PR testsuite/79036 - gcc.dg/tree-ssa/builtin-sprintf.c fails starting with r244037
[official-gcc.git] / gcc / reg-stack.c
blob063ef54205356fe242bb5602096479db18a639b9
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
23 * The form of the input:
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
43 * The form of the output:
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
70 * Methodology:
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
76 * asm_operands:
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
100 All explicitly referenced input operands may not "skip" a reg.
101 Otherwise we can have holes in the stack.
103 3. It is possible that if an input dies in an insn, reload might
104 use the input reg for an output reload. Consider this example:
106 asm ("foo" : "=t" (a) : "f" (b));
108 This asm says that input B is not popped by the asm, and that
109 the asm pushes a result onto the reg-stack, i.e., the stack is one
110 deeper after the asm than it was before. But, it is possible that
111 reload will think that it can use the same reg for both the input and
112 the output, if input B dies in this insn.
114 If any input operand uses the "f" constraint, all output reg
115 constraints must use the "&" earlyclobber.
117 The asm above would be written as
119 asm ("foo" : "=&t" (a) : "f" (b));
121 4. Some operands need to be in particular places on the stack. All
122 output operands fall in this category - there is no other way to
123 know which regs the outputs appear in unless the user indicates
124 this in the constraints.
126 Output operands must specifically indicate which reg an output
127 appears in after an asm. "=f" is not allowed: the operand
128 constraints must select a class with a single reg.
130 5. Output operands may not be "inserted" between existing stack regs.
131 Since no 387 opcode uses a read/write operand, all output operands
132 are dead before the asm_operands, and are pushed by the asm_operands.
133 It makes no sense to push anywhere but the top of the reg-stack.
135 Output operands must start at the top of the reg-stack: output
136 operands may not "skip" a reg.
138 6. Some asm statements may need extra stack space for internal
139 calculations. This can be guaranteed by clobbering stack registers
140 unrelated to the inputs and outputs.
142 Here are a couple of reasonable asms to want to write. This asm
143 takes one input, which is internally popped, and produces two outputs.
145 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
147 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
148 and replaces them with one output. The user must code the "st(1)"
149 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
151 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
155 #include "config.h"
156 #include "system.h"
157 #include "coretypes.h"
158 #include "backend.h"
159 #include "target.h"
160 #include "rtl.h"
161 #include "tree.h"
162 #include "df.h"
163 #include "insn-config.h"
164 #include "memmodel.h"
165 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
166 #include "recog.h"
167 #include "varasm.h"
168 #include "rtl-error.h"
169 #include "cfgrtl.h"
170 #include "cfganal.h"
171 #include "cfgbuild.h"
172 #include "cfgcleanup.h"
173 #include "reload.h"
174 #include "tree-pass.h"
175 #include "rtl-iter.h"
177 #ifdef STACK_REGS
179 /* We use this array to cache info about insns, because otherwise we
180 spend too much time in stack_regs_mentioned_p.
182 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
183 the insn uses stack registers, two indicates the insn does not use
184 stack registers. */
185 static vec<char> stack_regs_mentioned_data;
187 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
189 int regstack_completed = 0;
191 /* This is the basic stack record. TOP is an index into REG[] such
192 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
194 If TOP is -2, REG[] is not yet initialized. Stack initialization
195 consists of placing each live reg in array `reg' and setting `top'
196 appropriately.
198 REG_SET indicates which registers are live. */
200 typedef struct stack_def
202 int top; /* index to top stack element */
203 HARD_REG_SET reg_set; /* set of live registers */
204 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
205 } *stack_ptr;
207 /* This is used to carry information about basic blocks. It is
208 attached to the AUX field of the standard CFG block. */
210 typedef struct block_info_def
212 struct stack_def stack_in; /* Input stack configuration. */
213 struct stack_def stack_out; /* Output stack configuration. */
214 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
215 int done; /* True if block already converted. */
216 int predecessors; /* Number of predecessors that need
217 to be visited. */
218 } *block_info;
220 #define BLOCK_INFO(B) ((block_info) (B)->aux)
222 /* Passed to change_stack to indicate where to emit insns. */
223 enum emit_where
225 EMIT_AFTER,
226 EMIT_BEFORE
229 /* The block we're currently working on. */
230 static basic_block current_block;
232 /* In the current_block, whether we're processing the first register
233 stack or call instruction, i.e. the regstack is currently the
234 same as BLOCK_INFO(current_block)->stack_in. */
235 static bool starting_stack_p;
237 /* This is the register file for all register after conversion. */
238 static rtx
239 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
241 #define FP_MODE_REG(regno,mode) \
242 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
244 /* Used to initialize uninitialized registers. */
245 static rtx not_a_num;
247 /* Forward declarations */
249 static int stack_regs_mentioned_p (const_rtx pat);
250 static void pop_stack (stack_ptr, int);
251 static rtx *get_true_reg (rtx *);
253 static int check_asm_stack_operands (rtx_insn *);
254 static void get_asm_operands_in_out (rtx, int *, int *);
255 static rtx stack_result (tree);
256 static void replace_reg (rtx *, int);
257 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
258 static int get_hard_regnum (stack_ptr, rtx);
259 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
260 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
261 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
262 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
263 static int swap_rtx_condition_1 (rtx);
264 static int swap_rtx_condition (rtx_insn *);
265 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx);
266 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
267 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
268 static bool subst_stack_regs (rtx_insn *, stack_ptr);
269 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
270 static void print_stack (FILE *, stack_ptr);
271 static rtx_insn *next_flags_user (rtx_insn *);
273 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
275 static int
276 stack_regs_mentioned_p (const_rtx pat)
278 const char *fmt;
279 int i;
281 if (STACK_REG_P (pat))
282 return 1;
284 fmt = GET_RTX_FORMAT (GET_CODE (pat));
285 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
287 if (fmt[i] == 'E')
289 int j;
291 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
292 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
293 return 1;
295 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
296 return 1;
299 return 0;
302 /* Return nonzero if INSN mentions stacked registers, else return zero. */
305 stack_regs_mentioned (const_rtx insn)
307 unsigned int uid, max;
308 int test;
310 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
311 return 0;
313 uid = INSN_UID (insn);
314 max = stack_regs_mentioned_data.length ();
315 if (uid >= max)
317 /* Allocate some extra size to avoid too many reallocs, but
318 do not grow too quickly. */
319 max = uid + uid / 20 + 1;
320 stack_regs_mentioned_data.safe_grow_cleared (max);
323 test = stack_regs_mentioned_data[uid];
324 if (test == 0)
326 /* This insn has yet to be examined. Do so now. */
327 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
328 stack_regs_mentioned_data[uid] = test;
331 return test == 1;
334 static rtx ix86_flags_rtx;
336 static rtx_insn *
337 next_flags_user (rtx_insn *insn)
339 /* Search forward looking for the first use of this value.
340 Stop at block boundaries. */
342 while (insn != BB_END (current_block))
344 insn = NEXT_INSN (insn);
346 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
347 return insn;
349 if (CALL_P (insn))
350 return NULL;
352 return NULL;
355 /* Reorganize the stack into ascending numbers, before this insn. */
357 static void
358 straighten_stack (rtx_insn *insn, stack_ptr regstack)
360 struct stack_def temp_stack;
361 int top;
363 /* If there is only a single register on the stack, then the stack is
364 already in increasing order and no reorganization is needed.
366 Similarly if the stack is empty. */
367 if (regstack->top <= 0)
368 return;
370 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
372 for (top = temp_stack.top = regstack->top; top >= 0; top--)
373 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
375 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
378 /* Pop a register from the stack. */
380 static void
381 pop_stack (stack_ptr regstack, int regno)
383 int top = regstack->top;
385 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
386 regstack->top--;
387 /* If regno was not at the top of stack then adjust stack. */
388 if (regstack->reg [top] != regno)
390 int i;
391 for (i = regstack->top; i >= 0; i--)
392 if (regstack->reg [i] == regno)
394 int j;
395 for (j = i; j < top; j++)
396 regstack->reg [j] = regstack->reg [j + 1];
397 break;
402 /* Return a pointer to the REG expression within PAT. If PAT is not a
403 REG, possible enclosed by a conversion rtx, return the inner part of
404 PAT that stopped the search. */
406 static rtx *
407 get_true_reg (rtx *pat)
409 for (;;)
410 switch (GET_CODE (*pat))
412 case SUBREG:
413 /* Eliminate FP subregister accesses in favor of the
414 actual FP register in use. */
416 rtx subreg;
417 if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
419 int regno_off = subreg_regno_offset (REGNO (subreg),
420 GET_MODE (subreg),
421 SUBREG_BYTE (*pat),
422 GET_MODE (*pat));
423 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
424 GET_MODE (subreg));
425 return pat;
427 pat = &XEXP (*pat, 0);
428 break;
430 case FLOAT:
431 case FIX:
432 case FLOAT_EXTEND:
433 pat = &XEXP (*pat, 0);
434 break;
436 case UNSPEC:
437 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
438 || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
439 pat = &XVECEXP (*pat, 0, 0);
440 return pat;
442 case FLOAT_TRUNCATE:
443 if (!flag_unsafe_math_optimizations)
444 return pat;
445 pat = &XEXP (*pat, 0);
446 break;
448 default:
449 return pat;
453 /* Set if we find any malformed asms in a block. */
454 static bool any_malformed_asm;
456 /* There are many rules that an asm statement for stack-like regs must
457 follow. Those rules are explained at the top of this file: the rule
458 numbers below refer to that explanation. */
460 static int
461 check_asm_stack_operands (rtx_insn *insn)
463 int i;
464 int n_clobbers;
465 int malformed_asm = 0;
466 rtx body = PATTERN (insn);
468 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469 char implicitly_dies[FIRST_PSEUDO_REGISTER];
470 char explicitly_used[FIRST_PSEUDO_REGISTER];
472 rtx *clobber_reg = 0;
473 int n_inputs, n_outputs;
475 /* Find out what the constraints require. If no constraint
476 alternative matches, this asm is malformed. */
477 extract_constrain_insn (insn);
479 preprocess_constraints (insn);
481 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
483 if (which_alternative < 0)
485 malformed_asm = 1;
486 /* Avoid further trouble with this insn. */
487 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
488 return 0;
490 const operand_alternative *op_alt = which_op_alt ();
492 /* Strip SUBREGs here to make the following code simpler. */
493 for (i = 0; i < recog_data.n_operands; i++)
494 if (GET_CODE (recog_data.operand[i]) == SUBREG
495 && REG_P (SUBREG_REG (recog_data.operand[i])))
496 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
498 /* Set up CLOBBER_REG. */
500 n_clobbers = 0;
502 if (GET_CODE (body) == PARALLEL)
504 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
506 for (i = 0; i < XVECLEN (body, 0); i++)
507 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
509 rtx clobber = XVECEXP (body, 0, i);
510 rtx reg = XEXP (clobber, 0);
512 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
513 reg = SUBREG_REG (reg);
515 if (STACK_REG_P (reg))
517 clobber_reg[n_clobbers] = reg;
518 n_clobbers++;
523 /* Enforce rule #4: Output operands must specifically indicate which
524 reg an output appears in after an asm. "=f" is not allowed: the
525 operand constraints must select a class with a single reg.
