stmt
);
291 *bit
= gimple_assign_rhs2 (tmp
);
295 tmp
= SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt
));
296 if (is_gimple_assign (tmp
)
297 && gimple_assign_rhs_code (tmp
) == LSHIFT_EXPR
298 && integer_onep (gimple_assign_rhs1 (tmp
)))
300 *name
= gimple_assign_rhs1 (stmt
);
301 *bit
= gimple_assign_rhs2 (tmp
);
309 /* Recognize a bit test pattern in a GIMPLE_COND and its defining
310 statements. Store the name being tested in *NAME and the bits
311 in *BITS. The COND_EXPR computes *NAME & *BITS.
312 Returns true if the pattern matched, false otherwise. */
315 recognize_bits_test (gcond
*cond
, tree
*name
, tree
*bits
, bool inv
)
319 /* Get at the definition of the result of the bit test. */
320 if (gimple_cond_code (cond
) != (inv
? EQ_EXPR
: NE_EXPR
)
321 || TREE_CODE (gimple_cond_lhs (cond
)) != SSA_NAME
322 || !integer_zerop (gimple_cond_rhs (cond
)))
324 stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (cond
));
325 if (!is_gimple_assign (stmt
)
326 || gimple_assign_rhs_code (stmt
) != BIT_AND_EXPR
)
329 *name
= get_name_for_bit_test (gimple_assign_rhs1 (stmt
));
330 *bits
= gimple_assign_rhs2 (stmt
);
335 /* If-convert on a and pattern with a common else block. The inner
336 if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
337 inner_inv, outer_inv and result_inv indicate whether the conditions
339 Returns true if the edges to the common else basic-block were merged. */
342 ifcombine_ifandif (basic_block inner_cond_bb
, bool inner_inv
,
343 basic_block outer_cond_bb
, bool outer_inv
, bool result_inv
)
345 gimple_stmt_iterator gsi
;
346 gimple
*inner_stmt
, *outer_stmt
;
347 gcond
*inner_cond
, *outer_cond
;
348 tree name1
, name2
, bit1
, bit2
, bits1
, bits2
;
350 inner_stmt
= last_stmt (inner_cond_bb
);
352 || gimple_code (inner_stmt
) != GIMPLE_COND
)
354 inner_cond
= as_a
<gcond
*> (inner_stmt
);
356 outer_stmt
= last_stmt (outer_cond_bb
);
358 || gimple_code (outer_stmt
) != GIMPLE_COND
)
360 outer_cond
= as_a
<gcond
*> (outer_stmt
);
362 /* See if we test a single bit of the same name in both tests. In
363 that case remove the outer test, merging both else edges,
364 and change the inner one to test for
365 name & (bit1 | bit2) == (bit1 | bit2). */
366 if (recognize_single_bit_test (inner_cond
, &name1
, &bit1
, inner_inv
)
367 && recognize_single_bit_test (outer_cond
, &name2
, &bit2
, outer_inv
)
373 gsi
= gsi_for_stmt (inner_cond
);
374 t
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (name1
),
375 build_int_cst (TREE_TYPE (name1
), 1), bit1
);
376 t2
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (name1
),
377 build_int_cst (TREE_TYPE (name1
), 1), bit2
);
378 t
= fold_build2 (BIT_IOR_EXPR
, TREE_TYPE (name1
), t
, t2
);
379 t
= force_gimple_operand_gsi (&gsi
, t
, true, NULL_TREE
,
380 true, GSI_SAME_STMT
);
381 t2
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (name1
), name1
, t
);
382 t2
= force_gimple_operand_gsi (&gsi
, t2
, true, NULL_TREE
,
383 true, GSI_SAME_STMT
);
384 t
= fold_build2 (result_inv
? NE_EXPR
: EQ_EXPR
,
385 boolean_type_node
, t2
, t
);
386 t
= canonicalize_cond_expr_cond (t
);
389 gimple_cond_set_condition_from_tree (inner_cond
, t
);
390 update_stmt (inner_cond
);
392 /* Leave CFG optimization to cfg_cleanup. */
393 gimple_cond_set_condition_from_tree (outer_cond
,
394 outer_inv
? boolean_false_node
: boolean_true_node
);
395 update_stmt (outer_cond
);
399 fprintf (dump_file
, "optimizing double bit test to ");
400 print_generic_expr (dump_file
, name1
, 0);
401 fprintf (dump_file
, " & T == T\nwith temporary T = (1 << ");
402 print_generic_expr (dump_file
, bit1
, 0);
403 fprintf (dump_file
, ") | (1 << ");
404 print_generic_expr (dump_file
, bit2
, 0);
405 fprintf (dump_file
, ")\n");
411 /* See if we have two bit tests of the same name in both tests.
