2004-02-11 Eric Christopher <echristo@redhat.com>
[official-gcc.git] / gcc / real.c
blobed671db0e4d0b93f37ef32eac0607fabb8940df4
1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "toplev.h"
30 #include "real.h"
31 #include "tm_p.h"
33 /* The floating point model used internally is not exactly IEEE 754
34 compliant, and close to the description in the ISO C99 standard,
35 section 5.2.4.2.2 Characteristics of floating types.
37 Specifically
39 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
41 where
42 s = sign (+- 1)
43 b = base or radix, here always 2
44 e = exponent
45 p = precision (the number of base-b digits in the significand)
46 f_k = the digits of the significand.
48 We differ from typical IEEE 754 encodings in that the entire
49 significand is fractional. Normalized significands are in the
50 range [0.5, 1.0).
52 A requirement of the model is that P be larger than the largest
53 supported target floating-point type by at least 2 bits. This gives
54 us proper rounding when we truncate to the target type. In addition,
55 E must be large enough to hold the smallest supported denormal number
56 in a normalized form.
58 Both of these requirements are easily satisfied. The largest target
59 significand is 113 bits; we store at least 160. The smallest
60 denormal number fits in 17 exponent bits; we store 29.
62 Note that the decimal string conversion routines are sensitive to
63 rounding errors. Since the raw arithmetic routines do not themselves
64 have guard digits or rounding, the computation of 10**exp can
65 accumulate more than a few digits of error. The previous incarnation
66 of real.c successfully used a 144-bit fraction; given the current
67 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits.
69 Target floating point models that use base 16 instead of base 2
70 (i.e. IBM 370), are handled during round_for_format, in which we
71 canonicalize the exponent to be a multiple of 4 (log2(16)), and
72 adjust the significand to match. */
75 /* Used to classify two numbers simultaneously. */
76 #define CLASS2(A, B) ((A) << 2 | (B))
78 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
79 #error "Some constant folding done by hand to avoid shift count warnings"
80 #endif
82 static void get_zero (REAL_VALUE_TYPE *, int);
83 static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
84 static void get_canonical_snan (REAL_VALUE_TYPE *, int);
85 static void get_inf (REAL_VALUE_TYPE *, int);
86 static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
87 const REAL_VALUE_TYPE *, unsigned int);
88 static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
89 unsigned int);
90 static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
91 unsigned int);
92 static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
93 static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
94 const REAL_VALUE_TYPE *);
95 static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
96 const REAL_VALUE_TYPE *, int);
97 static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
98 static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
99 static int cmp_significand_0 (const REAL_VALUE_TYPE *);
100 static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
101 static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
102 static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
103 static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
104 static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
105 const REAL_VALUE_TYPE *);
106 static void normalize (REAL_VALUE_TYPE *);
108 static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
109 const REAL_VALUE_TYPE *, int);
110 static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
111 const REAL_VALUE_TYPE *);
112 static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
113 const REAL_VALUE_TYPE *);
114 static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
115 static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
117 static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
119 static const REAL_VALUE_TYPE * ten_to_ptwo (int);
120 static const REAL_VALUE_TYPE * ten_to_mptwo (int);
121 static const REAL_VALUE_TYPE * real_digit (int);
122 static void times_pten (REAL_VALUE_TYPE *, int);
124 static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
126 /* Initialize R with a positive zero. */
128 static inline void
129 get_zero (REAL_VALUE_TYPE *r, int sign)
131 memset (r, 0, sizeof (*r));
132 r->sign = sign;
135 /* Initialize R with the canonical quiet NaN. */
137 static inline void
138 get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
140 memset (r, 0, sizeof (*r));
141 r->class = rvc_nan;
142 r->sign = sign;
143 r->canonical = 1;
146 static inline void
147 get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
149 memset (r, 0, sizeof (*r));
150 r->class = rvc_nan;
151 r->sign = sign;
152 r->signalling = 1;
153 r->canonical = 1;
156 static inline void
157 get_inf (REAL_VALUE_TYPE *r, int sign)
159 memset (r, 0, sizeof (*r));
160 r->class = rvc_inf;
161 r->sign = sign;
165 /* Right-shift the significand of A by N bits; put the result in the
166 significand of R. If any one bits are shifted out, return true. */
168 static bool
169 sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
170 unsigned int n)
172 unsigned long sticky = 0;
173 unsigned int i, ofs = 0;
175 if (n >= HOST_BITS_PER_LONG)
177 for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
178 sticky |= a->sig[i];
179 n &= HOST_BITS_PER_LONG - 1;
182 if (n != 0)
184 sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
185 for (i = 0; i < SIGSZ; ++i)
187 r->sig[i]
188 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
189 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
190 << (HOST_BITS_PER_LONG - n)));
193 else
195 for (i = 0; ofs + i < SIGSZ; ++i)
196 r->sig[i] = a->sig[ofs + i];
197 for (; i < SIGSZ; ++i)
198 r->sig[i] = 0;
201 return sticky != 0;
204 /* Right-shift the significand of A by N bits; put the result in the
205 significand of R. */
207 static void
208 rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
209 unsigned int n)
211 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
213 n &= HOST_BITS_PER_LONG - 1;
214 if (n != 0)
216 for (i = 0; i < SIGSZ; ++i)
218 r->sig[i]
219 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
220 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
221 << (HOST_BITS_PER_LONG - n)));
224 else
226 for (i = 0; ofs + i < SIGSZ; ++i)
227 r->sig[i] = a->sig[ofs + i];
228 for (; i < SIGSZ; ++i)
229 r->sig[i] = 0;
233 /* Left-shift the significand of A by N bits; put the result in the
234 significand of R. */
236 static void
237 lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
238 unsigned int n)
240 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
242 n &= HOST_BITS_PER_LONG - 1;
243 if (n == 0)
245 for (i = 0; ofs + i < SIGSZ; ++i)
246 r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
247 for (; i < SIGSZ; ++i)
248 r->sig[SIGSZ-1-i] = 0;
250 else
251 for (i = 0; i < SIGSZ; ++i)
253 r->sig[SIGSZ-1-i]
254 = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
255 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
256 >> (HOST_BITS_PER_LONG - n)));
260 /* Likewise, but N is specialized to 1. */
262 static inline void
263 lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
265 unsigned int i;
267 for (i = SIGSZ - 1; i > 0; --i)
268 r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
269 r->sig[0] = a->sig[0] << 1;
272 /* Add the significands of A and B, placing the result in R. Return
273 true if there was carry out of the most significant word. */
275 static inline bool
276 add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
277 const REAL_VALUE_TYPE *b)
279 bool carry = false;
280 int i;
282 for (i = 0; i < SIGSZ; ++i)
284 unsigned long ai = a->sig[i];
285 unsigned long ri = ai + b->sig[i];
287 if (carry)
289 carry = ri < ai;
290 carry |= ++ri == 0;
292 else
293 carry = ri < ai;
295 r->sig[i] = ri;
298 return carry;
301 /* Subtract the significands of A and B, placing the result in R. CARRY is
302 true if there's a borrow incoming to the least significant word.
