1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Treepr
; -- ???For debugging code below
28 with Aspects
; use Aspects
;
29 with Atree
; use Atree
;
30 with Casing
; use Casing
;
31 with Checks
; use Checks
;
32 with Debug
; use Debug
;
33 with Elists
; use Elists
;
34 with Errout
; use Errout
;
35 with Exp_Ch11
; use Exp_Ch11
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Util
; use Exp_Util
;
38 with Fname
; use Fname
;
39 with Freeze
; use Freeze
;
41 with Lib
.Xref
; use Lib
.Xref
;
42 with Namet
.Sp
; use Namet
.Sp
;
43 with Nlists
; use Nlists
;
44 with Nmake
; use Nmake
;
45 with Output
; use Output
;
46 with Restrict
; use Restrict
;
47 with Rident
; use Rident
;
48 with Rtsfind
; use Rtsfind
;
50 with Sem_Aux
; use Sem_Aux
;
51 with Sem_Attr
; use Sem_Attr
;
52 with Sem_Ch6
; use Sem_Ch6
;
53 with Sem_Ch8
; use Sem_Ch8
;
54 with Sem_Disp
; use Sem_Disp
;
55 with Sem_Eval
; use Sem_Eval
;
56 with Sem_Prag
; use Sem_Prag
;
57 with Sem_Res
; use Sem_Res
;
58 with Sem_Warn
; use Sem_Warn
;
59 with Sem_Type
; use Sem_Type
;
60 with Sinfo
; use Sinfo
;
61 with Sinput
; use Sinput
;
62 with Stand
; use Stand
;
64 with Stringt
; use Stringt
;
65 with Targparm
; use Targparm
;
66 with Tbuild
; use Tbuild
;
67 with Ttypes
; use Ttypes
;
68 with Uname
; use Uname
;
70 with GNAT
.HTable
; use GNAT
.HTable
;
72 package body Sem_Util
is
74 ----------------------------------------
75 -- Global Variables for New_Copy_Tree --
76 ----------------------------------------
78 -- These global variables are used by New_Copy_Tree. See description of the
79 -- body of this subprogram for details. Global variables can be safely used
80 -- by New_Copy_Tree, since there is no case of a recursive call from the
81 -- processing inside New_Copy_Tree.
83 NCT_Hash_Threshold
: constant := 20;
84 -- If there are more than this number of pairs of entries in the map, then
85 -- Hash_Tables_Used will be set, and the hash tables will be initialized
86 -- and used for the searches.
88 NCT_Hash_Tables_Used
: Boolean := False;
89 -- Set to True if hash tables are in use
91 NCT_Table_Entries
: Nat
:= 0;
92 -- Count entries in table to see if threshold is reached
94 NCT_Hash_Table_Setup
: Boolean := False;
95 -- Set to True if hash table contains data. We set this True if we setup
96 -- the hash table with data, and leave it set permanently from then on,
97 -- this is a signal that second and subsequent users of the hash table
98 -- must clear the old entries before reuse.
100 subtype NCT_Header_Num
is Int
range 0 .. 511;
101 -- Defines range of headers in hash tables (512 headers)
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
107 function Build_Component_Subtype
110 T
: Entity_Id
) return Node_Id
;
111 -- This function builds the subtype for Build_Actual_Subtype_Of_Component
112 -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
113 -- Loc is the source location, T is the original subtype.
115 function Has_Enabled_Property
116 (Item_Id
: Entity_Id
;
117 Property
: Name_Id
) return Boolean;
118 -- Subsidiary to routines Async_xxx_Enabled and Effective_xxx_Enabled.
119 -- Determine whether an abstract state or a variable denoted by entity
120 -- Item_Id has enabled property Property.
122 function Has_Null_Extension
(T
: Entity_Id
) return Boolean;
123 -- T is a derived tagged type. Check whether the type extension is null.
124 -- If the parent type is fully initialized, T can be treated as such.
126 function Is_Fully_Initialized_Variant
(Typ
: Entity_Id
) return Boolean;
127 -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
128 -- with discriminants whose default values are static, examine only the
129 -- components in the selected variant to determine whether all of them
132 ------------------------------
133 -- Abstract_Interface_List --
134 ------------------------------
136 function Abstract_Interface_List
(Typ
: Entity_Id
) return List_Id
is
140 if Is_Concurrent_Type
(Typ
) then
142 -- If we are dealing with a synchronized subtype, go to the base
143 -- type, whose declaration has the interface list.
145 -- Shouldn't this be Declaration_Node???
147 Nod
:= Parent
(Base_Type
(Typ
));
149 if Nkind
(Nod
) = N_Full_Type_Declaration
then
153 elsif Ekind
(Typ
) = E_Record_Type_With_Private
then
154 if Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
then
155 Nod
:= Type_Definition
(Parent
(Typ
));
157 elsif Nkind
(Parent
(Typ
)) = N_Private_Type_Declaration
then
158 if Present
(Full_View
(Typ
))
160 Nkind
(Parent
(Full_View
(Typ
))) = N_Full_Type_Declaration
162 Nod
:= Type_Definition
(Parent
(Full_View
(Typ
)));
164 -- If the full-view is not available we cannot do anything else
165 -- here (the source has errors).
171 -- Support for generic formals with interfaces is still missing ???
173 elsif Nkind
(Parent
(Typ
)) = N_Formal_Type_Declaration
then
178 (Nkind
(Parent
(Typ
)) = N_Private_Extension_Declaration
);
182 elsif Ekind
(Typ
) = E_Record_Subtype
then
183 Nod
:= Type_Definition
(Parent
(Etype
(Typ
)));
185 elsif Ekind
(Typ
) = E_Record_Subtype_With_Private
then
187 -- Recurse, because parent may still be a private extension. Also
188 -- note that the full view of the subtype or the full view of its
189 -- base type may (both) be unavailable.
191 return Abstract_Interface_List
(Etype
(Typ
));
193 else pragma Assert
((Ekind
(Typ
)) = E_Record_Type
);
194 if Nkind
(Parent
(Typ
)) = N_Formal_Type_Declaration
then
195 Nod
:= Formal_Type_Definition
(Parent
(Typ
));
197 Nod
:= Type_Definition
(Parent
(Typ
));
201 return Interface_List
(Nod
);
202 end Abstract_Interface_List
;
204 --------------------------------
205 -- Add_Access_Type_To_Process --
206 --------------------------------
208 procedure Add_Access_Type_To_Process
(E
: Entity_Id
; A
: Entity_Id
) is
212 Ensure_Freeze_Node
(E
);
213 L
:= Access_Types_To_Process
(Freeze_Node
(E
));
217 Set_Access_Types_To_Process
(Freeze_Node
(E
), L
);
221 end Add_Access_Type_To_Process
;
223 --------------------------
224 -- Add_Block_Identifier --
225 --------------------------
227 procedure Add_Block_Identifier
(N
: Node_Id
; Id
: out Entity_Id
) is
228 Loc
: constant Source_Ptr
:= Sloc
(N
);
231 pragma Assert
(Nkind
(N
) = N_Block_Statement
);
233 -- The block already has a label, return its entity
235 if Present
(Identifier
(N
)) then
236 Id
:= Entity
(Identifier
(N
));
238 -- Create a new block label and set its attributes
241 Id
:= New_Internal_Entity
(E_Block
, Current_Scope
, Loc
, 'B');
242 Set_Etype
(Id
, Standard_Void_Type
);
245 Set_Identifier
(N
, New_Occurrence_Of
(Id
, Loc
));
246 Set_Block_Node
(Id
, Identifier
(N
));
248 end Add_Block_Identifier
;
250 ----------------------------
251 -- Add_Global_Declaration --
252 ----------------------------
254 procedure Add_Global_Declaration
(N
: Node_Id
) is
255 Aux_Node
: constant Node_Id
:= Aux_Decls_Node
(Cunit
(Current_Sem_Unit
));
258 if No
(Declarations
(Aux_Node
)) then
259 Set_Declarations
(Aux_Node
, New_List
);
262 Append_To
(Declarations
(Aux_Node
), N
);
264 end Add_Global_Declaration
;
266 --------------------------------
267 -- Address_Integer_Convert_OK --
268 --------------------------------
270 function Address_Integer_Convert_OK
(T1
, T2
: Entity_Id
) return Boolean is
272 if Allow_Integer_Address
273 and then ((Is_Descendant_Of_Address
(T1
)
274 and then Is_Private_Type
(T1
)
275 and then Is_Integer_Type
(T2
))
277 (Is_Descendant_Of_Address
(T2
)
278 and then Is_Private_Type
(T2
)
279 and then Is_Integer_Type
(T1
)))
285 end Address_Integer_Convert_OK
;
291 function Address_Value
(N
: Node_Id
) return Node_Id
is
296 -- For constant, get constant expression
298 if Is_Entity_Name
(Expr
)
299 and then Ekind
(Entity
(Expr
)) = E_Constant
301 Expr
:= Constant_Value
(Entity
(Expr
));
303 -- For unchecked conversion, get result to convert
305 elsif Nkind
(Expr
) = N_Unchecked_Type_Conversion
then
306 Expr
:= Expression
(Expr
);
308 -- For (common case) of To_Address call, get argument
310 elsif Nkind
(Expr
) = N_Function_Call
311 and then Is_Entity_Name
(Name
(Expr
))
312 and then Is_RTE
(Entity
(Name
(Expr
)), RE_To_Address
)
314 Expr
:= First
(Parameter_Associations
(Expr
));
316 if Nkind
(Expr
) = N_Parameter_Association
then
317 Expr
:= Explicit_Actual_Parameter
(Expr
);
320 -- We finally have the real expression
334 -- For now, just 8/16/32/64
336 function Addressable
(V
: Uint
) return Boolean is
338 return V
= Uint_8
or else
344 function Addressable
(V
: Int
) return Boolean is
352 ---------------------------------
353 -- Aggregate_Constraint_Checks --
354 ---------------------------------
356 procedure Aggregate_Constraint_Checks
358 Check_Typ
: Entity_Id
)
360 Exp_Typ
: constant Entity_Id
:= Etype
(Exp
);
363 if Raises_Constraint_Error
(Exp
) then
367 -- Ada 2005 (AI-230): Generate a conversion to an anonymous access
368 -- component's type to force the appropriate accessibility checks.
370 -- Ada 2005 (AI-231): Generate conversion to the null-excluding type to
371 -- force the corresponding run-time check
373 if Is_Access_Type
(Check_Typ
)
374 and then Is_Local_Anonymous_Access
(Check_Typ
)
376 Rewrite
(Exp
, Convert_To
(Check_Typ
, Relocate_Node
(Exp
)));
377 Analyze_And_Resolve
(Exp
, Check_Typ
);
378 Check_Unset_Reference
(Exp
);
381 -- What follows is really expansion activity, so check that expansion
382 -- is on and is allowed. In GNATprove mode, we also want check flags to
383 -- be added in the tree, so that the formal verification can rely on
384 -- those to be present. In GNATprove mode for formal verification, some
385 -- treatment typically only done during expansion needs to be performed
386 -- on the tree, but it should not be applied inside generics. Otherwise,
387 -- this breaks the name resolution mechanism for generic instances.
389 if not Expander_Active
390 and (Inside_A_Generic
or not Full_Analysis
or not GNATprove_Mode
)
395 if Is_Access_Type
(Check_Typ
)
396 and then Can_Never_Be_Null
(Check_Typ
)
397 and then not Can_Never_Be_Null
(Exp_Typ
)
399 Install_Null_Excluding_Check
(Exp
);
402 -- First check if we have to insert discriminant checks
404 if Has_Discriminants
(Exp_Typ
) then
405 Apply_Discriminant_Check
(Exp
, Check_Typ
);
407 -- Next emit length checks for array aggregates
409 elsif Is_Array_Type
(Exp_Typ
) then
410 Apply_Length_Check
(Exp
, Check_Typ
);
412 -- Finally emit scalar and string checks. If we are dealing with a
413 -- scalar literal we need to check by hand because the Etype of
414 -- literals is not necessarily correct.
416 elsif Is_Scalar_Type
(Exp_Typ
)
417 and then Compile_Time_Known_Value
(Exp
)
419 if Is_Out_Of_Range
(Exp
, Base_Type
(Check_Typ
)) then
420 Apply_Compile_Time_Constraint_Error
421 (Exp
, "value not in range of}??", CE_Range_Check_Failed
,
422 Ent
=> Base_Type
(Check_Typ
),
423 Typ
=> Base_Type
(Check_Typ
));
425 elsif Is_Out_Of_Range
(Exp
, Check_Typ
) then
426 Apply_Compile_Time_Constraint_Error
427 (Exp
, "value not in range of}??", CE_Range_Check_Failed
,
431 elsif not Range_Checks_Suppressed
(Check_Typ
) then
432 Apply_Scalar_Range_Check
(Exp
, Check_Typ
);
435 -- Verify that target type is also scalar, to prevent view anomalies
436 -- in instantiations.
438 elsif (Is_Scalar_Type
(Exp_Typ
)
439 or else Nkind
(Exp
) = N_String_Literal
)
440 and then Is_Scalar_Type
(Check_Typ
)
441 and then Exp_Typ
/= Check_Typ
443 if Is_Entity_Name
(Exp
)
444 and then Ekind
(Entity
(Exp
)) = E_Constant
446 -- If expression is a constant, it is worthwhile checking whether
447 -- it is a bound of the type.
449 if (Is_Entity_Name
(Type_Low_Bound
(Check_Typ
))
450 and then Entity
(Exp
) = Entity
(Type_Low_Bound
(Check_Typ
)))
452 (Is_Entity_Name
(Type_High_Bound
(Check_Typ
))
453 and then Entity
(Exp
) = Entity
(Type_High_Bound
(Check_Typ
)))
458 Rewrite
(Exp
, Convert_To
(Check_Typ
, Relocate_Node
(Exp
)));
459 Analyze_And_Resolve
(Exp
, Check_Typ
);
460 Check_Unset_Reference
(Exp
);
463 -- Could use a comment on this case ???
466 Rewrite
(Exp
, Convert_To
(Check_Typ
, Relocate_Node
(Exp
)));
467 Analyze_And_Resolve
(Exp
, Check_Typ
);
468 Check_Unset_Reference
(Exp
);
472 end Aggregate_Constraint_Checks
;
474 -----------------------
475 -- Alignment_In_Bits --
476 -----------------------
478 function Alignment_In_Bits
(E
: Entity_Id
) return Uint
is
480 return Alignment
(E
) * System_Storage_Unit
;
481 end Alignment_In_Bits
;
483 --------------------------------------
484 -- All_Composite_Constraints_Static --
485 --------------------------------------
487 function All_Composite_Constraints_Static
488 (Constr
: Node_Id
) return Boolean
491 if No
(Constr
) or else Error_Posted
(Constr
) then
495 case Nkind
(Constr
) is
497 if Nkind
(Constr
) in N_Has_Entity
498 and then Present
(Entity
(Constr
))
500 if Is_Type
(Entity
(Constr
)) then
502 not Is_Discrete_Type
(Entity
(Constr
))
503 or else Is_OK_Static_Subtype
(Entity
(Constr
));
506 elsif Nkind
(Constr
) = N_Range
then
508 Is_OK_Static_Expression
(Low_Bound
(Constr
))
510 Is_OK_Static_Expression
(High_Bound
(Constr
));
512 elsif Nkind
(Constr
) = N_Attribute_Reference
513 and then Attribute_Name
(Constr
) = Name_Range
516 Is_OK_Static_Expression
517 (Type_Low_Bound
(Etype
(Prefix
(Constr
))))
519 Is_OK_Static_Expression
520 (Type_High_Bound
(Etype
(Prefix
(Constr
))));
524 not Present
(Etype
(Constr
)) -- previous error
525 or else not Is_Discrete_Type
(Etype
(Constr
))
526 or else Is_OK_Static_Expression
(Constr
);
528 when N_Discriminant_Association
=>
529 return All_Composite_Constraints_Static
(Expression
(Constr
));
531 when N_Range_Constraint
=>
533 All_Composite_Constraints_Static
(Range_Expression
(Constr
));
535 when N_Index_Or_Discriminant_Constraint
=>
537 One_Cstr
: Entity_Id
;
539 One_Cstr
:= First
(Constraints
(Constr
));
540 while Present
(One_Cstr
) loop
541 if not All_Composite_Constraints_Static
(One_Cstr
) then
551 when N_Subtype_Indication
=>
553 All_Composite_Constraints_Static
(Subtype_Mark
(Constr
))
555 All_Composite_Constraints_Static
(Constraint
(Constr
));
560 end All_Composite_Constraints_Static
;
562 ---------------------------------
563 -- Append_Inherited_Subprogram --
564 ---------------------------------
566 procedure Append_Inherited_Subprogram
(S
: Entity_Id
) is
567 Par
: constant Entity_Id
:= Alias
(S
);
568 -- The parent subprogram
570 Scop
: constant Entity_Id
:= Scope
(Par
);
571 -- The scope of definition of the parent subprogram
573 Typ
: constant Entity_Id
:= Defining_Entity
(Parent
(S
));
574 -- The derived type of which S is a primitive operation
580 if Ekind
(Current_Scope
) = E_Package
581 and then In_Private_Part
(Current_Scope
)
582 and then Has_Private_Declaration
(Typ
)
583 and then Is_Tagged_Type
(Typ
)
584 and then Scop
= Current_Scope
586 -- The inherited operation is available at the earliest place after
587 -- the derived type declaration ( RM 7.3.1 (6/1)). This is only
588 -- relevant for type extensions. If the parent operation appears
589 -- after the type extension, the operation is not visible.
592 (Visible_Declarations
593 (Package_Specification
(Current_Scope
)));
594 while Present
(Decl
) loop
595 if Nkind
(Decl
) = N_Private_Extension_Declaration
596 and then Defining_Entity
(Decl
) = Typ
598 if Sloc
(Decl
) > Sloc
(Par
) then
599 Next_E
:= Next_Entity
(Par
);
600 Set_Next_Entity
(Par
, S
);
601 Set_Next_Entity
(S
, Next_E
);
613 -- If partial view is not a type extension, or it appears before the
614 -- subprogram declaration, insert normally at end of entity list.
616 Append_Entity
(S
, Current_Scope
);
617 end Append_Inherited_Subprogram
;
619 -----------------------------------------
620 -- Apply_Compile_Time_Constraint_Error --
621 -----------------------------------------
623 procedure Apply_Compile_Time_Constraint_Error
626 Reason
: RT_Exception_Code
;
627 Ent
: Entity_Id
:= Empty
;
628 Typ
: Entity_Id
:= Empty
;
629 Loc
: Source_Ptr
:= No_Location
;
630 Rep
: Boolean := True;
631 Warn
: Boolean := False)
633 Stat
: constant Boolean := Is_Static_Expression
(N
);
634 R_Stat
: constant Node_Id
:=
635 Make_Raise_Constraint_Error
(Sloc
(N
), Reason
=> Reason
);
646 (Compile_Time_Constraint_Error
(N
, Msg
, Ent
, Loc
, Warn
=> Warn
));
648 -- In GNATprove mode, do not replace the node with an exception raised.
649 -- In such a case, either the call to Compile_Time_Constraint_Error
650 -- issues an error which stops analysis, or it issues a warning in
651 -- a few cases where a suitable check flag is set for GNATprove to
652 -- generate a check message.
654 if not Rep
or GNATprove_Mode
then
658 -- Now we replace the node by an N_Raise_Constraint_Error node
659 -- This does not need reanalyzing, so set it as analyzed now.
662 Set_Analyzed
(N
, True);
665 Set_Raises_Constraint_Error
(N
);
667 -- Now deal with possible local raise handling
669 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
671 -- If the original expression was marked as static, the result is
672 -- still marked as static, but the Raises_Constraint_Error flag is
673 -- always set so that further static evaluation is not attempted.
676 Set_Is_Static_Expression
(N
);
678 end Apply_Compile_Time_Constraint_Error
;
680 ---------------------------
681 -- Async_Readers_Enabled --
682 ---------------------------
684 function Async_Readers_Enabled
(Id
: Entity_Id
) return Boolean is
686 return Has_Enabled_Property
(Id
, Name_Async_Readers
);
687 end Async_Readers_Enabled
;
689 ---------------------------
690 -- Async_Writers_Enabled --
691 ---------------------------
693 function Async_Writers_Enabled
(Id
: Entity_Id
) return Boolean is
695 return Has_Enabled_Property
(Id
, Name_Async_Writers
);
696 end Async_Writers_Enabled
;
698 --------------------------------------
699 -- Available_Full_View_Of_Component --
700 --------------------------------------
702 function Available_Full_View_Of_Component
(T
: Entity_Id
) return Boolean is
703 ST
: constant Entity_Id
:= Scope
(T
);
704 SCT
: constant Entity_Id
:= Scope
(Component_Type
(T
));
706 return In_Open_Scopes
(ST
)
707 and then In_Open_Scopes
(SCT
)
708 and then Scope_Depth
(ST
) >= Scope_Depth
(SCT
);
709 end Available_Full_View_Of_Component
;
715 procedure Bad_Attribute
718 Warn
: Boolean := False)
721 Error_Msg_Warn
:= Warn
;
722 Error_Msg_N
("unrecognized attribute&<<", N
);
724 -- Check for possible misspelling
726 Error_Msg_Name_1
:= First_Attribute_Name
;
727 while Error_Msg_Name_1
<= Last_Attribute_Name
loop
728 if Is_Bad_Spelling_Of
(Nam
, Error_Msg_Name_1
) then
729 Error_Msg_N
-- CODEFIX
730 ("\possible misspelling of %<<", N
);
734 Error_Msg_Name_1
:= Error_Msg_Name_1
+ 1;
738 --------------------------------
739 -- Bad_Predicated_Subtype_Use --
740 --------------------------------
742 procedure Bad_Predicated_Subtype_Use
746 Suggest_Static
: Boolean := False)
751 -- Avoid cascaded errors
753 if Error_Posted
(N
) then
757 if Inside_A_Generic
then
758 Gen
:= Current_Scope
;
759 while Present
(Gen
) and then Ekind
(Gen
) /= E_Generic_Package
loop
767 if Is_Generic_Formal
(Typ
) and then Is_Discrete_Type
(Typ
) then
768 Set_No_Predicate_On_Actual
(Typ
);
771 elsif Has_Predicates
(Typ
) then
772 if Is_Generic_Actual_Type
(Typ
) then
774 -- The restriction on loop parameters is only that the type
775 -- should have no dynamic predicates.
777 if Nkind
(Parent
(N
)) = N_Loop_Parameter_Specification
778 and then not Has_Dynamic_Predicate_Aspect
(Typ
)
779 and then Is_OK_Static_Subtype
(Typ
)
784 Gen
:= Current_Scope
;
785 while not Is_Generic_Instance
(Gen
) loop
789 pragma Assert
(Present
(Gen
));
791 if Ekind
(Gen
) = E_Package
and then In_Package_Body
(Gen
) then
792 Error_Msg_Warn
:= SPARK_Mode
/= On
;
793 Error_Msg_FE
(Msg
& "<<", N
, Typ
);
794 Error_Msg_F
("\Program_Error [<<", N
);
797 Make_Raise_Program_Error
(Sloc
(N
),
798 Reason
=> PE_Bad_Predicated_Generic_Type
));
801 Error_Msg_FE
(Msg
& "<<", N
, Typ
);
805 Error_Msg_FE
(Msg
, N
, Typ
);
808 -- Emit an optional suggestion on how to remedy the error if the
809 -- context warrants it.
811 if Suggest_Static
and then Has_Static_Predicate
(Typ
) then
812 Error_Msg_FE
("\predicate of & should be marked static", N
, Typ
);
815 end Bad_Predicated_Subtype_Use
;
817 -----------------------------------------
818 -- Bad_Unordered_Enumeration_Reference --
819 -----------------------------------------
821 function Bad_Unordered_Enumeration_Reference
823 T
: Entity_Id
) return Boolean
826 return Is_Enumeration_Type
(T
)
827 and then Warn_On_Unordered_Enumeration_Type
828 and then not Is_Generic_Type
(T
)
829 and then Comes_From_Source
(N
)
830 and then not Has_Pragma_Ordered
(T
)
831 and then not In_Same_Extended_Unit
(N
, T
);
832 end Bad_Unordered_Enumeration_Reference
;
834 --------------------------
835 -- Build_Actual_Subtype --
836 --------------------------
838 function Build_Actual_Subtype
840 N
: Node_Or_Entity_Id
) return Node_Id
843 -- Normally Sloc (N), but may point to corresponding body in some cases
845 Constraints
: List_Id
;
851 Disc_Type
: Entity_Id
;
857 if Nkind
(N
) = N_Defining_Identifier
then
858 Obj
:= New_Occurrence_Of
(N
, Loc
);
860 -- If this is a formal parameter of a subprogram declaration, and
861 -- we are compiling the body, we want the declaration for the
862 -- actual subtype to carry the source position of the body, to
863 -- prevent anomalies in gdb when stepping through the code.
865 if Is_Formal
(N
) then
867 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Scope
(N
));
869 if Nkind
(Decl
) = N_Subprogram_Declaration
870 and then Present
(Corresponding_Body
(Decl
))
872 Loc
:= Sloc
(Corresponding_Body
(Decl
));
881 if Is_Array_Type
(T
) then
882 Constraints
:= New_List
;
883 for J
in 1 .. Number_Dimensions
(T
) loop
885 -- Build an array subtype declaration with the nominal subtype and
886 -- the bounds of the actual. Add the declaration in front of the
887 -- local declarations for the subprogram, for analysis before any
888 -- reference to the formal in the body.
891 Make_Attribute_Reference
(Loc
,
893 Duplicate_Subexpr_No_Checks
(Obj
, Name_Req
=> True),
894 Attribute_Name
=> Name_First
,
895 Expressions
=> New_List
(
896 Make_Integer_Literal
(Loc
, J
)));
899 Make_Attribute_Reference
(Loc
,
901 Duplicate_Subexpr_No_Checks
(Obj
, Name_Req
=> True),
902 Attribute_Name
=> Name_Last
,
903 Expressions
=> New_List
(
904 Make_Integer_Literal
(Loc
, J
)));
906 Append
(Make_Range
(Loc
, Lo
, Hi
), Constraints
);
909 -- If the type has unknown discriminants there is no constrained
910 -- subtype to build. This is never called for a formal or for a
911 -- lhs, so returning the type is ok ???
913 elsif Has_Unknown_Discriminants
(T
) then
917 Constraints
:= New_List
;
919 -- Type T is a generic derived type, inherit the discriminants from
922 if Is_Private_Type
(T
)
923 and then No
(Full_View
(T
))
925 -- T was flagged as an error if it was declared as a formal
926 -- derived type with known discriminants. In this case there
927 -- is no need to look at the parent type since T already carries
928 -- its own discriminants.
930 and then not Error_Posted
(T
)
932 Disc_Type
:= Etype
(Base_Type
(T
));
937 Discr
:= First_Discriminant
(Disc_Type
);
938 while Present
(Discr
) loop
939 Append_To
(Constraints
,
940 Make_Selected_Component
(Loc
,
942 Duplicate_Subexpr_No_Checks
(Obj
),
943 Selector_Name
=> New_Occurrence_Of
(Discr
, Loc
)));
944 Next_Discriminant
(Discr
);
948 Subt
:= Make_Temporary
(Loc
, 'S', Related_Node
=> N
);
949 Set_Is_Internal
(Subt
);
952 Make_Subtype_Declaration
(Loc
,
953 Defining_Identifier
=> Subt
,
954 Subtype_Indication
=>
955 Make_Subtype_Indication
(Loc
,
956 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
958 Make_Index_Or_Discriminant_Constraint
(Loc
,
959 Constraints
=> Constraints
)));
961 Mark_Rewrite_Insertion
(Decl
);
963 end Build_Actual_Subtype
;
965 ---------------------------------------
966 -- Build_Actual_Subtype_Of_Component --
967 ---------------------------------------
969 function Build_Actual_Subtype_Of_Component
971 N
: Node_Id
) return Node_Id
973 Loc
: constant Source_Ptr
:= Sloc
(N
);
974 P
: constant Node_Id
:= Prefix
(N
);
977 Index_Typ
: Entity_Id
;
979 Desig_Typ
: Entity_Id
;
980 -- This is either a copy of T, or if T is an access type, then it is
981 -- the directly designated type of this access type.
983 function Build_Actual_Array_Constraint
return List_Id
;
984 -- If one or more of the bounds of the component depends on
985 -- discriminants, build actual constraint using the discriminants
988 function Build_Actual_Record_Constraint
return List_Id
;
989 -- Similar to previous one, for discriminated components constrained
990 -- by the discriminant of the enclosing object.
992 -----------------------------------
993 -- Build_Actual_Array_Constraint --
994 -----------------------------------
996 function Build_Actual_Array_Constraint
return List_Id
is
997 Constraints
: constant List_Id
:= New_List
;
1005 Indx
:= First_Index
(Desig_Typ
);
1006 while Present
(Indx
) loop
1007 Old_Lo
:= Type_Low_Bound
(Etype
(Indx
));
1008 Old_Hi
:= Type_High_Bound
(Etype
(Indx
));
1010 if Denotes_Discriminant
(Old_Lo
) then
1012 Make_Selected_Component
(Loc
,
1013 Prefix
=> New_Copy_Tree
(P
),
1014 Selector_Name
=> New_Occurrence_Of
(Entity
(Old_Lo
), Loc
));
1017 Lo
:= New_Copy_Tree
(Old_Lo
);
1019 -- The new bound will be reanalyzed in the enclosing
1020 -- declaration. For literal bounds that come from a type
1021 -- declaration, the type of the context must be imposed, so
1022 -- insure that analysis will take place. For non-universal
1023 -- types this is not strictly necessary.
1025 Set_Analyzed
(Lo
, False);
1028 if Denotes_Discriminant
(Old_Hi
) then
1030 Make_Selected_Component
(Loc
,
1031 Prefix
=> New_Copy_Tree
(P
),
1032 Selector_Name
=> New_Occurrence_Of
(Entity
(Old_Hi
), Loc
));
1035 Hi
:= New_Copy_Tree
(Old_Hi
);
1036 Set_Analyzed
(Hi
, False);
1039 Append
(Make_Range
(Loc
, Lo
, Hi
), Constraints
);
1044 end Build_Actual_Array_Constraint
;
1046 ------------------------------------
1047 -- Build_Actual_Record_Constraint --
1048 ------------------------------------
1050 function Build_Actual_Record_Constraint
return List_Id
is
1051 Constraints
: constant List_Id
:= New_List
;
1056 D
:= First_Elmt
(Discriminant_Constraint
(Desig_Typ
));
1057 while Present
(D
) loop
1058 if Denotes_Discriminant
(Node
(D
)) then
1059 D_Val
:= Make_Selected_Component
(Loc
,
1060 Prefix
=> New_Copy_Tree
(P
),
1061 Selector_Name
=> New_Occurrence_Of
(Entity
(Node
(D
)), Loc
));
1064 D_Val
:= New_Copy_Tree
(Node
(D
));
1067 Append
(D_Val
, Constraints
);
1072 end Build_Actual_Record_Constraint
;
1074 -- Start of processing for Build_Actual_Subtype_Of_Component
1077 -- Why the test for Spec_Expression mode here???
1079 if In_Spec_Expression
then
1082 -- More comments for the rest of this body would be good ???
1084 elsif Nkind
(N
) = N_Explicit_Dereference
then
1085 if Is_Composite_Type
(T
)
1086 and then not Is_Constrained
(T
)
1087 and then not (Is_Class_Wide_Type
(T
)
1088 and then Is_Constrained
(Root_Type
(T
)))
1089 and then not Has_Unknown_Discriminants
(T
)
1091 -- If the type of the dereference is already constrained, it is an
1094 if Is_Array_Type
(Etype
(N
))
1095 and then Is_Constrained
(Etype
(N
))
1099 Remove_Side_Effects
(P
);
1100 return Build_Actual_Subtype
(T
, N
);
1107 if Ekind
(T
) = E_Access_Subtype
then
1108 Desig_Typ
:= Designated_Type
(T
);
1113 if Ekind
(Desig_Typ
) = E_Array_Subtype
then
1114 Id
:= First_Index
(Desig_Typ
);
1115 while Present
(Id
) loop
1116 Index_Typ
:= Underlying_Type
(Etype
(Id
));
1118 if Denotes_Discriminant
(Type_Low_Bound
(Index_Typ
))
1120 Denotes_Discriminant
(Type_High_Bound
(Index_Typ
))
1122 Remove_Side_Effects
(P
);
1124 Build_Component_Subtype
1125 (Build_Actual_Array_Constraint
, Loc
, Base_Type
(T
));
1131 elsif Is_Composite_Type
(Desig_Typ
)
1132 and then Has_Discriminants
(Desig_Typ
)
1133 and then not Has_Unknown_Discriminants
(Desig_Typ
)
1135 if Is_Private_Type
(Desig_Typ
)
1136 and then No
(Discriminant_Constraint
(Desig_Typ
))
1138 Desig_Typ
:= Full_View
(Desig_Typ
);
1141 D
:= First_Elmt
(Discriminant_Constraint
(Desig_Typ
));
1142 while Present
(D
) loop
1143 if Denotes_Discriminant
(Node
(D
)) then
1144 Remove_Side_Effects
(P
);
1146 Build_Component_Subtype
(
1147 Build_Actual_Record_Constraint
, Loc
, Base_Type
(T
));
1154 -- If none of the above, the actual and nominal subtypes are the same
1157 end Build_Actual_Subtype_Of_Component
;
1159 -----------------------------
1160 -- Build_Component_Subtype --
1161 -----------------------------
1163 function Build_Component_Subtype
1166 T
: Entity_Id
) return Node_Id
1172 -- Unchecked_Union components do not require component subtypes
1174 if Is_Unchecked_Union
(T
) then
1178 Subt
:= Make_Temporary
(Loc
, 'S');
1179 Set_Is_Internal
(Subt
);
1182 Make_Subtype_Declaration
(Loc
,
1183 Defining_Identifier
=> Subt
,
1184 Subtype_Indication
=>
1185 Make_Subtype_Indication
(Loc
,
1186 Subtype_Mark
=> New_Occurrence_Of
(Base_Type
(T
), Loc
),
1188 Make_Index_Or_Discriminant_Constraint
(Loc
,
1189 Constraints
=> C
)));
1191 Mark_Rewrite_Insertion
(Decl
);
1193 end Build_Component_Subtype
;
1195 ---------------------------
1196 -- Build_Default_Subtype --
1197 ---------------------------
1199 function Build_Default_Subtype
1201 N
: Node_Id
) return Entity_Id
1203 Loc
: constant Source_Ptr
:= Sloc
(N
);
1207 -- The base type that is to be constrained by the defaults
1210 if not Has_Discriminants
(T
) or else Is_Constrained
(T
) then
1214 Bas
:= Base_Type
(T
);
1216 -- If T is non-private but its base type is private, this is the
1217 -- completion of a subtype declaration whose parent type is private
1218 -- (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
1219 -- are to be found in the full view of the base. Check that the private
1220 -- status of T and its base differ.
1222 if Is_Private_Type
(Bas
)
1223 and then not Is_Private_Type
(T
)
1224 and then Present
(Full_View
(Bas
))
1226 Bas
:= Full_View
(Bas
);
1229 Disc
:= First_Discriminant
(T
);
1231 if No
(Discriminant_Default_Value
(Disc
)) then
1236 Act
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1237 Constraints
: constant List_Id
:= New_List
;
1241 while Present
(Disc
) loop
1242 Append_To
(Constraints
,
1243 New_Copy_Tree
(Discriminant_Default_Value
(Disc
)));
1244 Next_Discriminant
(Disc
);
1248 Make_Subtype_Declaration
(Loc
,
1249 Defining_Identifier
=> Act
,
1250 Subtype_Indication
=>
1251 Make_Subtype_Indication
(Loc
,
1252 Subtype_Mark
=> New_Occurrence_Of
(Bas
, Loc
),
1254 Make_Index_Or_Discriminant_Constraint
(Loc
,
1255 Constraints
=> Constraints
)));
1257 Insert_Action
(N
, Decl
);
1259 -- If the context is a component declaration the subtype declaration
1260 -- will be analyzed when the enclosing type is frozen, otherwise do
1263 if Ekind
(Current_Scope
) /= E_Record_Type
then
1269 end Build_Default_Subtype
;
1271 --------------------------------------------
1272 -- Build_Discriminal_Subtype_Of_Component --
1273 --------------------------------------------
1275 function Build_Discriminal_Subtype_Of_Component
1276 (T
: Entity_Id
) return Node_Id
1278 Loc
: constant Source_Ptr
:= Sloc
(T
);
1282 function Build_Discriminal_Array_Constraint
return List_Id
;
1283 -- If one or more of the bounds of the component depends on
1284 -- discriminants, build actual constraint using the discriminants
1287 function Build_Discriminal_Record_Constraint
return List_Id
;
1288 -- Similar to previous one, for discriminated components constrained by
1289 -- the discriminant of the enclosing object.
1291 ----------------------------------------
1292 -- Build_Discriminal_Array_Constraint --
1293 ----------------------------------------
1295 function Build_Discriminal_Array_Constraint
return List_Id
is
1296 Constraints
: constant List_Id
:= New_List
;
1304 Indx
:= First_Index
(T
);
1305 while Present
(Indx
) loop
1306 Old_Lo
:= Type_Low_Bound
(Etype
(Indx
));
1307 Old_Hi
:= Type_High_Bound
(Etype
(Indx
));
1309 if Denotes_Discriminant
(Old_Lo
) then
1310 Lo
:= New_Occurrence_Of
(Discriminal
(Entity
(Old_Lo
)), Loc
);
1313 Lo
:= New_Copy_Tree
(Old_Lo
);
1316 if Denotes_Discriminant
(Old_Hi
) then
1317 Hi
:= New_Occurrence_Of
(Discriminal
(Entity
(Old_Hi
)), Loc
);
1320 Hi
:= New_Copy_Tree
(Old_Hi
);
1323 Append
(Make_Range
(Loc
, Lo
, Hi
), Constraints
);
1328 end Build_Discriminal_Array_Constraint
;
1330 -----------------------------------------
1331 -- Build_Discriminal_Record_Constraint --
1332 -----------------------------------------
1334 function Build_Discriminal_Record_Constraint
return List_Id
is
1335 Constraints
: constant List_Id
:= New_List
;
1340 D
:= First_Elmt
(Discriminant_Constraint
(T
));
1341 while Present
(D
) loop
1342 if Denotes_Discriminant
(Node
(D
)) then
1344 New_Occurrence_Of
(Discriminal
(Entity
(Node
(D
))), Loc
);
1346 D_Val
:= New_Copy_Tree
(Node
(D
));
1349 Append
(D_Val
, Constraints
);
1354 end Build_Discriminal_Record_Constraint
;
1356 -- Start of processing for Build_Discriminal_Subtype_Of_Component
1359 if Ekind
(T
) = E_Array_Subtype
then
1360 Id
:= First_Index
(T
);
1361 while Present
(Id
) loop
1362 if Denotes_Discriminant
(Type_Low_Bound
(Etype
(Id
)))
1364 Denotes_Discriminant
(Type_High_Bound
(Etype
(Id
)))
1366 return Build_Component_Subtype
1367 (Build_Discriminal_Array_Constraint
, Loc
, T
);
1373 elsif Ekind
(T
) = E_Record_Subtype
1374 and then Has_Discriminants
(T
)
1375 and then not Has_Unknown_Discriminants
(T
)
1377 D
:= First_Elmt
(Discriminant_Constraint
(T
));
1378 while Present
(D
) loop
1379 if Denotes_Discriminant
(Node
(D
)) then
1380 return Build_Component_Subtype
1381 (Build_Discriminal_Record_Constraint
, Loc
, T
);
1388 -- If none of the above, the actual and nominal subtypes are the same
1391 end Build_Discriminal_Subtype_Of_Component
;
1393 ------------------------------
1394 -- Build_Elaboration_Entity --
1395 ------------------------------
1397 procedure Build_Elaboration_Entity
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
1398 Loc
: constant Source_Ptr
:= Sloc
(N
);
1400 Elab_Ent
: Entity_Id
;
1402 procedure Set_Package_Name
(Ent
: Entity_Id
);
1403 -- Given an entity, sets the fully qualified name of the entity in
1404 -- Name_Buffer, with components separated by double underscores. This
1405 -- is a recursive routine that climbs the scope chain to Standard.
1407 ----------------------
1408 -- Set_Package_Name --
1409 ----------------------
1411 procedure Set_Package_Name
(Ent
: Entity_Id
) is
1413 if Scope
(Ent
) /= Standard_Standard
then
1414 Set_Package_Name
(Scope
(Ent
));
1417 Nam
: constant String := Get_Name_String
(Chars
(Ent
));
1419 Name_Buffer
(Name_Len
+ 1) := '_';
1420 Name_Buffer
(Name_Len
+ 2) := '_';
1421 Name_Buffer
(Name_Len
+ 3 .. Name_Len
+ Nam
'Length + 2) := Nam
;
1422 Name_Len
:= Name_Len
+ Nam
'Length + 2;
1426 Get_Name_String
(Chars
(Ent
));
1428 end Set_Package_Name
;
1430 -- Start of processing for Build_Elaboration_Entity
1433 -- Ignore call if already constructed
1435 if Present
(Elaboration_Entity
(Spec_Id
)) then
1438 -- Ignore in ASIS mode, elaboration entity is not in source and plays
1439 -- no role in analysis.
1441 elsif ASIS_Mode
then
1444 -- See if we need elaboration entity.
1446 -- We always need an elaboration entity when preserving control flow, as
1447 -- we want to remain explicit about the unit's elaboration order.
1449 elsif Opt
.Suppress_Control_Flow_Optimizations
then
1452 -- We always need an elaboration entity for the dynamic elaboration
1453 -- model, since it is needed to properly generate the PE exception for
1454 -- access before elaboration.
1456 elsif Dynamic_Elaboration_Checks
then
1459 -- For the static model, we don't need the elaboration counter if this
1460 -- unit is sure to have no elaboration code, since that means there
1461 -- is no elaboration unit to be called. Note that we can't just decide
1462 -- after the fact by looking to see whether there was elaboration code,
1463 -- because that's too late to make this decision.
1465 elsif Restriction_Active
(No_Elaboration_Code
) then
1468 -- Similarly, for the static model, we can skip the elaboration counter
1469 -- if we have the No_Multiple_Elaboration restriction, since for the
1470 -- static model, that's the only purpose of the counter (to avoid
1471 -- multiple elaboration).
1473 elsif Restriction_Active
(No_Multiple_Elaboration
) then
1477 -- Here we need the elaboration entity
1479 -- Construct name of elaboration entity as xxx_E, where xxx is the unit
1480 -- name with dots replaced by double underscore. We have to manually
1481 -- construct this name, since it will be elaborated in the outer scope,
1482 -- and thus will not have the unit name automatically prepended.
1484 Set_Package_Name
(Spec_Id
);
1485 Add_Str_To_Name_Buffer
("_E");
1487 -- Create elaboration counter
1489 Elab_Ent
:= Make_Defining_Identifier
(Loc
, Chars
=> Name_Find
);
1490 Set_Elaboration_Entity
(Spec_Id
, Elab_Ent
);
1493 Make_Object_Declaration
(Loc
,
1494 Defining_Identifier
=> Elab_Ent
,
1495 Object_Definition
=>
1496 New_Occurrence_Of
(Standard_Short_Integer
, Loc
),
1497 Expression
=> Make_Integer_Literal
(Loc
, Uint_0
));
1499 Push_Scope
(Standard_Standard
);
1500 Add_Global_Declaration
(Decl
);
1503 -- Reset True_Constant indication, since we will indeed assign a value
1504 -- to the variable in the binder main. We also kill the Current_Value
1505 -- and Last_Assignment fields for the same reason.
1507 Set_Is_True_Constant
(Elab_Ent
, False);
1508 Set_Current_Value
(Elab_Ent
, Empty
);
1509 Set_Last_Assignment
(Elab_Ent
, Empty
);
1511 -- We do not want any further qualification of the name (if we did not
1512 -- do this, we would pick up the name of the generic package in the case
1513 -- of a library level generic instantiation).
1515 Set_Has_Qualified_Name
(Elab_Ent
);
1516 Set_Has_Fully_Qualified_Name
(Elab_Ent
);
1517 end Build_Elaboration_Entity
;
1519 --------------------------------
1520 -- Build_Explicit_Dereference --
1521 --------------------------------
1523 procedure Build_Explicit_Dereference
1527 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
1532 -- An entity of a type with a reference aspect is overloaded with
1533 -- both interpretations: with and without the dereference. Now that
1534 -- the dereference is made explicit, set the type of the node properly,
1535 -- to prevent anomalies in the backend. Same if the expression is an
1536 -- overloaded function call whose return type has a reference aspect.
1538 if Is_Entity_Name
(Expr
) then
1539 Set_Etype
(Expr
, Etype
(Entity
(Expr
)));
1541 -- The designated entity will not be examined again when resolving
1542 -- the dereference, so generate a reference to it now.
1544 Generate_Reference
(Entity
(Expr
), Expr
);
1546 elsif Nkind
(Expr
) = N_Function_Call
then
1548 -- If the name of the indexing function is overloaded, locate the one
1549 -- whose return type has an implicit dereference on the desired
1550 -- discriminant, and set entity and type of function call.
1552 if Is_Overloaded
(Name
(Expr
)) then
1553 Get_First_Interp
(Name
(Expr
), I
, It
);
1555 while Present
(It
.Nam
) loop
1556 if Ekind
((It
.Typ
)) = E_Record_Type
1557 and then First_Entity
((It
.Typ
)) = Disc
1559 Set_Entity
(Name
(Expr
), It
.Nam
);
1560 Set_Etype
(Name
(Expr
), Etype
(It
.Nam
));
1564 Get_Next_Interp
(I
, It
);
1568 -- Set type of call from resolved function name.
1570 Set_Etype
(Expr
, Etype
(Name
(Expr
)));
1573 Set_Is_Overloaded
(Expr
, False);
1575 -- The expression will often be a generalized indexing that yields a
1576 -- container element that is then dereferenced, in which case the
1577 -- generalized indexing call is also non-overloaded.
1579 if Nkind
(Expr
) = N_Indexed_Component
1580 and then Present
(Generalized_Indexing
(Expr
))
1582 Set_Is_Overloaded
(Generalized_Indexing
(Expr
), False);
1586 Make_Explicit_Dereference
(Loc
,
1588 Make_Selected_Component
(Loc
,
1589 Prefix
=> Relocate_Node
(Expr
),
1590 Selector_Name
=> New_Occurrence_Of
(Disc
, Loc
))));
1591 Set_Etype
(Prefix
(Expr
), Etype
(Disc
));
1592 Set_Etype
(Expr
, Designated_Type
(Etype
(Disc
)));
1593 end Build_Explicit_Dereference
;
1595 -----------------------------------
1596 -- Cannot_Raise_Constraint_Error --
1597 -----------------------------------
1599 function Cannot_Raise_Constraint_Error
(Expr
: Node_Id
) return Boolean is
1601 if Compile_Time_Known_Value
(Expr
) then
1604 elsif Do_Range_Check
(Expr
) then
1607 elsif Raises_Constraint_Error
(Expr
) then
1611 case Nkind
(Expr
) is
1612 when N_Identifier
=>
1615 when N_Expanded_Name
=>
1618 when N_Selected_Component
=>
1619 return not Do_Discriminant_Check
(Expr
);
1621 when N_Attribute_Reference
=>
1622 if Do_Overflow_Check
(Expr
) then
1625 elsif No
(Expressions
(Expr
)) then
1633 N
:= First
(Expressions
(Expr
));
1634 while Present
(N
) loop
1635 if Cannot_Raise_Constraint_Error
(N
) then
1646 when N_Type_Conversion
=>
1647 if Do_Overflow_Check
(Expr
)
1648 or else Do_Length_Check
(Expr
)
1649 or else Do_Tag_Check
(Expr
)
1653 return Cannot_Raise_Constraint_Error
(Expression
(Expr
));
1656 when N_Unchecked_Type_Conversion
=>
1657 return Cannot_Raise_Constraint_Error
(Expression
(Expr
));
1660 if Do_Overflow_Check
(Expr
) then
1663 return Cannot_Raise_Constraint_Error
(Right_Opnd
(Expr
));
1670 if Do_Division_Check
(Expr
)
1672 Do_Overflow_Check
(Expr
)
1677 Cannot_Raise_Constraint_Error
(Left_Opnd
(Expr
))
1679 Cannot_Raise_Constraint_Error
(Right_Opnd
(Expr
));
1698 N_Op_Shift_Right_Arithmetic |
1702 if Do_Overflow_Check
(Expr
) then
1706 Cannot_Raise_Constraint_Error
(Left_Opnd
(Expr
))
1708 Cannot_Raise_Constraint_Error
(Right_Opnd
(Expr
));
1715 end Cannot_Raise_Constraint_Error
;
1717 -----------------------------
1718 -- Check_Part_Of_Reference --
1719 -----------------------------
1721 procedure Check_Part_Of_Reference
(Var_Id
: Entity_Id
; Ref
: Node_Id
) is
1722 Conc_Typ
: constant Entity_Id
:= Encapsulating_State
(Var_Id
);
1724 OK_Use
: Boolean := False;
1727 Spec_Id
: Entity_Id
;
1730 -- Traverse the parent chain looking for a suitable context for the
1731 -- reference to the concurrent constituent.
1733 Par
:= Parent
(Ref
);
1734 while Present
(Par
) loop
1735 if Nkind
(Par
) = N_Pragma
then
1736 Prag_Nam
:= Pragma_Name_Mapped
(Par
);
1738 -- A concurrent constituent is allowed to appear in pragmas
1739 -- Initial_Condition and Initializes as this is part of the
1740 -- elaboration checks for the constituent (SPARK RM 9.3).
1742 if Nam_In
(Prag_Nam
, Name_Initial_Condition
, Name_Initializes
) then
1746 -- When the reference appears within pragma Depends or Global,
1747 -- check whether the pragma applies to a single task type. Note
1748 -- that the pragma is not encapsulated by the type definition,
1749 -- but this is still a valid context.
1751 elsif Nam_In
(Prag_Nam
, Name_Depends
, Name_Global
) then
1752 Decl
:= Find_Related_Declaration_Or_Body
(Par
);
1754 if Nkind
(Decl
) = N_Object_Declaration
1755 and then Defining_Entity
(Decl
) = Conc_Typ
1762 -- The reference appears somewhere in the definition of the single
1763 -- protected/task type (SPARK RM 9.3).
1765 elsif Nkind_In
(Par
, N_Single_Protected_Declaration
,
1766 N_Single_Task_Declaration
)
1767 and then Defining_Entity
(Par
) = Conc_Typ
1772 -- The reference appears within the expanded declaration or the body
1773 -- of the single protected/task type (SPARK RM 9.3).
1775 elsif Nkind_In
(Par
, N_Protected_Body
,
1776 N_Protected_Type_Declaration
,
1778 N_Task_Type_Declaration
)
1780 Spec_Id
:= Unique_Defining_Entity
(Par
);
1782 if Present
(Anonymous_Object
(Spec_Id
))
1783 and then Anonymous_Object
(Spec_Id
) = Conc_Typ
1789 -- The reference has been relocated within an internally generated
1790 -- package or subprogram. Assume that the reference is legal as the
1791 -- real check was already performed in the original context of the
1794 elsif Nkind_In
(Par
, N_Package_Body
,
1795 N_Package_Declaration
,
1797 N_Subprogram_Declaration
)
1798 and then not Comes_From_Source
(Par
)
1803 -- The reference has been relocated to an inlined body for GNATprove.
1804 -- Assume that the reference is legal as the real check was already
1805 -- performed in the original context of the reference.
1807 elsif GNATprove_Mode
1808 and then Nkind
(Par
) = N_Subprogram_Body
1809 and then Chars
(Defining_Entity
(Par
)) = Name_uParent
1815 Par
:= Parent
(Par
);
1818 -- The reference is illegal as it appears outside the definition or
1819 -- body of the single protected/task type.
1823 ("reference to variable & cannot appear in this context",
1825 Error_Msg_Name_1
:= Chars
(Var_Id
);
1827 if Ekind
(Conc_Typ
) = E_Protected_Type
then
1829 ("\% is constituent of single protected type &", Ref
, Conc_Typ
);
1832 ("\% is constituent of single task type &", Ref
, Conc_Typ
);
1835 end Check_Part_Of_Reference
;
1837 -----------------------------------------
1838 -- Check_Dynamically_Tagged_Expression --
1839 -----------------------------------------
1841 procedure Check_Dynamically_Tagged_Expression
1844 Related_Nod
: Node_Id
)
1847 pragma Assert
(Is_Tagged_Type
(Typ
));
1849 -- In order to avoid spurious errors when analyzing the expanded code,
1850 -- this check is done only for nodes that come from source and for
1851 -- actuals of generic instantiations.
1853 if (Comes_From_Source
(Related_Nod
)
1854 or else In_Generic_Actual
(Expr
))
1855 and then (Is_Class_Wide_Type
(Etype
(Expr
))
1856 or else Is_Dynamically_Tagged
(Expr
))
1857 and then Is_Tagged_Type
(Typ
)
1858 and then not Is_Class_Wide_Type
(Typ
)
1860 Error_Msg_N
("dynamically tagged expression not allowed!", Expr
);
1862 end Check_Dynamically_Tagged_Expression
;
1864 --------------------------
1865 -- Check_Fully_Declared --
1866 --------------------------
1868 procedure Check_Fully_Declared
(T
: Entity_Id
; N
: Node_Id
) is
1870 if Ekind
(T
) = E_Incomplete_Type
then
1872 -- Ada 2005 (AI-50217): If the type is available through a limited
1873 -- with_clause, verify that its full view has been analyzed.
1875 if From_Limited_With
(T
)
1876 and then Present
(Non_Limited_View
(T
))
1877 and then Ekind
(Non_Limited_View
(T
)) /= E_Incomplete_Type
1879 -- The non-limited view is fully declared
1885 ("premature usage of incomplete}", N
, First_Subtype
(T
));
1888 -- Need comments for these tests ???
1890 elsif Has_Private_Component
(T
)
1891 and then not Is_Generic_Type
(Root_Type
(T
))
1892 and then not In_Spec_Expression
1894 -- Special case: if T is the anonymous type created for a single
1895 -- task or protected object, use the name of the source object.
1897 if Is_Concurrent_Type
(T
)
1898 and then not Comes_From_Source
(T
)
1899 and then Nkind
(N
) = N_Object_Declaration
1902 ("type of& has incomplete component",
1903 N
, Defining_Identifier
(N
));
1906 ("premature usage of incomplete}",
1907 N
, First_Subtype
(T
));
1910 end Check_Fully_Declared
;
1912 -------------------------------------------
1913 -- Check_Function_With_Address_Parameter --
1914 -------------------------------------------
1916 procedure Check_Function_With_Address_Parameter
(Subp_Id
: Entity_Id
) is
1921 F
:= First_Formal
(Subp_Id
);
1922 while Present
(F
) loop
1925 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
1929 if Is_Descendant_Of_Address
(T
) or else Is_Limited_Type
(T
) then
1930 Set_Is_Pure
(Subp_Id
, False);
1936 end Check_Function_With_Address_Parameter
;
1938 -------------------------------------
1939 -- Check_Function_Writable_Actuals --
1940 -------------------------------------
1942 procedure Check_Function_Writable_Actuals
(N
: Node_Id
) is
1943 Writable_Actuals_List
: Elist_Id
:= No_Elist
;
1944 Identifiers_List
: Elist_Id
:= No_Elist
;
1945 Aggr_Error_Node
: Node_Id
:= Empty
;
1946 Error_Node
: Node_Id
:= Empty
;
1948 procedure Collect_Identifiers
(N
: Node_Id
);
1949 -- In a single traversal of subtree N collect in Writable_Actuals_List
1950 -- all the actuals of functions with writable actuals, and in the list
1951 -- Identifiers_List collect all the identifiers that are not actuals of
1952 -- functions with writable actuals. If a writable actual is referenced
1953 -- twice as writable actual then Error_Node is set to reference its
1954 -- second occurrence, the error is reported, and the tree traversal
1957 function Get_Function_Id
(Call
: Node_Id
) return Entity_Id
;
1958 -- Return the entity associated with the function call
1960 procedure Preanalyze_Without_Errors
(N
: Node_Id
);
1961 -- Preanalyze N without reporting errors. Very dubious, you can't just
1962 -- go analyzing things more than once???
1964 -------------------------
1965 -- Collect_Identifiers --
1966 -------------------------
1968 procedure Collect_Identifiers
(N
: Node_Id
) is
1970 function Check_Node
(N
: Node_Id
) return Traverse_Result
;
1971 -- Process a single node during the tree traversal to collect the
1972 -- writable actuals of functions and all the identifiers which are
1973 -- not writable actuals of functions.
1975 function Contains
(List
: Elist_Id
; N
: Node_Id
) return Boolean;
1976 -- Returns True if List has a node whose Entity is Entity (N)
1978 -------------------------
1979 -- Check_Function_Call --
1980 -------------------------
1982 function Check_Node
(N
: Node_Id
) return Traverse_Result
is
1983 Is_Writable_Actual
: Boolean := False;
1987 if Nkind
(N
) = N_Identifier
then
1989 -- No analysis possible if the entity is not decorated
1991 if No
(Entity
(N
)) then
1994 -- Don't collect identifiers of packages, called functions, etc
1996 elsif Ekind_In
(Entity
(N
), E_Package
,
2003 -- For rewritten nodes, continue the traversal in the original
2004 -- subtree. Needed to handle aggregates in original expressions
2005 -- extracted from the tree by Remove_Side_Effects.
2007 elsif Is_Rewrite_Substitution
(N
) then
2008 Collect_Identifiers
(Original_Node
(N
));
2011 -- For now we skip aggregate discriminants, since they require
2012 -- performing the analysis in two phases to identify conflicts:
2013 -- first one analyzing discriminants and second one analyzing
2014 -- the rest of components (since at run time, discriminants are
2015 -- evaluated prior to components): too much computation cost
2016 -- to identify a corner case???
2018 elsif Nkind
(Parent
(N
)) = N_Component_Association
2019 and then Nkind_In
(Parent
(Parent
(N
)),
2021 N_Extension_Aggregate
)
2024 Choice
: constant Node_Id
:= First
(Choices
(Parent
(N
)));
2027 if Ekind
(Entity
(N
)) = E_Discriminant
then
2030 elsif Expression
(Parent
(N
)) = N
2031 and then Nkind
(Choice
) = N_Identifier
2032 and then Ekind
(Entity
(Choice
)) = E_Discriminant
2038 -- Analyze if N is a writable actual of a function
2040 elsif Nkind
(Parent
(N
)) = N_Function_Call
then
2042 Call
: constant Node_Id
:= Parent
(N
);
2047 Id
:= Get_Function_Id
(Call
);
2049 -- In case of previous error, no check is possible
2055 if Ekind_In
(Id
, E_Function
, E_Generic_Function
)
2056 and then Has_Out_Or_In_Out_Parameter
(Id
)
2058 Formal
:= First_Formal
(Id
);
2059 Actual
:= First_Actual
(Call
);
2060 while Present
(Actual
) and then Present
(Formal
) loop
2062 if Ekind_In
(Formal
, E_Out_Parameter
,
2065 Is_Writable_Actual
:= True;
2071 Next_Formal
(Formal
);
2072 Next_Actual
(Actual
);
2078 if Is_Writable_Actual
then
2080 -- Skip checking the error in non-elementary types since
2081 -- RM 6.4.1(6.15/3) is restricted to elementary types, but
2082 -- store this actual in Writable_Actuals_List since it is
2083 -- needed to perform checks on other constructs that have
2084 -- arbitrary order of evaluation (for example, aggregates).
2086 if not Is_Elementary_Type
(Etype
(N
)) then
2087 if not Contains
(Writable_Actuals_List
, N
) then
2088 Append_New_Elmt
(N
, To
=> Writable_Actuals_List
);
2091 -- Second occurrence of an elementary type writable actual
2093 elsif Contains
(Writable_Actuals_List
, N
) then
2095 -- Report the error on the second occurrence of the
2096 -- identifier. We cannot assume that N is the second
2097 -- occurrence (according to their location in the
2098 -- sources), since Traverse_Func walks through Field2
2099 -- last (see comment in the body of Traverse_Func).
2105 Elmt
:= First_Elmt
(Writable_Actuals_List
);
2106 while Present
(Elmt
)
2107 and then Entity
(Node
(Elmt
)) /= Entity
(N
)
2112 if Sloc
(N
) > Sloc
(Node
(Elmt
)) then
2115 Error_Node
:= Node
(Elmt
);
2119 ("value may be affected by call to & "
2120 & "because order of evaluation is arbitrary",
2125 -- First occurrence of a elementary type writable actual
2128 Append_New_Elmt
(N
, To
=> Writable_Actuals_List
);
2132 if Identifiers_List
= No_Elist
then
2133 Identifiers_List
:= New_Elmt_List
;
2136 Append_Unique_Elmt
(N
, Identifiers_List
);
2149 N
: Node_Id
) return Boolean
2151 pragma Assert
(Nkind
(N
) in N_Has_Entity
);
2156 if List
= No_Elist
then
2160 Elmt
:= First_Elmt
(List
);
2161 while Present
(Elmt
) loop
2162 if Entity
(Node
(Elmt
)) = Entity
(N
) then
2176 procedure Do_Traversal
is new Traverse_Proc
(Check_Node
);
2177 -- The traversal procedure
2179 -- Start of processing for Collect_Identifiers
2182 if Present
(Error_Node
) then
2186 if Nkind
(N
) in N_Subexpr
and then Is_OK_Static_Expression
(N
) then
2191 end Collect_Identifiers
;
2193 ---------------------
2194 -- Get_Function_Id --
2195 ---------------------
2197 function Get_Function_Id
(Call
: Node_Id
) return Entity_Id
is
2198 Nam
: constant Node_Id
:= Name
(Call
);
2202 if Nkind
(Nam
) = N_Explicit_Dereference
then
2204 pragma Assert
(Ekind
(Id
) = E_Subprogram_Type
);
2206 elsif Nkind
(Nam
) = N_Selected_Component
then
2207 Id
:= Entity
(Selector_Name
(Nam
));
2209 elsif Nkind
(Nam
) = N_Indexed_Component
then
2210 Id
:= Entity
(Selector_Name
(Prefix
(Nam
)));
2217 end Get_Function_Id
;
2219 -------------------------------
2220 -- Preanalyze_Without_Errors --
2221 -------------------------------
2223 procedure Preanalyze_Without_Errors
(N
: Node_Id
) is
2224 Status
: constant Boolean := Get_Ignore_Errors
;
2226 Set_Ignore_Errors
(True);
2228 Set_Ignore_Errors
(Status
);
2229 end Preanalyze_Without_Errors
;
2231 -- Start of processing for Check_Function_Writable_Actuals
2234 -- The check only applies to Ada 2012 code on which Check_Actuals has
2235 -- been set, and only to constructs that have multiple constituents
2236 -- whose order of evaluation is not specified by the language.
2238 if Ada_Version
< Ada_2012
2239 or else not Check_Actuals
(N
)
2240 or else (not (Nkind
(N
) in N_Op
)
2241 and then not (Nkind
(N
) in N_Membership_Test
)
2242 and then not Nkind_In
(N
, N_Range
,
2244 N_Extension_Aggregate
,
2245 N_Full_Type_Declaration
,
2247 N_Procedure_Call_Statement
,
2248 N_Entry_Call_Statement
))
2249 or else (Nkind
(N
) = N_Full_Type_Declaration
2250 and then not Is_Record_Type
(Defining_Identifier
(N
)))
2252 -- In addition, this check only applies to source code, not to code
2253 -- generated by constraint checks.
2255 or else not Comes_From_Source
(N
)
2260 -- If a construct C has two or more direct constituents that are names
2261 -- or expressions whose evaluation may occur in an arbitrary order, at
2262 -- least one of which contains a function call with an in out or out
2263 -- parameter, then the construct is legal only if: for each name N that
2264 -- is passed as a parameter of mode in out or out to some inner function
2265 -- call C2 (not including the construct C itself), there is no other
2266 -- name anywhere within a direct constituent of the construct C other
2267 -- than the one containing C2, that is known to refer to the same
2268 -- object (RM 6.4.1(6.17/3)).
2272 Collect_Identifiers
(Low_Bound
(N
));
2273 Collect_Identifiers
(High_Bound
(N
));
2275 when N_Op | N_Membership_Test
=>
2280 Collect_Identifiers
(Left_Opnd
(N
));
2282 if Present
(Right_Opnd
(N
)) then
2283 Collect_Identifiers
(Right_Opnd
(N
));
2286 if Nkind_In
(N
, N_In
, N_Not_In
)
2287 and then Present
(Alternatives
(N
))
2289 Expr
:= First
(Alternatives
(N
));
2290 while Present
(Expr
) loop
2291 Collect_Identifiers
(Expr
);
2298 when N_Full_Type_Declaration
=>
2300 function Get_Record_Part
(N
: Node_Id
) return Node_Id
;
2301 -- Return the record part of this record type definition
2303 function Get_Record_Part
(N
: Node_Id
) return Node_Id
is
2304 Type_Def
: constant Node_Id
:= Type_Definition
(N
);
2306 if Nkind
(Type_Def
) = N_Derived_Type_Definition
then
2307 return Record_Extension_Part
(Type_Def
);
2311 end Get_Record_Part
;
2314 Def_Id
: Entity_Id
:= Defining_Identifier
(N
);
2315 Rec
: Node_Id
:= Get_Record_Part
(N
);
2318 -- No need to perform any analysis if the record has no
2321 if No
(Rec
) or else No
(Component_List
(Rec
)) then
2325 -- Collect the identifiers starting from the deepest
2326 -- derivation. Done to report the error in the deepest
2330 if Present
(Component_List
(Rec
)) then
2331 Comp
:= First
(Component_Items
(Component_List
(Rec
)));
2332 while Present
(Comp
) loop
2333 if Nkind
(Comp
) = N_Component_Declaration
2334 and then Present
(Expression
(Comp
))
2336 Collect_Identifiers
(Expression
(Comp
));
2343 exit when No
(Underlying_Type
(Etype
(Def_Id
)))
2344 or else Base_Type
(Underlying_Type
(Etype
(Def_Id
)))
2347 Def_Id
:= Base_Type
(Underlying_Type
(Etype
(Def_Id
)));
2348 Rec
:= Get_Record_Part
(Parent
(Def_Id
));
2352 when N_Subprogram_Call |
2353 N_Entry_Call_Statement
=>
2355 Id
: constant Entity_Id
:= Get_Function_Id
(N
);
2360 Formal
:= First_Formal
(Id
);
2361 Actual
:= First_Actual
(N
);
2362 while Present
(Actual
) and then Present
(Formal
) loop
2363 if Ekind_In
(Formal
, E_Out_Parameter
,
2366 Collect_Identifiers
(Actual
);
2369 Next_Formal
(Formal
);
2370 Next_Actual
(Actual
);
2375 N_Extension_Aggregate
=>
2379 Comp_Expr
: Node_Id
;
2382 -- Handle the N_Others_Choice of array aggregates with static
2383 -- bounds. There is no need to perform this analysis in
2384 -- aggregates without static bounds since we cannot evaluate
2385 -- if the N_Others_Choice covers several elements. There is
2386 -- no need to handle the N_Others choice of record aggregates
2387 -- since at this stage it has been already expanded by
2388 -- Resolve_Record_Aggregate.
2390 if Is_Array_Type
(Etype
(N
))
2391 and then Nkind
(N
) = N_Aggregate
2392 and then Present
(Aggregate_Bounds
(N
))
2393 and then Compile_Time_Known_Bounds
(Etype
(N
))
2394 and then Expr_Value
(High_Bound
(Aggregate_Bounds
(N
)))
2396 Expr_Value
(Low_Bound
(Aggregate_Bounds
(N
)))
2399 Count_Components
: Uint
:= Uint_0
;
2400 Num_Components
: Uint
;
2401 Others_Assoc
: Node_Id
;
2402 Others_Choice
: Node_Id
:= Empty
;
2403 Others_Box_Present
: Boolean := False;
2406 -- Count positional associations
2408 if Present
(Expressions
(N
)) then
2409 Comp_Expr
:= First
(Expressions
(N
));
2410 while Present
(Comp_Expr
) loop
2411 Count_Components
:= Count_Components
+ 1;
2416 -- Count the rest of elements and locate the N_Others
2419 Assoc
:= First
(Component_Associations
(N
));
2420 while Present
(Assoc
) loop
2421 Choice
:= First
(Choices
(Assoc
));
2422 while Present
(Choice
) loop
2423 if Nkind
(Choice
) = N_Others_Choice
then
2424 Others_Assoc
:= Assoc
;
2425 Others_Choice
:= Choice
;
2426 Others_Box_Present
:= Box_Present
(Assoc
);
2428 -- Count several components
2430 elsif Nkind_In
(Choice
, N_Range
,
2431 N_Subtype_Indication
)
2432 or else (Is_Entity_Name
(Choice
)
2433 and then Is_Type
(Entity
(Choice
)))
2438 Get_Index_Bounds
(Choice
, L
, H
);
2440 (Compile_Time_Known_Value
(L
)
2441 and then Compile_Time_Known_Value
(H
));
2444 + Expr_Value
(H
) - Expr_Value
(L
) + 1;
2447 -- Count single component. No other case available
2448 -- since we are handling an aggregate with static
2452 pragma Assert
(Is_OK_Static_Expression
(Choice
)
2453 or else Nkind
(Choice
) = N_Identifier
2454 or else Nkind
(Choice
) = N_Integer_Literal
);
2456 Count_Components
:= Count_Components
+ 1;
2466 Expr_Value
(High_Bound
(Aggregate_Bounds
(N
))) -
2467 Expr_Value
(Low_Bound
(Aggregate_Bounds
(N
))) + 1;
2469 pragma Assert
(Count_Components
<= Num_Components
);
2471 -- Handle the N_Others choice if it covers several
2474 if Present
(Others_Choice
)
2475 and then (Num_Components
- Count_Components
) > 1
2477 if not Others_Box_Present
then
2479 -- At this stage, if expansion is active, the
2480 -- expression of the others choice has not been
2481 -- analyzed. Hence we generate a duplicate and
2482 -- we analyze it silently to have available the
2483 -- minimum decoration required to collect the
2486 if not Expander_Active
then
2487 Comp_Expr
:= Expression
(Others_Assoc
);
2490 New_Copy_Tree
(Expression
(Others_Assoc
));
2491 Preanalyze_Without_Errors
(Comp_Expr
);
2494 Collect_Identifiers
(Comp_Expr
);
2496 if Writable_Actuals_List
/= No_Elist
then
2498 -- As suggested by Robert, at current stage we
2499 -- report occurrences of this case as warnings.
2502 ("writable function parameter may affect "
2503 & "value in other component because order "
2504 & "of evaluation is unspecified??",
2505 Node
(First_Elmt
(Writable_Actuals_List
)));
2511 -- For an array aggregate, a discrete_choice_list that has
2512 -- a nonstatic range is considered as two or more separate
2513 -- occurrences of the expression (RM 6.4.1(20/3)).
2515 elsif Is_Array_Type
(Etype
(N
))
2516 and then Nkind
(N
) = N_Aggregate
2517 and then Present
(Aggregate_Bounds
(N
))
2518 and then not Compile_Time_Known_Bounds
(Etype
(N
))
2520 -- Collect identifiers found in the dynamic bounds
2523 Count_Components
: Natural := 0;
2524 Low
, High
: Node_Id
;
2527 Assoc
:= First
(Component_Associations
(N
));
2528 while Present
(Assoc
) loop
2529 Choice
:= First
(Choices
(Assoc
));
2530 while Present
(Choice
) loop
2531 if Nkind_In
(Choice
, N_Range
,
2532 N_Subtype_Indication
)
2533 or else (Is_Entity_Name
(Choice
)
2534 and then Is_Type
(Entity
(Choice
)))
2536 Get_Index_Bounds
(Choice
, Low
, High
);
2538 if not Compile_Time_Known_Value
(Low
) then
2539 Collect_Identifiers
(Low
);
2541 if No
(Aggr_Error_Node
) then
2542 Aggr_Error_Node
:= Low
;
2546 if not Compile_Time_Known_Value
(High
) then
2547 Collect_Identifiers
(High
);
2549 if No
(Aggr_Error_Node
) then
2550 Aggr_Error_Node
:= High
;
2554 -- The RM rule is violated if there is more than
2555 -- a single choice in a component association.
2558 Count_Components
:= Count_Components
+ 1;
2560 if No
(Aggr_Error_Node
)
2561 and then Count_Components
> 1
2563 Aggr_Error_Node
:= Choice
;
2566 if not Compile_Time_Known_Value
(Choice
) then
2567 Collect_Identifiers
(Choice
);
2579 -- Handle ancestor part of extension aggregates
2581 if Nkind
(N
) = N_Extension_Aggregate
then
2582 Collect_Identifiers
(Ancestor_Part
(N
));
2585 -- Handle positional associations
2587 if Present
(Expressions
(N
)) then
2588 Comp_Expr
:= First
(Expressions
(N
));
2589 while Present
(Comp_Expr
) loop
2590 if not Is_OK_Static_Expression
(Comp_Expr
) then
2591 Collect_Identifiers
(Comp_Expr
);
2598 -- Handle discrete associations
2600 if Present
(Component_Associations
(N
)) then
2601 Assoc
:= First
(Component_Associations
(N
));
2602 while Present
(Assoc
) loop
2604 if not Box_Present
(Assoc
) then
2605 Choice
:= First
(Choices
(Assoc
));
2606 while Present
(Choice
) loop
2608 -- For now we skip discriminants since it requires
2609 -- performing the analysis in two phases: first one
2610 -- analyzing discriminants and second one analyzing
2611 -- the rest of components since discriminants are
2612 -- evaluated prior to components: too much extra
2613 -- work to detect a corner case???