412 In that case remove the outer test and change the inner one to
413 test for name & (bits1 | bits2) != 0. */
414 else if (recognize_bits_test (inner_cond
, &name1
, &bits1
, !inner_inv
)
415 && recognize_bits_test (outer_cond
, &name2
, &bits2
, !outer_inv
))
417 gimple_stmt_iterator gsi
;
420 /* Find the common name which is bit-tested. */
423 else if (bits1
== bits2
)
425 std::swap (name2
, bits2
);
426 std::swap (name1
, bits1
);
428 else if (name1
== bits2
)
429 std::swap (name2
, bits2
);
430 else if (bits1
== name2
)
431 std::swap (name1
, bits1
);
435 /* As we strip non-widening conversions in finding a common
436 name that is tested make sure to end up with an integral
437 type for building the bit operations. */
438 if (TYPE_PRECISION (TREE_TYPE (bits1
))
439 >= TYPE_PRECISION (TREE_TYPE (bits2
)))
441 bits1
= fold_convert (unsigned_type_for (TREE_TYPE (bits1
)), bits1
);
442 name1
= fold_convert (TREE_TYPE (bits1
), name1
);
443 bits2
= fold_convert (unsigned_type_for (TREE_TYPE (bits2
)), bits2
);
444 bits2
= fold_convert (TREE_TYPE (bits1
), bits2
);
448 bits2
= fold_convert (unsigned_type_for (TREE_TYPE (bits2
)), bits2
);
449 name1
= fold_convert (TREE_TYPE (bits2
), name1
);
450 bits1
= fold_convert (unsigned_type_for (TREE_TYPE (bits1
)), bits1
);
451 bits1
= fold_convert (TREE_TYPE (bits2
), bits1
);
455 gsi
= gsi_for_stmt (inner_cond
);
456 t
= fold_build2 (BIT_IOR_EXPR
, TREE_TYPE (name1
), bits1
, bits2
);
457 t
= force_gimple_operand_gsi (&gsi
, t
, true, NULL_TREE
,
458 true, GSI_SAME_STMT
);
459 t
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (name1
), name1
, t
);
460 t
= force_gimple_operand_gsi (&gsi
, t
, true, NULL_TREE
,
461 true, GSI_SAME_STMT
);
462 t
= fold_build2 (result_inv
? NE_EXPR
: EQ_EXPR
, boolean_type_node
, t
,
463 build_int_cst (TREE_TYPE (t
), 0));
464 t
= canonicalize_cond_expr_cond (t
);
467 gimple_cond_set_condition_from_tree (inner_cond
, t
);
468 update_stmt (inner_cond
);
470 /* Leave CFG optimization to cfg_cleanup. */
471 gimple_cond_set_condition_from_tree (outer_cond
,
472 outer_inv
? boolean_false_node
: boolean_true_node
);
473 update_stmt (outer_cond
);
477 fprintf (dump_file
, "optimizing bits or bits test to ");
478 print_generic_expr (dump_file
, name1
, 0);
479 fprintf (dump_file
, " & T != 0\nwith temporary T = ");
480 print_generic_expr (dump_file
, bits1
, 0);
481 fprintf (dump_file
, " | ");
482 print_generic_expr (dump_file
, bits2
, 0);
483 fprintf (dump_file
, "\n");
489 /* See if we have two comparisons that we can merge into one. */
490 else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond
)) == tcc_comparison
491 && TREE_CODE_CLASS (gimple_cond_code (outer_cond
)) == tcc_comparison
)
494 enum tree_code inner_cond_code
= gimple_cond_code (inner_cond
);
495 enum tree_code outer_cond_code
= gimple_cond_code (outer_cond
);
497 /* Invert comparisons if necessary (and possible). */
499 inner_cond_code
= invert_tree_comparison (inner_cond_code
,
500 HONOR_NANS (gimple_cond_lhs (inner_cond
)));
501 if (inner_cond_code
== ERROR_MARK
)
504 outer_cond_code
= invert_tree_comparison (outer_cond_code
,
505 HONOR_NANS (gimple_cond_lhs (outer_cond
)));
506 if (outer_cond_code
== ERROR_MARK
)
508 /* Don't return false so fast, try maybe_fold_or_comparisons? */
510 if (!(t
= maybe_fold_and_comparisons (inner_cond_code
,
511 gimple_cond_lhs (inner_cond
),
512 gimple_cond_rhs (inner_cond
),
514 gimple_cond_lhs (outer_cond
),
515 gimple_cond_rhs (outer_cond
))))
518 gimple_stmt_iterator gsi
;
519 if (!LOGICAL_OP_NON_SHORT_CIRCUIT
)
521 /* Only do this optimization if the inner bb contains only the conditional. */