303 Return true if there was borrow out of the most significant word. */
305 static inline bool
306 sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
307 const REAL_VALUE_TYPE *b, int carry)
309 int i;
311 for (i = 0; i < SIGSZ; ++i)
313 unsigned long ai = a->sig[i];
314 unsigned long ri = ai - b->sig[i];
316 if (carry)
318 carry = ri > ai;
319 carry |= ~--ri == 0;
321 else
322 carry = ri > ai;
324 r->sig[i] = ri;
327 return carry;
330 /* Negate the significand A, placing the result in R. */
332 static inline void
333 neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
335 bool carry = true;
336 int i;
338 for (i = 0; i < SIGSZ; ++i)
340 unsigned long ri, ai = a->sig[i];
342 if (carry)
344 if (ai)
346 ri = -ai;
347 carry = false;
349 else
350 ri = ai;
352 else
353 ri = ~ai;
355 r->sig[i] = ri;
359 /* Compare significands. Return tri-state vs zero. */
361 static inline int
362 cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
364 int i;
366 for (i = SIGSZ - 1; i >= 0; --i)
368 unsigned long ai = a->sig[i];
369 unsigned long bi = b->sig[i];
371 if (ai > bi)
372 return 1;
373 if (ai < bi)
374 return -1;
377 return 0;
380 /* Return true if A is nonzero. */
382 static inline int
383 cmp_significand_0 (const REAL_VALUE_TYPE *a)
385 int i;
387 for (i = SIGSZ - 1; i >= 0; --i)
388 if (a->sig[i])
389 return 1;
391 return 0;
394 /* Set bit N of the significand of R. */
396 static inline void
397 set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
399 r->sig[n / HOST_BITS_PER_LONG]
400 |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
403 /* Clear bit N of the significand of R. */
405 static inline void
406 clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
408 r->sig[n / HOST_BITS_PER_LONG]
409 &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
412 /* Test bit N of the significand of R. */
414 static inline bool
415 test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
417 /* ??? Compiler bug here if we return this expression directly.
418 The conversion to bool strips the "&1" and we wind up testing
419 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
420 int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
421 return t;
424 /* Clear bits 0..N-1 of the significand of R. */
426 static void
427 clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
429 int i, w = n / HOST_BITS_PER_LONG;
431 for (i = 0; i < w; ++i)
432 r->sig[i] = 0;
434 r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
437 /* Divide the significands of A and B, placing the result in R. Return
438 true if the division was inexact. */
440 static inline bool
441 div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
442 const REAL_VALUE_TYPE *b)
444 REAL_VALUE_TYPE u;
445 int i, bit = SIGNIFICAND_BITS - 1;
446 unsigned long msb, inexact;
448 u = *a;
449 memset (r->sig, 0, sizeof (r->sig));
451 msb = 0;
452 goto start;
455 msb = u.sig[SIGSZ-1] & SIG_MSB;
456 lshift_significand_1 (&u, &u);
457 start:
458 if (msb || cmp_significands (&u, b) >= 0)
460 sub_significands (&u, &u, b, 0);
461 set_significand_bit (r, bit);
464 while (--bit >= 0);
466 for (i = 0, inexact = 0; i < SIGSZ; i++)
467 inexact |= u.sig[i];
469 return inexact != 0;
472 /* Adjust the exponent and significand of R such that the most
473 significant bit is set. We underflow to zero and overflow to
474 infinity here, without denormals. (The intermediate representation
475 exponent is large enough to handle target denormals normalized.) */
477 static void
478 normalize (REAL_VALUE_TYPE *r)
480 int shift = 0, exp;
481 int i, j;
483 /* Find the first word that is nonzero. */
484 for (i = SIGSZ - 1; i >= 0; i--)
485 if (r->sig[i] == 0)
486 shift += HOST_BITS_PER_LONG;
487 else
488 break;
490 /* Zero significand flushes to zero. */
491 if (i < 0)
493 r->class = rvc_zero;
494 r->exp = 0;
495 return;
498 /* Find the first bit that is nonzero. */
499 for (j = 0; ; j++)
500 if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
501 break;
502 shift += j;
504 if (shift > 0)
506 exp = r->exp - shift;
507 if (exp > MAX_EXP)
508 get_inf (r, r->sign);
509 else if (exp < -MAX_EXP)
510 get_zero (r, r->sign);
511 else
513 r->exp = exp;
514 lshift_significand (r, r, shift);
519 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
520 result may be inexact due to a loss of precision. */
522 static bool
523 do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
524 const REAL_VALUE_TYPE *b, int subtract_p)
526 int dexp, sign, exp;
527 REAL_VALUE_TYPE t;