2615 if Nkind
(Choice
) in N_Has_Entity
2616 and then Present
(Entity
(Choice
))
2617 and then Ekind
(Entity
(Choice
)) = E_Discriminant
2621 elsif Box_Present
(Assoc
) then
2625 if not Analyzed
(Expression
(Assoc
)) then
2627 New_Copy_Tree
(Expression
(Assoc
));
2628 Set_Parent
(Comp_Expr
, Parent
(N
));
2629 Preanalyze_Without_Errors
(Comp_Expr
);
2631 Comp_Expr
:= Expression
(Assoc
);
2634 Collect_Identifiers
(Comp_Expr
);
2650 -- No further action needed if we already reported an error
2652 if Present
(Error_Node
) then
2656 -- Check violation of RM 6.20/3 in aggregates
2658 if Present
(Aggr_Error_Node
)
2659 and then Writable_Actuals_List
/= No_Elist
2662 ("value may be affected by call in other component because they "
2663 & "are evaluated in unspecified order",
2664 Node
(First_Elmt
(Writable_Actuals_List
)));
2668 -- Check if some writable argument of a function is referenced
2670 if Writable_Actuals_List
/= No_Elist
2671 and then Identifiers_List
/= No_Elist
2678 Elmt_1
:= First_Elmt
(Writable_Actuals_List
);
2679 while Present
(Elmt_1
) loop
2680 Elmt_2
:= First_Elmt
(Identifiers_List
);
2681 while Present
(Elmt_2
) loop
2682 if Entity
(Node
(Elmt_1
)) = Entity
(Node
(Elmt_2
)) then
2683 case Nkind
(Parent
(Node
(Elmt_2
))) is
2685 N_Component_Association |
2686 N_Component_Declaration
=>
2688 ("value may be affected by call in other "
2689 & "component because they are evaluated "
2690 & "in unspecified order",
2693 when N_In | N_Not_In
=>
2695 ("value may be affected by call in other "
2696 & "alternative because they are evaluated "
2697 & "in unspecified order",
2702 ("value of actual may be affected by call in "
2703 & "other actual because they are evaluated "
2704 & "in unspecified order",
2716 end Check_Function_Writable_Actuals
;
2718 --------------------------------
2719 -- Check_Implicit_Dereference --
2720 --------------------------------
2722 procedure Check_Implicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
) is
2728 if Nkind
(N
) = N_Indexed_Component
2729 and then Present
(Generalized_Indexing
(N
))
2731 Nam
:= Generalized_Indexing
(N
);
2736 if Ada_Version
< Ada_2012
2737 or else not Has_Implicit_Dereference
(Base_Type
(Typ
))
2741 elsif not Comes_From_Source
(N
)
2742 and then Nkind
(N
) /= N_Indexed_Component
2746 elsif Is_Entity_Name
(Nam
) and then Is_Type
(Entity
(Nam
)) then
2750 Disc
:= First_Discriminant
(Typ
);
2751 while Present
(Disc
) loop
2752 if Has_Implicit_Dereference
(Disc
) then
2753 Desig
:= Designated_Type
(Etype
(Disc
));
2754 Add_One_Interp
(Nam
, Disc
, Desig
);
2756 -- If the node is a generalized indexing, add interpretation
2757 -- to that node as well, for subsequent resolution.
2759 if Nkind
(N
) = N_Indexed_Component
then
2760 Add_One_Interp
(N
, Disc
, Desig
);
2763 -- If the operation comes from a generic unit and the context
2764 -- is a selected component, the selector name may be global
2765 -- and set in the instance already. Remove the entity to
2766 -- force resolution of the selected component, and the
2767 -- generation of an explicit dereference if needed.
2770 and then Nkind
(Parent
(Nam
)) = N_Selected_Component
2772 Set_Entity
(Selector_Name
(Parent
(Nam
)), Empty
);
2778 Next_Discriminant
(Disc
);
2781 end Check_Implicit_Dereference
;
2783 ----------------------------------
2784 -- Check_Internal_Protected_Use --
2785 ----------------------------------
2787 procedure Check_Internal_Protected_Use
(N
: Node_Id
; Nam
: Entity_Id
) is
2793 while Present
(S
) loop
2794 if S
= Standard_Standard
then
2797 elsif Ekind
(S
) = E_Function
2798 and then Ekind
(Scope
(S
)) = E_Protected_Type
2807 if Scope
(Nam
) = Prot
and then Ekind
(Nam
) /= E_Function
then
2809 -- An indirect function call (e.g. a callback within a protected
2810 -- function body) is not statically illegal. If the access type is
2811 -- anonymous and is the type of an access parameter, the scope of Nam
2812 -- will be the protected type, but it is not a protected operation.
2814 if Ekind
(Nam
) = E_Subprogram_Type
2816 Nkind
(Associated_Node_For_Itype
(Nam
)) = N_Function_Specification
2820 elsif Nkind
(N
) = N_Subprogram_Renaming_Declaration
then
2822 ("within protected function cannot use protected "
2823 & "procedure in renaming or as generic actual", N
);
2825 elsif Nkind
(N
) = N_Attribute_Reference
then
2827 ("within protected function cannot take access of "
2828 & " protected procedure", N
);
2832 ("within protected function, protected object is constant", N
);
2834 ("\cannot call operation that may modify it", N
);
2837 end Check_Internal_Protected_Use
;
2839 ---------------------------------------
2840 -- Check_Later_Vs_Basic_Declarations --
2841 ---------------------------------------
2843 procedure Check_Later_Vs_Basic_Declarations
2845 During_Parsing
: Boolean)
2847 Body_Sloc
: Source_Ptr
;
2850 function Is_Later_Declarative_Item
(Decl
: Node_Id
) return Boolean;
2851 -- Return whether Decl is considered as a declarative item.
2852 -- When During_Parsing is True, the semantics of Ada 83 is followed.
2853 -- When During_Parsing is False, the semantics of SPARK is followed.
2855 -------------------------------
2856 -- Is_Later_Declarative_Item --
2857 -------------------------------
2859 function Is_Later_Declarative_Item
(Decl
: Node_Id
) return Boolean is
2861 if Nkind
(Decl
) in N_Later_Decl_Item
then
2864 elsif Nkind
(Decl
) = N_Pragma
then
2867 elsif During_Parsing
then
2870 -- In SPARK, a package declaration is not considered as a later
2871 -- declarative item.
2873 elsif Nkind
(Decl
) = N_Package_Declaration
then
2876 -- In SPARK, a renaming is considered as a later declarative item
2878 elsif Nkind
(Decl
) in N_Renaming_Declaration
then
2884 end Is_Later_Declarative_Item
;
2886 -- Start of processing for Check_Later_Vs_Basic_Declarations
2889 Decl
:= First
(Decls
);
2891 -- Loop through sequence of basic declarative items
2893 Outer
: while Present
(Decl
) loop
2894 if not Nkind_In
(Decl
, N_Subprogram_Body
, N_Package_Body
, N_Task_Body
)
2895 and then Nkind
(Decl
) not in N_Body_Stub
2899 -- Once a body is encountered, we only allow later declarative
2900 -- items. The inner loop checks the rest of the list.
2903 Body_Sloc
:= Sloc
(Decl
);
2905 Inner
: while Present
(Decl
) loop
2906 if not Is_Later_Declarative_Item
(Decl
) then
2907 if During_Parsing
then
2908 if Ada_Version
= Ada_83
then
2909 Error_Msg_Sloc
:= Body_Sloc
;
2911 ("(Ada 83) decl cannot appear after body#", Decl
);
2914 Error_Msg_Sloc
:= Body_Sloc
;
2915 Check_SPARK_05_Restriction
2916 ("decl cannot appear after body#", Decl
);
2924 end Check_Later_Vs_Basic_Declarations
;
2926 ---------------------------
2927 -- Check_No_Hidden_State --
2928 ---------------------------
2930 procedure Check_No_Hidden_State
(Id
: Entity_Id
) is
2931 function Has_Null_Abstract_State
(Pkg
: Entity_Id
) return Boolean;
2932 -- Determine whether the entity of a package denoted by Pkg has a null
2935 -----------------------------
2936 -- Has_Null_Abstract_State --
2937 -----------------------------
2939 function Has_Null_Abstract_State
(Pkg
: Entity_Id
) return Boolean is
2940 States
: constant Elist_Id
:= Abstract_States
(Pkg
);
2943 -- Check first available state of related package. A null abstract
2944 -- state always appears as the sole element of the state list.
2948 and then Is_Null_State
(Node
(First_Elmt
(States
)));
2949 end Has_Null_Abstract_State
;
2953 Context
: Entity_Id
:= Empty
;
2954 Not_Visible
: Boolean := False;
2957 -- Start of processing for Check_No_Hidden_State
2960 pragma Assert
(Ekind_In
(Id
, E_Abstract_State
, E_Variable
));
2962 -- Find the proper context where the object or state appears
2965 while Present
(Scop
) loop
2968 -- Keep track of the context's visibility
2970 Not_Visible
:= Not_Visible
or else In_Private_Part
(Context
);
2972 -- Prevent the search from going too far
2974 if Context
= Standard_Standard
then
2977 -- Objects and states that appear immediately within a subprogram or
2978 -- inside a construct nested within a subprogram do not introduce a
2979 -- hidden state. They behave as local variable declarations.
2981 elsif Is_Subprogram
(Context
) then
2984 -- When examining a package body, use the entity of the spec as it
2985 -- carries the abstract state declarations.
2987 elsif Ekind
(Context
) = E_Package_Body
then
2988 Context
:= Spec_Entity
(Context
);
2991 -- Stop the traversal when a package subject to a null abstract state
2994 if Ekind_In
(Context
, E_Generic_Package
, E_Package
)
2995 and then Has_Null_Abstract_State
(Context
)
3000 Scop
:= Scope
(Scop
);
3003 -- At this point we know that there is at least one package with a null
3004 -- abstract state in visibility. Emit an error message unconditionally
3005 -- if the entity being processed is a state because the placement of the
3006 -- related package is irrelevant. This is not the case for objects as
3007 -- the intermediate context matters.
3009 if Present
(Context
)
3010 and then (Ekind
(Id
) = E_Abstract_State
or else Not_Visible
)
3012 Error_Msg_N
("cannot introduce hidden state &", Id
);
3013 Error_Msg_NE
("\package & has null abstract state", Id
, Context
);
3015 end Check_No_Hidden_State
;
3017 ----------------------------------------
3018 -- Check_Nonvolatile_Function_Profile --
3019 ----------------------------------------
3021 procedure Check_Nonvolatile_Function_Profile
(Func_Id
: Entity_Id
) is
3025 -- Inspect all formal parameters
3027 Formal
:= First_Formal
(Func_Id
);
3028 while Present
(Formal
) loop
3029 if Is_Effectively_Volatile
(Etype
(Formal
)) then
3031 ("nonvolatile function & cannot have a volatile parameter",
3035 Next_Formal
(Formal
);
3038 -- Inspect the return type
3040 if Is_Effectively_Volatile
(Etype
(Func_Id
)) then
3042 ("nonvolatile function & cannot have a volatile return type",
3043 Result_Definition
(Parent
(Func_Id
)), Func_Id
);
3045 end Check_Nonvolatile_Function_Profile
;
3047 ------------------------------------------
3048 -- Check_Potentially_Blocking_Operation --
3049 ------------------------------------------
3051 procedure Check_Potentially_Blocking_Operation
(N
: Node_Id
) is
3055 -- N is one of the potentially blocking operations listed in 9.5.1(8).
3056 -- When pragma Detect_Blocking is active, the run time will raise
3057 -- Program_Error. Here we only issue a warning, since we generally
3058 -- support the use of potentially blocking operations in the absence
3061 -- Indirect blocking through a subprogram call cannot be diagnosed
3062 -- statically without interprocedural analysis, so we do not attempt
3065 S
:= Scope
(Current_Scope
);
3066 while Present
(S
) and then S
/= Standard_Standard
loop
3067 if Is_Protected_Type
(S
) then
3069 ("potentially blocking operation in protected operation??", N
);
3075 end Check_Potentially_Blocking_Operation
;
3077 ---------------------------------
3078 -- Check_Result_And_Post_State --
3079 ---------------------------------
3081 procedure Check_Result_And_Post_State
(Subp_Id
: Entity_Id
) is
3082 procedure Check_Result_And_Post_State_In_Pragma
3084 Result_Seen
: in out Boolean);
3085 -- Determine whether pragma Prag mentions attribute 'Result and whether
3086 -- the pragma contains an expression that evaluates differently in pre-
3087 -- and post-state. Prag is a [refined] postcondition or a contract-cases
3088 -- pragma. Result_Seen is set when the pragma mentions attribute 'Result
3090 function Has_In_Out_Parameter
(Subp_Id
: Entity_Id
) return Boolean;
3091 -- Determine whether subprogram Subp_Id contains at least one IN OUT
3092 -- formal parameter.
3094 -------------------------------------------
3095 -- Check_Result_And_Post_State_In_Pragma --
3096 -------------------------------------------
3098 procedure Check_Result_And_Post_State_In_Pragma
3100 Result_Seen
: in out Boolean)
3102 procedure Check_Expression
(Expr
: Node_Id
);
3103 -- Perform the 'Result and post-state checks on a given expression
3105 function Is_Function_Result
(N
: Node_Id
) return Traverse_Result
;
3106 -- Attempt to find attribute 'Result in a subtree denoted by N
3108 function Is_Trivial_Boolean
(N
: Node_Id
) return Boolean;
3109 -- Determine whether source node N denotes "True" or "False"
3111 function Mentions_Post_State
(N
: Node_Id
) return Boolean;
3112 -- Determine whether a subtree denoted by N mentions any construct
3113 -- that denotes a post-state.
3115 procedure Check_Function_Result
is
3116 new Traverse_Proc
(Is_Function_Result
);
3118 ----------------------
3119 -- Check_Expression --
3120 ----------------------
3122 procedure Check_Expression
(Expr
: Node_Id
) is
3124 if not Is_Trivial_Boolean
(Expr
) then
3125 Check_Function_Result
(Expr
);
3127 if not Mentions_Post_State
(Expr
) then
3128 if Pragma_Name_Mapped
(Prag
) = Name_Contract_Cases
then
3130 ("contract case does not check the outcome of calling "
3131 & "&?T?", Expr
, Subp_Id
);
3133 elsif Pragma_Name_Mapped
(Prag
) = Name_Refined_Post
then
3135 ("refined postcondition does not check the outcome of "
3136 & "calling &?T?", Prag
, Subp_Id
);
3140 ("postcondition does not check the outcome of calling "
3141 & "&?T?", Prag
, Subp_Id
);
3145 end Check_Expression
;
3147 ------------------------
3148 -- Is_Function_Result --
3149 ------------------------
3151 function Is_Function_Result
(N
: Node_Id
) return Traverse_Result
is
3153 if Is_Attribute_Result
(N
) then
3154 Result_Seen
:= True;
3157 -- Continue the traversal
3162 end Is_Function_Result
;
3164 ------------------------
3165 -- Is_Trivial_Boolean --
3166 ------------------------
3168 function Is_Trivial_Boolean
(N
: Node_Id
) return Boolean is
3171 Comes_From_Source
(N
)
3172 and then Is_Entity_Name
(N
)
3173 and then (Entity
(N
) = Standard_True
3175 Entity
(N
) = Standard_False
);
3176 end Is_Trivial_Boolean
;
3178 -------------------------
3179 -- Mentions_Post_State --
3180 -------------------------
3182 function Mentions_Post_State
(N
: Node_Id
) return Boolean is
3183 Post_State_Seen
: Boolean := False;
3185 function Is_Post_State
(N
: Node_Id
) return Traverse_Result
;
3186 -- Attempt to find a construct that denotes a post-state. If this
3187 -- is the case, set flag Post_State_Seen.
3193 function Is_Post_State
(N
: Node_Id
) return Traverse_Result
is
3197 if Nkind_In
(N
, N_Explicit_Dereference
, N_Function_Call
) then
3198 Post_State_Seen
:= True;
3201 elsif Nkind_In
(N
, N_Expanded_Name
, N_Identifier
) then
3204 -- The entity may be modifiable through an implicit
3208 or else Ekind
(Ent
) in Assignable_Kind
3209 or else (Is_Access_Type
(Etype
(Ent
))
3210 and then Nkind
(Parent
(N
)) =
3211 N_Selected_Component
)
3213 Post_State_Seen
:= True;
3217 elsif Nkind
(N
) = N_Attribute_Reference
then
3218 if Attribute_Name
(N
) = Name_Old
then
3221 elsif Attribute_Name
(N
) = Name_Result
then
3222 Post_State_Seen
:= True;
3230 procedure Find_Post_State
is new Traverse_Proc
(Is_Post_State
);
3232 -- Start of processing for Mentions_Post_State
3235 Find_Post_State
(N
);
3237 return Post_State_Seen
;
3238 end Mentions_Post_State
;
3242 Expr
: constant Node_Id
:=
3244 (First
(Pragma_Argument_Associations
(Prag
)));
3245 Nam
: constant Name_Id
:= Pragma_Name_Mapped
(Prag
);
3248 -- Start of processing for Check_Result_And_Post_State_In_Pragma
3251 -- Examine all consequences
3253 if Nam
= Name_Contract_Cases
then
3254 CCase
:= First
(Component_Associations
(Expr
));
3255 while Present
(CCase
) loop
3256 Check_Expression
(Expression
(CCase
));
3261 -- Examine the expression of a postcondition
3263 else pragma Assert
(Nam_In
(Nam
, Name_Postcondition
,
3264 Name_Refined_Post
));
3265 Check_Expression
(Expr
);
3267 end Check_Result_And_Post_State_In_Pragma
;
3269 --------------------------
3270 -- Has_In_Out_Parameter --
3271 --------------------------
3273 function Has_In_Out_Parameter
(Subp_Id
: Entity_Id
) return Boolean is
3277 -- Traverse the formals looking for an IN OUT parameter
3279 Formal
:= First_Formal
(Subp_Id
);
3280 while Present
(Formal
) loop
3281 if Ekind
(Formal
) = E_In_Out_Parameter
then
3285 Next_Formal
(Formal
);
3289 end Has_In_Out_Parameter
;
3293 Items
: constant Node_Id
:= Contract
(Subp_Id
);
3294 Subp_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp_Id
);
3295 Case_Prag
: Node_Id
:= Empty
;
3296 Post_Prag
: Node_Id
:= Empty
;
3298 Seen_In_Case
: Boolean := False;
3299 Seen_In_Post
: Boolean := False;
3300 Spec_Id
: Entity_Id
;
3302 -- Start of processing for Check_Result_And_Post_State
3305 -- The lack of attribute 'Result or a post-state is classified as a
3306 -- suspicious contract. Do not perform the check if the corresponding
3307 -- swich is not set.
3309 if not Warn_On_Suspicious_Contract
then
3312 -- Nothing to do if there is no contract
3314 elsif No
(Items
) then
3318 -- Retrieve the entity of the subprogram spec (if any)
3320 if Nkind
(Subp_Decl
) = N_Subprogram_Body
3321 and then Present
(Corresponding_Spec
(Subp_Decl
))
3323 Spec_Id
:= Corresponding_Spec
(Subp_Decl
);
3325 elsif Nkind
(Subp_Decl
) = N_Subprogram_Body_Stub
3326 and then Present
(Corresponding_Spec_Of_Stub
(Subp_Decl
))
3328 Spec_Id
:= Corresponding_Spec_Of_Stub
(Subp_Decl
);
3334 -- Examine all postconditions for attribute 'Result and a post-state
3336 Prag
:= Pre_Post_Conditions
(Items
);
3337 while Present
(Prag
) loop
3338 if Nam_In
(Pragma_Name
(Prag
), Name_Postcondition
,
3340 and then not Error_Posted
(Prag
)
3343 Check_Result_And_Post_State_In_Pragma
(Prag
, Seen_In_Post
);
3346 Prag
:= Next_Pragma
(Prag
);
3349 -- Examine the contract cases of the subprogram for attribute 'Result
3350 -- and a post-state.
3352 Prag
:= Contract_Test_Cases
(Items
);
3353 while Present
(Prag
) loop
3354 if Pragma_Name_Mapped
(Prag
) = Name_Contract_Cases
3355 and then not Error_Posted
(Prag
)
3358 Check_Result_And_Post_State_In_Pragma
(Prag
, Seen_In_Case
);
3361 Prag
:= Next_Pragma
(Prag
);
3364 -- Do not emit any errors if the subprogram is not a function
3366 if not Ekind_In
(Spec_Id
, E_Function
, E_Generic_Function
) then
3369 -- Regardless of whether the function has postconditions or contract
3370 -- cases, or whether they mention attribute 'Result, an IN OUT formal
3371 -- parameter is always treated as a result.
3373 elsif Has_In_Out_Parameter
(Spec_Id
) then
3376 -- The function has both a postcondition and contract cases and they do
3377 -- not mention attribute 'Result.
3379 elsif Present
(Case_Prag
)
3380 and then not Seen_In_Case
3381 and then Present
(Post_Prag
)
3382 and then not Seen_In_Post
3385 ("neither postcondition nor contract cases mention function "
3386 & "result?T?", Post_Prag
);
3388 -- The function has contract cases only and they do not mention
3389 -- attribute 'Result.
3391 elsif Present
(Case_Prag
) and then not Seen_In_Case
then
3392 Error_Msg_N
("contract cases do not mention result?T?", Case_Prag
);
3394 -- The function has postconditions only and they do not mention
3395 -- attribute 'Result.
3397 elsif Present
(Post_Prag
) and then not Seen_In_Post
then
3399 ("postcondition does not mention function result?T?", Post_Prag
);
3401 end Check_Result_And_Post_State
;
3403 -----------------------------
3404 -- Check_State_Refinements --
3405 -----------------------------
3407 procedure Check_State_Refinements
3409 Is_Main_Unit
: Boolean := False)
3411 procedure Check_Package
(Pack
: Node_Id
);
3412 -- Verify that all abstract states of a [generic] package denoted by its
3413 -- declarative node Pack have proper refinement. Recursively verify the
3414 -- visible and private declarations of the [generic] package for other
3417 procedure Check_Packages_In
(Decls
: List_Id
);
3418 -- Seek out [generic] package declarations within declarative list Decls
3419 -- and verify the status of their abstract state refinement.
3421 function SPARK_Mode_Is_Off
(N
: Node_Id
) return Boolean;
3422 -- Determine whether construct N is subject to pragma SPARK_Mode Off
3428 procedure Check_Package
(Pack
: Node_Id
) is
3429 Body_Id
: constant Entity_Id
:= Corresponding_Body
(Pack
);
3430 Spec
: constant Node_Id
:= Specification
(Pack
);
3431 States
: constant Elist_Id
:=
3432 Abstract_States
(Defining_Entity
(Pack
));
3434 State_Elmt
: Elmt_Id
;
3435 State_Id
: Entity_Id
;
3438 -- Do not verify proper state refinement when the package is subject
3439 -- to pragma SPARK_Mode Off because this disables the requirement for
3440 -- state refinement.
3442 if SPARK_Mode_Is_Off
(Pack
) then
3445 -- State refinement can only occur in a completing packge body. Do
3446 -- not verify proper state refinement when the body is subject to
3447 -- pragma SPARK_Mode Off because this disables the requirement for
3448 -- state refinement.
3450 elsif Present
(Body_Id
)
3451 and then SPARK_Mode_Is_Off
(Unit_Declaration_Node
(Body_Id
))
3455 -- Do not verify proper state refinement when the package is an
3456 -- instance as this check was already performed in the generic.
3458 elsif Present
(Generic_Parent
(Spec
)) then
3461 -- Otherwise examine the contents of the package
3464 if Present
(States
) then
3465 State_Elmt
:= First_Elmt
(States
);
3466 while Present
(State_Elmt
) loop
3467 State_Id
:= Node
(State_Elmt
);
3469 -- Emit an error when a non-null state lacks any form of
3472 if not Is_Null_State
(State_Id
)
3473 and then not Has_Null_Refinement
(State_Id
)
3474 and then not Has_Non_Null_Refinement
(State_Id
)
3476 Error_Msg_N
("state & requires refinement", State_Id
);
3479 Next_Elmt
(State_Elmt
);
3483 Check_Packages_In
(Visible_Declarations
(Spec
));
3484 Check_Packages_In
(Private_Declarations
(Spec
));
3488 -----------------------
3489 -- Check_Packages_In --
3490 -----------------------
3492 procedure Check_Packages_In
(Decls
: List_Id
) is
3496 if Present
(Decls
) then
3497 Decl
:= First
(Decls
);
3498 while Present
(Decl
) loop
3499 if Nkind_In
(Decl
, N_Generic_Package_Declaration
,
3500 N_Package_Declaration
)
3502 Check_Package
(Decl
);
3508 end Check_Packages_In
;
3510 -----------------------
3511 -- SPARK_Mode_Is_Off --
3512 -----------------------
3514 function SPARK_Mode_Is_Off
(N
: Node_Id
) return Boolean is
3515 Prag
: constant Node_Id
:= SPARK_Pragma
(Defining_Entity
(N
));
3519 Present
(Prag
) and then Get_SPARK_Mode_From_Annotation
(Prag
) = Off
;
3520 end SPARK_Mode_Is_Off
;
3522 -- Start of processing for Check_State_Refinements
3525 -- A block may declare a nested package
3527 if Nkind
(Context
) = N_Block_Statement
then
3528 Check_Packages_In
(Declarations
(Context
));
3530 -- An entry, protected, subprogram, or task body may declare a nested
3533 elsif Nkind_In
(Context
, N_Entry_Body
,
3538 -- Do not verify proper state refinement when the body is subject to
3539 -- pragma SPARK_Mode Off because this disables the requirement for
3540 -- state refinement.
3542 if not SPARK_Mode_Is_Off
(Context
) then
3543 Check_Packages_In
(Declarations
(Context
));
3546 -- A package body may declare a nested package
3548 elsif Nkind
(Context
) = N_Package_Body
then
3549 Check_Package
(Unit_Declaration_Node
(Corresponding_Spec
(Context
)));
3551 -- Do not verify proper state refinement when the body is subject to
3552 -- pragma SPARK_Mode Off because this disables the requirement for
3553 -- state refinement.
3555 if not SPARK_Mode_Is_Off
(Context
) then
3556 Check_Packages_In
(Declarations
(Context
));
3559 -- A library level [generic] package may declare a nested package
3561 elsif Nkind_In
(Context
, N_Generic_Package_Declaration
,
3562 N_Package_Declaration
)
3563 and then Is_Main_Unit
3565 Check_Package
(Context
);
3567 end Check_State_Refinements
;
3569 ------------------------------
3570 -- Check_Unprotected_Access --
3571 ------------------------------
3573 procedure Check_Unprotected_Access
3577 Cont_Encl_Typ
: Entity_Id
;
3578 Pref_Encl_Typ
: Entity_Id
;
3580 function Enclosing_Protected_Type
(Obj
: Node_Id
) return Entity_Id
;
3581 -- Check whether Obj is a private component of a protected object.
3582 -- Return the protected type where the component resides, Empty
3585 function Is_Public_Operation
return Boolean;
3586 -- Verify that the enclosing operation is callable from outside the
3587 -- protected object, to minimize false positives.
3589 ------------------------------
3590 -- Enclosing_Protected_Type --
3591 ------------------------------
3593 function Enclosing_Protected_Type
(Obj
: Node_Id
) return Entity_Id
is
3595 if Is_Entity_Name
(Obj
) then
3597 Ent
: Entity_Id
:= Entity
(Obj
);
3600 -- The object can be a renaming of a private component, use
3601 -- the original record component.
3603 if Is_Prival
(Ent
) then
3604 Ent
:= Prival_Link
(Ent
);
3607 if Is_Protected_Type
(Scope
(Ent
)) then
3613 -- For indexed and selected components, recursively check the prefix
3615 if Nkind_In
(Obj
, N_Indexed_Component
, N_Selected_Component
) then
3616 return Enclosing_Protected_Type
(Prefix
(Obj
));
3618 -- The object does not denote a protected component
3623 end Enclosing_Protected_Type
;
3625 -------------------------
3626 -- Is_Public_Operation --
3627 -------------------------
3629 function Is_Public_Operation
return Boolean is
3635 while Present
(S
) and then S
/= Pref_Encl_Typ
loop
3636 if Scope
(S
) = Pref_Encl_Typ
then
3637 E
:= First_Entity
(Pref_Encl_Typ
);
3639 and then E
/= First_Private_Entity
(Pref_Encl_Typ
)
3653 end Is_Public_Operation
;
3655 -- Start of processing for Check_Unprotected_Access
3658 if Nkind
(Expr
) = N_Attribute_Reference
3659 and then Attribute_Name
(Expr
) = Name_Unchecked_Access
3661 Cont_Encl_Typ
:= Enclosing_Protected_Type
(Context
);
3662 Pref_Encl_Typ
:= Enclosing_Protected_Type
(Prefix
(Expr
));
3664 -- Check whether we are trying to export a protected component to a
3665 -- context with an equal or lower access level.
3667 if Present
(Pref_Encl_Typ
)
3668 and then No
(Cont_Encl_Typ
)
3669 and then Is_Public_Operation
3670 and then Scope_Depth
(Pref_Encl_Typ
) >=
3671 Object_Access_Level
(Context
)
3674 ("??possible unprotected access to protected data", Expr
);
3677 end Check_Unprotected_Access
;
3679 ------------------------------
3680 -- Check_Unused_Body_States --
3681 ------------------------------
3683 procedure Check_Unused_Body_States
(Body_Id
: Entity_Id
) is
3684 procedure Process_Refinement_Clause
3687 -- Inspect all constituents of refinement clause Clause and remove any
3688 -- matches from body state list States.
3690 procedure Report_Unused_Body_States
(States
: Elist_Id
);
3691 -- Emit errors for each abstract state or object found in list States
3693 -------------------------------
3694 -- Process_Refinement_Clause --
3695 -------------------------------
3697 procedure Process_Refinement_Clause
3701 procedure Process_Constituent
(Constit
: Node_Id
);
3702 -- Remove constituent Constit from body state list States
3704 -------------------------
3705 -- Process_Constituent --
3706 -------------------------
3708 procedure Process_Constituent
(Constit
: Node_Id
) is
3709 Constit_Id
: Entity_Id
;
3712 -- Guard against illegal constituents. Only abstract states and
3713 -- objects can appear on the right hand side of a refinement.
3715 if Is_Entity_Name
(Constit
) then
3716 Constit_Id
:= Entity_Of
(Constit
);
3718 if Present
(Constit_Id
)
3719 and then Ekind_In
(Constit_Id
, E_Abstract_State
,
3723 Remove
(States
, Constit_Id
);
3726 end Process_Constituent
;
3732 -- Start of processing for Process_Refinement_Clause
3735 if Nkind
(Clause
) = N_Component_Association
then
3736 Constit
:= Expression
(Clause
);
3738 -- Multiple constituents appear as an aggregate
3740 if Nkind
(Constit
) = N_Aggregate
then
3741 Constit
:= First
(Expressions
(Constit
));
3742 while Present
(Constit
) loop
3743 Process_Constituent
(Constit
);
3747 -- Various forms of a single constituent
3750 Process_Constituent
(Constit
);
3753 end Process_Refinement_Clause
;
3755 -------------------------------
3756 -- Report_Unused_Body_States --
3757 -------------------------------
3759 procedure Report_Unused_Body_States
(States
: Elist_Id
) is
3760 Posted
: Boolean := False;
3761 State_Elmt
: Elmt_Id
;
3762 State_Id
: Entity_Id
;
3765 if Present
(States
) then
3766 State_Elmt
:= First_Elmt
(States
);
3767 while Present
(State_Elmt
) loop
3768 State_Id
:= Node
(State_Elmt
);
3770 -- Constants are part of the hidden state of a package, but the
3771 -- compiler cannot determine whether they have variable input
3772 -- (SPARK RM 7.1.1(2)) and cannot classify them properly as a
3773 -- hidden state. Do not emit an error when a constant does not
3774 -- participate in a state refinement, even though it acts as a
3777 if Ekind
(State_Id
) = E_Constant
then
3780 -- Generate an error message of the form:
3782 -- body of package ... has unused hidden states
3783 -- abstract state ... defined at ...
3784 -- variable ... defined at ...
3790 ("body of package & has unused hidden states", Body_Id
);
3793 Error_Msg_Sloc
:= Sloc
(State_Id
);
3795 if Ekind
(State_Id
) = E_Abstract_State
then
3797 ("\abstract state & defined #", Body_Id
, State_Id
);
3800 SPARK_Msg_NE
("\variable & defined #", Body_Id
, State_Id
);
3804 Next_Elmt
(State_Elmt
);
3807 end Report_Unused_Body_States
;
3811 Prag
: constant Node_Id
:= Get_Pragma
(Body_Id
, Pragma_Refined_State
);
3812 Spec_Id
: constant Entity_Id
:= Spec_Entity
(Body_Id
);
3816 -- Start of processing for Check_Unused_Body_States
3819 -- Inspect the clauses of pragma Refined_State and determine whether all
3820 -- visible states declared within the package body participate in the
3823 if Present
(Prag
) then
3824 Clause
:= Expression
(Get_Argument
(Prag
, Spec_Id
));
3825 States
:= Collect_Body_States
(Body_Id
);
3827 -- Multiple non-null state refinements appear as an aggregate
3829 if Nkind
(Clause
) = N_Aggregate
then
3830 Clause
:= First
(Component_Associations
(Clause
));
3831 while Present
(Clause
) loop
3832 Process_Refinement_Clause
(Clause
, States
);
3836 -- Various forms of a single state refinement
3839 Process_Refinement_Clause
(Clause
, States
);
3842 -- Ensure that all abstract states and objects declared in the
3843 -- package body state space are utilized as constituents.
3845 Report_Unused_Body_States
(States
);
3847 end Check_Unused_Body_States
;
3849 -------------------------
3850 -- Collect_Body_States --
3851 -------------------------
3853 function Collect_Body_States
(Body_Id
: Entity_Id
) return Elist_Id
is
3854 function Is_Visible_Object
(Obj_Id
: Entity_Id
) return Boolean;
3855 -- Determine whether object Obj_Id is a suitable visible state of a
3858 procedure Collect_Visible_States
3859 (Pack_Id
: Entity_Id
;
3860 States
: in out Elist_Id
);
3861 -- Gather the entities of all abstract states and objects declared in
3862 -- the visible state space of package Pack_Id.
3864 ----------------------------
3865 -- Collect_Visible_States --
3866 ----------------------------
3868 procedure Collect_Visible_States
3869 (Pack_Id
: Entity_Id
;
3870 States
: in out Elist_Id
)
3872 Item_Id
: Entity_Id
;
3875 -- Traverse the entity chain of the package and inspect all visible
3878 Item_Id
:= First_Entity
(Pack_Id
);
3879 while Present
(Item_Id
) and then not In_Private_Part
(Item_Id
) loop
3881 -- Do not consider internally generated items as those cannot be
3882 -- named and participate in refinement.
3884 if not Comes_From_Source
(Item_Id
) then
3887 elsif Ekind
(Item_Id
) = E_Abstract_State
then
3888 Append_New_Elmt
(Item_Id
, States
);
3890 elsif Ekind_In
(Item_Id
, E_Constant
, E_Variable
)
3891 and then Is_Visible_Object
(Item_Id
)
3893 Append_New_Elmt
(Item_Id
, States
);
3895 -- Recursively gather the visible states of a nested package
3897 elsif Ekind
(Item_Id
) = E_Package
then
3898 Collect_Visible_States
(Item_Id
, States
);
3901 Next_Entity
(Item_Id
);
3903 end Collect_Visible_States
;
3905 -----------------------
3906 -- Is_Visible_Object --
3907 -----------------------
3909 function Is_Visible_Object
(Obj_Id
: Entity_Id
) return Boolean is
3911 -- Objects that map generic formals to their actuals are not visible
3912 -- from outside the generic instantiation.
3914 if Present
(Corresponding_Generic_Association
3915 (Declaration_Node
(Obj_Id
)))
3919 -- Constituents of a single protected/task type act as components of
3920 -- the type and are not visible from outside the type.
3922 elsif Ekind
(Obj_Id
) = E_Variable
3923 and then Present
(Encapsulating_State
(Obj_Id
))
3924 and then Is_Single_Concurrent_Object
(Encapsulating_State
(Obj_Id
))
3931 end Is_Visible_Object
;
3935 Body_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Body_Id
);
3937 Item_Id
: Entity_Id
;
3938 States
: Elist_Id
:= No_Elist
;
3940 -- Start of processing for Collect_Body_States
3943 -- Inspect the declarations of the body looking for source objects,
3944 -- packages and package instantiations. Note that even though this
3945 -- processing is very similar to Collect_Visible_States, a package
3946 -- body does not have a First/Next_Entity list.
3948 Decl
:= First
(Declarations
(Body_Decl
));
3949 while Present
(Decl
) loop
3951 -- Capture source objects as internally generated temporaries cannot
3952 -- be named and participate in refinement.
3954 if Nkind
(Decl
) = N_Object_Declaration
then
3955 Item_Id
:= Defining_Entity
(Decl
);
3957 if Comes_From_Source
(Item_Id
)
3958 and then Is_Visible_Object
(Item_Id
)
3960 Append_New_Elmt
(Item_Id
, States
);
3963 -- Capture the visible abstract states and objects of a source
3964 -- package [instantiation].
3966 elsif Nkind
(Decl
) = N_Package_Declaration
then
3967 Item_Id
:= Defining_Entity
(Decl
);
3969 if Comes_From_Source
(Item_Id
) then
3970 Collect_Visible_States
(Item_Id
, States
);
3978 end Collect_Body_States
;
3980 ------------------------
3981 -- Collect_Interfaces --
3982 ------------------------
3984 procedure Collect_Interfaces
3986 Ifaces_List
: out Elist_Id
;
3987 Exclude_Parents
: Boolean := False;
3988 Use_Full_View
: Boolean := True)
3990 procedure Collect
(Typ
: Entity_Id
);
3991 -- Subsidiary subprogram used to traverse the whole list
3992 -- of directly and indirectly implemented interfaces
3998 procedure Collect
(Typ
: Entity_Id
) is
3999 Ancestor
: Entity_Id
;
4007 -- Handle private types and subtypes
4010 and then Is_Private_Type
(Typ
)
4011 and then Present
(Full_View
(Typ
))
4013 Full_T
:= Full_View
(Typ
);
4015 if Ekind
(Full_T
) = E_Record_Subtype
then
4016 Full_T
:= Etype
(Typ
);
4018 if Present
(Full_View
(Full_T
)) then
4019 Full_T
:= Full_View
(Full_T
);
4024 -- Include the ancestor if we are generating the whole list of
4025 -- abstract interfaces.
4027 if Etype
(Full_T
) /= Typ
4029 -- Protect the frontend against wrong sources. For example:
4032 -- type A is tagged null record;
4033 -- type B is new A with private;
4034 -- type C is new A with private;
4036 -- type B is new C with null record;
4037 -- type C is new B with null record;
4040 and then Etype
(Full_T
) /= T
4042 Ancestor
:= Etype
(Full_T
);
4045 if Is_Interface
(Ancestor
) and then not Exclude_Parents
then
4046 Append_Unique_Elmt
(Ancestor
, Ifaces_List
);
4050 -- Traverse the graph of ancestor interfaces
4052 if Is_Non_Empty_List
(Abstract_Interface_List
(Full_T
)) then
4053 Id
:= First
(Abstract_Interface_List
(Full_T
));
4054 while Present
(Id
) loop
4055 Iface
:= Etype
(Id
);
4057 -- Protect against wrong uses. For example:
4058 -- type I is interface;
4059 -- type O is tagged null record;
4060 -- type Wrong is new I and O with null record; -- ERROR
4062 if Is_Interface
(Iface
) then
4064 and then Etype
(T
) /= T
4065 and then Interface_Present_In_Ancestor
(Etype
(T
), Iface
)
4070 Append_Unique_Elmt
(Iface
, Ifaces_List
);
4079 -- Start of processing for Collect_Interfaces
4082 pragma Assert
(Is_Tagged_Type
(T
) or else Is_Concurrent_Type
(T
));
4083 Ifaces_List
:= New_Elmt_List
;
4085 end Collect_Interfaces
;
4087 ----------------------------------
4088 -- Collect_Interface_Components --
4089 ----------------------------------
4091 procedure Collect_Interface_Components
4092 (Tagged_Type
: Entity_Id
;
4093 Components_List
: out Elist_Id
)
4095 procedure Collect
(Typ
: Entity_Id
);
4096 -- Subsidiary subprogram used to climb to the parents
4102 procedure Collect
(Typ
: Entity_Id
) is
4103 Tag_Comp
: Entity_Id
;
4104 Parent_Typ
: Entity_Id
;
4107 -- Handle private types
4109 if Present
(Full_View
(Etype
(Typ
))) then
4110 Parent_Typ
:= Full_View
(Etype
(Typ
));
4112 Parent_Typ
:= Etype
(Typ
);
4115 if Parent_Typ
/= Typ
4117 -- Protect the frontend against wrong sources. For example:
4120 -- type A is tagged null record;
4121 -- type B is new A with private;
4122 -- type C is new A with private;
4124 -- type B is new C with null record;
4125 -- type C is new B with null record;
4128 and then Parent_Typ
/= Tagged_Type
4130 Collect
(Parent_Typ
);
4133 -- Collect the components containing tags of secondary dispatch
4136 Tag_Comp
:= Next_Tag_Component
(First_Tag_Component
(Typ
));
4137 while Present
(Tag_Comp
) loop
4138 pragma Assert
(Present
(Related_Type
(Tag_Comp
)));
4139 Append_Elmt
(Tag_Comp
, Components_List
);
4141 Tag_Comp
:= Next_Tag_Component
(Tag_Comp
);
4145 -- Start of processing for Collect_Interface_Components
4148 pragma Assert
(Ekind
(Tagged_Type
) = E_Record_Type
4149 and then Is_Tagged_Type
(Tagged_Type
));
4151 Components_List
:= New_Elmt_List
;
4152 Collect
(Tagged_Type
);
4153 end Collect_Interface_Components
;
4155 -----------------------------
4156 -- Collect_Interfaces_Info --
4157 -----------------------------
4159 procedure Collect_Interfaces_Info
4161 Ifaces_List
: out Elist_Id
;
4162 Components_List
: out Elist_Id
;
4163 Tags_List
: out Elist_Id
)
4165 Comps_List
: Elist_Id
;
4166 Comp_Elmt
: Elmt_Id
;
4167 Comp_Iface
: Entity_Id
;
4168 Iface_Elmt
: Elmt_Id
;
4171 function Search_Tag
(Iface
: Entity_Id
) return Entity_Id
;
4172 -- Search for the secondary tag associated with the interface type
4173 -- Iface that is implemented by T.
4179 function Search_Tag
(Iface
: Entity_Id
) return Entity_Id
is
4182 if not Is_CPP_Class
(T
) then
4183 ADT
:= Next_Elmt
(Next_Elmt
(First_Elmt
(Access_Disp_Table
(T
))));
4185 ADT
:= Next_Elmt
(First_Elmt
(Access_Disp_Table
(T
)));
4189 and then Is_Tag
(Node
(ADT
))
4190 and then Related_Type
(Node
(ADT
)) /= Iface
4192 -- Skip secondary dispatch table referencing thunks to user
4193 -- defined primitives covered by this interface.
4195 pragma Assert
(Has_Suffix
(Node
(ADT
), 'P'));
4198 -- Skip secondary dispatch tables of Ada types
4200 if not Is_CPP_Class
(T
) then
4202 -- Skip secondary dispatch table referencing thunks to
4203 -- predefined primitives.
4205 pragma Assert
(Has_Suffix
(Node
(ADT
), 'Y'));
4208 -- Skip secondary dispatch table referencing user-defined
4209 -- primitives covered by this interface.
4211 pragma Assert
(Has_Suffix
(Node
(ADT
), 'D'));
4214 -- Skip secondary dispatch table referencing predefined
4217 pragma Assert
(Has_Suffix
(Node
(ADT
), 'Z'));
4222 pragma Assert
(Is_Tag
(Node
(ADT
)));
4226 -- Start of processing for Collect_Interfaces_Info
4229 Collect_Interfaces
(T
, Ifaces_List
);
4230 Collect_Interface_Components
(T
, Comps_List
);
4232 -- Search for the record component and tag associated with each
4233 -- interface type of T.
4235 Components_List
:= New_Elmt_List
;
4236 Tags_List
:= New_Elmt_List
;
4238 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
4239 while Present
(Iface_Elmt
) loop
4240 Iface
:= Node
(Iface_Elmt
);
4242 -- Associate the primary tag component and the primary dispatch table
4243 -- with all the interfaces that are parents of T
4245 if Is_Ancestor
(Iface
, T
, Use_Full_View
=> True) then
4246 Append_Elmt
(First_Tag_Component
(T
), Components_List
);
4247 Append_Elmt
(Node
(First_Elmt
(Access_Disp_Table
(T
))), Tags_List
);
4249 -- Otherwise search for the tag component and secondary dispatch
4253 Comp_Elmt
:= First_Elmt
(Comps_List
);
4254 while Present
(Comp_Elmt
) loop
4255 Comp_Iface
:= Related_Type
(Node
(Comp_Elmt
));
4257 if Comp_Iface
= Iface
4258 or else Is_Ancestor
(Iface
, Comp_Iface
, Use_Full_View
=> True)
4260 Append_Elmt
(Node
(Comp_Elmt
), Components_List
);
4261 Append_Elmt
(Search_Tag
(Comp_Iface
), Tags_List
);
4265 Next_Elmt
(Comp_Elmt
);
4267 pragma Assert
(Present
(Comp_Elmt
));
4270 Next_Elmt
(Iface_Elmt
);
4272 end Collect_Interfaces_Info
;
4274 ---------------------
4275 -- Collect_Parents --
4276 ---------------------
4278 procedure Collect_Parents
4280 List
: out Elist_Id
;
4281 Use_Full_View
: Boolean := True)
4283 Current_Typ
: Entity_Id
:= T
;
4284 Parent_Typ
: Entity_Id
;
4287 List
:= New_Elmt_List
;
4289 -- No action if the if the type has no parents
4291 if T
= Etype
(T
) then
4296 Parent_Typ
:= Etype
(Current_Typ
);
4298 if Is_Private_Type
(Parent_Typ
)
4299 and then Present
(Full_View
(Parent_Typ
))
4300 and then Use_Full_View
4302 Parent_Typ
:= Full_View
(Base_Type
(Parent_Typ
));
4305 Append_Elmt
(Parent_Typ
, List
);
4307 exit when Parent_Typ
= Current_Typ
;
4308 Current_Typ
:= Parent_Typ
;
4310 end Collect_Parents
;
4312 ----------------------------------
4313 -- Collect_Primitive_Operations --
4314 ----------------------------------
4316 function Collect_Primitive_Operations
(T
: Entity_Id
) return Elist_Id
is
4317 B_Type
: constant Entity_Id
:= Base_Type
(T
);
4318 B_Decl
: constant Node_Id
:= Original_Node
(Parent
(B_Type
));
4319 B_Scope
: Entity_Id
:= Scope
(B_Type
);
4323 Is_Type_In_Pkg
: Boolean;
4324 Formal_Derived
: Boolean := False;
4327 function Match
(E
: Entity_Id
) return Boolean;
4328 -- True if E's base type is B_Type, or E is of an anonymous access type
4329 -- and the base type of its designated type is B_Type.
4335 function Match
(E
: Entity_Id
) return Boolean is
4336 Etyp
: Entity_Id
:= Etype
(E
);
4339 if Ekind
(Etyp
) = E_Anonymous_Access_Type
then
4340 Etyp
:= Designated_Type
(Etyp
);
4343 -- In Ada 2012 a primitive operation may have a formal of an
4344 -- incomplete view of the parent type.
4346 return Base_Type
(Etyp
) = B_Type
4348 (Ada_Version
>= Ada_2012
4349 and then Ekind
(Etyp
) = E_Incomplete_Type
4350 and then Full_View
(Etyp
) = B_Type
);
4353 -- Start of processing for Collect_Primitive_Operations
4356 -- For tagged types, the primitive operations are collected as they
4357 -- are declared, and held in an explicit list which is simply returned.
4359 if Is_Tagged_Type
(B_Type
) then
4360 return Primitive_Operations
(B_Type
);
4362 -- An untagged generic type that is a derived type inherits the
4363 -- primitive operations of its parent type. Other formal types only
4364 -- have predefined operators, which are not explicitly represented.
4366 elsif Is_Generic_Type
(B_Type
) then
4367 if Nkind
(B_Decl
) = N_Formal_Type_Declaration
4368 and then Nkind
(Formal_Type_Definition
(B_Decl
)) =
4369 N_Formal_Derived_Type_Definition
4371 Formal_Derived
:= True;
4373 return New_Elmt_List
;
4377 Op_List
:= New_Elmt_List
;
4379 if B_Scope
= Standard_Standard
then
4380 if B_Type
= Standard_String
then
4381 Append_Elmt
(Standard_Op_Concat
, Op_List
);
4383 elsif B_Type
= Standard_Wide_String
then
4384 Append_Elmt
(Standard_Op_Concatw
, Op_List
);
4390 -- Locate the primitive subprograms of the type
4393 -- The primitive operations appear after the base type, except
4394 -- if the derivation happens within the private part of B_Scope
4395 -- and the type is a private type, in which case both the type
4396 -- and some primitive operations may appear before the base
4397 -- type, and the list of candidates starts after the type.
4399 if In_Open_Scopes
(B_Scope
)
4400 and then Scope
(T
) = B_Scope
4401 and then In_Private_Part
(B_Scope
)
4403 Id
:= Next_Entity
(T
);
4405 -- In Ada 2012, If the type has an incomplete partial view, there
4406 -- may be primitive operations declared before the full view, so
4407 -- we need to start scanning from the incomplete view, which is
4408 -- earlier on the entity chain.
4410 elsif Nkind
(Parent
(B_Type
)) = N_Full_Type_Declaration
4411 and then Present
(Incomplete_View
(Parent
(B_Type
)))
4413 Id
:= Defining_Entity
(Incomplete_View
(Parent
(B_Type
)));
4415 -- If T is a derived from a type with an incomplete view declared
4416 -- elsewhere, that incomplete view is irrelevant, we want the
4417 -- operations in the scope of T.
4419 if Scope
(Id
) /= Scope
(B_Type
) then
4420 Id
:= Next_Entity
(B_Type
);
4424 Id
:= Next_Entity
(B_Type
);
4427 -- Set flag if this is a type in a package spec
4430 Is_Package_Or_Generic_Package
(B_Scope
)
4432 Nkind
(Parent
(Declaration_Node
(First_Subtype
(T
)))) /=
4435 while Present
(Id
) loop
4437 -- Test whether the result type or any of the parameter types of
4438 -- each subprogram following the type match that type when the
4439 -- type is declared in a package spec, is a derived type, or the
4440 -- subprogram is marked as primitive. (The Is_Primitive test is
4441 -- needed to find primitives of nonderived types in declarative
4442 -- parts that happen to override the predefined "=" operator.)
4444 -- Note that generic formal subprograms are not considered to be
4445 -- primitive operations and thus are never inherited.
4447 if Is_Overloadable
(Id
)
4448 and then (Is_Type_In_Pkg
4449 or else Is_Derived_Type
(B_Type
)
4450 or else Is_Primitive
(Id
))
4451 and then Nkind
(Parent
(Parent
(Id
)))
4452 not in N_Formal_Subprogram_Declaration
4460 Formal
:= First_Formal
(Id
);
4461 while Present
(Formal
) loop
4462 if Match
(Formal
) then
4467 Next_Formal
(Formal
);
4471 -- For a formal derived type, the only primitives are the ones
4472 -- inherited from the parent type. Operations appearing in the
4473 -- package declaration are not primitive for it.
4476 and then (not Formal_Derived
or else Present
(Alias
(Id
)))
4478 -- In the special case of an equality operator aliased to
4479 -- an overriding dispatching equality belonging to the same
4480 -- type, we don't include it in the list of primitives.
4481 -- This avoids inheriting multiple equality operators when
4482 -- deriving from untagged private types whose full type is
4483 -- tagged, which can otherwise cause ambiguities. Note that
4484 -- this should only happen for this kind of untagged parent
4485 -- type, since normally dispatching operations are inherited
4486 -- using the type's Primitive_Operations list.
4488 if Chars
(Id
) = Name_Op_Eq
4489 and then Is_Dispatching_Operation
(Id
)
4490 and then Present
(Alias
(Id
))
4491 and then Present
(Overridden_Operation
(Alias
(Id
)))
4492 and then Base_Type
(Etype
(First_Entity
(Id
))) =
4493 Base_Type
(Etype
(First_Entity
(Alias
(Id
))))
4497 -- Include the subprogram in the list of primitives
4500 Append_Elmt
(Id
, Op_List
);
4507 -- For a type declared in System, some of its operations may
4508 -- appear in the target-specific extension to System.
4511 and then B_Scope
= RTU_Entity
(System
)
4512 and then Present_System_Aux
4514 B_Scope
:= System_Aux_Id
;
4515 Id
:= First_Entity
(System_Aux_Id
);
4521 end Collect_Primitive_Operations
;
4523 -----------------------------------
4524 -- Compile_Time_Constraint_Error --
4525 -----------------------------------
4527 function Compile_Time_Constraint_Error
4530 Ent
: Entity_Id
:= Empty
;
4531 Loc
: Source_Ptr
:= No_Location
;
4532 Warn
: Boolean := False) return Node_Id
4534 Msgc
: String (1 .. Msg
'Length + 3);
4535 -- Copy of message, with room for possible ?? or << and ! at end
4541 -- Start of processing for Compile_Time_Constraint_Error
4544 -- If this is a warning, convert it into an error if we are in code
4545 -- subject to SPARK_Mode being set On, unless Warn is True to force a
4546 -- warning. The rationale is that a compile-time constraint error should
4547 -- lead to an error instead of a warning when SPARK_Mode is On, but in
4548 -- a few cases we prefer to issue a warning and generate both a suitable
4549 -- run-time error in GNAT and a suitable check message in GNATprove.
4550 -- Those cases are those that likely correspond to deactivated SPARK
4551 -- code, so that this kind of code can be compiled and analyzed instead
4552 -- of being rejected.
4554 Error_Msg_Warn
:= Warn
or SPARK_Mode
/= On
;
4556 -- A static constraint error in an instance body is not a fatal error.
4557 -- we choose to inhibit the message altogether, because there is no
4558 -- obvious node (for now) on which to post it. On the other hand the
4559 -- offending node must be replaced with a constraint_error in any case.
4561 -- No messages are generated if we already posted an error on this node
4563 if not Error_Posted
(N
) then
4564 if Loc
/= No_Location
then
4570 -- Copy message to Msgc, converting any ? in the message into
4571 -- < instead, so that we have an error in GNATprove mode.
4575 for J
in 1 .. Msgl
loop
4576 if Msg
(J
) = '?' and then (J
= 1 or else Msg
(J
- 1) /= ''') then
4579 Msgc
(J
) := Msg
(J
);
4583 -- Message is a warning, even in Ada 95 case
4585 if Msg
(Msg
'Last) = '?' or else Msg
(Msg
'Last) = '<' then
4588 -- In Ada 83, all messages are warnings. In the private part and
4589 -- the body of an instance, constraint_checks are only warnings.
4590 -- We also make this a warning if the Warn parameter is set.
4593 or else (Ada_Version
= Ada_83
and then Comes_From_Source
(N
))
4601 elsif In_Instance_Not_Visible
then
4608 -- Otherwise we have a real error message (Ada 95 static case)
4609 -- and we make this an unconditional message. Note that in the
4610 -- warning case we do not make the message unconditional, it seems
4611 -- quite reasonable to delete messages like this (about exceptions
4612 -- that will be raised) in dead code.
4620 -- One more test, skip the warning if the related expression is
4621 -- statically unevaluated, since we don't want to warn about what
4622 -- will happen when something is evaluated if it never will be
4625 if not Is_Statically_Unevaluated
(N
) then
4626 if Present
(Ent
) then
4627 Error_Msg_NEL
(Msgc
(1 .. Msgl
), N
, Ent
, Eloc
);
4629 Error_Msg_NEL
(Msgc
(1 .. Msgl
), N
, Etype
(N
), Eloc
);
4634 -- Check whether the context is an Init_Proc
4636 if Inside_Init_Proc
then
4638 Conc_Typ
: constant Entity_Id
:=
4639 Corresponding_Concurrent_Type
4640 (Entity
(Parameter_Type
(First
4641 (Parameter_Specifications
4642 (Parent
(Current_Scope
))))));
4645 -- Don't complain if the corresponding concurrent type
4646 -- doesn't come from source (i.e. a single task/protected
4649 if Present
(Conc_Typ
)
4650 and then not Comes_From_Source
(Conc_Typ
)
4653 ("\& [<<", N
, Standard_Constraint_Error
, Eloc
);
4656 if GNATprove_Mode
then
4658 ("\& would have been raised for objects of this "
4659 & "type", N
, Standard_Constraint_Error
, Eloc
);
4662 ("\& will be raised for objects of this type??",
4663 N
, Standard_Constraint_Error
, Eloc
);
4669 Error_Msg_NEL
("\& [<<", N
, Standard_Constraint_Error
, Eloc
);
4673 Error_Msg
("\static expression fails Constraint_Check", Eloc
);
4674 Set_Error_Posted
(N
);
4680 end Compile_Time_Constraint_Error
;
4682 -----------------------
4683 -- Conditional_Delay --
4684 -----------------------
4686 procedure Conditional_Delay
(New_Ent
, Old_Ent
: Entity_Id
) is
4688 if Has_Delayed_Freeze
(Old_Ent
) and then not Is_Frozen
(Old_Ent
) then
4689 Set_Has_Delayed_Freeze
(New_Ent
);
4691 end Conditional_Delay
;
4693 ----------------------------
4694 -- Contains_Refined_State --
4695 ----------------------------
4697 function Contains_Refined_State
(Prag
: Node_Id
) return Boolean is
4698 function Has_State_In_Dependency
(List
: Node_Id
) return Boolean;
4699 -- Determine whether a dependency list mentions a state with a visible
4702 function Has_State_In_Global
(List
: Node_Id
) return Boolean;
4703 -- Determine whether a global list mentions a state with a visible
4706 function Is_Refined_State
(Item
: Node_Id
) return Boolean;
4707 -- Determine whether Item is a reference to an abstract state with a
4708 -- visible refinement.
4710 -----------------------------
4711 -- Has_State_In_Dependency --
4712 -----------------------------
4714 function Has_State_In_Dependency
(List
: Node_Id
) return Boolean is
4719 -- A null dependency list does not mention any states
4721 if Nkind
(List
) = N_Null
then
4724 -- Dependency clauses appear as component associations of an
4727 elsif Nkind
(List
) = N_Aggregate
4728 and then Present
(Component_Associations
(List
))
4730 Clause
:= First
(Component_Associations
(List
));
4731 while Present
(Clause
) loop
4733 -- Inspect the outputs of a dependency clause
4735 Output
:= First
(Choices
(Clause
));
4736 while Present
(Output
) loop
4737 if Is_Refined_State
(Output
) then
4744 -- Inspect the outputs of a dependency clause
4746 if Is_Refined_State
(Expression
(Clause
)) then
4753 -- If we get here, then none of the dependency clauses mention a
4754 -- state with visible refinement.
4758 -- An illegal pragma managed to sneak in
4761 raise Program_Error
;
4763 end Has_State_In_Dependency
;
4765 -------------------------
4766 -- Has_State_In_Global --
4767 -------------------------
4769 function Has_State_In_Global
(List
: Node_Id
) return Boolean is
4773 -- A null global list does not mention any states
4775 if Nkind
(List
) = N_Null
then
4778 -- Simple global list or moded global list declaration
4780 elsif Nkind
(List
) = N_Aggregate
then
4782 -- The declaration of a simple global list appear as a collection
4785 if Present
(Expressions
(List
)) then
4786 Item
:= First
(Expressions
(List
));
4787 while Present
(Item
) loop
4788 if Is_Refined_State
(Item
) then
4795 -- The declaration of a moded global list appears as a collection
4796 -- of component associations where individual choices denote
4800 Item
:= First
(Component_Associations
(List
));
4801 while Present
(Item
) loop
4802 if Has_State_In_Global
(Expression
(Item
)) then
4810 -- If we get here, then the simple/moded global list did not
4811 -- mention any states with a visible refinement.
4815 -- Single global item declaration
4817 elsif Is_Entity_Name
(List
) then
4818 return Is_Refined_State
(List
);
4820 -- An illegal pragma managed to sneak in
4823 raise Program_Error
;
4825 end Has_State_In_Global
;
4827 ----------------------
4828 -- Is_Refined_State --
4829 ----------------------
4831 function Is_Refined_State
(Item
: Node_Id
) return Boolean is
4833 Item_Id
: Entity_Id
;
4836 if Nkind
(Item
) = N_Null
then
4839 -- States cannot be subject to attribute 'Result. This case arises
4840 -- in dependency relations.
4842 elsif Nkind
(Item
) = N_Attribute_Reference
4843 and then Attribute_Name
(Item
) = Name_Result
4847 -- Multiple items appear as an aggregate. This case arises in
4848 -- dependency relations.
4850 elsif Nkind
(Item
) = N_Aggregate
4851 and then Present
(Expressions
(Item
))
4853 Elmt
:= First
(Expressions
(Item
));
4854 while Present
(Elmt
) loop
4855 if Is_Refined_State
(Elmt
) then
4862 -- If we get here, then none of the inputs or outputs reference a
4863 -- state with visible refinement.
4870 Item_Id
:= Entity_Of
(Item
);
4874 and then Ekind
(Item_Id
) = E_Abstract_State
4875 and then Has_Visible_Refinement
(Item_Id
);
4877 end Is_Refined_State
;
4881 Arg
: constant Node_Id
:=
4882 Get_Pragma_Arg
(First
(Pragma_Argument_Associations
(Prag
)));
4883 Nam
: constant Name_Id
:= Pragma_Name_Mapped
(Prag
);
4885 -- Start of processing for Contains_Refined_State
4888 if Nam
= Name_Depends
then
4889 return Has_State_In_Dependency
(Arg
);
4891 else pragma Assert
(Nam
= Name_Global
);
4892 return Has_State_In_Global
(Arg
);
4894 end Contains_Refined_State
;
4896 -------------------------
4897 -- Copy_Component_List --
4898 -------------------------
4900 function Copy_Component_List
4902 Loc
: Source_Ptr
) return List_Id
4905 Comps
: constant List_Id
:= New_List
;
4908 Comp
:= First_Component
(Underlying_Type
(R_Typ
));
4909 while Present
(Comp
) loop
4910 if Comes_From_Source
(Comp
) then
4912 Comp_Decl
: constant Node_Id
:= Declaration_Node
(Comp
);
4915 Make_Component_Declaration
(Loc
,
4916 Defining_Identifier
=>
4917 Make_Defining_Identifier
(Loc
, Chars
(Comp
)),
4918 Component_Definition
=>
4920 (Component_Definition
(Comp_Decl
), New_Sloc
=> Loc
)));
4924 Next_Component
(Comp
);
4928 end Copy_Component_List
;
4930 -------------------------
4931 -- Copy_Parameter_List --
4932 -------------------------
4934 function Copy_Parameter_List
(Subp_Id
: Entity_Id
) return List_Id
is
4935 Loc
: constant Source_Ptr
:= Sloc
(Subp_Id
);
4940 if No
(First_Formal
(Subp_Id
)) then
4944 Formal
:= First_Formal
(Subp_Id
);
4945 while Present
(Formal
) loop
4947 Make_Parameter_Specification
(Loc
,
4948 Defining_Identifier
=>
4949 Make_Defining_Identifier
(Sloc
(Formal
), Chars
(Formal
)),
4950 In_Present
=> In_Present
(Parent
(Formal
)),
4951 Out_Present
=> Out_Present
(Parent
(Formal
)),
4953 New_Occurrence_Of
(Etype
(Formal
), Loc
),
4955 New_Copy_Tree
(Expression
(Parent
(Formal
)))));
4957 Next_Formal
(Formal
);
4962 end Copy_Parameter_List
;
4964 --------------------------
4965 -- Copy_Subprogram_Spec --
4966 --------------------------
4968 function Copy_Subprogram_Spec
(Spec
: Node_Id
) return Node_Id
is
4970 Formal_Spec
: Node_Id
;
4974 -- The structure of the original tree must be replicated without any
4975 -- alterations. Use New_Copy_Tree for this purpose.
4977 Result
:= New_Copy_Tree
(Spec
);
4979 -- Create a new entity for the defining unit name
4981 Def_Id
:= Defining_Unit_Name
(Result
);
4982 Set_Defining_Unit_Name
(Result
,
4983 Make_Defining_Identifier
(Sloc
(Def_Id
), Chars
(Def_Id
)));
4985 -- Create new entities for the formal parameters
4987 if Present
(Parameter_Specifications
(Result
)) then
4988 Formal_Spec
:= First
(Parameter_Specifications
(Result
));
4989 while Present
(Formal_Spec
) loop
4990 Def_Id
:= Defining_Identifier
(Formal_Spec
);
4991 Set_Defining_Identifier
(Formal_Spec
,
4992 Make_Defining_Identifier
(Sloc
(Def_Id
), Chars
(Def_Id
)));
4999 end Copy_Subprogram_Spec
;
5001 --------------------------------
5002 -- Corresponding_Generic_Type --
5003 --------------------------------
5005 function Corresponding_Generic_Type
(T
: Entity_Id
) return Entity_Id
is
5011 if not Is_Generic_Actual_Type
(T
) then
5014 -- If the actual is the actual of an enclosing instance, resolution
5015 -- was correct in the generic.
5017 elsif Nkind
(Parent
(T
)) = N_Subtype_Declaration
5018 and then Is_Entity_Name
(Subtype_Indication
(Parent
(T
)))
5020 Is_Generic_Actual_Type
(Entity
(Subtype_Indication
(Parent
(T
))))
5027 if Is_Wrapper_Package
(Inst
) then
5028 Inst
:= Related_Instance
(Inst
);
5033 (Specification
(Unit_Declaration_Node
(Inst
)));
5035 -- Generic actual has the same name as the corresponding formal
5037 Typ
:= First_Entity
(Gen
);
5038 while Present
(Typ
) loop
5039 if Chars
(Typ
) = Chars
(T
) then
5048 end Corresponding_Generic_Type
;
5050 --------------------
5051 -- Current_Entity --
5052 --------------------
5054 -- The currently visible definition for a given identifier is the
5055 -- one most chained at the start of the visibility chain, i.e. the
5056 -- one that is referenced by the Node_Id value of the name of the
5057 -- given identifier.
5059 function Current_Entity
(N
: Node_Id
) return Entity_Id
is
5061 return Get_Name_Entity_Id
(Chars
(N
));
5064 -----------------------------
5065 -- Current_Entity_In_Scope --
5066 -----------------------------
5068 function Current_Entity_In_Scope
(N
: Node_Id
) return Entity_Id
is
5070 CS
: constant Entity_Id
:= Current_Scope
;
5072 Transient_Case
: constant Boolean := Scope_Is_Transient
;
5075 E
:= Get_Name_Entity_Id
(Chars
(N
));
5077 and then Scope
(E
) /= CS
5078 and then (not Transient_Case
or else Scope
(E
) /= Scope
(CS
))
5084 end Current_Entity_In_Scope
;
5090 function Current_Scope
return Entity_Id
is
5092 if Scope_Stack
.Last
= -1 then
5093 return Standard_Standard
;
5096 C
: constant Entity_Id
:=
5097 Scope_Stack
.Table
(Scope_Stack
.Last
).Entity
;
5102 return Standard_Standard
;
5108 ----------------------------
5109 -- Current_Scope_No_Loops --
5110 ----------------------------
5112 function Current_Scope_No_Loops
return Entity_Id
is
5116 -- Examine the scope stack starting from the current scope and skip any
5117 -- internally generated loops.
5120 while Present
(S
) and then S
/= Standard_Standard
loop
5121 if Ekind
(S
) = E_Loop
and then not Comes_From_Source
(S
) then
5129 end Current_Scope_No_Loops
;
5131 ------------------------
5132 -- Current_Subprogram --
5133 ------------------------
5135 function Current_Subprogram
return Entity_Id
is
5136 Scop
: constant Entity_Id
:= Current_Scope
;
5138 if Is_Subprogram_Or_Generic_Subprogram
(Scop
) then
5141 return Enclosing_Subprogram
(Scop
);
5143 end Current_Subprogram
;
5145 ----------------------------------
5146 -- Deepest_Type_Access_Level --
5147 ----------------------------------
5149 function Deepest_Type_Access_Level
(Typ
: Entity_Id
) return Uint
is
5151 if Ekind
(Typ
) = E_Anonymous_Access_Type
5152 and then not Is_Local_Anonymous_Access
(Typ
)
5153 and then Nkind
(Associated_Node_For_Itype
(Typ
)) = N_Object_Declaration
5155 -- Typ is the type of an Ada 2012 stand-alone object of an anonymous
5159 Scope_Depth
(Enclosing_Dynamic_Scope
5160 (Defining_Identifier
5161 (Associated_Node_For_Itype
(Typ
))));
5163 -- For generic formal type, return Int'Last (infinite).
5164 -- See comment preceding Is_Generic_Type call in Type_Access_Level.
5166 elsif Is_Generic_Type
(Root_Type
(Typ
)) then
5167 return UI_From_Int
(Int
'Last);
5170 return Type_Access_Level
(Typ
);
5172 end Deepest_Type_Access_Level
;
5174 ---------------------
5175 -- Defining_Entity --
5176 ---------------------
5178 function Defining_Entity
5180 Empty_On_Errors
: Boolean := False) return Entity_Id
5182 Err
: Entity_Id
:= Empty
;
5186 when N_Abstract_Subprogram_Declaration |
5187 N_Expression_Function |
5188 N_Formal_Subprogram_Declaration |
5189 N_Generic_Package_Declaration |
5190 N_Generic_Subprogram_Declaration |
5191 N_Package_Declaration |
5193 N_Subprogram_Body_Stub |
5194 N_Subprogram_Declaration |
5195 N_Subprogram_Renaming_Declaration
5197 return Defining_Entity
(Specification
(N
));
5199 when N_Component_Declaration |
5200 N_Defining_Program_Unit_Name |
5201 N_Discriminant_Specification |
5203 N_Entry_Declaration |
5204 N_Entry_Index_Specification |
5205 N_Exception_Declaration |
5206 N_Exception_Renaming_Declaration |
5207 N_Formal_Object_Declaration |
5208 N_Formal_Package_Declaration |
5209 N_Formal_Type_Declaration |
5210 N_Full_Type_Declaration |
5211 N_Implicit_Label_Declaration |
5212 N_Incomplete_Type_Declaration |
5213 N_Loop_Parameter_Specification |
5214 N_Number_Declaration |
5215 N_Object_Declaration |
5216 N_Object_Renaming_Declaration |
5217 N_Package_Body_Stub |
5218 N_Parameter_Specification |
5219 N_Private_Extension_Declaration |
5220 N_Private_Type_Declaration |
5222 N_Protected_Body_Stub |
5223 N_Protected_Type_Declaration |
5224 N_Single_Protected_Declaration |
5225 N_Single_Task_Declaration |
5226 N_Subtype_Declaration |
5229 N_Task_Type_Declaration
5231 return Defining_Identifier
(N
);
5234 return Defining_Entity
(Proper_Body
(N
));
5236 when N_Function_Instantiation |
5237 N_Function_Specification |
5238 N_Generic_Function_Renaming_Declaration |
5239 N_Generic_Package_Renaming_Declaration |
5240 N_Generic_Procedure_Renaming_Declaration |
5242 N_Package_Instantiation |
5243 N_Package_Renaming_Declaration |
5244 N_Package_Specification |
5245 N_Procedure_Instantiation |
5246 N_Procedure_Specification
5249 Nam
: constant Node_Id
:= Defining_Unit_Name
(N
);
5252 if Nkind
(Nam
) in N_Entity
then
5255 -- For Error, make up a name and attach to declaration so we
5256 -- can continue semantic analysis.
5258 elsif Nam
= Error
then
5259 if Empty_On_Errors
then
5262 Err
:= Make_Temporary
(Sloc
(N
), 'T');
5263 Set_Defining_Unit_Name
(N
, Err
);
5268 -- If not an entity, get defining identifier
5271 return Defining_Identifier
(Nam
);
5275 when N_Block_Statement |
5277 return Entity
(Identifier
(N
));
5280 if Empty_On_Errors
then
5283 raise Program_Error
;
5287 end Defining_Entity
;
5289 --------------------------
5290 -- Denotes_Discriminant --
5291 --------------------------
5293 function Denotes_Discriminant
5295 Check_Concurrent
: Boolean := False) return Boolean
5300 if not Is_Entity_Name
(N
) or else No
(Entity
(N
)) then
5306 -- If we are checking for a protected type, the discriminant may have
5307 -- been rewritten as the corresponding discriminal of the original type
5308 -- or of the corresponding concurrent record, depending on whether we
5309 -- are in the spec or body of the protected type.
5311 return Ekind
(E
) = E_Discriminant
5314 and then Ekind
(E
) = E_In_Parameter
5315 and then Present
(Discriminal_Link
(E
))
5317 (Is_Concurrent_Type
(Scope
(Discriminal_Link
(E
)))
5319 Is_Concurrent_Record_Type
(Scope
(Discriminal_Link
(E
)))));
5320 end Denotes_Discriminant
;
5322 -------------------------
5323 -- Denotes_Same_Object --
5324 -------------------------
5326 function Denotes_Same_Object
(A1
, A2
: Node_Id
) return Boolean is
5327 Obj1
: Node_Id
:= A1
;
5328 Obj2
: Node_Id
:= A2
;
5330 function Has_Prefix
(N
: Node_Id
) return Boolean;
5331 -- Return True if N has attribute Prefix
5333 function Is_Renaming
(N
: Node_Id
) return Boolean;
5334 -- Return true if N names a renaming entity
5336 function Is_Valid_Renaming
(N
: Node_Id
) return Boolean;
5337 -- For renamings, return False if the prefix of any dereference within
5338 -- the renamed object_name is a variable, or any expression within the
5339 -- renamed object_name contains references to variables or calls on
5340 -- nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))
5346 function Has_Prefix
(N
: Node_Id
) return Boolean is
5350 N_Attribute_Reference
,
5352 N_Explicit_Dereference
,
5353 N_Indexed_Component
,
5355 N_Selected_Component
,
5363 function Is_Renaming
(N
: Node_Id
) return Boolean is
5365 return Is_Entity_Name
(N
)
5366 and then Present
(Renamed_Entity
(Entity
(N
)));
5369 -----------------------
5370 -- Is_Valid_Renaming --
5371 -----------------------
5373 function Is_Valid_Renaming
(N
: Node_Id
) return Boolean is
5375 function Check_Renaming
(N
: Node_Id
) return Boolean;
5376 -- Recursive function used to traverse all the prefixes of N
5378 function Check_Renaming
(N
: Node_Id
) return Boolean is
5381 and then not Check_Renaming
(Renamed_Entity
(Entity
(N
)))
5386 if Nkind
(N
) = N_Indexed_Component
then
5391 Indx
:= First
(Expressions
(N
));
5392 while Present
(Indx
) loop
5393 if not Is_OK_Static_Expression
(Indx
) then
5402 if Has_Prefix
(N
) then
5404 P
: constant Node_Id
:= Prefix
(N
);
5407 if Nkind
(N
) = N_Explicit_Dereference
5408 and then Is_Variable
(P
)
5412 elsif Is_Entity_Name
(P
)
5413 and then Ekind
(Entity
(P
)) = E_Function
5417 elsif Nkind
(P
) = N_Function_Call
then
5421 -- Recursion to continue traversing the prefix of the
5422 -- renaming expression
5424 return Check_Renaming
(P
);
5431 -- Start of processing for Is_Valid_Renaming
5434 return Check_Renaming
(N
);
5435 end Is_Valid_Renaming
;
5437 -- Start of processing for Denotes_Same_Object
5440 -- Both names statically denote the same stand-alone object or parameter
5441 -- (RM 6.4.1(6.5/3))
5443 if Is_Entity_Name
(Obj1
)
5444 and then Is_Entity_Name
(Obj2
)
5445 and then Entity
(Obj1
) = Entity
(Obj2
)
5450 -- For renamings, the prefix of any dereference within the renamed
5451 -- object_name is not a variable, and any expression within the
5452 -- renamed object_name contains no references to variables nor
5453 -- calls on nonstatic functions (RM 6.4.1(6.10/3)).
