2011-10-08 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / hwint.c
blob533133c7b4db10dabf47f60593538a56753716b7
1 /* Operations on HOST_WIDE_INT.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "diagnostic-core.h"
26 #if GCC_VERSION < 3004
28 /* The functions clz_hwi, ctz_hwi, ffs_hwi, floor_log2 and exact_log2
29 are defined as inline functions in hwint.h if GCC_VERSION >= 3004.
30 The definitions here are used for older versions of GCC and non-GCC
31 bootstrap compilers. */
33 /* Given X, an unsigned number, return the largest int Y such that 2**Y <= X.
34 If X is 0, return -1. */
36 int
37 floor_log2 (unsigned HOST_WIDE_INT x)
39 int t = 0;
41 if (x == 0)
42 return -1;
44 if (HOST_BITS_PER_WIDE_INT > 64)
45 if (x >= (unsigned HOST_WIDE_INT) 1 << (t + 64))
46 t += 64;
47 if (HOST_BITS_PER_WIDE_INT > 32)
48 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 32))
49 t += 32;
50 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 16))
51 t += 16;
52 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 8))
53 t += 8;
54 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 4))
55 t += 4;
56 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 2))
57 t += 2;
58 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 1))
59 t += 1;
61 return t;
64 /* Return the logarithm of X, base 2, considering X unsigned,
65 if X is a power of 2. Otherwise, returns -1. */
67 int
68 exact_log2 (unsigned HOST_WIDE_INT x)
70 if (x != (x & -x))
71 return -1;
72 return floor_log2 (x);
75 /* Given X, an unsigned number, return the number of least significant bits
76 that are zero. When X == 0, the result is the word size. */
78 int
79 ctz_hwi (unsigned HOST_WIDE_INT x)
81 return x ? floor_log2 (x & -x) : HOST_BITS_PER_WIDE_INT;
84 /* Similarly for most significant bits. */
86 int
87 clz_hwi (unsigned HOST_WIDE_INT x)
89 return HOST_BITS_PER_WIDE_INT - 1 - floor_log2(x);
92 /* Similar to ctz_hwi, except that the least significant bit is numbered
93 starting from 1, and X == 0 yields 0. */
95 int
96 ffs_hwi (unsigned HOST_WIDE_INT x)
98 return 1 + floor_log2 (x & -x);
101 #endif /* GCC_VERSION < 3004 */
103 /* Compute the absolute value of X. */
105 HOST_WIDE_INT
106 abs_hwi (HOST_WIDE_INT x)
108 gcc_checking_assert (x != HOST_WIDE_INT_MIN);
109 return x >= 0 ? x : -x;
112 /* Compute the absolute value of X as an unsigned type. */
114 unsigned HOST_WIDE_INT
115 absu_hwi (HOST_WIDE_INT x)
117 return x >= 0 ? (unsigned HOST_WIDE_INT)x : -(unsigned HOST_WIDE_INT)x;
120 /* Compute the greatest common divisor of two numbers A and B using
121 Euclid's algorithm. */
123 HOST_WIDE_INT
124 gcd (HOST_WIDE_INT a, HOST_WIDE_INT b)
126 HOST_WIDE_INT x, y, z;
128 x = abs_hwi (a);
129 y = abs_hwi (b);
131 while (x > 0)
133 z = y % x;
134 y = x;
135 x = z;
138 return y;
141 /* For X and Y positive integers, return X multiplied by Y and check
142 that the result does not overflow. */
144 HOST_WIDE_INT
145 pos_mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
147 if (x != 0)
148 gcc_checking_assert ((HOST_WIDE_INT_MAX) / x >= y);
150 return x * y;
153 /* Return X multiplied by Y and check that the result does not
154 overflow. */
156 HOST_WIDE_INT
157 mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
159 gcc_checking_assert (x != HOST_WIDE_INT_MIN
160 && y != HOST_WIDE_INT_MIN);
162 if (x >= 0)
164 if (y >= 0)
165 return pos_mul_hwi (x, y);
167 return -pos_mul_hwi (x, -y);
170 if (y >= 0)
171 return -pos_mul_hwi (-x, y);
173 return pos_mul_hwi (-x, -y);
176 /* Compute the least common multiple of two numbers A and B . */
178 HOST_WIDE_INT
179 least_common_multiple (HOST_WIDE_INT a, HOST_WIDE_INT b)
181 return mul_hwi (abs_hwi (a) / gcd (a, b), abs_hwi (b));