528 bool inexact = false;
530 /* Determine if we need to add or subtract. */
531 sign = a->sign;
532 subtract_p = (sign ^ b->sign) ^ subtract_p;
534 switch (CLASS2 (a->class, b->class))
536 case CLASS2 (rvc_zero, rvc_zero):
537 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
538 get_zero (r, sign & !subtract_p);
539 return false;
541 case CLASS2 (rvc_zero, rvc_normal):
542 case CLASS2 (rvc_zero, rvc_inf):
543 case CLASS2 (rvc_zero, rvc_nan):
544 /* 0 + ANY = ANY. */
545 case CLASS2 (rvc_normal, rvc_nan):
546 case CLASS2 (rvc_inf, rvc_nan):
547 case CLASS2 (rvc_nan, rvc_nan):
548 /* ANY + NaN = NaN. */
549 case CLASS2 (rvc_normal, rvc_inf):
550 /* R + Inf = Inf. */
551 *r = *b;
552 r->sign = sign ^ subtract_p;
553 return false;
555 case CLASS2 (rvc_normal, rvc_zero):
556 case CLASS2 (rvc_inf, rvc_zero):
557 case CLASS2 (rvc_nan, rvc_zero):
558 /* ANY + 0 = ANY. */
559 case CLASS2 (rvc_nan, rvc_normal):
560 case CLASS2 (rvc_nan, rvc_inf):
561 /* NaN + ANY = NaN. */
562 case CLASS2 (rvc_inf, rvc_normal):
563 /* Inf + R = Inf. */
564 *r = *a;
565 return false;
567 case CLASS2 (rvc_inf, rvc_inf):
568 if (subtract_p)
569 /* Inf - Inf = NaN. */
570 get_canonical_qnan (r, 0);
571 else
572 /* Inf + Inf = Inf. */
573 *r = *a;
574 return false;
576 case CLASS2 (rvc_normal, rvc_normal):
577 break;
579 default:
580 abort ();
583 /* Swap the arguments such that A has the larger exponent. */
584 dexp = a->exp - b->exp;
585 if (dexp < 0)
587 const REAL_VALUE_TYPE *t;
588 t = a, a = b, b = t;
589 dexp = -dexp;
590 sign ^= subtract_p;
592 exp = a->exp;
594 /* If the exponents are not identical, we need to shift the
595 significand of B down. */
596 if (dexp > 0)
598 /* If the exponents are too far apart, the significands
599 do not overlap, which makes the subtraction a noop. */
600 if (dexp >= SIGNIFICAND_BITS)
602 *r = *a;
603 r->sign = sign;
604 return true;
607 inexact |= sticky_rshift_significand (&t, b, dexp);
608 b = &t;
611 if (subtract_p)
613 if (sub_significands (r, a, b, inexact))
615 /* We got a borrow out of the subtraction. That means that
616 A and B had the same exponent, and B had the larger
617 significand. We need to swap the sign and negate the
618 significand. */
619 sign ^= 1;
620 neg_significand (r, r);
623 else
625 if (add_significands (r, a, b))
627 /* We got carry out of the addition. This means we need to
628 shift the significand back down one bit and increase the
629 exponent. */
630 inexact |= sticky_rshift_significand (r, r, 1);
631 r->sig[SIGSZ-1] |= SIG_MSB;
632 if (++exp > MAX_EXP)
634 get_inf (r, sign);
635 return true;
640 r->class = rvc_normal;
641 r->sign = sign;
642 r->exp = exp;
644 /* Re-normalize the result. */
645 normalize (r);
647 /* Special case: if the subtraction results in zero, the result
648 is positive. */
649 if (r->class == rvc_zero)
650 r->sign = 0;
651 else
652 r->sig[0] |= inexact;
654 return inexact;
657 /* Calculate R = A * B. Return true if the result may be inexact. */
659 static bool
660 do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
661 const REAL_VALUE_TYPE *b)
663 REAL_VALUE_TYPE u, t, *rr;
664 unsigned int i, j, k;
665 int sign = a->sign ^ b->sign;
666 bool inexact = false;
668 switch (CLASS2 (a->class, b->class))
670 case CLASS2 (rvc_zero, rvc_zero):
671 case CLASS2 (rvc_zero, rvc_normal):
672 case CLASS2 (rvc_normal, rvc_zero):
673 /* +-0 * ANY = 0 with appropriate sign. */
674 get_zero (r, sign);
675 return false;
677 case CLASS2 (rvc_zero, rvc_nan):
678 case CLASS2 (rvc_normal, rvc_nan):
679 case CLASS2 (rvc_inf, rvc_nan):
680 case CLASS2 (rvc_nan, rvc_nan):
681 /* ANY * NaN = NaN. */
682 *r = *b;
683 r->sign = sign;
684 return false;
686 case CLASS2 (rvc_nan, rvc_zero):
687 case CLASS2 (rvc_nan, rvc_normal):
688 case CLASS2 (rvc_nan, rvc_inf):
689 /* NaN * ANY = NaN. */
690 *r = *a;
691 r->sign = sign;
692 return false;
694 case CLASS2 (rvc_zero, rvc_inf):
695 case CLASS2 (rvc_inf, rvc_zero):
696 /* 0 * Inf = NaN */
697 get_canonical_qnan (r, sign);
698 return false;
700 case CLASS2 (rvc_inf, rvc_inf):
701 case CLASS2 (rvc_normal, rvc_inf):
702 case CLASS2 (rvc_inf, rvc_normal):
703 /* Inf * Inf = Inf, R * Inf = Inf */
704 get_inf (r, sign);
705 return false;
707 case CLASS2 (rvc_normal, rvc_normal):
708 break;
710 default:
711 abort ();
714 if (r == a || r == b)
715 rr = &t;
716 else
717 rr = r;
718 get_zero (rr, 0);
720 /* Collect all the partial products. Since we don't have sure access
721 to a widening multiply, we split each long into two half-words.