5455 if Is_Renaming
(Obj1
) then
5456 if Is_Valid_Renaming
(Obj1
) then
5457 Obj1
:= Renamed_Entity
(Entity
(Obj1
));
5463 if Is_Renaming
(Obj2
) then
5464 if Is_Valid_Renaming
(Obj2
) then
5465 Obj2
:= Renamed_Entity
(Entity
(Obj2
));
5471 -- No match if not same node kind (such cases are handled by
5472 -- Denotes_Same_Prefix)
5474 if Nkind
(Obj1
) /= Nkind
(Obj2
) then
5477 -- After handling valid renamings, one of the two names statically
5478 -- denoted a renaming declaration whose renamed object_name is known
5479 -- to denote the same object as the other (RM 6.4.1(6.10/3))
5481 elsif Is_Entity_Name
(Obj1
) then
5482 if Is_Entity_Name
(Obj2
) then
5483 return Entity
(Obj1
) = Entity
(Obj2
);
5488 -- Both names are selected_components, their prefixes are known to
5489 -- denote the same object, and their selector_names denote the same
5490 -- component (RM 6.4.1(6.6/3)).
5492 elsif Nkind
(Obj1
) = N_Selected_Component
then
5493 return Denotes_Same_Object
(Prefix
(Obj1
), Prefix
(Obj2
))
5495 Entity
(Selector_Name
(Obj1
)) = Entity
(Selector_Name
(Obj2
));
5497 -- Both names are dereferences and the dereferenced names are known to
5498 -- denote the same object (RM 6.4.1(6.7/3))
5500 elsif Nkind
(Obj1
) = N_Explicit_Dereference
then
5501 return Denotes_Same_Object
(Prefix
(Obj1
), Prefix
(Obj2
));
5503 -- Both names are indexed_components, their prefixes are known to denote
5504 -- the same object, and each of the pairs of corresponding index values
5505 -- are either both static expressions with the same static value or both
5506 -- names that are known to denote the same object (RM 6.4.1(6.8/3))
5508 elsif Nkind
(Obj1
) = N_Indexed_Component
then
5509 if not Denotes_Same_Object
(Prefix
(Obj1
), Prefix
(Obj2
)) then
5517 Indx1
:= First
(Expressions
(Obj1
));
5518 Indx2
:= First
(Expressions
(Obj2
));
5519 while Present
(Indx1
) loop
5521 -- Indexes must denote the same static value or same object
5523 if Is_OK_Static_Expression
(Indx1
) then
5524 if not Is_OK_Static_Expression
(Indx2
) then
5527 elsif Expr_Value
(Indx1
) /= Expr_Value
(Indx2
) then
5531 elsif not Denotes_Same_Object
(Indx1
, Indx2
) then
5543 -- Both names are slices, their prefixes are known to denote the same
5544 -- object, and the two slices have statically matching index constraints
5545 -- (RM 6.4.1(6.9/3))
5547 elsif Nkind
(Obj1
) = N_Slice
5548 and then Denotes_Same_Object
(Prefix
(Obj1
), Prefix
(Obj2
))
5551 Lo1
, Lo2
, Hi1
, Hi2
: Node_Id
;
5554 Get_Index_Bounds
(Etype
(Obj1
), Lo1
, Hi1
);
5555 Get_Index_Bounds
(Etype
(Obj2
), Lo2
, Hi2
);
5557 -- Check whether bounds are statically identical. There is no
5558 -- attempt to detect partial overlap of slices.
5560 return Denotes_Same_Object
(Lo1
, Lo2
)
5562 Denotes_Same_Object
(Hi1
, Hi2
);
5565 -- In the recursion, literals appear as indexes
5567 elsif Nkind
(Obj1
) = N_Integer_Literal
5569 Nkind
(Obj2
) = N_Integer_Literal
5571 return Intval
(Obj1
) = Intval
(Obj2
);
5576 end Denotes_Same_Object
;
5578 -------------------------
5579 -- Denotes_Same_Prefix --
5580 -------------------------
5582 function Denotes_Same_Prefix
(A1
, A2
: Node_Id
) return Boolean is
5584 if Is_Entity_Name
(A1
) then
5585 if Nkind_In
(A2
, N_Selected_Component
, N_Indexed_Component
)
5586 and then not Is_Access_Type
(Etype
(A1
))
5588 return Denotes_Same_Object
(A1
, Prefix
(A2
))
5589 or else Denotes_Same_Prefix
(A1
, Prefix
(A2
));
5594 elsif Is_Entity_Name
(A2
) then
5595 return Denotes_Same_Prefix
(A1
=> A2
, A2
=> A1
);
5597 elsif Nkind_In
(A1
, N_Selected_Component
, N_Indexed_Component
, N_Slice
)
5599 Nkind_In
(A2
, N_Selected_Component
, N_Indexed_Component
, N_Slice
)
5602 Root1
, Root2
: Node_Id
;
5603 Depth1
, Depth2
: Nat
:= 0;
5606 Root1
:= Prefix
(A1
);
5607 while not Is_Entity_Name
(Root1
) loop
5609 (Root1
, N_Selected_Component
, N_Indexed_Component
)
5613 Root1
:= Prefix
(Root1
);
5616 Depth1
:= Depth1
+ 1;
5619 Root2
:= Prefix
(A2
);
5620 while not Is_Entity_Name
(Root2
) loop
5621 if not Nkind_In
(Root2
, N_Selected_Component
,
5622 N_Indexed_Component
)
5626 Root2
:= Prefix
(Root2
);
5629 Depth2
:= Depth2
+ 1;
5632 -- If both have the same depth and they do not denote the same
5633 -- object, they are disjoint and no warning is needed.
5635 if Depth1
= Depth2
then
5638 elsif Depth1
> Depth2
then
5639 Root1
:= Prefix
(A1
);
5640 for J
in 1 .. Depth1
- Depth2
- 1 loop
5641 Root1
:= Prefix
(Root1
);
5644 return Denotes_Same_Object
(Root1
, A2
);
5647 Root2
:= Prefix
(A2
);
5648 for J
in 1 .. Depth2
- Depth1
- 1 loop
5649 Root2
:= Prefix
(Root2
);
5652 return Denotes_Same_Object
(A1
, Root2
);
5659 end Denotes_Same_Prefix
;
5661 ----------------------
5662 -- Denotes_Variable --
5663 ----------------------
5665 function Denotes_Variable
(N
: Node_Id
) return Boolean is
5667 return Is_Variable
(N
) and then Paren_Count
(N
) = 0;
5668 end Denotes_Variable
;
5670 -----------------------------
5671 -- Depends_On_Discriminant --
5672 -----------------------------
5674 function Depends_On_Discriminant
(N
: Node_Id
) return Boolean is
5679 Get_Index_Bounds
(N
, L
, H
);
5680 return Denotes_Discriminant
(L
) or else Denotes_Discriminant
(H
);
5681 end Depends_On_Discriminant
;
5683 -------------------------
5684 -- Designate_Same_Unit --
5685 -------------------------
5687 function Designate_Same_Unit
5689 Name2
: Node_Id
) return Boolean
5691 K1
: constant Node_Kind
:= Nkind
(Name1
);
5692 K2
: constant Node_Kind
:= Nkind
(Name2
);
5694 function Prefix_Node
(N
: Node_Id
) return Node_Id
;
5695 -- Returns the parent unit name node of a defining program unit name
5696 -- or the prefix if N is a selected component or an expanded name.
5698 function Select_Node
(N
: Node_Id
) return Node_Id
;
5699 -- Returns the defining identifier node of a defining program unit
5700 -- name or the selector node if N is a selected component or an
5707 function Prefix_Node
(N
: Node_Id
) return Node_Id
is
5709 if Nkind
(N
) = N_Defining_Program_Unit_Name
then
5720 function Select_Node
(N
: Node_Id
) return Node_Id
is
5722 if Nkind
(N
) = N_Defining_Program_Unit_Name
then
5723 return Defining_Identifier
(N
);
5725 return Selector_Name
(N
);
5729 -- Start of processing for Designate_Same_Unit
5732 if Nkind_In
(K1
, N_Identifier
, N_Defining_Identifier
)
5734 Nkind_In
(K2
, N_Identifier
, N_Defining_Identifier
)
5736 return Chars
(Name1
) = Chars
(Name2
);
5738 elsif Nkind_In
(K1
, N_Expanded_Name
,
5739 N_Selected_Component
,
5740 N_Defining_Program_Unit_Name
)
5742 Nkind_In
(K2
, N_Expanded_Name
,
5743 N_Selected_Component
,
5744 N_Defining_Program_Unit_Name
)
5747 (Chars
(Select_Node
(Name1
)) = Chars
(Select_Node
(Name2
)))
5749 Designate_Same_Unit
(Prefix_Node
(Name1
), Prefix_Node
(Name2
));
5754 end Designate_Same_Unit
;
5756 ------------------------------------------
5757 -- function Dynamic_Accessibility_Level --
5758 ------------------------------------------
5760 function Dynamic_Accessibility_Level
(Expr
: Node_Id
) return Node_Id
is
5762 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
5764 function Make_Level_Literal
(Level
: Uint
) return Node_Id
;
5765 -- Construct an integer literal representing an accessibility level
5766 -- with its type set to Natural.
5768 ------------------------
5769 -- Make_Level_Literal --
5770 ------------------------
5772 function Make_Level_Literal
(Level
: Uint
) return Node_Id
is
5773 Result
: constant Node_Id
:= Make_Integer_Literal
(Loc
, Level
);
5775 Set_Etype
(Result
, Standard_Natural
);
5777 end Make_Level_Literal
;
5779 -- Start of processing for Dynamic_Accessibility_Level
5782 if Is_Entity_Name
(Expr
) then
5785 if Present
(Renamed_Object
(E
)) then
5786 return Dynamic_Accessibility_Level
(Renamed_Object
(E
));
5789 if Is_Formal
(E
) or else Ekind_In
(E
, E_Variable
, E_Constant
) then
5790 if Present
(Extra_Accessibility
(E
)) then
5791 return New_Occurrence_Of
(Extra_Accessibility
(E
), Loc
);
5796 -- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???
5798 case Nkind
(Expr
) is
5800 -- For access discriminant, the level of the enclosing object
5802 when N_Selected_Component
=>
5803 if Ekind
(Entity
(Selector_Name
(Expr
))) = E_Discriminant
5804 and then Ekind
(Etype
(Entity
(Selector_Name
(Expr
)))) =
5805 E_Anonymous_Access_Type
5807 return Make_Level_Literal
(Object_Access_Level
(Expr
));
5810 when N_Attribute_Reference
=>
5811 case Get_Attribute_Id
(Attribute_Name
(Expr
)) is
5813 -- For X'Access, the level of the prefix X
5815 when Attribute_Access
=>
5816 return Make_Level_Literal
5817 (Object_Access_Level
(Prefix
(Expr
)));
5819 -- Treat the unchecked attributes as library-level
5821 when Attribute_Unchecked_Access |
5822 Attribute_Unrestricted_Access
=>
5823 return Make_Level_Literal
(Scope_Depth
(Standard_Standard
));
5825 -- No other access-valued attributes
5828 raise Program_Error
;
5833 -- Unimplemented: depends on context. As an actual parameter where
5834 -- formal type is anonymous, use
5835 -- Scope_Depth (Current_Scope) + 1.
5836 -- For other cases, see 3.10.2(14/3) and following. ???
5840 when N_Type_Conversion
=>
5841 if not Is_Local_Anonymous_Access
(Etype
(Expr
)) then
5843 -- Handle type conversions introduced for a rename of an
5844 -- Ada 2012 stand-alone object of an anonymous access type.
5846 return Dynamic_Accessibility_Level
(Expression
(Expr
));
5853 return Make_Level_Literal
(Type_Access_Level
(Etype
(Expr
)));
5854 end Dynamic_Accessibility_Level
;
5856 -----------------------------------
5857 -- Effective_Extra_Accessibility --
5858 -----------------------------------
5860 function Effective_Extra_Accessibility
(Id
: Entity_Id
) return Entity_Id
is
5862 if Present
(Renamed_Object
(Id
))
5863 and then Is_Entity_Name
(Renamed_Object
(Id
))
5865 return Effective_Extra_Accessibility
(Entity
(Renamed_Object
(Id
)));
5867 return Extra_Accessibility
(Id
);
5869 end Effective_Extra_Accessibility
;
5871 -----------------------------
5872 -- Effective_Reads_Enabled --
5873 -----------------------------
5875 function Effective_Reads_Enabled
(Id
: Entity_Id
) return Boolean is
5877 return Has_Enabled_Property
(Id
, Name_Effective_Reads
);
5878 end Effective_Reads_Enabled
;
5880 ------------------------------
5881 -- Effective_Writes_Enabled --
5882 ------------------------------
5884 function Effective_Writes_Enabled
(Id
: Entity_Id
) return Boolean is
5886 return Has_Enabled_Property
(Id
, Name_Effective_Writes
);
5887 end Effective_Writes_Enabled
;
5889 ------------------------------
5890 -- Enclosing_Comp_Unit_Node --
5891 ------------------------------
5893 function Enclosing_Comp_Unit_Node
(N
: Node_Id
) return Node_Id
is
5894 Current_Node
: Node_Id
;
5898 while Present
(Current_Node
)
5899 and then Nkind
(Current_Node
) /= N_Compilation_Unit
5901 Current_Node
:= Parent
(Current_Node
);
5904 if Nkind
(Current_Node
) /= N_Compilation_Unit
then
5907 return Current_Node
;
5909 end Enclosing_Comp_Unit_Node
;
5911 --------------------------
5912 -- Enclosing_CPP_Parent --
5913 --------------------------
5915 function Enclosing_CPP_Parent
(Typ
: Entity_Id
) return Entity_Id
is
5916 Parent_Typ
: Entity_Id
:= Typ
;
5919 while not Is_CPP_Class
(Parent_Typ
)
5920 and then Etype
(Parent_Typ
) /= Parent_Typ
5922 Parent_Typ
:= Etype
(Parent_Typ
);
5924 if Is_Private_Type
(Parent_Typ
) then
5925 Parent_Typ
:= Full_View
(Base_Type
(Parent_Typ
));
5929 pragma Assert
(Is_CPP_Class
(Parent_Typ
));
5931 end Enclosing_CPP_Parent
;
5933 ---------------------------
5934 -- Enclosing_Declaration --
5935 ---------------------------
5937 function Enclosing_Declaration
(N
: Node_Id
) return Node_Id
is
5938 Decl
: Node_Id
:= N
;
5941 while Present
(Decl
)
5942 and then not (Nkind
(Decl
) in N_Declaration
5944 Nkind
(Decl
) in N_Later_Decl_Item
)
5946 Decl
:= Parent
(Decl
);
5950 end Enclosing_Declaration
;
5952 ----------------------------
5953 -- Enclosing_Generic_Body --
5954 ----------------------------
5956 function Enclosing_Generic_Body
5957 (N
: Node_Id
) return Node_Id
5965 while Present
(P
) loop
5966 if Nkind
(P
) = N_Package_Body
5967 or else Nkind
(P
) = N_Subprogram_Body
5969 Spec
:= Corresponding_Spec
(P
);
5971 if Present
(Spec
) then
5972 Decl
:= Unit_Declaration_Node
(Spec
);
5974 if Nkind
(Decl
) = N_Generic_Package_Declaration
5975 or else Nkind
(Decl
) = N_Generic_Subprogram_Declaration
5986 end Enclosing_Generic_Body
;
5988 ----------------------------
5989 -- Enclosing_Generic_Unit --
5990 ----------------------------
5992 function Enclosing_Generic_Unit
5993 (N
: Node_Id
) return Node_Id
6001 while Present
(P
) loop
6002 if Nkind
(P
) = N_Generic_Package_Declaration
6003 or else Nkind
(P
) = N_Generic_Subprogram_Declaration
6007 elsif Nkind
(P
) = N_Package_Body
6008 or else Nkind
(P
) = N_Subprogram_Body
6010 Spec
:= Corresponding_Spec
(P
);
6012 if Present
(Spec
) then
6013 Decl
:= Unit_Declaration_Node
(Spec
);
6015 if Nkind
(Decl
) = N_Generic_Package_Declaration
6016 or else Nkind
(Decl
) = N_Generic_Subprogram_Declaration
6027 end Enclosing_Generic_Unit
;
6029 -------------------------------
6030 -- Enclosing_Lib_Unit_Entity --
6031 -------------------------------
6033 function Enclosing_Lib_Unit_Entity
6034 (E
: Entity_Id
:= Current_Scope
) return Entity_Id
6036 Unit_Entity
: Entity_Id
;
6039 -- Look for enclosing library unit entity by following scope links.
6040 -- Equivalent to, but faster than indexing through the scope stack.
6043 while (Present
(Scope
(Unit_Entity
))
6044 and then Scope
(Unit_Entity
) /= Standard_Standard
)
6045 and not Is_Child_Unit
(Unit_Entity
)
6047 Unit_Entity
:= Scope
(Unit_Entity
);
6051 end Enclosing_Lib_Unit_Entity
;
6053 -----------------------------
6054 -- Enclosing_Lib_Unit_Node --
6055 -----------------------------
6057 function Enclosing_Lib_Unit_Node
(N
: Node_Id
) return Node_Id
is
6058 Encl_Unit
: Node_Id
;
6061 Encl_Unit
:= Enclosing_Comp_Unit_Node
(N
);
6062 while Present
(Encl_Unit
)
6063 and then Nkind
(Unit
(Encl_Unit
)) = N_Subunit
6065 Encl_Unit
:= Library_Unit
(Encl_Unit
);
6068 pragma Assert
(Nkind
(Encl_Unit
) = N_Compilation_Unit
);
6070 end Enclosing_Lib_Unit_Node
;
6072 -----------------------
6073 -- Enclosing_Package --
6074 -----------------------
6076 function Enclosing_Package
(E
: Entity_Id
) return Entity_Id
is
6077 Dynamic_Scope
: constant Entity_Id
:= Enclosing_Dynamic_Scope
(E
);
6080 if Dynamic_Scope
= Standard_Standard
then
6081 return Standard_Standard
;
6083 elsif Dynamic_Scope
= Empty
then
6086 elsif Ekind_In
(Dynamic_Scope
, E_Package
, E_Package_Body
,
6089 return Dynamic_Scope
;
6092 return Enclosing_Package
(Dynamic_Scope
);
6094 end Enclosing_Package
;
6096 -------------------------------------
6097 -- Enclosing_Package_Or_Subprogram --
6098 -------------------------------------
6100 function Enclosing_Package_Or_Subprogram
(E
: Entity_Id
) return Entity_Id
is
6105 while Present
(S
) loop
6106 if Is_Package_Or_Generic_Package
(S
)
6107 or else Ekind
(S
) = E_Package_Body
6111 elsif Is_Subprogram_Or_Generic_Subprogram
(S
)
6112 or else Ekind
(S
) = E_Subprogram_Body
6122 end Enclosing_Package_Or_Subprogram
;
6124 --------------------------
6125 -- Enclosing_Subprogram --
6126 --------------------------
6128 function Enclosing_Subprogram
(E
: Entity_Id
) return Entity_Id
is
6129 Dynamic_Scope
: constant Entity_Id
:= Enclosing_Dynamic_Scope
(E
);
6132 if Dynamic_Scope
= Standard_Standard
then
6135 elsif Dynamic_Scope
= Empty
then
6138 elsif Ekind
(Dynamic_Scope
) = E_Subprogram_Body
then
6139 return Corresponding_Spec
(Parent
(Parent
(Dynamic_Scope
)));
6141 elsif Ekind
(Dynamic_Scope
) = E_Block
6142 or else Ekind
(Dynamic_Scope
) = E_Return_Statement
6144 return Enclosing_Subprogram
(Dynamic_Scope
);
6146 elsif Ekind
(Dynamic_Scope
) = E_Task_Type
then
6147 return Get_Task_Body_Procedure
(Dynamic_Scope
);
6149 elsif Ekind
(Dynamic_Scope
) = E_Limited_Private_Type
6150 and then Present
(Full_View
(Dynamic_Scope
))
6151 and then Ekind
(Full_View
(Dynamic_Scope
)) = E_Task_Type
6153 return Get_Task_Body_Procedure
(Full_View
(Dynamic_Scope
));
6155 -- No body is generated if the protected operation is eliminated
6157 elsif Convention
(Dynamic_Scope
) = Convention_Protected
6158 and then not Is_Eliminated
(Dynamic_Scope
)
6159 and then Present
(Protected_Body_Subprogram
(Dynamic_Scope
))
6161 return Protected_Body_Subprogram
(Dynamic_Scope
);
6164 return Dynamic_Scope
;
6166 end Enclosing_Subprogram
;
6168 ------------------------
6169 -- Ensure_Freeze_Node --
6170 ------------------------
6172 procedure Ensure_Freeze_Node
(E
: Entity_Id
) is
6175 if No
(Freeze_Node
(E
)) then
6176 FN
:= Make_Freeze_Entity
(Sloc
(E
));
6177 Set_Has_Delayed_Freeze
(E
);
6178 Set_Freeze_Node
(E
, FN
);
6179 Set_Access_Types_To_Process
(FN
, No_Elist
);
6180 Set_TSS_Elist
(FN
, No_Elist
);
6183 end Ensure_Freeze_Node
;
6189 procedure Enter_Name
(Def_Id
: Entity_Id
) is
6190 C
: constant Entity_Id
:= Current_Entity
(Def_Id
);
6191 E
: constant Entity_Id
:= Current_Entity_In_Scope
(Def_Id
);
6192 S
: constant Entity_Id
:= Current_Scope
;
6195 Generate_Definition
(Def_Id
);
6197 -- Add new name to current scope declarations. Check for duplicate
6198 -- declaration, which may or may not be a genuine error.
6202 -- Case of previous entity entered because of a missing declaration
6203 -- or else a bad subtype indication. Best is to use the new entity,
6204 -- and make the previous one invisible.
6206 if Etype
(E
) = Any_Type
then
6207 Set_Is_Immediately_Visible
(E
, False);
6209 -- Case of renaming declaration constructed for package instances.
6210 -- if there is an explicit declaration with the same identifier,
6211 -- the renaming is not immediately visible any longer, but remains
6212 -- visible through selected component notation.
6214 elsif Nkind
(Parent
(E
)) = N_Package_Renaming_Declaration
6215 and then not Comes_From_Source
(E
)
6217 Set_Is_Immediately_Visible
(E
, False);
6219 -- The new entity may be the package renaming, which has the same
6220 -- same name as a generic formal which has been seen already.
6222 elsif Nkind
(Parent
(Def_Id
)) = N_Package_Renaming_Declaration
6223 and then not Comes_From_Source
(Def_Id
)
6225 Set_Is_Immediately_Visible
(E
, False);
6227 -- For a fat pointer corresponding to a remote access to subprogram,
6228 -- we use the same identifier as the RAS type, so that the proper
6229 -- name appears in the stub. This type is only retrieved through
6230 -- the RAS type and never by visibility, and is not added to the
6231 -- visibility list (see below).
6233 elsif Nkind
(Parent
(Def_Id
)) = N_Full_Type_Declaration
6234 and then Ekind
(Def_Id
) = E_Record_Type
6235 and then Present
(Corresponding_Remote_Type
(Def_Id
))
6239 -- Case of an implicit operation or derived literal. The new entity
6240 -- hides the implicit one, which is removed from all visibility,
6241 -- i.e. the entity list of its scope, and homonym chain of its name.
6243 elsif (Is_Overloadable
(E
) and then Is_Inherited_Operation
(E
))
6244 or else Is_Internal
(E
)
6247 Decl
: constant Node_Id
:= Parent
(E
);
6249 Prev_Vis
: Entity_Id
;
6252 -- If E is an implicit declaration, it cannot be the first
6253 -- entity in the scope.
6255 Prev
:= First_Entity
(Current_Scope
);
6256 while Present
(Prev
) and then Next_Entity
(Prev
) /= E
loop
6262 -- If E is not on the entity chain of the current scope,
6263 -- it is an implicit declaration in the generic formal
6264 -- part of a generic subprogram. When analyzing the body,
6265 -- the generic formals are visible but not on the entity
6266 -- chain of the subprogram. The new entity will become
6267 -- the visible one in the body.
6270 (Nkind
(Parent
(Decl
)) = N_Generic_Subprogram_Declaration
);
6274 Set_Next_Entity
(Prev
, Next_Entity
(E
));
6276 if No
(Next_Entity
(Prev
)) then
6277 Set_Last_Entity
(Current_Scope
, Prev
);
6280 if E
= Current_Entity
(E
) then
6284 Prev_Vis
:= Current_Entity
(E
);
6285 while Homonym
(Prev_Vis
) /= E
loop
6286 Prev_Vis
:= Homonym
(Prev_Vis
);
6290 if Present
(Prev_Vis
) then
6292 -- Skip E in the visibility chain
6294 Set_Homonym
(Prev_Vis
, Homonym
(E
));
6297 Set_Name_Entity_Id
(Chars
(E
), Homonym
(E
));
6302 -- This section of code could use a comment ???
6304 elsif Present
(Etype
(E
))
6305 and then Is_Concurrent_Type
(Etype
(E
))
6310 -- If the homograph is a protected component renaming, it should not
6311 -- be hiding the current entity. Such renamings are treated as weak
6314 elsif Is_Prival
(E
) then
6315 Set_Is_Immediately_Visible
(E
, False);
6317 -- In this case the current entity is a protected component renaming.
6318 -- Perform minimal decoration by setting the scope and return since
6319 -- the prival should not be hiding other visible entities.
6321 elsif Is_Prival
(Def_Id
) then
6322 Set_Scope
(Def_Id
, Current_Scope
);
6325 -- Analogous to privals, the discriminal generated for an entry index
6326 -- parameter acts as a weak declaration. Perform minimal decoration
6327 -- to avoid bogus errors.
6329 elsif Is_Discriminal
(Def_Id
)
6330 and then Ekind
(Discriminal_Link
(Def_Id
)) = E_Entry_Index_Parameter
6332 Set_Scope
(Def_Id
, Current_Scope
);
6335 -- In the body or private part of an instance, a type extension may
6336 -- introduce a component with the same name as that of an actual. The
6337 -- legality rule is not enforced, but the semantics of the full type
6338 -- with two components of same name are not clear at this point???
6340 elsif In_Instance_Not_Visible
then
6343 -- When compiling a package body, some child units may have become
6344 -- visible. They cannot conflict with local entities that hide them.
6346 elsif Is_Child_Unit
(E
)
6347 and then In_Open_Scopes
(Scope
(E
))
6348 and then not Is_Immediately_Visible
(E
)
6352 -- Conversely, with front-end inlining we may compile the parent body
6353 -- first, and a child unit subsequently. The context is now the
6354 -- parent spec, and body entities are not visible.
6356 elsif Is_Child_Unit
(Def_Id
)
6357 and then Is_Package_Body_Entity
(E
)
6358 and then not In_Package_Body
(Current_Scope
)
6362 -- Case of genuine duplicate declaration
6365 Error_Msg_Sloc
:= Sloc
(E
);
6367 -- If the previous declaration is an incomplete type declaration
6368 -- this may be an attempt to complete it with a private type. The
6369 -- following avoids confusing cascaded errors.
6371 if Nkind
(Parent
(E
)) = N_Incomplete_Type_Declaration
6372 and then Nkind
(Parent
(Def_Id
)) = N_Private_Type_Declaration
6375 ("incomplete type cannot be completed with a private " &
6376 "declaration", Parent
(Def_Id
));
6377 Set_Is_Immediately_Visible
(E
, False);
6378 Set_Full_View
(E
, Def_Id
);
6380 -- An inherited component of a record conflicts with a new
6381 -- discriminant. The discriminant is inserted first in the scope,
6382 -- but the error should be posted on it, not on the component.
6384 elsif Ekind
(E
) = E_Discriminant
6385 and then Present
(Scope
(Def_Id
))
6386 and then Scope
(Def_Id
) /= Current_Scope
6388 Error_Msg_Sloc
:= Sloc
(Def_Id
);
6389 Error_Msg_N
("& conflicts with declaration#", E
);
6392 -- If the name of the unit appears in its own context clause, a
6393 -- dummy package with the name has already been created, and the
6394 -- error emitted. Try to continue quietly.
6396 elsif Error_Posted
(E
)
6397 and then Sloc
(E
) = No_Location
6398 and then Nkind
(Parent
(E
)) = N_Package_Specification
6399 and then Current_Scope
= Standard_Standard
6401 Set_Scope
(Def_Id
, Current_Scope
);
6405 Error_Msg_N
("& conflicts with declaration#", Def_Id
);
6407 -- Avoid cascaded messages with duplicate components in
6410 if Ekind_In
(E
, E_Component
, E_Discriminant
) then
6415 if Nkind
(Parent
(Parent
(Def_Id
))) =
6416 N_Generic_Subprogram_Declaration
6418 Defining_Entity
(Specification
(Parent
(Parent
(Def_Id
))))
6420 Error_Msg_N
("\generic units cannot be overloaded", Def_Id
);
6423 -- If entity is in standard, then we are in trouble, because it
6424 -- means that we have a library package with a duplicated name.
6425 -- That's hard to recover from, so abort.
6427 if S
= Standard_Standard
then
6428 raise Unrecoverable_Error
;
6430 -- Otherwise we continue with the declaration. Having two
6431 -- identical declarations should not cause us too much trouble.
6439 -- If we fall through, declaration is OK, at least OK enough to continue
6441 -- If Def_Id is a discriminant or a record component we are in the midst
6442 -- of inheriting components in a derived record definition. Preserve
6443 -- their Ekind and Etype.
6445 if Ekind_In
(Def_Id
, E_Discriminant
, E_Component
) then
6448 -- If a type is already set, leave it alone (happens when a type
6449 -- declaration is reanalyzed following a call to the optimizer).
6451 elsif Present
(Etype
(Def_Id
)) then
6454 -- Otherwise, the kind E_Void insures that premature uses of the entity
6455 -- will be detected. Any_Type insures that no cascaded errors will occur
6458 Set_Ekind
(Def_Id
, E_Void
);
6459 Set_Etype
(Def_Id
, Any_Type
);
6462 -- Inherited discriminants and components in derived record types are
6463 -- immediately visible. Itypes are not.
6465 -- Unless the Itype is for a record type with a corresponding remote
6466 -- type (what is that about, it was not commented ???)
6468 if Ekind_In
(Def_Id
, E_Discriminant
, E_Component
)
6470 ((not Is_Record_Type
(Def_Id
)
6471 or else No
(Corresponding_Remote_Type
(Def_Id
)))
6472 and then not Is_Itype
(Def_Id
))
6474 Set_Is_Immediately_Visible
(Def_Id
);
6475 Set_Current_Entity
(Def_Id
);
6478 Set_Homonym
(Def_Id
, C
);
6479 Append_Entity
(Def_Id
, S
);
6480 Set_Public_Status
(Def_Id
);
6482 -- Declaring a homonym is not allowed in SPARK ...
6484 if Present
(C
) and then Restriction_Check_Required
(SPARK_05
) then
6486 Enclosing_Subp
: constant Node_Id
:= Enclosing_Subprogram
(Def_Id
);
6487 Enclosing_Pack
: constant Node_Id
:= Enclosing_Package
(Def_Id
);
6488 Other_Scope
: constant Node_Id
:= Enclosing_Dynamic_Scope
(C
);
6491 -- ... unless the new declaration is in a subprogram, and the
6492 -- visible declaration is a variable declaration or a parameter
6493 -- specification outside that subprogram.
6495 if Present
(Enclosing_Subp
)
6496 and then Nkind_In
(Parent
(C
), N_Object_Declaration
,
6497 N_Parameter_Specification
)
6498 and then not Scope_Within_Or_Same
(Other_Scope
, Enclosing_Subp
)
6502 -- ... or the new declaration is in a package, and the visible
6503 -- declaration occurs outside that package.
6505 elsif Present
(Enclosing_Pack
)
6506 and then not Scope_Within_Or_Same
(Other_Scope
, Enclosing_Pack
)
6510 -- ... or the new declaration is a component declaration in a
6511 -- record type definition.
6513 elsif Nkind
(Parent
(Def_Id
)) = N_Component_Declaration
then
6516 -- Don't issue error for non-source entities
6518 elsif Comes_From_Source
(Def_Id
)
6519 and then Comes_From_Source
(C
)
6521 Error_Msg_Sloc
:= Sloc
(C
);
6522 Check_SPARK_05_Restriction
6523 ("redeclaration of identifier &#", Def_Id
);
6528 -- Warn if new entity hides an old one
6530 if Warn_On_Hiding
and then Present
(C
)
6532 -- Don't warn for record components since they always have a well
6533 -- defined scope which does not confuse other uses. Note that in
6534 -- some cases, Ekind has not been set yet.
6536 and then Ekind
(C
) /= E_Component
6537 and then Ekind
(C
) /= E_Discriminant
6538 and then Nkind
(Parent
(C
)) /= N_Component_Declaration
6539 and then Ekind
(Def_Id
) /= E_Component
6540 and then Ekind
(Def_Id
) /= E_Discriminant
6541 and then Nkind
(Parent
(Def_Id
)) /= N_Component_Declaration
6543 -- Don't warn for one character variables. It is too common to use
6544 -- such variables as locals and will just cause too many false hits.
6546 and then Length_Of_Name
(Chars
(C
)) /= 1
6548 -- Don't warn for non-source entities
6550 and then Comes_From_Source
(C
)
6551 and then Comes_From_Source
(Def_Id
)
6553 -- Don't warn unless entity in question is in extended main source
6555 and then In_Extended_Main_Source_Unit
(Def_Id
)
6557 -- Finally, the hidden entity must be either immediately visible or
6558 -- use visible (i.e. from a used package).
6561 (Is_Immediately_Visible
(C
)
6563 Is_Potentially_Use_Visible
(C
))
6565 Error_Msg_Sloc
:= Sloc
(C
);
6566 Error_Msg_N
("declaration hides &#?h?", Def_Id
);
6574 function Entity_Of
(N
: Node_Id
) return Entity_Id
is
6580 if Is_Entity_Name
(N
) then
6583 -- Follow a possible chain of renamings to reach the root renamed
6587 and then Is_Object
(Id
)
6588 and then Present
(Renamed_Object
(Id
))
6590 if Is_Entity_Name
(Renamed_Object
(Id
)) then
6591 Id
:= Entity
(Renamed_Object
(Id
));
6602 --------------------------
6603 -- Explain_Limited_Type --
6604 --------------------------
6606 procedure Explain_Limited_Type
(T
: Entity_Id
; N
: Node_Id
) is
6610 -- For array, component type must be limited
6612 if Is_Array_Type
(T
) then
6613 Error_Msg_Node_2
:= T
;
6615 ("\component type& of type& is limited", N
, Component_Type
(T
));
6616 Explain_Limited_Type
(Component_Type
(T
), N
);
6618 elsif Is_Record_Type
(T
) then
6620 -- No need for extra messages if explicit limited record
6622 if Is_Limited_Record
(Base_Type
(T
)) then
6626 -- Otherwise find a limited component. Check only components that
6627 -- come from source, or inherited components that appear in the
6628 -- source of the ancestor.
6630 C
:= First_Component
(T
);
6631 while Present
(C
) loop
6632 if Is_Limited_Type
(Etype
(C
))
6634 (Comes_From_Source
(C
)
6636 (Present
(Original_Record_Component
(C
))
6638 Comes_From_Source
(Original_Record_Component
(C
))))
6640 Error_Msg_Node_2
:= T
;
6641 Error_Msg_NE
("\component& of type& has limited type", N
, C
);
6642 Explain_Limited_Type
(Etype
(C
), N
);
6649 -- The type may be declared explicitly limited, even if no component
6650 -- of it is limited, in which case we fall out of the loop.
6653 end Explain_Limited_Type
;
6655 -------------------------------
6656 -- Extensions_Visible_Status --
6657 -------------------------------
6659 function Extensions_Visible_Status
6660 (Id
: Entity_Id
) return Extensions_Visible_Mode
6669 -- When a formal parameter is subject to Extensions_Visible, the pragma
6670 -- is stored in the contract of related subprogram.
6672 if Is_Formal
(Id
) then
6675 elsif Is_Subprogram_Or_Generic_Subprogram
(Id
) then
6678 -- No other construct carries this pragma
6681 return Extensions_Visible_None
;
6684 Prag
:= Get_Pragma
(Subp
, Pragma_Extensions_Visible
);
6686 -- In certain cases analysis may request the Extensions_Visible status
6687 -- of an expression function before the pragma has been analyzed yet.
6688 -- Inspect the declarative items after the expression function looking
6689 -- for the pragma (if any).
6691 if No
(Prag
) and then Is_Expression_Function
(Subp
) then
6692 Decl
:= Next
(Unit_Declaration_Node
(Subp
));
6693 while Present
(Decl
) loop
6694 if Nkind
(Decl
) = N_Pragma
6695 and then Pragma_Name_Mapped
(Decl
) = Name_Extensions_Visible
6700 -- A source construct ends the region where Extensions_Visible may
6701 -- appear, stop the traversal. An expanded expression function is
6702 -- no longer a source construct, but it must still be recognized.
6704 elsif Comes_From_Source
(Decl
)
6706 (Nkind_In
(Decl
, N_Subprogram_Body
,
6707 N_Subprogram_Declaration
)
6708 and then Is_Expression_Function
(Defining_Entity
(Decl
)))
6717 -- Extract the value from the Boolean expression (if any)
6719 if Present
(Prag
) then
6720 Arg
:= First
(Pragma_Argument_Associations
(Prag
));
6722 if Present
(Arg
) then
6723 Expr
:= Get_Pragma_Arg
(Arg
);
6725 -- When the associated subprogram is an expression function, the
6726 -- argument of the pragma may not have been analyzed.
6728 if not Analyzed
(Expr
) then
6729 Preanalyze_And_Resolve
(Expr
, Standard_Boolean
);
6732 -- Guard against cascading errors when the argument of pragma
6733 -- Extensions_Visible is not a valid static Boolean expression.
6735 if Error_Posted
(Expr
) then
6736 return Extensions_Visible_None
;
6738 elsif Is_True
(Expr_Value
(Expr
)) then
6739 return Extensions_Visible_True
;
6742 return Extensions_Visible_False
;
6745 -- Otherwise the aspect or pragma defaults to True
6748 return Extensions_Visible_True
;
6751 -- Otherwise aspect or pragma Extensions_Visible is not inherited or
6752 -- directly specified. In SPARK code, its value defaults to "False".
6754 elsif SPARK_Mode
= On
then
6755 return Extensions_Visible_False
;
6757 -- In non-SPARK code, aspect or pragma Extensions_Visible defaults to
6761 return Extensions_Visible_True
;
6763 end Extensions_Visible_Status
;
6769 procedure Find_Actual
6771 Formal
: out Entity_Id
;
6774 Context
: constant Node_Id
:= Parent
(N
);
6779 if Nkind_In
(Context
, N_Indexed_Component
, N_Selected_Component
)
6780 and then N
= Prefix
(Context
)
6782 Find_Actual
(Context
, Formal
, Call
);
6785 elsif Nkind
(Context
) = N_Parameter_Association
6786 and then N
= Explicit_Actual_Parameter
(Context
)
6788 Call
:= Parent
(Context
);
6790 elsif Nkind_In
(Context
, N_Entry_Call_Statement
,
6792 N_Procedure_Call_Statement
)
6802 -- If we have a call to a subprogram look for the parameter. Note that
6803 -- we exclude overloaded calls, since we don't know enough to be sure
6804 -- of giving the right answer in this case.
6806 if Nkind_In
(Call
, N_Entry_Call_Statement
,
6808 N_Procedure_Call_Statement
)
6810 Call_Nam
:= Name
(Call
);
6812 -- A call to a protected or task entry appears as a selected
6813 -- component rather than an expanded name.
6815 if Nkind
(Call_Nam
) = N_Selected_Component
then
6816 Call_Nam
:= Selector_Name
(Call_Nam
);
6819 if Is_Entity_Name
(Call_Nam
)
6820 and then Present
(Entity
(Call_Nam
))
6821 and then Is_Overloadable
(Entity
(Call_Nam
))
6822 and then not Is_Overloaded
(Call_Nam
)
6824 -- If node is name in call it is not an actual
6826 if N
= Call_Nam
then
6832 -- Fall here if we are definitely a parameter
6834 Actual
:= First_Actual
(Call
);
6835 Formal
:= First_Formal
(Entity
(Call_Nam
));
6836 while Present
(Formal
) and then Present
(Actual
) loop
6840 -- An actual that is the prefix in a prefixed call may have
6841 -- been rewritten in the call, after the deferred reference
6842 -- was collected. Check if sloc and kinds and names match.
6844 elsif Sloc
(Actual
) = Sloc
(N
)
6845 and then Nkind
(Actual
) = N_Identifier
6846 and then Nkind
(Actual
) = Nkind
(N
)
6847 and then Chars
(Actual
) = Chars
(N
)
6852 Actual
:= Next_Actual
(Actual
);
6853 Formal
:= Next_Formal
(Formal
);
6859 -- Fall through here if we did not find matching actual
6865 ---------------------------
6866 -- Find_Body_Discriminal --
6867 ---------------------------
6869 function Find_Body_Discriminal
6870 (Spec_Discriminant
: Entity_Id
) return Entity_Id
6876 -- If expansion is suppressed, then the scope can be the concurrent type
6877 -- itself rather than a corresponding concurrent record type.
6879 if Is_Concurrent_Type
(Scope
(Spec_Discriminant
)) then
6880 Tsk
:= Scope
(Spec_Discriminant
);
6883 pragma Assert
(Is_Concurrent_Record_Type
(Scope
(Spec_Discriminant
)));
6885 Tsk
:= Corresponding_Concurrent_Type
(Scope
(Spec_Discriminant
));
6888 -- Find discriminant of original concurrent type, and use its current
6889 -- discriminal, which is the renaming within the task/protected body.
6891 Disc
:= First_Discriminant
(Tsk
);
6892 while Present
(Disc
) loop
6893 if Chars
(Disc
) = Chars
(Spec_Discriminant
) then
6894 return Discriminal
(Disc
);
6897 Next_Discriminant
(Disc
);
6900 -- That loop should always succeed in finding a matching entry and
6901 -- returning. Fatal error if not.
6903 raise Program_Error
;
6904 end Find_Body_Discriminal
;
6906 -------------------------------------
6907 -- Find_Corresponding_Discriminant --
6908 -------------------------------------
6910 function Find_Corresponding_Discriminant
6912 Typ
: Entity_Id
) return Entity_Id
6914 Par_Disc
: Entity_Id
;
6915 Old_Disc
: Entity_Id
;
6916 New_Disc
: Entity_Id
;
6919 Par_Disc
:= Original_Record_Component
(Original_Discriminant
(Id
));
6921 -- The original type may currently be private, and the discriminant
6922 -- only appear on its full view.
6924 if Is_Private_Type
(Scope
(Par_Disc
))
6925 and then not Has_Discriminants
(Scope
(Par_Disc
))
6926 and then Present
(Full_View
(Scope
(Par_Disc
)))
6928 Old_Disc
:= First_Discriminant
(Full_View
(Scope
(Par_Disc
)));
6930 Old_Disc
:= First_Discriminant
(Scope
(Par_Disc
));
6933 if Is_Class_Wide_Type
(Typ
) then
6934 New_Disc
:= First_Discriminant
(Root_Type
(Typ
));
6936 New_Disc
:= First_Discriminant
(Typ
);
6939 while Present
(Old_Disc
) and then Present
(New_Disc
) loop
6940 if Old_Disc
= Par_Disc
then
6944 Next_Discriminant
(Old_Disc
);
6945 Next_Discriminant
(New_Disc
);
6948 -- Should always find it
6950 raise Program_Error
;
6951 end Find_Corresponding_Discriminant
;
6953 ----------------------------------
6954 -- Find_Enclosing_Iterator_Loop --
6955 ----------------------------------
6957 function Find_Enclosing_Iterator_Loop
(Id
: Entity_Id
) return Entity_Id
is
6962 -- Traverse the scope chain looking for an iterator loop. Such loops are
6963 -- usually transformed into blocks, hence the use of Original_Node.
6966 while Present
(S
) and then S
/= Standard_Standard
loop
6967 if Ekind
(S
) = E_Loop
6968 and then Nkind
(Parent
(S
)) = N_Implicit_Label_Declaration
6970 Constr
:= Original_Node
(Label_Construct
(Parent
(S
)));
6972 if Nkind
(Constr
) = N_Loop_Statement
6973 and then Present
(Iteration_Scheme
(Constr
))
6974 and then Nkind
(Iterator_Specification
6975 (Iteration_Scheme
(Constr
))) =
6976 N_Iterator_Specification
6986 end Find_Enclosing_Iterator_Loop
;
6988 ------------------------------------
6989 -- Find_Loop_In_Conditional_Block --
6990 ------------------------------------
6992 function Find_Loop_In_Conditional_Block
(N
: Node_Id
) return Node_Id
is
6998 if Nkind
(Stmt
) = N_If_Statement
then
6999 Stmt
:= First
(Then_Statements
(Stmt
));
7002 pragma Assert
(Nkind
(Stmt
) = N_Block_Statement
);
7004 -- Inspect the statements of the conditional block. In general the loop
7005 -- should be the first statement in the statement sequence of the block,
7006 -- but the finalization machinery may have introduced extra object
7009 Stmt
:= First
(Statements
(Handled_Statement_Sequence
(Stmt
)));
7010 while Present
(Stmt
) loop
7011 if Nkind
(Stmt
) = N_Loop_Statement
then
7018 -- The expansion of attribute 'Loop_Entry produced a malformed block
7020 raise Program_Error
;
7021 end Find_Loop_In_Conditional_Block
;
7023 --------------------------
7024 -- Find_Overlaid_Entity --
7025 --------------------------
7027 procedure Find_Overlaid_Entity
7029 Ent
: out Entity_Id
;
7035 -- We are looking for one of the two following forms:
7037 -- for X'Address use Y'Address
7041 -- Const : constant Address := expr;
7043 -- for X'Address use Const;
7045 -- In the second case, the expr is either Y'Address, or recursively a
7046 -- constant that eventually references Y'Address.
7051 if Nkind
(N
) = N_Attribute_Definition_Clause
7052 and then Chars
(N
) = Name_Address
7054 Expr
:= Expression
(N
);
7056 -- This loop checks the form of the expression for Y'Address,
7057 -- using recursion to deal with intermediate constants.
7060 -- Check for Y'Address
7062 if Nkind
(Expr
) = N_Attribute_Reference
7063 and then Attribute_Name
(Expr
) = Name_Address
7065 Expr
:= Prefix
(Expr
);
7068 -- Check for Const where Const is a constant entity
7070 elsif Is_Entity_Name
(Expr
)
7071 and then Ekind
(Entity
(Expr
)) = E_Constant
7073 Expr
:= Constant_Value
(Entity
(Expr
));
7075 -- Anything else does not need checking
7082 -- This loop checks the form of the prefix for an entity, using
7083 -- recursion to deal with intermediate components.
7086 -- Check for Y where Y is an entity
7088 if Is_Entity_Name
(Expr
) then
7089 Ent
:= Entity
(Expr
);
7092 -- Check for components
7095 Nkind_In
(Expr
, N_Selected_Component
, N_Indexed_Component
)
7097 Expr
:= Prefix
(Expr
);
7100 -- Anything else does not need checking
7107 end Find_Overlaid_Entity
;
7109 -------------------------
7110 -- Find_Parameter_Type --
7111 -------------------------
7113 function Find_Parameter_Type
(Param
: Node_Id
) return Entity_Id
is
7115 if Nkind
(Param
) /= N_Parameter_Specification
then
7118 -- For an access parameter, obtain the type from the formal entity
7119 -- itself, because access to subprogram nodes do not carry a type.
7120 -- Shouldn't we always use the formal entity ???
7122 elsif Nkind
(Parameter_Type
(Param
)) = N_Access_Definition
then
7123 return Etype
(Defining_Identifier
(Param
));
7126 return Etype
(Parameter_Type
(Param
));
7128 end Find_Parameter_Type
;
7130 -----------------------------------
7131 -- Find_Placement_In_State_Space --
7132 -----------------------------------
7134 procedure Find_Placement_In_State_Space
7135 (Item_Id
: Entity_Id
;
7136 Placement
: out State_Space_Kind
;
7137 Pack_Id
: out Entity_Id
)
7139 Context
: Entity_Id
;
7142 -- Assume that the item does not appear in the state space of a package
7144 Placement
:= Not_In_Package
;
7147 -- Climb the scope stack and examine the enclosing context
7149 Context
:= Scope
(Item_Id
);
7150 while Present
(Context
) and then Context
/= Standard_Standard
loop
7151 if Ekind
(Context
) = E_Package
then
7154 -- A package body is a cut off point for the traversal as the item
7155 -- cannot be visible to the outside from this point on. Note that
7156 -- this test must be done first as a body is also classified as a
7159 if In_Package_Body
(Context
) then
7160 Placement
:= Body_State_Space
;
7163 -- The private part of a package is a cut off point for the
7164 -- traversal as the item cannot be visible to the outside from
7167 elsif In_Private_Part
(Context
) then
7168 Placement
:= Private_State_Space
;
7171 -- When the item appears in the visible state space of a package,
7172 -- continue to climb the scope stack as this may not be the final
7176 Placement
:= Visible_State_Space
;
7178 -- The visible state space of a child unit acts as the proper
7179 -- placement of an item.
7181 if Is_Child_Unit
(Context
) then
7186 -- The item or its enclosing package appear in a construct that has
7190 Placement
:= Not_In_Package
;
7194 Context
:= Scope
(Context
);
7196 end Find_Placement_In_State_Space
;
7198 ------------------------
7199 -- Find_Specific_Type --
7200 ------------------------
7202 function Find_Specific_Type
(CW
: Entity_Id
) return Entity_Id
is
7203 Typ
: Entity_Id
:= Root_Type
(CW
);
7206 if Ekind
(Typ
) = E_Incomplete_Type
then
7207 if From_Limited_With
(Typ
) then
7208 Typ
:= Non_Limited_View
(Typ
);
7210 Typ
:= Full_View
(Typ
);
7214 if Is_Private_Type
(Typ
)
7215 and then not Is_Tagged_Type
(Typ
)
7216 and then Present
(Full_View
(Typ
))
7218 return Full_View
(Typ
);
7222 end Find_Specific_Type
;
7224 -----------------------------
7225 -- Find_Static_Alternative --
7226 -----------------------------
7228 function Find_Static_Alternative
(N
: Node_Id
) return Node_Id
is
7229 Expr
: constant Node_Id
:= Expression
(N
);
7230 Val
: constant Uint
:= Expr_Value
(Expr
);
7235 Alt
:= First
(Alternatives
(N
));
7238 if Nkind
(Alt
) /= N_Pragma
then
7239 Choice
:= First
(Discrete_Choices
(Alt
));
7240 while Present
(Choice
) loop
7242 -- Others choice, always matches
7244 if Nkind
(Choice
) = N_Others_Choice
then
7247 -- Range, check if value is in the range
7249 elsif Nkind
(Choice
) = N_Range
then
7251 Val
>= Expr_Value
(Low_Bound
(Choice
))
7253 Val
<= Expr_Value
(High_Bound
(Choice
));
7255 -- Choice is a subtype name. Note that we know it must
7256 -- be a static subtype, since otherwise it would have
7257 -- been diagnosed as illegal.
7259 elsif Is_Entity_Name
(Choice
)
7260 and then Is_Type
(Entity
(Choice
))
7262 exit Search
when Is_In_Range
(Expr
, Etype
(Choice
),
7263 Assume_Valid
=> False);
7265 -- Choice is a subtype indication
7267 elsif Nkind
(Choice
) = N_Subtype_Indication
then
7269 C
: constant Node_Id
:= Constraint
(Choice
);
7270 R
: constant Node_Id
:= Range_Expression
(C
);
7274 Val
>= Expr_Value
(Low_Bound
(R
))
7276 Val
<= Expr_Value
(High_Bound
(R
));
7279 -- Choice is a simple expression
7282 exit Search
when Val
= Expr_Value
(Choice
);
7290 pragma Assert
(Present
(Alt
));
7293 -- The above loop *must* terminate by finding a match, since
7294 -- we know the case statement is valid, and the value of the
7295 -- expression is known at compile time. When we fall out of
7296 -- the loop, Alt points to the alternative that we know will
7297 -- be selected at run time.
7300 end Find_Static_Alternative
;
7306 function First_Actual
(Node
: Node_Id
) return Node_Id
is
7310 if No
(Parameter_Associations
(Node
)) then
7314 N
:= First
(Parameter_Associations
(Node
));
7316 if Nkind
(N
) = N_Parameter_Association
then
7317 return First_Named_Actual
(Node
);
7327 function Fix_Msg
(Id
: Entity_Id
; Msg
: String) return String is
7328 Is_Task
: constant Boolean :=
7329 Ekind_In
(Id
, E_Task_Body
, E_Task_Type
)
7330 or else Is_Single_Task_Object
(Id
);
7331 Msg_Last
: constant Natural := Msg
'Last;
7332 Msg_Index
: Natural;
7333 Res
: String (Msg
'Range) := (others => ' ');
7334 Res_Index
: Natural;
7337 -- Copy all characters from the input message Msg to result Res with
7338 -- suitable replacements.
7340 Msg_Index
:= Msg
'First;
7341 Res_Index
:= Res
'First;
7342 while Msg_Index
<= Msg_Last
loop
7344 -- Replace "subprogram" with a different word
7346 if Msg_Index
<= Msg_Last
- 10
7347 and then Msg
(Msg_Index
.. Msg_Index
+ 9) = "subprogram"
7349 if Ekind_In
(Id
, E_Entry
, E_Entry_Family
) then
7350 Res
(Res_Index
.. Res_Index
+ 4) := "entry";
7351 Res_Index
:= Res_Index
+ 5;
7354 Res
(Res_Index
.. Res_Index
+ 8) := "task type";
7355 Res_Index
:= Res_Index
+ 9;
7358 Res
(Res_Index
.. Res_Index
+ 9) := "subprogram";
7359 Res_Index
:= Res_Index
+ 10;
7362 Msg_Index
:= Msg_Index
+ 10;
7364 -- Replace "protected" with a different word
7366 elsif Msg_Index
<= Msg_Last
- 9
7367 and then Msg
(Msg_Index
.. Msg_Index
+ 8) = "protected"
7370 Res
(Res_Index
.. Res_Index
+ 3) := "task";
7371 Res_Index
:= Res_Index
+ 4;
7372 Msg_Index
:= Msg_Index
+ 9;
7374 -- Otherwise copy the character
7377 Res
(Res_Index
) := Msg
(Msg_Index
);
7378 Msg_Index
:= Msg_Index
+ 1;
7379 Res_Index
:= Res_Index
+ 1;
7383 return Res
(Res
'First .. Res_Index
- 1);
7386 -----------------------
7387 -- Gather_Components --
7388 -----------------------
7390 procedure Gather_Components
7392 Comp_List
: Node_Id
;
7393 Governed_By
: List_Id
;
7395 Report_Errors
: out Boolean)
7399 Discrete_Choice
: Node_Id
;
7400 Comp_Item
: Node_Id
;
7402 Discrim
: Entity_Id
;
7403 Discrim_Name
: Node_Id
;
7404 Discrim_Value
: Node_Id
;
7407 Report_Errors
:= False;
7409 if No
(Comp_List
) or else Null_Present
(Comp_List
) then
7412 elsif Present
(Component_Items
(Comp_List
)) then
7413 Comp_Item
:= First
(Component_Items
(Comp_List
));
7419 while Present
(Comp_Item
) loop
7421 -- Skip the tag of a tagged record, the interface tags, as well
7422 -- as all items that are not user components (anonymous types,
7423 -- rep clauses, Parent field, controller field).
7425 if Nkind
(Comp_Item
) = N_Component_Declaration
then
7427 Comp
: constant Entity_Id
:= Defining_Identifier
(Comp_Item
);
7429 if not Is_Tag
(Comp
) and then Chars
(Comp
) /= Name_uParent
then
7430 Append_Elmt
(Comp
, Into
);
7438 if No
(Variant_Part
(Comp_List
)) then
7441 Discrim_Name
:= Name
(Variant_Part
(Comp_List
));
7442 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
7445 -- Look for the discriminant that governs this variant part.
7446 -- The discriminant *must* be in the Governed_By List
7448 Assoc
:= First
(Governed_By
);
7449 Find_Constraint
: loop
7450 Discrim
:= First
(Choices
(Assoc
));
7451 exit Find_Constraint
when Chars
(Discrim_Name
) = Chars
(Discrim
)
7452 or else (Present
(Corresponding_Discriminant
(Entity
(Discrim
)))
7454 Chars
(Corresponding_Discriminant
(Entity
(Discrim
))) =
7455 Chars
(Discrim_Name
))
7456 or else Chars
(Original_Record_Component
(Entity
(Discrim
)))
7457 = Chars
(Discrim_Name
);
7459 if No
(Next
(Assoc
)) then
7460 if not Is_Constrained
(Typ
)
7461 and then Is_Derived_Type
(Typ
)
7462 and then Present
(Stored_Constraint
(Typ
))
7464 -- If the type is a tagged type with inherited discriminants,
7465 -- use the stored constraint on the parent in order to find
7466 -- the values of discriminants that are otherwise hidden by an
7467 -- explicit constraint. Renamed discriminants are handled in
7470 -- If several parent discriminants are renamed by a single
7471 -- discriminant of the derived type, the call to obtain the
7472 -- Corresponding_Discriminant field only retrieves the last
7473 -- of them. We recover the constraint on the others from the
7474 -- Stored_Constraint as well.
7481 D
:= First_Discriminant
(Etype
(Typ
));
7482 C
:= First_Elmt
(Stored_Constraint
(Typ
));
7483 while Present
(D
) and then Present
(C
) loop
7484 if Chars
(Discrim_Name
) = Chars
(D
) then
7485 if Is_Entity_Name
(Node
(C
))
7486 and then Entity
(Node
(C
)) = Entity
(Discrim
)
7488 -- D is renamed by Discrim, whose value is given in
7495 Make_Component_Association
(Sloc
(Typ
),
7497 (New_Occurrence_Of
(D
, Sloc
(Typ
))),
7498 Duplicate_Subexpr_No_Checks
(Node
(C
)));
7500 exit Find_Constraint
;
7503 Next_Discriminant
(D
);
7510 if No
(Next
(Assoc
)) then
7511 Error_Msg_NE
(" missing value for discriminant&",
7512 First
(Governed_By
), Discrim_Name
);
7513 Report_Errors
:= True;
7518 end loop Find_Constraint
;
7520 Discrim_Value
:= Expression
(Assoc
);
7522 if not Is_OK_Static_Expression
(Discrim_Value
) then
7524 -- If the variant part is governed by a discriminant of the type
7525 -- this is an error. If the variant part and the discriminant are
7526 -- inherited from an ancestor this is legal (AI05-120) unless the
7527 -- components are being gathered for an aggregate, in which case
7528 -- the caller must check Report_Errors.
7530 if Scope
(Original_Record_Component
7531 ((Entity
(First
(Choices
(Assoc
)))))) = Typ
7534 ("value for discriminant & must be static!",
7535 Discrim_Value
, Discrim
);
7536 Why_Not_Static
(Discrim_Value
);
7539 Report_Errors
:= True;
7543 Search_For_Discriminant_Value
: declare
7549 UI_Discrim_Value
: constant Uint
:= Expr_Value
(Discrim_Value
);
7552 Find_Discrete_Value
: while Present
(Variant
) loop
7553 Discrete_Choice
:= First
(Discrete_Choices
(Variant
));
7554 while Present
(Discrete_Choice
) loop
7555 exit Find_Discrete_Value
when
7556 Nkind
(Discrete_Choice
) = N_Others_Choice
;
7558 Get_Index_Bounds
(Discrete_Choice
, Low
, High
);
7560 UI_Low
:= Expr_Value
(Low
);
7561 UI_High
:= Expr_Value
(High
);
7563 exit Find_Discrete_Value
when
7564 UI_Low
<= UI_Discrim_Value
7566 UI_High
>= UI_Discrim_Value
;
7568 Next
(Discrete_Choice
);
7571 Next_Non_Pragma
(Variant
);
7572 end loop Find_Discrete_Value
;
7573 end Search_For_Discriminant_Value
;
7575 if No
(Variant
) then
7577 ("value of discriminant & is out of range", Discrim_Value
, Discrim
);
7578 Report_Errors
:= True;
7582 -- If we have found the corresponding choice, recursively add its
7583 -- components to the Into list. The nested components are part of
7584 -- the same record type.
7587 (Typ
, Component_List
(Variant
), Governed_By
, Into
, Report_Errors
);
7588 end Gather_Components
;
7590 ------------------------
7591 -- Get_Actual_Subtype --
7592 ------------------------
7594 function Get_Actual_Subtype
(N
: Node_Id
) return Entity_Id
is
7595 Typ
: constant Entity_Id
:= Etype
(N
);
7596 Utyp
: Entity_Id
:= Underlying_Type
(Typ
);
7605 -- If what we have is an identifier that references a subprogram
7606 -- formal, or a variable or constant object, then we get the actual
7607 -- subtype from the referenced entity if one has been built.
7609 if Nkind
(N
) = N_Identifier
7611 (Is_Formal
(Entity
(N
))
7612 or else Ekind
(Entity
(N
)) = E_Constant
7613 or else Ekind
(Entity
(N
)) = E_Variable
)
7614 and then Present
(Actual_Subtype
(Entity
(N
)))
7616 return Actual_Subtype
(Entity
(N
));
7618 -- Actual subtype of unchecked union is always itself. We never need
7619 -- the "real" actual subtype. If we did, we couldn't get it anyway
7620 -- because the discriminant is not available. The restrictions on
7621 -- Unchecked_Union are designed to make sure that this is OK.
7623 elsif Is_Unchecked_Union
(Base_Type
(Utyp
)) then
7626 -- Here for the unconstrained case, we must find actual subtype
7627 -- No actual subtype is available, so we must build it on the fly.
7629 -- Checking the type, not the underlying type, for constrainedness
7630 -- seems to be necessary. Maybe all the tests should be on the type???
7632 elsif (not Is_Constrained
(Typ
))
7633 and then (Is_Array_Type
(Utyp
)
7634 or else (Is_Record_Type
(Utyp
)
7635 and then Has_Discriminants
(Utyp
)))
7636 and then not Has_Unknown_Discriminants
(Utyp
)
7637 and then not (Ekind
(Utyp
) = E_String_Literal_Subtype
)
7639 -- Nothing to do if in spec expression (why not???)
7641 if In_Spec_Expression
then
7644 elsif Is_Private_Type
(Typ
) and then not Has_Discriminants
(Typ
) then
7646 -- If the type has no discriminants, there is no subtype to
7647 -- build, even if the underlying type is discriminated.
7651 -- Else build the actual subtype
7654 Decl
:= Build_Actual_Subtype
(Typ
, N
);
7655 Atyp
:= Defining_Identifier
(Decl
);
7657 -- If Build_Actual_Subtype generated a new declaration then use it
7661 -- The actual subtype is an Itype, so analyze the declaration,
7662 -- but do not attach it to the tree, to get the type defined.
7664 Set_Parent
(Decl
, N
);
7665 Set_Is_Itype
(Atyp
);
7666 Analyze
(Decl
, Suppress
=> All_Checks
);
7667 Set_Associated_Node_For_Itype
(Atyp
, N
);
7668 Set_Has_Delayed_Freeze
(Atyp
, False);
7670 -- We need to freeze the actual subtype immediately. This is
7671 -- needed, because otherwise this Itype will not get frozen
7672 -- at all, and it is always safe to freeze on creation because
7673 -- any associated types must be frozen at this point.
7675 Freeze_Itype
(Atyp
, N
);
7678 -- Otherwise we did not build a declaration, so return original
7685 -- For all remaining cases, the actual subtype is the same as
7686 -- the nominal type.
7691 end Get_Actual_Subtype
;
7693 -------------------------------------
7694 -- Get_Actual_Subtype_If_Available --
7695 -------------------------------------
7697 function Get_Actual_Subtype_If_Available
(N
: Node_Id
) return Entity_Id
is
7698 Typ
: constant Entity_Id
:= Etype
(N
);
7701 -- If what we have is an identifier that references a subprogram
7702 -- formal, or a variable or constant object, then we get the actual
7703 -- subtype from the referenced entity if one has been built.
7705 if Nkind
(N
) = N_Identifier
7707 (Is_Formal
(Entity
(N
))
7708 or else Ekind
(Entity
(N
)) = E_Constant
7709 or else Ekind
(Entity
(N
)) = E_Variable
)
7710 and then Present
(Actual_Subtype
(Entity
(N
)))
7712 return Actual_Subtype
(Entity
(N
));
7714 -- Otherwise the Etype of N is returned unchanged
7719 end Get_Actual_Subtype_If_Available
;
7721 ------------------------
7722 -- Get_Body_From_Stub --
7723 ------------------------
7725 function Get_Body_From_Stub
(N
: Node_Id
) return Node_Id
is
7727 return Proper_Body
(Unit
(Library_Unit
(N
)));
7728 end Get_Body_From_Stub
;
7730 ---------------------
7731 -- Get_Cursor_Type --
7732 ---------------------
7734 function Get_Cursor_Type
7736 Typ
: Entity_Id
) return Entity_Id
7740 First_Op
: Entity_Id
;
7744 -- If error already detected, return
7746 if Error_Posted
(Aspect
) then
7750 -- The cursor type for an Iterable aspect is the return type of a
7751 -- non-overloaded First primitive operation. Locate association for
7754 Assoc
:= First
(Component_Associations
(Expression
(Aspect
)));
7756 while Present
(Assoc
) loop
7757 if Chars
(First
(Choices
(Assoc
))) = Name_First
then
7758 First_Op
:= Expression
(Assoc
);
7765 if First_Op
= Any_Id
then
7766 Error_Msg_N
("aspect Iterable must specify First operation", Aspect
);
7772 -- Locate function with desired name and profile in scope of type
7773 -- In the rare case where the type is an integer type, a base type
7774 -- is created for it, check that the base type of the first formal
7775 -- of First matches the base type of the domain.
7777 Func
:= First_Entity
(Scope
(Typ
));
7778 while Present
(Func
) loop
7779 if Chars
(Func
) = Chars
(First_Op
)
7780 and then Ekind
(Func
) = E_Function
7781 and then Present
(First_Formal
(Func
))
7782 and then Base_Type
(Etype
(First_Formal
(Func
))) = Base_Type
(Typ
)
7783 and then No
(Next_Formal
(First_Formal
(Func
)))
7785 if Cursor
/= Any_Type
then
7787 ("Operation First for iterable type must be unique", Aspect
);
7790 Cursor
:= Etype
(Func
);
7797 -- If not found, no way to resolve remaining primitives.
7799 if Cursor
= Any_Type
then
7801 ("No legal primitive operation First for Iterable type", Aspect
);
7805 end Get_Cursor_Type
;
7807 function Get_Cursor_Type
(Typ
: Entity_Id
) return Entity_Id
is
7809 return Etype
(Get_Iterable_Type_Primitive
(Typ
, Name_First
));
7810 end Get_Cursor_Type
;
7812 -------------------------------
7813 -- Get_Default_External_Name --
7814 -------------------------------
7816 function Get_Default_External_Name
(E
: Node_Or_Entity_Id
) return Node_Id
is
7818 Get_Decoded_Name_String
(Chars
(E
));
7820 if Opt
.External_Name_Imp_Casing
= Uppercase
then
7821 Set_Casing
(All_Upper_Case
);
7823 Set_Casing
(All_Lower_Case
);
7827 Make_String_Literal
(Sloc
(E
),
7828 Strval
=> String_From_Name_Buffer
);
7829 end Get_Default_External_Name
;
7831 --------------------------
7832 -- Get_Enclosing_Object --
7833 --------------------------
7835 function Get_Enclosing_Object
(N
: Node_Id
) return Entity_Id
is
7837 if Is_Entity_Name
(N
) then
7841 when N_Indexed_Component |
7843 N_Selected_Component
=>
7845 -- If not generating code, a dereference may be left implicit.
7846 -- In thoses cases, return Empty.
7848 if Is_Access_Type
(Etype
(Prefix
(N
))) then
7851 return Get_Enclosing_Object
(Prefix
(N
));
7854 when N_Type_Conversion
=>
7855 return Get_Enclosing_Object
(Expression
(N
));
7861 end Get_Enclosing_Object
;
7863 ---------------------------
7864 -- Get_Enum_Lit_From_Pos --
7865 ---------------------------
7867 function Get_Enum_Lit_From_Pos
7870 Loc
: Source_Ptr
) return Node_Id
7872 Btyp
: Entity_Id
:= Base_Type
(T
);
7877 -- In the case where the literal is of type Character, Wide_Character
7878 -- or Wide_Wide_Character or of a type derived from them, there needs
7879 -- to be some special handling since there is no explicit chain of
7880 -- literals to search. Instead, an N_Character_Literal node is created
7881 -- with the appropriate Char_Code and Chars fields.
7883 if Is_Standard_Character_Type
(T
) then
7884 Set_Character_Literal_Name
(UI_To_CC
(Pos
));
7887 Make_Character_Literal
(Loc
,
7889 Char_Literal_Value
=> Pos
);
7891 -- For all other cases, we have a complete table of literals, and
7892 -- we simply iterate through the chain of literal until the one
7893 -- with the desired position value is found.
7896 if Is_Private_Type
(Btyp
) and then Present
(Full_View
(Btyp
)) then
7897 Btyp
:= Full_View
(Btyp
);
7900 Lit
:= First_Literal
(Btyp
);
7901 for J
in 1 .. UI_To_Int
(Pos
) loop
7904 -- If Lit is Empty, Pos is not in range, so raise Constraint_Error
7905 -- inside the loop to avoid calling Next_Literal on Empty.
7908 raise Constraint_Error
;
7912 -- Create a new node from Lit, with source location provided by Loc
7913 -- if not equal to No_Location, or by copying the source location of
7918 if LLoc
= No_Location
then
7922 return New_Occurrence_Of
(Lit
, LLoc
);
7924 end Get_Enum_Lit_From_Pos
;
7926 ------------------------
7927 -- Get_Generic_Entity --
7928 ------------------------
7930 function Get_Generic_Entity
(N
: Node_Id
) return Entity_Id
is
7931 Ent
: constant Entity_Id
:= Entity
(Name
(N
));
7933 if Present
(Renamed_Object
(Ent
)) then
7934 return Renamed_Object
(Ent
);
7938 end Get_Generic_Entity
;
7940 -------------------------------------
7941 -- Get_Incomplete_View_Of_Ancestor --
7942 -------------------------------------
7944 function Get_Incomplete_View_Of_Ancestor
(E
: Entity_Id
) return Entity_Id
is
7945 Cur_Unit
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
7946 Par_Scope
: Entity_Id
;
7947 Par_Type
: Entity_Id
;
7950 -- The incomplete view of an ancestor is only relevant for private
7951 -- derived types in child units.
7953 if not Is_Derived_Type
(E
)
7954 or else not Is_Child_Unit
(Cur_Unit
)
7959 Par_Scope
:= Scope
(Cur_Unit
);
7960 if No
(Par_Scope
) then
7964 Par_Type
:= Etype
(Base_Type
(E
));
7966 -- Traverse list of ancestor types until we find one declared in
7967 -- a parent or grandparent unit (two levels seem sufficient).
7969 while Present
(Par_Type
) loop
7970 if Scope
(Par_Type
) = Par_Scope
7971 or else Scope
(Par_Type
) = Scope
(Par_Scope
)
7975 elsif not Is_Derived_Type
(Par_Type
) then
7979 Par_Type
:= Etype
(Base_Type
(Par_Type
));
7983 -- If none found, there is no relevant ancestor type.
7987 end Get_Incomplete_View_Of_Ancestor
;
7989 ----------------------
7990 -- Get_Index_Bounds --
7991 ----------------------
7993 procedure Get_Index_Bounds
(N
: Node_Id
; L
, H
: out Node_Id
) is
7994 Kind
: constant Node_Kind
:= Nkind
(N
);
7998 if Kind
= N_Range
then
8000 H
:= High_Bound
(N
);
8002 elsif Kind
= N_Subtype_Indication
then
8003 R
:= Range_Expression
(Constraint
(N
));
8011 L
:= Low_Bound
(Range_Expression
(Constraint
(N
)));
8012 H
:= High_Bound
(Range_Expression
(Constraint
(N
)));
8015 elsif Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
)) then
8016 if Error_Posted
(Scalar_Range
(Entity
(N
))) then
8020 elsif Nkind
(Scalar_Range
(Entity
(N
))) = N_Subtype_Indication
then
8021 Get_Index_Bounds
(Scalar_Range
(Entity
(N
)), L
, H
);
8024 L
:= Low_Bound
(Scalar_Range
(Entity
(N
)));
8025 H
:= High_Bound
(Scalar_Range
(Entity
(N
)));
8029 -- N is an expression, indicating a range with one value
8034 end Get_Index_Bounds
;
8036 ---------------------------------
8037 -- Get_Iterable_Type_Primitive --
8038 ---------------------------------
8040 function Get_Iterable_Type_Primitive
8042 Nam
: Name_Id
) return Entity_Id
8044 Funcs
: constant Node_Id
:= Find_Value_Of_Aspect
(Typ
, Aspect_Iterable
);
8052 Assoc
:= First
(Component_Associations
(Funcs
));
8053 while Present
(Assoc
) loop
8054 if Chars
(First
(Choices
(Assoc
))) = Nam
then
8055 return Entity
(Expression
(Assoc
));
8058 Assoc
:= Next
(Assoc
);
8063 end Get_Iterable_Type_Primitive
;
8065 ----------------------------------
8066 -- Get_Library_Unit_Name_string --
8067 ----------------------------------
8069 procedure Get_Library_Unit_Name_String
(Decl_Node
: Node_Id
) is
8070 Unit_Name_Id
: constant Unit_Name_Type
:= Get_Unit_Name
(Decl_Node
);
8073 Get_Unit_Name_String
(Unit_Name_Id
);
8075 -- Remove seven last character (" (spec)" or " (body)")
8077 Name_Len
:= Name_Len
- 7;
8078 pragma Assert
(Name_Buffer
(Name_Len
+ 1) = ' ');
8079 end Get_Library_Unit_Name_String
;
8081 --------------------------
8082 -- Get_Max_Queue_Length --
8083 --------------------------
8085 function Get_Max_Queue_Length
(Id
: Entity_Id
) return Uint
is
8086 pragma Assert
(Is_Entry
(Id
));
8087 Prag
: constant Entity_Id
:= Get_Pragma
(Id
, Pragma_Max_Queue_Length
);
8090 -- A value of 0 represents no maximum specified, and entries and entry
8091 -- families with no Max_Queue_Length aspect or pragma default to it.