527 Also enforce rule #5: Output operands must start at the top of
528 the reg-stack: output operands may not "skip" a reg. */
530 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
531 for (i = 0; i < n_outputs; i++)
532 if (STACK_REG_P (recog_data.operand[i]))
534 if (reg_class_size[(int) op_alt[i].cl] != 1)
536 error_for_asm (insn, "output constraint %d must specify a single register", i);
537 malformed_asm = 1;
539 else
541 int j;
543 for (j = 0; j < n_clobbers; j++)
544 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
546 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
547 i, reg_names [REGNO (clobber_reg[j])]);
548 malformed_asm = 1;
549 break;
551 if (j == n_clobbers)
552 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
557 /* Search for first non-popped reg. */
558 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
559 if (! reg_used_as_output[i])
560 break;
562 /* If there are any other popped regs, that's an error. */
563 for (; i < LAST_STACK_REG + 1; i++)
564 if (reg_used_as_output[i])
565 break;
567 if (i != LAST_STACK_REG + 1)
569 error_for_asm (insn, "output regs must be grouped at top of stack");
570 malformed_asm = 1;
573 /* Enforce rule #2: All implicitly popped input regs must be closer
574 to the top of the reg-stack than any input that is not implicitly
575 popped. */
577 memset (implicitly_dies, 0, sizeof (implicitly_dies));
578 memset (explicitly_used, 0, sizeof (explicitly_used));
579 for (i = n_outputs; i < n_outputs + n_inputs; i++)
580 if (STACK_REG_P (recog_data.operand[i]))
582 /* An input reg is implicitly popped if it is tied to an
583 output, or if there is a CLOBBER for it. */
584 int j;
586 for (j = 0; j < n_clobbers; j++)
587 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
588 break;
590 if (j < n_clobbers || op_alt[i].matches >= 0)
591 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
592 else if (reg_class_size[(int) op_alt[i].cl] == 1)
593 explicitly_used[REGNO (recog_data.operand[i])] = 1;
596 /* Search for first non-popped reg. */
597 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
598 if (! implicitly_dies[i])
599 break;
601 /* If there are any other popped regs, that's an error. */
602 for (; i < LAST_STACK_REG + 1; i++)
603 if (implicitly_dies[i])
604 break;
606 if (i != LAST_STACK_REG + 1)
608 error_for_asm (insn,
609 "implicitly popped regs must be grouped at top of stack");
610 malformed_asm = 1;
613 /* Search for first not-explicitly used reg. */
614 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
615 if (! implicitly_dies[i] && ! explicitly_used[i])
616 break;
618 /* If there are any other explicitly used regs, that's an error. */
619 for (; i < LAST_STACK_REG + 1; i++)
620 if (explicitly_used[i])
621 break;
623 if (i != LAST_STACK_REG + 1)
625 error_for_asm (insn,
626 "explicitly used regs must be grouped at top of stack");
627 malformed_asm = 1;
630 /* Enforce rule #3: If any input operand uses the "f" constraint, all
631 output constraints must use the "&" earlyclobber.
633 ??? Detect this more deterministically by having constrain_asm_operands
634 record any earlyclobber. */
636 for (i = n_outputs; i < n_outputs + n_inputs; i++)
637 if (STACK_REG_P (recog_data.operand[i]) && op_alt[i].matches == -1)
639 int j;
641 for (j = 0; j < n_outputs; j++)
642 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
644 error_for_asm (insn,
645 "output operand %d must use %<&%> constraint", j);
646 malformed_asm = 1;
650 if (malformed_asm)
652 /* Avoid further trouble with this insn. */
653 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
654 any_malformed_asm = true;
655 return 0;
658 return 1;
661 /* Calculate the number of inputs and outputs in BODY, an
662 asm_operands. N_OPERANDS is the total number of operands, and
663 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
664 placed. */
666 static void
667 get_asm_operands_in_out (rtx body, int *pout, int *pin)
669 rtx asmop = extract_asm_operands (body);
671 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
672 *pout = (recog_data.n_operands
673 - ASM_OPERANDS_INPUT_LENGTH (asmop)
674 - ASM_OPERANDS_LABEL_LENGTH (asmop));
677 /* If current function returns its result in an fp stack register,
678 return the REG. Otherwise, return 0. */
680 static rtx
681 stack_result (tree decl)
683 rtx result;
685 /* If the value is supposed to be returned in memory, then clearly
686 it is not returned in a stack register. */
687 if (aggregate_value_p (DECL_RESULT (decl), decl))
688 return 0;
690 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
691 if (result != 0)
692 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
693 decl, true);
695 return result != 0 && STACK_REG_P (result) ? result : 0;
700 * This section deals with stack register substitution, and forms the second
701 * pass over the RTL.
704 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
705 the desired hard REGNO. */
707 static void
708 replace_reg (rtx *reg, int regno)
710 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
711 gcc_assert (STACK_REG_P (*reg));
713 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
714 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
716 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
719 /* Remove a note of type NOTE, which must be found, for register
720 number REGNO from INSN. Remove only one such note. */
722 static void
723 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
725 rtx *note_link, this_rtx;
727 note_link = &REG_NOTES (insn);
728 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
729 if (REG_NOTE_KIND (this_rtx) == note
730 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
732 *note_link = XEXP (this_rtx, 1);
733 return;
735 else
736 note_link = &XEXP (this_rtx, 1);
738 gcc_unreachable ();
741 /* Find the hard register number of virtual register REG in REGSTACK.
742 The hard register number is relative to the top of the stack. -1 is
743 returned if the register is not found. */
745 static int
746 get_hard_regnum (stack_ptr regstack, rtx reg)
748 int i;
750 gcc_assert (STACK_REG_P (reg));
752 for (i = regstack->top; i >= 0; i--)
753 if (regstack->reg[i] == REGNO (reg))
754 break;
756 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
759 /* Emit an insn to pop virtual register REG before or after INSN.
760 REGSTACK is the stack state after INSN and is updated to reflect this
761 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
762 is represented as a SET whose destination is the register to be popped
763 and source is the top of stack. A death note for the top of stack
764 cases the movdf pattern to pop. */
766 static rtx_insn *
767 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg, enum emit_where where)
769 rtx_insn *pop_insn;
770 rtx pop_rtx;
771 int hard_regno;
773 /* For complex types take care to pop both halves. These may survive in
774 CLOBBER and USE expressions. */
775 if (COMPLEX_MODE_P (GET_MODE (reg)))
777 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
778 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
780 pop_insn = NULL;
781 if (get_hard_regnum (regstack, reg1) >= 0)
782 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
783 if (get_hard_regnum (regstack, reg2) >= 0)
784 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
785 gcc_assert (pop_insn);
786 return pop_insn;
789 hard_regno = get_hard_regnum (regstack, reg);
791 gcc_assert (hard_regno >= FIRST_STACK_REG);
793 pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, DFmode),
794 FP_MODE_REG (FIRST_STACK_REG, DFmode));
796 if (where == EMIT_AFTER)
797 pop_insn = emit_insn_after (pop_rtx, insn);
798 else
799 pop_insn = emit_insn_before (pop_rtx, insn);
801 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
803 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
804 = regstack->reg[regstack->top];
805 regstack->top -= 1;
806 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
808 return pop_insn;
811 /* Emit an insn before or after INSN to swap virtual register REG with
812 the top of stack. REGSTACK is the stack state before the swap, and
813 is updated to reflect the swap. A swap insn is represented as a
814 PARALLEL of two patterns: each pattern moves one reg to the other.
816 If REG is already at the top of the stack, no insn is emitted. */
818 static void
819 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
821 int hard_regno;
822 rtx swap_rtx;
823 int other_reg; /* swap regno temps */
824 rtx_insn *i1; /* the stack-reg insn prior to INSN */
825 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
827 hard_regno = get_hard_regnum (regstack, reg);
829 if (hard_regno == FIRST_STACK_REG)
830 return;
831 if (hard_regno == -1)
833 /* Something failed if the register wasn't on the stack. If we had
834 malformed asms, we zapped the instruction itself, but that didn't
835 produce the same pattern of register sets as before. To prevent
836 further failure, adjust REGSTACK to include REG at TOP. */
837 gcc_assert (any_malformed_asm);
838 regstack->reg[++regstack->top] = REGNO (reg);
839 return;
841 gcc_assert (hard_regno >= FIRST_STACK_REG);
843 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
844 std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
846 /* Find the previous insn involving stack regs, but don't pass a
847 block boundary. */
848 i1 = NULL;
849 if (current_block && insn != BB_HEAD (current_block))
851 rtx_insn *tmp = PREV_INSN (insn);
852 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
853 while (tmp != limit)
855 if (LABEL_P (tmp)
856 || CALL_P (tmp)
857 || NOTE_INSN_BASIC_BLOCK_P (tmp)
858 || (NONJUMP_INSN_P (tmp)
859 && stack_regs_mentioned (tmp)))
861 i1 = tmp;
862 break;
864 tmp = PREV_INSN (tmp);
868 if (i1 != NULL_RTX
869 && (i1set = single_set (i1)) != NULL_RTX)
871 rtx i1src = *get_true_reg (&SET_SRC (i1set));
872 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
874 /* If the previous register stack push was from the reg we are to
875 swap with, omit the swap. */
877 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
878 && REG_P (i1src)
879 && REGNO (i1src) == (unsigned) hard_regno - 1
880 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
881 return;
883 /* If the previous insn wrote to the reg we are to swap with,
884 omit the swap. */
886 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
887 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
888 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
889 return;
892 /* Avoid emitting the swap if this is the first register stack insn
893 of the current_block. Instead update the current_block's stack_in
894 and let compensate edges take care of this for us. */
895 if (current_block && starting_stack_p)
897 BLOCK_INFO (current_block)->stack_in = *regstack;
898 starting_stack_p = false;
899 return;
902 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
903 FP_MODE_REG (FIRST_STACK_REG, XFmode));
905 if (i1)
906 emit_insn_after (swap_rtx, i1);
907 else if (current_block)
908 emit_insn_before (swap_rtx, BB_HEAD (current_block));
909 else
910 emit_insn_before (swap_rtx, insn);
913 /* Emit an insns before INSN to swap virtual register SRC1 with
914 the top of stack and virtual register SRC2 with second stack
915 slot. REGSTACK is the stack state before the swaps, and
916 is updated to reflect the swaps. A swap insn is represented as a
917 PARALLEL of two patterns: each pattern moves one reg to the other.
919 If SRC1 and/or SRC2 are already at the right place, no swap insn
920 is emitted. */
922 static void
923 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
925 struct stack_def temp_stack;
926 int regno, j, k;
928 temp_stack = *regstack;
930 /* Place operand 1 at the top of stack. */
931 regno = get_hard_regnum (&temp_stack, src1);
932 gcc_assert (regno >= 0);
933 if (regno != FIRST_STACK_REG)
935 k = temp_stack.top - (regno - FIRST_STACK_REG);
936 j = temp_stack.top;
938 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
941 /* Place operand 2 next on the stack. */
942 regno = get_hard_regnum (&temp_stack, src2);
943 gcc_assert (regno >= 0);
944 if (regno != FIRST_STACK_REG + 1)
946 k = temp_stack.top - (regno - FIRST_STACK_REG);
947 j = temp_stack.top - 1;
949 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
952 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
955 /* Handle a move to or from a stack register in PAT, which is in INSN.