723 Consider the long-hand form of a four half-word multiplication:
725 A B C D
726 * E F G H
727 --------------
728 DE DF DG DH
729 CE CF CG CH
730 BE BF BG BH
731 AE AF AG AH
733 We construct partial products of the widened half-word products
734 that are known to not overlap, e.g. DF+DH. Each such partial
735 product is given its proper exponent, which allows us to sum them
736 and obtain the finished product. */
738 for (i = 0; i < SIGSZ * 2; ++i)
740 unsigned long ai = a->sig[i / 2];
741 if (i & 1)
742 ai >>= HOST_BITS_PER_LONG / 2;
743 else
744 ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
746 if (ai == 0)
747 continue;
749 for (j = 0; j < 2; ++j)
751 int exp = (a->exp - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
752 + (b->exp - (1-j)*(HOST_BITS_PER_LONG/2)));
754 if (exp > MAX_EXP)
756 get_inf (r, sign);
757 return true;
759 if (exp < -MAX_EXP)
761 /* Would underflow to zero, which we shouldn't bother adding. */
762 inexact = true;
763 continue;
766 memset (&u, 0, sizeof (u));
767 u.class = rvc_normal;
768 u.exp = exp;
770 for (k = j; k < SIGSZ * 2; k += 2)
772 unsigned long bi = b->sig[k / 2];
773 if (k & 1)
774 bi >>= HOST_BITS_PER_LONG / 2;
775 else
776 bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
778 u.sig[k / 2] = ai * bi;
781 normalize (&u);
782 inexact |= do_add (rr, rr, &u, 0);
786 rr->sign = sign;
787 if (rr != r)
788 *r = t;
790 return inexact;
793 /* Calculate R = A / B. Return true if the result may be inexact. */
795 static bool
796 do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
797 const REAL_VALUE_TYPE *b)
799 int exp, sign = a->sign ^ b->sign;
800 REAL_VALUE_TYPE t, *rr;
801 bool inexact;
803 switch (CLASS2 (a->class, b->class))
805 case CLASS2 (rvc_zero, rvc_zero):
806 /* 0 / 0 = NaN. */
807 case CLASS2 (rvc_inf, rvc_inf):
808 /* Inf / Inf = NaN. */
809 get_canonical_qnan (r, sign);
810 return false;
812 case CLASS2 (rvc_zero, rvc_normal):
813 case CLASS2 (rvc_zero, rvc_inf):
814 /* 0 / ANY = 0. */
815 case CLASS2 (rvc_normal, rvc_inf):
816 /* R / Inf = 0. */
817 get_zero (r, sign);
818 return false;
820 case CLASS2 (rvc_normal, rvc_zero):
821 /* R / 0 = Inf. */
822 case CLASS2 (rvc_inf, rvc_zero):
823 /* Inf / 0 = Inf. */
824 get_inf (r, sign);
825 return false;
827 case CLASS2 (rvc_zero, rvc_nan):
828 case CLASS2 (rvc_normal, rvc_nan):
829 case CLASS2 (rvc_inf, rvc_nan):
830 case CLASS2 (rvc_nan, rvc_nan):
831 /* ANY / NaN = NaN. */
832 *r = *b;
833 r->sign = sign;
834 return false;
836 case CLASS2 (rvc_nan, rvc_zero):
837 case CLASS2 (rvc_nan, rvc_normal):
838 case CLASS2 (rvc_nan, rvc_inf):
839 /* NaN / ANY = NaN. */
840 *r = *a;
841 r->sign = sign;
842 return false;
844 case CLASS2 (rvc_inf, rvc_normal):
845 /* Inf / R = Inf. */
846 get_inf (r, sign);
847 return false;
849 case CLASS2 (rvc_normal, rvc_normal):
850 break;
852 default:
853 abort ();
856 if (r == a || r == b)
857 rr = &t;
858 else
859 rr = r;
861 /* Make sure all fields in the result are initialized. */
862 get_zero (rr, 0);
863 rr->class = rvc_normal;
864 rr->sign = sign;
866 exp = a->exp - b->exp + 1;
867 if (exp > MAX_EXP)
869 get_inf (r, sign);
870 return true;
872 if (exp < -MAX_EXP)
874 get_zero (r, sign);
875 return true;
877 rr->exp = exp;
879 inexact = div_significands (rr, a, b);
881 /* Re-normalize the result. */
882 normalize (rr);
883 rr->sig[0] |= inexact;
885 if (rr != r)
886 *r = t;
888 return inexact;
891 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
892 one of the two operands is a NaN. */
894 static int
895 do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
896 int nan_result)
898 int ret;
900 switch (CLASS2 (a->class, b->class))
902 case CLASS2 (rvc_zero, rvc_zero):
903 /* Sign of zero doesn't matter for compares. */
904 return 0;
906 case CLASS2 (rvc_inf, rvc_zero):
907 case CLASS2 (rvc_inf, rvc_normal):
908 case CLASS2 (rvc_normal, rvc_zero):
909 return (a->sign ? -1 : 1);
911 case CLASS2 (rvc_inf, rvc_inf):
912 return -a->sign - -b->sign;
914 case CLASS2 (rvc_zero, rvc_normal):
915 case CLASS2 (rvc_zero, rvc_inf):
916 case CLASS2 (rvc_normal, rvc_inf):
917 return (b->sign ? 1 : -1);
919 case CLASS2 (rvc_zero, rvc_nan):
920 case CLASS2 (rvc_normal, rvc_nan):
921 case CLASS2 (rvc_inf, rvc_nan):
922 case CLASS2 (rvc_nan, rvc_nan):
923 case CLASS2 (rvc_nan, rvc_zero):
924 case CLASS2 (rvc_nan, rvc_normal):
925 case CLASS2 (rvc_nan, rvc_inf):
926 return nan_result;
928 case CLASS2 (rvc_normal, rvc_normal):
929 break;
931 default:
932 abort ();
935 if (a->sign != b->sign)
936 return -a->sign - -b->sign;
938 if (a->exp > b->exp)
939 ret = 1;
940 else if (a->exp < b->exp)
941 ret = -1;
942 else
943 ret = cmp_significands (a, b);
945 return (a->sign ? -ret : ret);
948 /* Return A truncated to an integral value toward zero. */
950 static void
951 do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
953 *r = *a;
955 switch (r->class)
957 case rvc_zero:
958 case rvc_inf:
959 case rvc_nan:
960 break;
962 case rvc_normal:
963 if (r->exp <= 0)
964 get_zero (r, r->sign);
965 else if (r->exp < SIGNIFICAND_BITS)
966 clear_significand_below (r, SIGNIFICAND_BITS - r->exp);
967 break;
969 default:
970 abort ();
974 /* Perform the binary or unary operation described by CODE.