522 if (!gsi_one_before_end_p (gsi_start_nondebug_after_labels_bb (inner_cond_bb
)))
524 t1
= fold_build2_loc (gimple_location (inner_cond
),
527 gimple_cond_lhs (inner_cond
),
528 gimple_cond_rhs (inner_cond
));
529 t2
= fold_build2_loc (gimple_location (outer_cond
),
532 gimple_cond_lhs (outer_cond
),
533 gimple_cond_rhs (outer_cond
));
534 t
= fold_build2_loc (gimple_location (inner_cond
),
535 TRUTH_AND_EXPR
, boolean_type_node
, t1
, t2
);
538 t
= fold_build1 (TRUTH_NOT_EXPR
, TREE_TYPE (t
), t
);
541 gsi
= gsi_for_stmt (inner_cond
);
542 t
= force_gimple_operand_gsi_1 (&gsi
, t
, is_gimple_condexpr
, NULL
, true,
546 t
= fold_build1 (TRUTH_NOT_EXPR
, TREE_TYPE (t
), t
);
547 t
= canonicalize_cond_expr_cond (t
);
550 gimple_cond_set_condition_from_tree (inner_cond
, t
);
551 update_stmt (inner_cond
);
553 /* Leave CFG optimization to cfg_cleanup. */
554 gimple_cond_set_condition_from_tree (outer_cond
,
555 outer_inv
? boolean_false_node
: boolean_true_node
);
556 update_stmt (outer_cond
);
560 fprintf (dump_file
, "optimizing two comparisons to ");
561 print_generic_expr (dump_file
, t
, 0);
562 fprintf (dump_file
, "\n");
571 /* Helper function for tree_ssa_ifcombine_bb. Recognize a CFG pattern and
572 dispatch to the appropriate if-conversion helper for a particular
573 set of INNER_COND_BB, OUTER_COND_BB, THEN_BB and ELSE_BB.
574 PHI_PRED_BB should be one of INNER_COND_BB, THEN_BB or ELSE_BB. */
577 tree_ssa_ifcombine_bb_1 (basic_block inner_cond_bb
, basic_block outer_cond_bb
,
578 basic_block then_bb
, basic_block else_bb
,
579 basic_block phi_pred_bb
)
581 /* The && form is characterized by a common else_bb with
582 the two edges leading to it mergable. The latter is
583 guaranteed by matching PHI arguments in the else_bb and
584 the inner cond_bb having no side-effects. */
585 if (phi_pred_bb
!= else_bb
586 && recognize_if_then_else (outer_cond_bb
, &inner_cond_bb
, &else_bb
)
587 && same_phi_args_p (outer_cond_bb
, phi_pred_bb
, else_bb
))
591 if (q) goto inner_cond_bb; else goto else_bb;
593 if (p) goto ...; else goto else_bb;
598 return ifcombine_ifandif (inner_cond_bb
, false, outer_cond_bb
, false,
602 /* And a version where the outer condition is negated. */
603 if (phi_pred_bb
!= else_bb
604 && recognize_if_then_else (outer_cond_bb
, &else_bb
, &inner_cond_bb
)
605 && same_phi_args_p (outer_cond_bb
, phi_pred_bb
, else_bb
))
609 if (q) goto else_bb; else goto inner_cond_bb;
611 if (p) goto ...; else goto else_bb;
616 return ifcombine_ifandif (inner_cond_bb
, false, outer_cond_bb
, true,
620 /* The || form is characterized by a common then_bb with the
621 two edges leading to it mergable. The latter is guaranteed
622 by matching PHI arguments in the then_bb and the inner cond_bb
623 having no side-effects. */
624 if (phi_pred_bb
!= then_bb
625 && recognize_if_then_else (outer_cond_bb
, &then_bb
, &inner_cond_bb
)
626 && same_phi_args_p (outer_cond_bb
, phi_pred_bb
, then_bb
))
630 if (q) goto then_bb; else goto inner_cond_bb;
632 if (q) goto then_bb; else goto ...;
636 return ifcombine_ifandif (inner_cond_bb
, true, outer_cond_bb
, true,
640 /* And a version where the outer condition is negated. */
641 if (phi_pred_bb
!= then_bb
642 && recognize_if_then_else (outer_cond_bb
, &inner_cond_bb
, &then_bb
)
643 && same_phi_args_p (outer_cond_bb
, phi_pred_bb
, then_bb
))
647 if (q) goto inner_cond_bb; else goto then_bb;
649 if (q) goto then_bb; else goto ...;
653 return ifcombine_ifandif (inner_cond_bb
, true, outer_cond_bb
, false,
660 /* Recognize a CFG pattern and dispatch to the appropriate