8093 if not Present
(Prag
) then
8097 return Intval
(Expression
(First
(Pragma_Argument_Associations
(Prag
))));
8098 end Get_Max_Queue_Length
;
8100 ------------------------
8101 -- Get_Name_Entity_Id --
8102 ------------------------
8104 function Get_Name_Entity_Id
(Id
: Name_Id
) return Entity_Id
is
8106 return Entity_Id
(Get_Name_Table_Int
(Id
));
8107 end Get_Name_Entity_Id
;
8109 ------------------------------
8110 -- Get_Name_From_CTC_Pragma --
8111 ------------------------------
8113 function Get_Name_From_CTC_Pragma
(N
: Node_Id
) return String_Id
is
8114 Arg
: constant Node_Id
:=
8115 Get_Pragma_Arg
(First
(Pragma_Argument_Associations
(N
)));
8117 return Strval
(Expr_Value_S
(Arg
));
8118 end Get_Name_From_CTC_Pragma
;
8120 -----------------------
8121 -- Get_Parent_Entity --
8122 -----------------------
8124 function Get_Parent_Entity
(Unit
: Node_Id
) return Entity_Id
is
8126 if Nkind
(Unit
) = N_Package_Body
8127 and then Nkind
(Original_Node
(Unit
)) = N_Package_Instantiation
8129 return Defining_Entity
8130 (Specification
(Instance_Spec
(Original_Node
(Unit
))));
8131 elsif Nkind
(Unit
) = N_Package_Instantiation
then
8132 return Defining_Entity
(Specification
(Instance_Spec
(Unit
)));
8134 return Defining_Entity
(Unit
);
8136 end Get_Parent_Entity
;
8142 function Get_Pragma_Id
(N
: Node_Id
) return Pragma_Id
is
8144 return Get_Pragma_Id
(Pragma_Name
(N
));
8147 ------------------------
8148 -- Get_Qualified_Name --
8149 ------------------------
8151 function Get_Qualified_Name
8153 Suffix
: Entity_Id
:= Empty
) return Name_Id
8155 Suffix_Nam
: Name_Id
:= No_Name
;
8158 if Present
(Suffix
) then
8159 Suffix_Nam
:= Chars
(Suffix
);
8162 return Get_Qualified_Name
(Chars
(Id
), Suffix_Nam
, Scope
(Id
));
8163 end Get_Qualified_Name
;
8165 function Get_Qualified_Name
8167 Suffix
: Name_Id
:= No_Name
;
8168 Scop
: Entity_Id
:= Current_Scope
) return Name_Id
8170 procedure Add_Scope
(S
: Entity_Id
);
8171 -- Add the fully qualified form of scope S to the name buffer. The
8179 procedure Add_Scope
(S
: Entity_Id
) is
8184 elsif S
= Standard_Standard
then
8188 Add_Scope
(Scope
(S
));
8189 Get_Name_String_And_Append
(Chars
(S
));
8190 Add_Str_To_Name_Buffer
("__");
8194 -- Start of processing for Get_Qualified_Name
8200 -- Append the base name after all scopes have been chained
8202 Get_Name_String_And_Append
(Nam
);
8204 -- Append the suffix (if present)
8206 if Suffix
/= No_Name
then
8207 Add_Str_To_Name_Buffer
("__");
8208 Get_Name_String_And_Append
(Suffix
);
8212 end Get_Qualified_Name
;
8214 -----------------------
8215 -- Get_Reason_String --
8216 -----------------------
8218 procedure Get_Reason_String
(N
: Node_Id
) is
8220 if Nkind
(N
) = N_String_Literal
then
8221 Store_String_Chars
(Strval
(N
));
8223 elsif Nkind
(N
) = N_Op_Concat
then
8224 Get_Reason_String
(Left_Opnd
(N
));
8225 Get_Reason_String
(Right_Opnd
(N
));
8227 -- If not of required form, error
8231 ("Reason for pragma Warnings has wrong form", N
);
8233 ("\must be string literal or concatenation of string literals", N
);
8236 end Get_Reason_String
;
8238 --------------------------------
8239 -- Get_Reference_Discriminant --
8240 --------------------------------
8242 function Get_Reference_Discriminant
(Typ
: Entity_Id
) return Entity_Id
is
8246 D
:= First_Discriminant
(Typ
);
8247 while Present
(D
) loop
8248 if Has_Implicit_Dereference
(D
) then
8251 Next_Discriminant
(D
);
8255 end Get_Reference_Discriminant
;
8257 ---------------------------
8258 -- Get_Referenced_Object --
8259 ---------------------------
8261 function Get_Referenced_Object
(N
: Node_Id
) return Node_Id
is
8266 while Is_Entity_Name
(R
)
8267 and then Present
(Renamed_Object
(Entity
(R
)))
8269 R
:= Renamed_Object
(Entity
(R
));
8273 end Get_Referenced_Object
;
8275 ------------------------
8276 -- Get_Renamed_Entity --
8277 ------------------------
8279 function Get_Renamed_Entity
(E
: Entity_Id
) return Entity_Id
is
8284 while Present
(Renamed_Entity
(R
)) loop
8285 R
:= Renamed_Entity
(R
);
8289 end Get_Renamed_Entity
;
8291 -----------------------
8292 -- Get_Return_Object --
8293 -----------------------
8295 function Get_Return_Object
(N
: Node_Id
) return Entity_Id
is
8299 Decl
:= First
(Return_Object_Declarations
(N
));
8300 while Present
(Decl
) loop
8301 exit when Nkind
(Decl
) = N_Object_Declaration
8302 and then Is_Return_Object
(Defining_Identifier
(Decl
));
8306 pragma Assert
(Present
(Decl
));
8307 return Defining_Identifier
(Decl
);
8308 end Get_Return_Object
;
8310 ---------------------------
8311 -- Get_Subprogram_Entity --
8312 ---------------------------
8314 function Get_Subprogram_Entity
(Nod
: Node_Id
) return Entity_Id
is
8316 Subp_Id
: Entity_Id
;
8319 if Nkind
(Nod
) = N_Accept_Statement
then
8320 Subp
:= Entry_Direct_Name
(Nod
);
8322 elsif Nkind
(Nod
) = N_Slice
then
8323 Subp
:= Prefix
(Nod
);
8329 -- Strip the subprogram call
8332 if Nkind_In
(Subp
, N_Explicit_Dereference
,
8333 N_Indexed_Component
,
8334 N_Selected_Component
)
8336 Subp
:= Prefix
(Subp
);
8338 elsif Nkind_In
(Subp
, N_Type_Conversion
,
8339 N_Unchecked_Type_Conversion
)
8341 Subp
:= Expression
(Subp
);
8348 -- Extract the entity of the subprogram call
8350 if Is_Entity_Name
(Subp
) then
8351 Subp_Id
:= Entity
(Subp
);
8353 if Ekind
(Subp_Id
) = E_Access_Subprogram_Type
then
8354 Subp_Id
:= Directly_Designated_Type
(Subp_Id
);
8357 if Is_Subprogram
(Subp_Id
) then
8363 -- The search did not find a construct that denotes a subprogram
8368 end Get_Subprogram_Entity
;
8370 -----------------------------
8371 -- Get_Task_Body_Procedure --
8372 -----------------------------
8374 function Get_Task_Body_Procedure
(E
: Entity_Id
) return Node_Id
is
8376 -- Note: A task type may be the completion of a private type with
8377 -- discriminants. When performing elaboration checks on a task
8378 -- declaration, the current view of the type may be the private one,
8379 -- and the procedure that holds the body of the task is held in its
8382 -- This is an odd function, why not have Task_Body_Procedure do
8383 -- the following digging???
8385 return Task_Body_Procedure
(Underlying_Type
(Root_Type
(E
)));
8386 end Get_Task_Body_Procedure
;
8388 -------------------------
8389 -- Get_User_Defined_Eq --
8390 -------------------------
8392 function Get_User_Defined_Eq
(E
: Entity_Id
) return Entity_Id
is
8397 Prim
:= First_Elmt
(Collect_Primitive_Operations
(E
));
8398 while Present
(Prim
) loop
8401 if Chars
(Op
) = Name_Op_Eq
8402 and then Etype
(Op
) = Standard_Boolean
8403 and then Etype
(First_Formal
(Op
)) = E
8404 and then Etype
(Next_Formal
(First_Formal
(Op
))) = E
8413 end Get_User_Defined_Eq
;
8421 Priv_Typ
: out Entity_Id
;
8422 Full_Typ
: out Entity_Id
;
8423 Full_Base
: out Entity_Id
;
8424 CRec_Typ
: out Entity_Id
)
8426 IP_View
: Entity_Id
;
8429 -- Assume that none of the views can be recovered
8436 -- The input type is the corresponding record type of a protected or a
8439 if Ekind
(Typ
) = E_Record_Type
8440 and then Is_Concurrent_Record_Type
(Typ
)
8443 Full_Typ
:= Corresponding_Concurrent_Type
(CRec_Typ
);
8444 Full_Base
:= Base_Type
(Full_Typ
);
8445 Priv_Typ
:= Incomplete_Or_Partial_View
(Full_Typ
);
8447 -- Otherwise the input type denotes an arbitrary type
8450 IP_View
:= Incomplete_Or_Partial_View
(Typ
);
8452 -- The input type denotes the full view of a private type
8454 if Present
(IP_View
) then
8455 Priv_Typ
:= IP_View
;
8458 -- The input type is a private type
8460 elsif Is_Private_Type
(Typ
) then
8462 Full_Typ
:= Full_View
(Priv_Typ
);
8464 -- Otherwise the input type does not have any views
8470 if Present
(Full_Typ
) then
8471 Full_Base
:= Base_Type
(Full_Typ
);
8473 if Ekind_In
(Full_Typ
, E_Protected_Type
, E_Task_Type
) then
8474 CRec_Typ
:= Corresponding_Record_Type
(Full_Typ
);
8480 -----------------------
8481 -- Has_Access_Values --
8482 -----------------------
8484 function Has_Access_Values
(T
: Entity_Id
) return Boolean is
8485 Typ
: constant Entity_Id
:= Underlying_Type
(T
);
8488 -- Case of a private type which is not completed yet. This can only
8489 -- happen in the case of a generic format type appearing directly, or
8490 -- as a component of the type to which this function is being applied
8491 -- at the top level. Return False in this case, since we certainly do
8492 -- not know that the type contains access types.
8497 elsif Is_Access_Type
(Typ
) then
8500 elsif Is_Array_Type
(Typ
) then
8501 return Has_Access_Values
(Component_Type
(Typ
));
8503 elsif Is_Record_Type
(Typ
) then
8508 -- Loop to Check components
8510 Comp
:= First_Component_Or_Discriminant
(Typ
);
8511 while Present
(Comp
) loop
8513 -- Check for access component, tag field does not count, even
8514 -- though it is implemented internally using an access type.
8516 if Has_Access_Values
(Etype
(Comp
))
8517 and then Chars
(Comp
) /= Name_uTag
8522 Next_Component_Or_Discriminant
(Comp
);
8531 end Has_Access_Values
;
8533 ------------------------------
8534 -- Has_Compatible_Alignment --
8535 ------------------------------
8537 function Has_Compatible_Alignment
8540 Layout_Done
: Boolean) return Alignment_Result
8542 function Has_Compatible_Alignment_Internal
8545 Layout_Done
: Boolean;
8546 Default
: Alignment_Result
) return Alignment_Result
;
8547 -- This is the internal recursive function that actually does the work.
8548 -- There is one additional parameter, which says what the result should
8549 -- be if no alignment information is found, and there is no definite
8550 -- indication of compatible alignments. At the outer level, this is set
8551 -- to Unknown, but for internal recursive calls in the case where types
8552 -- are known to be correct, it is set to Known_Compatible.
8554 ---------------------------------------
8555 -- Has_Compatible_Alignment_Internal --
8556 ---------------------------------------
8558 function Has_Compatible_Alignment_Internal
8561 Layout_Done
: Boolean;
8562 Default
: Alignment_Result
) return Alignment_Result
8564 Result
: Alignment_Result
:= Known_Compatible
;
8565 -- Holds the current status of the result. Note that once a value of
8566 -- Known_Incompatible is set, it is sticky and does not get changed
8567 -- to Unknown (the value in Result only gets worse as we go along,
8570 Offs
: Uint
:= No_Uint
;
8571 -- Set to a factor of the offset from the base object when Expr is a
8572 -- selected or indexed component, based on Component_Bit_Offset and
8573 -- Component_Size respectively. A negative value is used to represent
8574 -- a value which is not known at compile time.
8576 procedure Check_Prefix
;
8577 -- Checks the prefix recursively in the case where the expression
8578 -- is an indexed or selected component.
8580 procedure Set_Result
(R
: Alignment_Result
);
8581 -- If R represents a worse outcome (unknown instead of known
8582 -- compatible, or known incompatible), then set Result to R.
8588 procedure Check_Prefix
is
8590 -- The subtlety here is that in doing a recursive call to check
8591 -- the prefix, we have to decide what to do in the case where we
8592 -- don't find any specific indication of an alignment problem.
8594 -- At the outer level, we normally set Unknown as the result in
8595 -- this case, since we can only set Known_Compatible if we really
8596 -- know that the alignment value is OK, but for the recursive
8597 -- call, in the case where the types match, and we have not
8598 -- specified a peculiar alignment for the object, we are only
8599 -- concerned about suspicious rep clauses, the default case does
8600 -- not affect us, since the compiler will, in the absence of such
8601 -- rep clauses, ensure that the alignment is correct.
8603 if Default
= Known_Compatible
8605 (Etype
(Obj
) = Etype
(Expr
)
8606 and then (Unknown_Alignment
(Obj
)
8608 Alignment
(Obj
) = Alignment
(Etype
(Obj
))))
8611 (Has_Compatible_Alignment_Internal
8612 (Obj
, Prefix
(Expr
), Layout_Done
, Known_Compatible
));
8614 -- In all other cases, we need a full check on the prefix
8618 (Has_Compatible_Alignment_Internal
8619 (Obj
, Prefix
(Expr
), Layout_Done
, Unknown
));
8627 procedure Set_Result
(R
: Alignment_Result
) is
8634 -- Start of processing for Has_Compatible_Alignment_Internal
8637 -- If Expr is a selected component, we must make sure there is no
8638 -- potentially troublesome component clause and that the record is
8639 -- not packed if the layout is not done.
8641 if Nkind
(Expr
) = N_Selected_Component
then
8643 -- Packing generates unknown alignment if layout is not done
8645 if Is_Packed
(Etype
(Prefix
(Expr
))) and then not Layout_Done
then
8646 Set_Result
(Unknown
);
8649 -- Check prefix and component offset
8652 Offs
:= Component_Bit_Offset
(Entity
(Selector_Name
(Expr
)));
8654 -- If Expr is an indexed component, we must make sure there is no
8655 -- potentially troublesome Component_Size clause and that the array
8656 -- is not bit-packed if the layout is not done.
8658 elsif Nkind
(Expr
) = N_Indexed_Component
then
8660 Typ
: constant Entity_Id
:= Etype
(Prefix
(Expr
));
8663 -- Packing generates unknown alignment if layout is not done
8665 if Is_Bit_Packed_Array
(Typ
) and then not Layout_Done
then
8666 Set_Result
(Unknown
);
8669 -- Check prefix and component offset (or at least size)
8672 Offs
:= Indexed_Component_Bit_Offset
(Expr
);
8673 if Offs
= No_Uint
then
8674 Offs
:= Component_Size
(Typ
);
8679 -- If we have a null offset, the result is entirely determined by
8680 -- the base object and has already been computed recursively.
8682 if Offs
= Uint_0
then
8685 -- Case where we know the alignment of the object
8687 elsif Known_Alignment
(Obj
) then
8689 ObjA
: constant Uint
:= Alignment
(Obj
);
8690 ExpA
: Uint
:= No_Uint
;
8691 SizA
: Uint
:= No_Uint
;
8694 -- If alignment of Obj is 1, then we are always OK
8697 Set_Result
(Known_Compatible
);
8699 -- Alignment of Obj is greater than 1, so we need to check
8702 -- If we have an offset, see if it is compatible
8704 if Offs
/= No_Uint
and Offs
> Uint_0
then
8705 if Offs
mod (System_Storage_Unit
* ObjA
) /= 0 then
8706 Set_Result
(Known_Incompatible
);
8709 -- See if Expr is an object with known alignment
8711 elsif Is_Entity_Name
(Expr
)
8712 and then Known_Alignment
(Entity
(Expr
))
8714 ExpA
:= Alignment
(Entity
(Expr
));
8716 -- Otherwise, we can use the alignment of the type of
8717 -- Expr given that we already checked for
8718 -- discombobulating rep clauses for the cases of indexed
8719 -- and selected components above.
8721 elsif Known_Alignment
(Etype
(Expr
)) then
8722 ExpA
:= Alignment
(Etype
(Expr
));
8724 -- Otherwise the alignment is unknown
8727 Set_Result
(Default
);
8730 -- If we got an alignment, see if it is acceptable
8732 if ExpA
/= No_Uint
and then ExpA
< ObjA
then
8733 Set_Result
(Known_Incompatible
);
8736 -- If Expr is not a piece of a larger object, see if size
8737 -- is given. If so, check that it is not too small for the
8738 -- required alignment.
8740 if Offs
/= No_Uint
then
8743 -- See if Expr is an object with known size
8745 elsif Is_Entity_Name
(Expr
)
8746 and then Known_Static_Esize
(Entity
(Expr
))
8748 SizA
:= Esize
(Entity
(Expr
));
8750 -- Otherwise, we check the object size of the Expr type
8752 elsif Known_Static_Esize
(Etype
(Expr
)) then
8753 SizA
:= Esize
(Etype
(Expr
));
8756 -- If we got a size, see if it is a multiple of the Obj
8757 -- alignment, if not, then the alignment cannot be
8758 -- acceptable, since the size is always a multiple of the
8761 if SizA
/= No_Uint
then
8762 if SizA
mod (ObjA
* Ttypes
.System_Storage_Unit
) /= 0 then
8763 Set_Result
(Known_Incompatible
);
8769 -- If we do not know required alignment, any non-zero offset is a
8770 -- potential problem (but certainly may be OK, so result is unknown).
8772 elsif Offs
/= No_Uint
then
8773 Set_Result
(Unknown
);
8775 -- If we can't find the result by direct comparison of alignment
8776 -- values, then there is still one case that we can determine known
8777 -- result, and that is when we can determine that the types are the
8778 -- same, and no alignments are specified. Then we known that the
8779 -- alignments are compatible, even if we don't know the alignment
8780 -- value in the front end.
8782 elsif Etype
(Obj
) = Etype
(Expr
) then
8784 -- Types are the same, but we have to check for possible size
8785 -- and alignments on the Expr object that may make the alignment
8786 -- different, even though the types are the same.
8788 if Is_Entity_Name
(Expr
) then
8790 -- First check alignment of the Expr object. Any alignment less
8791 -- than Maximum_Alignment is worrisome since this is the case
8792 -- where we do not know the alignment of Obj.
8794 if Known_Alignment
(Entity
(Expr
))
8795 and then UI_To_Int
(Alignment
(Entity
(Expr
))) <
8796 Ttypes
.Maximum_Alignment
8798 Set_Result
(Unknown
);
8800 -- Now check size of Expr object. Any size that is not an
8801 -- even multiple of Maximum_Alignment is also worrisome
8802 -- since it may cause the alignment of the object to be less
8803 -- than the alignment of the type.
8805 elsif Known_Static_Esize
(Entity
(Expr
))
8807 (UI_To_Int
(Esize
(Entity
(Expr
))) mod
8808 (Ttypes
.Maximum_Alignment
* Ttypes
.System_Storage_Unit
))
8811 Set_Result
(Unknown
);
8813 -- Otherwise same type is decisive
8816 Set_Result
(Known_Compatible
);
8820 -- Another case to deal with is when there is an explicit size or
8821 -- alignment clause when the types are not the same. If so, then the
8822 -- result is Unknown. We don't need to do this test if the Default is
8823 -- Unknown, since that result will be set in any case.
8825 elsif Default
/= Unknown
8826 and then (Has_Size_Clause
(Etype
(Expr
))
8828 Has_Alignment_Clause
(Etype
(Expr
)))
8830 Set_Result
(Unknown
);
8832 -- If no indication found, set default
8835 Set_Result
(Default
);
8838 -- Return worst result found
8841 end Has_Compatible_Alignment_Internal
;
8843 -- Start of processing for Has_Compatible_Alignment
8846 -- If Obj has no specified alignment, then set alignment from the type
8847 -- alignment. Perhaps we should always do this, but for sure we should
8848 -- do it when there is an address clause since we can do more if the
8849 -- alignment is known.
8851 if Unknown_Alignment
(Obj
) then
8852 Set_Alignment
(Obj
, Alignment
(Etype
(Obj
)));
8855 -- Now do the internal call that does all the work
8858 Has_Compatible_Alignment_Internal
(Obj
, Expr
, Layout_Done
, Unknown
);
8859 end Has_Compatible_Alignment
;
8861 ----------------------
8862 -- Has_Declarations --
8863 ----------------------
8865 function Has_Declarations
(N
: Node_Id
) return Boolean is
8867 return Nkind_In
(Nkind
(N
), N_Accept_Statement
,
8869 N_Compilation_Unit_Aux
,
8875 N_Package_Specification
);
8876 end Has_Declarations
;
8878 ---------------------------------
8879 -- Has_Defaulted_Discriminants --
8880 ---------------------------------
8882 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean is
8884 return Has_Discriminants
(Typ
)
8885 and then Present
(First_Discriminant
(Typ
))
8886 and then Present
(Discriminant_Default_Value
8887 (First_Discriminant
(Typ
)));
8888 end Has_Defaulted_Discriminants
;
8894 function Has_Denormals
(E
: Entity_Id
) return Boolean is
8896 return Is_Floating_Point_Type
(E
) and then Denorm_On_Target
;
8899 -------------------------------------------
8900 -- Has_Discriminant_Dependent_Constraint --
8901 -------------------------------------------
8903 function Has_Discriminant_Dependent_Constraint
8904 (Comp
: Entity_Id
) return Boolean
8906 Comp_Decl
: constant Node_Id
:= Parent
(Comp
);
8907 Subt_Indic
: Node_Id
;
8912 -- Discriminants can't depend on discriminants
8914 if Ekind
(Comp
) = E_Discriminant
then
8918 Subt_Indic
:= Subtype_Indication
(Component_Definition
(Comp_Decl
));
8920 if Nkind
(Subt_Indic
) = N_Subtype_Indication
then
8921 Constr
:= Constraint
(Subt_Indic
);
8923 if Nkind
(Constr
) = N_Index_Or_Discriminant_Constraint
then
8924 Assn
:= First
(Constraints
(Constr
));
8925 while Present
(Assn
) loop
8926 case Nkind
(Assn
) is
8927 when N_Subtype_Indication |
8931 if Depends_On_Discriminant
(Assn
) then
8935 when N_Discriminant_Association
=>
8936 if Depends_On_Discriminant
(Expression
(Assn
)) then
8951 end Has_Discriminant_Dependent_Constraint
;
8953 --------------------------------------
8954 -- Has_Effectively_Volatile_Profile --
8955 --------------------------------------
8957 function Has_Effectively_Volatile_Profile
8958 (Subp_Id
: Entity_Id
) return Boolean
8963 -- Inspect the formal parameters looking for an effectively volatile
8966 Formal
:= First_Formal
(Subp_Id
);
8967 while Present
(Formal
) loop
8968 if Is_Effectively_Volatile
(Etype
(Formal
)) then
8972 Next_Formal
(Formal
);
8975 -- Inspect the return type of functions
8977 if Ekind_In
(Subp_Id
, E_Function
, E_Generic_Function
)
8978 and then Is_Effectively_Volatile
(Etype
(Subp_Id
))
8984 end Has_Effectively_Volatile_Profile
;
8986 --------------------------
8987 -- Has_Enabled_Property --
8988 --------------------------
8990 function Has_Enabled_Property
8991 (Item_Id
: Entity_Id
;
8992 Property
: Name_Id
) return Boolean
8994 function State_Has_Enabled_Property
return Boolean;
8995 -- Determine whether a state denoted by Item_Id has the property enabled
8997 function Variable_Has_Enabled_Property
return Boolean;
8998 -- Determine whether a variable denoted by Item_Id has the property
9001 --------------------------------
9002 -- State_Has_Enabled_Property --
9003 --------------------------------
9005 function State_Has_Enabled_Property
return Boolean is
9006 Decl
: constant Node_Id
:= Parent
(Item_Id
);
9014 -- The declaration of an external abstract state appears as an
9015 -- extension aggregate. If this is not the case, properties can never
9018 if Nkind
(Decl
) /= N_Extension_Aggregate
then
9022 -- When External appears as a simple option, it automatically enables
9025 Opt
:= First
(Expressions
(Decl
));
9026 while Present
(Opt
) loop
9027 if Nkind
(Opt
) = N_Identifier
9028 and then Chars
(Opt
) = Name_External
9036 -- When External specifies particular properties, inspect those and
9037 -- find the desired one (if any).
9039 Opt
:= First
(Component_Associations
(Decl
));
9040 while Present
(Opt
) loop
9041 Opt_Nam
:= First
(Choices
(Opt
));
9043 if Nkind
(Opt_Nam
) = N_Identifier
9044 and then Chars
(Opt_Nam
) = Name_External
9046 Props
:= Expression
(Opt
);
9048 -- Multiple properties appear as an aggregate
9050 if Nkind
(Props
) = N_Aggregate
then
9052 -- Simple property form
9054 Prop
:= First
(Expressions
(Props
));
9055 while Present
(Prop
) loop
9056 if Chars
(Prop
) = Property
then
9063 -- Property with expression form
9065 Prop
:= First
(Component_Associations
(Props
));
9066 while Present
(Prop
) loop
9067 Prop_Nam
:= First
(Choices
(Prop
));
9069 -- The property can be represented in two ways:
9070 -- others => <value>
9071 -- <property> => <value>
9073 if Nkind
(Prop_Nam
) = N_Others_Choice
9074 or else (Nkind
(Prop_Nam
) = N_Identifier
9075 and then Chars
(Prop_Nam
) = Property
)
9077 return Is_True
(Expr_Value
(Expression
(Prop
)));
9086 return Chars
(Props
) = Property
;
9094 end State_Has_Enabled_Property
;
9096 -----------------------------------
9097 -- Variable_Has_Enabled_Property --
9098 -----------------------------------
9100 function Variable_Has_Enabled_Property
return Boolean is
9101 function Is_Enabled
(Prag
: Node_Id
) return Boolean;
9102 -- Determine whether property pragma Prag (if present) denotes an
9103 -- enabled property.
9109 function Is_Enabled
(Prag
: Node_Id
) return Boolean is
9113 if Present
(Prag
) then
9114 Arg1
:= First
(Pragma_Argument_Associations
(Prag
));
9116 -- The pragma has an optional Boolean expression, the related
9117 -- property is enabled only when the expression evaluates to
9120 if Present
(Arg1
) then
9121 return Is_True
(Expr_Value
(Get_Pragma_Arg
(Arg1
)));
9123 -- Otherwise the lack of expression enables the property by
9130 -- The property was never set in the first place
9139 AR
: constant Node_Id
:=
9140 Get_Pragma
(Item_Id
, Pragma_Async_Readers
);
9141 AW
: constant Node_Id
:=
9142 Get_Pragma
(Item_Id
, Pragma_Async_Writers
);
9143 ER
: constant Node_Id
:=
9144 Get_Pragma
(Item_Id
, Pragma_Effective_Reads
);
9145 EW
: constant Node_Id
:=
9146 Get_Pragma
(Item_Id
, Pragma_Effective_Writes
);
9148 -- Start of processing for Variable_Has_Enabled_Property
9151 -- A non-effectively volatile object can never possess external
9154 if not Is_Effectively_Volatile
(Item_Id
) then
9157 -- External properties related to variables come in two flavors -
9158 -- explicit and implicit. The explicit case is characterized by the
9159 -- presence of a property pragma with an optional Boolean flag. The
9160 -- property is enabled when the flag evaluates to True or the flag is
9161 -- missing altogether.
9163 elsif Property
= Name_Async_Readers
and then Is_Enabled
(AR
) then
9166 elsif Property
= Name_Async_Writers
and then Is_Enabled
(AW
) then
9169 elsif Property
= Name_Effective_Reads
and then Is_Enabled
(ER
) then
9172 elsif Property
= Name_Effective_Writes
and then Is_Enabled
(EW
) then
9175 -- The implicit case lacks all property pragmas
9177 elsif No
(AR
) and then No
(AW
) and then No
(ER
) and then No
(EW
) then
9183 end Variable_Has_Enabled_Property
;
9185 -- Start of processing for Has_Enabled_Property
9188 -- Abstract states and variables have a flexible scheme of specifying
9189 -- external properties.
9191 if Ekind
(Item_Id
) = E_Abstract_State
then
9192 return State_Has_Enabled_Property
;
9194 elsif Ekind
(Item_Id
) = E_Variable
then
9195 return Variable_Has_Enabled_Property
;
9197 -- Otherwise a property is enabled when the related item is effectively
9201 return Is_Effectively_Volatile
(Item_Id
);
9203 end Has_Enabled_Property
;
9205 -------------------------------------
9206 -- Has_Full_Default_Initialization --
9207 -------------------------------------
9209 function Has_Full_Default_Initialization
(Typ
: Entity_Id
) return Boolean is
9214 -- A type subject to pragma Default_Initial_Condition is fully default
9215 -- initialized when the pragma appears with a non-null argument. Since
9216 -- any type may act as the full view of a private type, this check must
9217 -- be performed prior to the specialized tests below.
9219 if Has_DIC
(Typ
) then
9220 Prag
:= Get_Pragma
(Typ
, Pragma_Default_Initial_Condition
);
9221 pragma Assert
(Present
(Prag
));
9223 return Is_Verifiable_DIC_Pragma
(Prag
);
9226 -- A scalar type is fully default initialized if it is subject to aspect
9229 if Is_Scalar_Type
(Typ
) then
9230 return Has_Default_Aspect
(Typ
);
9232 -- An array type is fully default initialized if its element type is
9233 -- scalar and the array type carries aspect Default_Component_Value or
9234 -- the element type is fully default initialized.
9236 elsif Is_Array_Type
(Typ
) then
9238 Has_Default_Aspect
(Typ
)
9239 or else Has_Full_Default_Initialization
(Component_Type
(Typ
));
9241 -- A protected type, record type, or type extension is fully default
9242 -- initialized if all its components either carry an initialization
9243 -- expression or have a type that is fully default initialized. The
9244 -- parent type of a type extension must be fully default initialized.
9246 elsif Is_Record_Type
(Typ
) or else Is_Protected_Type
(Typ
) then
9248 -- Inspect all entities defined in the scope of the type, looking for
9249 -- uninitialized components.
9251 Comp
:= First_Entity
(Typ
);
9252 while Present
(Comp
) loop
9253 if Ekind
(Comp
) = E_Component
9254 and then Comes_From_Source
(Comp
)
9255 and then No
(Expression
(Parent
(Comp
)))
9256 and then not Has_Full_Default_Initialization
(Etype
(Comp
))
9264 -- Ensure that the parent type of a type extension is fully default
9267 if Etype
(Typ
) /= Typ
9268 and then not Has_Full_Default_Initialization
(Etype
(Typ
))
9273 -- If we get here, then all components and parent portion are fully
9274 -- default initialized.
9278 -- A task type is fully default initialized by default
9280 elsif Is_Task_Type
(Typ
) then
9283 -- Otherwise the type is not fully default initialized
9288 end Has_Full_Default_Initialization
;
9290 --------------------
9291 -- Has_Infinities --
9292 --------------------
9294 function Has_Infinities
(E
: Entity_Id
) return Boolean is
9297 Is_Floating_Point_Type
(E
)
9298 and then Nkind
(Scalar_Range
(E
)) = N_Range
9299 and then Includes_Infinities
(Scalar_Range
(E
));
9302 --------------------
9303 -- Has_Interfaces --
9304 --------------------
9306 function Has_Interfaces
9308 Use_Full_View
: Boolean := True) return Boolean
9310 Typ
: Entity_Id
:= Base_Type
(T
);
9313 -- Handle concurrent types
9315 if Is_Concurrent_Type
(Typ
) then
9316 Typ
:= Corresponding_Record_Type
(Typ
);
9319 if not Present
(Typ
)
9320 or else not Is_Record_Type
(Typ
)
9321 or else not Is_Tagged_Type
(Typ
)
9326 -- Handle private types
9328 if Use_Full_View
and then Present
(Full_View
(Typ
)) then
9329 Typ
:= Full_View
(Typ
);
9332 -- Handle concurrent record types
9334 if Is_Concurrent_Record_Type
(Typ
)
9335 and then Is_Non_Empty_List
(Abstract_Interface_List
(Typ
))
9341 if Is_Interface
(Typ
)
9343 (Is_Record_Type
(Typ
)
9344 and then Present
(Interfaces
(Typ
))
9345 and then not Is_Empty_Elmt_List
(Interfaces
(Typ
)))
9350 exit when Etype
(Typ
) = Typ
9352 -- Handle private types
9354 or else (Present
(Full_View
(Etype
(Typ
)))
9355 and then Full_View
(Etype
(Typ
)) = Typ
)
9357 -- Protect frontend against wrong sources with cyclic derivations
9359 or else Etype
(Typ
) = T
;
9361 -- Climb to the ancestor type handling private types
9363 if Present
(Full_View
(Etype
(Typ
))) then
9364 Typ
:= Full_View
(Etype
(Typ
));
9373 --------------------------
9374 -- Has_Max_Queue_Length --
9375 --------------------------
9377 function Has_Max_Queue_Length
(Id
: Entity_Id
) return Boolean is
9380 Ekind
(Id
) = E_Entry
9381 and then Present
(Get_Pragma
(Id
, Pragma_Max_Queue_Length
));
9382 end Has_Max_Queue_Length
;
9384 ---------------------------------
9385 -- Has_No_Obvious_Side_Effects --
9386 ---------------------------------
9388 function Has_No_Obvious_Side_Effects
(N
: Node_Id
) return Boolean is
9390 -- For now handle literals, constants, and non-volatile variables and
9391 -- expressions combining these with operators or short circuit forms.
9393 if Nkind
(N
) in N_Numeric_Or_String_Literal
then
9396 elsif Nkind
(N
) = N_Character_Literal
then
9399 elsif Nkind
(N
) in N_Unary_Op
then
9400 return Has_No_Obvious_Side_Effects
(Right_Opnd
(N
));
9402 elsif Nkind
(N
) in N_Binary_Op
or else Nkind
(N
) in N_Short_Circuit
then
9403 return Has_No_Obvious_Side_Effects
(Left_Opnd
(N
))
9405 Has_No_Obvious_Side_Effects
(Right_Opnd
(N
));
9407 elsif Nkind
(N
) = N_Expression_With_Actions
9408 and then Is_Empty_List
(Actions
(N
))
9410 return Has_No_Obvious_Side_Effects
(Expression
(N
));
9412 elsif Nkind
(N
) in N_Has_Entity
then
9413 return Present
(Entity
(N
))
9414 and then Ekind_In
(Entity
(N
), E_Variable
,
9416 E_Enumeration_Literal
,
9420 and then not Is_Volatile
(Entity
(N
));
9425 end Has_No_Obvious_Side_Effects
;
9427 -----------------------------
9428 -- Has_Non_Null_Refinement --
9429 -----------------------------
9431 function Has_Non_Null_Refinement
(Id
: Entity_Id
) return Boolean is
9432 Constits
: Elist_Id
;
9435 pragma Assert
(Ekind
(Id
) = E_Abstract_State
);
9436 Constits
:= Refinement_Constituents
(Id
);
9438 -- For a refinement to be non-null, the first constituent must be
9439 -- anything other than null.
9443 and then Nkind
(Node
(First_Elmt
(Constits
))) /= N_Null
;
9444 end Has_Non_Null_Refinement
;
9450 function Has_Null_Body
(Proc_Id
: Entity_Id
) return Boolean is
9451 Body_Id
: Entity_Id
;
9458 Spec
:= Parent
(Proc_Id
);
9459 Decl
:= Parent
(Spec
);
9461 -- Retrieve the entity of the procedure body (e.g. invariant proc).
9463 if Nkind
(Spec
) = N_Procedure_Specification
9464 and then Nkind
(Decl
) = N_Subprogram_Declaration
9466 Body_Id
:= Corresponding_Body
(Decl
);
9468 -- The body acts as a spec
9474 -- The body will be generated later
9476 if No
(Body_Id
) then
9480 Spec
:= Parent
(Body_Id
);
9481 Decl
:= Parent
(Spec
);
9484 (Nkind
(Spec
) = N_Procedure_Specification
9485 and then Nkind
(Decl
) = N_Subprogram_Body
);
9487 Stmt1
:= First
(Statements
(Handled_Statement_Sequence
(Decl
)));
9489 -- Look for a null statement followed by an optional return
9492 if Nkind
(Stmt1
) = N_Null_Statement
then
9493 Stmt2
:= Next
(Stmt1
);
9495 if Present
(Stmt2
) then
9496 return Nkind
(Stmt2
) = N_Simple_Return_Statement
;
9505 ------------------------
9506 -- Has_Null_Exclusion --
9507 ------------------------
9509 function Has_Null_Exclusion
(N
: Node_Id
) return Boolean is
9512 when N_Access_Definition |
9513 N_Access_Function_Definition |
9514 N_Access_Procedure_Definition |
9515 N_Access_To_Object_Definition |
9517 N_Derived_Type_Definition |
9518 N_Function_Specification |
9519 N_Subtype_Declaration
=>
9520 return Null_Exclusion_Present
(N
);
9522 when N_Component_Definition |
9523 N_Formal_Object_Declaration |
9524 N_Object_Renaming_Declaration
=>
9525 if Present
(Subtype_Mark
(N
)) then
9526 return Null_Exclusion_Present
(N
);
9527 else pragma Assert
(Present
(Access_Definition
(N
)));
9528 return Null_Exclusion_Present
(Access_Definition
(N
));
9531 when N_Discriminant_Specification
=>
9532 if Nkind
(Discriminant_Type
(N
)) = N_Access_Definition
then
9533 return Null_Exclusion_Present
(Discriminant_Type
(N
));
9535 return Null_Exclusion_Present
(N
);
9538 when N_Object_Declaration
=>
9539 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
then
9540 return Null_Exclusion_Present
(Object_Definition
(N
));
9542 return Null_Exclusion_Present
(N
);
9545 when N_Parameter_Specification
=>
9546 if Nkind
(Parameter_Type
(N
)) = N_Access_Definition
then
9547 return Null_Exclusion_Present
(Parameter_Type
(N
));
9549 return Null_Exclusion_Present
(N
);
9556 end Has_Null_Exclusion
;
9558 ------------------------
9559 -- Has_Null_Extension --
9560 ------------------------
9562 function Has_Null_Extension
(T
: Entity_Id
) return Boolean is
9563 B
: constant Entity_Id
:= Base_Type
(T
);
9568 if Nkind
(Parent
(B
)) = N_Full_Type_Declaration
9569 and then Present
(Record_Extension_Part
(Type_Definition
(Parent
(B
))))
9571 Ext
:= Record_Extension_Part
(Type_Definition
(Parent
(B
)));
9573 if Present
(Ext
) then
9574 if Null_Present
(Ext
) then
9577 Comps
:= Component_List
(Ext
);
9579 -- The null component list is rewritten during analysis to
9580 -- include the parent component. Any other component indicates
9581 -- that the extension was not originally null.
9583 return Null_Present
(Comps
)
9584 or else No
(Next
(First
(Component_Items
(Comps
))));
9593 end Has_Null_Extension
;
9595 -------------------------
9596 -- Has_Null_Refinement --
9597 -------------------------
9599 function Has_Null_Refinement
(Id
: Entity_Id
) return Boolean is
9600 Constits
: Elist_Id
;
9603 pragma Assert
(Ekind
(Id
) = E_Abstract_State
);
9604 Constits
:= Refinement_Constituents
(Id
);
9606 -- For a refinement to be null, the state's sole constituent must be a
9611 and then Nkind
(Node
(First_Elmt
(Constits
))) = N_Null
;
9612 end Has_Null_Refinement
;
9614 -------------------------------
9615 -- Has_Overriding_Initialize --
9616 -------------------------------
9618 function Has_Overriding_Initialize
(T
: Entity_Id
) return Boolean is
9619 BT
: constant Entity_Id
:= Base_Type
(T
);
9623 if Is_Controlled
(BT
) then
9624 if Is_RTU
(Scope
(BT
), Ada_Finalization
) then
9627 elsif Present
(Primitive_Operations
(BT
)) then
9628 P
:= First_Elmt
(Primitive_Operations
(BT
));
9629 while Present
(P
) loop
9631 Init
: constant Entity_Id
:= Node
(P
);
9632 Formal
: constant Entity_Id
:= First_Formal
(Init
);
9634 if Ekind
(Init
) = E_Procedure
9635 and then Chars
(Init
) = Name_Initialize
9636 and then Comes_From_Source
(Init
)
9637 and then Present
(Formal
)
9638 and then Etype
(Formal
) = BT
9639 and then No
(Next_Formal
(Formal
))
9640 and then (Ada_Version
< Ada_2012
9641 or else not Null_Present
(Parent
(Init
)))
9651 -- Here if type itself does not have a non-null Initialize operation:
9652 -- check immediate ancestor.
9654 if Is_Derived_Type
(BT
)
9655 and then Has_Overriding_Initialize
(Etype
(BT
))
9662 end Has_Overriding_Initialize
;
9664 --------------------------------------
9665 -- Has_Preelaborable_Initialization --
9666 --------------------------------------
9668 function Has_Preelaborable_Initialization
(E
: Entity_Id
) return Boolean is
9671 procedure Check_Components
(E
: Entity_Id
);
9672 -- Check component/discriminant chain, sets Has_PE False if a component
9673 -- or discriminant does not meet the preelaborable initialization rules.
9675 ----------------------
9676 -- Check_Components --
9677 ----------------------
9679 procedure Check_Components
(E
: Entity_Id
) is
9683 function Is_Preelaborable_Expression
(N
: Node_Id
) return Boolean;
9684 -- Returns True if and only if the expression denoted by N does not
9685 -- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
9687 ---------------------------------
9688 -- Is_Preelaborable_Expression --
9689 ---------------------------------
9691 function Is_Preelaborable_Expression
(N
: Node_Id
) return Boolean is
9695 Comp_Type
: Entity_Id
;
9696 Is_Array_Aggr
: Boolean;
9699 if Is_OK_Static_Expression
(N
) then
9702 elsif Nkind
(N
) = N_Null
then
9705 -- Attributes are allowed in general, even if their prefix is a
9706 -- formal type. (It seems that certain attributes known not to be
9707 -- static might not be allowed, but there are no rules to prevent
9710 elsif Nkind
(N
) = N_Attribute_Reference
then
9713 -- The name of a discriminant evaluated within its parent type is
9714 -- defined to be preelaborable (10.2.1(8)). Note that we test for
9715 -- names that denote discriminals as well as discriminants to
9716 -- catch references occurring within init procs.
9718 elsif Is_Entity_Name
(N
)
9720 (Ekind
(Entity
(N
)) = E_Discriminant
9721 or else (Ekind_In
(Entity
(N
), E_Constant
, E_In_Parameter
)
9722 and then Present
(Discriminal_Link
(Entity
(N
)))))
9726 elsif Nkind
(N
) = N_Qualified_Expression
then
9727 return Is_Preelaborable_Expression
(Expression
(N
));
9729 -- For aggregates we have to check that each of the associations
9730 -- is preelaborable.
9732 elsif Nkind_In
(N
, N_Aggregate
, N_Extension_Aggregate
) then
9733 Is_Array_Aggr
:= Is_Array_Type
(Etype
(N
));
9735 if Is_Array_Aggr
then
9736 Comp_Type
:= Component_Type
(Etype
(N
));
9739 -- Check the ancestor part of extension aggregates, which must
9740 -- be either the name of a type that has preelaborable init or
9741 -- an expression that is preelaborable.
9743 if Nkind
(N
) = N_Extension_Aggregate
then
9745 Anc_Part
: constant Node_Id
:= Ancestor_Part
(N
);
9748 if Is_Entity_Name
(Anc_Part
)
9749 and then Is_Type
(Entity
(Anc_Part
))
9751 if not Has_Preelaborable_Initialization
9757 elsif not Is_Preelaborable_Expression
(Anc_Part
) then
9763 -- Check positional associations
9765 Exp
:= First
(Expressions
(N
));
9766 while Present
(Exp
) loop
9767 if not Is_Preelaborable_Expression
(Exp
) then
9774 -- Check named associations
9776 Assn
:= First
(Component_Associations
(N
));
9777 while Present
(Assn
) loop
9778 Choice
:= First
(Choices
(Assn
));
9779 while Present
(Choice
) loop
9780 if Is_Array_Aggr
then
9781 if Nkind
(Choice
) = N_Others_Choice
then
9784 elsif Nkind
(Choice
) = N_Range
then
9785 if not Is_OK_Static_Range
(Choice
) then
9789 elsif not Is_OK_Static_Expression
(Choice
) then
9794 Comp_Type
:= Etype
(Choice
);
9800 -- If the association has a <> at this point, then we have
9801 -- to check whether the component's type has preelaborable
9802 -- initialization. Note that this only occurs when the
9803 -- association's corresponding component does not have a
9804 -- default expression, the latter case having already been
9805 -- expanded as an expression for the association.
9807 if Box_Present
(Assn
) then
9808 if not Has_Preelaborable_Initialization
(Comp_Type
) then
9812 -- In the expression case we check whether the expression
9813 -- is preelaborable.
9816 not Is_Preelaborable_Expression
(Expression
(Assn
))
9824 -- If we get here then aggregate as a whole is preelaborable
9828 -- All other cases are not preelaborable
9833 end Is_Preelaborable_Expression
;
9835 -- Start of processing for Check_Components
9838 -- Loop through entities of record or protected type
9841 while Present
(Ent
) loop
9843 -- We are interested only in components and discriminants
9850 -- Get default expression if any. If there is no declaration
9851 -- node, it means we have an internal entity. The parent and
9852 -- tag fields are examples of such entities. For such cases,
9853 -- we just test the type of the entity.
9855 if Present
(Declaration_Node
(Ent
)) then
9856 Exp
:= Expression
(Declaration_Node
(Ent
));
9859 when E_Discriminant
=>
9861 -- Note: for a renamed discriminant, the Declaration_Node
9862 -- may point to the one from the ancestor, and have a
9863 -- different expression, so use the proper attribute to
9864 -- retrieve the expression from the derived constraint.
9866 Exp
:= Discriminant_Default_Value
(Ent
);
9869 goto Check_Next_Entity
;
9872 -- A component has PI if it has no default expression and the
9873 -- component type has PI.
9876 if not Has_Preelaborable_Initialization
(Etype
(Ent
)) then
9881 -- Require the default expression to be preelaborable
9883 elsif not Is_Preelaborable_Expression
(Exp
) then
9888 <<Check_Next_Entity
>>
9891 end Check_Components
;
9893 -- Start of processing for Has_Preelaborable_Initialization
9896 -- Immediate return if already marked as known preelaborable init. This
9897 -- covers types for which this function has already been called once
9898 -- and returned True (in which case the result is cached), and also
9899 -- types to which a pragma Preelaborable_Initialization applies.
9901 if Known_To_Have_Preelab_Init
(E
) then
9905 -- If the type is a subtype representing a generic actual type, then
9906 -- test whether its base type has preelaborable initialization since
9907 -- the subtype representing the actual does not inherit this attribute
9908 -- from the actual or formal. (but maybe it should???)
9910 if Is_Generic_Actual_Type
(E
) then
9911 return Has_Preelaborable_Initialization
(Base_Type
(E
));
9914 -- All elementary types have preelaborable initialization
9916 if Is_Elementary_Type
(E
) then
9919 -- Array types have PI if the component type has PI
9921 elsif Is_Array_Type
(E
) then
9922 Has_PE
:= Has_Preelaborable_Initialization
(Component_Type
(E
));
9924 -- A derived type has preelaborable initialization if its parent type
9925 -- has preelaborable initialization and (in the case of a derived record
9926 -- extension) if the non-inherited components all have preelaborable
9927 -- initialization. However, a user-defined controlled type with an
9928 -- overriding Initialize procedure does not have preelaborable
9931 elsif Is_Derived_Type
(E
) then
9933 -- If the derived type is a private extension then it doesn't have
9934 -- preelaborable initialization.
9936 if Ekind
(Base_Type
(E
)) = E_Record_Type_With_Private
then
9940 -- First check whether ancestor type has preelaborable initialization
9942 Has_PE
:= Has_Preelaborable_Initialization
(Etype
(Base_Type
(E
)));
9944 -- If OK, check extension components (if any)
9946 if Has_PE
and then Is_Record_Type
(E
) then
9947 Check_Components
(First_Entity
(E
));
9950 -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
9951 -- with a user defined Initialize procedure does not have PI. If
9952 -- the type is untagged, the control primitives come from a component
9953 -- that has already been checked.
9956 and then Is_Controlled
(E
)
9957 and then Is_Tagged_Type
(E
)
9958 and then Has_Overriding_Initialize
(E
)
9963 -- Private types not derived from a type having preelaborable init and
9964 -- that are not marked with pragma Preelaborable_Initialization do not
9965 -- have preelaborable initialization.
9967 elsif Is_Private_Type
(E
) then
9970 -- Record type has PI if it is non private and all components have PI
9972 elsif Is_Record_Type
(E
) then
9974 Check_Components
(First_Entity
(E
));
9976 -- Protected types must not have entries, and components must meet
9977 -- same set of rules as for record components.
9979 elsif Is_Protected_Type
(E
) then
9980 if Has_Entries
(E
) then
9984 Check_Components
(First_Entity
(E
));
9985 Check_Components
(First_Private_Entity
(E
));
9988 -- Type System.Address always has preelaborable initialization
9990 elsif Is_RTE
(E
, RE_Address
) then
9993 -- In all other cases, type does not have preelaborable initialization
9999 -- If type has preelaborable initialization, cache result
10002 Set_Known_To_Have_Preelab_Init
(E
);
10006 end Has_Preelaborable_Initialization
;
10008 ---------------------------
10009 -- Has_Private_Component --
10010 ---------------------------
10012 function Has_Private_Component
(Type_Id
: Entity_Id
) return Boolean is
10013 Btype
: Entity_Id
:= Base_Type
(Type_Id
);
10014 Component
: Entity_Id
;
10017 if Error_Posted
(Type_Id
)
10018 or else Error_Posted
(Btype
)
10023 if Is_Class_Wide_Type
(Btype
) then
10024 Btype
:= Root_Type
(Btype
);
10027 if Is_Private_Type
(Btype
) then
10029 UT
: constant Entity_Id
:= Underlying_Type
(Btype
);
10032 if No
(Full_View
(Btype
)) then
10033 return not Is_Generic_Type
(Btype
)
10035 not Is_Generic_Type
(Root_Type
(Btype
));
10037 return not Is_Generic_Type
(Root_Type
(Full_View
(Btype
)));
10040 return not Is_Frozen
(UT
) and then Has_Private_Component
(UT
);
10044 elsif Is_Array_Type
(Btype
) then
10045 return Has_Private_Component
(Component_Type
(Btype
));
10047 elsif Is_Record_Type
(Btype
) then
10048 Component
:= First_Component
(Btype
);
10049 while Present
(Component
) loop
10050 if Has_Private_Component
(Etype
(Component
)) then
10054 Next_Component
(Component
);
10059 elsif Is_Protected_Type
(Btype
)
10060 and then Present
(Corresponding_Record_Type
(Btype
))
10062 return Has_Private_Component
(Corresponding_Record_Type
(Btype
));
10067 end Has_Private_Component
;
10069 ----------------------
10070 -- Has_Signed_Zeros --
10071 ----------------------
10073 function Has_Signed_Zeros
(E
: Entity_Id
) return Boolean is
10075 return Is_Floating_Point_Type
(E
) and then Signed_Zeros_On_Target
;
10076 end Has_Signed_Zeros
;
10078 ------------------------------
10079 -- Has_Significant_Contract --
10080 ------------------------------
10082 function Has_Significant_Contract
(Subp_Id
: Entity_Id
) return Boolean is
10083 Subp_Nam
: constant Name_Id
:= Chars
(Subp_Id
);
10086 -- _Finalizer procedure
10088 if Subp_Nam
= Name_uFinalizer
then
10091 -- _Postconditions procedure
10093 elsif Subp_Nam
= Name_uPostconditions
then
10096 -- Predicate function
10098 elsif Ekind
(Subp_Id
) = E_Function
10099 and then Is_Predicate_Function
(Subp_Id
)
10105 elsif Get_TSS_Name
(Subp_Id
) /= TSS_Null
then
10111 end Has_Significant_Contract
;
10113 -----------------------------
10114 -- Has_Static_Array_Bounds --
10115 -----------------------------
10117 function Has_Static_Array_Bounds
(Typ
: Node_Id
) return Boolean is
10118 Ndims
: constant Nat
:= Number_Dimensions
(Typ
);
10125 -- Unconstrained types do not have static bounds
10127 if not Is_Constrained
(Typ
) then
10131 -- First treat string literals specially, as the lower bound and length
10132 -- of string literals are not stored like those of arrays.
10134 -- A string literal always has static bounds
10136 if Ekind
(Typ
) = E_String_Literal_Subtype
then
10140 -- Treat all dimensions in turn
10142 Index
:= First_Index
(Typ
);
10143 for Indx
in 1 .. Ndims
loop
10145 -- In case of an illegal index which is not a discrete type, return
10146 -- that the type is not static.
10148 if not Is_Discrete_Type
(Etype
(Index
))
10149 or else Etype
(Index
) = Any_Type
10154 Get_Index_Bounds
(Index
, Low
, High
);
10156 if Error_Posted
(Low
) or else Error_Posted
(High
) then
10160 if Is_OK_Static_Expression
(Low
)
10162 Is_OK_Static_Expression
(High
)
10172 -- If we fall through the loop, all indexes matched
10175 end Has_Static_Array_Bounds
;
10181 function Has_Stream
(T
: Entity_Id
) return Boolean is
10188 elsif Is_RTE
(Root_Type
(T
), RE_Root_Stream_Type
) then
10191 elsif Is_Array_Type
(T
) then
10192 return Has_Stream
(Component_Type
(T
));
10194 elsif Is_Record_Type
(T
) then
10195 E
:= First_Component
(T
);
10196 while Present
(E
) loop
10197 if Has_Stream
(Etype
(E
)) then
10200 Next_Component
(E
);
10206 elsif Is_Private_Type
(T
) then
10207 return Has_Stream
(Underlying_Type
(T
));
10218 function Has_Suffix
(E
: Entity_Id
; Suffix
: Character) return Boolean is
10220 Get_Name_String
(Chars
(E
));
10221 return Name_Buffer
(Name_Len
) = Suffix
;
10228 function Add_Suffix
(E
: Entity_Id
; Suffix
: Character) return Name_Id
is
10230 Get_Name_String
(Chars
(E
));
10231 Add_Char_To_Name_Buffer
(Suffix
);
10235 -------------------
10236 -- Remove_Suffix --
10237 -------------------
10239 function Remove_Suffix
(E
: Entity_Id
; Suffix
: Character) return Name_Id
is
10241 pragma Assert
(Has_Suffix
(E
, Suffix
));
10242 Get_Name_String
(Chars
(E
));
10243 Name_Len
:= Name_Len
- 1;
10247 ----------------------------------
10248 -- Replace_Null_By_Null_Address --
10249 ----------------------------------
10251 procedure Replace_Null_By_Null_Address
(N
: Node_Id
) is
10252 procedure Replace_Null_Operand
(Op
: Node_Id
; Other_Op
: Node_Id
);
10253 -- Replace operand Op with a reference to Null_Address when the operand
10254 -- denotes a null Address. Other_Op denotes the other operand.
10256 --------------------------
10257 -- Replace_Null_Operand --
10258 --------------------------
10260 procedure Replace_Null_Operand
(Op
: Node_Id
; Other_Op
: Node_Id
) is
10262 -- Check the type of the complementary operand since the N_Null node
10263 -- has not been decorated yet.
10265 if Nkind
(Op
) = N_Null
10266 and then Is_Descendant_Of_Address
(Etype
(Other_Op
))
10268 Rewrite
(Op
, New_Occurrence_Of
(RTE
(RE_Null_Address
), Sloc
(Op
)));
10270 end Replace_Null_Operand
;
10272 -- Start of processing for Replace_Null_By_Null_Address
10275 pragma Assert
(Relaxed_RM_Semantics
);
10276 pragma Assert
(Nkind_In
(N
, N_Null
,
10284 if Nkind
(N
) = N_Null
then
10285 Rewrite
(N
, New_Occurrence_Of
(RTE
(RE_Null_Address
), Sloc
(N
)));
10289 L
: constant Node_Id
:= Left_Opnd
(N
);
10290 R
: constant Node_Id
:= Right_Opnd
(N
);
10293 Replace_Null_Operand
(L
, Other_Op
=> R
);
10294 Replace_Null_Operand
(R
, Other_Op
=> L
);
10297 end Replace_Null_By_Null_Address
;
10299 --------------------------
10300 -- Has_Tagged_Component --
10301 --------------------------
10303 function Has_Tagged_Component
(Typ
: Entity_Id
) return Boolean is
10307 if Is_Private_Type
(Typ
) and then Present
(Underlying_Type
(Typ
)) then
10308 return Has_Tagged_Component
(Underlying_Type
(Typ
));
10310 elsif Is_Array_Type
(Typ
) then
10311 return Has_Tagged_Component
(Component_Type
(Typ
));
10313 elsif Is_Tagged_Type
(Typ
) then
10316 elsif Is_Record_Type
(Typ
) then
10317 Comp
:= First_Component
(Typ
);
10318 while Present
(Comp
) loop
10319 if Has_Tagged_Component
(Etype
(Comp
)) then
10323 Next_Component
(Comp
);
10331 end Has_Tagged_Component
;
10333 -----------------------------
10334 -- Has_Undefined_Reference --
10335 -----------------------------
10337 function Has_Undefined_Reference
(Expr
: Node_Id
) return Boolean is
10338 Has_Undef_Ref
: Boolean := False;
10339 -- Flag set when expression Expr contains at least one undefined
10342 function Is_Undefined_Reference
(N
: Node_Id
) return Traverse_Result
;
10343 -- Determine whether N denotes a reference and if it does, whether it is
10346 ----------------------------
10347 -- Is_Undefined_Reference --
10348 ----------------------------
10350 function Is_Undefined_Reference
(N
: Node_Id
) return Traverse_Result
is
10352 if Is_Entity_Name
(N
)
10353 and then Present
(Entity
(N
))
10354 and then Entity
(N
) = Any_Id
10356 Has_Undef_Ref
:= True;
10361 end Is_Undefined_Reference
;
10363 procedure Find_Undefined_References
is
10364 new Traverse_Proc
(Is_Undefined_Reference
);
10366 -- Start of processing for Has_Undefined_Reference
10369 Find_Undefined_References
(Expr
);
10371 return Has_Undef_Ref
;
10372 end Has_Undefined_Reference
;
10374 ----------------------------
10375 -- Has_Volatile_Component --
10376 ----------------------------
10378 function Has_Volatile_Component
(Typ
: Entity_Id
) return Boolean is
10382 if Has_Volatile_Components
(Typ
) then
10385 elsif Is_Array_Type
(Typ
) then
10386 return Is_Volatile
(Component_Type
(Typ
));
10388 elsif Is_Record_Type
(Typ
) then
10389 Comp
:= First_Component
(Typ
);
10390 while Present
(Comp
) loop
10391 if Is_Volatile_Object
(Comp
) then
10395 Comp
:= Next_Component
(Comp
);
10400 end Has_Volatile_Component
;
10402 -------------------------
10403 -- Implementation_Kind --
10404 -------------------------
10406 function Implementation_Kind
(Subp
: Entity_Id
) return Name_Id
is
10407 Impl_Prag
: constant Node_Id
:= Get_Rep_Pragma
(Subp
, Name_Implemented
);
10410 pragma Assert
(Present
(Impl_Prag
));
10411 Arg
:= Last
(Pragma_Argument_Associations
(Impl_Prag
));
10412 return Chars
(Get_Pragma_Arg
(Arg
));
10413 end Implementation_Kind
;
10415 --------------------------
10416 -- Implements_Interface --
10417 --------------------------
10419 function Implements_Interface
10420 (Typ_Ent
: Entity_Id
;
10421 Iface_Ent
: Entity_Id
;
10422 Exclude_Parents
: Boolean := False) return Boolean
10424 Ifaces_List
: Elist_Id
;
10426 Iface
: Entity_Id
:= Base_Type
(Iface_Ent
);
10427 Typ
: Entity_Id
:= Base_Type
(Typ_Ent
);
10430 if Is_Class_Wide_Type
(Typ
) then
10431 Typ
:= Root_Type
(Typ
);
10434 if not Has_Interfaces
(Typ
) then
10438 if Is_Class_Wide_Type
(Iface
) then
10439 Iface
:= Root_Type
(Iface
);
10442 Collect_Interfaces
(Typ
, Ifaces_List
);
10444 Elmt
:= First_Elmt
(Ifaces_List
);
10445 while Present
(Elmt
) loop
10446 if Is_Ancestor
(Node
(Elmt
), Typ
, Use_Full_View
=> True)
10447 and then Exclude_Parents
10451 elsif Node
(Elmt
) = Iface
then
10459 end Implements_Interface
;
10461 ------------------------------------
10462 -- In_Assertion_Expression_Pragma --
10463 ------------------------------------
10465 function In_Assertion_Expression_Pragma
(N
: Node_Id
) return Boolean is
10467 Prag
: Node_Id
:= Empty
;
10470 -- Climb the parent chain looking for an enclosing pragma
10473 while Present
(Par
) loop
10474 if Nkind
(Par
) = N_Pragma
then
10478 -- Precondition-like pragmas are expanded into if statements, check
10479 -- the original node instead.
10481 elsif Nkind
(Original_Node
(Par
)) = N_Pragma
then
10482 Prag
:= Original_Node
(Par
);
10485 -- The expansion of attribute 'Old generates a constant to capture
10486 -- the result of the prefix. If the parent traversal reaches
10487 -- one of these constants, then the node technically came from a
10488 -- postcondition-like pragma. Note that the Ekind is not tested here
10489 -- because N may be the expression of an object declaration which is
10490 -- currently being analyzed. Such objects carry Ekind of E_Void.
10492 elsif Nkind
(Par
) = N_Object_Declaration
10493 and then Constant_Present
(Par
)
10494 and then Stores_Attribute_Old_Prefix
(Defining_Entity
(Par
))
10498 -- Prevent the search from going too far
10500 elsif Is_Body_Or_Package_Declaration
(Par
) then
10504 Par
:= Parent
(Par
);
10509 and then Assertion_Expression_Pragma
(Get_Pragma_Id
(Prag
));
10510 end In_Assertion_Expression_Pragma
;
10516 function In_Instance
return Boolean is
10517 Curr_Unit
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
10521 S
:= Current_Scope
;
10522 while Present
(S
) and then S
/= Standard_Standard
loop
10523 if Ekind_In
(S
, E_Function
, E_Package
, E_Procedure
)
10524 and then Is_Generic_Instance
(S
)
10526 -- A child instance is always compiled in the context of a parent
10527 -- instance. Nevertheless, the actuals are not analyzed in an
10528 -- instance context. We detect this case by examining the current
10529 -- compilation unit, which must be a child instance, and checking
10530 -- that it is not currently on the scope stack.
10532 if Is_Child_Unit
(Curr_Unit
)
10533 and then Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) =
10534 N_Package_Instantiation
10535 and then not In_Open_Scopes
(Curr_Unit
)
10549 ----------------------
10550 -- In_Instance_Body --
10551 ----------------------
10553 function In_Instance_Body
return Boolean is
10557 S
:= Current_Scope
;
10558 while Present
(S
) and then S
/= Standard_Standard
loop
10559 if Ekind_In
(S
, E_Function
, E_Procedure
)
10560 and then Is_Generic_Instance
(S
)
10564 elsif Ekind
(S
) = E_Package
10565 and then In_Package_Body
(S
)
10566 and then Is_Generic_Instance
(S
)
10575 end In_Instance_Body
;
10577 -----------------------------
10578 -- In_Instance_Not_Visible --
10579 -----------------------------
10581 function In_Instance_Not_Visible
return Boolean is
10585 S
:= Current_Scope
;
10586 while Present
(S
) and then S
/= Standard_Standard
loop
10587 if Ekind_In
(S
, E_Function
, E_Procedure
)
10588 and then Is_Generic_Instance
(S
)
10592 elsif Ekind
(S
) = E_Package
10593 and then (In_Package_Body
(S
) or else In_Private_Part
(S
))
10594 and then Is_Generic_Instance
(S
)
10603 end In_Instance_Not_Visible
;
10605 ------------------------------
10606 -- In_Instance_Visible_Part --
10607 ------------------------------
10609 function In_Instance_Visible_Part
return Boolean is
10613 S
:= Current_Scope
;
10614 while Present
(S
) and then S
/= Standard_Standard
loop
10615 if Ekind
(S
) = E_Package
10616 and then Is_Generic_Instance
(S
)
10617 and then not In_Package_Body
(S
)
10618 and then not In_Private_Part
(S
)
10627 end In_Instance_Visible_Part
;
10629 ---------------------
10630 -- In_Package_Body --
10631 ---------------------
10633 function In_Package_Body
return Boolean is
10637 S
:= Current_Scope
;
10638 while Present
(S
) and then S
/= Standard_Standard
loop
10639 if Ekind
(S
) = E_Package
and then In_Package_Body
(S
) then
10647 end In_Package_Body
;
10649 --------------------------------
10650 -- In_Parameter_Specification --
10651 --------------------------------
10653 function In_Parameter_Specification
(N
: Node_Id
) return Boolean is
10658 while Present
(PN
) loop
10659 if Nkind
(PN
) = N_Parameter_Specification
then
10667 end In_Parameter_Specification
;
10669 --------------------------
10670 -- In_Pragma_Expression --
10671 --------------------------
10673 function In_Pragma_Expression
(N
: Node_Id
; Nam
: Name_Id
) return Boolean is
10680 elsif Nkind
(P
) = N_Pragma
and then Pragma_Name_Mapped
(P
) = Nam
then
10686 end In_Pragma_Expression
;
10688 ---------------------------
10689 -- In_Pre_Post_Condition --
10690 ---------------------------
10692 function In_Pre_Post_Condition
(N
: Node_Id
) return Boolean is
10694 Prag
: Node_Id
:= Empty
;
10695 Prag_Id
: Pragma_Id
;
10698 -- Climb the parent chain looking for an enclosing pragma
10701 while Present
(Par
) loop
10702 if Nkind
(Par
) = N_Pragma
then
10706 -- Prevent the search from going too far
10708 elsif Is_Body_Or_Package_Declaration
(Par
) then
10712 Par
:= Parent
(Par
);
10715 if Present
(Prag
) then
10716 Prag_Id
:= Get_Pragma_Id
(Prag
);
10719 Prag_Id
= Pragma_Post
10720 or else Prag_Id
= Pragma_Post_Class
10721 or else Prag_Id
= Pragma_Postcondition
10722 or else Prag_Id
= Pragma_Pre
10723 or else Prag_Id
= Pragma_Pre_Class
10724 or else Prag_Id
= Pragma_Precondition
;
10726 -- Otherwise the node is not enclosed by a pre/postcondition pragma
10731 end In_Pre_Post_Condition
;
10733 -------------------------------------
10734 -- In_Reverse_Storage_Order_Object --
10735 -------------------------------------
10737 function In_Reverse_Storage_Order_Object
(N
: Node_Id
) return Boolean is
10739 Btyp
: Entity_Id
:= Empty
;
10742 -- Climb up indexed components
10746 case Nkind
(Pref
) is
10747 when N_Selected_Component
=>
10748 Pref
:= Prefix
(Pref
);
10751 when N_Indexed_Component
=>
10752 Pref
:= Prefix
(Pref
);
10760 if Present
(Pref
) then
10761 Btyp
:= Base_Type
(Etype
(Pref
));
10764 return Present
(Btyp
)
10765 and then (Is_Record_Type
(Btyp
) or else Is_Array_Type
(Btyp
))
10766 and then Reverse_Storage_Order
(Btyp
);
10767 end In_Reverse_Storage_Order_Object
;
10769 --------------------------------------
10770 -- In_Subprogram_Or_Concurrent_Unit --
10771 --------------------------------------
10773 function In_Subprogram_Or_Concurrent_Unit
return Boolean is
10778 -- Use scope chain to check successively outer scopes
10780 E
:= Current_Scope
;
10784 if K
in Subprogram_Kind
10785 or else K
in Concurrent_Kind
10786 or else K
in Generic_Subprogram_Kind
10790 elsif E
= Standard_Standard
then
10796 end In_Subprogram_Or_Concurrent_Unit
;
10798 ---------------------
10799 -- In_Visible_Part --
10800 ---------------------
10802 function In_Visible_Part
(Scope_Id
: Entity_Id
) return Boolean is
10804 return Is_Package_Or_Generic_Package
(Scope_Id
)
10805 and then In_Open_Scopes
(Scope_Id
)
10806 and then not In_Package_Body
(Scope_Id
)
10807 and then not In_Private_Part
(Scope_Id
);
10808 end In_Visible_Part
;
10810 --------------------------------
10811 -- Incomplete_Or_Partial_View --
10812 --------------------------------
10814 function Incomplete_Or_Partial_View
(Id
: Entity_Id
) return Entity_Id
is
10815 function Inspect_Decls
10817 Taft
: Boolean := False) return Entity_Id
;
10818 -- Check whether a declarative region contains the incomplete or partial
10821 -------------------
10822 -- Inspect_Decls --
10823 -------------------
10825 function Inspect_Decls
10827 Taft
: Boolean := False) return Entity_Id
10833 Decl
:= First
(Decls
);
10834 while Present
(Decl
) loop
10837 -- The partial view of a Taft-amendment type is an incomplete
10841 if Nkind
(Decl
) = N_Incomplete_Type_Declaration
then
10842 Match
:= Defining_Identifier
(Decl
);
10845 -- Otherwise look for a private type whose full view matches the
10846 -- input type. Note that this checks full_type_declaration nodes
10847 -- to account for derivations from a private type where the type
10848 -- declaration hold the partial view and the full view is an
10851 elsif Nkind_In
(Decl
, N_Full_Type_Declaration
,
10852 N_Private_Extension_Declaration
,
10853 N_Private_Type_Declaration
)
10855 Match
:= Defining_Identifier
(Decl
);
10858 -- Guard against unanalyzed entities
10861 and then Is_Type
(Match
)
10862 and then Present
(Full_View
(Match
))
10863 and then Full_View
(Match
) = Id
10878 -- Start of processing for Incomplete_Or_Partial_View
10881 -- Deferred constant or incomplete type case
10883 Prev
:= Current_Entity_In_Scope
(Id
);
10886 and then (Is_Incomplete_Type
(Prev
) or else Ekind
(Prev
) = E_Constant
)
10887 and then Present
(Full_View
(Prev
))
10888 and then Full_View
(Prev
) = Id
10893 -- Private or Taft amendment type case
10896 Pkg
: constant Entity_Id
:= Scope
(Id
);
10897 Pkg_Decl
: Node_Id
:= Pkg
;
10901 and then Ekind_In
(Pkg
, E_Generic_Package
, E_Package
)
10903 while Nkind
(Pkg_Decl
) /= N_Package_Specification
loop
10904 Pkg_Decl
:= Parent
(Pkg_Decl
);
10907 -- It is knows that Typ has a private view, look for it in the
10908 -- visible declarations of the enclosing scope. A special case
10909 -- of this is when the two views have been exchanged - the full
10910 -- appears earlier than the private.
10912 if Has_Private_Declaration
(Id
) then
10913 Prev
:= Inspect_Decls
(Visible_Declarations
(Pkg_Decl
));
10915 -- Exchanged view case, look in the private declarations
10918 Prev
:= Inspect_Decls
(Private_Declarations
(Pkg_Decl
));
10923 -- Otherwise if this is the package body, then Typ is a potential
10924 -- Taft amendment type. The incomplete view should be located in
10925 -- the private declarations of the enclosing scope.
10927 elsif In_Package_Body
(Pkg
) then
10928 return Inspect_Decls
(Private_Declarations
(Pkg_Decl
), True);
10933 -- The type has no incomplete or private view
10936 end Incomplete_Or_Partial_View
;
10938 ----------------------------------
10939 -- Indexed_Component_Bit_Offset --
10940 ----------------------------------
10942 function Indexed_Component_Bit_Offset
(N
: Node_Id
) return Uint
is
10943 Exp
: constant Node_Id
:= First
(Expressions
(N
));
10944 Typ
: constant Entity_Id
:= Etype
(Prefix
(N
));
10945 Off
: constant Uint
:= Component_Size
(Typ
);
10949 -- Return early if the component size is not known or variable
10951 if Off
= No_Uint
or else Off
< Uint_0
then
10955 -- Deal with the degenerate case of an empty component
10957 if Off
= Uint_0
then
10961 -- Check that both the index value and the low bound are known
10963 if not Compile_Time_Known_Value
(Exp
) then
10967 Ind
:= First_Index
(Typ
);
10972 if Nkind
(Ind
) = N_Subtype_Indication
then
10973 Ind
:= Constraint
(Ind
);
10975 if Nkind
(Ind
) = N_Range_Constraint
then
10976 Ind
:= Range_Expression
(Ind
);
10980 if Nkind
(Ind
) /= N_Range
10981 or else not Compile_Time_Known_Value
(Low_Bound
(Ind
))
10986 -- Return the scaled offset
10988 return Off
* (Expr_Value
(Exp
) - Expr_Value
(Low_Bound
((Ind
))));
10989 end Indexed_Component_Bit_Offset
;
10991 ----------------------------
10992 -- Inherit_Rep_Item_Chain --
10993 ----------------------------
10995 procedure Inherit_Rep_Item_Chain
(Typ
: Entity_Id
; From_Typ
: Entity_Id
) is
10997 Next_Item
: Node_Id
;
11000 -- There are several inheritance scenarios to consider depending on
11001 -- whether both types have rep item chains and whether the destination
11002 -- type already inherits part of the source type's rep item chain.