975 For a unary operation, leave OP1 NULL. */
977 void
978 real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
979 const REAL_VALUE_TYPE *op1)
981 enum tree_code code = icode;
983 switch (code)
985 case PLUS_EXPR:
986 do_add (r, op0, op1, 0);
987 break;
989 case MINUS_EXPR:
990 do_add (r, op0, op1, 1);
991 break;
993 case MULT_EXPR:
994 do_multiply (r, op0, op1);
995 break;
997 case RDIV_EXPR:
998 do_divide (r, op0, op1);
999 break;
1001 case MIN_EXPR:
1002 if (op1->class == rvc_nan)
1003 *r = *op1;
1004 else if (do_compare (op0, op1, -1) < 0)
1005 *r = *op0;
1006 else
1007 *r = *op1;
1008 break;
1010 case MAX_EXPR:
1011 if (op1->class == rvc_nan)
1012 *r = *op1;
1013 else if (do_compare (op0, op1, 1) < 0)
1014 *r = *op1;
1015 else
1016 *r = *op0;
1017 break;
1019 case NEGATE_EXPR:
1020 *r = *op0;
1021 r->sign ^= 1;
1022 break;
1024 case ABS_EXPR:
1025 *r = *op0;
1026 r->sign = 0;
1027 break;
1029 case FIX_TRUNC_EXPR:
1030 do_fix_trunc (r, op0);
1031 break;
1033 default:
1034 abort ();
1038 /* Legacy. Similar, but return the result directly. */
1040 REAL_VALUE_TYPE
1041 real_arithmetic2 (int icode, const REAL_VALUE_TYPE *op0,
1042 const REAL_VALUE_TYPE *op1)
1044 REAL_VALUE_TYPE r;
1045 real_arithmetic (&r, icode, op0, op1);
1046 return r;
1049 bool
1050 real_compare (int icode, const REAL_VALUE_TYPE *op0,
1051 const REAL_VALUE_TYPE *op1)
1053 enum tree_code code = icode;
1055 switch (code)
1057 case LT_EXPR:
1058 return do_compare (op0, op1, 1) < 0;
1059 case LE_EXPR:
1060 return do_compare (op0, op1, 1) <= 0;
1061 case GT_EXPR:
1062 return do_compare (op0, op1, -1) > 0;
1063 case GE_EXPR:
1064 return do_compare (op0, op1, -1) >= 0;
1065 case EQ_EXPR:
1066 return do_compare (op0, op1, -1) == 0;
1067 case NE_EXPR:
1068 return do_compare (op0, op1, -1) != 0;
1069 case UNORDERED_EXPR:
1070 return op0->class == rvc_nan || op1->class == rvc_nan;
1071 case ORDERED_EXPR:
1072 return op0->class != rvc_nan && op1->class != rvc_nan;
1073 case UNLT_EXPR:
1074 return do_compare (op0, op1, -1) < 0;
1075 case UNLE_EXPR:
1076 return do_compare (op0, op1, -1) <= 0;
1077 case UNGT_EXPR:
1078 return do_compare (op0, op1, 1) > 0;
1079 case UNGE_EXPR:
1080 return do_compare (op0, op1, 1) >= 0;
1081 case UNEQ_EXPR:
1082 return do_compare (op0, op1, 0) == 0;
1084 default:
1085 abort ();
1089 /* Return floor log2(R). */
1092 real_exponent (const REAL_VALUE_TYPE *r)
1094 switch (r->class)
1096 case rvc_zero:
1097 return 0;
1098 case rvc_inf:
1099 case rvc_nan:
1100 return (unsigned int)-1 >> 1;
1101 case rvc_normal:
1102 return r->exp;
1103 default:
1104 abort ();
1108 /* R = OP0 * 2**EXP. */
1110 void
1111 real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
1113 *r = *op0;
1114 switch (r->class)
1116 case rvc_zero:
1117 case rvc_inf:
1118 case rvc_nan:
1119 break;
1121 case rvc_normal:
1122 exp += op0->exp;
1123 if (exp > MAX_EXP)
1124 get_inf (r, r->sign);
1125 else if (exp < -MAX_EXP)
1126 get_zero (r, r->sign);
1127 else
1128 r->exp = exp;
1129 break;
1131 default:
1132 abort ();
1136 /* Determine whether a floating-point value X is infinite. */
1138 bool
1139 real_isinf (const REAL_VALUE_TYPE *r)
1141 return (r->class == rvc_inf);
1144 /* Determine whether a floating-point value X is a NaN. */
1146 bool
1147 real_isnan (const REAL_VALUE_TYPE *r)
1149 return (r->class == rvc_nan);
1152 /* Determine whether a floating-point value X is negative. */
1154 bool
1155 real_isneg (const REAL_VALUE_TYPE *r)
1157 return r->sign;
1160 /* Determine whether a floating-point value X is minus zero. */
1162 bool
1163 real_isnegzero (const REAL_VALUE_TYPE *r)
1165 return r->sign && r->class == rvc_zero;
1168 /* Compare two floating-point objects for bitwise identity. */
1170 bool
1171 real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
1173 int i;
1175 if (a->class != b->class)
1176 return false;
1177 if (a->sign != b->sign)
1178 return false;
1180 switch (a->class)
1182 case rvc_zero:
1183 case rvc_inf:
1184 return true;
1186 case rvc_normal:
1187 if (a->exp != b->exp)
1188 return false;
1189 break;
1191 case rvc_nan:
1192 if (a->signalling != b->signalling)
1193 return false;
1194 /* The significand is ignored for canonical NaNs. */
1195 if (a->canonical || b->canonical)
1196 return a->canonical == b->canonical;
1197 break;
1199 default:
1200 abort ();
1203 for (i = 0; i < SIGSZ; ++i)
1204 if (a->sig[i] != b->sig[i])
1205 return false;
1207 return true;
1210 /* Try to change R into its exact multiplicative inverse in machine
1211 mode MODE. Return true if successful. */
1213 bool
1214 exact_real_inverse (enum machine_mode mode, REAL_VALUE_TYPE *r)
1216 const REAL_VALUE_TYPE *one = real_digit (1);
1217 REAL_VALUE_TYPE u;
1218 int i;
1220 if (r->class != rvc_normal)
1221 return false;
1223 /* Check for a power of two: all significand bits zero except the MSB. */
1224 for (i = 0; i < SIGSZ-1; ++i)
1225 if (r->sig[i] != 0)
1226 return false;
1227 if (r->sig[SIGSZ-1] != SIG_MSB)
1228 return false;
1230 /* Find the inverse and truncate to the required mode. */
1231 do_divide (&u, one, r);
1232 real_convert (&u, mode, &u);
1234 /* The rounding may have overflowed. */
1235 if (u.class != rvc_normal)
1236 return false;
1237 for (i = 0; i < SIGSZ-1; ++i)
1238 if (u.sig[i] != 0)
1239 return false;
1240 if (u.sig[SIGSZ-1] != SIG_MSB)
1241 return false;
1243 *r = u;
1244 return true;
1247 /* Render R as an integer. */
1249 HOST_WIDE_INT
1250 real_to_integer (const REAL_VALUE_TYPE *r)
1252 unsigned HOST_WIDE_INT i;
1254 switch (r->class)
1256 case rvc_zero:
1257 underflow:
1258 return 0;
1260 case rvc_inf:
1261 case rvc_nan:
1262 overflow:
1263 i = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1264 if (!r->sign)
1265 i--;
1266 return i;
1268 case rvc_normal:
1269 if (r->exp <= 0)
1270 goto underflow;
1271 /* Only force overflow for unsigned overflow. Signed overflow is
1272 undefined, so it doesn't matter what we return, and some callers
1273 expect to be able to use this routine for both signed and
1274 unsigned conversions. */
1275 if (r->exp > HOST_BITS_PER_WIDE_INT)
1276 goto overflow;
1278 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1279 i = r->sig[SIGSZ-1];
1280 else if (HOST_BITS_PER_WIDE_INT == 2*HOST_BITS_PER_LONG)
1282 i = r->sig[SIGSZ-1];
1283 i = i << (HOST_BITS_PER_LONG - 1) << 1;
1284 i |= r->sig[SIGSZ-2];
1286 else
1287 abort ();
1289 i >>= HOST_BITS_PER_WIDE_INT - r->exp;
1291 if (r->sign)
1292 i = -i;
1293 return i;
1295 default:
1296 abort ();
1300 /* Likewise, but to an integer pair, HI+LOW. */
1302 void
1303 real_to_integer2 (HOST_WIDE_INT *plow, HOST_WIDE_INT *phigh,
1304 const REAL_VALUE_TYPE *r)
1306 REAL_VALUE_TYPE t;
1307 HOST_WIDE_INT low, high;