956 REGSTACK is the current stack. Return whether a control flow insn
957 was deleted in the process. */
959 static bool
960 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
962 rtx *psrc = get_true_reg (&SET_SRC (pat));
963 rtx *pdest = get_true_reg (&SET_DEST (pat));
964 rtx src, dest;
965 rtx note;
966 bool control_flow_insn_deleted = false;
968 src = *psrc; dest = *pdest;
970 if (STACK_REG_P (src) && STACK_REG_P (dest))
972 /* Write from one stack reg to another. If SRC dies here, then
973 just change the register mapping and delete the insn. */
975 note = find_regno_note (insn, REG_DEAD, REGNO (src));
976 if (note)
978 int i;
980 /* If this is a no-op move, there must not be a REG_DEAD note. */
981 gcc_assert (REGNO (src) != REGNO (dest));
983 for (i = regstack->top; i >= 0; i--)
984 if (regstack->reg[i] == REGNO (src))
985 break;
987 /* The destination must be dead, or life analysis is borked. */
988 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
990 /* If the source is not live, this is yet another case of
991 uninitialized variables. Load up a NaN instead. */
992 if (i < 0)
993 return move_nan_for_stack_reg (insn, regstack, dest);
995 /* It is possible that the dest is unused after this insn.
996 If so, just pop the src. */
998 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
999 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1000 else
1002 regstack->reg[i] = REGNO (dest);
1003 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1004 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1007 control_flow_insn_deleted |= control_flow_insn_p (insn);
1008 delete_insn (insn);
1009 return control_flow_insn_deleted;
1012 /* The source reg does not die. */
1014 /* If this appears to be a no-op move, delete it, or else it
1015 will confuse the machine description output patterns. But if
1016 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1017 for REG_UNUSED will not work for deleted insns. */
1019 if (REGNO (src) == REGNO (dest))
1021 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1022 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1024 control_flow_insn_deleted |= control_flow_insn_p (insn);
1025 delete_insn (insn);
1026 return control_flow_insn_deleted;
1029 /* The destination ought to be dead. */
1030 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1032 replace_reg (psrc, get_hard_regnum (regstack, src));
1034 regstack->reg[++regstack->top] = REGNO (dest);
1035 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1036 replace_reg (pdest, FIRST_STACK_REG);
1038 else if (STACK_REG_P (src))
1040 /* Save from a stack reg to MEM, or possibly integer reg. Since
1041 only top of stack may be saved, emit an exchange first if
1042 needs be. */
1044 emit_swap_insn (insn, regstack, src);
1046 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1047 if (note)
1049 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1050 regstack->top--;
1051 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1053 else if ((GET_MODE (src) == XFmode)
1054 && regstack->top < REG_STACK_SIZE - 1)
1056 /* A 387 cannot write an XFmode value to a MEM without
1057 clobbering the source reg. The output code can handle
1058 this by reading back the value from the MEM.
1059 But it is more efficient to use a temp register if one is
1060 available. Push the source value here if the register
1061 stack is not full, and then write the value to memory via
1062 a pop. */
1063 rtx push_rtx;
1064 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1066 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1067 emit_insn_before (push_rtx, insn);
1068 add_reg_note (insn, REG_DEAD, top_stack_reg);
1071 replace_reg (psrc, FIRST_STACK_REG);
1073 else
1075 rtx pat = PATTERN (insn);
1077 gcc_assert (STACK_REG_P (dest));
1079 /* Load from MEM, or possibly integer REG or constant, into the
1080 stack regs. The actual target is always the top of the
1081 stack. The stack mapping is changed to reflect that DEST is
1082 now at top of stack. */
1084 /* The destination ought to be dead. However, there is a
1085 special case with i387 UNSPEC_TAN, where destination is live
1086 (an argument to fptan) but inherent load of 1.0 is modelled
1087 as a load from a constant. */
1088 if (GET_CODE (pat) == PARALLEL
1089 && XVECLEN (pat, 0) == 2
1090 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1091 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1092 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1093 emit_swap_insn (insn, regstack, dest);
1094 else
1095 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1097 gcc_assert (regstack->top < REG_STACK_SIZE);
1099 regstack->reg[++regstack->top] = REGNO (dest);
1100 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1101 replace_reg (pdest, FIRST_STACK_REG);
1104 return control_flow_insn_deleted;
1107 /* A helper function which replaces INSN with a pattern that loads up
1108 a NaN into DEST, then invokes move_for_stack_reg. */
1110 static bool
1111 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1113 rtx pat;
1115 dest = FP_MODE_REG (REGNO (dest), SFmode);
1116 pat = gen_rtx_SET (dest, not_a_num);
1117 PATTERN (insn) = pat;
1118 INSN_CODE (insn) = -1;
1120 return move_for_stack_reg (insn, regstack, pat);
1123 /* Swap the condition on a branch, if there is one. Return true if we
1124 found a condition to swap. False if the condition was not used as
1125 such. */
1127 static int
1128 swap_rtx_condition_1 (rtx pat)
1130 const char *fmt;
1131 int i, r = 0;
1133 if (COMPARISON_P (pat))
1135 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1136 r = 1;
1138 else
1140 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1141 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1143 if (fmt[i] == 'E')
1145 int j;
1147 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1148 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1150 else if (fmt[i] == 'e')
1151 r |= swap_rtx_condition_1 (XEXP (pat, i));
1155 return r;
1158 static int
1159 swap_rtx_condition (rtx_insn *insn)
1161 rtx pat = PATTERN (insn);
1163 /* We're looking for a single set to cc0 or an HImode temporary. */
1165 if (GET_CODE (pat) == SET
1166 && REG_P (SET_DEST (pat))
1167 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1169 insn = next_flags_user (insn);
1170 if (insn == NULL_RTX)
1171 return 0;
1172 pat = PATTERN (insn);
1175 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1176 with the cc value right now. We may be able to search for one
1177 though. */
1179 if (GET_CODE (pat) == SET
1180 && GET_CODE (SET_SRC (pat)) == UNSPEC
1181 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1183 rtx dest = SET_DEST (pat);
1185 /* Search forward looking for the first use of this value.
1186 Stop at block boundaries. */
1187 while (insn != BB_END (current_block))
1189 insn = NEXT_INSN (insn);
1190 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1191 break;
1192 if (CALL_P (insn))
1193 return 0;
1196 /* We haven't found it. */
1197 if (insn == BB_END (current_block))
1198 return 0;
1200 /* So we've found the insn using this value. If it is anything
1201 other than sahf or the value does not die (meaning we'd have
1202 to search further), then we must give up. */
1203 pat = PATTERN (insn);
1204 if (GET_CODE (pat) != SET
1205 || GET_CODE (SET_SRC (pat)) != UNSPEC
1206 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1207 || ! dead_or_set_p (insn, dest))
1208 return 0;
1210 /* Now we are prepared to handle this as a normal cc0 setter. */
1211 insn = next_flags_user (insn);
1212 if (insn == NULL_RTX)
1213 return 0;
1214 pat = PATTERN (insn);
1217 if (swap_rtx_condition_1 (pat))
1219 int fail = 0;
1220 INSN_CODE (insn) = -1;
1221 if (recog_memoized (insn) == -1)
1222 fail = 1;
1223 /* In case the flags don't die here, recurse to try fix
1224 following user too. */
1225 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1227 insn = next_flags_user (insn);
1228 if (!insn || !swap_rtx_condition (insn))
1229 fail = 1;
1231 if (fail)
1233 swap_rtx_condition_1 (pat);
1234 return 0;
1236 return 1;
1238 return 0;
1241 /* Handle a comparison. Special care needs to be taken to avoid
1242 causing comparisons that a 387 cannot do correctly, such as EQ.
1244 Also, a pop insn may need to be emitted. The 387 does have an
1245 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1246 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1247 set up. */
1249 static void
1250 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat_src)
1252 rtx *src1, *src2;
1253 rtx src1_note, src2_note;
1255 src1 = get_true_reg (&XEXP (pat_src, 0));
1256 src2 = get_true_reg (&XEXP (pat_src, 1));
1258 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1259 registers that die in this insn - move those to stack top first. */
1260 if ((! STACK_REG_P (*src1)
1261 || (STACK_REG_P (*src2)
1262 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1263 && swap_rtx_condition (insn))
1265 std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1267 src1 = get_true_reg (&XEXP (pat_src, 0));
1268 src2 = get_true_reg (&XEXP (pat_src, 1));
1270 INSN_CODE (insn) = -1;
1273 /* We will fix any death note later. */
1275 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1277 if (STACK_REG_P (*src2))
1278 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1279 else
1280 src2_note = NULL_RTX;
1282 emit_swap_insn (insn, regstack, *src1);
1284 replace_reg (src1, FIRST_STACK_REG);
1286 if (STACK_REG_P (*src2))
1287 replace_reg (src2, get_hard_regnum (regstack, *src2));
1289 if (src1_note)
1291 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1292 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1295 /* If the second operand dies, handle that. But if the operands are
1296 the same stack register, don't bother, because only one death is
1297 needed, and it was just handled. */
1299 if (src2_note
1300 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1301 && REGNO (*src1) == REGNO (*src2)))
1303 /* As a special case, two regs may die in this insn if src2 is
1304 next to top of stack and the top of stack also dies. Since
1305 we have already popped src1, "next to top of stack" is really
1306 at top (FIRST_STACK_REG) now. */
1308 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1309 && src1_note)
1311 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1312 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1314 else
1316 /* The 386 can only represent death of the first operand in
1317 the case handled above. In all other cases, emit a separate
1318 pop and remove the death note from here. */
1319 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1320 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1321 EMIT_AFTER);
1326 /* Substitute hardware stack regs in debug insn INSN, using stack
1327 layout REGSTACK. If we can't find a hardware stack reg for any of
1328 the REGs in it, reset the debug insn. */
1330 static void
1331 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1333 subrtx_ptr_iterator::array_type array;
1334 FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1336 rtx *loc = *iter;
1337 rtx x = *loc;
1338 if (STACK_REG_P (x))
1340 int hard_regno = get_hard_regnum (regstack, x);
1342 /* If we can't find an active register, reset this debug insn. */
1343 if (hard_regno == -1)
1345 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1346 return;
1349 gcc_assert (hard_regno >= FIRST_STACK_REG);
1350 replace_reg (loc, hard_regno);
1351 iter.skip_subrtxes ();
1356 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1357 is the current register layout. Return whether a control flow insn
1358 was deleted in the process. */
1360 static bool
1361 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1363 rtx *dest, *src;
1364 bool control_flow_insn_deleted = false;
1366 switch (GET_CODE (pat))
1368 case USE:
1369 /* Deaths in USE insns can happen in non optimizing compilation.