11004 -- 1) The source type lacks a rep item chain
11005 -- From_Typ ---> Empty
11007 -- Typ --------> Item (or Empty)
11009 -- In this case inheritance cannot take place because there are no items
11012 -- 2) The destination type lacks a rep item chain
11013 -- From_Typ ---> Item ---> ...
11015 -- Typ --------> Empty
11017 -- Inheritance takes place by setting the First_Rep_Item of the
11018 -- destination type to the First_Rep_Item of the source type.
11019 -- From_Typ ---> Item ---> ...
11021 -- Typ -----------+
11023 -- 3.1) Both source and destination types have at least one rep item.
11024 -- The destination type does NOT inherit a rep item from the source
11026 -- From_Typ ---> Item ---> Item
11028 -- Typ --------> Item ---> Item
11030 -- Inheritance takes place by setting the Next_Rep_Item of the last item
11031 -- of the destination type to the First_Rep_Item of the source type.
11032 -- From_Typ -------------------> Item ---> Item
11034 -- Typ --------> Item ---> Item --+
11036 -- 3.2) Both source and destination types have at least one rep item.
11037 -- The destination type DOES inherit part of the rep item chain of the
11039 -- From_Typ ---> Item ---> Item ---> Item
11041 -- Typ --------> Item ------+
11043 -- This rare case arises when the full view of a private extension must
11044 -- inherit the rep item chain from the full view of its parent type and
11045 -- the full view of the parent type contains extra rep items. Currently
11046 -- only invariants may lead to such form of inheritance.
11048 -- type From_Typ is tagged private
11049 -- with Type_Invariant'Class => Item_2;
11051 -- type Typ is new From_Typ with private
11052 -- with Type_Invariant => Item_4;
11054 -- At this point the rep item chains contain the following items
11056 -- From_Typ -----------> Item_2 ---> Item_3
11058 -- Typ --------> Item_4 --+
11060 -- The full views of both types may introduce extra invariants
11062 -- type From_Typ is tagged null record
11063 -- with Type_Invariant => Item_1;
11065 -- type Typ is new From_Typ with null record;
11067 -- The full view of Typ would have to inherit any new rep items added to
11068 -- the full view of From_Typ.
11070 -- From_Typ -----------> Item_1 ---> Item_2 ---> Item_3
11072 -- Typ --------> Item_4 --+
11074 -- To achieve this form of inheritance, the destination type must first
11075 -- sever the link between its own rep chain and that of the source type,
11076 -- then inheritance 3.1 takes place.
11078 -- Case 1: The source type lacks a rep item chain
11080 if No
(First_Rep_Item
(From_Typ
)) then
11083 -- Case 2: The destination type lacks a rep item chain
11085 elsif No
(First_Rep_Item
(Typ
)) then
11086 Set_First_Rep_Item
(Typ
, First_Rep_Item
(From_Typ
));
11088 -- Case 3: Both the source and destination types have at least one rep
11089 -- item. Traverse the rep item chain of the destination type to find the
11094 Next_Item
:= First_Rep_Item
(Typ
);
11095 while Present
(Next_Item
) loop
11097 -- Detect a link between the destination type's rep chain and that
11098 -- of the source type. There are two possibilities:
11103 -- From_Typ ---> Item_1 --->
11105 -- Typ -----------+
11112 -- From_Typ ---> Item_1 ---> Item_2 --->
11114 -- Typ --------> Item_3 ------+
11118 if Has_Rep_Item
(From_Typ
, Next_Item
) then
11123 Next_Item
:= Next_Rep_Item
(Next_Item
);
11126 -- Inherit the source type's rep item chain
11128 if Present
(Item
) then
11129 Set_Next_Rep_Item
(Item
, First_Rep_Item
(From_Typ
));
11131 Set_First_Rep_Item
(Typ
, First_Rep_Item
(From_Typ
));
11134 end Inherit_Rep_Item_Chain
;
11136 ---------------------------------
11137 -- Insert_Explicit_Dereference --
11138 ---------------------------------
11140 procedure Insert_Explicit_Dereference
(N
: Node_Id
) is
11141 New_Prefix
: constant Node_Id
:= Relocate_Node
(N
);
11142 Ent
: Entity_Id
:= Empty
;
11149 Save_Interps
(N
, New_Prefix
);
11152 Make_Explicit_Dereference
(Sloc
(Parent
(N
)),
11153 Prefix
=> New_Prefix
));
11155 Set_Etype
(N
, Designated_Type
(Etype
(New_Prefix
)));
11157 if Is_Overloaded
(New_Prefix
) then
11159 -- The dereference is also overloaded, and its interpretations are
11160 -- the designated types of the interpretations of the original node.
11162 Set_Etype
(N
, Any_Type
);
11164 Get_First_Interp
(New_Prefix
, I
, It
);
11165 while Present
(It
.Nam
) loop
11168 if Is_Access_Type
(T
) then
11169 Add_One_Interp
(N
, Designated_Type
(T
), Designated_Type
(T
));
11172 Get_Next_Interp
(I
, It
);
11178 -- Prefix is unambiguous: mark the original prefix (which might
11179 -- Come_From_Source) as a reference, since the new (relocated) one
11180 -- won't be taken into account.
11182 if Is_Entity_Name
(New_Prefix
) then
11183 Ent
:= Entity
(New_Prefix
);
11184 Pref
:= New_Prefix
;
11186 -- For a retrieval of a subcomponent of some composite object,
11187 -- retrieve the ultimate entity if there is one.
11189 elsif Nkind_In
(New_Prefix
, N_Selected_Component
,
11190 N_Indexed_Component
)
11192 Pref
:= Prefix
(New_Prefix
);
11193 while Present
(Pref
)
11194 and then Nkind_In
(Pref
, N_Selected_Component
,
11195 N_Indexed_Component
)
11197 Pref
:= Prefix
(Pref
);
11200 if Present
(Pref
) and then Is_Entity_Name
(Pref
) then
11201 Ent
:= Entity
(Pref
);
11205 -- Place the reference on the entity node
11207 if Present
(Ent
) then
11208 Generate_Reference
(Ent
, Pref
);
11211 end Insert_Explicit_Dereference
;
11213 ------------------------------------------
11214 -- Inspect_Deferred_Constant_Completion --
11215 ------------------------------------------
11217 procedure Inspect_Deferred_Constant_Completion
(Decls
: List_Id
) is
11221 Decl
:= First
(Decls
);
11222 while Present
(Decl
) loop
11224 -- Deferred constant signature
11226 if Nkind
(Decl
) = N_Object_Declaration
11227 and then Constant_Present
(Decl
)
11228 and then No
(Expression
(Decl
))
11230 -- No need to check internally generated constants
11232 and then Comes_From_Source
(Decl
)
11234 -- The constant is not completed. A full object declaration or a
11235 -- pragma Import complete a deferred constant.
11237 and then not Has_Completion
(Defining_Identifier
(Decl
))
11240 ("constant declaration requires initialization expression",
11241 Defining_Identifier
(Decl
));
11244 Decl
:= Next
(Decl
);
11246 end Inspect_Deferred_Constant_Completion
;
11248 -----------------------------
11249 -- Install_Generic_Formals --
11250 -----------------------------
11252 procedure Install_Generic_Formals
(Subp_Id
: Entity_Id
) is
11256 pragma Assert
(Is_Generic_Subprogram
(Subp_Id
));
11258 E
:= First_Entity
(Subp_Id
);
11259 while Present
(E
) loop
11260 Install_Entity
(E
);
11263 end Install_Generic_Formals
;
11265 -----------------------------
11266 -- Is_Actual_Out_Parameter --
11267 -----------------------------
11269 function Is_Actual_Out_Parameter
(N
: Node_Id
) return Boolean is
11270 Formal
: Entity_Id
;
11273 Find_Actual
(N
, Formal
, Call
);
11274 return Present
(Formal
) and then Ekind
(Formal
) = E_Out_Parameter
;
11275 end Is_Actual_Out_Parameter
;
11277 -------------------------
11278 -- Is_Actual_Parameter --
11279 -------------------------
11281 function Is_Actual_Parameter
(N
: Node_Id
) return Boolean is
11282 PK
: constant Node_Kind
:= Nkind
(Parent
(N
));
11286 when N_Parameter_Association
=>
11287 return N
= Explicit_Actual_Parameter
(Parent
(N
));
11289 when N_Subprogram_Call
=>
11290 return Is_List_Member
(N
)
11292 List_Containing
(N
) = Parameter_Associations
(Parent
(N
));
11297 end Is_Actual_Parameter
;
11299 --------------------------------
11300 -- Is_Actual_Tagged_Parameter --
11301 --------------------------------
11303 function Is_Actual_Tagged_Parameter
(N
: Node_Id
) return Boolean is
11304 Formal
: Entity_Id
;
11307 Find_Actual
(N
, Formal
, Call
);
11308 return Present
(Formal
) and then Is_Tagged_Type
(Etype
(Formal
));
11309 end Is_Actual_Tagged_Parameter
;
11311 ---------------------
11312 -- Is_Aliased_View --
11313 ---------------------
11315 function Is_Aliased_View
(Obj
: Node_Id
) return Boolean is
11319 if Is_Entity_Name
(Obj
) then
11326 or else (Present
(Renamed_Object
(E
))
11327 and then Is_Aliased_View
(Renamed_Object
(E
)))))
11329 or else ((Is_Formal
(E
)
11330 or else Ekind_In
(E
, E_Generic_In_Out_Parameter
,
11331 E_Generic_In_Parameter
))
11332 and then Is_Tagged_Type
(Etype
(E
)))
11334 or else (Is_Concurrent_Type
(E
) and then In_Open_Scopes
(E
))
11336 -- Current instance of type, either directly or as rewritten
11337 -- reference to the current object.
11339 or else (Is_Entity_Name
(Original_Node
(Obj
))
11340 and then Present
(Entity
(Original_Node
(Obj
)))
11341 and then Is_Type
(Entity
(Original_Node
(Obj
))))
11343 or else (Is_Type
(E
) and then E
= Current_Scope
)
11345 or else (Is_Incomplete_Or_Private_Type
(E
)
11346 and then Full_View
(E
) = Current_Scope
)
11348 -- Ada 2012 AI05-0053: the return object of an extended return
11349 -- statement is aliased if its type is immutably limited.
11351 or else (Is_Return_Object
(E
)
11352 and then Is_Limited_View
(Etype
(E
)));
11354 elsif Nkind
(Obj
) = N_Selected_Component
then
11355 return Is_Aliased
(Entity
(Selector_Name
(Obj
)));
11357 elsif Nkind
(Obj
) = N_Indexed_Component
then
11358 return Has_Aliased_Components
(Etype
(Prefix
(Obj
)))
11360 (Is_Access_Type
(Etype
(Prefix
(Obj
)))
11361 and then Has_Aliased_Components
11362 (Designated_Type
(Etype
(Prefix
(Obj
)))));
11364 elsif Nkind_In
(Obj
, N_Unchecked_Type_Conversion
, N_Type_Conversion
) then
11365 return Is_Tagged_Type
(Etype
(Obj
))
11366 and then Is_Aliased_View
(Expression
(Obj
));
11368 elsif Nkind
(Obj
) = N_Explicit_Dereference
then
11369 return Nkind
(Original_Node
(Obj
)) /= N_Function_Call
;
11374 end Is_Aliased_View
;
11376 -------------------------
11377 -- Is_Ancestor_Package --
11378 -------------------------
11380 function Is_Ancestor_Package
11382 E2
: Entity_Id
) return Boolean
11388 while Present
(Par
) and then Par
/= Standard_Standard
loop
11393 Par
:= Scope
(Par
);
11397 end Is_Ancestor_Package
;
11399 ----------------------
11400 -- Is_Atomic_Object --
11401 ----------------------
11403 function Is_Atomic_Object
(N
: Node_Id
) return Boolean is
11405 function Object_Has_Atomic_Components
(N
: Node_Id
) return Boolean;
11406 -- Determines if given object has atomic components
11408 function Is_Atomic_Prefix
(N
: Node_Id
) return Boolean;
11409 -- If prefix is an implicit dereference, examine designated type
11411 ----------------------
11412 -- Is_Atomic_Prefix --
11413 ----------------------
11415 function Is_Atomic_Prefix
(N
: Node_Id
) return Boolean is
11417 if Is_Access_Type
(Etype
(N
)) then
11419 Has_Atomic_Components
(Designated_Type
(Etype
(N
)));
11421 return Object_Has_Atomic_Components
(N
);
11423 end Is_Atomic_Prefix
;
11425 ----------------------------------
11426 -- Object_Has_Atomic_Components --
11427 ----------------------------------
11429 function Object_Has_Atomic_Components
(N
: Node_Id
) return Boolean is
11431 if Has_Atomic_Components
(Etype
(N
))
11432 or else Is_Atomic
(Etype
(N
))
11436 elsif Is_Entity_Name
(N
)
11437 and then (Has_Atomic_Components
(Entity
(N
))
11438 or else Is_Atomic
(Entity
(N
)))
11442 elsif Nkind
(N
) = N_Selected_Component
11443 and then Is_Atomic
(Entity
(Selector_Name
(N
)))
11447 elsif Nkind
(N
) = N_Indexed_Component
11448 or else Nkind
(N
) = N_Selected_Component
11450 return Is_Atomic_Prefix
(Prefix
(N
));
11455 end Object_Has_Atomic_Components
;
11457 -- Start of processing for Is_Atomic_Object
11460 -- Predicate is not relevant to subprograms
11462 if Is_Entity_Name
(N
) and then Is_Overloadable
(Entity
(N
)) then
11465 elsif Is_Atomic
(Etype
(N
))
11466 or else (Is_Entity_Name
(N
) and then Is_Atomic
(Entity
(N
)))
11470 elsif Nkind
(N
) = N_Selected_Component
11471 and then Is_Atomic
(Entity
(Selector_Name
(N
)))
11475 elsif Nkind
(N
) = N_Indexed_Component
11476 or else Nkind
(N
) = N_Selected_Component
11478 return Is_Atomic_Prefix
(Prefix
(N
));
11483 end Is_Atomic_Object
;
11485 -----------------------------
11486 -- Is_Atomic_Or_VFA_Object --
11487 -----------------------------
11489 function Is_Atomic_Or_VFA_Object
(N
: Node_Id
) return Boolean is
11491 return Is_Atomic_Object
(N
)
11492 or else (Is_Object_Reference
(N
)
11493 and then Is_Entity_Name
(N
)
11494 and then (Is_Volatile_Full_Access
(Entity
(N
))
11496 Is_Volatile_Full_Access
(Etype
(Entity
(N
)))));
11497 end Is_Atomic_Or_VFA_Object
;
11499 -------------------------
11500 -- Is_Attribute_Result --
11501 -------------------------
11503 function Is_Attribute_Result
(N
: Node_Id
) return Boolean is
11505 return Nkind
(N
) = N_Attribute_Reference
11506 and then Attribute_Name
(N
) = Name_Result
;
11507 end Is_Attribute_Result
;
11509 -------------------------
11510 -- Is_Attribute_Update --
11511 -------------------------
11513 function Is_Attribute_Update
(N
: Node_Id
) return Boolean is
11515 return Nkind
(N
) = N_Attribute_Reference
11516 and then Attribute_Name
(N
) = Name_Update
;
11517 end Is_Attribute_Update
;
11519 ------------------------------------
11520 -- Is_Body_Or_Package_Declaration --
11521 ------------------------------------
11523 function Is_Body_Or_Package_Declaration
(N
: Node_Id
) return Boolean is
11525 return Nkind_In
(N
, N_Entry_Body
,
11527 N_Package_Declaration
,
11531 end Is_Body_Or_Package_Declaration
;
11533 -----------------------
11534 -- Is_Bounded_String --
11535 -----------------------
11537 function Is_Bounded_String
(T
: Entity_Id
) return Boolean is
11538 Under
: constant Entity_Id
:= Underlying_Type
(Root_Type
(T
));
11541 -- Check whether T is ultimately derived from Ada.Strings.Superbounded.
11542 -- Super_String, or one of the [Wide_]Wide_ versions. This will
11543 -- be True for all the Bounded_String types in instances of the
11544 -- Generic_Bounded_Length generics, and for types derived from those.
11546 return Present
(Under
)
11547 and then (Is_RTE
(Root_Type
(Under
), RO_SU_Super_String
) or else
11548 Is_RTE
(Root_Type
(Under
), RO_WI_Super_String
) or else
11549 Is_RTE
(Root_Type
(Under
), RO_WW_Super_String
));
11550 end Is_Bounded_String
;
11552 -------------------------
11553 -- Is_Child_Or_Sibling --
11554 -------------------------
11556 function Is_Child_Or_Sibling
11557 (Pack_1
: Entity_Id
;
11558 Pack_2
: Entity_Id
) return Boolean
11560 function Distance_From_Standard
(Pack
: Entity_Id
) return Nat
;
11561 -- Given an arbitrary package, return the number of "climbs" necessary
11562 -- to reach scope Standard_Standard.
11564 procedure Equalize_Depths
11565 (Pack
: in out Entity_Id
;
11566 Depth
: in out Nat
;
11567 Depth_To_Reach
: Nat
);
11568 -- Given an arbitrary package, its depth and a target depth to reach,
11569 -- climb the scope chain until the said depth is reached. The pointer
11570 -- to the package and its depth a modified during the climb.
11572 ----------------------------
11573 -- Distance_From_Standard --
11574 ----------------------------
11576 function Distance_From_Standard
(Pack
: Entity_Id
) return Nat
is
11583 while Present
(Scop
) and then Scop
/= Standard_Standard
loop
11585 Scop
:= Scope
(Scop
);
11589 end Distance_From_Standard
;
11591 ---------------------
11592 -- Equalize_Depths --
11593 ---------------------
11595 procedure Equalize_Depths
11596 (Pack
: in out Entity_Id
;
11597 Depth
: in out Nat
;
11598 Depth_To_Reach
: Nat
)
11601 -- The package must be at a greater or equal depth
11603 if Depth
< Depth_To_Reach
then
11604 raise Program_Error
;
11607 -- Climb the scope chain until the desired depth is reached
11609 while Present
(Pack
) and then Depth
/= Depth_To_Reach
loop
11610 Pack
:= Scope
(Pack
);
11611 Depth
:= Depth
- 1;
11613 end Equalize_Depths
;
11617 P_1
: Entity_Id
:= Pack_1
;
11618 P_1_Child
: Boolean := False;
11619 P_1_Depth
: Nat
:= Distance_From_Standard
(P_1
);
11620 P_2
: Entity_Id
:= Pack_2
;
11621 P_2_Child
: Boolean := False;
11622 P_2_Depth
: Nat
:= Distance_From_Standard
(P_2
);
11624 -- Start of processing for Is_Child_Or_Sibling
11628 (Ekind
(Pack_1
) = E_Package
and then Ekind
(Pack_2
) = E_Package
);
11630 -- Both packages denote the same entity, therefore they cannot be
11631 -- children or siblings.
11636 -- One of the packages is at a deeper level than the other. Note that
11637 -- both may still come from differen hierarchies.
11645 elsif P_1_Depth
> P_2_Depth
then
11648 Depth
=> P_1_Depth
,
11649 Depth_To_Reach
=> P_2_Depth
);
11658 elsif P_2_Depth
> P_1_Depth
then
11661 Depth
=> P_2_Depth
,
11662 Depth_To_Reach
=> P_1_Depth
);
11666 -- At this stage the package pointers have been elevated to the same
11667 -- depth. If the related entities are the same, then one package is a
11668 -- potential child of the other:
11672 -- X became P_1 P_2 or vica versa
11678 return Is_Child_Unit
(Pack_1
);
11680 else pragma Assert
(P_2_Child
);
11681 return Is_Child_Unit
(Pack_2
);
11684 -- The packages may come from the same package chain or from entirely
11685 -- different hierarcies. To determine this, climb the scope stack until
11686 -- a common root is found.
11688 -- (root) (root 1) (root 2)
11693 while Present
(P_1
) and then Present
(P_2
) loop
11695 -- The two packages may be siblings
11698 return Is_Child_Unit
(Pack_1
) and then Is_Child_Unit
(Pack_2
);
11701 P_1
:= Scope
(P_1
);
11702 P_2
:= Scope
(P_2
);
11707 end Is_Child_Or_Sibling
;
11709 -----------------------------
11710 -- Is_Concurrent_Interface --
11711 -----------------------------
11713 function Is_Concurrent_Interface
(T
: Entity_Id
) return Boolean is
11715 return Is_Interface
(T
)
11717 (Is_Protected_Interface
(T
)
11718 or else Is_Synchronized_Interface
(T
)
11719 or else Is_Task_Interface
(T
));
11720 end Is_Concurrent_Interface
;
11722 -----------------------
11723 -- Is_Constant_Bound --
11724 -----------------------
11726 function Is_Constant_Bound
(Exp
: Node_Id
) return Boolean is
11728 if Compile_Time_Known_Value
(Exp
) then
11731 elsif Is_Entity_Name
(Exp
) and then Present
(Entity
(Exp
)) then
11732 return Is_Constant_Object
(Entity
(Exp
))
11733 or else Ekind
(Entity
(Exp
)) = E_Enumeration_Literal
;
11735 elsif Nkind
(Exp
) in N_Binary_Op
then
11736 return Is_Constant_Bound
(Left_Opnd
(Exp
))
11737 and then Is_Constant_Bound
(Right_Opnd
(Exp
))
11738 and then Scope
(Entity
(Exp
)) = Standard_Standard
;
11743 end Is_Constant_Bound
;
11745 ---------------------------
11746 -- Is_Container_Element --
11747 ---------------------------
11749 function Is_Container_Element
(Exp
: Node_Id
) return Boolean is
11750 Loc
: constant Source_Ptr
:= Sloc
(Exp
);
11751 Pref
: constant Node_Id
:= Prefix
(Exp
);
11754 -- Call to an indexing aspect
11756 Cont_Typ
: Entity_Id
;
11757 -- The type of the container being accessed
11759 Elem_Typ
: Entity_Id
;
11760 -- Its element type
11762 Indexing
: Entity_Id
;
11763 Is_Const
: Boolean;
11764 -- Indicates that constant indexing is used, and the element is thus
11767 Ref_Typ
: Entity_Id
;
11768 -- The reference type returned by the indexing operation
11771 -- If C is a container, in a context that imposes the element type of
11772 -- that container, the indexing notation C (X) is rewritten as:
11774 -- Indexing (C, X).Discr.all
11776 -- where Indexing is one of the indexing aspects of the container.
11777 -- If the context does not require a reference, the construct can be
11782 -- First, verify that the construct has the proper form
11784 if not Expander_Active
then
11787 elsif Nkind
(Pref
) /= N_Selected_Component
then
11790 elsif Nkind
(Prefix
(Pref
)) /= N_Function_Call
then
11794 Call
:= Prefix
(Pref
);
11795 Ref_Typ
:= Etype
(Call
);
11798 if not Has_Implicit_Dereference
(Ref_Typ
)
11799 or else No
(First
(Parameter_Associations
(Call
)))
11800 or else not Is_Entity_Name
(Name
(Call
))
11805 -- Retrieve type of container object, and its iterator aspects
11807 Cont_Typ
:= Etype
(First
(Parameter_Associations
(Call
)));
11808 Indexing
:= Find_Value_Of_Aspect
(Cont_Typ
, Aspect_Constant_Indexing
);
11811 if No
(Indexing
) then
11813 -- Container should have at least one indexing operation
11817 elsif Entity
(Name
(Call
)) /= Entity
(Indexing
) then
11819 -- This may be a variable indexing operation
11821 Indexing
:= Find_Value_Of_Aspect
(Cont_Typ
, Aspect_Variable_Indexing
);
11824 or else Entity
(Name
(Call
)) /= Entity
(Indexing
)
11833 Elem_Typ
:= Find_Value_Of_Aspect
(Cont_Typ
, Aspect_Iterator_Element
);
11835 if No
(Elem_Typ
) or else Entity
(Elem_Typ
) /= Etype
(Exp
) then
11839 -- Check that the expression is not the target of an assignment, in
11840 -- which case the rewriting is not possible.
11842 if not Is_Const
then
11848 while Present
(Par
)
11850 if Nkind
(Parent
(Par
)) = N_Assignment_Statement
11851 and then Par
= Name
(Parent
(Par
))
11855 -- A renaming produces a reference, and the transformation
11858 elsif Nkind
(Parent
(Par
)) = N_Object_Renaming_Declaration
then
11862 (Nkind
(Parent
(Par
)), N_Function_Call
,
11863 N_Procedure_Call_Statement
,
11864 N_Entry_Call_Statement
)
11866 -- Check that the element is not part of an actual for an
11867 -- in-out parameter.
11874 F
:= First_Formal
(Entity
(Name
(Parent
(Par
))));
11875 A
:= First
(Parameter_Associations
(Parent
(Par
)));
11876 while Present
(F
) loop
11877 if A
= Par
and then Ekind
(F
) /= E_In_Parameter
then
11886 -- E_In_Parameter in a call: element is not modified.
11891 Par
:= Parent
(Par
);
11896 -- The expression has the proper form and the context requires the
11897 -- element type. Retrieve the Element function of the container and
11898 -- rewrite the construct as a call to it.
11904 Op
:= First_Elmt
(Primitive_Operations
(Cont_Typ
));
11905 while Present
(Op
) loop
11906 exit when Chars
(Node
(Op
)) = Name_Element
;
11915 Make_Function_Call
(Loc
,
11916 Name
=> New_Occurrence_Of
(Node
(Op
), Loc
),
11917 Parameter_Associations
=> Parameter_Associations
(Call
)));
11918 Analyze_And_Resolve
(Exp
, Entity
(Elem_Typ
));
11922 end Is_Container_Element
;
11924 ----------------------------
11925 -- Is_Contract_Annotation --
11926 ----------------------------
11928 function Is_Contract_Annotation
(Item
: Node_Id
) return Boolean is
11930 return Is_Package_Contract_Annotation
(Item
)
11932 Is_Subprogram_Contract_Annotation
(Item
);
11933 end Is_Contract_Annotation
;
11935 --------------------------------------
11936 -- Is_Controlling_Limited_Procedure --
11937 --------------------------------------
11939 function Is_Controlling_Limited_Procedure
11940 (Proc_Nam
: Entity_Id
) return Boolean
11942 Param_Typ
: Entity_Id
:= Empty
;
11945 if Ekind
(Proc_Nam
) = E_Procedure
11946 and then Present
(Parameter_Specifications
(Parent
(Proc_Nam
)))
11948 Param_Typ
:= Etype
(Parameter_Type
(First
(
11949 Parameter_Specifications
(Parent
(Proc_Nam
)))));
11951 -- In this case where an Itype was created, the procedure call has been
11954 elsif Present
(Associated_Node_For_Itype
(Proc_Nam
))
11955 and then Present
(Original_Node
(Associated_Node_For_Itype
(Proc_Nam
)))
11957 Present
(Parameter_Associations
11958 (Associated_Node_For_Itype
(Proc_Nam
)))
11961 Etype
(First
(Parameter_Associations
11962 (Associated_Node_For_Itype
(Proc_Nam
))));
11965 if Present
(Param_Typ
) then
11967 Is_Interface
(Param_Typ
)
11968 and then Is_Limited_Record
(Param_Typ
);
11972 end Is_Controlling_Limited_Procedure
;
11974 -----------------------------
11975 -- Is_CPP_Constructor_Call --
11976 -----------------------------
11978 function Is_CPP_Constructor_Call
(N
: Node_Id
) return Boolean is
11980 return Nkind
(N
) = N_Function_Call
11981 and then Is_CPP_Class
(Etype
(Etype
(N
)))
11982 and then Is_Constructor
(Entity
(Name
(N
)))
11983 and then Is_Imported
(Entity
(Name
(N
)));
11984 end Is_CPP_Constructor_Call
;
11986 -------------------------
11987 -- Is_Current_Instance --
11988 -------------------------
11990 function Is_Current_Instance
(N
: Node_Id
) return Boolean is
11991 Typ
: constant Entity_Id
:= Entity
(N
);
11995 -- Simplest case: entity is a concurrent type and we are currently
11996 -- inside the body. This will eventually be expanded into a
11997 -- call to Self (for tasks) or _object (for protected objects).
11999 if Is_Concurrent_Type
(Typ
) and then In_Open_Scopes
(Typ
) then
12003 -- Check whether the context is a (sub)type declaration for the
12007 while Present
(P
) loop
12008 if Nkind_In
(P
, N_Full_Type_Declaration
,
12009 N_Private_Type_Declaration
,
12010 N_Subtype_Declaration
)
12011 and then Comes_From_Source
(P
)
12012 and then Defining_Entity
(P
) = Typ
12016 -- A subtype name may appear in an aspect specification for a
12017 -- Predicate_Failure aspect, for which we do not construct a
12018 -- wrapper procedure. The subtype will be replaced by the
12019 -- expression being tested when the corresponding predicate
12020 -- check is expanded.
12022 elsif Nkind
(P
) = N_Aspect_Specification
12023 and then Nkind
(Parent
(P
)) = N_Subtype_Declaration
12027 elsif Nkind
(P
) = N_Pragma
12029 Get_Pragma_Id
(P
) = Pragma_Predicate_Failure
12038 -- In any other context this is not a current occurrence
12041 end Is_Current_Instance
;
12043 --------------------
12044 -- Is_Declaration --
12045 --------------------
12047 function Is_Declaration
(N
: Node_Id
) return Boolean is
12050 when N_Abstract_Subprogram_Declaration |
12051 N_Exception_Declaration |
12052 N_Exception_Renaming_Declaration |
12053 N_Full_Type_Declaration |
12054 N_Generic_Function_Renaming_Declaration |
12055 N_Generic_Package_Declaration |
12056 N_Generic_Package_Renaming_Declaration |
12057 N_Generic_Procedure_Renaming_Declaration |
12058 N_Generic_Subprogram_Declaration |
12059 N_Number_Declaration |
12060 N_Object_Declaration |
12061 N_Object_Renaming_Declaration |
12062 N_Package_Declaration |
12063 N_Package_Renaming_Declaration |
12064 N_Private_Extension_Declaration |
12065 N_Private_Type_Declaration |
12066 N_Subprogram_Declaration |
12067 N_Subprogram_Renaming_Declaration |
12068 N_Subtype_Declaration
=>
12074 end Is_Declaration
;
12076 --------------------------------
12077 -- Is_Declared_Within_Variant --
12078 --------------------------------
12080 function Is_Declared_Within_Variant
(Comp
: Entity_Id
) return Boolean is
12081 Comp_Decl
: constant Node_Id
:= Parent
(Comp
);
12082 Comp_List
: constant Node_Id
:= Parent
(Comp_Decl
);
12084 return Nkind
(Parent
(Comp_List
)) = N_Variant
;
12085 end Is_Declared_Within_Variant
;
12087 ----------------------------------------------
12088 -- Is_Dependent_Component_Of_Mutable_Object --
12089 ----------------------------------------------
12091 function Is_Dependent_Component_Of_Mutable_Object
12092 (Object
: Node_Id
) return Boolean
12095 Prefix_Type
: Entity_Id
;
12096 P_Aliased
: Boolean := False;
12099 Deref
: Node_Id
:= Object
;
12100 -- Dereference node, in something like X.all.Y(2)
12102 -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
12105 -- Find the dereference node if any
12107 while Nkind_In
(Deref
, N_Indexed_Component
,
12108 N_Selected_Component
,
12111 Deref
:= Prefix
(Deref
);
12114 -- Ada 2005: If we have a component or slice of a dereference,
12115 -- something like X.all.Y (2), and the type of X is access-to-constant,
12116 -- Is_Variable will return False, because it is indeed a constant
12117 -- view. But it might be a view of a variable object, so we want the
12118 -- following condition to be True in that case.
12120 if Is_Variable
(Object
)
12121 or else (Ada_Version
>= Ada_2005
12122 and then Nkind
(Deref
) = N_Explicit_Dereference
)
12124 if Nkind
(Object
) = N_Selected_Component
then
12125 P
:= Prefix
(Object
);
12126 Prefix_Type
:= Etype
(P
);
12128 if Is_Entity_Name
(P
) then
12129 if Ekind
(Entity
(P
)) = E_Generic_In_Out_Parameter
then
12130 Prefix_Type
:= Base_Type
(Prefix_Type
);
12133 if Is_Aliased
(Entity
(P
)) then
12137 -- A discriminant check on a selected component may be expanded
12138 -- into a dereference when removing side-effects. Recover the
12139 -- original node and its type, which may be unconstrained.
12141 elsif Nkind
(P
) = N_Explicit_Dereference
12142 and then not (Comes_From_Source
(P
))
12144 P
:= Original_Node
(P
);
12145 Prefix_Type
:= Etype
(P
);
12148 -- Check for prefix being an aliased component???
12154 -- A heap object is constrained by its initial value
12156 -- Ada 2005 (AI-363): Always assume the object could be mutable in
12157 -- the dereferenced case, since the access value might denote an
12158 -- unconstrained aliased object, whereas in Ada 95 the designated
12159 -- object is guaranteed to be constrained. A worst-case assumption
12160 -- has to apply in Ada 2005 because we can't tell at compile
12161 -- time whether the object is "constrained by its initial value"
12162 -- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are semantic
12163 -- rules (these rules are acknowledged to need fixing).
12165 if Ada_Version
< Ada_2005
then
12166 if Is_Access_Type
(Prefix_Type
)
12167 or else Nkind
(P
) = N_Explicit_Dereference
12172 else pragma Assert
(Ada_Version
>= Ada_2005
);
12173 if Is_Access_Type
(Prefix_Type
) then
12175 -- If the access type is pool-specific, and there is no
12176 -- constrained partial view of the designated type, then the
12177 -- designated object is known to be constrained.
12179 if Ekind
(Prefix_Type
) = E_Access_Type
12180 and then not Object_Type_Has_Constrained_Partial_View
12181 (Typ
=> Designated_Type
(Prefix_Type
),
12182 Scop
=> Current_Scope
)
12186 -- Otherwise (general access type, or there is a constrained
12187 -- partial view of the designated type), we need to check
12188 -- based on the designated type.
12191 Prefix_Type
:= Designated_Type
(Prefix_Type
);
12197 Original_Record_Component
(Entity
(Selector_Name
(Object
)));
12199 -- As per AI-0017, the renaming is illegal in a generic body, even
12200 -- if the subtype is indefinite.
12202 -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
12204 if not Is_Constrained
(Prefix_Type
)
12205 and then (Is_Definite_Subtype
(Prefix_Type
)
12207 (Is_Generic_Type
(Prefix_Type
)
12208 and then Ekind
(Current_Scope
) = E_Generic_Package
12209 and then In_Package_Body
(Current_Scope
)))
12211 and then (Is_Declared_Within_Variant
(Comp
)
12212 or else Has_Discriminant_Dependent_Constraint
(Comp
))
12213 and then (not P_Aliased
or else Ada_Version
>= Ada_2005
)
12217 -- If the prefix is of an access type at this point, then we want
12218 -- to return False, rather than calling this function recursively
12219 -- on the access object (which itself might be a discriminant-
12220 -- dependent component of some other object, but that isn't
12221 -- relevant to checking the object passed to us). This avoids
12222 -- issuing wrong errors when compiling with -gnatc, where there
12223 -- can be implicit dereferences that have not been expanded.
12225 elsif Is_Access_Type
(Etype
(Prefix
(Object
))) then
12230 Is_Dependent_Component_Of_Mutable_Object
(Prefix
(Object
));
12233 elsif Nkind
(Object
) = N_Indexed_Component
12234 or else Nkind
(Object
) = N_Slice
12236 return Is_Dependent_Component_Of_Mutable_Object
(Prefix
(Object
));
12238 -- A type conversion that Is_Variable is a view conversion:
12239 -- go back to the denoted object.
12241 elsif Nkind
(Object
) = N_Type_Conversion
then
12243 Is_Dependent_Component_Of_Mutable_Object
(Expression
(Object
));
12248 end Is_Dependent_Component_Of_Mutable_Object
;
12250 ---------------------
12251 -- Is_Dereferenced --
12252 ---------------------
12254 function Is_Dereferenced
(N
: Node_Id
) return Boolean is
12255 P
: constant Node_Id
:= Parent
(N
);
12257 return Nkind_In
(P
, N_Selected_Component
,
12258 N_Explicit_Dereference
,
12259 N_Indexed_Component
,
12261 and then Prefix
(P
) = N
;
12262 end Is_Dereferenced
;
12264 ----------------------
12265 -- Is_Descendant_Of --
12266 ----------------------
12268 function Is_Descendant_Of
(T1
: Entity_Id
; T2
: Entity_Id
) return Boolean is
12273 pragma Assert
(Nkind
(T1
) in N_Entity
);
12274 pragma Assert
(Nkind
(T2
) in N_Entity
);
12276 T
:= Base_Type
(T1
);
12278 -- Immediate return if the types match
12283 -- Comment needed here ???
12285 elsif Ekind
(T
) = E_Class_Wide_Type
then
12286 return Etype
(T
) = T2
;
12294 -- Done if we found the type we are looking for
12299 -- Done if no more derivations to check
12306 -- Following test catches error cases resulting from prev errors
12308 elsif No
(Etyp
) then
12311 elsif Is_Private_Type
(T
) and then Etyp
= Full_View
(T
) then
12314 elsif Is_Private_Type
(Etyp
) and then Full_View
(Etyp
) = T
then
12318 T
:= Base_Type
(Etyp
);
12321 end Is_Descendant_Of
;
12323 ----------------------------------------
12324 -- Is_Descendant_Of_Suspension_Object --
12325 ----------------------------------------
12327 function Is_Descendant_Of_Suspension_Object
12328 (Typ
: Entity_Id
) return Boolean
12330 Cur_Typ
: Entity_Id
;
12331 Par_Typ
: Entity_Id
;
12334 -- Climb the type derivation chain checking each parent type against
12335 -- Suspension_Object.
12337 Cur_Typ
:= Base_Type
(Typ
);
12338 while Present
(Cur_Typ
) loop
12339 Par_Typ
:= Etype
(Cur_Typ
);
12341 -- The current type is a match
12343 if Is_Suspension_Object
(Cur_Typ
) then
12346 -- Stop the traversal once the root of the derivation chain has been
12347 -- reached. In that case the current type is its own base type.
12349 elsif Cur_Typ
= Par_Typ
then
12353 Cur_Typ
:= Base_Type
(Par_Typ
);
12357 end Is_Descendant_Of_Suspension_Object
;
12359 ---------------------------------------------
12360 -- Is_Double_Precision_Floating_Point_Type --
12361 ---------------------------------------------
12363 function Is_Double_Precision_Floating_Point_Type
12364 (E
: Entity_Id
) return Boolean is
12366 return Is_Floating_Point_Type
(E
)
12367 and then Machine_Radix_Value
(E
) = Uint_2
12368 and then Machine_Mantissa_Value
(E
) = UI_From_Int
(53)
12369 and then Machine_Emax_Value
(E
) = Uint_2
** Uint_10
12370 and then Machine_Emin_Value
(E
) = Uint_3
- (Uint_2
** Uint_10
);
12371 end Is_Double_Precision_Floating_Point_Type
;
12373 -----------------------------
12374 -- Is_Effectively_Volatile --
12375 -----------------------------
12377 function Is_Effectively_Volatile
(Id
: Entity_Id
) return Boolean is
12379 if Is_Type
(Id
) then
12381 -- An arbitrary type is effectively volatile when it is subject to
12382 -- pragma Atomic or Volatile.
12384 if Is_Volatile
(Id
) then
12387 -- An array type is effectively volatile when it is subject to pragma
12388 -- Atomic_Components or Volatile_Components or its component type is
12389 -- effectively volatile.
12391 elsif Is_Array_Type
(Id
) then
12393 Has_Volatile_Components
(Id
)
12395 Is_Effectively_Volatile
(Component_Type
(Base_Type
(Id
)));
12397 -- A protected type is always volatile
12399 elsif Is_Protected_Type
(Id
) then
12402 -- A descendant of Ada.Synchronous_Task_Control.Suspension_Object is
12403 -- automatically volatile.
12405 elsif Is_Descendant_Of_Suspension_Object
(Id
) then
12408 -- Otherwise the type is not effectively volatile
12414 -- Otherwise Id denotes an object
12419 or else Has_Volatile_Components
(Id
)
12420 or else Is_Effectively_Volatile
(Etype
(Id
));
12422 end Is_Effectively_Volatile
;
12424 ------------------------------------
12425 -- Is_Effectively_Volatile_Object --
12426 ------------------------------------
12428 function Is_Effectively_Volatile_Object
(N
: Node_Id
) return Boolean is
12430 if Is_Entity_Name
(N
) then
12431 return Is_Effectively_Volatile
(Entity
(N
));
12433 elsif Nkind
(N
) = N_Indexed_Component
then
12434 return Is_Effectively_Volatile_Object
(Prefix
(N
));
12436 elsif Nkind
(N
) = N_Selected_Component
then
12438 Is_Effectively_Volatile_Object
(Prefix
(N
))
12440 Is_Effectively_Volatile_Object
(Selector_Name
(N
));
12445 end Is_Effectively_Volatile_Object
;
12447 -------------------
12448 -- Is_Entry_Body --
12449 -------------------
12451 function Is_Entry_Body
(Id
: Entity_Id
) return Boolean is
12454 Ekind_In
(Id
, E_Entry
, E_Entry_Family
)
12455 and then Nkind
(Unit_Declaration_Node
(Id
)) = N_Entry_Body
;
12458 --------------------------
12459 -- Is_Entry_Declaration --
12460 --------------------------
12462 function Is_Entry_Declaration
(Id
: Entity_Id
) return Boolean is
12465 Ekind_In
(Id
, E_Entry
, E_Entry_Family
)
12466 and then Nkind
(Unit_Declaration_Node
(Id
)) = N_Entry_Declaration
;
12467 end Is_Entry_Declaration
;
12469 ------------------------------------
12470 -- Is_Expanded_Priority_Attribute --
12471 ------------------------------------
12473 function Is_Expanded_Priority_Attribute
(E
: Entity_Id
) return Boolean is
12476 Nkind
(E
) = N_Function_Call
12477 and then not Configurable_Run_Time_Mode
12478 and then (Entity
(Name
(E
)) = RTE
(RE_Get_Ceiling
)
12479 or else Entity
(Name
(E
)) = RTE
(RO_PE_Get_Ceiling
));
12480 end Is_Expanded_Priority_Attribute
;
12482 ----------------------------
12483 -- Is_Expression_Function --
12484 ----------------------------
12486 function Is_Expression_Function
(Subp
: Entity_Id
) return Boolean is
12488 if Ekind_In
(Subp
, E_Function
, E_Subprogram_Body
) then
12490 Nkind
(Original_Node
(Unit_Declaration_Node
(Subp
))) =
12491 N_Expression_Function
;
12495 end Is_Expression_Function
;
12497 ------------------------------------------
12498 -- Is_Expression_Function_Or_Completion --
12499 ------------------------------------------
12501 function Is_Expression_Function_Or_Completion
12502 (Subp
: Entity_Id
) return Boolean
12504 Subp_Decl
: Node_Id
;
12507 if Ekind
(Subp
) = E_Function
then
12508 Subp_Decl
:= Unit_Declaration_Node
(Subp
);
12510 -- The function declaration is either an expression function or is
12511 -- completed by an expression function body.
12514 Is_Expression_Function
(Subp
)
12515 or else (Nkind
(Subp_Decl
) = N_Subprogram_Declaration
12516 and then Present
(Corresponding_Body
(Subp_Decl
))
12517 and then Is_Expression_Function
12518 (Corresponding_Body
(Subp_Decl
)));
12520 elsif Ekind
(Subp
) = E_Subprogram_Body
then
12521 return Is_Expression_Function
(Subp
);
12526 end Is_Expression_Function_Or_Completion
;
12528 -----------------------
12529 -- Is_EVF_Expression --
12530 -----------------------
12532 function Is_EVF_Expression
(N
: Node_Id
) return Boolean is
12533 Orig_N
: constant Node_Id
:= Original_Node
(N
);
12539 -- Detect a reference to a formal parameter of a specific tagged type
12540 -- whose related subprogram is subject to pragma Expresions_Visible with
12543 if Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
12548 and then Is_Specific_Tagged_Type
(Etype
(Id
))
12549 and then Extensions_Visible_Status
(Id
) =
12550 Extensions_Visible_False
;
12552 -- A case expression is an EVF expression when it contains at least one
12553 -- EVF dependent_expression. Note that a case expression may have been
12554 -- expanded, hence the use of Original_Node.
12556 elsif Nkind
(Orig_N
) = N_Case_Expression
then
12557 Alt
:= First
(Alternatives
(Orig_N
));
12558 while Present
(Alt
) loop
12559 if Is_EVF_Expression
(Expression
(Alt
)) then
12566 -- An if expression is an EVF expression when it contains at least one
12567 -- EVF dependent_expression. Note that an if expression may have been
12568 -- expanded, hence the use of Original_Node.
12570 elsif Nkind
(Orig_N
) = N_If_Expression
then
12571 Expr
:= Next
(First
(Expressions
(Orig_N
)));
12572 while Present
(Expr
) loop
12573 if Is_EVF_Expression
(Expr
) then
12580 -- A qualified expression or a type conversion is an EVF expression when
12581 -- its operand is an EVF expression.
12583 elsif Nkind_In
(N
, N_Qualified_Expression
,
12584 N_Unchecked_Type_Conversion
,
12587 return Is_EVF_Expression
(Expression
(N
));
12589 -- Attributes 'Loop_Entry, 'Old, and 'Update are EVF expressions when
12590 -- their prefix denotes an EVF expression.
12592 elsif Nkind
(N
) = N_Attribute_Reference
12593 and then Nam_In
(Attribute_Name
(N
), Name_Loop_Entry
,
12597 return Is_EVF_Expression
(Prefix
(N
));
12601 end Is_EVF_Expression
;
12607 function Is_False
(U
: Uint
) return Boolean is
12612 ---------------------------
12613 -- Is_Fixed_Model_Number --
12614 ---------------------------
12616 function Is_Fixed_Model_Number
(U
: Ureal
; T
: Entity_Id
) return Boolean is
12617 S
: constant Ureal
:= Small_Value
(T
);
12618 M
: Urealp
.Save_Mark
;
12622 R
:= (U
= UR_Trunc
(U
/ S
) * S
);
12623 Urealp
.Release
(M
);
12625 end Is_Fixed_Model_Number
;
12627 -------------------------------
12628 -- Is_Fully_Initialized_Type --
12629 -------------------------------
12631 function Is_Fully_Initialized_Type
(Typ
: Entity_Id
) return Boolean is
12635 if Is_Scalar_Type
(Typ
) then
12637 -- A scalar type with an aspect Default_Value is fully initialized
12639 -- Note: Iniitalize/Normalize_Scalars also ensure full initialization
12640 -- of a scalar type, but we don't take that into account here, since
12641 -- we don't want these to affect warnings.
12643 return Has_Default_Aspect
(Typ
);
12645 elsif Is_Access_Type
(Typ
) then
12648 elsif Is_Array_Type
(Typ
) then
12649 if Is_Fully_Initialized_Type
(Component_Type
(Typ
))
12650 or else (Ada_Version
>= Ada_2012
and then Has_Default_Aspect
(Typ
))
12655 -- An interesting case, if we have a constrained type one of whose
12656 -- bounds is known to be null, then there are no elements to be
12657 -- initialized, so all the elements are initialized.
12659 if Is_Constrained
(Typ
) then
12662 Indx_Typ
: Entity_Id
;
12663 Lbd
, Hbd
: Node_Id
;
12666 Indx
:= First_Index
(Typ
);
12667 while Present
(Indx
) loop
12668 if Etype
(Indx
) = Any_Type
then
12671 -- If index is a range, use directly
12673 elsif Nkind
(Indx
) = N_Range
then
12674 Lbd
:= Low_Bound
(Indx
);
12675 Hbd
:= High_Bound
(Indx
);
12678 Indx_Typ
:= Etype
(Indx
);
12680 if Is_Private_Type
(Indx_Typ
) then
12681 Indx_Typ
:= Full_View
(Indx_Typ
);
12684 if No
(Indx_Typ
) or else Etype
(Indx_Typ
) = Any_Type
then
12687 Lbd
:= Type_Low_Bound
(Indx_Typ
);
12688 Hbd
:= Type_High_Bound
(Indx_Typ
);
12692 if Compile_Time_Known_Value
(Lbd
)
12694 Compile_Time_Known_Value
(Hbd
)
12696 if Expr_Value
(Hbd
) < Expr_Value
(Lbd
) then
12706 -- If no null indexes, then type is not fully initialized
12712 elsif Is_Record_Type
(Typ
) then
12713 if Has_Discriminants
(Typ
)
12715 Present
(Discriminant_Default_Value
(First_Discriminant
(Typ
)))
12716 and then Is_Fully_Initialized_Variant
(Typ
)
12721 -- We consider bounded string types to be fully initialized, because
12722 -- otherwise we get false alarms when the Data component is not
12723 -- default-initialized.
12725 if Is_Bounded_String
(Typ
) then
12729 -- Controlled records are considered to be fully initialized if
12730 -- there is a user defined Initialize routine. This may not be
12731 -- entirely correct, but as the spec notes, we are guessing here
12732 -- what is best from the point of view of issuing warnings.
12734 if Is_Controlled
(Typ
) then
12736 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
12739 if Present
(Utyp
) then
12741 Init
: constant Entity_Id
:=
12742 (Find_Optional_Prim_Op
12743 (Underlying_Type
(Typ
), Name_Initialize
));
12747 and then Comes_From_Source
(Init
)
12749 Is_Predefined_File_Name
12750 (File_Name
(Get_Source_File_Index
(Sloc
(Init
))))
12754 elsif Has_Null_Extension
(Typ
)
12756 Is_Fully_Initialized_Type
12757 (Etype
(Base_Type
(Typ
)))
12766 -- Otherwise see if all record components are initialized
12772 Ent
:= First_Entity
(Typ
);
12773 while Present
(Ent
) loop
12774 if Ekind
(Ent
) = E_Component
12775 and then (No
(Parent
(Ent
))
12776 or else No
(Expression
(Parent
(Ent
))))
12777 and then not Is_Fully_Initialized_Type
(Etype
(Ent
))
12779 -- Special VM case for tag components, which need to be
12780 -- defined in this case, but are never initialized as VMs
12781 -- are using other dispatching mechanisms. Ignore this
12782 -- uninitialized case. Note that this applies both to the
12783 -- uTag entry and the main vtable pointer (CPP_Class case).
12785 and then (Tagged_Type_Expansion
or else not Is_Tag
(Ent
))
12794 -- No uninitialized components, so type is fully initialized.
12795 -- Note that this catches the case of no components as well.
12799 elsif Is_Concurrent_Type
(Typ
) then
12802 elsif Is_Private_Type
(Typ
) then
12804 U
: constant Entity_Id
:= Underlying_Type
(Typ
);
12810 return Is_Fully_Initialized_Type
(U
);
12817 end Is_Fully_Initialized_Type
;
12819 ----------------------------------
12820 -- Is_Fully_Initialized_Variant --
12821 ----------------------------------
12823 function Is_Fully_Initialized_Variant
(Typ
: Entity_Id
) return Boolean is
12824 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
12825 Constraints
: constant List_Id
:= New_List
;
12826 Components
: constant Elist_Id
:= New_Elmt_List
;
12827 Comp_Elmt
: Elmt_Id
;
12829 Comp_List
: Node_Id
;
12831 Discr_Val
: Node_Id
;
12833 Report_Errors
: Boolean;
12834 pragma Warnings
(Off
, Report_Errors
);
12837 if Serious_Errors_Detected
> 0 then
12841 if Is_Record_Type
(Typ
)
12842 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
12843 and then Nkind
(Type_Definition
(Parent
(Typ
))) = N_Record_Definition
12845 Comp_List
:= Component_List
(Type_Definition
(Parent
(Typ
)));
12847 Discr
:= First_Discriminant
(Typ
);
12848 while Present
(Discr
) loop
12849 if Nkind
(Parent
(Discr
)) = N_Discriminant_Specification
then
12850 Discr_Val
:= Expression
(Parent
(Discr
));
12852 if Present
(Discr_Val
)
12853 and then Is_OK_Static_Expression
(Discr_Val
)
12855 Append_To
(Constraints
,
12856 Make_Component_Association
(Loc
,
12857 Choices
=> New_List
(New_Occurrence_Of
(Discr
, Loc
)),
12858 Expression
=> New_Copy
(Discr_Val
)));
12866 Next_Discriminant
(Discr
);
12871 Comp_List
=> Comp_List
,
12872 Governed_By
=> Constraints
,
12873 Into
=> Components
,
12874 Report_Errors
=> Report_Errors
);
12876 -- Check that each component present is fully initialized
12878 Comp_Elmt
:= First_Elmt
(Components
);
12879 while Present
(Comp_Elmt
) loop
12880 Comp_Id
:= Node
(Comp_Elmt
);
12882 if Ekind
(Comp_Id
) = E_Component
12883 and then (No
(Parent
(Comp_Id
))
12884 or else No
(Expression
(Parent
(Comp_Id
))))
12885 and then not Is_Fully_Initialized_Type
(Etype
(Comp_Id
))
12890 Next_Elmt
(Comp_Elmt
);
12895 elsif Is_Private_Type
(Typ
) then
12897 U
: constant Entity_Id
:= Underlying_Type
(Typ
);
12903 return Is_Fully_Initialized_Variant
(U
);
12910 end Is_Fully_Initialized_Variant
;
12912 ------------------------------------
12913 -- Is_Generic_Declaration_Or_Body --
12914 ------------------------------------
12916 function Is_Generic_Declaration_Or_Body
(Decl
: Node_Id
) return Boolean is
12917 Spec_Decl
: Node_Id
;
12920 -- Package/subprogram body
12922 if Nkind_In
(Decl
, N_Package_Body
, N_Subprogram_Body
)
12923 and then Present
(Corresponding_Spec
(Decl
))
12925 Spec_Decl
:= Unit_Declaration_Node
(Corresponding_Spec
(Decl
));
12927 -- Package/subprogram body stub
12929 elsif Nkind_In
(Decl
, N_Package_Body_Stub
, N_Subprogram_Body_Stub
)
12930 and then Present
(Corresponding_Spec_Of_Stub
(Decl
))
12933 Unit_Declaration_Node
(Corresponding_Spec_Of_Stub
(Decl
));
12941 -- Rather than inspecting the defining entity of the spec declaration,
12942 -- look at its Nkind. This takes care of the case where the analysis of
12943 -- a generic body modifies the Ekind of its spec to allow for recursive
12947 Nkind_In
(Spec_Decl
, N_Generic_Package_Declaration
,
12948 N_Generic_Subprogram_Declaration
);
12949 end Is_Generic_Declaration_Or_Body
;
12951 ----------------------------
12952 -- Is_Inherited_Operation --
12953 ----------------------------
12955 function Is_Inherited_Operation
(E
: Entity_Id
) return Boolean is
12956 pragma Assert
(Is_Overloadable
(E
));
12957 Kind
: constant Node_Kind
:= Nkind
(Parent
(E
));
12959 return Kind
= N_Full_Type_Declaration
12960 or else Kind
= N_Private_Extension_Declaration
12961 or else Kind
= N_Subtype_Declaration
12962 or else (Ekind
(E
) = E_Enumeration_Literal
12963 and then Is_Derived_Type
(Etype
(E
)));
12964 end Is_Inherited_Operation
;
12966 -------------------------------------
12967 -- Is_Inherited_Operation_For_Type --
12968 -------------------------------------
12970 function Is_Inherited_Operation_For_Type
12972 Typ
: Entity_Id
) return Boolean
12975 -- Check that the operation has been created by the type declaration
12977 return Is_Inherited_Operation
(E
)
12978 and then Defining_Identifier
(Parent
(E
)) = Typ
;
12979 end Is_Inherited_Operation_For_Type
;
12985 function Is_Iterator
(Typ
: Entity_Id
) return Boolean is
12986 function Denotes_Iterator
(Iter_Typ
: Entity_Id
) return Boolean;
12987 -- Determine whether type Iter_Typ is a predefined forward or reversible
12990 ----------------------
12991 -- Denotes_Iterator --
12992 ----------------------
12994 function Denotes_Iterator
(Iter_Typ
: Entity_Id
) return Boolean is
12996 -- Check that the name matches, and that the ultimate ancestor is in
12997 -- a predefined unit, i.e the one that declares iterator interfaces.
13000 Nam_In
(Chars
(Iter_Typ
), Name_Forward_Iterator
,
13001 Name_Reversible_Iterator
)
13002 and then Is_Predefined_File_Name
13003 (Unit_File_Name
(Get_Source_Unit
(Root_Type
(Iter_Typ
))));
13004 end Denotes_Iterator
;
13008 Iface_Elmt
: Elmt_Id
;
13011 -- Start of processing for Is_Iterator
13014 -- The type may be a subtype of a descendant of the proper instance of
13015 -- the predefined interface type, so we must use the root type of the
13016 -- given type. The same is done for Is_Reversible_Iterator.
13018 if Is_Class_Wide_Type
(Typ
)
13019 and then Denotes_Iterator
(Root_Type
(Typ
))
13023 elsif not Is_Tagged_Type
(Typ
) or else not Is_Derived_Type
(Typ
) then
13026 elsif Present
(Find_Value_Of_Aspect
(Typ
, Aspect_Iterable
)) then
13030 Collect_Interfaces
(Typ
, Ifaces
);
13032 Iface_Elmt
:= First_Elmt
(Ifaces
);
13033 while Present
(Iface_Elmt
) loop
13034 if Denotes_Iterator
(Node
(Iface_Elmt
)) then
13038 Next_Elmt
(Iface_Elmt
);
13045 ----------------------------
13046 -- Is_Iterator_Over_Array --
13047 ----------------------------
13049 function Is_Iterator_Over_Array
(N
: Node_Id
) return Boolean is
13050 Container
: constant Node_Id
:= Name
(N
);
13051 Container_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Container
));
13053 return Is_Array_Type
(Container_Typ
);
13054 end Is_Iterator_Over_Array
;
13060 -- We seem to have a lot of overlapping functions that do similar things
13061 -- (testing for left hand sides or lvalues???).
13063 function Is_LHS
(N
: Node_Id
) return Is_LHS_Result
is
13064 P
: constant Node_Id
:= Parent
(N
);
13067 -- Return True if we are the left hand side of an assignment statement
13069 if Nkind
(P
) = N_Assignment_Statement
then
13070 if Name
(P
) = N
then
13076 -- Case of prefix of indexed or selected component or slice
13078 elsif Nkind_In
(P
, N_Indexed_Component
, N_Selected_Component
, N_Slice
)
13079 and then N
= Prefix
(P
)
13081 -- Here we have the case where the parent P is N.Q or N(Q .. R).
13082 -- If P is an LHS, then N is also effectively an LHS, but there
13083 -- is an important exception. If N is of an access type, then
13084 -- what we really have is N.all.Q (or N.all(Q .. R)). In either
13085 -- case this makes N.all a left hand side but not N itself.
13087 -- If we don't know the type yet, this is the case where we return
13088 -- Unknown, since the answer depends on the type which is unknown.
13090 if No
(Etype
(N
)) then
13093 -- We have an Etype set, so we can check it
13095 elsif Is_Access_Type
(Etype
(N
)) then
13098 -- OK, not access type case, so just test whole expression
13104 -- All other cases are not left hand sides
13111 -----------------------------
13112 -- Is_Library_Level_Entity --
13113 -----------------------------
13115 function Is_Library_Level_Entity
(E
: Entity_Id
) return Boolean is
13117 -- The following is a small optimization, and it also properly handles
13118 -- discriminals, which in task bodies might appear in expressions before
13119 -- the corresponding procedure has been created, and which therefore do
13120 -- not have an assigned scope.
13122 if Is_Formal
(E
) then
13126 -- Normal test is simply that the enclosing dynamic scope is Standard
13128 return Enclosing_Dynamic_Scope
(E
) = Standard_Standard
;
13129 end Is_Library_Level_Entity
;
13131 --------------------------------
13132 -- Is_Limited_Class_Wide_Type --
13133 --------------------------------
13135 function Is_Limited_Class_Wide_Type
(Typ
: Entity_Id
) return Boolean is
13138 Is_Class_Wide_Type
(Typ
)
13139 and then (Is_Limited_Type
(Typ
) or else From_Limited_With
(Typ
));
13140 end Is_Limited_Class_Wide_Type
;
13142 ---------------------------------
13143 -- Is_Local_Variable_Reference --
13144 ---------------------------------
13146 function Is_Local_Variable_Reference
(Expr
: Node_Id
) return Boolean is
13148 if not Is_Entity_Name
(Expr
) then
13153 Ent
: constant Entity_Id
:= Entity
(Expr
);
13154 Sub
: constant Entity_Id
:= Enclosing_Subprogram
(Ent
);
13156 if not Ekind_In
(Ent
, E_Variable
, E_In_Out_Parameter
) then
13159 return Present
(Sub
) and then Sub
= Current_Subprogram
;
13163 end Is_Local_Variable_Reference
;
13165 ---------------------------------
13166 -- Is_Nontrivial_DIC_Procedure --
13167 ---------------------------------
13169 function Is_Nontrivial_DIC_Procedure
(Id
: Entity_Id
) return Boolean is
13170 Body_Decl
: Node_Id
;
13174 if Ekind
(Id
) = E_Procedure
and then Is_DIC_Procedure
(Id
) then
13176 Unit_Declaration_Node
13177 (Corresponding_Body
(Unit_Declaration_Node
(Id
)));
13179 -- The body of the Default_Initial_Condition procedure must contain
13180 -- at least one statement, otherwise the generation of the subprogram
13183 pragma Assert
(Present
(Handled_Statement_Sequence
(Body_Decl
)));
13185 -- To qualify as nontrivial, the first statement of the procedure
13186 -- must be a check in the form of an if statement. If the original
13187 -- Default_Initial_Condition expression was folded, then the first
13188 -- statement is not a check.
13190 Stmt
:= First
(Statements
(Handled_Statement_Sequence
(Body_Decl
)));
13193 Nkind
(Stmt
) = N_If_Statement
13194 and then Nkind
(Original_Node
(Stmt
)) = N_Pragma
;
13198 end Is_Nontrivial_DIC_Procedure
;
13200 -------------------------
13201 -- Is_Null_Record_Type --
13202 -------------------------
13204 function Is_Null_Record_Type
(T
: Entity_Id
) return Boolean is
13205 Decl
: constant Node_Id
:= Parent
(T
);
13207 return Nkind
(Decl
) = N_Full_Type_Declaration
13208 and then Nkind
(Type_Definition
(Decl
)) = N_Record_Definition
13210 (No
(Component_List
(Type_Definition
(Decl
)))
13211 or else Null_Present
(Component_List
(Type_Definition
(Decl
))));
13212 end Is_Null_Record_Type
;
13214 -------------------------
13215 -- Is_Object_Reference --
13216 -------------------------
13218 function Is_Object_Reference
(N
: Node_Id
) return Boolean is
13219 function Is_Internally_Generated_Renaming
(N
: Node_Id
) return Boolean;
13220 -- Determine whether N is the name of an internally-generated renaming
13222 --------------------------------------
13223 -- Is_Internally_Generated_Renaming --
13224 --------------------------------------
13226 function Is_Internally_Generated_Renaming
(N
: Node_Id
) return Boolean is
13231 while Present
(P
) loop
13232 if Nkind
(P
) = N_Object_Renaming_Declaration
then
13233 return not Comes_From_Source
(P
);
13234 elsif Is_List_Member
(P
) then
13242 end Is_Internally_Generated_Renaming
;
13244 -- Start of processing for Is_Object_Reference
13247 if Is_Entity_Name
(N
) then
13248 return Present
(Entity
(N
)) and then Is_Object
(Entity
(N
));
13252 when N_Indexed_Component | N_Slice
=>
13254 Is_Object_Reference
(Prefix
(N
))
13255 or else Is_Access_Type
(Etype
(Prefix
(N
)));
13257 -- In Ada 95, a function call is a constant object; a procedure
13260 when N_Function_Call
=>
13261 return Etype
(N
) /= Standard_Void_Type
;
13263 -- Attributes 'Input, 'Loop_Entry, 'Old, and 'Result produce
13266 when N_Attribute_Reference
=>
13268 Nam_In
(Attribute_Name
(N
), Name_Input
,
13273 when N_Selected_Component
=>
13275 Is_Object_Reference
(Selector_Name
(N
))
13277 (Is_Object_Reference
(Prefix
(N
))
13278 or else Is_Access_Type
(Etype
(Prefix
(N
))));
13280 when N_Explicit_Dereference
=>
13283 -- A view conversion of a tagged object is an object reference
13285 when N_Type_Conversion
=>
13286 return Is_Tagged_Type
(Etype
(Subtype_Mark
(N
)))
13287 and then Is_Tagged_Type
(Etype
(Expression
(N
)))
13288 and then Is_Object_Reference
(Expression
(N
));
13290 -- An unchecked type conversion is considered to be an object if
13291 -- the operand is an object (this construction arises only as a
13292 -- result of expansion activities).
13294 when N_Unchecked_Type_Conversion
=>
13297 -- Allow string literals to act as objects as long as they appear
13298 -- in internally-generated renamings. The expansion of iterators
13299 -- may generate such renamings when the range involves a string
13302 when N_String_Literal
=>
13303 return Is_Internally_Generated_Renaming
(Parent
(N
));
13305 -- AI05-0003: In Ada 2012 a qualified expression is a name.
13306 -- This allows disambiguation of function calls and the use
13307 -- of aggregates in more contexts.
13309 when N_Qualified_Expression
=>
13310 if Ada_Version
< Ada_2012
then
13313 return Is_Object_Reference
(Expression
(N
))
13314 or else Nkind
(Expression
(N
)) = N_Aggregate
;
13321 end Is_Object_Reference
;
13323 -----------------------------------
13324 -- Is_OK_Variable_For_Out_Formal --
13325 -----------------------------------
13327 function Is_OK_Variable_For_Out_Formal
(AV
: Node_Id
) return Boolean is
13329 Note_Possible_Modification
(AV
, Sure
=> True);
13331 -- We must reject parenthesized variable names. Comes_From_Source is
13332 -- checked because there are currently cases where the compiler violates
13333 -- this rule (e.g. passing a task object to its controlled Initialize
13334 -- routine). This should be properly documented in sinfo???
13336 if Paren_Count
(AV
) > 0 and then Comes_From_Source
(AV
) then
13339 -- A variable is always allowed
13341 elsif Is_Variable
(AV
) then
13344 -- Generalized indexing operations are rewritten as explicit
13345 -- dereferences, and it is only during resolution that we can
13346 -- check whether the context requires an access_to_variable type.
13348 elsif Nkind
(AV
) = N_Explicit_Dereference
13349 and then Ada_Version
>= Ada_2012
13350 and then Nkind
(Original_Node
(AV
)) = N_Indexed_Component
13351 and then Present
(Etype
(Original_Node
(AV
)))
13352 and then Has_Implicit_Dereference
(Etype
(Original_Node
(AV
)))
13354 return not Is_Access_Constant
(Etype
(Prefix
(AV
)));
13356 -- Unchecked conversions are allowed only if they come from the
13357 -- generated code, which sometimes uses unchecked conversions for out
13358 -- parameters in cases where code generation is unaffected. We tell
13359 -- source unchecked conversions by seeing if they are rewrites of
13360 -- an original Unchecked_Conversion function call, or of an explicit
13361 -- conversion of a function call or an aggregate (as may happen in the
13362 -- expansion of a packed array aggregate).
13364 elsif Nkind
(AV
) = N_Unchecked_Type_Conversion
then
13365 if Nkind_In
(Original_Node
(AV
), N_Function_Call
, N_Aggregate
) then
13368 elsif Comes_From_Source
(AV
)
13369 and then Nkind
(Original_Node
(Expression
(AV
))) = N_Function_Call
13373 elsif Nkind
(Original_Node
(AV
)) = N_Type_Conversion
then
13374 return Is_OK_Variable_For_Out_Formal
(Expression
(AV
));
13380 -- Normal type conversions are allowed if argument is a variable
13382 elsif Nkind
(AV
) = N_Type_Conversion
then
13383 if Is_Variable
(Expression
(AV
))
13384 and then Paren_Count
(Expression
(AV
)) = 0
13386 Note_Possible_Modification
(Expression
(AV
), Sure
=> True);
13389 -- We also allow a non-parenthesized expression that raises
13390 -- constraint error if it rewrites what used to be a variable
13392 elsif Raises_Constraint_Error
(Expression
(AV
))
13393 and then Paren_Count
(Expression
(AV
)) = 0
13394 and then Is_Variable
(Original_Node
(Expression
(AV
)))
13398 -- Type conversion of something other than a variable
13404 -- If this node is rewritten, then test the original form, if that is
13405 -- OK, then we consider the rewritten node OK (for example, if the
13406 -- original node is a conversion, then Is_Variable will not be true
13407 -- but we still want to allow the conversion if it converts a variable).
13409 elsif Original_Node
(AV
) /= AV
then
13411 -- In Ada 2012, the explicit dereference may be a rewritten call to a
13412 -- Reference function.
13414 if Ada_Version
>= Ada_2012
13415 and then Nkind
(Original_Node
(AV
)) = N_Function_Call
13417 Has_Implicit_Dereference
(Etype
(Name
(Original_Node
(AV
))))
13420 -- Check that this is not a constant reference.
13422 return not Is_Access_Constant
(Etype
(Prefix
(AV
)));
13424 elsif Has_Implicit_Dereference
(Etype
(Original_Node
(AV
))) then
13426 not Is_Access_Constant
(Etype
13427 (Get_Reference_Discriminant
(Etype
(Original_Node
(AV
)))));
13430 return Is_OK_Variable_For_Out_Formal
(Original_Node
(AV
));
13433 -- All other non-variables are rejected
13438 end Is_OK_Variable_For_Out_Formal
;
13440 ----------------------------
13441 -- Is_OK_Volatile_Context --
13442 ----------------------------
13444 function Is_OK_Volatile_Context
13445 (Context
: Node_Id
;
13446 Obj_Ref
: Node_Id
) return Boolean
13448 function Is_Protected_Operation_Call
(Nod
: Node_Id
) return Boolean;
13449 -- Determine whether an arbitrary node denotes a call to a protected
13450 -- entry, function, or procedure in prefixed form where the prefix is
13453 function Within_Check
(Nod
: Node_Id
) return Boolean;
13454 -- Determine whether an arbitrary node appears in a check node
13456 function Within_Subprogram_Call
(Nod
: Node_Id
) return Boolean;
13457 -- Determine whether an arbitrary node appears in an entry, function, or
13460 function Within_Volatile_Function
(Id
: Entity_Id
) return Boolean;
13461 -- Determine whether an arbitrary entity appears in a volatile function
13463 ---------------------------------
13464 -- Is_Protected_Operation_Call --
13465 ---------------------------------
13467 function Is_Protected_Operation_Call
(Nod
: Node_Id
) return Boolean is
13472 -- A call to a protected operations retains its selected component
13473 -- form as opposed to other prefixed calls that are transformed in
13476 if Nkind
(Nod
) = N_Selected_Component
then
13477 Pref
:= Prefix
(Nod
);
13478 Subp
:= Selector_Name
(Nod
);
13482 and then Present
(Etype
(Pref
))
13483 and then Is_Protected_Type
(Etype
(Pref
))
13484 and then Is_Entity_Name
(Subp
)
13485 and then Present
(Entity
(Subp
))
13486 and then Ekind_In
(Entity
(Subp
), E_Entry
,
13493 end Is_Protected_Operation_Call
;
13499 function Within_Check
(Nod
: Node_Id
) return Boolean is
13503 -- Climb the parent chain looking for a check node
13506 while Present
(Par
) loop
13507 if Nkind
(Par
) in N_Raise_xxx_Error
then
13510 -- Prevent the search from going too far
13512 elsif Is_Body_Or_Package_Declaration
(Par
) then
13516 Par
:= Parent
(Par
);
13522 ----------------------------
13523 -- Within_Subprogram_Call --
13524 ----------------------------
13526 function Within_Subprogram_Call
(Nod
: Node_Id
) return Boolean is
13530 -- Climb the parent chain looking for a function or procedure call
13533 while Present
(Par
) loop
13534 if Nkind_In
(Par
, N_Entry_Call_Statement
,
13536 N_Procedure_Call_Statement
)
13540 -- Prevent the search from going too far
13542 elsif Is_Body_Or_Package_Declaration
(Par
) then
13546 Par
:= Parent
(Par
);
13550 end Within_Subprogram_Call
;
13552 ------------------------------
13553 -- Within_Volatile_Function --
13554 ------------------------------
13556 function Within_Volatile_Function
(Id
: Entity_Id
) return Boolean is
13557 Func_Id
: Entity_Id
;
13560 -- Traverse the scope stack looking for a [generic] function
13563 while Present
(Func_Id
) and then Func_Id
/= Standard_Standard
loop
13564 if Ekind_In
(Func_Id
, E_Function
, E_Generic_Function
) then
13565 return Is_Volatile_Function
(Func_Id
);
13568 Func_Id
:= Scope
(Func_Id
);
13572 end Within_Volatile_Function
;
13576 Obj_Id
: Entity_Id
;
13578 -- Start of processing for Is_OK_Volatile_Context
13581 -- The volatile object appears on either side of an assignment
13583 if Nkind
(Context
) = N_Assignment_Statement
then
13586 -- The volatile object is part of the initialization expression of
13589 elsif Nkind
(Context
) = N_Object_Declaration
13590 and then Present
(Expression
(Context
))
13591 and then Expression
(Context
) = Obj_Ref
13593 Obj_Id
:= Defining_Entity
(Context
);
13595 -- The volatile object acts as the initialization expression of an
13596 -- extended return statement. This is valid context as long as the
13597 -- function is volatile.
13599 if Is_Return_Object
(Obj_Id
) then
13600 return Within_Volatile_Function
(Obj_Id
);
13602 -- Otherwise this is a normal object initialization
13608 -- The volatile object acts as the name of a renaming declaration
13610 elsif Nkind
(Context
) = N_Object_Renaming_Declaration
13611 and then Name
(Context
) = Obj_Ref
13615 -- The volatile object appears as an actual parameter in a call to an
13616 -- instance of Unchecked_Conversion whose result is renamed.
13618 elsif Nkind
(Context
) = N_Function_Call
13619 and then Is_Entity_Name
(Name
(Context
))
13620 and then Is_Unchecked_Conversion_Instance
(Entity
(Name
(Context
)))
13621 and then Nkind
(Parent
(Context
)) = N_Object_Renaming_Declaration
13625 -- The volatile object is actually the prefix in a protected entry,
13626 -- function, or procedure call.
13628 elsif Is_Protected_Operation_Call
(Context
) then
13631 -- The volatile object appears as the expression of a simple return
13632 -- statement that applies to a volatile function.
13634 elsif Nkind
(Context
) = N_Simple_Return_Statement
13635 and then Expression
(Context
) = Obj_Ref
13638 Within_Volatile_Function
(Return_Statement_Entity
(Context
));
13640 -- The volatile object appears as the prefix of a name occurring in a
13641 -- non-interfering context.