1308 int exp;
1310 switch (r->class)
1312 case rvc_zero:
1313 underflow:
1314 low = high = 0;
1315 break;
1317 case rvc_inf:
1318 case rvc_nan:
1319 overflow:
1320 high = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1321 if (r->sign)
1322 low = 0;
1323 else
1325 high--;
1326 low = -1;
1328 break;
1330 case rvc_normal:
1331 exp = r->exp;
1332 if (exp <= 0)
1333 goto underflow;
1334 /* Only force overflow for unsigned overflow. Signed overflow is
1335 undefined, so it doesn't matter what we return, and some callers
1336 expect to be able to use this routine for both signed and
1337 unsigned conversions. */
1338 if (exp > 2*HOST_BITS_PER_WIDE_INT)
1339 goto overflow;
1341 rshift_significand (&t, r, 2*HOST_BITS_PER_WIDE_INT - exp);
1342 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1344 high = t.sig[SIGSZ-1];
1345 low = t.sig[SIGSZ-2];
1347 else if (HOST_BITS_PER_WIDE_INT == 2*HOST_BITS_PER_LONG)
1349 high = t.sig[SIGSZ-1];
1350 high = high << (HOST_BITS_PER_LONG - 1) << 1;
1351 high |= t.sig[SIGSZ-2];
1353 low = t.sig[SIGSZ-3];
1354 low = low << (HOST_BITS_PER_LONG - 1) << 1;
1355 low |= t.sig[SIGSZ-4];
1357 else
1358 abort ();
1360 if (r->sign)
1362 if (low == 0)
1363 high = -high;
1364 else
1365 low = -low, high = ~high;
1367 break;
1369 default:
1370 abort ();
1373 *plow = low;
1374 *phigh = high;
1377 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1378 of NUM / DEN. Return the quotient and place the remainder in NUM.
1379 It is expected that NUM / DEN are close enough that the quotient is
1380 small. */
1382 static unsigned long
1383 rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
1385 unsigned long q, msb;
1386 int expn = num->exp, expd = den->exp;
1388 if (expn < expd)
1389 return 0;
1391 q = msb = 0;
1392 goto start;
1395 msb = num->sig[SIGSZ-1] & SIG_MSB;
1396 q <<= 1;
1397 lshift_significand_1 (num, num);
1398 start:
1399 if (msb || cmp_significands (num, den) >= 0)
1401 sub_significands (num, num, den, 0);
1402 q |= 1;
1405 while (--expn >= expd);
1407 num->exp = expd;
1408 normalize (num);
1410 return q;
1413 /* Render R as a decimal floating point constant. Emit DIGITS significant
1414 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1415 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1416 zeros. */
1418 #define M_LOG10_2 0.30102999566398119521
1420 void
1421 real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
1422 size_t digits, int crop_trailing_zeros)
1424 const REAL_VALUE_TYPE *one, *ten;
1425 REAL_VALUE_TYPE r, pten, u, v;
1426 int dec_exp, cmp_one, digit;
1427 size_t max_digits;
1428 char *p, *first, *last;
1429 bool sign;
1431 r = *r_orig;
1432 switch (r.class)
1434 case rvc_zero:
1435 strcpy (str, (r.sign ? "-0.0" : "0.0"));
1436 return;
1437 case rvc_normal:
1438 break;
1439 case rvc_inf:
1440 strcpy (str, (r.sign ? "-Inf" : "+Inf"));
1441 return;
1442 case rvc_nan:
1443 /* ??? Print the significand as well, if not canonical? */
1444 strcpy (str, (r.sign ? "-NaN" : "+NaN"));
1445 return;
1446 default:
1447 abort ();
1450 /* Bound the number of digits printed by the size of the representation. */
1451 max_digits = SIGNIFICAND_BITS * M_LOG10_2;
1452 if (digits == 0 || digits > max_digits)
1453 digits = max_digits;
1455 /* Estimate the decimal exponent, and compute the length of the string it
1456 will print as. Be conservative and add one to account for possible
1457 overflow or rounding error. */
1458 dec_exp = r.exp * M_LOG10_2;
1459 for (max_digits = 1; dec_exp ; max_digits++)
1460 dec_exp /= 10;
1462 /* Bound the number of digits printed by the size of the output buffer. */
1463 max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
1464 if (max_digits > buf_size)
1465 abort ();
1466 if (digits > max_digits)
1467 digits = max_digits;
1469 one = real_digit (1);
1470 ten = ten_to_ptwo (0);
1472 sign = r.sign;
1473 r.sign = 0;
1475 dec_exp = 0;
1476 pten = *one;
1478 cmp_one = do_compare (&r, one, 0);
1479 if (cmp_one > 0)
1481 int m;
1483 /* Number is greater than one. Convert significand to an integer
1484 and strip trailing decimal zeros. */
1486 u = r;
1487 u.exp = SIGNIFICAND_BITS - 1;
1489 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1490 m = floor_log2 (max_digits);
1492 /* Iterate over the bits of the possible powers of 10 that might
1493 be present in U and eliminate them. That is, if we find that
1494 10**2**M divides U evenly, keep the division and increase
1495 DEC_EXP by 2**M. */
1498 REAL_VALUE_TYPE t;
1500 do_divide (&t, &u, ten_to_ptwo (m));
1501 do_fix_trunc (&v, &t);
1502 if (cmp_significands (&v, &t) == 0)
1504 u = t;
1505 dec_exp += 1 << m;
1508 while (--m >= 0);
1510 /* Revert the scaling to integer that we performed earlier. */
1511 u.exp += r.exp - (SIGNIFICAND_BITS - 1);
1512 r = u;
1514 /* Find power of 10. Do this by dividing out 10**2**M when
1515 this is larger than the current remainder. Fill PTEN with
1516 the power of 10 that we compute. */
1517 if (r.exp > 0)
1519 m = floor_log2 ((int)(r.exp * M_LOG10_2)) + 1;
1522 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1523 if (do_compare (&u, ptentwo, 0) >= 0)
1525 do_divide (&u, &u, ptentwo);
1526 do_multiply (&pten, &pten, ptentwo);
1527 dec_exp += 1 << m;
1530 while (--m >= 0);
1532 else
1533 /* We managed to divide off enough tens in the above reduction
1534 loop that we've now got a negative exponent. Fall into the
1535 less-than-one code to compute the proper value for PTEN. */
1536 cmp_one = -1;
1538 if (cmp_one < 0)
1540 int m;
1542 /* Number is less than one. Pad significand with leading
1543 decimal zeros. */
1545 v = r;
1546 while (1)
1548 /* Stop if we'd shift bits off the bottom. */
1549 if (v.sig[0] & 7)
1550 break;
1552 do_multiply (&u, &v, ten);
1554 /* Stop if we're now >= 1. */
1555 if (u.exp > 0)
1556 break;
1558 v = u;
1559 dec_exp -= 1;
1561 r = v;
1563 /* Find power of 10. Do this by multiplying in P=10**2**M when
1564 the current remainder is smaller than 1/P. Fill PTEN with the
1565 power of 10 that we compute. */
1566 m = floor_log2 ((int)(-r.exp * M_LOG10_2)) + 1;
1569 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1570 const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
1572 if (do_compare (&v, ptenmtwo, 0) <= 0)
1574 do_multiply (&v, &v, ptentwo);
1575 do_multiply (&pten, &pten, ptentwo);
1576 dec_exp -= 1 << m;
1579 while (--m >= 0);
1581 /* Invert the positive power of 10 that we've collected so far. */
1582 do_divide (&pten, one, &pten);
1585 p = str;
1586 if (sign)
1587 *p++ = '-';
1588 first = p++;
1590 /* At this point, PTEN should contain the nearest power of 10 smaller
1591 than R, such that this division produces the first digit.