1370 Handle them by popping the dying register. */
1371 src = get_true_reg (&XEXP (pat, 0));
1372 if (STACK_REG_P (*src)
1373 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1375 /* USEs are ignored for liveness information so USEs of dead
1376 register might happen. */
1377 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1378 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1379 return control_flow_insn_deleted;
1381 /* Uninitialized USE might happen for functions returning uninitialized
1382 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1383 so it is safe to ignore the use here. This is consistent with behavior
1384 of dataflow analyzer that ignores USE too. (This also imply that
1385 forcibly initializing the register to NaN here would lead to ICE later,
1386 since the REG_DEAD notes are not issued.) */
1387 break;
1389 case VAR_LOCATION:
1390 gcc_unreachable ();
1392 case CLOBBER:
1394 rtx note;
1396 dest = get_true_reg (&XEXP (pat, 0));
1397 if (STACK_REG_P (*dest))
1399 note = find_reg_note (insn, REG_DEAD, *dest);
1401 if (pat != PATTERN (insn))
1403 /* The fix_truncdi_1 pattern wants to be able to
1404 allocate its own scratch register. It does this by
1405 clobbering an fp reg so that it is assured of an
1406 empty reg-stack register. If the register is live,
1407 kill it now. Remove the DEAD/UNUSED note so we
1408 don't try to kill it later too.
1410 In reality the UNUSED note can be absent in some
1411 complicated cases when the register is reused for
1412 partially set variable. */
1414 if (note)
1415 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1416 else
1417 note = find_reg_note (insn, REG_UNUSED, *dest);
1418 if (note)
1419 remove_note (insn, note);
1420 replace_reg (dest, FIRST_STACK_REG + 1);
1422 else
1424 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1425 indicates an uninitialized value. Because reload removed
1426 all other clobbers, this must be due to a function
1427 returning without a value. Load up a NaN. */
1429 if (!note)
1431 rtx t = *dest;
1432 if (COMPLEX_MODE_P (GET_MODE (t)))
1434 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1435 if (get_hard_regnum (regstack, u) == -1)
1437 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1438 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1439 control_flow_insn_deleted
1440 |= move_nan_for_stack_reg (insn2, regstack, u);
1443 if (get_hard_regnum (regstack, t) == -1)
1444 control_flow_insn_deleted
1445 |= move_nan_for_stack_reg (insn, regstack, t);
1449 break;
1452 case SET:
1454 rtx *src1 = (rtx *) 0, *src2;
1455 rtx src1_note, src2_note;
1456 rtx pat_src;
1458 dest = get_true_reg (&SET_DEST (pat));
1459 src = get_true_reg (&SET_SRC (pat));
1460 pat_src = SET_SRC (pat);
1462 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1463 if (STACK_REG_P (*src)
1464 || (STACK_REG_P (*dest)
1465 && (REG_P (*src) || MEM_P (*src)
1466 || CONST_DOUBLE_P (*src))))
1468 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1469 break;
1472 switch (GET_CODE (pat_src))
1474 case COMPARE:
1475 compare_for_stack_reg (insn, regstack, pat_src);
1476 break;
1478 case CALL:
1480 int count;
1481 for (count = REG_NREGS (*dest); --count >= 0;)
1483 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1484 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1487 replace_reg (dest, FIRST_STACK_REG);
1488 break;
1490 case REG:
1491 /* This is a `tstM2' case. */
1492 gcc_assert (*dest == cc0_rtx);
1493 src1 = src;
1495 /* Fall through. */
1497 case FLOAT_TRUNCATE:
1498 case SQRT:
1499 case ABS:
1500 case NEG:
1501 /* These insns only operate on the top of the stack. DEST might
1502 be cc0_rtx if we're processing a tstM pattern. Also, it's
1503 possible that the tstM case results in a REG_DEAD note on the
1504 source. */
1506 if (src1 == 0)
1507 src1 = get_true_reg (&XEXP (pat_src, 0));
1509 emit_swap_insn (insn, regstack, *src1);
1511 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1513 if (STACK_REG_P (*dest))
1514 replace_reg (dest, FIRST_STACK_REG);
1516 if (src1_note)
1518 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1519 regstack->top--;
1520 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1523 replace_reg (src1, FIRST_STACK_REG);
1524 break;
1526 case MINUS:
1527 case DIV:
1528 /* On i386, reversed forms of subM3 and divM3 exist for
1529 MODE_FLOAT, so the same code that works for addM3 and mulM3
1530 can be used. */
1531 case MULT:
1532 case PLUS:
1533 /* These insns can accept the top of stack as a destination
1534 from a stack reg or mem, or can use the top of stack as a
1535 source and some other stack register (possibly top of stack)
1536 as a destination. */
1538 src1 = get_true_reg (&XEXP (pat_src, 0));
1539 src2 = get_true_reg (&XEXP (pat_src, 1));
1541 /* We will fix any death note later. */
1543 if (STACK_REG_P (*src1))
1544 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1545 else
1546 src1_note = NULL_RTX;
1547 if (STACK_REG_P (*src2))
1548 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1549 else
1550 src2_note = NULL_RTX;
1552 /* If either operand is not a stack register, then the dest
1553 must be top of stack. */
1555 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1556 emit_swap_insn (insn, regstack, *dest);
1557 else
1559 /* Both operands are REG. If neither operand is already
1560 at the top of stack, choose to make the one that is the
1561 dest the new top of stack. */
1563 int src1_hard_regnum, src2_hard_regnum;
1565 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1566 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1568 /* If the source is not live, this is yet another case of
1569 uninitialized variables. Load up a NaN instead. */
1570 if (src1_hard_regnum == -1)
1572 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1573 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1574 control_flow_insn_deleted
1575 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1577 if (src2_hard_regnum == -1)
1579 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1580 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1581 control_flow_insn_deleted
1582 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1585 if (src1_hard_regnum != FIRST_STACK_REG
1586 && src2_hard_regnum != FIRST_STACK_REG)
1587 emit_swap_insn (insn, regstack, *dest);
1590 if (STACK_REG_P (*src1))
1591 replace_reg (src1, get_hard_regnum (regstack, *src1));
1592 if (STACK_REG_P (*src2))
1593 replace_reg (src2, get_hard_regnum (regstack, *src2));
1595 if (src1_note)
1597 rtx src1_reg = XEXP (src1_note, 0);
1599 /* If the register that dies is at the top of stack, then
1600 the destination is somewhere else - merely substitute it.
1601 But if the reg that dies is not at top of stack, then
1602 move the top of stack to the dead reg, as though we had
1603 done the insn and then a store-with-pop. */
1605 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1607 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1608 replace_reg (dest, get_hard_regnum (regstack, *dest));
1610 else
1612 int regno = get_hard_regnum (regstack, src1_reg);
1614 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1615 replace_reg (dest, regno);
1617 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1618 = regstack->reg[regstack->top];
1621 CLEAR_HARD_REG_BIT (regstack->reg_set,
1622 REGNO (XEXP (src1_note, 0)));
1623 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1624 regstack->top--;
1626 else if (src2_note)
1628 rtx src2_reg = XEXP (src2_note, 0);
1629 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1631 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1632 replace_reg (dest, get_hard_regnum (regstack, *dest));
1634 else
1636 int regno = get_hard_regnum (regstack, src2_reg);
1638 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1639 replace_reg (dest, regno);
1641 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1642 = regstack->reg[regstack->top];
1645 CLEAR_HARD_REG_BIT (regstack->reg_set,
1646 REGNO (XEXP (src2_note, 0)));
1647 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1648 regstack->top--;
1650 else
1652 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1653 replace_reg (dest, get_hard_regnum (regstack, *dest));
1656 /* Keep operand 1 matching with destination. */
1657 if (COMMUTATIVE_ARITH_P (pat_src)
1658 && REG_P (*src1) && REG_P (*src2)
1659 && REGNO (*src1) != REGNO (*dest))
1661 int tmp = REGNO (*src1);
1662 replace_reg (src1, REGNO (*src2));
1663 replace_reg (src2, tmp);
1665 break;
1667 case UNSPEC:
1668 switch (XINT (pat_src, 1))
1670 case UNSPEC_FIST:
1671 case UNSPEC_FIST_ATOMIC:
1673 case UNSPEC_FIST_FLOOR:
1674 case UNSPEC_FIST_CEIL:
1676 /* These insns only operate on the top of the stack. */
1678 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1679 emit_swap_insn (insn, regstack, *src1);
1681 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1683 if (STACK_REG_P (*dest))
1684 replace_reg (dest, FIRST_STACK_REG);
1686 if (src1_note)
1688 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1689 regstack->top--;
1690 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1693 replace_reg (src1, FIRST_STACK_REG);
1694 break;
1696 case UNSPEC_FXAM:
1698 /* This insn only operate on the top of the stack. */
1700 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1701 emit_swap_insn (insn, regstack, *src1);
1703 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1705 replace_reg (src1, FIRST_STACK_REG);
1707 if (src1_note)
1709 remove_regno_note (insn, REG_DEAD,
1710 REGNO (XEXP (src1_note, 0)));
1711 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1712 EMIT_AFTER);
1715 break;
1717 case UNSPEC_SIN:
1718 case UNSPEC_COS:
1719 case UNSPEC_FRNDINT:
1720 case UNSPEC_F2XM1:
1722 case UNSPEC_FRNDINT_FLOOR:
1723 case UNSPEC_FRNDINT_CEIL:
1724 case UNSPEC_FRNDINT_TRUNC:
1725 case UNSPEC_FRNDINT_MASK_PM:
1727 /* Above insns operate on the top of the stack. */
1729 case UNSPEC_SINCOS_COS:
1730 case UNSPEC_XTRACT_FRACT:
1732 /* Above insns operate on the top two stack slots,
1733 first part of one input, double output insn. */
1735 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1737 emit_swap_insn (insn, regstack, *src1);
1739 /* Input should never die, it is replaced with output. */
1740 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1741 gcc_assert (!src1_note);
1743 if (STACK_REG_P (*dest))
1744 replace_reg (dest, FIRST_STACK_REG);
1746 replace_reg (src1, FIRST_STACK_REG);
1747 break;
1749 case UNSPEC_SINCOS_SIN:
1750 case UNSPEC_XTRACT_EXP:
1752 /* These insns operate on the top two stack slots,
1753 second part of one input, double output insn. */
1755 regstack->top++;
1756 /* FALLTHRU */
1758 case UNSPEC_TAN:
1760 /* For UNSPEC_TAN, regstack->top is already increased
1761 by inherent load of constant 1.0. */
1763 /* Output value is generated in the second stack slot.