661 if-conversion helper. We start with BB as the innermost
662 worker basic-block. Returns true if a transformation was done. */
665 tree_ssa_ifcombine_bb (basic_block inner_cond_bb
)
667 basic_block then_bb
= NULL
, else_bb
= NULL
;
669 if (!recognize_if_then_else (inner_cond_bb
, &then_bb
, &else_bb
))
672 /* Recognize && and || of two conditions with a common
673 then/else block which entry edges we can merge. That is:
679 This requires a single predecessor of the inner cond_bb. */
680 if (single_pred_p (inner_cond_bb
)
681 && bb_no_side_effects_p (inner_cond_bb
))
683 basic_block outer_cond_bb
= single_pred (inner_cond_bb
);
685 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb
, outer_cond_bb
,
686 then_bb
, else_bb
, inner_cond_bb
))
689 if (forwarder_block_to (else_bb
, then_bb
))
691 /* Other possibilities for the && form, if else_bb is
692 empty forwarder block to then_bb. Compared to the above simpler
693 forms this can be treated as if then_bb and else_bb were swapped,
694 and the corresponding inner_cond_bb not inverted because of that.
695 For same_phi_args_p we look at equality of arguments between
696 edge from outer_cond_bb and the forwarder block. */
697 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb
, outer_cond_bb
, else_bb
,
701 else if (forwarder_block_to (then_bb
, else_bb
))
703 /* Other possibilities for the || form, if then_bb is
704 empty forwarder block to else_bb. Compared to the above simpler
705 forms this can be treated as if then_bb and else_bb were swapped,
706 and the corresponding inner_cond_bb not inverted because of that.
707 For same_phi_args_p we look at equality of arguments between
708 edge from outer_cond_bb and the forwarder block. */
709 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb
, outer_cond_bb
, else_bb
,
718 /* Main entry for the tree if-conversion pass. */
722 const pass_data pass_data_tree_ifcombine
=
724 GIMPLE_PASS
, /* type */
725 "ifcombine", /* name */
726 OPTGROUP_NONE
, /* optinfo_flags */
727 TV_TREE_IFCOMBINE
, /* tv_id */
728 ( PROP_cfg
| PROP_ssa
), /* properties_required */
729 0, /* properties_provided */
730 0, /* properties_destroyed */
731 0, /* todo_flags_start */
732 TODO_update_ssa
, /* todo_flags_finish */
735 class pass_tree_ifcombine
: public gimple_opt_pass
738 pass_tree_ifcombine (gcc::context
*ctxt
)
739 : gimple_opt_pass (pass_data_tree_ifcombine
, ctxt
)
742 /* opt_pass methods: */
743 virtual unsigned int execute (function
*);
745 }; // class pass_tree_ifcombine
748 pass_tree_ifcombine::execute (function
*fun
)
751 bool cfg_changed
= false;
754 bbs
= single_pred_before_succ_order ();
755 calculate_dominance_info (CDI_DOMINATORS
);
757 /* Search every basic block for COND_EXPR we may be able to optimize.
759 We walk the blocks in order that guarantees that a block with
760 a single predecessor is processed after the predecessor.
761 This ensures that we collapse outter ifs before visiting the
762 inner ones, and also that we do not try to visit a removed
763 block. This is opposite of PHI-OPT, because we cascade the
764 combining rather than cascading PHIs. */
765 for (i
= n_basic_blocks_for_fn (fun
) - NUM_FIXED_BLOCKS
- 1; i
>= 0; i
--)
767 basic_block bb
= bbs
[i
];
768 gimple
*stmt
= last_stmt (bb
);
771 && gimple_code (stmt
) == GIMPLE_COND
)
772 if (tree_ssa_ifcombine_bb (bb
))
774 /* Clear range info from all stmts in BB which is now executed
775 conditional on a always true/false condition. */
776 reset_flow_sensitive_info_in_bb (bb
);
783 return cfg_changed
? TODO_cleanup_cfg
: 0;
789 make_pass_tree_ifcombine (gcc::context
*ctxt
)
791 return new pass_tree_ifcombine (ctxt
);