13643 elsif Nkind_In
(Context
, N_Attribute_Reference
,
13644 N_Explicit_Dereference
,
13645 N_Indexed_Component
,
13646 N_Selected_Component
,
13648 and then Prefix
(Context
) = Obj_Ref
13649 and then Is_OK_Volatile_Context
13650 (Context
=> Parent
(Context
),
13651 Obj_Ref
=> Context
)
13655 -- The volatile object appears as the prefix of attributes Address,
13656 -- Alignment, Component_Size, First_Bit, Last_Bit, Position, Size,
13659 elsif Nkind
(Context
) = N_Attribute_Reference
13660 and then Prefix
(Context
) = Obj_Ref
13661 and then Nam_In
(Attribute_Name
(Context
), Name_Address
,
13663 Name_Component_Size
,
13672 -- The volatile object appears as the expression of a type conversion
13673 -- occurring in a non-interfering context.
13675 elsif Nkind_In
(Context
, N_Type_Conversion
,
13676 N_Unchecked_Type_Conversion
)
13677 and then Expression
(Context
) = Obj_Ref
13678 and then Is_OK_Volatile_Context
13679 (Context
=> Parent
(Context
),
13680 Obj_Ref
=> Context
)
13684 -- Allow references to volatile objects in various checks. This is not a
13685 -- direct SPARK 2014 requirement.
13687 elsif Within_Check
(Context
) then
13690 -- Assume that references to effectively volatile objects that appear
13691 -- as actual parameters in a subprogram call are always legal. A full
13692 -- legality check is done when the actuals are resolved (see routine
13693 -- Resolve_Actuals).
13695 elsif Within_Subprogram_Call
(Context
) then
13698 -- Otherwise the context is not suitable for an effectively volatile
13704 end Is_OK_Volatile_Context
;
13706 ------------------------------------
13707 -- Is_Package_Contract_Annotation --
13708 ------------------------------------
13710 function Is_Package_Contract_Annotation
(Item
: Node_Id
) return Boolean is
13714 if Nkind
(Item
) = N_Aspect_Specification
then
13715 Nam
:= Chars
(Identifier
(Item
));
13717 else pragma Assert
(Nkind
(Item
) = N_Pragma
);
13718 Nam
:= Pragma_Name_Mapped
(Item
);
13721 return Nam
= Name_Abstract_State
13722 or else Nam
= Name_Initial_Condition
13723 or else Nam
= Name_Initializes
13724 or else Nam
= Name_Refined_State
;
13725 end Is_Package_Contract_Annotation
;
13727 -----------------------------------
13728 -- Is_Partially_Initialized_Type --
13729 -----------------------------------
13731 function Is_Partially_Initialized_Type
13733 Include_Implicit
: Boolean := True) return Boolean
13736 if Is_Scalar_Type
(Typ
) then
13739 elsif Is_Access_Type
(Typ
) then
13740 return Include_Implicit
;
13742 elsif Is_Array_Type
(Typ
) then
13744 -- If component type is partially initialized, so is array type
13746 if Is_Partially_Initialized_Type
13747 (Component_Type
(Typ
), Include_Implicit
)
13751 -- Otherwise we are only partially initialized if we are fully
13752 -- initialized (this is the empty array case, no point in us
13753 -- duplicating that code here).
13756 return Is_Fully_Initialized_Type
(Typ
);
13759 elsif Is_Record_Type
(Typ
) then
13761 -- A discriminated type is always partially initialized if in
13764 if Has_Discriminants
(Typ
) and then Include_Implicit
then
13767 -- A tagged type is always partially initialized
13769 elsif Is_Tagged_Type
(Typ
) then
13772 -- Case of non-discriminated record
13778 Component_Present
: Boolean := False;
13779 -- Set True if at least one component is present. If no
13780 -- components are present, then record type is fully
13781 -- initialized (another odd case, like the null array).
13784 -- Loop through components
13786 Ent
:= First_Entity
(Typ
);
13787 while Present
(Ent
) loop
13788 if Ekind
(Ent
) = E_Component
then
13789 Component_Present
:= True;
13791 -- If a component has an initialization expression then
13792 -- the enclosing record type is partially initialized
13794 if Present
(Parent
(Ent
))
13795 and then Present
(Expression
(Parent
(Ent
)))
13799 -- If a component is of a type which is itself partially
13800 -- initialized, then the enclosing record type is also.
13802 elsif Is_Partially_Initialized_Type
13803 (Etype
(Ent
), Include_Implicit
)
13812 -- No initialized components found. If we found any components
13813 -- they were all uninitialized so the result is false.
13815 if Component_Present
then
13818 -- But if we found no components, then all the components are
13819 -- initialized so we consider the type to be initialized.
13827 -- Concurrent types are always fully initialized
13829 elsif Is_Concurrent_Type
(Typ
) then
13832 -- For a private type, go to underlying type. If there is no underlying
13833 -- type then just assume this partially initialized. Not clear if this
13834 -- can happen in a non-error case, but no harm in testing for this.
13836 elsif Is_Private_Type
(Typ
) then
13838 U
: constant Entity_Id
:= Underlying_Type
(Typ
);
13843 return Is_Partially_Initialized_Type
(U
, Include_Implicit
);
13847 -- For any other type (are there any?) assume partially initialized
13852 end Is_Partially_Initialized_Type
;
13854 ------------------------------------
13855 -- Is_Potentially_Persistent_Type --
13856 ------------------------------------
13858 function Is_Potentially_Persistent_Type
(T
: Entity_Id
) return Boolean is
13863 -- For private type, test corresponding full type
13865 if Is_Private_Type
(T
) then
13866 return Is_Potentially_Persistent_Type
(Full_View
(T
));
13868 -- Scalar types are potentially persistent
13870 elsif Is_Scalar_Type
(T
) then
13873 -- Record type is potentially persistent if not tagged and the types of
13874 -- all it components are potentially persistent, and no component has
13875 -- an initialization expression.
13877 elsif Is_Record_Type
(T
)
13878 and then not Is_Tagged_Type
(T
)
13879 and then not Is_Partially_Initialized_Type
(T
)
13881 Comp
:= First_Component
(T
);
13882 while Present
(Comp
) loop
13883 if not Is_Potentially_Persistent_Type
(Etype
(Comp
)) then
13886 Next_Entity
(Comp
);
13892 -- Array type is potentially persistent if its component type is
13893 -- potentially persistent and if all its constraints are static.
13895 elsif Is_Array_Type
(T
) then
13896 if not Is_Potentially_Persistent_Type
(Component_Type
(T
)) then
13900 Indx
:= First_Index
(T
);
13901 while Present
(Indx
) loop
13902 if not Is_OK_Static_Subtype
(Etype
(Indx
)) then
13911 -- All other types are not potentially persistent
13916 end Is_Potentially_Persistent_Type
;
13918 --------------------------------
13919 -- Is_Potentially_Unevaluated --
13920 --------------------------------
13922 function Is_Potentially_Unevaluated
(N
: Node_Id
) return Boolean is
13930 -- A postcondition whose expression is a short-circuit is broken down
13931 -- into individual aspects for better exception reporting. The original
13932 -- short-circuit expression is rewritten as the second operand, and an
13933 -- occurrence of 'Old in that operand is potentially unevaluated.
13934 -- See Sem_ch13.adb for details of this transformation.
13936 if Nkind
(Original_Node
(Par
)) = N_And_Then
then
13940 while not Nkind_In
(Par
, N_If_Expression
,
13948 Par
:= Parent
(Par
);
13950 -- If the context is not an expression, or if is the result of
13951 -- expansion of an enclosing construct (such as another attribute)
13952 -- the predicate does not apply.
13954 if Nkind
(Par
) not in N_Subexpr
13955 or else not Comes_From_Source
(Par
)
13961 if Nkind
(Par
) = N_If_Expression
then
13962 return Is_Elsif
(Par
) or else Expr
/= First
(Expressions
(Par
));
13964 elsif Nkind
(Par
) = N_Case_Expression
then
13965 return Expr
/= Expression
(Par
);
13967 elsif Nkind_In
(Par
, N_And_Then
, N_Or_Else
) then
13968 return Expr
= Right_Opnd
(Par
);
13970 elsif Nkind_In
(Par
, N_In
, N_Not_In
) then
13971 return Expr
/= Left_Opnd
(Par
);
13976 end Is_Potentially_Unevaluated
;
13978 ---------------------------------
13979 -- Is_Protected_Self_Reference --
13980 ---------------------------------
13982 function Is_Protected_Self_Reference
(N
: Node_Id
) return Boolean is
13984 function In_Access_Definition
(N
: Node_Id
) return Boolean;
13985 -- Returns true if N belongs to an access definition
13987 --------------------------
13988 -- In_Access_Definition --
13989 --------------------------
13991 function In_Access_Definition
(N
: Node_Id
) return Boolean is
13996 while Present
(P
) loop
13997 if Nkind
(P
) = N_Access_Definition
then
14005 end In_Access_Definition
;
14007 -- Start of processing for Is_Protected_Self_Reference
14010 -- Verify that prefix is analyzed and has the proper form. Note that
14011 -- the attributes Elab_Spec, Elab_Body, and Elab_Subp_Body, which also
14012 -- produce the address of an entity, do not analyze their prefix
14013 -- because they denote entities that are not necessarily visible.
14014 -- Neither of them can apply to a protected type.
14016 return Ada_Version
>= Ada_2005
14017 and then Is_Entity_Name
(N
)
14018 and then Present
(Entity
(N
))
14019 and then Is_Protected_Type
(Entity
(N
))
14020 and then In_Open_Scopes
(Entity
(N
))
14021 and then not In_Access_Definition
(N
);
14022 end Is_Protected_Self_Reference
;
14024 -----------------------------
14025 -- Is_RCI_Pkg_Spec_Or_Body --
14026 -----------------------------
14028 function Is_RCI_Pkg_Spec_Or_Body
(Cunit
: Node_Id
) return Boolean is
14030 function Is_RCI_Pkg_Decl_Cunit
(Cunit
: Node_Id
) return Boolean;
14031 -- Return True if the unit of Cunit is an RCI package declaration
14033 ---------------------------
14034 -- Is_RCI_Pkg_Decl_Cunit --
14035 ---------------------------
14037 function Is_RCI_Pkg_Decl_Cunit
(Cunit
: Node_Id
) return Boolean is
14038 The_Unit
: constant Node_Id
:= Unit
(Cunit
);
14041 if Nkind
(The_Unit
) /= N_Package_Declaration
then
14045 return Is_Remote_Call_Interface
(Defining_Entity
(The_Unit
));
14046 end Is_RCI_Pkg_Decl_Cunit
;
14048 -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
14051 return Is_RCI_Pkg_Decl_Cunit
(Cunit
)
14053 (Nkind
(Unit
(Cunit
)) = N_Package_Body
14054 and then Is_RCI_Pkg_Decl_Cunit
(Library_Unit
(Cunit
)));
14055 end Is_RCI_Pkg_Spec_Or_Body
;
14057 -----------------------------------------
14058 -- Is_Remote_Access_To_Class_Wide_Type --
14059 -----------------------------------------
14061 function Is_Remote_Access_To_Class_Wide_Type
14062 (E
: Entity_Id
) return Boolean
14065 -- A remote access to class-wide type is a general access to object type
14066 -- declared in the visible part of a Remote_Types or Remote_Call_
14069 return Ekind
(E
) = E_General_Access_Type
14070 and then (Is_Remote_Call_Interface
(E
) or else Is_Remote_Types
(E
));
14071 end Is_Remote_Access_To_Class_Wide_Type
;
14073 -----------------------------------------
14074 -- Is_Remote_Access_To_Subprogram_Type --
14075 -----------------------------------------
14077 function Is_Remote_Access_To_Subprogram_Type
14078 (E
: Entity_Id
) return Boolean
14081 return (Ekind
(E
) = E_Access_Subprogram_Type
14082 or else (Ekind
(E
) = E_Record_Type
14083 and then Present
(Corresponding_Remote_Type
(E
))))
14084 and then (Is_Remote_Call_Interface
(E
) or else Is_Remote_Types
(E
));
14085 end Is_Remote_Access_To_Subprogram_Type
;
14087 --------------------
14088 -- Is_Remote_Call --
14089 --------------------
14091 function Is_Remote_Call
(N
: Node_Id
) return Boolean is
14093 if Nkind
(N
) not in N_Subprogram_Call
then
14095 -- An entry call cannot be remote
14099 elsif Nkind
(Name
(N
)) in N_Has_Entity
14100 and then Is_Remote_Call_Interface
(Entity
(Name
(N
)))
14102 -- A subprogram declared in the spec of a RCI package is remote
14106 elsif Nkind
(Name
(N
)) = N_Explicit_Dereference
14107 and then Is_Remote_Access_To_Subprogram_Type
14108 (Etype
(Prefix
(Name
(N
))))
14110 -- The dereference of a RAS is a remote call
14114 elsif Present
(Controlling_Argument
(N
))
14115 and then Is_Remote_Access_To_Class_Wide_Type
14116 (Etype
(Controlling_Argument
(N
)))
14118 -- Any primitive operation call with a controlling argument of
14119 -- a RACW type is a remote call.
14124 -- All other calls are local calls
14127 end Is_Remote_Call
;
14129 ----------------------
14130 -- Is_Renamed_Entry --
14131 ----------------------
14133 function Is_Renamed_Entry
(Proc_Nam
: Entity_Id
) return Boolean is
14134 Orig_Node
: Node_Id
:= Empty
;
14135 Subp_Decl
: Node_Id
:= Parent
(Parent
(Proc_Nam
));
14137 function Is_Entry
(Nam
: Node_Id
) return Boolean;
14138 -- Determine whether Nam is an entry. Traverse selectors if there are
14139 -- nested selected components.
14145 function Is_Entry
(Nam
: Node_Id
) return Boolean is
14147 if Nkind
(Nam
) = N_Selected_Component
then
14148 return Is_Entry
(Selector_Name
(Nam
));
14151 return Ekind
(Entity
(Nam
)) = E_Entry
;
14154 -- Start of processing for Is_Renamed_Entry
14157 if Present
(Alias
(Proc_Nam
)) then
14158 Subp_Decl
:= Parent
(Parent
(Alias
(Proc_Nam
)));
14161 -- Look for a rewritten subprogram renaming declaration
14163 if Nkind
(Subp_Decl
) = N_Subprogram_Declaration
14164 and then Present
(Original_Node
(Subp_Decl
))
14166 Orig_Node
:= Original_Node
(Subp_Decl
);
14169 -- The rewritten subprogram is actually an entry
14171 if Present
(Orig_Node
)
14172 and then Nkind
(Orig_Node
) = N_Subprogram_Renaming_Declaration
14173 and then Is_Entry
(Name
(Orig_Node
))
14179 end Is_Renamed_Entry
;
14181 -----------------------------
14182 -- Is_Renaming_Declaration --
14183 -----------------------------
14185 function Is_Renaming_Declaration
(N
: Node_Id
) return Boolean is
14188 when N_Exception_Renaming_Declaration |
14189 N_Generic_Function_Renaming_Declaration |
14190 N_Generic_Package_Renaming_Declaration |
14191 N_Generic_Procedure_Renaming_Declaration |
14192 N_Object_Renaming_Declaration |
14193 N_Package_Renaming_Declaration |
14194 N_Subprogram_Renaming_Declaration
=>
14200 end Is_Renaming_Declaration
;
14202 ----------------------------
14203 -- Is_Reversible_Iterator --
14204 ----------------------------
14206 function Is_Reversible_Iterator
(Typ
: Entity_Id
) return Boolean is
14207 Ifaces_List
: Elist_Id
;
14208 Iface_Elmt
: Elmt_Id
;
14212 if Is_Class_Wide_Type
(Typ
)
14213 and then Chars
(Root_Type
(Typ
)) = Name_Reversible_Iterator
14214 and then Is_Predefined_File_Name
14215 (Unit_File_Name
(Get_Source_Unit
(Root_Type
(Typ
))))
14219 elsif not Is_Tagged_Type
(Typ
) or else not Is_Derived_Type
(Typ
) then
14223 Collect_Interfaces
(Typ
, Ifaces_List
);
14225 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
14226 while Present
(Iface_Elmt
) loop
14227 Iface
:= Node
(Iface_Elmt
);
14228 if Chars
(Iface
) = Name_Reversible_Iterator
14230 Is_Predefined_File_Name
14231 (Unit_File_Name
(Get_Source_Unit
(Iface
)))
14236 Next_Elmt
(Iface_Elmt
);
14241 end Is_Reversible_Iterator
;
14243 ----------------------
14244 -- Is_Selector_Name --
14245 ----------------------
14247 function Is_Selector_Name
(N
: Node_Id
) return Boolean is
14249 if not Is_List_Member
(N
) then
14251 P
: constant Node_Id
:= Parent
(N
);
14253 return Nkind_In
(P
, N_Expanded_Name
,
14254 N_Generic_Association
,
14255 N_Parameter_Association
,
14256 N_Selected_Component
)
14257 and then Selector_Name
(P
) = N
;
14262 L
: constant List_Id
:= List_Containing
(N
);
14263 P
: constant Node_Id
:= Parent
(L
);
14265 return (Nkind
(P
) = N_Discriminant_Association
14266 and then Selector_Names
(P
) = L
)
14268 (Nkind
(P
) = N_Component_Association
14269 and then Choices
(P
) = L
);
14272 end Is_Selector_Name
;
14274 ---------------------------------
14275 -- Is_Single_Concurrent_Object --
14276 ---------------------------------
14278 function Is_Single_Concurrent_Object
(Id
: Entity_Id
) return Boolean is
14281 Is_Single_Protected_Object
(Id
) or else Is_Single_Task_Object
(Id
);
14282 end Is_Single_Concurrent_Object
;
14284 -------------------------------
14285 -- Is_Single_Concurrent_Type --
14286 -------------------------------
14288 function Is_Single_Concurrent_Type
(Id
: Entity_Id
) return Boolean is
14291 Ekind_In
(Id
, E_Protected_Type
, E_Task_Type
)
14292 and then Is_Single_Concurrent_Type_Declaration
14293 (Declaration_Node
(Id
));
14294 end Is_Single_Concurrent_Type
;
14296 -------------------------------------------
14297 -- Is_Single_Concurrent_Type_Declaration --
14298 -------------------------------------------
14300 function Is_Single_Concurrent_Type_Declaration
14301 (N
: Node_Id
) return Boolean
14304 return Nkind_In
(Original_Node
(N
), N_Single_Protected_Declaration
,
14305 N_Single_Task_Declaration
);
14306 end Is_Single_Concurrent_Type_Declaration
;
14308 ---------------------------------------------
14309 -- Is_Single_Precision_Floating_Point_Type --
14310 ---------------------------------------------
14312 function Is_Single_Precision_Floating_Point_Type
14313 (E
: Entity_Id
) return Boolean is
14315 return Is_Floating_Point_Type
(E
)
14316 and then Machine_Radix_Value
(E
) = Uint_2
14317 and then Machine_Mantissa_Value
(E
) = Uint_24
14318 and then Machine_Emax_Value
(E
) = Uint_2
** Uint_7
14319 and then Machine_Emin_Value
(E
) = Uint_3
- (Uint_2
** Uint_7
);
14320 end Is_Single_Precision_Floating_Point_Type
;
14322 --------------------------------
14323 -- Is_Single_Protected_Object --
14324 --------------------------------
14326 function Is_Single_Protected_Object
(Id
: Entity_Id
) return Boolean is
14329 Ekind
(Id
) = E_Variable
14330 and then Ekind
(Etype
(Id
)) = E_Protected_Type
14331 and then Is_Single_Concurrent_Type
(Etype
(Id
));
14332 end Is_Single_Protected_Object
;
14334 ---------------------------
14335 -- Is_Single_Task_Object --
14336 ---------------------------
14338 function Is_Single_Task_Object
(Id
: Entity_Id
) return Boolean is
14341 Ekind
(Id
) = E_Variable
14342 and then Ekind
(Etype
(Id
)) = E_Task_Type
14343 and then Is_Single_Concurrent_Type
(Etype
(Id
));
14344 end Is_Single_Task_Object
;
14346 -------------------------------------
14347 -- Is_SPARK_05_Initialization_Expr --
14348 -------------------------------------
14350 function Is_SPARK_05_Initialization_Expr
(N
: Node_Id
) return Boolean is
14353 Comp_Assn
: Node_Id
;
14354 Orig_N
: constant Node_Id
:= Original_Node
(N
);
14359 if not Comes_From_Source
(Orig_N
) then
14363 pragma Assert
(Nkind
(Orig_N
) in N_Subexpr
);
14365 case Nkind
(Orig_N
) is
14366 when N_Character_Literal |
14367 N_Integer_Literal |
14369 N_String_Literal
=>
14372 when N_Identifier |
14374 if Is_Entity_Name
(Orig_N
)
14375 and then Present
(Entity
(Orig_N
)) -- needed in some cases
14377 case Ekind
(Entity
(Orig_N
)) is
14379 E_Enumeration_Literal |
14384 if Is_Type
(Entity
(Orig_N
)) then
14392 when N_Qualified_Expression |
14393 N_Type_Conversion
=>
14394 Is_Ok
:= Is_SPARK_05_Initialization_Expr
(Expression
(Orig_N
));
14397 Is_Ok
:= Is_SPARK_05_Initialization_Expr
(Right_Opnd
(Orig_N
));
14401 N_Membership_Test
=>
14402 Is_Ok
:= Is_SPARK_05_Initialization_Expr
(Left_Opnd
(Orig_N
))
14404 Is_SPARK_05_Initialization_Expr
(Right_Opnd
(Orig_N
));
14407 N_Extension_Aggregate
=>
14408 if Nkind
(Orig_N
) = N_Extension_Aggregate
then
14410 Is_SPARK_05_Initialization_Expr
(Ancestor_Part
(Orig_N
));
14413 Expr
:= First
(Expressions
(Orig_N
));
14414 while Present
(Expr
) loop
14415 if not Is_SPARK_05_Initialization_Expr
(Expr
) then
14423 Comp_Assn
:= First
(Component_Associations
(Orig_N
));
14424 while Present
(Comp_Assn
) loop
14425 Expr
:= Expression
(Comp_Assn
);
14427 -- Note: test for Present here needed for box assocation
14430 and then not Is_SPARK_05_Initialization_Expr
(Expr
)
14439 when N_Attribute_Reference
=>
14440 if Nkind
(Prefix
(Orig_N
)) in N_Subexpr
then
14441 Is_Ok
:= Is_SPARK_05_Initialization_Expr
(Prefix
(Orig_N
));
14444 Expr
:= First
(Expressions
(Orig_N
));
14445 while Present
(Expr
) loop
14446 if not Is_SPARK_05_Initialization_Expr
(Expr
) then
14454 -- Selected components might be expanded named not yet resolved, so
14455 -- default on the safe side. (Eg on sparklex.ads)
14457 when N_Selected_Component
=>
14466 end Is_SPARK_05_Initialization_Expr
;
14468 ----------------------------------
14469 -- Is_SPARK_05_Object_Reference --
14470 ----------------------------------
14472 function Is_SPARK_05_Object_Reference
(N
: Node_Id
) return Boolean is
14474 if Is_Entity_Name
(N
) then
14475 return Present
(Entity
(N
))
14477 (Ekind_In
(Entity
(N
), E_Constant
, E_Variable
)
14478 or else Ekind
(Entity
(N
)) in Formal_Kind
);
14482 when N_Selected_Component
=>
14483 return Is_SPARK_05_Object_Reference
(Prefix
(N
));
14489 end Is_SPARK_05_Object_Reference
;
14491 -----------------------------
14492 -- Is_Specific_Tagged_Type --
14493 -----------------------------
14495 function Is_Specific_Tagged_Type
(Typ
: Entity_Id
) return Boolean is
14496 Full_Typ
: Entity_Id
;
14499 -- Handle private types
14501 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
14502 Full_Typ
:= Full_View
(Typ
);
14507 -- A specific tagged type is a non-class-wide tagged type
14509 return Is_Tagged_Type
(Full_Typ
) and not Is_Class_Wide_Type
(Full_Typ
);
14510 end Is_Specific_Tagged_Type
;
14516 function Is_Statement
(N
: Node_Id
) return Boolean is
14519 Nkind
(N
) in N_Statement_Other_Than_Procedure_Call
14520 or else Nkind
(N
) = N_Procedure_Call_Statement
;
14523 ---------------------------------------
14524 -- Is_Subprogram_Contract_Annotation --
14525 ---------------------------------------
14527 function Is_Subprogram_Contract_Annotation
14528 (Item
: Node_Id
) return Boolean
14533 if Nkind
(Item
) = N_Aspect_Specification
then
14534 Nam
:= Chars
(Identifier
(Item
));
14536 else pragma Assert
(Nkind
(Item
) = N_Pragma
);
14537 Nam
:= Pragma_Name_Mapped
(Item
);
14540 return Nam
= Name_Contract_Cases
14541 or else Nam
= Name_Depends
14542 or else Nam
= Name_Extensions_Visible
14543 or else Nam
= Name_Global
14544 or else Nam
= Name_Post
14545 or else Nam
= Name_Post_Class
14546 or else Nam
= Name_Postcondition
14547 or else Nam
= Name_Pre
14548 or else Nam
= Name_Pre_Class
14549 or else Nam
= Name_Precondition
14550 or else Nam
= Name_Refined_Depends
14551 or else Nam
= Name_Refined_Global
14552 or else Nam
= Name_Refined_Post
14553 or else Nam
= Name_Test_Case
;
14554 end Is_Subprogram_Contract_Annotation
;
14556 --------------------------------------------------
14557 -- Is_Subprogram_Stub_Without_Prior_Declaration --
14558 --------------------------------------------------
14560 function Is_Subprogram_Stub_Without_Prior_Declaration
14561 (N
: Node_Id
) return Boolean
14564 -- A subprogram stub without prior declaration serves as declaration for
14565 -- the actual subprogram body. As such, it has an attached defining
14566 -- entity of E_[Generic_]Function or E_[Generic_]Procedure.
14568 return Nkind
(N
) = N_Subprogram_Body_Stub
14569 and then Ekind
(Defining_Entity
(N
)) /= E_Subprogram_Body
;
14570 end Is_Subprogram_Stub_Without_Prior_Declaration
;
14572 --------------------------
14573 -- Is_Suspension_Object --
14574 --------------------------
14576 function Is_Suspension_Object
(Id
: Entity_Id
) return Boolean is
14578 -- This approach does an exact name match rather than to rely on
14579 -- RTSfind. Routine Is_Effectively_Volatile is used by clients of the
14580 -- front end at point where all auxiliary tables are locked and any
14581 -- modifications to them are treated as violations. Do not tamper with
14582 -- the tables, instead examine the Chars fields of all the scopes of Id.
14585 Chars
(Id
) = Name_Suspension_Object
14586 and then Present
(Scope
(Id
))
14587 and then Chars
(Scope
(Id
)) = Name_Synchronous_Task_Control
14588 and then Present
(Scope
(Scope
(Id
)))
14589 and then Chars
(Scope
(Scope
(Id
))) = Name_Ada
14590 and then Present
(Scope
(Scope
(Scope
(Id
))))
14591 and then Scope
(Scope
(Scope
(Id
))) = Standard_Standard
;
14592 end Is_Suspension_Object
;
14594 ----------------------------
14595 -- Is_Synchronized_Object --
14596 ----------------------------
14598 function Is_Synchronized_Object
(Id
: Entity_Id
) return Boolean is
14602 if Is_Object
(Id
) then
14604 -- The object is synchronized if it is of a type that yields a
14605 -- synchronized object.
14607 if Yields_Synchronized_Object
(Etype
(Id
)) then
14610 -- The object is synchronized if it is atomic and Async_Writers is
14613 elsif Is_Atomic
(Id
) and then Async_Writers_Enabled
(Id
) then
14616 -- A constant is a synchronized object by default
14618 elsif Ekind
(Id
) = E_Constant
then
14621 -- A variable is a synchronized object if it is subject to pragma
14622 -- Constant_After_Elaboration.
14624 elsif Ekind
(Id
) = E_Variable
then
14625 Prag
:= Get_Pragma
(Id
, Pragma_Constant_After_Elaboration
);
14627 return Present
(Prag
) and then Is_Enabled_Pragma
(Prag
);
14631 -- Otherwise the input is not an object or it does not qualify as a
14632 -- synchronized object.
14635 end Is_Synchronized_Object
;
14637 ---------------------------------
14638 -- Is_Synchronized_Tagged_Type --
14639 ---------------------------------
14641 function Is_Synchronized_Tagged_Type
(E
: Entity_Id
) return Boolean is
14642 Kind
: constant Entity_Kind
:= Ekind
(Base_Type
(E
));
14645 -- A task or protected type derived from an interface is a tagged type.
14646 -- Such a tagged type is called a synchronized tagged type, as are
14647 -- synchronized interfaces and private extensions whose declaration
14648 -- includes the reserved word synchronized.
14650 return (Is_Tagged_Type
(E
)
14651 and then (Kind
= E_Task_Type
14653 Kind
= E_Protected_Type
))
14656 and then Is_Synchronized_Interface
(E
))
14658 (Ekind
(E
) = E_Record_Type_With_Private
14659 and then Nkind
(Parent
(E
)) = N_Private_Extension_Declaration
14660 and then (Synchronized_Present
(Parent
(E
))
14661 or else Is_Synchronized_Interface
(Etype
(E
))));
14662 end Is_Synchronized_Tagged_Type
;
14668 function Is_Transfer
(N
: Node_Id
) return Boolean is
14669 Kind
: constant Node_Kind
:= Nkind
(N
);
14672 if Kind
= N_Simple_Return_Statement
14674 Kind
= N_Extended_Return_Statement
14676 Kind
= N_Goto_Statement
14678 Kind
= N_Raise_Statement
14680 Kind
= N_Requeue_Statement
14684 elsif (Kind
= N_Exit_Statement
or else Kind
in N_Raise_xxx_Error
)
14685 and then No
(Condition
(N
))
14689 elsif Kind
= N_Procedure_Call_Statement
14690 and then Is_Entity_Name
(Name
(N
))
14691 and then Present
(Entity
(Name
(N
)))
14692 and then No_Return
(Entity
(Name
(N
)))
14696 elsif Nkind
(Original_Node
(N
)) = N_Raise_Statement
then
14708 function Is_True
(U
: Uint
) return Boolean is
14713 --------------------------------------
14714 -- Is_Unchecked_Conversion_Instance --
14715 --------------------------------------
14717 function Is_Unchecked_Conversion_Instance
(Id
: Entity_Id
) return Boolean is
14721 -- Look for a function whose generic parent is the predefined intrinsic
14722 -- function Unchecked_Conversion, or for one that renames such an
14725 if Ekind
(Id
) = E_Function
then
14726 Par
:= Parent
(Id
);
14728 if Nkind
(Par
) = N_Function_Specification
then
14729 Par
:= Generic_Parent
(Par
);
14731 if Present
(Par
) then
14733 Chars
(Par
) = Name_Unchecked_Conversion
14734 and then Is_Intrinsic_Subprogram
(Par
)
14735 and then Is_Predefined_File_Name
14736 (Unit_File_Name
(Get_Source_Unit
(Par
)));
14739 Present
(Alias
(Id
))
14740 and then Is_Unchecked_Conversion_Instance
(Alias
(Id
));
14746 end Is_Unchecked_Conversion_Instance
;
14748 -------------------------------
14749 -- Is_Universal_Numeric_Type --
14750 -------------------------------
14752 function Is_Universal_Numeric_Type
(T
: Entity_Id
) return Boolean is
14754 return T
= Universal_Integer
or else T
= Universal_Real
;
14755 end Is_Universal_Numeric_Type
;
14757 ----------------------------
14758 -- Is_Variable_Size_Array --
14759 ----------------------------
14761 function Is_Variable_Size_Array
(E
: Entity_Id
) return Boolean is
14765 pragma Assert
(Is_Array_Type
(E
));
14767 -- Check if some index is initialized with a non-constant value
14769 Idx
:= First_Index
(E
);
14770 while Present
(Idx
) loop
14771 if Nkind
(Idx
) = N_Range
then
14772 if not Is_Constant_Bound
(Low_Bound
(Idx
))
14773 or else not Is_Constant_Bound
(High_Bound
(Idx
))
14779 Idx
:= Next_Index
(Idx
);
14783 end Is_Variable_Size_Array
;
14785 -----------------------------
14786 -- Is_Variable_Size_Record --
14787 -----------------------------
14789 function Is_Variable_Size_Record
(E
: Entity_Id
) return Boolean is
14791 Comp_Typ
: Entity_Id
;
14794 pragma Assert
(Is_Record_Type
(E
));
14796 Comp
:= First_Entity
(E
);
14797 while Present
(Comp
) loop
14798 Comp_Typ
:= Etype
(Comp
);
14800 -- Recursive call if the record type has discriminants
14802 if Is_Record_Type
(Comp_Typ
)
14803 and then Has_Discriminants
(Comp_Typ
)
14804 and then Is_Variable_Size_Record
(Comp_Typ
)
14808 elsif Is_Array_Type
(Comp_Typ
)
14809 and then Is_Variable_Size_Array
(Comp_Typ
)
14814 Next_Entity
(Comp
);
14818 end Is_Variable_Size_Record
;
14824 function Is_Variable
14826 Use_Original_Node
: Boolean := True) return Boolean
14828 Orig_Node
: Node_Id
;
14830 function In_Protected_Function
(E
: Entity_Id
) return Boolean;
14831 -- Within a protected function, the private components of the enclosing
14832 -- protected type are constants. A function nested within a (protected)
14833 -- procedure is not itself protected. Within the body of a protected
14834 -- function the current instance of the protected type is a constant.
14836 function Is_Variable_Prefix
(P
: Node_Id
) return Boolean;
14837 -- Prefixes can involve implicit dereferences, in which case we must
14838 -- test for the case of a reference of a constant access type, which can
14839 -- can never be a variable.
14841 ---------------------------
14842 -- In_Protected_Function --
14843 ---------------------------
14845 function In_Protected_Function
(E
: Entity_Id
) return Boolean is
14850 -- E is the current instance of a type
14852 if Is_Type
(E
) then
14861 if not Is_Protected_Type
(Prot
) then
14865 S
:= Current_Scope
;
14866 while Present
(S
) and then S
/= Prot
loop
14867 if Ekind
(S
) = E_Function
and then Scope
(S
) = Prot
then
14876 end In_Protected_Function
;
14878 ------------------------
14879 -- Is_Variable_Prefix --
14880 ------------------------
14882 function Is_Variable_Prefix
(P
: Node_Id
) return Boolean is
14884 if Is_Access_Type
(Etype
(P
)) then
14885 return not Is_Access_Constant
(Root_Type
(Etype
(P
)));
14887 -- For the case of an indexed component whose prefix has a packed
14888 -- array type, the prefix has been rewritten into a type conversion.
14889 -- Determine variable-ness from the converted expression.
14891 elsif Nkind
(P
) = N_Type_Conversion
14892 and then not Comes_From_Source
(P
)
14893 and then Is_Array_Type
(Etype
(P
))
14894 and then Is_Packed
(Etype
(P
))
14896 return Is_Variable
(Expression
(P
));
14899 return Is_Variable
(P
);
14901 end Is_Variable_Prefix
;
14903 -- Start of processing for Is_Variable
14906 -- Special check, allow x'Deref(expr) as a variable
14908 if Nkind
(N
) = N_Attribute_Reference
14909 and then Attribute_Name
(N
) = Name_Deref
14914 -- Check if we perform the test on the original node since this may be a
14915 -- test of syntactic categories which must not be disturbed by whatever
14916 -- rewriting might have occurred. For example, an aggregate, which is
14917 -- certainly NOT a variable, could be turned into a variable by
14920 if Use_Original_Node
then
14921 Orig_Node
:= Original_Node
(N
);
14926 -- Definitely OK if Assignment_OK is set. Since this is something that
14927 -- only gets set for expanded nodes, the test is on N, not Orig_Node.
14929 if Nkind
(N
) in N_Subexpr
and then Assignment_OK
(N
) then
14932 -- Normally we go to the original node, but there is one exception where
14933 -- we use the rewritten node, namely when it is an explicit dereference.
14934 -- The generated code may rewrite a prefix which is an access type with
14935 -- an explicit dereference. The dereference is a variable, even though
14936 -- the original node may not be (since it could be a constant of the
14939 -- In Ada 2005 we have a further case to consider: the prefix may be a
14940 -- function call given in prefix notation. The original node appears to
14941 -- be a selected component, but we need to examine the call.
14943 elsif Nkind
(N
) = N_Explicit_Dereference
14944 and then Nkind
(Orig_Node
) /= N_Explicit_Dereference
14945 and then Present
(Etype
(Orig_Node
))
14946 and then Is_Access_Type
(Etype
(Orig_Node
))
14948 -- Note that if the prefix is an explicit dereference that does not
14949 -- come from source, we must check for a rewritten function call in
14950 -- prefixed notation before other forms of rewriting, to prevent a
14954 (Nkind
(Orig_Node
) = N_Function_Call
14955 and then not Is_Access_Constant
(Etype
(Prefix
(N
))))
14957 Is_Variable_Prefix
(Original_Node
(Prefix
(N
)));
14959 -- in Ada 2012, the dereference may have been added for a type with
14960 -- a declared implicit dereference aspect. Check that it is not an
14961 -- access to constant.
14963 elsif Nkind
(N
) = N_Explicit_Dereference
14964 and then Present
(Etype
(Orig_Node
))
14965 and then Ada_Version
>= Ada_2012
14966 and then Has_Implicit_Dereference
(Etype
(Orig_Node
))
14968 return not Is_Access_Constant
(Etype
(Prefix
(N
)));
14970 -- A function call is never a variable
14972 elsif Nkind
(N
) = N_Function_Call
then
14975 -- All remaining checks use the original node
14977 elsif Is_Entity_Name
(Orig_Node
)
14978 and then Present
(Entity
(Orig_Node
))
14981 E
: constant Entity_Id
:= Entity
(Orig_Node
);
14982 K
: constant Entity_Kind
:= Ekind
(E
);
14985 return (K
= E_Variable
14986 and then Nkind
(Parent
(E
)) /= N_Exception_Handler
)
14987 or else (K
= E_Component
14988 and then not In_Protected_Function
(E
))
14989 or else K
= E_Out_Parameter
14990 or else K
= E_In_Out_Parameter
14991 or else K
= E_Generic_In_Out_Parameter
14993 -- Current instance of type. If this is a protected type, check
14994 -- we are not within the body of one of its protected functions.
14996 or else (Is_Type
(E
)
14997 and then In_Open_Scopes
(E
)
14998 and then not In_Protected_Function
(E
))
15000 or else (Is_Incomplete_Or_Private_Type
(E
)
15001 and then In_Open_Scopes
(Full_View
(E
)));
15005 case Nkind
(Orig_Node
) is
15006 when N_Indexed_Component | N_Slice
=>
15007 return Is_Variable_Prefix
(Prefix
(Orig_Node
));
15009 when N_Selected_Component
=>
15010 return (Is_Variable
(Selector_Name
(Orig_Node
))
15011 and then Is_Variable_Prefix
(Prefix
(Orig_Node
)))
15013 (Nkind
(N
) = N_Expanded_Name
15014 and then Scope
(Entity
(N
)) = Entity
(Prefix
(N
)));
15016 -- For an explicit dereference, the type of the prefix cannot
15017 -- be an access to constant or an access to subprogram.
15019 when N_Explicit_Dereference
=>
15021 Typ
: constant Entity_Id
:= Etype
(Prefix
(Orig_Node
));
15023 return Is_Access_Type
(Typ
)
15024 and then not Is_Access_Constant
(Root_Type
(Typ
))
15025 and then Ekind
(Typ
) /= E_Access_Subprogram_Type
;
15028 -- The type conversion is the case where we do not deal with the
15029 -- context dependent special case of an actual parameter. Thus
15030 -- the type conversion is only considered a variable for the
15031 -- purposes of this routine if the target type is tagged. However,
15032 -- a type conversion is considered to be a variable if it does not
15033 -- come from source (this deals for example with the conversions
15034 -- of expressions to their actual subtypes).
15036 when N_Type_Conversion
=>
15037 return Is_Variable
(Expression
(Orig_Node
))
15039 (not Comes_From_Source
(Orig_Node
)
15041 (Is_Tagged_Type
(Etype
(Subtype_Mark
(Orig_Node
)))
15043 Is_Tagged_Type
(Etype
(Expression
(Orig_Node
)))));
15045 -- GNAT allows an unchecked type conversion as a variable. This
15046 -- only affects the generation of internal expanded code, since
15047 -- calls to instantiations of Unchecked_Conversion are never
15048 -- considered variables (since they are function calls).
15050 when N_Unchecked_Type_Conversion
=>
15051 return Is_Variable
(Expression
(Orig_Node
));
15059 ------------------------------
15060 -- Is_Verifiable_DIC_Pragma --
15061 ------------------------------
15063 function Is_Verifiable_DIC_Pragma
(Prag
: Node_Id
) return Boolean is
15064 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
15067 -- To qualify as verifiable, a DIC pragma must have a non-null argument
15071 and then Nkind
(Get_Pragma_Arg
(First
(Args
))) /= N_Null
;
15072 end Is_Verifiable_DIC_Pragma
;
15074 ---------------------------
15075 -- Is_Visibly_Controlled --
15076 ---------------------------
15078 function Is_Visibly_Controlled
(T
: Entity_Id
) return Boolean is
15079 Root
: constant Entity_Id
:= Root_Type
(T
);
15081 return Chars
(Scope
(Root
)) = Name_Finalization
15082 and then Chars
(Scope
(Scope
(Root
))) = Name_Ada
15083 and then Scope
(Scope
(Scope
(Root
))) = Standard_Standard
;
15084 end Is_Visibly_Controlled
;
15086 --------------------------
15087 -- Is_Volatile_Function --
15088 --------------------------
15090 function Is_Volatile_Function
(Func_Id
: Entity_Id
) return Boolean is
15092 pragma Assert
(Ekind_In
(Func_Id
, E_Function
, E_Generic_Function
));
15094 -- A function declared within a protected type is volatile
15096 if Is_Protected_Type
(Scope
(Func_Id
)) then
15099 -- An instance of Ada.Unchecked_Conversion is a volatile function if
15100 -- either the source or the target are effectively volatile.
15102 elsif Is_Unchecked_Conversion_Instance
(Func_Id
)
15103 and then Has_Effectively_Volatile_Profile
(Func_Id
)
15107 -- Otherwise the function is treated as volatile if it is subject to
15108 -- enabled pragma Volatile_Function.
15112 Is_Enabled_Pragma
(Get_Pragma
(Func_Id
, Pragma_Volatile_Function
));
15114 end Is_Volatile_Function
;
15116 ------------------------
15117 -- Is_Volatile_Object --
15118 ------------------------
15120 function Is_Volatile_Object
(N
: Node_Id
) return Boolean is
15122 function Is_Volatile_Prefix
(N
: Node_Id
) return Boolean;
15123 -- If prefix is an implicit dereference, examine designated type
15125 function Object_Has_Volatile_Components
(N
: Node_Id
) return Boolean;
15126 -- Determines if given object has volatile components
15128 ------------------------
15129 -- Is_Volatile_Prefix --
15130 ------------------------
15132 function Is_Volatile_Prefix
(N
: Node_Id
) return Boolean is
15133 Typ
: constant Entity_Id
:= Etype
(N
);
15136 if Is_Access_Type
(Typ
) then
15138 Dtyp
: constant Entity_Id
:= Designated_Type
(Typ
);
15141 return Is_Volatile
(Dtyp
)
15142 or else Has_Volatile_Components
(Dtyp
);
15146 return Object_Has_Volatile_Components
(N
);
15148 end Is_Volatile_Prefix
;
15150 ------------------------------------
15151 -- Object_Has_Volatile_Components --
15152 ------------------------------------
15154 function Object_Has_Volatile_Components
(N
: Node_Id
) return Boolean is
15155 Typ
: constant Entity_Id
:= Etype
(N
);
15158 if Is_Volatile
(Typ
)
15159 or else Has_Volatile_Components
(Typ
)
15163 elsif Is_Entity_Name
(N
)
15164 and then (Has_Volatile_Components
(Entity
(N
))
15165 or else Is_Volatile
(Entity
(N
)))
15169 elsif Nkind
(N
) = N_Indexed_Component
15170 or else Nkind
(N
) = N_Selected_Component
15172 return Is_Volatile_Prefix
(Prefix
(N
));
15177 end Object_Has_Volatile_Components
;
15179 -- Start of processing for Is_Volatile_Object
15182 if Nkind
(N
) = N_Defining_Identifier
then
15183 return Is_Volatile
(N
) or else Is_Volatile
(Etype
(N
));
15185 elsif Nkind
(N
) = N_Expanded_Name
then
15186 return Is_Volatile_Object
(Entity
(N
));
15188 elsif Is_Volatile
(Etype
(N
))
15189 or else (Is_Entity_Name
(N
) and then Is_Volatile
(Entity
(N
)))
15193 elsif Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
)
15194 and then Is_Volatile_Prefix
(Prefix
(N
))
15198 elsif Nkind
(N
) = N_Selected_Component
15199 and then Is_Volatile
(Entity
(Selector_Name
(N
)))
15206 end Is_Volatile_Object
;
15208 ---------------------------
15209 -- Itype_Has_Declaration --
15210 ---------------------------
15212 function Itype_Has_Declaration
(Id
: Entity_Id
) return Boolean is
15214 pragma Assert
(Is_Itype
(Id
));
15215 return Present
(Parent
(Id
))
15216 and then Nkind_In
(Parent
(Id
), N_Full_Type_Declaration
,
15217 N_Subtype_Declaration
)
15218 and then Defining_Entity
(Parent
(Id
)) = Id
;
15219 end Itype_Has_Declaration
;
15221 -------------------------
15222 -- Kill_Current_Values --
15223 -------------------------
15225 procedure Kill_Current_Values
15227 Last_Assignment_Only
: Boolean := False)
15230 if Is_Assignable
(Ent
) then
15231 Set_Last_Assignment
(Ent
, Empty
);
15234 if Is_Object
(Ent
) then
15235 if not Last_Assignment_Only
then
15237 Set_Current_Value
(Ent
, Empty
);
15239 -- Do not reset the Is_Known_[Non_]Null and Is_Known_Valid flags
15240 -- for a constant. Once the constant is elaborated, its value is
15241 -- not changed, therefore the associated flags that describe the
15242 -- value should not be modified either.
15244 if Ekind
(Ent
) = E_Constant
then
15247 -- Non-constant entities
15250 if not Can_Never_Be_Null
(Ent
) then
15251 Set_Is_Known_Non_Null
(Ent
, False);
15254 Set_Is_Known_Null
(Ent
, False);
15256 -- Reset the Is_Known_Valid flag unless the type is always
15257 -- valid. This does not apply to a loop parameter because its
15258 -- bounds are defined by the loop header and therefore always
15261 if not Is_Known_Valid
(Etype
(Ent
))
15262 and then Ekind
(Ent
) /= E_Loop_Parameter
15264 Set_Is_Known_Valid
(Ent
, False);
15269 end Kill_Current_Values
;
15271 procedure Kill_Current_Values
(Last_Assignment_Only
: Boolean := False) is
15274 procedure Kill_Current_Values_For_Entity_Chain
(E
: Entity_Id
);
15275 -- Clear current value for entity E and all entities chained to E
15277 ------------------------------------------
15278 -- Kill_Current_Values_For_Entity_Chain --
15279 ------------------------------------------
15281 procedure Kill_Current_Values_For_Entity_Chain
(E
: Entity_Id
) is
15285 while Present
(Ent
) loop
15286 Kill_Current_Values
(Ent
, Last_Assignment_Only
);
15289 end Kill_Current_Values_For_Entity_Chain
;
15291 -- Start of processing for Kill_Current_Values
15294 -- Kill all saved checks, a special case of killing saved values
15296 if not Last_Assignment_Only
then
15300 -- Loop through relevant scopes, which includes the current scope and
15301 -- any parent scopes if the current scope is a block or a package.
15303 S
:= Current_Scope
;
15306 -- Clear current values of all entities in current scope
15308 Kill_Current_Values_For_Entity_Chain
(First_Entity
(S
));
15310 -- If scope is a package, also clear current values of all private
15311 -- entities in the scope.
15313 if Is_Package_Or_Generic_Package
(S
)
15314 or else Is_Concurrent_Type
(S
)
15316 Kill_Current_Values_For_Entity_Chain
(First_Private_Entity
(S
));
15319 -- If this is a not a subprogram, deal with parents
15321 if not Is_Subprogram
(S
) then
15323 exit Scope_Loop
when S
= Standard_Standard
;
15327 end loop Scope_Loop
;
15328 end Kill_Current_Values
;
15330 --------------------------
15331 -- Kill_Size_Check_Code --
15332 --------------------------
15334 procedure Kill_Size_Check_Code
(E
: Entity_Id
) is
15336 if (Ekind
(E
) = E_Constant
or else Ekind
(E
) = E_Variable
)
15337 and then Present
(Size_Check_Code
(E
))
15339 Remove
(Size_Check_Code
(E
));
15340 Set_Size_Check_Code
(E
, Empty
);
15342 end Kill_Size_Check_Code
;
15344 --------------------------
15345 -- Known_To_Be_Assigned --
15346 --------------------------
15348 function Known_To_Be_Assigned
(N
: Node_Id
) return Boolean is
15349 P
: constant Node_Id
:= Parent
(N
);
15354 -- Test left side of assignment
15356 when N_Assignment_Statement
=>
15357 return N
= Name
(P
);
15359 -- Function call arguments are never lvalues
15361 when N_Function_Call
=>
15364 -- Positional parameter for procedure or accept call
15366 when N_Procedure_Call_Statement |
15375 Proc
:= Get_Subprogram_Entity
(P
);
15381 -- If we are not a list member, something is strange, so
15382 -- be conservative and return False.
15384 if not Is_List_Member
(N
) then
15388 -- We are going to find the right formal by stepping forward
15389 -- through the formals, as we step backwards in the actuals.
15391 Form
:= First_Formal
(Proc
);
15394 -- If no formal, something is weird, so be conservative
15395 -- and return False.
15402 exit when No
(Act
);
15403 Next_Formal
(Form
);
15406 return Ekind
(Form
) /= E_In_Parameter
;
15409 -- Named parameter for procedure or accept call
15411 when N_Parameter_Association
=>
15417 Proc
:= Get_Subprogram_Entity
(Parent
(P
));
15423 -- Loop through formals to find the one that matches
15425 Form
:= First_Formal
(Proc
);
15427 -- If no matching formal, that's peculiar, some kind of
15428 -- previous error, so return False to be conservative.
15429 -- Actually this also happens in legal code in the case
15430 -- where P is a parameter association for an Extra_Formal???
15436 -- Else test for match
15438 if Chars
(Form
) = Chars
(Selector_Name
(P
)) then
15439 return Ekind
(Form
) /= E_In_Parameter
;
15442 Next_Formal
(Form
);
15446 -- Test for appearing in a conversion that itself appears
15447 -- in an lvalue context, since this should be an lvalue.
15449 when N_Type_Conversion
=>
15450 return Known_To_Be_Assigned
(P
);
15452 -- All other references are definitely not known to be modifications
15458 end Known_To_Be_Assigned
;
15460 ---------------------------
15461 -- Last_Source_Statement --
15462 ---------------------------
15464 function Last_Source_Statement
(HSS
: Node_Id
) return Node_Id
is
15468 N
:= Last
(Statements
(HSS
));
15469 while Present
(N
) loop
15470 exit when Comes_From_Source
(N
);
15475 end Last_Source_Statement
;
15477 ----------------------------------
15478 -- Matching_Static_Array_Bounds --
15479 ----------------------------------
15481 function Matching_Static_Array_Bounds
15483 R_Typ
: Node_Id
) return Boolean
15485 L_Ndims
: constant Nat
:= Number_Dimensions
(L_Typ
);
15486 R_Ndims
: constant Nat
:= Number_Dimensions
(R_Typ
);
15498 if L_Ndims
/= R_Ndims
then
15502 -- Unconstrained types do not have static bounds
15504 if not Is_Constrained
(L_Typ
) or else not Is_Constrained
(R_Typ
) then
15508 -- First treat specially the first dimension, as the lower bound and
15509 -- length of string literals are not stored like those of arrays.
15511 if Ekind
(L_Typ
) = E_String_Literal_Subtype
then
15512 L_Low
:= String_Literal_Low_Bound
(L_Typ
);
15513 L_Len
:= String_Literal_Length
(L_Typ
);
15515 L_Index
:= First_Index
(L_Typ
);
15516 Get_Index_Bounds
(L_Index
, L_Low
, L_High
);
15518 if Is_OK_Static_Expression
(L_Low
)
15520 Is_OK_Static_Expression
(L_High
)
15522 if Expr_Value
(L_High
) < Expr_Value
(L_Low
) then
15525 L_Len
:= (Expr_Value
(L_High
) - Expr_Value
(L_Low
)) + 1;
15532 if Ekind
(R_Typ
) = E_String_Literal_Subtype
then
15533 R_Low
:= String_Literal_Low_Bound
(R_Typ
);
15534 R_Len
:= String_Literal_Length
(R_Typ
);
15536 R_Index
:= First_Index
(R_Typ
);
15537 Get_Index_Bounds
(R_Index
, R_Low
, R_High
);
15539 if Is_OK_Static_Expression
(R_Low
)
15541 Is_OK_Static_Expression
(R_High
)
15543 if Expr_Value
(R_High
) < Expr_Value
(R_Low
) then
15546 R_Len
:= (Expr_Value
(R_High
) - Expr_Value
(R_Low
)) + 1;
15553 if (Is_OK_Static_Expression
(L_Low
)
15555 Is_OK_Static_Expression
(R_Low
))
15556 and then Expr_Value
(L_Low
) = Expr_Value
(R_Low
)
15557 and then L_Len
= R_Len
15564 -- Then treat all other dimensions
15566 for Indx
in 2 .. L_Ndims
loop
15570 Get_Index_Bounds
(L_Index
, L_Low
, L_High
);
15571 Get_Index_Bounds
(R_Index
, R_Low
, R_High
);
15573 if (Is_OK_Static_Expression
(L_Low
) and then
15574 Is_OK_Static_Expression
(L_High
) and then
15575 Is_OK_Static_Expression
(R_Low
) and then
15576 Is_OK_Static_Expression
(R_High
))
15577 and then (Expr_Value
(L_Low
) = Expr_Value
(R_Low
)
15579 Expr_Value
(L_High
) = Expr_Value
(R_High
))
15587 -- If we fall through the loop, all indexes matched
15590 end Matching_Static_Array_Bounds
;
15592 -------------------
15593 -- May_Be_Lvalue --
15594 -------------------
15596 function May_Be_Lvalue
(N
: Node_Id
) return Boolean is
15597 P
: constant Node_Id
:= Parent
(N
);
15602 -- Test left side of assignment
15604 when N_Assignment_Statement
=>
15605 return N
= Name
(P
);
15607 -- Test prefix of component or attribute. Note that the prefix of an
15608 -- explicit or implicit dereference cannot be an l-value. In the case
15609 -- of a 'Read attribute, the reference can be an actual in the
15610 -- argument list of the attribute.
15612 when N_Attribute_Reference
=>
15613 return (N
= Prefix
(P
)
15614 and then Name_Implies_Lvalue_Prefix
(Attribute_Name
(P
)))
15616 Attribute_Name
(P
) = Name_Read
;
15618 -- For an expanded name, the name is an lvalue if the expanded name
15619 -- is an lvalue, but the prefix is never an lvalue, since it is just
15620 -- the scope where the name is found.
15622 when N_Expanded_Name
=>
15623 if N
= Prefix
(P
) then
15624 return May_Be_Lvalue
(P
);
15629 -- For a selected component A.B, A is certainly an lvalue if A.B is.
15630 -- B is a little interesting, if we have A.B := 3, there is some
15631 -- discussion as to whether B is an lvalue or not, we choose to say
15632 -- it is. Note however that A is not an lvalue if it is of an access
15633 -- type since this is an implicit dereference.
15635 when N_Selected_Component
=>
15637 and then Present
(Etype
(N
))
15638 and then Is_Access_Type
(Etype
(N
))
15642 return May_Be_Lvalue
(P
);
15645 -- For an indexed component or slice, the index or slice bounds is
15646 -- never an lvalue. The prefix is an lvalue if the indexed component
15647 -- or slice is an lvalue, except if it is an access type, where we
15648 -- have an implicit dereference.
15650 when N_Indexed_Component | N_Slice
=>
15652 or else (Present
(Etype
(N
)) and then Is_Access_Type
(Etype
(N
)))
15656 return May_Be_Lvalue
(P
);
15659 -- Prefix of a reference is an lvalue if the reference is an lvalue
15661 when N_Reference
=>
15662 return May_Be_Lvalue
(P
);
15664 -- Prefix of explicit dereference is never an lvalue
15666 when N_Explicit_Dereference
=>
15669 -- Positional parameter for subprogram, entry, or accept call.
15670 -- In older versions of Ada function call arguments are never
15671 -- lvalues. In Ada 2012 functions can have in-out parameters.
15673 when N_Subprogram_Call |
15674 N_Entry_Call_Statement |
15677 if Nkind
(P
) = N_Function_Call
and then Ada_Version
< Ada_2012
then
15681 -- The following mechanism is clumsy and fragile. A single flag
15682 -- set in Resolve_Actuals would be preferable ???
15690 Proc
:= Get_Subprogram_Entity
(P
);
15696 -- If we are not a list member, something is strange, so be
15697 -- conservative and return True.
15699 if not Is_List_Member
(N
) then
15703 -- We are going to find the right formal by stepping forward
15704 -- through the formals, as we step backwards in the actuals.
15706 Form
:= First_Formal
(Proc
);
15709 -- If no formal, something is weird, so be conservative and
15717 exit when No
(Act
);
15718 Next_Formal
(Form
);
15721 return Ekind
(Form
) /= E_In_Parameter
;
15724 -- Named parameter for procedure or accept call
15726 when N_Parameter_Association
=>
15732 Proc
:= Get_Subprogram_Entity
(Parent
(P
));
15738 -- Loop through formals to find the one that matches
15740 Form
:= First_Formal
(Proc
);
15742 -- If no matching formal, that's peculiar, some kind of
15743 -- previous error, so return True to be conservative.
15744 -- Actually happens with legal code for an unresolved call
15745 -- where we may get the wrong homonym???
15751 -- Else test for match
15753 if Chars
(Form
) = Chars
(Selector_Name
(P
)) then
15754 return Ekind
(Form
) /= E_In_Parameter
;
15757 Next_Formal
(Form
);
15761 -- Test for appearing in a conversion that itself appears in an
15762 -- lvalue context, since this should be an lvalue.
15764 when N_Type_Conversion
=>
15765 return May_Be_Lvalue
(P
);
15767 -- Test for appearance in object renaming declaration
15769 when N_Object_Renaming_Declaration
=>
15772 -- All other references are definitely not lvalues
15780 -----------------------
15781 -- Mark_Coextensions --
15782 -----------------------
15784 procedure Mark_Coextensions
(Context_Nod
: Node_Id
; Root_Nod
: Node_Id
) is
15785 Is_Dynamic
: Boolean;
15786 -- Indicates whether the context causes nested coextensions to be
15787 -- dynamic or static
15789 function Mark_Allocator
(N
: Node_Id
) return Traverse_Result
;
15790 -- Recognize an allocator node and label it as a dynamic coextension
15792 --------------------
15793 -- Mark_Allocator --
15794 --------------------
15796 function Mark_Allocator
(N
: Node_Id
) return Traverse_Result
is
15798 if Nkind
(N
) = N_Allocator
then
15800 Set_Is_Dynamic_Coextension
(N
);
15802 -- If the allocator expression is potentially dynamic, it may
15803 -- be expanded out of order and require dynamic allocation
15804 -- anyway, so we treat the coextension itself as dynamic.
15805 -- Potential optimization ???
15807 elsif Nkind
(Expression
(N
)) = N_Qualified_Expression
15808 and then Nkind
(Expression
(Expression
(N
))) = N_Op_Concat
15810 Set_Is_Dynamic_Coextension
(N
);
15812 Set_Is_Static_Coextension
(N
);
15817 end Mark_Allocator
;
15819 procedure Mark_Allocators
is new Traverse_Proc
(Mark_Allocator
);
15821 -- Start of processing for Mark_Coextensions
15824 -- An allocator that appears on the right-hand side of an assignment is
15825 -- treated as a potentially dynamic coextension when the right-hand side
15826 -- is an allocator or a qualified expression.
15828 -- Obj := new ...'(new Coextension ...);
15830 if Nkind
(Context_Nod
) = N_Assignment_Statement
then
15832 Nkind_In
(Expression
(Context_Nod
), N_Allocator
,
15833 N_Qualified_Expression
);
15835 -- An allocator that appears within the expression of a simple return
15836 -- statement is treated as a potentially dynamic coextension when the
15837 -- expression is either aggregate, allocator, or qualified expression.
15839 -- return (new Coextension ...);
15840 -- return new ...'(new Coextension ...);
15842 elsif Nkind
(Context_Nod
) = N_Simple_Return_Statement
then
15844 Nkind_In
(Expression
(Context_Nod
), N_Aggregate
,
15846 N_Qualified_Expression
);
15848 -- An alloctor that appears within the initialization expression of an
15849 -- object declaration is considered a potentially dynamic coextension
15850 -- when the initialization expression is an allocator or a qualified
15853 -- Obj : ... := new ...'(new Coextension ...);
15855 -- A similar case arises when the object declaration is part of an
15856 -- extended return statement.
15858 -- return Obj : ... := new ...'(new Coextension ...);
15859 -- return Obj : ... := (new Coextension ...);
15861 elsif Nkind
(Context_Nod
) = N_Object_Declaration
then
15863 Nkind_In
(Root_Nod
, N_Allocator
, N_Qualified_Expression
)
15865 Nkind
(Parent
(Context_Nod
)) = N_Extended_Return_Statement
;
15867 -- This routine should not be called with constructs that cannot contain
15871 raise Program_Error
;
15874 Mark_Allocators
(Root_Nod
);
15875 end Mark_Coextensions
;
15877 ----------------------
15878 -- Needs_One_Actual --
15879 ----------------------
15881 function Needs_One_Actual
(E
: Entity_Id
) return Boolean is
15882 Formal
: Entity_Id
;
15885 -- Ada 2005 or later, and formals present
15887 if Ada_Version
>= Ada_2005
and then Present
(First_Formal
(E
)) then
15888 Formal
:= Next_Formal
(First_Formal
(E
));
15889 while Present
(Formal
) loop
15890 if No
(Default_Value
(Formal
)) then
15894 Next_Formal
(Formal
);
15899 -- Ada 83/95 or no formals
15904 end Needs_One_Actual
;
15906 ------------------------
15907 -- New_Copy_List_Tree --
15908 ------------------------
15910 function New_Copy_List_Tree
(List
: List_Id
) return List_Id
is
15915 if List
= No_List
then
15922 while Present
(E
) loop
15923 Append
(New_Copy_Tree
(E
), NL
);
15929 end New_Copy_List_Tree
;
15931 --------------------------------------------------
15932 -- New_Copy_Tree Auxiliary Data and Subprograms --
15933 --------------------------------------------------
15935 use Atree
.Unchecked_Access
;
15936 use Atree_Private_Part
;
15938 -- Our approach here requires a two pass traversal of the tree. The
15939 -- first pass visits all nodes that eventually will be copied looking
15940 -- for defining Itypes. If any defining Itypes are found, then they are
15941 -- copied, and an entry is added to the replacement map. In the second
15942 -- phase, the tree is copied, using the replacement map to replace any
15943 -- Itype references within the copied tree.
15945 -- The following hash tables are used if the Map supplied has more
15946 -- than hash threshold entries to speed up access to the map. If
15947 -- there are fewer entries, then the map is searched sequentially
15948 -- (because setting up a hash table for only a few entries takes
15949 -- more time than it saves.
15951 function New_Copy_Hash
(E
: Entity_Id
) return NCT_Header_Num
;
15952 -- Hash function used for hash operations
15954 -------------------
15955 -- New_Copy_Hash --
15956 -------------------
15958 function New_Copy_Hash
(E
: Entity_Id
) return NCT_Header_Num
is
15960 return Nat
(E
) mod (NCT_Header_Num
'Last + 1);
15967 -- The hash table NCT_Assoc associates old entities in the table
15968 -- with their corresponding new entities (i.e. the pairs of entries
15969 -- presented in the original Map argument are Key-Element pairs).
15971 package NCT_Assoc
is new Simple_HTable
(
15972 Header_Num
=> NCT_Header_Num
,
15973 Element
=> Entity_Id
,
15974 No_Element
=> Empty
,
15976 Hash
=> New_Copy_Hash
,
15977 Equal
=> Types
."=");
15979 ---------------------
15980 -- NCT_Itype_Assoc --
15981 ---------------------
15983 -- The hash table NCT_Itype_Assoc contains entries only for those
15984 -- old nodes which have a non-empty Associated_Node_For_Itype set.
15985 -- The key is the associated node, and the element is the new node
15986 -- itself (NOT the associated node for the new node).
15988 package NCT_Itype_Assoc
is new Simple_HTable
(
15989 Header_Num
=> NCT_Header_Num
,
15990 Element
=> Entity_Id
,
15991 No_Element
=> Empty
,
15993 Hash
=> New_Copy_Hash
,
15994 Equal
=> Types
."=");
15996 -------------------
15997 -- New_Copy_Tree --
15998 -------------------
16000 function New_Copy_Tree
16002 Map
: Elist_Id
:= No_Elist
;
16003 New_Sloc
: Source_Ptr
:= No_Location
;
16004 New_Scope
: Entity_Id
:= Empty
) return Node_Id
16006 Actual_Map
: Elist_Id
:= Map
;
16007 -- This is the actual map for the copy. It is initialized with the
16008 -- given elements, and then enlarged as required for Itypes that are
16009 -- copied during the first phase of the copy operation. The visit
16010 -- procedures add elements to this map as Itypes are encountered.
16011 -- The reason we cannot use Map directly, is that it may well be
16012 -- (and normally is) initialized to No_Elist, and if we have mapped
16013 -- entities, we have to reset it to point to a real Elist.
16015 function Assoc
(N
: Node_Or_Entity_Id
) return Node_Id
;
16016 -- Called during second phase to map entities into their corresponding
16017 -- copies using Actual_Map. If the argument is not an entity, or is not
16018 -- in Actual_Map, then it is returned unchanged.
16020 procedure Build_NCT_Hash_Tables
;
16021 -- Builds hash tables (number of elements >= threshold value)
16023 function Copy_Elist_With_Replacement
16024 (Old_Elist
: Elist_Id
) return Elist_Id
;
16025 -- Called during second phase to copy element list doing replacements
16027 procedure Copy_Itype_With_Replacement
(New_Itype
: Entity_Id
);
16028 -- Called during the second phase to process a copied Itype. The actual
16029 -- copy happened during the first phase (so that we could make the entry
16030 -- in the mapping), but we still have to deal with the descendants of
16031 -- the copied Itype and copy them where necessary.
16033 function Copy_List_With_Replacement
(Old_List
: List_Id
) return List_Id
;
16034 -- Called during second phase to copy list doing replacements
16036 function Copy_Node_With_Replacement
(Old_Node
: Node_Id
) return Node_Id
;
16037 -- Called during second phase to copy node doing replacements
16039 procedure Visit_Elist
(E
: Elist_Id
);
16040 -- Called during first phase to visit all elements of an Elist
16042 procedure Visit_Field
(F
: Union_Id
; N
: Node_Id
);
16043 -- Visit a single field, recursing to call Visit_Node or Visit_List
16044 -- if the field is a syntactic descendant of the current node (i.e.
16045 -- its parent is Node N).
16047 procedure Visit_Itype
(Old_Itype
: Entity_Id
);
16048 -- Called during first phase to visit subsidiary fields of a defining
16049 -- Itype, and also create a copy and make an entry in the replacement
16050 -- map for the new copy.
16052 procedure Visit_List
(L
: List_Id
);
16053 -- Called during first phase to visit all elements of a List
16055 procedure Visit_Node
(N
: Node_Or_Entity_Id
);
16056 -- Called during first phase to visit a node and all its subtrees
16062 function Assoc
(N
: Node_Or_Entity_Id
) return Node_Id
is
16067 if not Has_Extension
(N
) or else No
(Actual_Map
) then
16070 elsif NCT_Hash_Tables_Used
then
16071 Ent
:= NCT_Assoc
.Get
(Entity_Id
(N
));
16073 if Present
(Ent
) then
16079 -- No hash table used, do serial search
16082 E
:= First_Elmt
(Actual_Map
);
16083 while Present
(E
) loop
16084 if Node
(E
) = N
then
16085 return Node
(Next_Elmt
(E
));
16087 E
:= Next_Elmt
(Next_Elmt
(E
));
16095 ---------------------------
16096 -- Build_NCT_Hash_Tables --
16097 ---------------------------
16099 procedure Build_NCT_Hash_Tables
is
16103 if NCT_Hash_Table_Setup
then
16105 NCT_Itype_Assoc
.Reset
;
16108 Elmt
:= First_Elmt
(Actual_Map
);
16109 while Present
(Elmt
) loop
16110 Ent
:= Node
(Elmt
);
16112 -- Get new entity, and associate old and new
16115 NCT_Assoc
.Set
(Ent
, Node
(Elmt
));
16117 if Is_Type
(Ent
) then
16119 Anode
: constant Entity_Id
:=
16120 Associated_Node_For_Itype
(Ent
);
16123 if Present
(Anode
) then
16125 -- Enter a link between the associated node of the
16126 -- old Itype and the new Itype, for updating later
16127 -- when node is copied.
16129 NCT_Itype_Assoc
.Set
(Anode
, Node
(Elmt
));
16137 NCT_Hash_Tables_Used
:= True;
16138 NCT_Hash_Table_Setup
:= True;
16139 end Build_NCT_Hash_Tables
;
16141 ---------------------------------
16142 -- Copy_Elist_With_Replacement --
16143 ---------------------------------
16145 function Copy_Elist_With_Replacement
16146 (Old_Elist
: Elist_Id
) return Elist_Id
16149 New_Elist
: Elist_Id
;
16152 if No
(Old_Elist
) then
16156 New_Elist
:= New_Elmt_List
;
16158 M
:= First_Elmt
(Old_Elist
);
16159 while Present
(M
) loop
16160 Append_Elmt
(Copy_Node_With_Replacement
(Node
(M
)), New_Elist
);
16166 end Copy_Elist_With_Replacement
;
16168 ---------------------------------
16169 -- Copy_Itype_With_Replacement --
16170 ---------------------------------
16172 -- This routine exactly parallels its phase one analog Visit_Itype,
16174 procedure Copy_Itype_With_Replacement
(New_Itype
: Entity_Id
) is
16176 -- Translate Next_Entity, Scope, and Etype fields, in case they
16177 -- reference entities that have been mapped into copies.
16179 Set_Next_Entity
(New_Itype
, Assoc
(Next_Entity
(New_Itype
)));
16180 Set_Etype
(New_Itype
, Assoc
(Etype
(New_Itype
)));
16182 if Present
(New_Scope
) then
16183 Set_Scope
(New_Itype
, New_Scope
);
16185 Set_Scope
(New_Itype
, Assoc
(Scope
(New_Itype
)));
16188 -- Copy referenced fields
16190 if Is_Discrete_Type
(New_Itype
) then
16191 Set_Scalar_Range
(New_Itype
,
16192 Copy_Node_With_Replacement
(Scalar_Range
(New_Itype
)));
16194 elsif Has_Discriminants
(Base_Type
(New_Itype
)) then
16195 Set_Discriminant_Constraint
(New_Itype
,
16196 Copy_Elist_With_Replacement
16197 (Discriminant_Constraint
(New_Itype
)));
16199 elsif Is_Array_Type
(New_Itype
) then
16200 if Present
(First_Index
(New_Itype
)) then
16201 Set_First_Index
(New_Itype
,
16202 First
(Copy_List_With_Replacement
16203 (List_Containing
(First_Index
(New_Itype
)))));
16206 if Is_Packed
(New_Itype
) then
16207 Set_Packed_Array_Impl_Type
(New_Itype
,
16208 Copy_Node_With_Replacement
16209 (Packed_Array_Impl_Type
(New_Itype
)));
16212 end Copy_Itype_With_Replacement
;
16214 --------------------------------
16215 -- Copy_List_With_Replacement --
16216 --------------------------------
16218 function Copy_List_With_Replacement
16219 (Old_List
: List_Id
) return List_Id
16221 New_List
: List_Id
;
16225 if Old_List
= No_List
then
16229 New_List
:= Empty_List
;
16231 E
:= First
(Old_List
);
16232 while Present
(E
) loop
16233 Append
(Copy_Node_With_Replacement
(E
), New_List
);
16239 end Copy_List_With_Replacement
;
16241 --------------------------------
16242 -- Copy_Node_With_Replacement --
16243 --------------------------------
16245 function Copy_Node_With_Replacement
16246 (Old_Node
: Node_Id
) return Node_Id
16248 New_Node
: Node_Id
;
16250 procedure Adjust_Named_Associations
16251 (Old_Node
: Node_Id
;
16252 New_Node
: Node_Id
);
16253 -- If a call node has named associations, these are chained through
16254 -- the First_Named_Actual, Next_Named_Actual links. These must be
16255 -- propagated separately to the new parameter list, because these
16256 -- are not syntactic fields.
16258 function Copy_Field_With_Replacement
16259 (Field
: Union_Id
) return Union_Id
;
16260 -- Given Field, which is a field of Old_Node, return a copy of it
16261 -- if it is a syntactic field (i.e. its parent is Node), setting
16262 -- the parent of the copy to poit to New_Node. Otherwise returns
16263 -- the field (possibly mapped if it is an entity).
16265 -------------------------------
16266 -- Adjust_Named_Associations --
16267 -------------------------------
16269 procedure Adjust_Named_Associations
16270 (Old_Node
: Node_Id
;
16271 New_Node
: Node_Id
)
16276 Old_Next
: Node_Id
;
16277 New_Next
: Node_Id
;
16280 Old_E
:= First
(Parameter_Associations
(Old_Node
));
16281 New_E
:= First
(Parameter_Associations
(New_Node
));
16282 while Present
(Old_E
) loop
16283 if Nkind
(Old_E
) = N_Parameter_Association
16284 and then Present
(Next_Named_Actual
(Old_E
))
16286 if First_Named_Actual
(Old_Node
)
16287 = Explicit_Actual_Parameter
(Old_E
)
16289 Set_First_Named_Actual
16290 (New_Node
, Explicit_Actual_Parameter
(New_E
));
16293 -- Now scan parameter list from the beginning,to locate
16294 -- next named actual, which can be out of order.