1764 Move current value from second slot to the top. */
1765 regstack->reg[regstack->top]
1766 = regstack->reg[regstack->top - 1];
1768 gcc_assert (STACK_REG_P (*dest));
1770 regstack->reg[regstack->top - 1] = REGNO (*dest);
1771 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1772 replace_reg (dest, FIRST_STACK_REG + 1);
1774 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1776 replace_reg (src1, FIRST_STACK_REG);
1777 break;
1779 case UNSPEC_FPATAN:
1780 case UNSPEC_FYL2X:
1781 case UNSPEC_FYL2XP1:
1782 /* These insns operate on the top two stack slots. */
1784 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1785 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1787 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1788 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1790 swap_to_top (insn, regstack, *src1, *src2);
1792 replace_reg (src1, FIRST_STACK_REG);
1793 replace_reg (src2, FIRST_STACK_REG + 1);
1795 if (src1_note)
1796 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1797 if (src2_note)
1798 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1800 /* Pop both input operands from the stack. */
1801 CLEAR_HARD_REG_BIT (regstack->reg_set,
1802 regstack->reg[regstack->top]);
1803 CLEAR_HARD_REG_BIT (regstack->reg_set,
1804 regstack->reg[regstack->top - 1]);
1805 regstack->top -= 2;
1807 /* Push the result back onto the stack. */
1808 regstack->reg[++regstack->top] = REGNO (*dest);
1809 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1810 replace_reg (dest, FIRST_STACK_REG);
1811 break;
1813 case UNSPEC_FSCALE_FRACT:
1814 case UNSPEC_FPREM_F:
1815 case UNSPEC_FPREM1_F:
1816 /* These insns operate on the top two stack slots,
1817 first part of double input, double output insn. */
1819 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1820 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1822 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1823 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1825 /* Inputs should never die, they are
1826 replaced with outputs. */
1827 gcc_assert (!src1_note);
1828 gcc_assert (!src2_note);
1830 swap_to_top (insn, regstack, *src1, *src2);
1832 /* Push the result back onto stack. Empty stack slot
1833 will be filled in second part of insn. */
1834 if (STACK_REG_P (*dest))
1836 regstack->reg[regstack->top] = REGNO (*dest);
1837 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1838 replace_reg (dest, FIRST_STACK_REG);
1841 replace_reg (src1, FIRST_STACK_REG);
1842 replace_reg (src2, FIRST_STACK_REG + 1);
1843 break;
1845 case UNSPEC_FSCALE_EXP:
1846 case UNSPEC_FPREM_U:
1847 case UNSPEC_FPREM1_U:
1848 /* These insns operate on the top two stack slots,
1849 second part of double input, double output insn. */
1851 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1852 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1854 /* Push the result back onto stack. Fill empty slot from
1855 first part of insn and fix top of stack pointer. */
1856 if (STACK_REG_P (*dest))
1858 regstack->reg[regstack->top - 1] = REGNO (*dest);
1859 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1860 replace_reg (dest, FIRST_STACK_REG + 1);
1863 replace_reg (src1, FIRST_STACK_REG);
1864 replace_reg (src2, FIRST_STACK_REG + 1);
1865 break;
1867 case UNSPEC_C2_FLAG:
1868 /* This insn operates on the top two stack slots,
1869 third part of C2 setting double input insn. */
1871 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1872 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1874 replace_reg (src1, FIRST_STACK_REG);
1875 replace_reg (src2, FIRST_STACK_REG + 1);
1876 break;
1878 case UNSPEC_SAHF:
1879 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1880 The combination matches the PPRO fcomi instruction. */
1882 pat_src = XVECEXP (pat_src, 0, 0);
1883 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1884 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1885 /* Fall through. */
1887 case UNSPEC_FNSTSW:
1888 /* Combined fcomp+fnstsw generated for doing well with
1889 CSE. When optimizing this would have been broken
1890 up before now. */
1892 pat_src = XVECEXP (pat_src, 0, 0);
1893 gcc_assert (GET_CODE (pat_src) == COMPARE);
1895 compare_for_stack_reg (insn, regstack, pat_src);
1896 break;
1898 default:
1899 gcc_unreachable ();
1901 break;
1903 case IF_THEN_ELSE:
1904 /* This insn requires the top of stack to be the destination. */
1906 src1 = get_true_reg (&XEXP (pat_src, 1));
1907 src2 = get_true_reg (&XEXP (pat_src, 2));
1909 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1910 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1912 /* If the comparison operator is an FP comparison operator,
1913 it is handled correctly by compare_for_stack_reg () who
1914 will move the destination to the top of stack. But if the
1915 comparison operator is not an FP comparison operator, we
1916 have to handle it here. */
1917 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1918 && REGNO (*dest) != regstack->reg[regstack->top])
1920 /* In case one of operands is the top of stack and the operands
1921 dies, it is safe to make it the destination operand by
1922 reversing the direction of cmove and avoid fxch. */
1923 if ((REGNO (*src1) == regstack->reg[regstack->top]
1924 && src1_note)
1925 || (REGNO (*src2) == regstack->reg[regstack->top]
1926 && src2_note))
1928 int idx1 = (get_hard_regnum (regstack, *src1)
1929 - FIRST_STACK_REG);
1930 int idx2 = (get_hard_regnum (regstack, *src2)
1931 - FIRST_STACK_REG);
1933 /* Make reg-stack believe that the operands are already
1934 swapped on the stack */
1935 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1936 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1938 /* Reverse condition to compensate the operand swap.
1939 i386 do have comparison always reversible. */
1940 PUT_CODE (XEXP (pat_src, 0),
1941 reversed_comparison_code (XEXP (pat_src, 0), insn));
1943 else
1944 emit_swap_insn (insn, regstack, *dest);
1948 rtx src_note [3];
1949 int i;
1951 src_note[0] = 0;
1952 src_note[1] = src1_note;
1953 src_note[2] = src2_note;
1955 if (STACK_REG_P (*src1))
1956 replace_reg (src1, get_hard_regnum (regstack, *src1));
1957 if (STACK_REG_P (*src2))
1958 replace_reg (src2, get_hard_regnum (regstack, *src2));
1960 for (i = 1; i <= 2; i++)
1961 if (src_note [i])
1963 int regno = REGNO (XEXP (src_note[i], 0));
1965 /* If the register that dies is not at the top of
1966 stack, then move the top of stack to the dead reg.
1967 Top of stack should never die, as it is the
1968 destination. */
1969 gcc_assert (regno != regstack->reg[regstack->top]);
1970 remove_regno_note (insn, REG_DEAD, regno);
1971 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1972 EMIT_AFTER);
1976 /* Make dest the top of stack. Add dest to regstack if
1977 not present. */
1978 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1979 regstack->reg[++regstack->top] = REGNO (*dest);
1980 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1981 replace_reg (dest, FIRST_STACK_REG);
1982 break;
1984 default:
1985 gcc_unreachable ();
1987 break;
1990 default:
1991 break;
1994 return control_flow_insn_deleted;
1997 /* Substitute hard regnums for any stack regs in INSN, which has
1998 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1999 before the insn, and is updated with changes made here.
2001 There are several requirements and assumptions about the use of
2002 stack-like regs in asm statements. These rules are enforced by
2003 record_asm_stack_regs; see comments there for details. Any
2004 asm_operands left in the RTL at this point may be assume to meet the
2005 requirements, since record_asm_stack_regs removes any problem asm. */
2007 static void
2008 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2010 rtx body = PATTERN (insn);
2012 rtx *note_reg; /* Array of note contents */
2013 rtx **note_loc; /* Address of REG field of each note */
2014 enum reg_note *note_kind; /* The type of each note */
2016 rtx *clobber_reg = 0;
2017 rtx **clobber_loc = 0;
2019 struct stack_def temp_stack;
2020 int n_notes;
2021 int n_clobbers;
2022 rtx note;
2023 int i;
2024 int n_inputs, n_outputs;
2026 if (! check_asm_stack_operands (insn))
2027 return;
2029 /* Find out what the constraints required. If no constraint
2030 alternative matches, that is a compiler bug: we should have caught
2031 such an insn in check_asm_stack_operands. */
2032 extract_constrain_insn (insn);
2034 preprocess_constraints (insn);
2035 const operand_alternative *op_alt = which_op_alt ();
2037 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2039 /* Strip SUBREGs here to make the following code simpler. */
2040 for (i = 0; i < recog_data.n_operands; i++)
2041 if (GET_CODE (recog_data.operand[i]) == SUBREG
2042 && REG_P (SUBREG_REG (recog_data.operand[i])))
2044 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2045 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2048 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2050 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2051 i++;
2053 note_reg = XALLOCAVEC (rtx, i);
2054 note_loc = XALLOCAVEC (rtx *, i);
2055 note_kind = XALLOCAVEC (enum reg_note, i);
2057 n_notes = 0;
2058 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2060 if (GET_CODE (note) != EXPR_LIST)
2061 continue;
2062 rtx reg = XEXP (note, 0);
2063 rtx *loc = & XEXP (note, 0);
2065 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2067 loc = & SUBREG_REG (reg);
2068 reg = SUBREG_REG (reg);
2071 if (STACK_REG_P (reg)
2072 && (REG_NOTE_KIND (note) == REG_DEAD
2073 || REG_NOTE_KIND (note) == REG_UNUSED))
2075 note_reg[n_notes] = reg;
2076 note_loc[n_notes] = loc;
2077 note_kind[n_notes] = REG_NOTE_KIND (note);
2078 n_notes++;
2082 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2084 n_clobbers = 0;
2086 if (GET_CODE (body) == PARALLEL)
2088 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2089 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2091 for (i = 0; i < XVECLEN (body, 0); i++)
2092 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2094 rtx clobber = XVECEXP (body, 0, i);
2095 rtx reg = XEXP (clobber, 0);
2096 rtx *loc = & XEXP (clobber, 0);
2098 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2100 loc = & SUBREG_REG (reg);
2101 reg = SUBREG_REG (reg);
2104 if (STACK_REG_P (reg))
2106 clobber_reg[n_clobbers] = reg;
2107 clobber_loc[n_clobbers] = loc;
2108 n_clobbers++;
2113 temp_stack = *regstack;
2115 /* Put the input regs into the desired place in TEMP_STACK. */
2117 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2118 if (STACK_REG_P (recog_data.operand[i])
2119 && reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2120 && op_alt[i].cl != FLOAT_REGS)
2122 /* If an operand needs to be in a particular reg in
2123 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2124 these constraints are for single register classes, and
2125 reload guaranteed that operand[i] is already in that class,
2126 we can just use REGNO (recog_data.operand[i]) to know which
2127 actual reg this operand needs to be in. */
2129 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2131 gcc_assert (regno >= 0);
2133 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2135 /* recog_data.operand[i] is not in the right place. Find
2136 it and swap it with whatever is already in I's place.