1593 Using a divide-step primitive that returns the complete integral
1594 remainder avoids the rounding error that would be produced if
1595 we were to use do_divide here and then simply multiply by 10 for
1596 each subsequent digit. */
1598 digit = rtd_divmod (&r, &pten);
1600 /* Be prepared for error in that division via underflow ... */
1601 if (digit == 0 && cmp_significand_0 (&r))
1603 /* Multiply by 10 and try again. */
1604 do_multiply (&r, &r, ten);
1605 digit = rtd_divmod (&r, &pten);
1606 dec_exp -= 1;
1607 if (digit == 0)
1608 abort ();
1611 /* ... or overflow. */
1612 if (digit == 10)
1614 *p++ = '1';
1615 if (--digits > 0)
1616 *p++ = '0';
1617 dec_exp += 1;
1619 else if (digit > 10)
1620 abort ();
1621 else
1622 *p++ = digit + '0';
1624 /* Generate subsequent digits. */
1625 while (--digits > 0)
1627 do_multiply (&r, &r, ten);
1628 digit = rtd_divmod (&r, &pten);
1629 *p++ = digit + '0';
1631 last = p;
1633 /* Generate one more digit with which to do rounding. */
1634 do_multiply (&r, &r, ten);
1635 digit = rtd_divmod (&r, &pten);
1637 /* Round the result. */
1638 if (digit == 5)
1640 /* Round to nearest. If R is nonzero there are additional
1641 nonzero digits to be extracted. */
1642 if (cmp_significand_0 (&r))
1643 digit++;
1644 /* Round to even. */
1645 else if ((p[-1] - '0') & 1)
1646 digit++;
1648 if (digit > 5)
1650 while (p > first)
1652 digit = *--p;
1653 if (digit == '9')
1654 *p = '0';
1655 else
1657 *p = digit + 1;
1658 break;
1662 /* Carry out of the first digit. This means we had all 9's and
1663 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1664 if (p == first)
1666 first[1] = '1';
1667 dec_exp++;
1671 /* Insert the decimal point. */
1672 first[0] = first[1];
1673 first[1] = '.';
1675 /* If requested, drop trailing zeros. Never crop past "1.0". */
1676 if (crop_trailing_zeros)
1677 while (last > first + 3 && last[-1] == '0')
1678 last--;
1680 /* Append the exponent. */
1681 sprintf (last, "e%+d", dec_exp);
1684 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1685 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1686 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1687 strip trailing zeros. */
1689 void
1690 real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
1691 size_t digits, int crop_trailing_zeros)
1693 int i, j, exp = r->exp;
1694 char *p, *first;
1695 char exp_buf[16];
1696 size_t max_digits;
1698 switch (r->class)
1700 case rvc_zero:
1701 exp = 0;
1702 break;
1703 case rvc_normal:
1704 break;
1705 case rvc_inf:
1706 strcpy (str, (r->sign ? "-Inf" : "+Inf"));
1707 return;
1708 case rvc_nan:
1709 /* ??? Print the significand as well, if not canonical? */
1710 strcpy (str, (r->sign ? "-NaN" : "+NaN"));
1711 return;
1712 default:
1713 abort ();
1716 if (digits == 0)
1717 digits = SIGNIFICAND_BITS / 4;
1719 /* Bound the number of digits printed by the size of the output buffer. */
1721 sprintf (exp_buf, "p%+d", exp);
1722 max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
1723 if (max_digits > buf_size)
1724 abort ();
1725 if (digits > max_digits)
1726 digits = max_digits;
1728 p = str;
1729 if (r->sign)
1730 *p++ = '-';
1731 *p++ = '0';
1732 *p++ = 'x';
1733 *p++ = '0';
1734 *p++ = '.';
1735 first = p;
1737 for (i = SIGSZ - 1; i >= 0; --i)
1738 for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
1740 *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
1741 if (--digits == 0)
1742 goto out;
1745 out:
1746 if (crop_trailing_zeros)
1747 while (p > first + 1 && p[-1] == '0')
1748 p--;
1750 sprintf (p, "p%+d", exp);
1753 /* Initialize R from a decimal or hexadecimal string. The string is
1754 assumed to have been syntax checked already. */
1756 void
1757 real_from_string (REAL_VALUE_TYPE *r, const char *str)
1759 int exp = 0;
1760 bool sign = false;
1762 get_zero (r, 0);
1764 if (*str == '-')
1766 sign = true;
1767 str++;
1769 else if (*str == '+')
1770 str++;
1772 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
1774 /* Hexadecimal floating point. */
1775 int pos = SIGNIFICAND_BITS - 4, d;
1777 str += 2;
1779 while (*str == '0')
1780 str++;
1781 while (1)
1783 d = hex_value (*str);
1784 if (d == _hex_bad)
1785 break;
1786 if (pos >= 0)
1788 r->sig[pos / HOST_BITS_PER_LONG]
1789 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1790 pos -= 4;
1792 exp += 4;
1793 str++;
1795 if (*str == '.')