16296 Old_Next
:= First
(Parameter_Associations
(Old_Node
));
16297 New_Next
:= First
(Parameter_Associations
(New_Node
));
16299 while Nkind
(Old_Next
) /= N_Parameter_Association
16300 or else Explicit_Actual_Parameter
(Old_Next
) /=
16301 Next_Named_Actual
(Old_E
)
16307 Set_Next_Named_Actual
16308 (New_E
, Explicit_Actual_Parameter
(New_Next
));
16314 end Adjust_Named_Associations
;
16316 ---------------------------------
16317 -- Copy_Field_With_Replacement --
16318 ---------------------------------
16320 function Copy_Field_With_Replacement
16321 (Field
: Union_Id
) return Union_Id
16324 if Field
= Union_Id
(Empty
) then
16327 elsif Field
in Node_Range
then
16329 Old_N
: constant Node_Id
:= Node_Id
(Field
);
16333 -- If syntactic field, as indicated by the parent pointer
16334 -- being set, then copy the referenced node recursively.
16336 if Parent
(Old_N
) = Old_Node
then
16337 New_N
:= Copy_Node_With_Replacement
(Old_N
);
16339 if New_N
/= Old_N
then
16340 Set_Parent
(New_N
, New_Node
);
16343 -- For semantic fields, update possible entity reference
16344 -- from the replacement map.
16347 New_N
:= Assoc
(Old_N
);
16350 return Union_Id
(New_N
);
16353 elsif Field
in List_Range
then
16355 Old_L
: constant List_Id
:= List_Id
(Field
);
16359 -- If syntactic field, as indicated by the parent pointer,
16360 -- then recursively copy the entire referenced list.
16362 if Parent
(Old_L
) = Old_Node
then
16363 New_L
:= Copy_List_With_Replacement
(Old_L
);
16364 Set_Parent
(New_L
, New_Node
);
16366 -- For semantic list, just returned unchanged
16372 return Union_Id
(New_L
);
16375 -- Anything other than a list or a node is returned unchanged
16380 end Copy_Field_With_Replacement
;
16382 -- Start of processing for Copy_Node_With_Replacement
16385 if Old_Node
<= Empty_Or_Error
then
16388 elsif Has_Extension
(Old_Node
) then
16389 return Assoc
(Old_Node
);
16392 New_Node
:= New_Copy
(Old_Node
);
16394 -- If the node we are copying is the associated node of a
16395 -- previously copied Itype, then adjust the associated node
16396 -- of the copy of that Itype accordingly.
16398 if Present
(Actual_Map
) then
16404 -- Case of hash table used
16406 if NCT_Hash_Tables_Used
then
16407 Ent
:= NCT_Itype_Assoc
.Get
(Old_Node
);
16409 if Present
(Ent
) then
16410 Set_Associated_Node_For_Itype
(Ent
, New_Node
);
16413 -- Case of no hash table used
16416 E
:= First_Elmt
(Actual_Map
);
16417 while Present
(E
) loop
16418 if Is_Itype
(Node
(E
))
16420 Old_Node
= Associated_Node_For_Itype
(Node
(E
))
16422 Set_Associated_Node_For_Itype
16423 (Node
(Next_Elmt
(E
)), New_Node
);
16426 E
:= Next_Elmt
(Next_Elmt
(E
));
16432 -- Recursively copy descendants
16435 (New_Node
, Copy_Field_With_Replacement
(Field1
(New_Node
)));
16437 (New_Node
, Copy_Field_With_Replacement
(Field2
(New_Node
)));
16439 (New_Node
, Copy_Field_With_Replacement
(Field3
(New_Node
)));
16441 (New_Node
, Copy_Field_With_Replacement
(Field4
(New_Node
)));
16443 (New_Node
, Copy_Field_With_Replacement
(Field5
(New_Node
)));
16445 -- Adjust Sloc of new node if necessary
16447 if New_Sloc
/= No_Location
then
16448 Set_Sloc
(New_Node
, New_Sloc
);
16450 -- If we adjust the Sloc, then we are essentially making a
16451 -- completely new node, so the Comes_From_Source flag should
16452 -- be reset to the proper default value.
16454 Set_Comes_From_Source
16455 (New_Node
, Default_Node
.Comes_From_Source
);
16458 -- If the node is a call and has named associations, set the
16459 -- corresponding links in the copy.
16461 if Nkind_In
(Old_Node
, N_Entry_Call_Statement
,
16463 N_Procedure_Call_Statement
)
16464 and then Present
(First_Named_Actual
(Old_Node
))
16466 Adjust_Named_Associations
(Old_Node
, New_Node
);
16469 -- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
16470 -- The replacement mechanism applies to entities, and is not used
16471 -- here. Eventually we may need a more general graph-copying
16472 -- routine. For now, do a sequential search to find desired node.
16474 if Nkind
(Old_Node
) = N_Handled_Sequence_Of_Statements
16475 and then Present
(First_Real_Statement
(Old_Node
))
16478 Old_F
: constant Node_Id
:= First_Real_Statement
(Old_Node
);
16482 N1
:= First
(Statements
(Old_Node
));
16483 N2
:= First
(Statements
(New_Node
));
16485 while N1
/= Old_F
loop
16490 Set_First_Real_Statement
(New_Node
, N2
);
16495 -- All done, return copied node
16498 end Copy_Node_With_Replacement
;
16504 procedure Visit_Elist
(E
: Elist_Id
) is
16507 if Present
(E
) then
16508 Elmt
:= First_Elmt
(E
);
16510 while Elmt
/= No_Elmt
loop
16511 Visit_Node
(Node
(Elmt
));
16521 procedure Visit_Field
(F
: Union_Id
; N
: Node_Id
) is
16523 if F
= Union_Id
(Empty
) then
16526 elsif F
in Node_Range
then
16528 -- Copy node if it is syntactic, i.e. its parent pointer is
16529 -- set to point to the field that referenced it (certain
16530 -- Itypes will also meet this criterion, which is fine, since
16531 -- these are clearly Itypes that do need to be copied, since
16532 -- we are copying their parent.)
16534 if Parent
(Node_Id
(F
)) = N
then
16535 Visit_Node
(Node_Id
(F
));
16538 -- Another case, if we are pointing to an Itype, then we want
16539 -- to copy it if its associated node is somewhere in the tree
16542 -- Note: the exclusion of self-referential copies is just an
16543 -- optimization, since the search of the already copied list
16544 -- would catch it, but it is a common case (Etype pointing
16545 -- to itself for an Itype that is a base type).
16547 elsif Has_Extension
(Node_Id
(F
))
16548 and then Is_Itype
(Entity_Id
(F
))
16549 and then Node_Id
(F
) /= N
16555 P
:= Associated_Node_For_Itype
(Node_Id
(F
));
16556 while Present
(P
) loop
16558 Visit_Node
(Node_Id
(F
));
16565 -- An Itype whose parent is not being copied definitely
16566 -- should NOT be copied, since it does not belong in any
16567 -- sense to the copied subtree.
16573 elsif F
in List_Range
and then Parent
(List_Id
(F
)) = N
then
16574 Visit_List
(List_Id
(F
));
16583 procedure Visit_Itype
(Old_Itype
: Entity_Id
) is
16584 New_Itype
: Entity_Id
;
16589 -- Itypes that describe the designated type of access to subprograms
16590 -- have the structure of subprogram declarations, with signatures,
16591 -- etc. Either we duplicate the signatures completely, or choose to
16592 -- share such itypes, which is fine because their elaboration will
16593 -- have no side effects.
16595 if Ekind
(Old_Itype
) = E_Subprogram_Type
then
16599 New_Itype
:= New_Copy
(Old_Itype
);
16601 -- The new Itype has all the attributes of the old one, and
16602 -- we just copy the contents of the entity. However, the back-end
16603 -- needs different names for debugging purposes, so we create a
16604 -- new internal name for it in all cases.
16606 Set_Chars
(New_Itype
, New_Internal_Name
('T'));
16608 -- If our associated node is an entity that has already been copied,
16609 -- then set the associated node of the copy to point to the right
16610 -- copy. If we have copied an Itype that is itself the associated
16611 -- node of some previously copied Itype, then we set the right
16612 -- pointer in the other direction.
16614 if Present
(Actual_Map
) then
16616 -- Case of hash tables used
16618 if NCT_Hash_Tables_Used
then
16620 Ent
:= NCT_Assoc
.Get
(Associated_Node_For_Itype
(Old_Itype
));
16622 if Present
(Ent
) then
16623 Set_Associated_Node_For_Itype
(New_Itype
, Ent
);
16626 Ent
:= NCT_Itype_Assoc
.Get
(Old_Itype
);
16627 if Present
(Ent
) then
16628 Set_Associated_Node_For_Itype
(Ent
, New_Itype
);
16630 -- If the hash table has no association for this Itype and
16631 -- its associated node, enter one now.
16634 NCT_Itype_Assoc
.Set
16635 (Associated_Node_For_Itype
(Old_Itype
), New_Itype
);
16638 -- Case of hash tables not used
16641 E
:= First_Elmt
(Actual_Map
);
16642 while Present
(E
) loop
16643 if Associated_Node_For_Itype
(Old_Itype
) = Node
(E
) then
16644 Set_Associated_Node_For_Itype
16645 (New_Itype
, Node
(Next_Elmt
(E
)));
16648 if Is_Type
(Node
(E
))
16649 and then Old_Itype
= Associated_Node_For_Itype
(Node
(E
))
16651 Set_Associated_Node_For_Itype
16652 (Node
(Next_Elmt
(E
)), New_Itype
);
16655 E
:= Next_Elmt
(Next_Elmt
(E
));
16660 if Present
(Freeze_Node
(New_Itype
)) then
16661 Set_Is_Frozen
(New_Itype
, False);
16662 Set_Freeze_Node
(New_Itype
, Empty
);
16665 -- Add new association to map
16667 if No
(Actual_Map
) then
16668 Actual_Map
:= New_Elmt_List
;
16671 Append_Elmt
(Old_Itype
, Actual_Map
);
16672 Append_Elmt
(New_Itype
, Actual_Map
);
16674 if NCT_Hash_Tables_Used
then
16675 NCT_Assoc
.Set
(Old_Itype
, New_Itype
);
16678 NCT_Table_Entries
:= NCT_Table_Entries
+ 1;
16680 if NCT_Table_Entries
> NCT_Hash_Threshold
then
16681 Build_NCT_Hash_Tables
;
16685 -- If a record subtype is simply copied, the entity list will be
16686 -- shared. Thus cloned_Subtype must be set to indicate the sharing.
16688 if Ekind_In
(Old_Itype
, E_Record_Subtype
, E_Class_Wide_Subtype
) then
16689 Set_Cloned_Subtype
(New_Itype
, Old_Itype
);
16692 -- Visit descendants that eventually get copied
16694 Visit_Field
(Union_Id
(Etype
(Old_Itype
)), Old_Itype
);
16696 if Is_Discrete_Type
(Old_Itype
) then
16697 Visit_Field
(Union_Id
(Scalar_Range
(Old_Itype
)), Old_Itype
);
16699 elsif Has_Discriminants
(Base_Type
(Old_Itype
)) then
16700 -- ??? This should involve call to Visit_Field
16701 Visit_Elist
(Discriminant_Constraint
(Old_Itype
));
16703 elsif Is_Array_Type
(Old_Itype
) then
16704 if Present
(First_Index
(Old_Itype
)) then
16705 Visit_Field
(Union_Id
(List_Containing
16706 (First_Index
(Old_Itype
))),
16710 if Is_Packed
(Old_Itype
) then
16711 Visit_Field
(Union_Id
(Packed_Array_Impl_Type
(Old_Itype
)),
16721 procedure Visit_List
(L
: List_Id
) is
16724 if L
/= No_List
then
16727 while Present
(N
) loop
16738 procedure Visit_Node
(N
: Node_Or_Entity_Id
) is
16740 -- Start of processing for Visit_Node
16743 -- Handle case of an Itype, which must be copied
16745 if Has_Extension
(N
) and then Is_Itype
(N
) then
16747 -- Nothing to do if already in the list. This can happen with an
16748 -- Itype entity that appears more than once in the tree.
16749 -- Note that we do not want to visit descendants in this case.
16751 -- Test for already in list when hash table is used
16753 if NCT_Hash_Tables_Used
then
16754 if Present
(NCT_Assoc
.Get
(Entity_Id
(N
))) then
16758 -- Test for already in list when hash table not used
16764 if Present
(Actual_Map
) then
16765 E
:= First_Elmt
(Actual_Map
);
16766 while Present
(E
) loop
16767 if Node
(E
) = N
then
16770 E
:= Next_Elmt
(Next_Elmt
(E
));
16780 -- Visit descendants
16782 Visit_Field
(Field1
(N
), N
);
16783 Visit_Field
(Field2
(N
), N
);
16784 Visit_Field
(Field3
(N
), N
);
16785 Visit_Field
(Field4
(N
), N
);
16786 Visit_Field
(Field5
(N
), N
);
16789 -- Start of processing for New_Copy_Tree
16794 -- See if we should use hash table
16796 if No
(Actual_Map
) then
16797 NCT_Hash_Tables_Used
:= False;
16804 NCT_Table_Entries
:= 0;
16806 Elmt
:= First_Elmt
(Actual_Map
);
16807 while Present
(Elmt
) loop
16808 NCT_Table_Entries
:= NCT_Table_Entries
+ 1;
16813 if NCT_Table_Entries
> NCT_Hash_Threshold
then
16814 Build_NCT_Hash_Tables
;
16816 NCT_Hash_Tables_Used
:= False;
16821 -- Hash table set up if required, now start phase one by visiting
16822 -- top node (we will recursively visit the descendants).
16824 Visit_Node
(Source
);
16826 -- Now the second phase of the copy can start. First we process
16827 -- all the mapped entities, copying their descendants.
16829 if Present
(Actual_Map
) then
16832 New_Itype
: Entity_Id
;
16834 Elmt
:= First_Elmt
(Actual_Map
);
16835 while Present
(Elmt
) loop
16837 New_Itype
:= Node
(Elmt
);
16839 if Is_Itype
(New_Itype
) then
16840 Copy_Itype_With_Replacement
(New_Itype
);
16847 -- Now we can copy the actual tree
16849 return Copy_Node_With_Replacement
(Source
);
16852 -------------------------
16853 -- New_External_Entity --
16854 -------------------------
16856 function New_External_Entity
16857 (Kind
: Entity_Kind
;
16858 Scope_Id
: Entity_Id
;
16859 Sloc_Value
: Source_Ptr
;
16860 Related_Id
: Entity_Id
;
16861 Suffix
: Character;
16862 Suffix_Index
: Nat
:= 0;
16863 Prefix
: Character := ' ') return Entity_Id
16865 N
: constant Entity_Id
:=
16866 Make_Defining_Identifier
(Sloc_Value
,
16868 (Chars
(Related_Id
), Suffix
, Suffix_Index
, Prefix
));
16871 Set_Ekind
(N
, Kind
);
16872 Set_Is_Internal
(N
, True);
16873 Append_Entity
(N
, Scope_Id
);
16874 Set_Public_Status
(N
);
16876 if Kind
in Type_Kind
then
16877 Init_Size_Align
(N
);
16881 end New_External_Entity
;
16883 -------------------------
16884 -- New_Internal_Entity --
16885 -------------------------
16887 function New_Internal_Entity
16888 (Kind
: Entity_Kind
;
16889 Scope_Id
: Entity_Id
;
16890 Sloc_Value
: Source_Ptr
;
16891 Id_Char
: Character) return Entity_Id
16893 N
: constant Entity_Id
:= Make_Temporary
(Sloc_Value
, Id_Char
);
16896 Set_Ekind
(N
, Kind
);
16897 Set_Is_Internal
(N
, True);
16898 Append_Entity
(N
, Scope_Id
);
16900 if Kind
in Type_Kind
then
16901 Init_Size_Align
(N
);
16905 end New_Internal_Entity
;
16911 function Next_Actual
(Actual_Id
: Node_Id
) return Node_Id
is
16915 -- If we are pointing at a positional parameter, it is a member of a
16916 -- node list (the list of parameters), and the next parameter is the
16917 -- next node on the list, unless we hit a parameter association, then
16918 -- we shift to using the chain whose head is the First_Named_Actual in
16919 -- the parent, and then is threaded using the Next_Named_Actual of the
16920 -- Parameter_Association. All this fiddling is because the original node
16921 -- list is in the textual call order, and what we need is the
16922 -- declaration order.
16924 if Is_List_Member
(Actual_Id
) then
16925 N
:= Next
(Actual_Id
);
16927 if Nkind
(N
) = N_Parameter_Association
then
16928 return First_Named_Actual
(Parent
(Actual_Id
));
16934 return Next_Named_Actual
(Parent
(Actual_Id
));
16938 procedure Next_Actual
(Actual_Id
: in out Node_Id
) is
16940 Actual_Id
:= Next_Actual
(Actual_Id
);
16943 -----------------------
16944 -- Normalize_Actuals --
16945 -----------------------
16947 -- Chain actuals according to formals of subprogram. If there are no named
16948 -- associations, the chain is simply the list of Parameter Associations,
16949 -- since the order is the same as the declaration order. If there are named
16950 -- associations, then the First_Named_Actual field in the N_Function_Call
16951 -- or N_Procedure_Call_Statement node points to the Parameter_Association
16952 -- node for the parameter that comes first in declaration order. The
16953 -- remaining named parameters are then chained in declaration order using
16954 -- Next_Named_Actual.
16956 -- This routine also verifies that the number of actuals is compatible with
16957 -- the number and default values of formals, but performs no type checking
16958 -- (type checking is done by the caller).
16960 -- If the matching succeeds, Success is set to True and the caller proceeds
16961 -- with type-checking. If the match is unsuccessful, then Success is set to
16962 -- False, and the caller attempts a different interpretation, if there is
16965 -- If the flag Report is on, the call is not overloaded, and a failure to
16966 -- match can be reported here, rather than in the caller.
16968 procedure Normalize_Actuals
16972 Success
: out Boolean)
16974 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
16975 Actual
: Node_Id
:= Empty
;
16976 Formal
: Entity_Id
;
16977 Last
: Node_Id
:= Empty
;
16978 First_Named
: Node_Id
:= Empty
;
16981 Formals_To_Match
: Integer := 0;
16982 Actuals_To_Match
: Integer := 0;
16984 procedure Chain
(A
: Node_Id
);
16985 -- Add named actual at the proper place in the list, using the
16986 -- Next_Named_Actual link.
16988 function Reporting
return Boolean;
16989 -- Determines if an error is to be reported. To report an error, we
16990 -- need Report to be True, and also we do not report errors caused
16991 -- by calls to init procs that occur within other init procs. Such
16992 -- errors must always be cascaded errors, since if all the types are
16993 -- declared correctly, the compiler will certainly build decent calls.
16999 procedure Chain
(A
: Node_Id
) is
17003 -- Call node points to first actual in list
17005 Set_First_Named_Actual
(N
, Explicit_Actual_Parameter
(A
));
17008 Set_Next_Named_Actual
(Last
, Explicit_Actual_Parameter
(A
));
17012 Set_Next_Named_Actual
(Last
, Empty
);
17019 function Reporting
return Boolean is
17024 elsif not Within_Init_Proc
then
17027 elsif Is_Init_Proc
(Entity
(Name
(N
))) then
17035 -- Start of processing for Normalize_Actuals
17038 if Is_Access_Type
(S
) then
17040 -- The name in the call is a function call that returns an access
17041 -- to subprogram. The designated type has the list of formals.
17043 Formal
:= First_Formal
(Designated_Type
(S
));
17045 Formal
:= First_Formal
(S
);
17048 while Present
(Formal
) loop
17049 Formals_To_Match
:= Formals_To_Match
+ 1;
17050 Next_Formal
(Formal
);
17053 -- Find if there is a named association, and verify that no positional
17054 -- associations appear after named ones.
17056 if Present
(Actuals
) then
17057 Actual
:= First
(Actuals
);
17060 while Present
(Actual
)
17061 and then Nkind
(Actual
) /= N_Parameter_Association
17063 Actuals_To_Match
:= Actuals_To_Match
+ 1;
17067 if No
(Actual
) and Actuals_To_Match
= Formals_To_Match
then
17069 -- Most common case: positional notation, no defaults
17074 elsif Actuals_To_Match
> Formals_To_Match
then
17076 -- Too many actuals: will not work
17079 if Is_Entity_Name
(Name
(N
)) then
17080 Error_Msg_N
("too many arguments in call to&", Name
(N
));
17082 Error_Msg_N
("too many arguments in call", N
);
17090 First_Named
:= Actual
;
17092 while Present
(Actual
) loop
17093 if Nkind
(Actual
) /= N_Parameter_Association
then
17095 ("positional parameters not allowed after named ones", Actual
);
17100 Actuals_To_Match
:= Actuals_To_Match
+ 1;
17106 if Present
(Actuals
) then
17107 Actual
:= First
(Actuals
);
17110 Formal
:= First_Formal
(S
);
17111 while Present
(Formal
) loop
17113 -- Match the formals in order. If the corresponding actual is
17114 -- positional, nothing to do. Else scan the list of named actuals
17115 -- to find the one with the right name.
17117 if Present
(Actual
)
17118 and then Nkind
(Actual
) /= N_Parameter_Association
17121 Actuals_To_Match
:= Actuals_To_Match
- 1;
17122 Formals_To_Match
:= Formals_To_Match
- 1;
17125 -- For named parameters, search the list of actuals to find
17126 -- one that matches the next formal name.
17128 Actual
:= First_Named
;
17130 while Present
(Actual
) loop
17131 if Chars
(Selector_Name
(Actual
)) = Chars
(Formal
) then
17134 Actuals_To_Match
:= Actuals_To_Match
- 1;
17135 Formals_To_Match
:= Formals_To_Match
- 1;
17143 if Ekind
(Formal
) /= E_In_Parameter
17144 or else No
(Default_Value
(Formal
))
17147 if (Comes_From_Source
(S
)
17148 or else Sloc
(S
) = Standard_Location
)
17149 and then Is_Overloadable
(S
)
17153 Nkind_In
(Parent
(N
), N_Procedure_Call_Statement
,
17155 N_Parameter_Association
)
17156 and then Ekind
(S
) /= E_Function
17158 Set_Etype
(N
, Etype
(S
));
17161 Error_Msg_Name_1
:= Chars
(S
);
17162 Error_Msg_Sloc
:= Sloc
(S
);
17164 ("missing argument for parameter & "
17165 & "in call to % declared #", N
, Formal
);
17168 elsif Is_Overloadable
(S
) then
17169 Error_Msg_Name_1
:= Chars
(S
);
17171 -- Point to type derivation that generated the
17174 Error_Msg_Sloc
:= Sloc
(Parent
(S
));
17177 ("missing argument for parameter & "
17178 & "in call to % (inherited) #", N
, Formal
);
17182 ("missing argument for parameter &", N
, Formal
);
17190 Formals_To_Match
:= Formals_To_Match
- 1;
17195 Next_Formal
(Formal
);
17198 if Formals_To_Match
= 0 and then Actuals_To_Match
= 0 then
17205 -- Find some superfluous named actual that did not get
17206 -- attached to the list of associations.
17208 Actual
:= First
(Actuals
);
17209 while Present
(Actual
) loop
17210 if Nkind
(Actual
) = N_Parameter_Association
17211 and then Actual
/= Last
17212 and then No
(Next_Named_Actual
(Actual
))
17214 -- A validity check may introduce a copy of a call that
17215 -- includes an extra actual (for example for an unrelated
17216 -- accessibility check). Check that the extra actual matches
17217 -- some extra formal, which must exist already because
17218 -- subprogram must be frozen at this point.
17220 if Present
(Extra_Formals
(S
))
17221 and then not Comes_From_Source
(Actual
)
17222 and then Nkind
(Actual
) = N_Parameter_Association
17223 and then Chars
(Extra_Formals
(S
)) =
17224 Chars
(Selector_Name
(Actual
))
17229 ("unmatched actual & in call", Selector_Name
(Actual
));
17241 end Normalize_Actuals
;
17243 --------------------------------
17244 -- Note_Possible_Modification --
17245 --------------------------------
17247 procedure Note_Possible_Modification
(N
: Node_Id
; Sure
: Boolean) is
17248 Modification_Comes_From_Source
: constant Boolean :=
17249 Comes_From_Source
(Parent
(N
));
17255 -- Loop to find referenced entity, if there is one
17261 if Is_Entity_Name
(Exp
) then
17262 Ent
:= Entity
(Exp
);
17264 -- If the entity is missing, it is an undeclared identifier,
17265 -- and there is nothing to annotate.
17271 elsif Nkind
(Exp
) = N_Explicit_Dereference
then
17273 P
: constant Node_Id
:= Prefix
(Exp
);
17276 -- In formal verification mode, keep track of all reads and
17277 -- writes through explicit dereferences.
17279 if GNATprove_Mode
then
17280 SPARK_Specific
.Generate_Dereference
(N
, 'm');
17283 if Nkind
(P
) = N_Selected_Component
17284 and then Present
(Entry_Formal
(Entity
(Selector_Name
(P
))))
17286 -- Case of a reference to an entry formal
17288 Ent
:= Entry_Formal
(Entity
(Selector_Name
(P
)));
17290 elsif Nkind
(P
) = N_Identifier
17291 and then Nkind
(Parent
(Entity
(P
))) = N_Object_Declaration
17292 and then Present
(Expression
(Parent
(Entity
(P
))))
17293 and then Nkind
(Expression
(Parent
(Entity
(P
)))) =
17296 -- Case of a reference to a value on which side effects have
17299 Exp
:= Prefix
(Expression
(Parent
(Entity
(P
))));
17307 elsif Nkind_In
(Exp
, N_Type_Conversion
,
17308 N_Unchecked_Type_Conversion
)
17310 Exp
:= Expression
(Exp
);
17313 elsif Nkind_In
(Exp
, N_Slice
,
17314 N_Indexed_Component
,
17315 N_Selected_Component
)
17317 -- Special check, if the prefix is an access type, then return
17318 -- since we are modifying the thing pointed to, not the prefix.
17319 -- When we are expanding, most usually the prefix is replaced
17320 -- by an explicit dereference, and this test is not needed, but
17321 -- in some cases (notably -gnatc mode and generics) when we do
17322 -- not do full expansion, we need this special test.
17324 if Is_Access_Type
(Etype
(Prefix
(Exp
))) then
17327 -- Otherwise go to prefix and keep going
17330 Exp
:= Prefix
(Exp
);
17334 -- All other cases, not a modification
17340 -- Now look for entity being referenced
17342 if Present
(Ent
) then
17343 if Is_Object
(Ent
) then
17344 if Comes_From_Source
(Exp
)
17345 or else Modification_Comes_From_Source
17347 -- Give warning if pragma unmodified is given and we are
17348 -- sure this is a modification.
17350 if Has_Pragma_Unmodified
(Ent
) and then Sure
then
17352 -- Note that the entity may be present only as a result
17353 -- of pragma Unused.
17355 if Has_Pragma_Unused
(Ent
) then
17356 Error_Msg_NE
("??pragma Unused given for &!", N
, Ent
);
17359 ("??pragma Unmodified given for &!", N
, Ent
);
17363 Set_Never_Set_In_Source
(Ent
, False);
17366 Set_Is_True_Constant
(Ent
, False);
17367 Set_Current_Value
(Ent
, Empty
);
17368 Set_Is_Known_Null
(Ent
, False);
17370 if not Can_Never_Be_Null
(Ent
) then
17371 Set_Is_Known_Non_Null
(Ent
, False);
17374 -- Follow renaming chain
17376 if (Ekind
(Ent
) = E_Variable
or else Ekind
(Ent
) = E_Constant
)
17377 and then Present
(Renamed_Object
(Ent
))
17379 Exp
:= Renamed_Object
(Ent
);
17381 -- If the entity is the loop variable in an iteration over
17382 -- a container, retrieve container expression to indicate
17383 -- possible modification.
17385 if Present
(Related_Expression
(Ent
))
17386 and then Nkind
(Parent
(Related_Expression
(Ent
))) =
17387 N_Iterator_Specification
17389 Exp
:= Original_Node
(Related_Expression
(Ent
));
17394 -- The expression may be the renaming of a subcomponent of an
17395 -- array or container. The assignment to the subcomponent is
17396 -- a modification of the container.
17398 elsif Comes_From_Source
(Original_Node
(Exp
))
17399 and then Nkind_In
(Original_Node
(Exp
), N_Selected_Component
,
17400 N_Indexed_Component
)
17402 Exp
:= Prefix
(Original_Node
(Exp
));
17406 -- Generate a reference only if the assignment comes from
17407 -- source. This excludes, for example, calls to a dispatching
17408 -- assignment operation when the left-hand side is tagged. In
17409 -- GNATprove mode, we need those references also on generated
17410 -- code, as these are used to compute the local effects of
17413 if Modification_Comes_From_Source
or GNATprove_Mode
then
17414 Generate_Reference
(Ent
, Exp
, 'm');
17416 -- If the target of the assignment is the bound variable
17417 -- in an iterator, indicate that the corresponding array
17418 -- or container is also modified.
17420 if Ada_Version
>= Ada_2012
17421 and then Nkind
(Parent
(Ent
)) = N_Iterator_Specification
17424 Domain
: constant Node_Id
:= Name
(Parent
(Ent
));
17427 -- TBD : in the full version of the construct, the
17428 -- domain of iteration can be given by an expression.
17430 if Is_Entity_Name
(Domain
) then
17431 Generate_Reference
(Entity
(Domain
), Exp
, 'm');
17432 Set_Is_True_Constant
(Entity
(Domain
), False);
17433 Set_Never_Set_In_Source
(Entity
(Domain
), False);
17442 -- If we are sure this is a modification from source, and we know
17443 -- this modifies a constant, then give an appropriate warning.
17446 and then Modification_Comes_From_Source
17447 and then Overlays_Constant
(Ent
)
17448 and then Address_Clause_Overlay_Warnings
17451 Addr
: constant Node_Id
:= Address_Clause
(Ent
);
17456 Find_Overlaid_Entity
(Addr
, O_Ent
, Off
);
17458 Error_Msg_Sloc
:= Sloc
(Addr
);
17460 ("??constant& may be modified via address clause#",
17471 end Note_Possible_Modification
;
17473 --------------------------------------
17474 -- Null_To_Null_Address_Convert_OK --
17475 --------------------------------------
17477 function Null_To_Null_Address_Convert_OK
17479 Typ
: Entity_Id
:= Empty
) return Boolean
17482 if not Relaxed_RM_Semantics
then
17486 if Nkind
(N
) = N_Null
then
17487 return Present
(Typ
) and then Is_Descendant_Of_Address
(Typ
);
17489 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ge
, N_Op_Gt
, N_Op_Le
, N_Op_Lt
, N_Op_Ne
)
17492 L
: constant Node_Id
:= Left_Opnd
(N
);
17493 R
: constant Node_Id
:= Right_Opnd
(N
);
17496 -- We check the Etype of the complementary operand since the
17497 -- N_Null node is not decorated at this stage.
17500 ((Nkind
(L
) = N_Null
17501 and then Is_Descendant_Of_Address
(Etype
(R
)))
17503 (Nkind
(R
) = N_Null
17504 and then Is_Descendant_Of_Address
(Etype
(L
))));
17509 end Null_To_Null_Address_Convert_OK
;
17511 -------------------------
17512 -- Object_Access_Level --
17513 -------------------------
17515 -- Returns the static accessibility level of the view denoted by Obj. Note
17516 -- that the value returned is the result of a call to Scope_Depth. Only
17517 -- scope depths associated with dynamic scopes can actually be returned.
17518 -- Since only relative levels matter for accessibility checking, the fact
17519 -- that the distance between successive levels of accessibility is not
17520 -- always one is immaterial (invariant: if level(E2) is deeper than
17521 -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
17523 function Object_Access_Level
(Obj
: Node_Id
) return Uint
is
17524 function Is_Interface_Conversion
(N
: Node_Id
) return Boolean;
17525 -- Determine whether N is a construct of the form
17526 -- Some_Type (Operand._tag'Address)
17527 -- This construct appears in the context of dispatching calls.
17529 function Reference_To
(Obj
: Node_Id
) return Node_Id
;
17530 -- An explicit dereference is created when removing side-effects from
17531 -- expressions for constraint checking purposes. In this case a local
17532 -- access type is created for it. The correct access level is that of
17533 -- the original source node. We detect this case by noting that the
17534 -- prefix of the dereference is created by an object declaration whose
17535 -- initial expression is a reference.
17537 -----------------------------
17538 -- Is_Interface_Conversion --
17539 -----------------------------
17541 function Is_Interface_Conversion
(N
: Node_Id
) return Boolean is
17543 return Nkind
(N
) = N_Unchecked_Type_Conversion
17544 and then Nkind
(Expression
(N
)) = N_Attribute_Reference
17545 and then Attribute_Name
(Expression
(N
)) = Name_Address
;
17546 end Is_Interface_Conversion
;
17552 function Reference_To
(Obj
: Node_Id
) return Node_Id
is
17553 Pref
: constant Node_Id
:= Prefix
(Obj
);
17555 if Is_Entity_Name
(Pref
)
17556 and then Nkind
(Parent
(Entity
(Pref
))) = N_Object_Declaration
17557 and then Present
(Expression
(Parent
(Entity
(Pref
))))
17558 and then Nkind
(Expression
(Parent
(Entity
(Pref
)))) = N_Reference
17560 return (Prefix
(Expression
(Parent
(Entity
(Pref
)))));
17570 -- Start of processing for Object_Access_Level
17573 if Nkind
(Obj
) = N_Defining_Identifier
17574 or else Is_Entity_Name
(Obj
)
17576 if Nkind
(Obj
) = N_Defining_Identifier
then
17582 if Is_Prival
(E
) then
17583 E
:= Prival_Link
(E
);
17586 -- If E is a type then it denotes a current instance. For this case
17587 -- we add one to the normal accessibility level of the type to ensure
17588 -- that current instances are treated as always being deeper than
17589 -- than the level of any visible named access type (see 3.10.2(21)).
17591 if Is_Type
(E
) then
17592 return Type_Access_Level
(E
) + 1;
17594 elsif Present
(Renamed_Object
(E
)) then
17595 return Object_Access_Level
(Renamed_Object
(E
));
17597 -- Similarly, if E is a component of the current instance of a
17598 -- protected type, any instance of it is assumed to be at a deeper
17599 -- level than the type. For a protected object (whose type is an
17600 -- anonymous protected type) its components are at the same level
17601 -- as the type itself.
17603 elsif not Is_Overloadable
(E
)
17604 and then Ekind
(Scope
(E
)) = E_Protected_Type
17605 and then Comes_From_Source
(Scope
(E
))
17607 return Type_Access_Level
(Scope
(E
)) + 1;
17610 -- Aliased formals of functions take their access level from the
17611 -- point of call, i.e. require a dynamic check. For static check
17612 -- purposes, this is smaller than the level of the subprogram
17613 -- itself. For procedures the aliased makes no difference.
17616 and then Is_Aliased
(E
)
17617 and then Ekind
(Scope
(E
)) = E_Function
17619 return Type_Access_Level
(Etype
(E
));
17622 return Scope_Depth
(Enclosing_Dynamic_Scope
(E
));
17626 elsif Nkind
(Obj
) = N_Selected_Component
then
17627 if Is_Access_Type
(Etype
(Prefix
(Obj
))) then
17628 return Type_Access_Level
(Etype
(Prefix
(Obj
)));
17630 return Object_Access_Level
(Prefix
(Obj
));
17633 elsif Nkind
(Obj
) = N_Indexed_Component
then
17634 if Is_Access_Type
(Etype
(Prefix
(Obj
))) then
17635 return Type_Access_Level
(Etype
(Prefix
(Obj
)));
17637 return Object_Access_Level
(Prefix
(Obj
));
17640 elsif Nkind
(Obj
) = N_Explicit_Dereference
then
17642 -- If the prefix is a selected access discriminant then we make a
17643 -- recursive call on the prefix, which will in turn check the level
17644 -- of the prefix object of the selected discriminant.
17646 -- In Ada 2012, if the discriminant has implicit dereference and
17647 -- the context is a selected component, treat this as an object of
17648 -- unknown scope (see below). This is necessary in compile-only mode;
17649 -- otherwise expansion will already have transformed the prefix into
17652 if Nkind
(Prefix
(Obj
)) = N_Selected_Component
17653 and then Ekind
(Etype
(Prefix
(Obj
))) = E_Anonymous_Access_Type
17655 Ekind
(Entity
(Selector_Name
(Prefix
(Obj
)))) = E_Discriminant
17657 (not Has_Implicit_Dereference
17658 (Entity
(Selector_Name
(Prefix
(Obj
))))
17659 or else Nkind
(Parent
(Obj
)) /= N_Selected_Component
)
17661 return Object_Access_Level
(Prefix
(Obj
));
17663 -- Detect an interface conversion in the context of a dispatching
17664 -- call. Use the original form of the conversion to find the access
17665 -- level of the operand.
17667 elsif Is_Interface
(Etype
(Obj
))
17668 and then Is_Interface_Conversion
(Prefix
(Obj
))
17669 and then Nkind
(Original_Node
(Obj
)) = N_Type_Conversion
17671 return Object_Access_Level
(Original_Node
(Obj
));
17673 elsif not Comes_From_Source
(Obj
) then
17675 Ref
: constant Node_Id
:= Reference_To
(Obj
);
17677 if Present
(Ref
) then
17678 return Object_Access_Level
(Ref
);
17680 return Type_Access_Level
(Etype
(Prefix
(Obj
)));
17685 return Type_Access_Level
(Etype
(Prefix
(Obj
)));
17688 elsif Nkind_In
(Obj
, N_Type_Conversion
, N_Unchecked_Type_Conversion
) then
17689 return Object_Access_Level
(Expression
(Obj
));
17691 elsif Nkind
(Obj
) = N_Function_Call
then
17693 -- Function results are objects, so we get either the access level of
17694 -- the function or, in the case of an indirect call, the level of the
17695 -- access-to-subprogram type. (This code is used for Ada 95, but it
17696 -- looks wrong, because it seems that we should be checking the level
17697 -- of the call itself, even for Ada 95. However, using the Ada 2005
17698 -- version of the code causes regressions in several tests that are
17699 -- compiled with -gnat95. ???)
17701 if Ada_Version
< Ada_2005
then
17702 if Is_Entity_Name
(Name
(Obj
)) then
17703 return Subprogram_Access_Level
(Entity
(Name
(Obj
)));
17705 return Type_Access_Level
(Etype
(Prefix
(Name
(Obj
))));
17708 -- For Ada 2005, the level of the result object of a function call is
17709 -- defined to be the level of the call's innermost enclosing master.
17710 -- We determine that by querying the depth of the innermost enclosing
17714 Return_Master_Scope_Depth_Of_Call
: declare
17716 function Innermost_Master_Scope_Depth
17717 (N
: Node_Id
) return Uint
;
17718 -- Returns the scope depth of the given node's innermost
17719 -- enclosing dynamic scope (effectively the accessibility
17720 -- level of the innermost enclosing master).
17722 ----------------------------------
17723 -- Innermost_Master_Scope_Depth --
17724 ----------------------------------
17726 function Innermost_Master_Scope_Depth
17727 (N
: Node_Id
) return Uint
17729 Node_Par
: Node_Id
:= Parent
(N
);
17732 -- Locate the nearest enclosing node (by traversing Parents)
17733 -- that Defining_Entity can be applied to, and return the
17734 -- depth of that entity's nearest enclosing dynamic scope.
17736 while Present
(Node_Par
) loop
17737 case Nkind
(Node_Par
) is
17738 when N_Component_Declaration |
17739 N_Entry_Declaration |
17740 N_Formal_Object_Declaration |
17741 N_Formal_Type_Declaration |
17742 N_Full_Type_Declaration |
17743 N_Incomplete_Type_Declaration |
17744 N_Loop_Parameter_Specification |
17745 N_Object_Declaration |
17746 N_Protected_Type_Declaration |
17747 N_Private_Extension_Declaration |
17748 N_Private_Type_Declaration |
17749 N_Subtype_Declaration |
17750 N_Function_Specification |
17751 N_Procedure_Specification |
17752 N_Task_Type_Declaration |
17754 N_Generic_Instantiation |
17756 N_Implicit_Label_Declaration |
17757 N_Package_Declaration |
17758 N_Single_Task_Declaration |
17759 N_Subprogram_Declaration |
17760 N_Generic_Declaration |
17761 N_Renaming_Declaration |
17762 N_Block_Statement |
17763 N_Formal_Subprogram_Declaration |
17764 N_Abstract_Subprogram_Declaration |
17766 N_Exception_Declaration |
17767 N_Formal_Package_Declaration |
17768 N_Number_Declaration |
17769 N_Package_Specification |
17770 N_Parameter_Specification |
17771 N_Single_Protected_Declaration |
17775 (Nearest_Dynamic_Scope
17776 (Defining_Entity
(Node_Par
)));
17782 Node_Par
:= Parent
(Node_Par
);
17785 pragma Assert
(False);
17787 -- Should never reach the following return
17789 return Scope_Depth
(Current_Scope
) + 1;
17790 end Innermost_Master_Scope_Depth
;
17792 -- Start of processing for Return_Master_Scope_Depth_Of_Call
17795 return Innermost_Master_Scope_Depth
(Obj
);
17796 end Return_Master_Scope_Depth_Of_Call
;
17799 -- For convenience we handle qualified expressions, even though they
17800 -- aren't technically object names.
17802 elsif Nkind
(Obj
) = N_Qualified_Expression
then
17803 return Object_Access_Level
(Expression
(Obj
));
17805 -- Ditto for aggregates. They have the level of the temporary that
17806 -- will hold their value.
17808 elsif Nkind
(Obj
) = N_Aggregate
then
17809 return Object_Access_Level
(Current_Scope
);
17811 -- Otherwise return the scope level of Standard. (If there are cases
17812 -- that fall through to this point they will be treated as having
17813 -- global accessibility for now. ???)
17816 return Scope_Depth
(Standard_Standard
);
17818 end Object_Access_Level
;
17820 ---------------------------------
17821 -- Original_Aspect_Pragma_Name --
17822 ---------------------------------
17824 function Original_Aspect_Pragma_Name
(N
: Node_Id
) return Name_Id
is
17826 Item_Nam
: Name_Id
;
17829 pragma Assert
(Nkind_In
(N
, N_Aspect_Specification
, N_Pragma
));
17833 -- The pragma was generated to emulate an aspect, use the original
17834 -- aspect specification.
17836 if Nkind
(Item
) = N_Pragma
and then From_Aspect_Specification
(Item
) then
17837 Item
:= Corresponding_Aspect
(Item
);
17840 -- Retrieve the name of the aspect/pragma. Note that Pre, Pre_Class,
17841 -- Post and Post_Class rewrite their pragma identifier to preserve the
17843 -- ??? this is kludgey
17845 if Nkind
(Item
) = N_Pragma
then
17846 Item_Nam
:= Chars
(Original_Node
(Pragma_Identifier
(Item
)));
17849 pragma Assert
(Nkind
(Item
) = N_Aspect_Specification
);
17850 Item_Nam
:= Chars
(Identifier
(Item
));
17853 -- Deal with 'Class by converting the name to its _XXX form
17855 if Class_Present
(Item
) then
17856 if Item_Nam
= Name_Invariant
then
17857 Item_Nam
:= Name_uInvariant
;
17859 elsif Item_Nam
= Name_Post
then
17860 Item_Nam
:= Name_uPost
;
17862 elsif Item_Nam
= Name_Pre
then
17863 Item_Nam
:= Name_uPre
;
17865 elsif Nam_In
(Item_Nam
, Name_Type_Invariant
,
17866 Name_Type_Invariant_Class
)
17868 Item_Nam
:= Name_uType_Invariant
;
17870 -- Nothing to do for other cases (e.g. a Check that derived from
17871 -- Pre_Class and has the flag set). Also we do nothing if the name
17872 -- is already in special _xxx form.
17878 end Original_Aspect_Pragma_Name
;
17880 --------------------------------------
17881 -- Original_Corresponding_Operation --
17882 --------------------------------------
17884 function Original_Corresponding_Operation
(S
: Entity_Id
) return Entity_Id
17886 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(S
);
17889 -- If S is an inherited primitive S2 the original corresponding
17890 -- operation of S is the original corresponding operation of S2
17892 if Present
(Alias
(S
))
17893 and then Find_Dispatching_Type
(Alias
(S
)) /= Typ
17895 return Original_Corresponding_Operation
(Alias
(S
));
17897 -- If S overrides an inherited subprogram S2 the original corresponding
17898 -- operation of S is the original corresponding operation of S2
17900 elsif Present
(Overridden_Operation
(S
)) then
17901 return Original_Corresponding_Operation
(Overridden_Operation
(S
));
17903 -- otherwise it is S itself
17908 end Original_Corresponding_Operation
;
17910 -------------------
17911 -- Output_Entity --
17912 -------------------
17914 procedure Output_Entity
(Id
: Entity_Id
) is
17918 Scop
:= Scope
(Id
);
17920 -- The entity may lack a scope when it is in the process of being
17921 -- analyzed. Use the current scope as an approximation.
17924 Scop
:= Current_Scope
;
17927 Output_Name
(Chars
(Id
), Scop
);
17934 procedure Output_Name
(Nam
: Name_Id
; Scop
: Entity_Id
:= Current_Scope
) is
17938 (Get_Qualified_Name
17945 ----------------------
17946 -- Policy_In_Effect --
17947 ----------------------
17949 function Policy_In_Effect
(Policy
: Name_Id
) return Name_Id
is
17950 function Policy_In_List
(List
: Node_Id
) return Name_Id
;
17951 -- Determine the mode of a policy in a N_Pragma list
17953 --------------------
17954 -- Policy_In_List --
17955 --------------------
17957 function Policy_In_List
(List
: Node_Id
) return Name_Id
is
17964 while Present
(Prag
) loop
17965 Arg1
:= First
(Pragma_Argument_Associations
(Prag
));
17966 Arg2
:= Next
(Arg1
);
17968 Arg1
:= Get_Pragma_Arg
(Arg1
);
17969 Arg2
:= Get_Pragma_Arg
(Arg2
);
17971 -- The current Check_Policy pragma matches the requested policy or
17972 -- appears in the single argument form (Assertion, policy_id).
17974 if Nam_In
(Chars
(Arg1
), Name_Assertion
, Policy
) then
17975 return Chars
(Arg2
);
17978 Prag
:= Next_Pragma
(Prag
);
17982 end Policy_In_List
;
17988 -- Start of processing for Policy_In_Effect
17991 if not Is_Valid_Assertion_Kind
(Policy
) then
17992 raise Program_Error
;
17995 -- Inspect all policy pragmas that appear within scopes (if any)
17997 Kind
:= Policy_In_List
(Check_Policy_List
);
17999 -- Inspect all configuration policy pragmas (if any)
18001 if Kind
= No_Name
then
18002 Kind
:= Policy_In_List
(Check_Policy_List_Config
);
18005 -- The context lacks policy pragmas, determine the mode based on whether
18006 -- assertions are enabled at the configuration level. This ensures that
18007 -- the policy is preserved when analyzing generics.
18009 if Kind
= No_Name
then
18010 if Assertions_Enabled_Config
then
18011 Kind
:= Name_Check
;
18013 Kind
:= Name_Ignore
;
18018 end Policy_In_Effect
;
18020 ----------------------------------
18021 -- Predicate_Tests_On_Arguments --
18022 ----------------------------------
18024 function Predicate_Tests_On_Arguments
(Subp
: Entity_Id
) return Boolean is
18026 -- Always test predicates on indirect call
18028 if Ekind
(Subp
) = E_Subprogram_Type
then
18031 -- Do not test predicates on call to generated default Finalize, since
18032 -- we are not interested in whether something we are finalizing (and
18033 -- typically destroying) satisfies its predicates.
18035 elsif Chars
(Subp
) = Name_Finalize
18036 and then not Comes_From_Source
(Subp
)
18040 -- Do not test predicates on any internally generated routines
18042 elsif Is_Internal_Name
(Chars
(Subp
)) then
18045 -- Do not test predicates on call to Init_Proc, since if needed the
18046 -- predicate test will occur at some other point.
18048 elsif Is_Init_Proc
(Subp
) then
18051 -- Do not test predicates on call to predicate function, since this
18052 -- would cause infinite recursion.
18054 elsif Ekind
(Subp
) = E_Function
18055 and then (Is_Predicate_Function
(Subp
)
18057 Is_Predicate_Function_M
(Subp
))
18061 -- For now, no other exceptions
18066 end Predicate_Tests_On_Arguments
;
18068 -----------------------
18069 -- Private_Component --
18070 -----------------------
18072 function Private_Component
(Type_Id
: Entity_Id
) return Entity_Id
is
18073 Ancestor
: constant Entity_Id
:= Base_Type
(Type_Id
);
18075 function Trace_Components
18077 Check
: Boolean) return Entity_Id
;
18078 -- Recursive function that does the work, and checks against circular
18079 -- definition for each subcomponent type.
18081 ----------------------
18082 -- Trace_Components --
18083 ----------------------
18085 function Trace_Components
18087 Check
: Boolean) return Entity_Id
18089 Btype
: constant Entity_Id
:= Base_Type
(T
);
18090 Component
: Entity_Id
;
18092 Candidate
: Entity_Id
:= Empty
;
18095 if Check
and then Btype
= Ancestor
then
18096 Error_Msg_N
("circular type definition", Type_Id
);
18100 if Is_Private_Type
(Btype
) and then not Is_Generic_Type
(Btype
) then
18101 if Present
(Full_View
(Btype
))
18102 and then Is_Record_Type
(Full_View
(Btype
))
18103 and then not Is_Frozen
(Btype
)
18105 -- To indicate that the ancestor depends on a private type, the
18106 -- current Btype is sufficient. However, to check for circular
18107 -- definition we must recurse on the full view.
18109 Candidate
:= Trace_Components
(Full_View
(Btype
), True);
18111 if Candidate
= Any_Type
then
18121 elsif Is_Array_Type
(Btype
) then
18122 return Trace_Components
(Component_Type
(Btype
), True);
18124 elsif Is_Record_Type
(Btype
) then
18125 Component
:= First_Entity
(Btype
);
18126 while Present
(Component
)
18127 and then Comes_From_Source
(Component
)
18129 -- Skip anonymous types generated by constrained components
18131 if not Is_Type
(Component
) then
18132 P
:= Trace_Components
(Etype
(Component
), True);
18134 if Present
(P
) then
18135 if P
= Any_Type
then
18143 Next_Entity
(Component
);
18151 end Trace_Components
;
18153 -- Start of processing for Private_Component
18156 return Trace_Components
(Type_Id
, False);
18157 end Private_Component
;
18159 ---------------------------
18160 -- Primitive_Names_Match --
18161 ---------------------------
18163 function Primitive_Names_Match
(E1
, E2
: Entity_Id
) return Boolean is
18164 function Non_Internal_Name
(E
: Entity_Id
) return Name_Id
;
18165 -- Given an internal name, returns the corresponding non-internal name
18167 ------------------------
18168 -- Non_Internal_Name --
18169 ------------------------
18171 function Non_Internal_Name
(E
: Entity_Id
) return Name_Id
is
18173 Get_Name_String
(Chars
(E
));
18174 Name_Len
:= Name_Len
- 1;
18176 end Non_Internal_Name
;
18178 -- Start of processing for Primitive_Names_Match
18181 pragma Assert
(Present
(E1
) and then Present
(E2
));
18183 return Chars
(E1
) = Chars
(E2
)
18185 (not Is_Internal_Name
(Chars
(E1
))
18186 and then Is_Internal_Name
(Chars
(E2
))
18187 and then Non_Internal_Name
(E2
) = Chars
(E1
))
18189 (not Is_Internal_Name
(Chars
(E2
))
18190 and then Is_Internal_Name
(Chars
(E1
))
18191 and then Non_Internal_Name
(E1
) = Chars
(E2
))
18193 (Is_Predefined_Dispatching_Operation
(E1
)
18194 and then Is_Predefined_Dispatching_Operation
(E2
)
18195 and then Same_TSS
(E1
, E2
))
18197 (Is_Init_Proc
(E1
) and then Is_Init_Proc
(E2
));
18198 end Primitive_Names_Match
;
18200 -----------------------
18201 -- Process_End_Label --
18202 -----------------------
18204 procedure Process_End_Label
18213 Label_Ref
: Boolean;
18214 -- Set True if reference to end label itself is required
18217 -- Gets set to the operator symbol or identifier that references the
18218 -- entity Ent. For the child unit case, this is the identifier from the
18219 -- designator. For other cases, this is simply Endl.
18221 procedure Generate_Parent_Ref
(N
: Node_Id
; E
: Entity_Id
);
18222 -- N is an identifier node that appears as a parent unit reference in
18223 -- the case where Ent is a child unit. This procedure generates an
18224 -- appropriate cross-reference entry. E is the corresponding entity.
18226 -------------------------
18227 -- Generate_Parent_Ref --
18228 -------------------------
18230 procedure Generate_Parent_Ref
(N
: Node_Id
; E
: Entity_Id
) is
18232 -- If names do not match, something weird, skip reference
18234 if Chars
(E
) = Chars
(N
) then
18236 -- Generate the reference. We do NOT consider this as a reference
18237 -- for unreferenced symbol purposes.
18239 Generate_Reference
(E
, N
, 'r', Set_Ref
=> False, Force
=> True);
18241 if Style_Check
then
18242 Style
.Check_Identifier
(N
, E
);
18245 end Generate_Parent_Ref
;
18247 -- Start of processing for Process_End_Label
18250 -- If no node, ignore. This happens in some error situations, and
18251 -- also for some internally generated structures where no end label
18252 -- references are required in any case.
18258 -- Nothing to do if no End_Label, happens for internally generated
18259 -- constructs where we don't want an end label reference anyway. Also
18260 -- nothing to do if Endl is a string literal, which means there was
18261 -- some prior error (bad operator symbol)
18263 Endl
:= End_Label
(N
);
18265 if No
(Endl
) or else Nkind
(Endl
) = N_String_Literal
then
18269 -- Reference node is not in extended main source unit
18271 if not In_Extended_Main_Source_Unit
(N
) then
18273 -- Generally we do not collect references except for the extended
18274 -- main source unit. The one exception is the 'e' entry for a
18275 -- package spec, where it is useful for a client to have the
18276 -- ending information to define scopes.
18282 Label_Ref
:= False;
18284 -- For this case, we can ignore any parent references, but we
18285 -- need the package name itself for the 'e' entry.
18287 if Nkind
(Endl
) = N_Designator
then
18288 Endl
:= Identifier
(Endl
);
18292 -- Reference is in extended main source unit
18297 -- For designator, generate references for the parent entries
18299 if Nkind
(Endl
) = N_Designator
then
18301 -- Generate references for the prefix if the END line comes from
18302 -- source (otherwise we do not need these references) We climb the
18303 -- scope stack to find the expected entities.
18305 if Comes_From_Source
(Endl
) then
18306 Nam
:= Name
(Endl
);
18307 Scop
:= Current_Scope
;
18308 while Nkind
(Nam
) = N_Selected_Component
loop
18309 Scop
:= Scope
(Scop
);
18310 exit when No
(Scop
);
18311 Generate_Parent_Ref
(Selector_Name
(Nam
), Scop
);
18312 Nam
:= Prefix
(Nam
);
18315 if Present
(Scop
) then
18316 Generate_Parent_Ref
(Nam
, Scope
(Scop
));
18320 Endl
:= Identifier
(Endl
);
18324 -- If the end label is not for the given entity, then either we have
18325 -- some previous error, or this is a generic instantiation for which
18326 -- we do not need to make a cross-reference in this case anyway. In
18327 -- either case we simply ignore the call.
18329 if Chars
(Ent
) /= Chars
(Endl
) then
18333 -- If label was really there, then generate a normal reference and then
18334 -- adjust the location in the end label to point past the name (which
18335 -- should almost always be the semicolon).
18337 Loc
:= Sloc
(Endl
);
18339 if Comes_From_Source
(Endl
) then
18341 -- If a label reference is required, then do the style check and
18342 -- generate an l-type cross-reference entry for the label
18345 if Style_Check
then
18346 Style
.Check_Identifier
(Endl
, Ent
);
18349 Generate_Reference
(Ent
, Endl
, 'l', Set_Ref
=> False);
18352 -- Set the location to point past the label (normally this will
18353 -- mean the semicolon immediately following the label). This is
18354 -- done for the sake of the 'e' or 't' entry generated below.
18356 Get_Decoded_Name_String
(Chars
(Endl
));
18357 Set_Sloc
(Endl
, Sloc
(Endl
) + Source_Ptr
(Name_Len
));
18360 -- In SPARK mode, no missing label is allowed for packages and
18361 -- subprogram bodies. Detect those cases by testing whether
18362 -- Process_End_Label was called for a body (Typ = 't') or a package.
18364 if Restriction_Check_Required
(SPARK_05
)
18365 and then (Typ
= 't' or else Ekind
(Ent
) = E_Package
)
18367 Error_Msg_Node_1
:= Endl
;
18368 Check_SPARK_05_Restriction
18369 ("`END &` required", Endl
, Force
=> True);
18373 -- Now generate the e/t reference
18375 Generate_Reference
(Ent
, Endl
, Typ
, Set_Ref
=> False, Force
=> True);
18377 -- Restore Sloc, in case modified above, since we have an identifier
18378 -- and the normal Sloc should be left set in the tree.
18380 Set_Sloc
(Endl
, Loc
);
18381 end Process_End_Label
;
18383 --------------------------------
18384 -- Propagate_Concurrent_Flags --
18385 --------------------------------
18387 procedure Propagate_Concurrent_Flags
18389 Comp_Typ
: Entity_Id
)
18392 if Has_Task
(Comp_Typ
) then
18393 Set_Has_Task
(Typ
);
18396 if Has_Protected
(Comp_Typ
) then
18397 Set_Has_Protected
(Typ
);
18400 if Has_Timing_Event
(Comp_Typ
) then
18401 Set_Has_Timing_Event
(Typ
);
18403 end Propagate_Concurrent_Flags
;
18405 ------------------------------
18406 -- Propagate_DIC_Attributes --
18407 ------------------------------
18409 procedure Propagate_DIC_Attributes
18411 From_Typ
: Entity_Id
)
18413 DIC_Proc
: Entity_Id
;
18416 if Present
(Typ
) and then Present
(From_Typ
) then
18417 pragma Assert
(Is_Type
(Typ
) and then Is_Type
(From_Typ
));
18419 -- Nothing to do if both the source and the destination denote the
18422 if From_Typ
= Typ
then
18426 DIC_Proc
:= DIC_Procedure
(From_Typ
);
18428 -- The setting of the attributes is intentionally conservative. This
18429 -- prevents accidental clobbering of enabled attributes.
18431 if Has_Inherited_DIC
(From_Typ
)
18432 and then not Has_Inherited_DIC
(Typ
)
18434 Set_Has_Inherited_DIC
(Typ
);
18437 if Has_Own_DIC
(From_Typ
) and then not Has_Own_DIC
(Typ
) then
18438 Set_Has_Own_DIC
(Typ
);
18441 if Present
(DIC_Proc
) and then No
(DIC_Procedure
(Typ
)) then
18442 Set_DIC_Procedure
(Typ
, DIC_Proc
);
18445 end Propagate_DIC_Attributes
;
18447 ------------------------------------
18448 -- Propagate_Invariant_Attributes --
18449 ------------------------------------
18451 procedure Propagate_Invariant_Attributes
18453 From_Typ
: Entity_Id
)
18455 Full_IP
: Entity_Id
;
18456 Part_IP
: Entity_Id
;
18459 if Present
(Typ
) and then Present
(From_Typ
) then
18460 pragma Assert
(Is_Type
(Typ
) and then Is_Type
(From_Typ
));
18462 -- Nothing to do if both the source and the destination denote the
18465 if From_Typ
= Typ
then
18469 Full_IP
:= Invariant_Procedure
(From_Typ
);
18470 Part_IP
:= Partial_Invariant_Procedure
(From_Typ
);
18472 -- The setting of the attributes is intentionally conservative. This
18473 -- prevents accidental clobbering of enabled attributes.
18475 if Has_Inheritable_Invariants
(From_Typ
)
18476 and then not Has_Inheritable_Invariants
(Typ
)
18478 Set_Has_Inheritable_Invariants
(Typ
, True);
18481 if Has_Inherited_Invariants
(From_Typ
)
18482 and then not Has_Inherited_Invariants
(Typ
)
18484 Set_Has_Inherited_Invariants
(Typ
, True);
18487 if Has_Own_Invariants
(From_Typ
)
18488 and then not Has_Own_Invariants
(Typ
)
18490 Set_Has_Own_Invariants
(Typ
, True);
18493 if Present
(Full_IP
) and then No
(Invariant_Procedure
(Typ
)) then
18494 Set_Invariant_Procedure
(Typ
, Full_IP
);
18497 if Present
(Part_IP
) and then No
(Partial_Invariant_Procedure
(Typ
))
18499 Set_Partial_Invariant_Procedure
(Typ
, Part_IP
);
18502 end Propagate_Invariant_Attributes
;
18504 ---------------------------------------
18505 -- Record_Possible_Part_Of_Reference --
18506 ---------------------------------------
18508 procedure Record_Possible_Part_Of_Reference
18509 (Var_Id
: Entity_Id
;
18512 Encap
: constant Entity_Id
:= Encapsulating_State
(Var_Id
);
18516 -- The variable is a constituent of a single protected/task type. Such
18517 -- a variable acts as a component of the type and must appear within a
18518 -- specific region (SPARK RM 9.3). Instead of recording the reference,
18519 -- verify its legality now.
18521 if Present
(Encap
) and then Is_Single_Concurrent_Object
(Encap
) then
18522 Check_Part_Of_Reference
(Var_Id
, Ref
);
18524 -- The variable is subject to pragma Part_Of and may eventually become a
18525 -- constituent of a single protected/task type. Record the reference to
18526 -- verify its placement when the contract of the variable is analyzed.
18528 elsif Present
(Get_Pragma
(Var_Id
, Pragma_Part_Of
)) then
18529 Refs
:= Part_Of_References
(Var_Id
);
18532 Refs
:= New_Elmt_List
;
18533 Set_Part_Of_References
(Var_Id
, Refs
);
18536 Append_Elmt
(Ref
, Refs
);
18538 end Record_Possible_Part_Of_Reference
;
18544 function Referenced
(Id
: Entity_Id
; Expr
: Node_Id
) return Boolean is
18545 Seen
: Boolean := False;
18547 function Is_Reference
(N
: Node_Id
) return Traverse_Result
;
18548 -- Determine whether node N denotes a reference to Id. If this is the
18549 -- case, set global flag Seen to True and stop the traversal.
18555 function Is_Reference
(N
: Node_Id
) return Traverse_Result
is
18557 if Is_Entity_Name
(N
)
18558 and then Present
(Entity
(N
))
18559 and then Entity
(N
) = Id
18568 procedure Inspect_Expression
is new Traverse_Proc
(Is_Reference
);
18570 -- Start of processing for Referenced
18573 Inspect_Expression
(Expr
);
18577 ------------------------------------
18578 -- References_Generic_Formal_Type --
18579 ------------------------------------
18581 function References_Generic_Formal_Type
(N
: Node_Id
) return Boolean is
18583 function Process
(N
: Node_Id
) return Traverse_Result
;
18584 -- Process one node in search for generic formal type
18590 function Process
(N
: Node_Id
) return Traverse_Result
is
18592 if Nkind
(N
) in N_Has_Entity
then
18594 E
: constant Entity_Id
:= Entity
(N
);
18596 if Present
(E
) then
18597 if Is_Generic_Type
(E
) then
18599 elsif Present
(Etype
(E
))
18600 and then Is_Generic_Type
(Etype
(E
))
18611 function Traverse
is new Traverse_Func
(Process
);
18612 -- Traverse tree to look for generic type
18615 if Inside_A_Generic
then
18616 return Traverse
(N
) = Abandon
;
18620 end References_Generic_Formal_Type
;
18622 --------------------
18623 -- Remove_Homonym --
18624 --------------------
18626 procedure Remove_Homonym
(E
: Entity_Id
) is
18627 Prev
: Entity_Id
:= Empty
;
18631 if E
= Current_Entity
(E
) then
18632 if Present
(Homonym
(E
)) then
18633 Set_Current_Entity
(Homonym
(E
));
18635 Set_Name_Entity_Id
(Chars
(E
), Empty
);
18639 H
:= Current_Entity
(E
);
18640 while Present
(H
) and then H
/= E
loop
18645 -- If E is not on the homonym chain, nothing to do
18647 if Present
(H
) then
18648 Set_Homonym
(Prev
, Homonym
(E
));
18651 end Remove_Homonym
;
18653 ------------------------------
18654 -- Remove_Overloaded_Entity --
18655 ------------------------------
18657 procedure Remove_Overloaded_Entity
(Id
: Entity_Id
) is
18658 procedure Remove_Primitive_Of
(Typ
: Entity_Id
);
18659 -- Remove primitive subprogram Id from the list of primitives that
18660 -- belong to type Typ.
18662 -------------------------
18663 -- Remove_Primitive_Of --
18664 -------------------------
18666 procedure Remove_Primitive_Of
(Typ
: Entity_Id
) is
18670 if Is_Tagged_Type
(Typ
) then
18671 Prims
:= Direct_Primitive_Operations
(Typ
);
18673 if Present
(Prims
) then
18674 Remove
(Prims
, Id
);
18677 end Remove_Primitive_Of
;
18681 Scop
: constant Entity_Id
:= Scope
(Id
);
18682 Formal
: Entity_Id
;
18683 Prev_Id
: Entity_Id
;
18685 -- Start of processing for Remove_Overloaded_Entity
18688 -- Remove the entity from the homonym chain. When the entity is the
18689 -- head of the chain, associate the entry in the name table with its
18690 -- homonym effectively making it the new head of the chain.
18692 if Current_Entity
(Id
) = Id
then
18693 Set_Name_Entity_Id
(Chars
(Id
), Homonym
(Id
));
18695 -- Otherwise link the previous and next homonyms
18698 Prev_Id
:= Current_Entity
(Id
);
18699 while Present
(Prev_Id
) and then Homonym
(Prev_Id
) /= Id
loop
18700 Prev_Id
:= Homonym
(Prev_Id
);
18703 Set_Homonym
(Prev_Id
, Homonym
(Id
));
18706 -- Remove the entity from the scope entity chain. When the entity is
18707 -- the head of the chain, set the next entity as the new head of the
18710 if First_Entity
(Scop
) = Id
then
18712 Set_First_Entity
(Scop
, Next_Entity
(Id
));
18714 -- Otherwise the entity is either in the middle of the chain or it acts
18715 -- as its tail. Traverse and link the previous and next entities.
18718 Prev_Id
:= First_Entity
(Scop
);
18719 while Present
(Prev_Id
) and then Next_Entity
(Prev_Id
) /= Id
loop
18720 Next_Entity
(Prev_Id
);
18723 Set_Next_Entity
(Prev_Id
, Next_Entity
(Id
));
18726 -- Handle the case where the entity acts as the tail of the scope entity
18729 if Last_Entity
(Scop
) = Id
then
18730 Set_Last_Entity
(Scop
, Prev_Id
);
18733 -- The entity denotes a primitive subprogram. Remove it from the list of
18734 -- primitives of the associated controlling type.
18736 if Ekind_In
(Id
, E_Function
, E_Procedure
) and then Is_Primitive
(Id
) then
18737 Formal
:= First_Formal
(Id
);
18738 while Present
(Formal
) loop
18739 if Is_Controlling_Formal
(Formal
) then
18740 Remove_Primitive_Of
(Etype
(Formal
));
18744 Next_Formal
(Formal
);
18747 if Ekind
(Id
) = E_Function
and then Has_Controlling_Result
(Id
) then
18748 Remove_Primitive_Of
(Etype
(Id
));
18751 end Remove_Overloaded_Entity
;
18753 ---------------------
18754 -- Rep_To_Pos_Flag --
18755 ---------------------
18757 function Rep_To_Pos_Flag
(E
: Entity_Id
; Loc
: Source_Ptr
) return Node_Id
is
18759 return New_Occurrence_Of
18760 (Boolean_Literals
(not Range_Checks_Suppressed
(E
)), Loc
);
18761 end Rep_To_Pos_Flag
;
18763 --------------------
18764 -- Require_Entity --
18765 --------------------
18767 procedure Require_Entity
(N
: Node_Id
) is
18769 if Is_Entity_Name
(N
) and then No
(Entity
(N
)) then
18770 if Total_Errors_Detected
/= 0 then
18771 Set_Entity
(N
, Any_Id
);
18773 raise Program_Error
;
18776 end Require_Entity
;
18778 ------------------------------
18779 -- Requires_Transient_Scope --
18780 ------------------------------
18782 -- A transient scope is required when variable-sized temporaries are
18783 -- allocated on the secondary stack, or when finalization actions must be
18784 -- generated before the next instruction.
18786 function Old_Requires_Transient_Scope
(Id
: Entity_Id
) return Boolean;
18787 function New_Requires_Transient_Scope
(Id
: Entity_Id
) return Boolean;
18788 -- ???We retain the old and new algorithms for Requires_Transient_Scope for
18789 -- the time being. New_Requires_Transient_Scope is used by default; the
18790 -- debug switch -gnatdQ can be used to do Old_Requires_Transient_Scope
18791 -- instead. The intent is to use this temporarily to measure before/after
18792 -- efficiency. Note: when this temporary code is removed, the documentation
18793 -- of dQ in debug.adb should be removed.
18795 procedure Results_Differ
(Id
: Entity_Id
);
18796 -- ???Debugging code. Called when the Old_ and New_ results differ. Will be
18797 -- removed when New_Requires_Transient_Scope becomes
18798 -- Requires_Transient_Scope and Old_Requires_Transient_Scope is eliminated.
18800 procedure Results_Differ
(Id
: Entity_Id
) is
18802 if False then -- False to disable; True for debugging
18803 Treepr
.Print_Tree_Node
(Id
);
18805 if Old_Requires_Transient_Scope
(Id
) =
18806 New_Requires_Transient_Scope
(Id
)
18808 raise Program_Error
;
18811 end Results_Differ
;
18813 function Requires_Transient_Scope
(Id
: Entity_Id
) return Boolean is
18814 Old_Result
: constant Boolean := Old_Requires_Transient_Scope
(Id
);
18817 if Debug_Flag_QQ
then
18822 New_Result
: constant Boolean := New_Requires_Transient_Scope
(Id
);
18825 -- Assert that we're not putting things on the secondary stack if we
18826 -- didn't before; we are trying to AVOID secondary stack when
18829 if not Old_Result
then
18830 pragma Assert
(not New_Result
);
18834 if New_Result
/= Old_Result
then
18835 Results_Differ
(Id
);
18840 end Requires_Transient_Scope
;
18842 ----------------------------------
18843 -- Old_Requires_Transient_Scope --
18844 ----------------------------------
18846 function Old_Requires_Transient_Scope
(Id
: Entity_Id
) return Boolean is
18847 Typ
: constant Entity_Id
:= Underlying_Type
(Id
);
18850 -- This is a private type which is not completed yet. This can only
18851 -- happen in a default expression (of a formal parameter or of a
18852 -- record component). Do not expand transient scope in this case.
18857 -- Do not expand transient scope for non-existent procedure return
18859 elsif Typ
= Standard_Void_Type
then
18862 -- Elementary types do not require a transient scope
18864 elsif Is_Elementary_Type
(Typ
) then
18867 -- Generally, indefinite subtypes require a transient scope, since the
18868 -- back end cannot generate temporaries, since this is not a valid type
18869 -- for declaring an object. It might be possible to relax this in the
18870 -- future, e.g. by declaring the maximum possible space for the type.
18872 elsif not Is_Definite_Subtype
(Typ
) then
18875 -- Functions returning tagged types may dispatch on result so their
18876 -- returned value is allocated on the secondary stack. Controlled
18877 -- type temporaries need finalization.
18879 elsif Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
18884 elsif Is_Record_Type
(Typ
) then
18889 Comp
:= First_Entity
(Typ
);
18890 while Present
(Comp
) loop
18891 if Ekind
(Comp
) = E_Component
then
18893 -- ???It's not clear we need a full recursive call to
18894 -- Old_Requires_Transient_Scope here. Note that the
18895 -- following can't happen.
18897 pragma Assert
(Is_Definite_Subtype
(Etype
(Comp
)));
18898 pragma Assert
(not Has_Controlled_Component
(Etype
(Comp
)));
18900 if Old_Requires_Transient_Scope
(Etype
(Comp
)) then
18905 Next_Entity
(Comp
);
18911 -- String literal types never require transient scope
18913 elsif Ekind
(Typ
) = E_String_Literal_Subtype
then
18916 -- Array type. Note that we already know that this is a constrained
18917 -- array, since unconstrained arrays will fail the indefinite test.
18919 elsif Is_Array_Type
(Typ
) then
18921 -- If component type requires a transient scope, the array does too
18923 if Old_Requires_Transient_Scope
(Component_Type
(Typ
)) then
18926 -- Otherwise, we only need a transient scope if the size depends on
18927 -- the value of one or more discriminants.
18930 return Size_Depends_On_Discriminant
(Typ
);
18933 -- All other cases do not require a transient scope
18936 pragma Assert
(Is_Protected_Type
(Typ
) or else Is_Task_Type
(Typ
));
18939 end Old_Requires_Transient_Scope
;
18941 ----------------------------------
18942 -- New_Requires_Transient_Scope --
18943 ----------------------------------
18945 function New_Requires_Transient_Scope
(Id
: Entity_Id
) return Boolean is
18947 function Caller_Known_Size_Record
(Typ
: Entity_Id
) return Boolean;
18948 -- This is called for untagged records and protected types, with
18949 -- nondefaulted discriminants. Returns True if the size of function
18950 -- results is known at the call site, False otherwise. Returns False
18951 -- if there is a variant part that depends on the discriminants of
18952 -- this type, or if there is an array constrained by the discriminants
18953 -- of this type. ???Currently, this is overly conservative (the array
18954 -- could be nested inside some other record that is constrained by
18955 -- nondiscriminants). That is, the recursive calls are too conservative.
18957 function Large_Max_Size_Mutable
(Typ
: Entity_Id
) return Boolean;
18958 -- Returns True if Typ is a nonlimited record with defaulted
18959 -- discriminants whose max size makes it unsuitable for allocating on
18960 -- the primary stack.
18962 ------------------------------
18963 -- Caller_Known_Size_Record --
18964 ------------------------------
18966 function Caller_Known_Size_Record
(Typ
: Entity_Id
) return Boolean is
18967 pragma Assert
(Typ
= Underlying_Type
(Typ
));
18970 if Has_Variant_Part
(Typ
) and then not Is_Definite_Subtype
(Typ
) then
18978 Comp
:= First_Entity
(Typ
);
18979 while Present
(Comp
) loop
18981 -- Only look at E_Component entities. No need to look at
18982 -- E_Discriminant entities, and we must ignore internal
18983 -- subtypes generated for constrained components.