2137 K is where recog_data.operand[i] is now. J is where it
2138 should be. */
2139 int j, k;
2141 k = temp_stack.top - (regno - FIRST_STACK_REG);
2142 j = (temp_stack.top
2143 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2145 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
2149 /* Emit insns before INSN to make sure the reg-stack is in the right
2150 order. */
2152 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2154 /* Make the needed input register substitutions. Do death notes and
2155 clobbers too, because these are for inputs, not outputs. */
2157 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2158 if (STACK_REG_P (recog_data.operand[i]))
2160 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2162 gcc_assert (regnum >= 0);
2164 replace_reg (recog_data.operand_loc[i], regnum);
2167 for (i = 0; i < n_notes; i++)
2168 if (note_kind[i] == REG_DEAD)
2170 int regnum = get_hard_regnum (regstack, note_reg[i]);
2172 gcc_assert (regnum >= 0);
2174 replace_reg (note_loc[i], regnum);
2177 for (i = 0; i < n_clobbers; i++)
2179 /* It's OK for a CLOBBER to reference a reg that is not live.
2180 Don't try to replace it in that case. */
2181 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2183 if (regnum >= 0)
2185 /* Sigh - clobbers always have QImode. But replace_reg knows
2186 that these regs can't be MODE_INT and will assert. Just put
2187 the right reg there without calling replace_reg. */
2189 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2193 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2195 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2196 if (STACK_REG_P (recog_data.operand[i]))
2198 /* An input reg is implicitly popped if it is tied to an
2199 output, or if there is a CLOBBER for it. */
2200 int j;
2202 for (j = 0; j < n_clobbers; j++)
2203 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2204 break;
2206 if (j < n_clobbers || op_alt[i].matches >= 0)
2208 /* recog_data.operand[i] might not be at the top of stack.
2209 But that's OK, because all we need to do is pop the
2210 right number of regs off of the top of the reg-stack.
2211 record_asm_stack_regs guaranteed that all implicitly
2212 popped regs were grouped at the top of the reg-stack. */
2214 CLEAR_HARD_REG_BIT (regstack->reg_set,
2215 regstack->reg[regstack->top]);
2216 regstack->top--;
2220 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2221 Note that there isn't any need to substitute register numbers.
2222 ??? Explain why this is true. */
2224 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2226 /* See if there is an output for this hard reg. */
2227 int j;
2229 for (j = 0; j < n_outputs; j++)
2230 if (STACK_REG_P (recog_data.operand[j])
2231 && REGNO (recog_data.operand[j]) == (unsigned) i)
2233 regstack->reg[++regstack->top] = i;
2234 SET_HARD_REG_BIT (regstack->reg_set, i);
2235 break;
2239 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2240 input that the asm didn't implicitly pop. If the asm didn't
2241 implicitly pop an input reg, that reg will still be live.
2243 Note that we can't use find_regno_note here: the register numbers
2244 in the death notes have already been substituted. */
2246 for (i = 0; i < n_outputs; i++)
2247 if (STACK_REG_P (recog_data.operand[i]))
2249 int j;
2251 for (j = 0; j < n_notes; j++)
2252 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2253 && note_kind[j] == REG_UNUSED)
2255 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2256 EMIT_AFTER);
2257 break;
2261 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2262 if (STACK_REG_P (recog_data.operand[i]))
2264 int j;
2266 for (j = 0; j < n_notes; j++)
2267 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2268 && note_kind[j] == REG_DEAD
2269 && TEST_HARD_REG_BIT (regstack->reg_set,
2270 REGNO (recog_data.operand[i])))
2272 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2273 EMIT_AFTER);
2274 break;
2279 /* Substitute stack hard reg numbers for stack virtual registers in
2280 INSN. Non-stack register numbers are not changed. REGSTACK is the
2281 current stack content. Insns may be emitted as needed to arrange the
2282 stack for the 387 based on the contents of the insn. Return whether
2283 a control flow insn was deleted in the process. */
2285 static bool
2286 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2288 rtx *note_link, note;
2289 bool control_flow_insn_deleted = false;
2290 int i;
2292 if (CALL_P (insn))
2294 int top = regstack->top;
2296 /* If there are any floating point parameters to be passed in
2297 registers for this call, make sure they are in the right
2298 order. */
2300 if (top >= 0)
2302 straighten_stack (insn, regstack);
2304 /* Now mark the arguments as dead after the call. */
2306 while (regstack->top >= 0)
2308 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2309 regstack->top--;
2314 /* Do the actual substitution if any stack regs are mentioned.
2315 Since we only record whether entire insn mentions stack regs, and
2316 subst_stack_regs_pat only works for patterns that contain stack regs,
2317 we must check each pattern in a parallel here. A call_value_pop could
2318 fail otherwise. */
2320 if (stack_regs_mentioned (insn))
2322 int n_operands = asm_noperands (PATTERN (insn));
2323 if (n_operands >= 0)
2325 /* This insn is an `asm' with operands. Decode the operands,
2326 decide how many are inputs, and do register substitution.
2327 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2329 subst_asm_stack_regs (insn, regstack);
2330 return control_flow_insn_deleted;
2333 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2334 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2336 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2338 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2339 XVECEXP (PATTERN (insn), 0, i)
2340 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2341 control_flow_insn_deleted
2342 |= subst_stack_regs_pat (insn, regstack,
2343 XVECEXP (PATTERN (insn), 0, i));
2346 else
2347 control_flow_insn_deleted
2348 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2351 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2352 REG_UNUSED will already have been dealt with, so just return. */
2354 if (NOTE_P (insn) || insn->deleted ())
2355 return control_flow_insn_deleted;
2357 /* If this a noreturn call, we can't insert pop insns after it.
2358 Instead, reset the stack state to empty. */
2359 if (CALL_P (insn)
2360 && find_reg_note (insn, REG_NORETURN, NULL))
2362 regstack->top = -1;
2363 CLEAR_HARD_REG_SET (regstack->reg_set);
2364 return control_flow_insn_deleted;
2367 /* If there is a REG_UNUSED note on a stack register on this insn,
2368 the indicated reg must be popped. The REG_UNUSED note is removed,
2369 since the form of the newly emitted pop insn references the reg,
2370 making it no longer `unset'. */
2372 note_link = &REG_NOTES (insn);
2373 for (note = *note_link; note; note = XEXP (note, 1))
2374 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2376 *note_link = XEXP (note, 1);
2377 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2379 else
2380 note_link = &XEXP (note, 1);
2382 return control_flow_insn_deleted;
2385 /* Change the organization of the stack so that it fits a new basic
2386 block. Some registers might have to be popped, but there can never be
2387 a register live in the new block that is not now live.
2389 Insert any needed insns before or after INSN, as indicated by
2390 WHERE. OLD is the original stack layout, and NEW is the desired
2391 form. OLD is updated to reflect the code emitted, i.e., it will be
2392 the same as NEW upon return.
2394 This function will not preserve block_end[]. But that information
2395 is no longer needed once this has executed. */
2397 static void
2398 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2399 enum emit_where where)
2401 int reg;
2402 int update_end = 0;
2403 int i;
2405 /* Stack adjustments for the first insn in a block update the
2406 current_block's stack_in instead of inserting insns directly.
2407 compensate_edges will add the necessary code later. */
2408 if (current_block
2409 && starting_stack_p
2410 && where == EMIT_BEFORE)
2412 BLOCK_INFO (current_block)->stack_in = *new_stack;
2413 starting_stack_p = false;
2414 *old = *new_stack;
2415 return;
2418 /* We will be inserting new insns "backwards". If we are to insert
2419 after INSN, find the next insn, and insert before it. */
2421 if (where == EMIT_AFTER)
2423 if (current_block && BB_END (current_block) == insn)
2424 update_end = 1;
2425 insn = NEXT_INSN (insn);
2428 /* Initialize partially dead variables. */
2429 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2430 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2431 && !TEST_HARD_REG_BIT (old->reg_set, i))
2433 old->reg[++old->top] = i;
2434 SET_HARD_REG_BIT (old->reg_set, i);
2435 emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2436 insn);
2439 /* Pop any registers that are not needed in the new block. */
2441 /* If the destination block's stack already has a specified layout
2442 and contains two or more registers, use a more intelligent algorithm
2443 to pop registers that minimizes the number of fxchs below. */
2444 if (new_stack->top > 0)
2446 bool slots[REG_STACK_SIZE];
2447 int pops[REG_STACK_SIZE];
2448 int next, dest, topsrc;
2450 /* First pass to determine the free slots. */
2451 for (reg = 0; reg <= new_stack->top; reg++)
2452 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2454 /* Second pass to allocate preferred slots. */
2455 topsrc = -1;
2456 for (reg = old->top; reg > new_stack->top; reg--)
2457 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2459 dest = -1;
2460 for (next = 0; next <= new_stack->top; next++)
2461 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2463 /* If this is a preference for the new top of stack, record
2464 the fact by remembering it's old->reg in topsrc. */
2465 if (next == new_stack->top)
2466 topsrc = reg;
2467 slots[next] = true;
2468 dest = next;
2469 break;
2471 pops[reg] = dest;
2473 else
2474 pops[reg] = reg;
2476 /* Intentionally, avoid placing the top of stack in it's correct
2477 location, if we still need to permute the stack below and we
2478 can usefully place it somewhere else. This is the case if any
2479 slot is still unallocated, in which case we should place the
2480 top of stack there. */
2481 if (topsrc != -1)
2482 for (reg = 0; reg < new_stack->top; reg++)
2483 if (!slots[reg])
2485 pops[topsrc] = reg;
2486 slots[new_stack->top] = false;
2487 slots[reg] = true;
2488 break;
2491 /* Third pass allocates remaining slots and emits pop insns. */
2492 next = new_stack->top;
2493 for (reg = old->top; reg > new_stack->top; reg--)
2495 dest = pops[reg];
2496 if (dest == -1)
2498 /* Find next free slot. */
2499 while (slots[next])
2500 next--;
2501 dest = next--;
2503 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2504 EMIT_BEFORE);
2507 else
2509 /* The following loop attempts to maximize the number of times we
2510 pop the top of the stack, as this permits the use of the faster
2511 ffreep instruction on platforms that support it. */
2512 int live, next;
2514 live = 0;
2515 for (reg = 0; reg <= old->top; reg++)
2516 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2517 live++;
2519 next = live;
2520 while (old->top >= live)
2521 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2523 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2524 next--;
2525 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2526 EMIT_BEFORE);
2528 else
2529 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2530 EMIT_BEFORE);
2533 if (new_stack->top == -2)
2535 /* If the new block has never been processed, then it can inherit
2536 the old stack order. */
2538 new_stack->top = old->top;
2539 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2541 else
2543 /* This block has been entered before, and we must match the
2544 previously selected stack order. */
2546 /* By now, the only difference should be the order of the stack,
2547 not their depth or liveliness. */
2549 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2550 gcc_assert (old->top == new_stack->top);
2552 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2553 swaps until the stack is correct.
2555 The worst case number of swaps emitted is N + 2, where N is the
2556 depth of the stack. In some cases, the reg at the top of
2557 stack may be correct, but swapped anyway in order to fix
2558 other regs. But since we never swap any other reg away from
2559 its correct slot, this algorithm will converge. */
2561 if (new_stack->top != -1)
2564 /* Swap the reg at top of stack into the position it is
2565 supposed to be in, until the correct top of stack appears. */
2567 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2569 for (reg = new_stack->top; reg >= 0; reg--)
2570 if (new_stack->reg[reg] == old->reg[old->top])
2571 break;
2573 gcc_assert (reg != -1);
2575 emit_swap_insn (insn, old,
2576 FP_MODE_REG (old->reg[reg], DFmode));
2579 /* See if any regs remain incorrect. If so, bring an
2580 incorrect reg to the top of stack, and let the while loop
2581 above fix it. */
2583 for (reg = new_stack->top; reg >= 0; reg--)
2584 if (new_stack->reg[reg] != old->reg[reg])
2586 emit_swap_insn (insn, old,
2587 FP_MODE_REG (old->reg[reg], DFmode));
2588 break;
2590 } while (reg >= 0);
2592 /* At this point there must be no differences. */
2594 for (reg = old->top; reg >= 0; reg--)
2595 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2598 if (update_end)
2599 BB_END (current_block) = PREV_INSN (insn);
2602 /* Print stack configuration. */
2604 static void
2605 print_stack (FILE *file, stack_ptr s)
2607 if (! file)
2608 return;
2610 if (s->top == -2)
2611 fprintf (file, "uninitialized\n");
2612 else if (s->top == -1)
2613 fprintf (file, "empty\n");
2614 else
2616 int i;
2617 fputs ("[ ", file);
2618 for (i = 0; i <= s->top; ++i)
2619 fprintf (file, "%d ", s->reg[i]);
2620 fputs ("]\n", file);
2624 /* This function was doing life analysis. We now let the regular live
2625 code do it's job, so we only need to check some extra invariants
2626 that reg-stack expects. Primary among these being that all registers
2627 are initialized before use.
2629 The function returns true when code was emitted to CFG edges and
2630 commit_edge_insertions needs to be called. */
2632 static int
2633 convert_regs_entry (void)
2635 int inserted = 0;
2636 edge e;
2637 edge_iterator ei;
2639 /* Load something into each stack register live at function entry.
2640 Such live registers can be caused by uninitialized variables or
2641 functions not returning values on all paths. In order to keep
2642 the push/pop code happy, and to not scrog the register stack, we
2643 must put something in these registers. Use a QNaN.
2645 Note that we are inserting converted code here. This code is
2646 never seen by the convert_regs pass. */
2648 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2650 basic_block block = e->dest;
2651 block_info bi = BLOCK_INFO (block);
2652 int reg, top = -1;
2654 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2655 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2657 rtx init;
2659 bi->stack_in.reg[++top] = reg;
2661 init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2662 not_a_num);
2663 insert_insn_on_edge (init, e);
2664 inserted = 1;
2667 bi->stack_in.top = top;
2670 return inserted;
2673 /* Construct the desired stack for function exit. This will either
2674 be `empty', or the function return value at top-of-stack. */
2676 static void
2677 convert_regs_exit (void)
2679 int value_reg_low, value_reg_high;
2680 stack_ptr output_stack;
2681 rtx retvalue;
2683 retvalue = stack_result (current_function_decl);
2684 value_reg_low = value_reg_high = -1;
2685 if (retvalue)
2687 value_reg_low = REGNO (retvalue);
2688 value_reg_high = END_REGNO (retvalue) - 1;
2691 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2692 if (value_reg_low == -1)
2693 output_stack->top = -1;
2694 else
2696 int reg;
2698 output_stack->top = value_reg_high - value_reg_low;
2699 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2701 output_stack->reg[value_reg_high - reg] = reg;
2702 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2707 /* Copy the stack info from the end of edge E's source block to the
2708 start of E's destination block. */
2710 static void
2711 propagate_stack (edge e)
2713 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2714 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2715 int reg;
2717 /* Preserve the order of the original stack, but check whether
2718 any pops are needed. */
2719 dest_stack->top = -1;
2720 for (reg = 0; reg <= src_stack->top; ++reg)
2721 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2722 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2724 /* Push in any partially dead values. */
2725 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2726 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2727 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2728 dest_stack->reg[++dest_stack->top] = reg;
2732 /* Adjust the stack of edge E's source block on exit to match the stack
2733 of it's target block upon input. The stack layouts of both blocks
2734 should have been defined by now. */
2736 static bool
2737 compensate_edge (edge e)
2739 basic_block source = e->src, target = e->dest;
2740 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2741 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2742 struct stack_def regstack;
2743 int reg;
2745 if (dump_file)
2746 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2748 gcc_assert (target_stack->top != -2);
2750 /* Check whether stacks are identical. */
2751 if (target_stack->top == source_stack->top)
2753 for (reg = target_stack->top; reg >= 0; --reg)
2754 if (target_stack->reg[reg] != source_stack->reg[reg])
2755 break;
2757 if (reg == -1)
2759 if (dump_file)
2760 fprintf (dump_file, "no changes needed\n");
2761 return false;
2765 if (dump_file)
2767 fprintf (dump_file, "correcting stack to ");
2768 print_stack (dump_file, target_stack);
2771 /* Abnormal calls may appear to have values live in st(0), but the
2772 abnormal return path will not have actually loaded the values. */
2773 if (e->flags & EDGE_ABNORMAL_CALL)
2775 /* Assert that the lifetimes are as we expect -- one value
2776 live at st(0) on the end of the source block, and no
2777 values live at the beginning of the destination block.
2778 For complex return values, we may have st(1) live as well. */
2779 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2780 gcc_assert (target_stack->top == -1);
2781 return false;
2784 /* Handle non-call EH edges specially. The normal return path have
2785 values in registers. These will be popped en masse by the unwind
2786 library. */
2787 if (e->flags & EDGE_EH)
2789 gcc_assert (target_stack->top == -1);
2790 return false;
2793 /* We don't support abnormal edges. Global takes care to
2794 avoid any live register across them, so we should never
2795 have to insert instructions on such edges. */
2796 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2798 /* Make a copy of source_stack as change_stack is destructive. */
2799 regstack = *source_stack;
2801 /* It is better to output directly to the end of the block
2802 instead of to the edge, because emit_swap can do minimal
2803 insn scheduling. We can do this when there is only one
2804 edge out, and it is not abnormal. */
2805 if (EDGE_COUNT (source->succs) == 1)
2807 current_block = source;
2808 change_stack (BB_END (source), &regstack, target_stack,
2809 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2811 else
2813 rtx_insn *seq;
2814 rtx_note *after;
2816 current_block = NULL;
2817 start_sequence ();
2819 /* ??? change_stack needs some point to emit insns after. */
2820 after = emit_note (NOTE_INSN_DELETED);
2822 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2824 seq = get_insns ();
2825 end_sequence ();
2827 insert_insn_on_edge (seq, e);
2828 return true;
2830 return false;
2833 /* Traverse all non-entry edges in the CFG, and emit the necessary
2834 edge compensation code to change the stack from stack_out of the
2835 source block to the stack_in of the destination block. */
2837 static bool
2838 compensate_edges (void)
2840 bool inserted = false;
2841 basic_block bb;
2843 starting_stack_p = false;
2845 FOR_EACH_BB_FN (bb, cfun)
2846 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2848 edge e;
2849 edge_iterator ei;
2851 FOR_EACH_EDGE (e, ei, bb->succs)
2852 inserted |= compensate_edge (e);
2854 return inserted;
2857 /* Select the better of two edges E1 and E2 to use to determine the
2858 stack layout for their shared destination basic block. This is
2859 typically the more frequently executed. The edge E1 may be NULL
2860 (in which case E2 is returned), but E2 is always non-NULL. */
2862 static edge
2863 better_edge (edge e1, edge e2)
2865 if (!e1)
2866 return e2;
2868 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2869 return e1;
2870 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2871 return e2;
2873 if (e1->count > e2->count)
2874 return e1;
2875 if (e1->count < e2->count)
2876 return e2;
2878 /* Prefer critical edges to minimize inserting compensation code on
2879 critical edges. */
2881 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2882 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2884 /* Avoid non-deterministic behavior. */
2885 return (e1->src->index < e2->src->index) ? e1 : e2;
2888 /* Convert stack register references in one block. Return true if the CFG
2889 has been modified in the process. */
2891 static bool
2892 convert_regs_1 (basic_block block)
2894 struct stack_def regstack;
2895 block_info bi = BLOCK_INFO (block);
2896 int reg;
2897 rtx_insn *insn, *next;
2898 bool control_flow_insn_deleted = false;
2899 bool cfg_altered = false;
2900 int debug_insns_with_starting_stack = 0;
2902 any_malformed_asm = false;
2904 /* Choose an initial stack layout, if one hasn't already been chosen. */
2905 if (bi->stack_in.top == -2)
2907 edge e, beste = NULL;
2908 edge_iterator ei;
2910 /* Select the best incoming edge (typically the most frequent) to
2911 use as a template for this basic block. */
2912 FOR_EACH_EDGE (e, ei, block->preds)
2913 if (BLOCK_INFO (e->src)->done)
2914 beste = better_edge (beste, e);
2916 if (beste)
2917 propagate_stack (beste);
2918 else
2920 /* No predecessors. Create an arbitrary input stack. */
2921 bi->stack_in.top = -1;
2922 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2923 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2924 bi->stack_in.reg[++bi->stack_in.top] = reg;
2928 if (dump_file)
2930 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2931 print_stack (dump_file, &bi->stack_in);
2934 /* Process all insns in this block. Keep track of NEXT so that we
2935 don't process insns emitted while substituting in INSN. */
2936 current_block = block;
2937 next = BB_HEAD (block);
2938 regstack = bi->stack_in;
2939 starting_stack_p = true;
2943 insn = next;
2944 next = NEXT_INSN (insn);
2946 /* Ensure we have not missed a block boundary. */
2947 gcc_assert (next);
2948 if (insn == BB_END (block))
2949 next = NULL;
2951 /* Don't bother processing unless there is a stack reg
2952 mentioned or if it's a CALL_INSN. */
2953 if (DEBUG_INSN_P (insn))
2955 if (starting_stack_p)
2956 debug_insns_with_starting_stack++;
2957 else
2959 subst_all_stack_regs_in_debug_insn (insn, &regstack);
2961 /* Nothing must ever die at a debug insn. If something
2962 is referenced in it that becomes dead, it should have
2963 died before and the reference in the debug insn
2964 should have been removed so as to avoid changing code
2965 generation. */
2966 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2969 else if (stack_regs_mentioned (insn)
2970 || CALL_P (insn))
2972 if (dump_file)
2974 fprintf (dump_file, " insn %d input stack: ",
2975 INSN_UID (insn));
2976 print_stack (dump_file, &regstack);
2978 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2979 starting_stack_p = false;
2982 while (next);
2984 if (debug_insns_with_starting_stack)
2986 /* Since it's the first non-debug instruction that determines
2987 the stack requirements of the current basic block, we refrain
2988 from updating debug insns before it in the loop above, and
2989 fix them up here. */
2990 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2991 insn = NEXT_INSN (insn))
2993 if (!DEBUG_INSN_P (insn))
2994 continue;
2996 debug_insns_with_starting_stack--;
2997 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3001 if (dump_file)
3003 fprintf (dump_file, "Expected live registers [");
3004 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3005 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3006 fprintf (dump_file, " %d", reg);
3007 fprintf (dump_file, " ]\nOutput stack: ");
3008 print_stack (dump_file, &regstack);
3011 insn = BB_END (block);
3012 if (JUMP_P (insn))
3013 insn = PREV_INSN (insn);
3015 /* If the function is declared to return a value, but it returns one
3016 in only some cases, some registers might come live here. Emit
3017 necessary moves for them. */
3019 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3021 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3022 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3024 rtx set;
3026 if (dump_file)
3027 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3029 set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3030 insn = emit_insn_after (set, insn);
3031 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3035 /* Amongst the insns possibly deleted during the substitution process above,
3036 might have been the only trapping insn in the block. We purge the now
3037 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3038 called at the end of convert_regs. The order in which we process the
3039 blocks ensures that we never delete an already processed edge.