18985 if Ekind
(Comp
) = E_Component
then
18987 Comp_Type
: constant Entity_Id
:=
18988 Underlying_Type
(Etype
(Comp
));
18991 if Is_Record_Type
(Comp_Type
)
18993 Is_Protected_Type
(Comp_Type
)
18995 if not Caller_Known_Size_Record
(Comp_Type
) then
18999 elsif Is_Array_Type
(Comp_Type
) then
19000 if Size_Depends_On_Discriminant
(Comp_Type
) then
19007 Next_Entity
(Comp
);
19012 end Caller_Known_Size_Record
;
19014 ------------------------------
19015 -- Large_Max_Size_Mutable --
19016 ------------------------------
19018 function Large_Max_Size_Mutable
(Typ
: Entity_Id
) return Boolean is
19019 pragma Assert
(Typ
= Underlying_Type
(Typ
));
19021 function Is_Large_Discrete_Type
(T
: Entity_Id
) return Boolean;
19022 -- Returns true if the discrete type T has a large range
19024 ----------------------------
19025 -- Is_Large_Discrete_Type --
19026 ----------------------------
19028 function Is_Large_Discrete_Type
(T
: Entity_Id
) return Boolean is
19029 Threshold
: constant Int
:= 16;
19030 -- Arbitrary threshold above which we consider it "large". We want
19031 -- a fairly large threshold, because these large types really
19032 -- shouldn't have default discriminants in the first place, in
19036 return UI_To_Int
(RM_Size
(T
)) > Threshold
;
19037 end Is_Large_Discrete_Type
;
19040 if Is_Record_Type
(Typ
)
19041 and then not Is_Limited_View
(Typ
)
19042 and then Has_Defaulted_Discriminants
(Typ
)
19044 -- Loop through the components, looking for an array whose upper
19045 -- bound(s) depends on discriminants, where both the subtype of
19046 -- the discriminant and the index subtype are too large.
19052 Comp
:= First_Entity
(Typ
);
19053 while Present
(Comp
) loop
19054 if Ekind
(Comp
) = E_Component
then
19056 Comp_Type
: constant Entity_Id
:=
19057 Underlying_Type
(Etype
(Comp
));
19063 if Is_Array_Type
(Comp_Type
) then
19064 Indx
:= First_Index
(Comp_Type
);
19066 while Present
(Indx
) loop
19067 Ityp
:= Etype
(Indx
);
19068 Hi
:= Type_High_Bound
(Ityp
);
19070 if Nkind
(Hi
) = N_Identifier
19071 and then Ekind
(Entity
(Hi
)) = E_Discriminant
19072 and then Is_Large_Discrete_Type
(Ityp
)
19073 and then Is_Large_Discrete_Type
19074 (Etype
(Entity
(Hi
)))
19085 Next_Entity
(Comp
);
19091 end Large_Max_Size_Mutable
;
19093 -- Local declarations
19095 Typ
: constant Entity_Id
:= Underlying_Type
(Id
);
19097 -- Start of processing for New_Requires_Transient_Scope
19100 -- This is a private type which is not completed yet. This can only
19101 -- happen in a default expression (of a formal parameter or of a
19102 -- record component). Do not expand transient scope in this case.
19107 -- Do not expand transient scope for non-existent procedure return or
19108 -- string literal types.
19110 elsif Typ
= Standard_Void_Type
19111 or else Ekind
(Typ
) = E_String_Literal_Subtype
19115 -- If Typ is a generic formal incomplete type, then we want to look at
19116 -- the actual type.
19118 elsif Ekind
(Typ
) = E_Record_Subtype
19119 and then Present
(Cloned_Subtype
(Typ
))
19121 return New_Requires_Transient_Scope
(Cloned_Subtype
(Typ
));
19123 -- Functions returning specific tagged types may dispatch on result, so
19124 -- their returned value is allocated on the secondary stack, even in the
19125 -- definite case. We must treat nondispatching functions the same way,
19126 -- because access-to-function types can point at both, so the calling
19127 -- conventions must be compatible. Is_Tagged_Type includes controlled
19128 -- types and class-wide types. Controlled type temporaries need
19131 -- ???It's not clear why we need to return noncontrolled types with
19132 -- controlled components on the secondary stack.
19134 elsif Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
19137 -- Untagged definite subtypes are known size. This includes all
19138 -- elementary [sub]types. Tasks are known size even if they have
19139 -- discriminants. So we return False here, with one exception:
19140 -- For a type like:
19141 -- type T (Last : Natural := 0) is
19142 -- X : String (1 .. Last);
19144 -- we return True. That's because for "P(F(...));", where F returns T,
19145 -- we don't know the size of the result at the call site, so if we
19146 -- allocated it on the primary stack, we would have to allocate the
19147 -- maximum size, which is way too big.
19149 elsif Is_Definite_Subtype
(Typ
) or else Is_Task_Type
(Typ
) then
19150 return Large_Max_Size_Mutable
(Typ
);
19152 -- Indefinite (discriminated) untagged record or protected type
19154 elsif Is_Record_Type
(Typ
) or else Is_Protected_Type
(Typ
) then
19155 return not Caller_Known_Size_Record
(Typ
);
19157 -- Unconstrained array
19160 pragma Assert
(Is_Array_Type
(Typ
) and not Is_Definite_Subtype
(Typ
));
19163 end New_Requires_Transient_Scope
;
19165 --------------------------
19166 -- Reset_Analyzed_Flags --
19167 --------------------------
19169 procedure Reset_Analyzed_Flags
(N
: Node_Id
) is
19171 function Clear_Analyzed
(N
: Node_Id
) return Traverse_Result
;
19172 -- Function used to reset Analyzed flags in tree. Note that we do
19173 -- not reset Analyzed flags in entities, since there is no need to
19174 -- reanalyze entities, and indeed, it is wrong to do so, since it
19175 -- can result in generating auxiliary stuff more than once.
19177 --------------------
19178 -- Clear_Analyzed --
19179 --------------------
19181 function Clear_Analyzed
(N
: Node_Id
) return Traverse_Result
is
19183 if not Has_Extension
(N
) then
19184 Set_Analyzed
(N
, False);
19188 end Clear_Analyzed
;
19190 procedure Reset_Analyzed
is new Traverse_Proc
(Clear_Analyzed
);
19192 -- Start of processing for Reset_Analyzed_Flags
19195 Reset_Analyzed
(N
);
19196 end Reset_Analyzed_Flags
;
19198 ------------------------
19199 -- Restore_SPARK_Mode --
19200 ------------------------
19202 procedure Restore_SPARK_Mode
(Mode
: SPARK_Mode_Type
) is
19204 SPARK_Mode
:= Mode
;
19205 end Restore_SPARK_Mode
;
19207 --------------------------------
19208 -- Returns_Unconstrained_Type --
19209 --------------------------------
19211 function Returns_Unconstrained_Type
(Subp
: Entity_Id
) return Boolean is
19213 return Ekind
(Subp
) = E_Function
19214 and then not Is_Scalar_Type
(Etype
(Subp
))
19215 and then not Is_Access_Type
(Etype
(Subp
))
19216 and then not Is_Constrained
(Etype
(Subp
));
19217 end Returns_Unconstrained_Type
;
19219 ----------------------------
19220 -- Root_Type_Of_Full_View --
19221 ----------------------------
19223 function Root_Type_Of_Full_View
(T
: Entity_Id
) return Entity_Id
is
19224 Rtyp
: constant Entity_Id
:= Root_Type
(T
);
19227 -- The root type of the full view may itself be a private type. Keep
19228 -- looking for the ultimate derivation parent.
19230 if Is_Private_Type
(Rtyp
) and then Present
(Full_View
(Rtyp
)) then
19231 return Root_Type_Of_Full_View
(Full_View
(Rtyp
));
19235 end Root_Type_Of_Full_View
;
19237 ---------------------------
19238 -- Safe_To_Capture_Value --
19239 ---------------------------
19241 function Safe_To_Capture_Value
19244 Cond
: Boolean := False) return Boolean
19247 -- The only entities for which we track constant values are variables
19248 -- which are not renamings, constants, out parameters, and in out
19249 -- parameters, so check if we have this case.
19251 -- Note: it may seem odd to track constant values for constants, but in
19252 -- fact this routine is used for other purposes than simply capturing
19253 -- the value. In particular, the setting of Known[_Non]_Null.
19255 if (Ekind
(Ent
) = E_Variable
and then No
(Renamed_Object
(Ent
)))
19257 Ekind_In
(Ent
, E_Constant
, E_Out_Parameter
, E_In_Out_Parameter
)
19261 -- For conditionals, we also allow loop parameters and all formals,
19262 -- including in parameters.
19264 elsif Cond
and then Ekind_In
(Ent
, E_Loop_Parameter
, E_In_Parameter
) then
19267 -- For all other cases, not just unsafe, but impossible to capture
19268 -- Current_Value, since the above are the only entities which have
19269 -- Current_Value fields.
19275 -- Skip if volatile or aliased, since funny things might be going on in
19276 -- these cases which we cannot necessarily track. Also skip any variable
19277 -- for which an address clause is given, or whose address is taken. Also
19278 -- never capture value of library level variables (an attempt to do so
19279 -- can occur in the case of package elaboration code).
19281 if Treat_As_Volatile
(Ent
)
19282 or else Is_Aliased
(Ent
)
19283 or else Present
(Address_Clause
(Ent
))
19284 or else Address_Taken
(Ent
)
19285 or else (Is_Library_Level_Entity
(Ent
)
19286 and then Ekind
(Ent
) = E_Variable
)
19291 -- OK, all above conditions are met. We also require that the scope of
19292 -- the reference be the same as the scope of the entity, not counting
19293 -- packages and blocks and loops.
19296 E_Scope
: constant Entity_Id
:= Scope
(Ent
);
19297 R_Scope
: Entity_Id
;
19300 R_Scope
:= Current_Scope
;
19301 while R_Scope
/= Standard_Standard
loop
19302 exit when R_Scope
= E_Scope
;
19304 if not Ekind_In
(R_Scope
, E_Package
, E_Block
, E_Loop
) then
19307 R_Scope
:= Scope
(R_Scope
);
19312 -- We also require that the reference does not appear in a context
19313 -- where it is not sure to be executed (i.e. a conditional context
19314 -- or an exception handler). We skip this if Cond is True, since the
19315 -- capturing of values from conditional tests handles this ok.
19328 -- Seems dubious that case expressions are not handled here ???
19331 while Present
(P
) loop
19332 if Nkind
(P
) = N_If_Statement
19333 or else Nkind
(P
) = N_Case_Statement
19334 or else (Nkind
(P
) in N_Short_Circuit
19335 and then Desc
= Right_Opnd
(P
))
19336 or else (Nkind
(P
) = N_If_Expression
19337 and then Desc
/= First
(Expressions
(P
)))
19338 or else Nkind
(P
) = N_Exception_Handler
19339 or else Nkind
(P
) = N_Selective_Accept
19340 or else Nkind
(P
) = N_Conditional_Entry_Call
19341 or else Nkind
(P
) = N_Timed_Entry_Call
19342 or else Nkind
(P
) = N_Asynchronous_Select
19350 -- A special Ada 2012 case: the original node may be part
19351 -- of the else_actions of a conditional expression, in which
19352 -- case it might not have been expanded yet, and appears in
19353 -- a non-syntactic list of actions. In that case it is clearly
19354 -- not safe to save a value.
19357 and then Is_List_Member
(Desc
)
19358 and then No
(Parent
(List_Containing
(Desc
)))
19366 -- OK, looks safe to set value
19369 end Safe_To_Capture_Value
;
19375 function Same_Name
(N1
, N2
: Node_Id
) return Boolean is
19376 K1
: constant Node_Kind
:= Nkind
(N1
);
19377 K2
: constant Node_Kind
:= Nkind
(N2
);
19380 if (K1
= N_Identifier
or else K1
= N_Defining_Identifier
)
19381 and then (K2
= N_Identifier
or else K2
= N_Defining_Identifier
)
19383 return Chars
(N1
) = Chars
(N2
);
19385 elsif (K1
= N_Selected_Component
or else K1
= N_Expanded_Name
)
19386 and then (K2
= N_Selected_Component
or else K2
= N_Expanded_Name
)
19388 return Same_Name
(Selector_Name
(N1
), Selector_Name
(N2
))
19389 and then Same_Name
(Prefix
(N1
), Prefix
(N2
));
19400 function Same_Object
(Node1
, Node2
: Node_Id
) return Boolean is
19401 N1
: constant Node_Id
:= Original_Node
(Node1
);
19402 N2
: constant Node_Id
:= Original_Node
(Node2
);
19403 -- We do the tests on original nodes, since we are most interested
19404 -- in the original source, not any expansion that got in the way.
19406 K1
: constant Node_Kind
:= Nkind
(N1
);
19407 K2
: constant Node_Kind
:= Nkind
(N2
);
19410 -- First case, both are entities with same entity
19412 if K1
in N_Has_Entity
and then K2
in N_Has_Entity
then
19414 EN1
: constant Entity_Id
:= Entity
(N1
);
19415 EN2
: constant Entity_Id
:= Entity
(N2
);
19417 if Present
(EN1
) and then Present
(EN2
)
19418 and then (Ekind_In
(EN1
, E_Variable
, E_Constant
)
19419 or else Is_Formal
(EN1
))
19427 -- Second case, selected component with same selector, same record
19429 if K1
= N_Selected_Component
19430 and then K2
= N_Selected_Component
19431 and then Chars
(Selector_Name
(N1
)) = Chars
(Selector_Name
(N2
))
19433 return Same_Object
(Prefix
(N1
), Prefix
(N2
));
19435 -- Third case, indexed component with same subscripts, same array
19437 elsif K1
= N_Indexed_Component
19438 and then K2
= N_Indexed_Component
19439 and then Same_Object
(Prefix
(N1
), Prefix
(N2
))
19444 E1
:= First
(Expressions
(N1
));
19445 E2
:= First
(Expressions
(N2
));
19446 while Present
(E1
) loop
19447 if not Same_Value
(E1
, E2
) then
19458 -- Fourth case, slice of same array with same bounds
19461 and then K2
= N_Slice
19462 and then Nkind
(Discrete_Range
(N1
)) = N_Range
19463 and then Nkind
(Discrete_Range
(N2
)) = N_Range
19464 and then Same_Value
(Low_Bound
(Discrete_Range
(N1
)),
19465 Low_Bound
(Discrete_Range
(N2
)))
19466 and then Same_Value
(High_Bound
(Discrete_Range
(N1
)),
19467 High_Bound
(Discrete_Range
(N2
)))
19469 return Same_Name
(Prefix
(N1
), Prefix
(N2
));
19471 -- All other cases, not clearly the same object
19482 function Same_Type
(T1
, T2
: Entity_Id
) return Boolean is
19487 elsif not Is_Constrained
(T1
)
19488 and then not Is_Constrained
(T2
)
19489 and then Base_Type
(T1
) = Base_Type
(T2
)
19493 -- For now don't bother with case of identical constraints, to be
19494 -- fiddled with later on perhaps (this is only used for optimization
19495 -- purposes, so it is not critical to do a best possible job)
19506 function Same_Value
(Node1
, Node2
: Node_Id
) return Boolean is
19508 if Compile_Time_Known_Value
(Node1
)
19509 and then Compile_Time_Known_Value
(Node2
)
19510 and then Expr_Value
(Node1
) = Expr_Value
(Node2
)
19513 elsif Same_Object
(Node1
, Node2
) then
19520 -----------------------------
19521 -- Save_SPARK_Mode_And_Set --
19522 -----------------------------
19524 procedure Save_SPARK_Mode_And_Set
19525 (Context
: Entity_Id
;
19526 Mode
: out SPARK_Mode_Type
)
19529 -- Save the current mode in effect
19531 Mode
:= SPARK_Mode
;
19533 -- Do not consider illegal or partially decorated constructs
19535 if Ekind
(Context
) = E_Void
or else Error_Posted
(Context
) then
19538 elsif Present
(SPARK_Pragma
(Context
)) then
19539 SPARK_Mode
:= Get_SPARK_Mode_From_Annotation
(SPARK_Pragma
(Context
));
19541 end Save_SPARK_Mode_And_Set
;
19543 -------------------------
19544 -- Scalar_Part_Present --
19545 -------------------------
19547 function Scalar_Part_Present
(T
: Entity_Id
) return Boolean is
19551 if Is_Scalar_Type
(T
) then
19554 elsif Is_Array_Type
(T
) then
19555 return Scalar_Part_Present
(Component_Type
(T
));
19557 elsif Is_Record_Type
(T
) or else Has_Discriminants
(T
) then
19558 C
:= First_Component_Or_Discriminant
(T
);
19559 while Present
(C
) loop
19560 if Scalar_Part_Present
(Etype
(C
)) then
19563 Next_Component_Or_Discriminant
(C
);
19569 end Scalar_Part_Present
;
19571 ------------------------
19572 -- Scope_Is_Transient --
19573 ------------------------
19575 function Scope_Is_Transient
return Boolean is
19577 return Scope_Stack
.Table
(Scope_Stack
.Last
).Is_Transient
;
19578 end Scope_Is_Transient
;
19584 function Scope_Within
(Scope1
, Scope2
: Entity_Id
) return Boolean is
19589 while Scop
/= Standard_Standard
loop
19590 Scop
:= Scope
(Scop
);
19592 if Scop
= Scope2
then
19600 --------------------------
19601 -- Scope_Within_Or_Same --
19602 --------------------------
19604 function Scope_Within_Or_Same
(Scope1
, Scope2
: Entity_Id
) return Boolean is
19609 while Scop
/= Standard_Standard
loop
19610 if Scop
= Scope2
then
19613 Scop
:= Scope
(Scop
);
19618 end Scope_Within_Or_Same
;
19620 --------------------
19621 -- Set_Convention --
19622 --------------------
19624 procedure Set_Convention
(E
: Entity_Id
; Val
: Snames
.Convention_Id
) is
19626 Basic_Set_Convention
(E
, Val
);
19629 and then Is_Access_Subprogram_Type
(Base_Type
(E
))
19630 and then Has_Foreign_Convention
(E
)
19633 -- A pragma Convention in an instance may apply to the subtype
19634 -- created for a formal, in which case we have already verified
19635 -- that conventions of actual and formal match and there is nothing
19636 -- to flag on the subtype.
19638 if In_Instance
then
19641 Set_Can_Use_Internal_Rep
(E
, False);
19645 -- If E is an object or component, and the type of E is an anonymous
19646 -- access type with no convention set, then also set the convention of
19647 -- the anonymous access type. We do not do this for anonymous protected
19648 -- types, since protected types always have the default convention.
19650 if Present
(Etype
(E
))
19651 and then (Is_Object
(E
)
19652 or else Ekind
(E
) = E_Component
19654 -- Allow E_Void (happens for pragma Convention appearing
19655 -- in the middle of a record applying to a component)
19657 or else Ekind
(E
) = E_Void
)
19660 Typ
: constant Entity_Id
:= Etype
(E
);
19663 if Ekind_In
(Typ
, E_Anonymous_Access_Type
,
19664 E_Anonymous_Access_Subprogram_Type
)
19665 and then not Has_Convention_Pragma
(Typ
)
19667 Basic_Set_Convention
(Typ
, Val
);
19668 Set_Has_Convention_Pragma
(Typ
);
19670 -- And for the access subprogram type, deal similarly with the
19671 -- designated E_Subprogram_Type if it is also internal (which
19674 if Ekind
(Typ
) = E_Anonymous_Access_Subprogram_Type
then
19676 Dtype
: constant Entity_Id
:= Designated_Type
(Typ
);
19678 if Ekind
(Dtype
) = E_Subprogram_Type
19679 and then Is_Itype
(Dtype
)
19680 and then not Has_Convention_Pragma
(Dtype
)
19682 Basic_Set_Convention
(Dtype
, Val
);
19683 Set_Has_Convention_Pragma
(Dtype
);
19690 end Set_Convention
;
19692 ------------------------
19693 -- Set_Current_Entity --
19694 ------------------------
19696 -- The given entity is to be set as the currently visible definition of its
19697 -- associated name (i.e. the Node_Id associated with its name). All we have
19698 -- to do is to get the name from the identifier, and then set the
19699 -- associated Node_Id to point to the given entity.
19701 procedure Set_Current_Entity
(E
: Entity_Id
) is
19703 Set_Name_Entity_Id
(Chars
(E
), E
);
19704 end Set_Current_Entity
;
19706 ---------------------------
19707 -- Set_Debug_Info_Needed --
19708 ---------------------------
19710 procedure Set_Debug_Info_Needed
(T
: Entity_Id
) is
19712 procedure Set_Debug_Info_Needed_If_Not_Set
(E
: Entity_Id
);
19713 pragma Inline
(Set_Debug_Info_Needed_If_Not_Set
);
19714 -- Used to set debug info in a related node if not set already
19716 --------------------------------------
19717 -- Set_Debug_Info_Needed_If_Not_Set --
19718 --------------------------------------
19720 procedure Set_Debug_Info_Needed_If_Not_Set
(E
: Entity_Id
) is
19722 if Present
(E
) and then not Needs_Debug_Info
(E
) then
19723 Set_Debug_Info_Needed
(E
);
19725 -- For a private type, indicate that the full view also needs
19726 -- debug information.
19729 and then Is_Private_Type
(E
)
19730 and then Present
(Full_View
(E
))
19732 Set_Debug_Info_Needed
(Full_View
(E
));
19735 end Set_Debug_Info_Needed_If_Not_Set
;
19737 -- Start of processing for Set_Debug_Info_Needed
19740 -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
19741 -- indicates that Debug_Info_Needed is never required for the entity.
19742 -- Nothing to do if entity comes from a predefined file. Library files
19743 -- are compiled without debug information, but inlined bodies of these
19744 -- routines may appear in user code, and debug information on them ends
19745 -- up complicating debugging the user code.
19748 or else Debug_Info_Off
(T
)
19752 elsif In_Inlined_Body
19753 and then Is_Predefined_File_Name
19754 (Unit_File_Name
(Get_Source_Unit
(Sloc
(T
))))
19756 Set_Needs_Debug_Info
(T
, False);
19759 -- Set flag in entity itself. Note that we will go through the following
19760 -- circuitry even if the flag is already set on T. That's intentional,
19761 -- it makes sure that the flag will be set in subsidiary entities.
19763 Set_Needs_Debug_Info
(T
);
19765 -- Set flag on subsidiary entities if not set already
19767 if Is_Object
(T
) then
19768 Set_Debug_Info_Needed_If_Not_Set
(Etype
(T
));
19770 elsif Is_Type
(T
) then
19771 Set_Debug_Info_Needed_If_Not_Set
(Etype
(T
));
19773 if Is_Record_Type
(T
) then
19775 Ent
: Entity_Id
:= First_Entity
(T
);
19777 while Present
(Ent
) loop
19778 Set_Debug_Info_Needed_If_Not_Set
(Ent
);
19783 -- For a class wide subtype, we also need debug information
19784 -- for the equivalent type.
19786 if Ekind
(T
) = E_Class_Wide_Subtype
then
19787 Set_Debug_Info_Needed_If_Not_Set
(Equivalent_Type
(T
));
19790 elsif Is_Array_Type
(T
) then
19791 Set_Debug_Info_Needed_If_Not_Set
(Component_Type
(T
));
19794 Indx
: Node_Id
:= First_Index
(T
);
19796 while Present
(Indx
) loop
19797 Set_Debug_Info_Needed_If_Not_Set
(Etype
(Indx
));
19798 Indx
:= Next_Index
(Indx
);
19802 -- For a packed array type, we also need debug information for
19803 -- the type used to represent the packed array. Conversely, we
19804 -- also need it for the former if we need it for the latter.
19806 if Is_Packed
(T
) then
19807 Set_Debug_Info_Needed_If_Not_Set
(Packed_Array_Impl_Type
(T
));
19810 if Is_Packed_Array_Impl_Type
(T
) then
19811 Set_Debug_Info_Needed_If_Not_Set
(Original_Array_Type
(T
));
19814 elsif Is_Access_Type
(T
) then
19815 Set_Debug_Info_Needed_If_Not_Set
(Directly_Designated_Type
(T
));
19817 elsif Is_Private_Type
(T
) then
19819 FV
: constant Entity_Id
:= Full_View
(T
);
19822 Set_Debug_Info_Needed_If_Not_Set
(FV
);
19824 -- If the full view is itself a derived private type, we need
19825 -- debug information on its underlying type.
19828 and then Is_Private_Type
(FV
)
19829 and then Present
(Underlying_Full_View
(FV
))
19831 Set_Needs_Debug_Info
(Underlying_Full_View
(FV
));
19835 elsif Is_Protected_Type
(T
) then
19836 Set_Debug_Info_Needed_If_Not_Set
(Corresponding_Record_Type
(T
));
19838 elsif Is_Scalar_Type
(T
) then
19840 -- If the subrange bounds are materialized by dedicated constant
19841 -- objects, also include them in the debug info to make sure the
19842 -- debugger can properly use them.
19844 if Present
(Scalar_Range
(T
))
19845 and then Nkind
(Scalar_Range
(T
)) = N_Range
19848 Low_Bnd
: constant Node_Id
:= Type_Low_Bound
(T
);
19849 High_Bnd
: constant Node_Id
:= Type_High_Bound
(T
);
19852 if Is_Entity_Name
(Low_Bnd
) then
19853 Set_Debug_Info_Needed_If_Not_Set
(Entity
(Low_Bnd
));
19856 if Is_Entity_Name
(High_Bnd
) then
19857 Set_Debug_Info_Needed_If_Not_Set
(Entity
(High_Bnd
));
19863 end Set_Debug_Info_Needed
;
19865 ----------------------------
19866 -- Set_Entity_With_Checks --
19867 ----------------------------
19869 procedure Set_Entity_With_Checks
(N
: Node_Id
; Val
: Entity_Id
) is
19870 Val_Actual
: Entity_Id
;
19872 Post_Node
: Node_Id
;
19875 -- Unconditionally set the entity
19877 Set_Entity
(N
, Val
);
19879 -- The node to post on is the selector in the case of an expanded name,
19880 -- and otherwise the node itself.
19882 if Nkind
(N
) = N_Expanded_Name
then
19883 Post_Node
:= Selector_Name
(N
);
19888 -- Check for violation of No_Fixed_IO
19890 if Restriction_Check_Required
(No_Fixed_IO
)
19892 ((RTU_Loaded
(Ada_Text_IO
)
19893 and then (Is_RTE
(Val
, RE_Decimal_IO
)
19895 Is_RTE
(Val
, RE_Fixed_IO
)))
19898 (RTU_Loaded
(Ada_Wide_Text_IO
)
19899 and then (Is_RTE
(Val
, RO_WT_Decimal_IO
)
19901 Is_RTE
(Val
, RO_WT_Fixed_IO
)))
19904 (RTU_Loaded
(Ada_Wide_Wide_Text_IO
)
19905 and then (Is_RTE
(Val
, RO_WW_Decimal_IO
)
19907 Is_RTE
(Val
, RO_WW_Fixed_IO
))))
19909 -- A special extra check, don't complain about a reference from within
19910 -- the Ada.Interrupts package itself!
19912 and then not In_Same_Extended_Unit
(N
, Val
)
19914 Check_Restriction
(No_Fixed_IO
, Post_Node
);
19917 -- Remaining checks are only done on source nodes. Note that we test
19918 -- for violation of No_Fixed_IO even on non-source nodes, because the
19919 -- cases for checking violations of this restriction are instantiations
19920 -- where the reference in the instance has Comes_From_Source False.
19922 if not Comes_From_Source
(N
) then
19926 -- Check for violation of No_Abort_Statements, which is triggered by
19927 -- call to Ada.Task_Identification.Abort_Task.
19929 if Restriction_Check_Required
(No_Abort_Statements
)
19930 and then (Is_RTE
(Val
, RE_Abort_Task
))
19932 -- A special extra check, don't complain about a reference from within
19933 -- the Ada.Task_Identification package itself!
19935 and then not In_Same_Extended_Unit
(N
, Val
)
19937 Check_Restriction
(No_Abort_Statements
, Post_Node
);
19940 if Val
= Standard_Long_Long_Integer
then
19941 Check_Restriction
(No_Long_Long_Integers
, Post_Node
);
19944 -- Check for violation of No_Dynamic_Attachment
19946 if Restriction_Check_Required
(No_Dynamic_Attachment
)
19947 and then RTU_Loaded
(Ada_Interrupts
)
19948 and then (Is_RTE
(Val
, RE_Is_Reserved
) or else
19949 Is_RTE
(Val
, RE_Is_Attached
) or else
19950 Is_RTE
(Val
, RE_Current_Handler
) or else
19951 Is_RTE
(Val
, RE_Attach_Handler
) or else
19952 Is_RTE
(Val
, RE_Exchange_Handler
) or else
19953 Is_RTE
(Val
, RE_Detach_Handler
) or else
19954 Is_RTE
(Val
, RE_Reference
))
19956 -- A special extra check, don't complain about a reference from within
19957 -- the Ada.Interrupts package itself!
19959 and then not In_Same_Extended_Unit
(N
, Val
)
19961 Check_Restriction
(No_Dynamic_Attachment
, Post_Node
);
19964 -- Check for No_Implementation_Identifiers
19966 if Restriction_Check_Required
(No_Implementation_Identifiers
) then
19968 -- We have an implementation defined entity if it is marked as
19969 -- implementation defined, or is defined in a package marked as
19970 -- implementation defined. However, library packages themselves
19971 -- are excluded (we don't want to flag Interfaces itself, just
19972 -- the entities within it).
19974 if (Is_Implementation_Defined
(Val
)
19976 (Present
(Scope
(Val
))
19977 and then Is_Implementation_Defined
(Scope
(Val
))))
19978 and then not (Ekind_In
(Val
, E_Package
, E_Generic_Package
)
19979 and then Is_Library_Level_Entity
(Val
))
19981 Check_Restriction
(No_Implementation_Identifiers
, Post_Node
);
19985 -- Do the style check
19988 and then not Suppress_Style_Checks
(Val
)
19989 and then not In_Instance
19991 if Nkind
(N
) = N_Identifier
then
19993 elsif Nkind
(N
) = N_Expanded_Name
then
19994 Nod
:= Selector_Name
(N
);
19999 -- A special situation arises for derived operations, where we want
20000 -- to do the check against the parent (since the Sloc of the derived
20001 -- operation points to the derived type declaration itself).
20004 while not Comes_From_Source
(Val_Actual
)
20005 and then Nkind
(Val_Actual
) in N_Entity
20006 and then (Ekind
(Val_Actual
) = E_Enumeration_Literal
20007 or else Is_Subprogram_Or_Generic_Subprogram
(Val_Actual
))
20008 and then Present
(Alias
(Val_Actual
))
20010 Val_Actual
:= Alias
(Val_Actual
);
20013 -- Renaming declarations for generic actuals do not come from source,
20014 -- and have a different name from that of the entity they rename, so
20015 -- there is no style check to perform here.
20017 if Chars
(Nod
) = Chars
(Val_Actual
) then
20018 Style
.Check_Identifier
(Nod
, Val_Actual
);
20022 Set_Entity
(N
, Val
);
20023 end Set_Entity_With_Checks
;
20025 ------------------------
20026 -- Set_Name_Entity_Id --
20027 ------------------------
20029 procedure Set_Name_Entity_Id
(Id
: Name_Id
; Val
: Entity_Id
) is
20031 Set_Name_Table_Int
(Id
, Int
(Val
));
20032 end Set_Name_Entity_Id
;
20034 ---------------------
20035 -- Set_Next_Actual --
20036 ---------------------
20038 procedure Set_Next_Actual
(Ass1_Id
: Node_Id
; Ass2_Id
: Node_Id
) is
20040 if Nkind
(Parent
(Ass1_Id
)) = N_Parameter_Association
then
20041 Set_First_Named_Actual
(Parent
(Ass1_Id
), Ass2_Id
);
20043 end Set_Next_Actual
;
20045 ----------------------------------
20046 -- Set_Optimize_Alignment_Flags --
20047 ----------------------------------
20049 procedure Set_Optimize_Alignment_Flags
(E
: Entity_Id
) is
20051 if Optimize_Alignment
= 'S' then
20052 Set_Optimize_Alignment_Space
(E
);
20053 elsif Optimize_Alignment
= 'T' then
20054 Set_Optimize_Alignment_Time
(E
);
20056 end Set_Optimize_Alignment_Flags
;
20058 -----------------------
20059 -- Set_Public_Status --
20060 -----------------------
20062 procedure Set_Public_Status
(Id
: Entity_Id
) is
20063 S
: constant Entity_Id
:= Current_Scope
;
20065 function Within_HSS_Or_If
(E
: Entity_Id
) return Boolean;
20066 -- Determines if E is defined within handled statement sequence or
20067 -- an if statement, returns True if so, False otherwise.
20069 ----------------------
20070 -- Within_HSS_Or_If --
20071 ----------------------
20073 function Within_HSS_Or_If
(E
: Entity_Id
) return Boolean is
20076 N
:= Declaration_Node
(E
);
20083 elsif Nkind_In
(N
, N_Handled_Sequence_Of_Statements
,
20089 end Within_HSS_Or_If
;
20091 -- Start of processing for Set_Public_Status
20094 -- Everything in the scope of Standard is public
20096 if S
= Standard_Standard
then
20097 Set_Is_Public
(Id
);
20099 -- Entity is definitely not public if enclosing scope is not public
20101 elsif not Is_Public
(S
) then
20104 -- An object or function declaration that occurs in a handled sequence
20105 -- of statements or within an if statement is the declaration for a
20106 -- temporary object or local subprogram generated by the expander. It
20107 -- never needs to be made public and furthermore, making it public can
20108 -- cause back end problems.
20110 elsif Nkind_In
(Parent
(Id
), N_Object_Declaration
,
20111 N_Function_Specification
)
20112 and then Within_HSS_Or_If
(Id
)
20116 -- Entities in public packages or records are public
20118 elsif Ekind
(S
) = E_Package
or Is_Record_Type
(S
) then
20119 Set_Is_Public
(Id
);
20121 -- The bounds of an entry family declaration can generate object
20122 -- declarations that are visible to the back-end, e.g. in the
20123 -- the declaration of a composite type that contains tasks.
20125 elsif Is_Concurrent_Type
(S
)
20126 and then not Has_Completion
(S
)
20127 and then Nkind
(Parent
(Id
)) = N_Object_Declaration
20129 Set_Is_Public
(Id
);
20131 end Set_Public_Status
;
20133 -----------------------------
20134 -- Set_Referenced_Modified --
20135 -----------------------------
20137 procedure Set_Referenced_Modified
(N
: Node_Id
; Out_Param
: Boolean) is
20141 -- Deal with indexed or selected component where prefix is modified
20143 if Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
) then
20144 Pref
:= Prefix
(N
);
20146 -- If prefix is access type, then it is the designated object that is
20147 -- being modified, which means we have no entity to set the flag on.
20149 if No
(Etype
(Pref
)) or else Is_Access_Type
(Etype
(Pref
)) then
20152 -- Otherwise chase the prefix
20155 Set_Referenced_Modified
(Pref
, Out_Param
);
20158 -- Otherwise see if we have an entity name (only other case to process)
20160 elsif Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
20161 Set_Referenced_As_LHS
(Entity
(N
), not Out_Param
);
20162 Set_Referenced_As_Out_Parameter
(Entity
(N
), Out_Param
);
20164 end Set_Referenced_Modified
;
20166 ----------------------------
20167 -- Set_Scope_Is_Transient --
20168 ----------------------------
20170 procedure Set_Scope_Is_Transient
(V
: Boolean := True) is
20172 Scope_Stack
.Table
(Scope_Stack
.Last
).Is_Transient
:= V
;
20173 end Set_Scope_Is_Transient
;
20175 -------------------
20176 -- Set_Size_Info --
20177 -------------------
20179 procedure Set_Size_Info
(T1
, T2
: Entity_Id
) is
20181 -- We copy Esize, but not RM_Size, since in general RM_Size is
20182 -- subtype specific and does not get inherited by all subtypes.
20184 Set_Esize
(T1
, Esize
(T2
));
20185 Set_Has_Biased_Representation
(T1
, Has_Biased_Representation
(T2
));
20187 if Is_Discrete_Or_Fixed_Point_Type
(T1
)
20189 Is_Discrete_Or_Fixed_Point_Type
(T2
)
20191 Set_Is_Unsigned_Type
(T1
, Is_Unsigned_Type
(T2
));
20194 Set_Alignment
(T1
, Alignment
(T2
));
20197 --------------------
20198 -- Static_Boolean --
20199 --------------------
20201 function Static_Boolean
(N
: Node_Id
) return Uint
is
20203 Analyze_And_Resolve
(N
, Standard_Boolean
);
20206 or else Error_Posted
(N
)
20207 or else Etype
(N
) = Any_Type
20212 if Is_OK_Static_Expression
(N
) then
20213 if not Raises_Constraint_Error
(N
) then
20214 return Expr_Value
(N
);
20219 elsif Etype
(N
) = Any_Type
then
20223 Flag_Non_Static_Expr
20224 ("static boolean expression required here", N
);
20227 end Static_Boolean
;
20229 --------------------
20230 -- Static_Integer --
20231 --------------------
20233 function Static_Integer
(N
: Node_Id
) return Uint
is
20235 Analyze_And_Resolve
(N
, Any_Integer
);
20238 or else Error_Posted
(N
)
20239 or else Etype
(N
) = Any_Type
20244 if Is_OK_Static_Expression
(N
) then
20245 if not Raises_Constraint_Error
(N
) then
20246 return Expr_Value
(N
);
20251 elsif Etype
(N
) = Any_Type
then
20255 Flag_Non_Static_Expr
20256 ("static integer expression required here", N
);
20259 end Static_Integer
;
20261 --------------------------
20262 -- Statically_Different --
20263 --------------------------
20265 function Statically_Different
(E1
, E2
: Node_Id
) return Boolean is
20266 R1
: constant Node_Id
:= Get_Referenced_Object
(E1
);
20267 R2
: constant Node_Id
:= Get_Referenced_Object
(E2
);
20269 return Is_Entity_Name
(R1
)
20270 and then Is_Entity_Name
(R2
)
20271 and then Entity
(R1
) /= Entity
(R2
)
20272 and then not Is_Formal
(Entity
(R1
))
20273 and then not Is_Formal
(Entity
(R2
));
20274 end Statically_Different
;
20276 --------------------------------------
20277 -- Subject_To_Loop_Entry_Attributes --
20278 --------------------------------------
20280 function Subject_To_Loop_Entry_Attributes
(N
: Node_Id
) return Boolean is
20286 -- The expansion mechanism transform a loop subject to at least one
20287 -- 'Loop_Entry attribute into a conditional block. Infinite loops lack
20288 -- the conditional part.
20290 if Nkind_In
(Stmt
, N_Block_Statement
, N_If_Statement
)
20291 and then Nkind
(Original_Node
(N
)) = N_Loop_Statement
20293 Stmt
:= Original_Node
(N
);
20297 Nkind
(Stmt
) = N_Loop_Statement
20298 and then Present
(Identifier
(Stmt
))
20299 and then Present
(Entity
(Identifier
(Stmt
)))
20300 and then Has_Loop_Entry_Attributes
(Entity
(Identifier
(Stmt
)));
20301 end Subject_To_Loop_Entry_Attributes
;
20303 -----------------------------
20304 -- Subprogram_Access_Level --
20305 -----------------------------
20307 function Subprogram_Access_Level
(Subp
: Entity_Id
) return Uint
is
20309 if Present
(Alias
(Subp
)) then
20310 return Subprogram_Access_Level
(Alias
(Subp
));
20312 return Scope_Depth
(Enclosing_Dynamic_Scope
(Subp
));
20314 end Subprogram_Access_Level
;
20316 -------------------------------
20317 -- Support_Atomic_Primitives --
20318 -------------------------------
20320 function Support_Atomic_Primitives
(Typ
: Entity_Id
) return Boolean is
20324 -- Verify the alignment of Typ is known
20326 if not Known_Alignment
(Typ
) then
20330 if Known_Static_Esize
(Typ
) then
20331 Size
:= UI_To_Int
(Esize
(Typ
));
20333 -- If the Esize (Object_Size) is unknown at compile time, look at the
20334 -- RM_Size (Value_Size) which may have been set by an explicit rep item.
20336 elsif Known_Static_RM_Size
(Typ
) then
20337 Size
:= UI_To_Int
(RM_Size
(Typ
));
20339 -- Otherwise, the size is considered to be unknown.
20345 -- Check that the size of the component is 8, 16, 32, or 64 bits and
20346 -- that Typ is properly aligned.
20349 when 8 |
16 |
32 |
64 =>
20350 return Size
= UI_To_Int
(Alignment
(Typ
)) * 8;
20354 end Support_Atomic_Primitives
;
20360 procedure Trace_Scope
(N
: Node_Id
; E
: Entity_Id
; Msg
: String) is
20362 if Debug_Flag_W
then
20363 for J
in 0 .. Scope_Stack
.Last
loop
20368 Write_Name
(Chars
(E
));
20369 Write_Str
(" from ");
20370 Write_Location
(Sloc
(N
));
20375 -----------------------
20376 -- Transfer_Entities --
20377 -----------------------
20379 procedure Transfer_Entities
(From
: Entity_Id
; To
: Entity_Id
) is
20380 procedure Set_Public_Status_Of
(Id
: Entity_Id
);
20381 -- Set the Is_Public attribute of arbitrary entity Id by calling routine
20382 -- Set_Public_Status. If successfull and Id denotes a record type, set
20383 -- the Is_Public attribute of its fields.
20385 --------------------------
20386 -- Set_Public_Status_Of --
20387 --------------------------
20389 procedure Set_Public_Status_Of
(Id
: Entity_Id
) is
20393 if not Is_Public
(Id
) then
20394 Set_Public_Status
(Id
);
20396 -- When the input entity is a public record type, ensure that all
20397 -- its internal fields are also exposed to the linker. The fields
20398 -- of a class-wide type are never made public.
20401 and then Is_Record_Type
(Id
)
20402 and then not Is_Class_Wide_Type
(Id
)
20404 Field
:= First_Entity
(Id
);
20405 while Present
(Field
) loop
20406 Set_Is_Public
(Field
);
20407 Next_Entity
(Field
);
20411 end Set_Public_Status_Of
;
20415 Full_Id
: Entity_Id
;
20418 -- Start of processing for Transfer_Entities
20421 Id
:= First_Entity
(From
);
20423 if Present
(Id
) then
20425 -- Merge the entity chain of the source scope with that of the
20426 -- destination scope.
20428 if Present
(Last_Entity
(To
)) then
20429 Set_Next_Entity
(Last_Entity
(To
), Id
);
20431 Set_First_Entity
(To
, Id
);
20434 Set_Last_Entity
(To
, Last_Entity
(From
));
20436 -- Inspect the entities of the source scope and update their Scope
20439 while Present
(Id
) loop
20440 Set_Scope
(Id
, To
);
20441 Set_Public_Status_Of
(Id
);
20443 -- Handle an internally generated full view for a private type
20445 if Is_Private_Type
(Id
)
20446 and then Present
(Full_View
(Id
))
20447 and then Is_Itype
(Full_View
(Id
))
20449 Full_Id
:= Full_View
(Id
);
20451 Set_Scope
(Full_Id
, To
);
20452 Set_Public_Status_Of
(Full_Id
);
20458 Set_First_Entity
(From
, Empty
);
20459 Set_Last_Entity
(From
, Empty
);
20461 end Transfer_Entities
;
20463 -----------------------
20464 -- Type_Access_Level --
20465 -----------------------
20467 function Type_Access_Level
(Typ
: Entity_Id
) return Uint
is
20471 Btyp
:= Base_Type
(Typ
);
20473 -- Ada 2005 (AI-230): For most cases of anonymous access types, we
20474 -- simply use the level where the type is declared. This is true for
20475 -- stand-alone object declarations, and for anonymous access types
20476 -- associated with components the level is the same as that of the
20477 -- enclosing composite type. However, special treatment is needed for
20478 -- the cases of access parameters, return objects of an anonymous access
20479 -- type, and, in Ada 95, access discriminants of limited types.
20481 if Is_Access_Type
(Btyp
) then
20482 if Ekind
(Btyp
) = E_Anonymous_Access_Type
then
20484 -- If the type is a nonlocal anonymous access type (such as for
20485 -- an access parameter) we treat it as being declared at the
20486 -- library level to ensure that names such as X.all'access don't
20487 -- fail static accessibility checks.
20489 if not Is_Local_Anonymous_Access
(Typ
) then
20490 return Scope_Depth
(Standard_Standard
);
20492 -- If this is a return object, the accessibility level is that of
20493 -- the result subtype of the enclosing function. The test here is
20494 -- little complicated, because we have to account for extended
20495 -- return statements that have been rewritten as blocks, in which
20496 -- case we have to find and the Is_Return_Object attribute of the
20497 -- itype's associated object. It would be nice to find a way to
20498 -- simplify this test, but it doesn't seem worthwhile to add a new
20499 -- flag just for purposes of this test. ???
20501 elsif Ekind
(Scope
(Btyp
)) = E_Return_Statement
20504 and then Nkind
(Associated_Node_For_Itype
(Btyp
)) =
20505 N_Object_Declaration
20506 and then Is_Return_Object
20507 (Defining_Identifier
20508 (Associated_Node_For_Itype
(Btyp
))))
20514 Scop
:= Scope
(Scope
(Btyp
));
20515 while Present
(Scop
) loop
20516 exit when Ekind
(Scop
) = E_Function
;
20517 Scop
:= Scope
(Scop
);
20520 -- Treat the return object's type as having the level of the
20521 -- function's result subtype (as per RM05-6.5(5.3/2)).
20523 return Type_Access_Level
(Etype
(Scop
));
20528 Btyp
:= Root_Type
(Btyp
);
20530 -- The accessibility level of anonymous access types associated with
20531 -- discriminants is that of the current instance of the type, and
20532 -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
20534 -- AI-402: access discriminants have accessibility based on the
20535 -- object rather than the type in Ada 2005, so the above paragraph
20538 -- ??? Needs completion with rules from AI-416
20540 if Ada_Version
<= Ada_95
20541 and then Ekind
(Typ
) = E_Anonymous_Access_Type
20542 and then Present
(Associated_Node_For_Itype
(Typ
))
20543 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
20544 N_Discriminant_Specification
20546 return Scope_Depth
(Enclosing_Dynamic_Scope
(Btyp
)) + 1;
20550 -- Return library level for a generic formal type. This is done because
20551 -- RM(10.3.2) says that "The statically deeper relationship does not
20552 -- apply to ... a descendant of a generic formal type". Rather than
20553 -- checking at each point where a static accessibility check is
20554 -- performed to see if we are dealing with a formal type, this rule is
20555 -- implemented by having Type_Access_Level and Deepest_Type_Access_Level
20556 -- return extreme values for a formal type; Deepest_Type_Access_Level
20557 -- returns Int'Last. By calling the appropriate function from among the
20558 -- two, we ensure that the static accessibility check will pass if we
20559 -- happen to run into a formal type. More specifically, we should call
20560 -- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
20561 -- call occurs as part of a static accessibility check and the error
20562 -- case is the case where the type's level is too shallow (as opposed
20565 if Is_Generic_Type
(Root_Type
(Btyp
)) then
20566 return Scope_Depth
(Standard_Standard
);
20569 return Scope_Depth
(Enclosing_Dynamic_Scope
(Btyp
));
20570 end Type_Access_Level
;
20572 ------------------------------------
20573 -- Type_Without_Stream_Operation --
20574 ------------------------------------
20576 function Type_Without_Stream_Operation
20578 Op
: TSS_Name_Type
:= TSS_Null
) return Entity_Id
20580 BT
: constant Entity_Id
:= Base_Type
(T
);
20581 Op_Missing
: Boolean;
20584 if not Restriction_Active
(No_Default_Stream_Attributes
) then
20588 if Is_Elementary_Type
(T
) then
20589 if Op
= TSS_Null
then
20591 No
(TSS
(BT
, TSS_Stream_Read
))
20592 or else No
(TSS
(BT
, TSS_Stream_Write
));
20595 Op_Missing
:= No
(TSS
(BT
, Op
));
20604 elsif Is_Array_Type
(T
) then
20605 return Type_Without_Stream_Operation
(Component_Type
(T
), Op
);
20607 elsif Is_Record_Type
(T
) then
20613 Comp
:= First_Component
(T
);
20614 while Present
(Comp
) loop
20615 C_Typ
:= Type_Without_Stream_Operation
(Etype
(Comp
), Op
);
20617 if Present
(C_Typ
) then
20621 Next_Component
(Comp
);
20627 elsif Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
20628 return Type_Without_Stream_Operation
(Full_View
(T
), Op
);
20632 end Type_Without_Stream_Operation
;
20634 ----------------------------
20635 -- Unique_Defining_Entity --
20636 ----------------------------
20638 function Unique_Defining_Entity
(N
: Node_Id
) return Entity_Id
is
20640 return Unique_Entity
(Defining_Entity
(N
));
20641 end Unique_Defining_Entity
;
20643 -------------------
20644 -- Unique_Entity --
20645 -------------------
20647 function Unique_Entity
(E
: Entity_Id
) return Entity_Id
is
20648 U
: Entity_Id
:= E
;
20654 if Present
(Full_View
(E
)) then
20655 U
:= Full_View
(E
);
20659 if Nkind
(Parent
(E
)) = N_Entry_Body
then
20661 Prot_Item
: Entity_Id
;
20663 -- Traverse the entity list of the protected type and locate
20664 -- an entry declaration which matches the entry body.
20666 Prot_Item
:= First_Entity
(Scope
(E
));
20667 while Present
(Prot_Item
) loop
20668 if Ekind
(Prot_Item
) = E_Entry
20669 and then Corresponding_Body
(Parent
(Prot_Item
)) = E
20675 Next_Entity
(Prot_Item
);
20680 when Formal_Kind
=>
20681 if Present
(Spec_Entity
(E
)) then
20682 U
:= Spec_Entity
(E
);
20685 when E_Package_Body
=>
20688 if Nkind
(P
) = N_Defining_Program_Unit_Name
then
20692 if Nkind
(P
) = N_Package_Body
20693 and then Present
(Corresponding_Spec
(P
))
20695 U
:= Corresponding_Spec
(P
);
20697 elsif Nkind
(P
) = N_Package_Body_Stub
20698 and then Present
(Corresponding_Spec_Of_Stub
(P
))
20700 U
:= Corresponding_Spec_Of_Stub
(P
);
20703 when E_Protected_Body
=>
20706 if Nkind
(P
) = N_Protected_Body
20707 and then Present
(Corresponding_Spec
(P
))
20709 U
:= Corresponding_Spec
(P
);
20711 elsif Nkind
(P
) = N_Protected_Body_Stub
20712 and then Present
(Corresponding_Spec_Of_Stub
(P
))
20714 U
:= Corresponding_Spec_Of_Stub
(P
);
20717 when E_Subprogram_Body
=>
20720 if Nkind
(P
) = N_Defining_Program_Unit_Name
then
20726 if Nkind
(P
) = N_Subprogram_Body
20727 and then Present
(Corresponding_Spec
(P
))
20729 U
:= Corresponding_Spec
(P
);
20731 elsif Nkind
(P
) = N_Subprogram_Body_Stub
20732 and then Present
(Corresponding_Spec_Of_Stub
(P
))
20734 U
:= Corresponding_Spec_Of_Stub
(P
);
20736 elsif Nkind
(P
) = N_Subprogram_Renaming_Declaration
then
20737 U
:= Corresponding_Spec
(P
);
20740 when E_Task_Body
=>
20743 if Nkind
(P
) = N_Task_Body
20744 and then Present
(Corresponding_Spec
(P
))
20746 U
:= Corresponding_Spec
(P
);
20748 elsif Nkind
(P
) = N_Task_Body_Stub
20749 and then Present
(Corresponding_Spec_Of_Stub
(P
))
20751 U
:= Corresponding_Spec_Of_Stub
(P
);
20755 if Present
(Full_View
(E
)) then
20756 U
:= Full_View
(E
);
20770 function Unique_Name
(E
: Entity_Id
) return String is
20772 -- Names of E_Subprogram_Body or E_Package_Body entities are not
20773 -- reliable, as they may not include the overloading suffix. Instead,
20774 -- when looking for the name of E or one of its enclosing scope, we get
20775 -- the name of the corresponding Unique_Entity.
20777 function Get_Scoped_Name
(E
: Entity_Id
) return String;
20778 -- Return the name of E prefixed by all the names of the scopes to which
20779 -- E belongs, except for Standard.
20781 ---------------------
20782 -- Get_Scoped_Name --
20783 ---------------------
20785 function Get_Scoped_Name
(E
: Entity_Id
) return String is
20786 Name
: constant String := Get_Name_String
(Chars
(E
));
20788 if Has_Fully_Qualified_Name
(E
)
20789 or else Scope
(E
) = Standard_Standard
20793 return Get_Scoped_Name
(Unique_Entity
(Scope
(E
))) & "__" & Name
;
20795 end Get_Scoped_Name
;
20797 -- Start of processing for Unique_Name
20800 if E
= Standard_Standard
then
20801 return Get_Name_String
(Name_Standard
);
20803 elsif Scope
(E
) = Standard_Standard
20804 and then not (Ekind
(E
) = E_Package
or else Is_Subprogram
(E
))
20806 return Get_Name_String
(Name_Standard
) & "__" &
20807 Get_Name_String
(Chars
(E
));
20809 elsif Ekind
(E
) = E_Enumeration_Literal
then
20810 return Unique_Name
(Etype
(E
)) & "__" & Get_Name_String
(Chars
(E
));
20813 return Get_Scoped_Name
(Unique_Entity
(E
));
20817 ---------------------
20818 -- Unit_Is_Visible --
20819 ---------------------
20821 function Unit_Is_Visible
(U
: Entity_Id
) return Boolean is
20822 Curr
: constant Node_Id
:= Cunit
(Current_Sem_Unit
);
20823 Curr_Entity
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
20825 function Unit_In_Parent_Context
(Par_Unit
: Node_Id
) return Boolean;
20826 -- For a child unit, check whether unit appears in a with_clause
20829 function Unit_In_Context
(Comp_Unit
: Node_Id
) return Boolean;
20830 -- Scan the context clause of one compilation unit looking for a
20831 -- with_clause for the unit in question.
20833 ----------------------------
20834 -- Unit_In_Parent_Context --
20835 ----------------------------
20837 function Unit_In_Parent_Context
(Par_Unit
: Node_Id
) return Boolean is
20839 if Unit_In_Context
(Par_Unit
) then
20842 elsif Is_Child_Unit
(Defining_Entity
(Unit
(Par_Unit
))) then
20843 return Unit_In_Parent_Context
(Parent_Spec
(Unit
(Par_Unit
)));
20848 end Unit_In_Parent_Context
;
20850 ---------------------
20851 -- Unit_In_Context --
20852 ---------------------
20854 function Unit_In_Context
(Comp_Unit
: Node_Id
) return Boolean is
20858 Clause
:= First
(Context_Items
(Comp_Unit
));
20859 while Present
(Clause
) loop
20860 if Nkind
(Clause
) = N_With_Clause
then
20861 if Library_Unit
(Clause
) = U
then
20864 -- The with_clause may denote a renaming of the unit we are
20865 -- looking for, eg. Text_IO which renames Ada.Text_IO.
20868 Renamed_Entity
(Entity
(Name
(Clause
))) =
20869 Defining_Entity
(Unit
(U
))
20879 end Unit_In_Context
;
20881 -- Start of processing for Unit_Is_Visible
20884 -- The currrent unit is directly visible
20889 elsif Unit_In_Context
(Curr
) then
20892 -- If the current unit is a body, check the context of the spec
20894 elsif Nkind
(Unit
(Curr
)) = N_Package_Body
20896 (Nkind
(Unit
(Curr
)) = N_Subprogram_Body
20897 and then not Acts_As_Spec
(Unit
(Curr
)))
20899 if Unit_In_Context
(Library_Unit
(Curr
)) then
20904 -- If the spec is a child unit, examine the parents
20906 if Is_Child_Unit
(Curr_Entity
) then
20907 if Nkind
(Unit
(Curr
)) in N_Unit_Body
then
20909 Unit_In_Parent_Context
20910 (Parent_Spec
(Unit
(Library_Unit
(Curr
))));
20912 return Unit_In_Parent_Context
(Parent_Spec
(Unit
(Curr
)));
20918 end Unit_Is_Visible
;
20920 ------------------------------
20921 -- Universal_Interpretation --
20922 ------------------------------
20924 function Universal_Interpretation
(Opnd
: Node_Id
) return Entity_Id
is
20925 Index
: Interp_Index
;
20929 -- The argument may be a formal parameter of an operator or subprogram
20930 -- with multiple interpretations, or else an expression for an actual.
20932 if Nkind
(Opnd
) = N_Defining_Identifier
20933 or else not Is_Overloaded
(Opnd
)
20935 if Etype
(Opnd
) = Universal_Integer
20936 or else Etype
(Opnd
) = Universal_Real
20938 return Etype
(Opnd
);
20944 Get_First_Interp
(Opnd
, Index
, It
);
20945 while Present
(It
.Typ
) loop
20946 if It
.Typ
= Universal_Integer
20947 or else It
.Typ
= Universal_Real
20952 Get_Next_Interp
(Index
, It
);
20957 end Universal_Interpretation
;
20963 function Unqualify
(Expr
: Node_Id
) return Node_Id
is
20965 -- Recurse to handle unlikely case of multiple levels of qualification
20967 if Nkind
(Expr
) = N_Qualified_Expression
then
20968 return Unqualify
(Expression
(Expr
));
20970 -- Normal case, not a qualified expression
20977 -----------------------
20978 -- Visible_Ancestors --
20979 -----------------------
20981 function Visible_Ancestors
(Typ
: Entity_Id
) return Elist_Id
is
20987 pragma Assert
(Is_Record_Type
(Typ
) and then Is_Tagged_Type
(Typ
));
20989 -- Collect all the parents and progenitors of Typ. If the full-view of
20990 -- private parents and progenitors is available then it is used to
20991 -- generate the list of visible ancestors; otherwise their partial
20992 -- view is added to the resulting list.
20997 Use_Full_View
=> True);
21001 Ifaces_List
=> List_2
,
21002 Exclude_Parents
=> True,
21003 Use_Full_View
=> True);
21005 -- Join the two lists. Avoid duplications because an interface may
21006 -- simultaneously be parent and progenitor of a type.
21008 Elmt
:= First_Elmt
(List_2
);
21009 while Present
(Elmt
) loop
21010 Append_Unique_Elmt
(Node
(Elmt
), List_1
);
21015 end Visible_Ancestors
;
21017 ----------------------
21018 -- Within_Init_Proc --
21019 ----------------------
21021 function Within_Init_Proc
return Boolean is
21025 S
:= Current_Scope
;
21026 while not Is_Overloadable
(S
) loop
21027 if S
= Standard_Standard
then
21034 return Is_Init_Proc
(S
);
21035 end Within_Init_Proc
;
21041 function Within_Scope
(E
: Entity_Id
; S
: Entity_Id
) return Boolean is
21043 return Scope_Within_Or_Same
(Scope
(E
), S
);
21050 procedure Wrong_Type
(Expr
: Node_Id
; Expected_Type
: Entity_Id
) is
21051 Found_Type
: constant Entity_Id
:= First_Subtype
(Etype
(Expr
));
21052 Expec_Type
: constant Entity_Id
:= First_Subtype
(Expected_Type
);
21054 Matching_Field
: Entity_Id
;
21055 -- Entity to give a more precise suggestion on how to write a one-
21056 -- element positional aggregate.
21058 function Has_One_Matching_Field
return Boolean;
21059 -- Determines if Expec_Type is a record type with a single component or
21060 -- discriminant whose type matches the found type or is one dimensional
21061 -- array whose component type matches the found type. In the case of
21062 -- one discriminant, we ignore the variant parts. That's not accurate,
21063 -- but good enough for the warning.
21065 ----------------------------
21066 -- Has_One_Matching_Field --
21067 ----------------------------
21069 function Has_One_Matching_Field
return Boolean is
21073 Matching_Field
:= Empty
;
21075 if Is_Array_Type
(Expec_Type
)
21076 and then Number_Dimensions
(Expec_Type
) = 1
21077 and then Covers
(Etype
(Component_Type
(Expec_Type
)), Found_Type
)
21079 -- Use type name if available. This excludes multidimensional
21080 -- arrays and anonymous arrays.
21082 if Comes_From_Source
(Expec_Type
) then
21083 Matching_Field
:= Expec_Type
;
21085 -- For an assignment, use name of target
21087 elsif Nkind
(Parent
(Expr
)) = N_Assignment_Statement
21088 and then Is_Entity_Name
(Name
(Parent
(Expr
)))
21090 Matching_Field
:= Entity
(Name
(Parent
(Expr
)));
21095 elsif not Is_Record_Type
(Expec_Type
) then
21099 E
:= First_Entity
(Expec_Type
);
21104 elsif not Ekind_In
(E
, E_Discriminant
, E_Component
)
21105 or else Nam_In
(Chars
(E
), Name_uTag
, Name_uParent
)
21114 if not Covers
(Etype
(E
), Found_Type
) then
21117 elsif Present
(Next_Entity
(E
))
21118 and then (Ekind
(E
) = E_Component
21119 or else Ekind
(Next_Entity
(E
)) = E_Discriminant
)
21124 Matching_Field
:= E
;
21128 end Has_One_Matching_Field
;
21130 -- Start of processing for Wrong_Type
21133 -- Don't output message if either type is Any_Type, or if a message
21134 -- has already been posted for this node. We need to do the latter
21135 -- check explicitly (it is ordinarily done in Errout), because we
21136 -- are using ! to force the output of the error messages.
21138 if Expec_Type
= Any_Type
21139 or else Found_Type
= Any_Type
21140 or else Error_Posted
(Expr
)
21144 -- If one of the types is a Taft-Amendment type and the other it its
21145 -- completion, it must be an illegal use of a TAT in the spec, for
21146 -- which an error was already emitted. Avoid cascaded errors.
21148 elsif Is_Incomplete_Type
(Expec_Type
)
21149 and then Has_Completion_In_Body
(Expec_Type
)
21150 and then Full_View
(Expec_Type
) = Etype
(Expr
)
21154 elsif Is_Incomplete_Type
(Etype
(Expr
))
21155 and then Has_Completion_In_Body
(Etype
(Expr
))
21156 and then Full_View
(Etype
(Expr
)) = Expec_Type
21160 -- In an instance, there is an ongoing problem with completion of
21161 -- type derived from private types. Their structure is what Gigi
21162 -- expects, but the Etype is the parent type rather than the
21163 -- derived private type itself. Do not flag error in this case. The
21164 -- private completion is an entity without a parent, like an Itype.
21165 -- Similarly, full and partial views may be incorrect in the instance.
21166 -- There is no simple way to insure that it is consistent ???
21168 -- A similar view discrepancy can happen in an inlined body, for the
21169 -- same reason: inserted body may be outside of the original package
21170 -- and only partial views are visible at the point of insertion.
21172 elsif In_Instance
or else In_Inlined_Body
then
21173 if Etype
(Etype
(Expr
)) = Etype
(Expected_Type
)
21175 (Has_Private_Declaration
(Expected_Type
)
21176 or else Has_Private_Declaration
(Etype
(Expr
)))
21177 and then No
(Parent
(Expected_Type
))
21181 elsif Nkind
(Parent
(Expr
)) = N_Qualified_Expression
21182 and then Entity
(Subtype_Mark
(Parent
(Expr
))) = Expected_Type
21186 elsif Is_Private_Type
(Expected_Type
)
21187 and then Present
(Full_View
(Expected_Type
))
21188 and then Covers
(Full_View
(Expected_Type
), Etype
(Expr
))
21192 -- Conversely, type of expression may be the private one
21194 elsif Is_Private_Type
(Base_Type
(Etype
(Expr
)))
21195 and then Full_View
(Base_Type
(Etype
(Expr
))) = Expected_Type
21201 -- An interesting special check. If the expression is parenthesized
21202 -- and its type corresponds to the type of the sole component of the
21203 -- expected record type, or to the component type of the expected one
21204 -- dimensional array type, then assume we have a bad aggregate attempt.
21206 if Nkind
(Expr
) in N_Subexpr
21207 and then Paren_Count
(Expr
) /= 0
21208 and then Has_One_Matching_Field
21210 Error_Msg_N
("positional aggregate cannot have one component", Expr
);
21212 if Present
(Matching_Field
) then
21213 if Is_Array_Type
(Expec_Type
) then
21215 ("\write instead `&''First ='> ...`", Expr
, Matching_Field
);
21218 ("\write instead `& ='> ...`", Expr
, Matching_Field
);
21222 -- Another special check, if we are looking for a pool-specific access
21223 -- type and we found an E_Access_Attribute_Type, then we have the case
21224 -- of an Access attribute being used in a context which needs a pool-
21225 -- specific type, which is never allowed. The one extra check we make
21226 -- is that the expected designated type covers the Found_Type.
21228 elsif Is_Access_Type
(Expec_Type
)
21229 and then Ekind
(Found_Type
) = E_Access_Attribute_Type
21230 and then Ekind
(Base_Type
(Expec_Type
)) /= E_General_Access_Type
21231 and then Ekind
(Base_Type
(Expec_Type
)) /= E_Anonymous_Access_Type
21233 (Designated_Type
(Expec_Type
), Designated_Type
(Found_Type
))
21235 Error_Msg_N
-- CODEFIX
21236 ("result must be general access type!", Expr
);
21237 Error_Msg_NE
-- CODEFIX
21238 ("add ALL to }!", Expr
, Expec_Type
);
21240 -- Another special check, if the expected type is an integer type,
21241 -- but the expression is of type System.Address, and the parent is
21242 -- an addition or subtraction operation whose left operand is the
21243 -- expression in question and whose right operand is of an integral
21244 -- type, then this is an attempt at address arithmetic, so give
21245 -- appropriate message.
21247 elsif Is_Integer_Type
(Expec_Type
)
21248 and then Is_RTE
(Found_Type
, RE_Address
)
21249 and then Nkind_In
(Parent
(Expr
), N_Op_Add
, N_Op_Subtract
)
21250 and then Expr
= Left_Opnd
(Parent
(Expr
))
21251 and then Is_Integer_Type
(Etype
(Right_Opnd
(Parent
(Expr
))))
21254 ("address arithmetic not predefined in package System",
21257 ("\possible missing with/use of System.Storage_Elements",
21261 -- If the expected type is an anonymous access type, as for access
21262 -- parameters and discriminants, the error is on the designated types.
21264 elsif Ekind
(Expec_Type
) = E_Anonymous_Access_Type
then
21265 if Comes_From_Source
(Expec_Type
) then
21266 Error_Msg_NE
("expected}!", Expr
, Expec_Type
);
21269 ("expected an access type with designated}",
21270 Expr
, Designated_Type
(Expec_Type
));
21273 if Is_Access_Type
(Found_Type
)
21274 and then not Comes_From_Source
(Found_Type
)
21277 ("\\found an access type with designated}!",
21278 Expr
, Designated_Type
(Found_Type
));
21280 if From_Limited_With
(Found_Type
) then
21281 Error_Msg_NE
("\\found incomplete}!", Expr
, Found_Type
);
21282 Error_Msg_Qual_Level
:= 99;
21283 Error_Msg_NE
-- CODEFIX
21284 ("\\missing `WITH &;", Expr
, Scope
(Found_Type
));
21285 Error_Msg_Qual_Level
:= 0;
21287 Error_Msg_NE
("found}!", Expr
, Found_Type
);
21291 -- Normal case of one type found, some other type expected
21294 -- If the names of the two types are the same, see if some number
21295 -- of levels of qualification will help. Don't try more than three
21296 -- levels, and if we get to standard, it's no use (and probably
21297 -- represents an error in the compiler) Also do not bother with
21298 -- internal scope names.
21301 Expec_Scope
: Entity_Id
;
21302 Found_Scope
: Entity_Id
;
21305 Expec_Scope
:= Expec_Type
;
21306 Found_Scope
:= Found_Type
;
21308 for Levels
in Nat
range 0 .. 3 loop
21309 if Chars
(Expec_Scope
) /= Chars
(Found_Scope
) then
21310 Error_Msg_Qual_Level
:= Levels
;
21314 Expec_Scope
:= Scope
(Expec_Scope
);
21315 Found_Scope
:= Scope
(Found_Scope
);
21317 exit when Expec_Scope
= Standard_Standard
21318 or else Found_Scope
= Standard_Standard
21319 or else not Comes_From_Source
(Expec_Scope
)
21320 or else not Comes_From_Source
(Found_Scope
);
21324 if Is_Record_Type
(Expec_Type
)
21325 and then Present
(Corresponding_Remote_Type
(Expec_Type
))
21327 Error_Msg_NE
("expected}!", Expr
,
21328 Corresponding_Remote_Type
(Expec_Type
));
21330 Error_Msg_NE
("expected}!", Expr
, Expec_Type
);
21333 if Is_Entity_Name
(Expr
)
21334 and then Is_Package_Or_Generic_Package
(Entity
(Expr
))
21336 Error_Msg_N
("\\found package name!", Expr
);
21338 elsif Is_Entity_Name
(Expr
)
21339 and then Ekind_In
(Entity
(Expr
), E_Procedure
, E_Generic_Procedure
)
21341 if Ekind
(Expec_Type
) = E_Access_Subprogram_Type
then
21343 ("found procedure name, possibly missing Access attribute!",
21347 ("\\found procedure name instead of function!", Expr
);
21350 elsif Nkind
(Expr
) = N_Function_Call
21351 and then Ekind
(Expec_Type
) = E_Access_Subprogram_Type
21352 and then Etype
(Designated_Type
(Expec_Type
)) = Etype
(Expr
)
21353 and then No
(Parameter_Associations
(Expr
))
21356 ("found function name, possibly missing Access attribute!",
21359 -- Catch common error: a prefix or infix operator which is not
21360 -- directly visible because the type isn't.
21362 elsif Nkind
(Expr
) in N_Op
21363 and then Is_Overloaded
(Expr
)
21364 and then not Is_Immediately_Visible
(Expec_Type
)
21365 and then not Is_Potentially_Use_Visible
(Expec_Type
)
21366 and then not In_Use
(Expec_Type
)
21367 and then Has_Compatible_Type
(Right_Opnd
(Expr
), Expec_Type
)
21370 ("operator of the type is not directly visible!", Expr
);
21372 elsif Ekind
(Found_Type
) = E_Void
21373 and then Present
(Parent
(Found_Type
))
21374 and then Nkind
(Parent
(Found_Type
)) = N_Full_Type_Declaration
21376 Error_Msg_NE
("\\found premature usage of}!", Expr
, Found_Type
);
21379 Error_Msg_NE
("\\found}!", Expr
, Found_Type
);
21382 -- A special check for cases like M1 and M2 = 0 where M1 and M2 are
21383 -- of the same modular type, and (M1 and M2) = 0 was intended.
21385 if Expec_Type
= Standard_Boolean
21386 and then Is_Modular_Integer_Type
(Found_Type
)
21387 and then Nkind_In
(Parent
(Expr
), N_Op_And
, N_Op_Or
, N_Op_Xor
)
21388 and then Nkind
(Right_Opnd
(Parent
(Expr
))) in N_Op_Compare
21391 Op
: constant Node_Id
:= Right_Opnd
(Parent
(Expr
));
21392 L
: constant Node_Id
:= Left_Opnd
(Op
);
21393 R
: constant Node_Id
:= Right_Opnd
(Op
);
21396 -- The case for the message is when the left operand of the
21397 -- comparison is the same modular type, or when it is an
21398 -- integer literal (or other universal integer expression),
21399 -- which would have been typed as the modular type if the
21400 -- parens had been there.
21402 if (Etype
(L
) = Found_Type
21404 Etype
(L
) = Universal_Integer
)
21405 and then Is_Integer_Type
(Etype
(R
))
21408 ("\\possible missing parens for modular operation", Expr
);
21413 -- Reset error message qualification indication
21415 Error_Msg_Qual_Level
:= 0;
21419 --------------------------------
21420 -- Yields_Synchronized_Object --
21421 --------------------------------
21423 function Yields_Synchronized_Object
(Typ
: Entity_Id
) return Boolean is
21424 Has_Sync_Comp
: Boolean := False;
21428 -- An array type yields a synchronized object if its component type
21429 -- yields a synchronized object.
21431 if Is_Array_Type
(Typ
) then
21432 return Yields_Synchronized_Object
(Component_Type
(Typ
));
21434 -- A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
21435 -- yields a synchronized object by default.
21437 elsif Is_Descendant_Of_Suspension_Object
(Typ
) then
21440 -- A protected type yields a synchronized object by default
21442 elsif Is_Protected_Type
(Typ
) then
21445 -- A record type or type extension yields a synchronized object when its
21446 -- discriminants (if any) lack default values and all components are of
21447 -- a type that yelds a synchronized object.
21449 elsif Is_Record_Type
(Typ
) then
21451 -- Inspect all entities defined in the scope of the type, looking for
21452 -- components of a type that does not yeld a synchronized object or
21453 -- for discriminants with default values.
21455 Id
:= First_Entity
(Typ
);
21456 while Present
(Id
) loop
21457 if Comes_From_Source
(Id
) then
21458 if Ekind
(Id
) = E_Component
then
21459 if Yields_Synchronized_Object
(Etype
(Id
)) then
21460 Has_Sync_Comp
:= True;
21462 -- The component does not yield a synchronized object
21468 elsif Ekind
(Id
) = E_Discriminant
21469 and then Present
(Expression
(Parent
(Id
)))
21478 -- Ensure that the parent type of a type extension yields a
21479 -- synchronized object.
21481 if Etype
(Typ
) /= Typ
21482 and then not Yields_Synchronized_Object
(Etype
(Typ
))
21487 -- If we get here, then all discriminants lack default values and all
21488 -- components are of a type that yields a synchronized object.
21490 return Has_Sync_Comp
;
21492 -- A synchronized interface type yields a synchronized object by default
21494 elsif Is_Synchronized_Interface
(Typ
) then
21497 -- A task type yelds a synchronized object by default
21499 elsif Is_Task_Type
(Typ
) then
21502 -- Otherwise the type does not yield a synchronized object
21507 end Yields_Synchronized_Object
;
21509 ---------------------------
21510 -- Yields_Universal_Type --
21511 ---------------------------
21513 function Yields_Universal_Type
(N
: Node_Id
) return Boolean is
21515 -- Integer and real literals are of a universal type
21517 if Nkind_In
(N
, N_Integer_Literal
, N_Real_Literal
) then
21520 -- The values of certain attributes are of a universal type
21522 elsif Nkind
(N
) = N_Attribute_Reference
then
21524 Universal_Type_Attribute
(Get_Attribute_Id
(Attribute_Name
(N
)));
21526 -- ??? There are possibly other cases to consider
21531 end Yields_Universal_Type
;