3041 Note that, at this point, the CFG may have been damaged by the emission
3042 of instructions after an abnormal call, which moves the basic block end
3043 (and is the reason why we call fixup_abnormal_edges later). So we must
3044 be sure that the trapping insn has been deleted before trying to purge
3045 dead edges, otherwise we risk purging valid edges.
3047 ??? We are normally supposed not to delete trapping insns, so we pretend
3048 that the insns deleted above don't actually trap. It would have been
3049 better to detect this earlier and avoid creating the EH edge in the first
3050 place, still, but we don't have enough information at that time. */
3052 if (control_flow_insn_deleted)
3053 cfg_altered |= purge_dead_edges (block);
3055 /* Something failed if the stack lives don't match. If we had malformed
3056 asms, we zapped the instruction itself, but that didn't produce the
3057 same pattern of register kills as before. */
3059 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3060 || any_malformed_asm);
3061 bi->stack_out = regstack;
3062 bi->done = true;
3064 return cfg_altered;
3067 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3068 CFG has been modified in the process. */
3070 static bool
3071 convert_regs_2 (basic_block block)
3073 basic_block *stack, *sp;
3074 bool cfg_altered = false;
3076 /* We process the blocks in a top-down manner, in a way such that one block
3077 is only processed after all its predecessors. The number of predecessors
3078 of every block has already been computed. */
3080 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3081 sp = stack;
3083 *sp++ = block;
3087 edge e;
3088 edge_iterator ei;
3090 block = *--sp;
3092 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3093 some dead EH outgoing edge after the deletion of the trapping
3094 insn inside the block. Since the number of predecessors of
3095 BLOCK's successors was computed based on the initial edge set,
3096 we check the necessity to process some of these successors
3097 before such an edge deletion may happen. However, there is
3098 a pitfall: if BLOCK is the only predecessor of a successor and
3099 the edge between them happens to be deleted, the successor
3100 becomes unreachable and should not be processed. The problem
3101 is that there is no way to preventively detect this case so we
3102 stack the successor in all cases and hand over the task of
3103 fixing up the discrepancy to convert_regs_1. */
3105 FOR_EACH_EDGE (e, ei, block->succs)
3106 if (! (e->flags & EDGE_DFS_BACK))
3108 BLOCK_INFO (e->dest)->predecessors--;
3109 if (!BLOCK_INFO (e->dest)->predecessors)
3110 *sp++ = e->dest;
3113 cfg_altered |= convert_regs_1 (block);
3115 while (sp != stack);
3117 free (stack);
3119 return cfg_altered;
3122 /* Traverse all basic blocks in a function, converting the register
3123 references in each insn from the "flat" register file that gcc uses,
3124 to the stack-like registers the 387 uses. */
3126 static void
3127 convert_regs (void)
3129 bool cfg_altered = false;
3130 int inserted;
3131 basic_block b;
3132 edge e;
3133 edge_iterator ei;
3135 /* Initialize uninitialized registers on function entry. */
3136 inserted = convert_regs_entry ();
3138 /* Construct the desired stack for function exit. */
3139 convert_regs_exit ();
3140 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3142 /* ??? Future: process inner loops first, and give them arbitrary
3143 initial stacks which emit_swap_insn can modify. This ought to
3144 prevent double fxch that often appears at the head of a loop. */
3146 /* Process all blocks reachable from all entry points. */
3147 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3148 cfg_altered |= convert_regs_2 (e->dest);
3150 /* ??? Process all unreachable blocks. Though there's no excuse
3151 for keeping these even when not optimizing. */
3152 FOR_EACH_BB_FN (b, cfun)
3154 block_info bi = BLOCK_INFO (b);
3156 if (! bi->done)
3157 cfg_altered |= convert_regs_2 (b);
3160 /* We must fix up abnormal edges before inserting compensation code
3161 because both mechanisms insert insns on edges. */
3162 inserted |= fixup_abnormal_edges ();
3164 inserted |= compensate_edges ();
3166 clear_aux_for_blocks ();
3168 if (inserted)
3169 commit_edge_insertions ();
3171 if (cfg_altered)
3172 cleanup_cfg (0);
3174 if (dump_file)
3175 fputc ('\n', dump_file);
3178 /* Convert register usage from "flat" register file usage to a "stack
3179 register file. FILE is the dump file, if used.
3181 Construct a CFG and run life analysis. Then convert each insn one
3182 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3183 code duplication created when the converter inserts pop insns on
3184 the edges. */
3186 static bool
3187 reg_to_stack (void)
3189 basic_block bb;
3190 int i;
3191 int max_uid;
3193 /* Clean up previous run. */
3194 stack_regs_mentioned_data.release ();
3196 /* See if there is something to do. Flow analysis is quite
3197 expensive so we might save some compilation time. */
3198 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3199 if (df_regs_ever_live_p (i))
3200 break;
3201 if (i > LAST_STACK_REG)
3202 return false;
3204 df_note_add_problem ();
3205 df_analyze ();
3207 mark_dfs_back_edges ();
3209 /* Set up block info for each basic block. */
3210 alloc_aux_for_blocks (sizeof (struct block_info_def));
3211 FOR_EACH_BB_FN (bb, cfun)
3213 block_info bi = BLOCK_INFO (bb);
3214 edge_iterator ei;
3215 edge e;
3216 int reg;
3218 FOR_EACH_EDGE (e, ei, bb->preds)
3219 if (!(e->flags & EDGE_DFS_BACK)
3220 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3221 bi->predecessors++;
3223 /* Set current register status at last instruction `uninitialized'. */
3224 bi->stack_in.top = -2;
3226 /* Copy live_at_end and live_at_start into temporaries. */
3227 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3229 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3230 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3231 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3232 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3236 /* Create the replacement registers up front. */
3237 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3239 machine_mode mode;
3240 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3241 mode != VOIDmode;
3242 mode = GET_MODE_WIDER_MODE (mode))
3243 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3244 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3245 mode != VOIDmode;
3246 mode = GET_MODE_WIDER_MODE (mode))
3247 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3250 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3252 /* A QNaN for initializing uninitialized variables.
3254 ??? We can't load from constant memory in PIC mode, because
3255 we're inserting these instructions before the prologue and
3256 the PIC register hasn't been set up. In that case, fall back
3257 on zero, which we can get from `fldz'. */
3259 if ((flag_pic && !TARGET_64BIT)
3260 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3261 not_a_num = CONST0_RTX (SFmode);
3262 else
3264 REAL_VALUE_TYPE r;
3266 real_nan (&r, "", 1, SFmode);
3267 not_a_num = const_double_from_real_value (r, SFmode);
3268 not_a_num = force_const_mem (SFmode, not_a_num);
3271 /* Allocate a cache for stack_regs_mentioned. */
3272 max_uid = get_max_uid ();
3273 stack_regs_mentioned_data.create (max_uid + 1);
3274 memset (stack_regs_mentioned_data.address (),
3275 0, sizeof (char) * (max_uid + 1));
3277 convert_regs ();
3279 free_aux_for_blocks ();
3280 return true;
3282 #endif /* STACK_REGS */
3284 namespace {
3286 const pass_data pass_data_stack_regs =
3288 RTL_PASS, /* type */
3289 "*stack_regs", /* name */
3290 OPTGROUP_NONE, /* optinfo_flags */
3291 TV_REG_STACK, /* tv_id */
3292 0, /* properties_required */
3293 0, /* properties_provided */
3294 0, /* properties_destroyed */
3295 0, /* todo_flags_start */
3296 0, /* todo_flags_finish */
3299 class pass_stack_regs : public rtl_opt_pass
3301 public:
3302 pass_stack_regs (gcc::context *ctxt)
3303 : rtl_opt_pass (pass_data_stack_regs, ctxt)
3306 /* opt_pass methods: */
3307 virtual bool gate (function *)
3309 #ifdef STACK_REGS
3310 return true;
3311 #else
3312 return false;
3313 #endif
3316 }; // class pass_stack_regs
3318 } // anon namespace
3320 rtl_opt_pass *
3321 make_pass_stack_regs (gcc::context *ctxt)
3323 return new pass_stack_regs (ctxt);
3326 /* Convert register usage from flat register file usage to a stack
3327 register file. */
3328 static unsigned int
3329 rest_of_handle_stack_regs (void)
3331 #ifdef STACK_REGS
3332 reg_to_stack ();
3333 regstack_completed = 1;
3334 #endif
3335 return 0;
3338 namespace {
3340 const pass_data pass_data_stack_regs_run =
3342 RTL_PASS, /* type */
3343 "stack", /* name */
3344 OPTGROUP_NONE, /* optinfo_flags */
3345 TV_REG_STACK, /* tv_id */
3346 0, /* properties_required */
3347 0, /* properties_provided */
3348 0, /* properties_destroyed */
3349 0, /* todo_flags_start */
3350 TODO_df_finish, /* todo_flags_finish */
3353 class pass_stack_regs_run : public rtl_opt_pass
3355 public:
3356 pass_stack_regs_run (gcc::context *ctxt)
3357 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3360 /* opt_pass methods: */
3361 virtual unsigned int execute (function *)
3363 return rest_of_handle_stack_regs ();
3366 }; // class pass_stack_regs_run
3368 } // anon namespace
3370 rtl_opt_pass *
3371 make_pass_stack_regs_run (gcc::context *ctxt)
3373 return new pass_stack_regs_run (ctxt);