1797 str++;
1798 if (pos == SIGNIFICAND_BITS - 4)
1800 while (*str == '0')
1801 str++, exp -= 4;
1803 while (1)
1805 d = hex_value (*str);
1806 if (d == _hex_bad)
1807 break;
1808 if (pos >= 0)
1810 r->sig[pos / HOST_BITS_PER_LONG]
1811 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1812 pos -= 4;
1814 str++;
1817 if (*str == 'p' || *str == 'P')
1819 bool exp_neg = false;
1821 str++;
1822 if (*str == '-')
1824 exp_neg = true;
1825 str++;
1827 else if (*str == '+')
1828 str++;
1830 d = 0;
1831 while (ISDIGIT (*str))
1833 d *= 10;
1834 d += *str - '0';
1835 if (d > MAX_EXP)
1837 /* Overflowed the exponent. */
1838 if (exp_neg)
1839 goto underflow;
1840 else
1841 goto overflow;
1843 str++;
1845 if (exp_neg)
1846 d = -d;
1848 exp += d;
1851 r->class = rvc_normal;
1852 r->exp = exp;
1854 normalize (r);
1856 else
1858 /* Decimal floating point. */
1859 const REAL_VALUE_TYPE *ten = ten_to_ptwo (0);
1860 int d;
1862 while (*str == '0')
1863 str++;
1864 while (ISDIGIT (*str))
1866 d = *str++ - '0';
1867 do_multiply (r, r, ten);
1868 if (d)
1869 do_add (r, r, real_digit (d), 0);
1871 if (*str == '.')
1873 str++;
1874 if (r->class == rvc_zero)
1876 while (*str == '0')
1877 str++, exp--;
1879 while (ISDIGIT (*str))
1881 d = *str++ - '0';
1882 do_multiply (r, r, ten);
1883 if (d)
1884 do_add (r, r, real_digit (d), 0);
1885 exp--;
1889 if (*str == 'e' || *str == 'E')
1891 bool exp_neg = false;
1893 str++;
1894 if (*str == '-')
1896 exp_neg = true;
1897 str++;
1899 else if (*str == '+')
1900 str++;
1902 d = 0;
1903 while (ISDIGIT (*str))
1905 d *= 10;
1906 d += *str - '0';
1907 if (d > MAX_EXP)
1909 /* Overflowed the exponent. */
1910 if (exp_neg)
1911 goto underflow;
1912 else
1913 goto overflow;
1915 str++;
1917 if (exp_neg)
1918 d = -d;
1919 exp += d;
1922 if (exp)
1923 times_pten (r, exp);
1926 r->sign = sign;
1927 return;
1929 underflow:
1930 get_zero (r, sign);
1931 return;
1933 overflow:
1934 get_inf (r, sign);
1935 return;
1938 /* Legacy. Similar, but return the result directly. */
1940 REAL_VALUE_TYPE
1941 real_from_string2 (const char *s, enum machine_mode mode)
1943 REAL_VALUE_TYPE r;
1945 real_from_string (&r, s);
1946 if (mode != VOIDmode)
1947 real_convert (&r, mode, &r);
1949 return r;
1952 /* Initialize R from the integer pair HIGH+LOW. */
1954 void
1955 real_from_integer (REAL_VALUE_TYPE *r, enum machine_mode mode,
1956 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high,
1957 int unsigned_p)
1959 if (low == 0 && high == 0)
1960 get_zero (r, 0);
1961 else
1963 r->class = rvc_normal;
1964 r->sign = high < 0 && !unsigned_p;
1965 r->exp = 2 * HOST_BITS_PER_WIDE_INT;
1967 if (r->sign)
1969 high = ~high;
1970 if (low == 0)
1971 high += 1;
1972 else
1973 low = -low;
1976 if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
1978 r->sig[SIGSZ-1] = high;
1979 r->sig[SIGSZ-2] = low;
1980 memset (r->sig, 0, sizeof(long)*(SIGSZ-2));
1982 else if (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT)
1984 r->sig[SIGSZ-1] = high >> (HOST_BITS_PER_LONG - 1) >> 1;
1985 r->sig[SIGSZ-2] = high;
1986 r->sig[SIGSZ-3] = low >> (HOST_BITS_PER_LONG - 1) >> 1;
1987 r->sig[SIGSZ-4] = low;
1988 if (SIGSZ > 4)
1989 memset (r->sig, 0, sizeof(long)*(SIGSZ-4));
1991 else
1992 abort ();
1994 normalize (r);
1997 if (mode != VOIDmode)
1998 real_convert (r, mode, r);
2001 /* Returns 10**2**N. */
2003 static const REAL_VALUE_TYPE *
2004 ten_to_ptwo (int n)
2006 static REAL_VALUE_TYPE tens[EXP_BITS];
2008 if (n < 0 || n >= EXP_BITS)
2009 abort ();
2011 if (tens[n].class == rvc_zero)
2013 if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
2015 HOST_WIDE_INT t = 10;
2016 int i;
2018 for (i = 0; i < n; ++i)
2019 t *= t;
2021 real_from_integer (&tens[n], VOIDmode, t, 0, 1);
2023 else
2025 const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
2026 do_multiply (&tens[n], t, t);
2030 return &tens[n];
2033 /* Returns 10**(-2**N). */
2035 static const REAL_VALUE_TYPE *
2036 ten_to_mptwo (int n)
2038 static REAL_VALUE_TYPE tens[EXP_BITS];
2040 if (n < 0 || n >= EXP_BITS)
2041 abort ();
2043 if (tens[n].class == rvc_zero)
2044 do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
2046 return &tens[n];
2049 /* Returns N. */
2051 static const REAL_VALUE_TYPE *
2052 real_digit (int n)
2054 static REAL_VALUE_TYPE num[10];
2056 if (n < 0 || n > 9)
2057 abort ();
2059 if (n > 0 && num[n].class == rvc_zero)
2060 real_from_integer (&num[n], VOIDmode, n, 0, 1);
2062 return &num[n];
2065 /* Multiply R by 10**EXP. */
2067 static void
2068 times_pten (REAL_VALUE_TYPE *r, int exp)
2070 REAL_VALUE_TYPE pten, *rr;
2071 bool negative = (exp < 0);
2072 int i;
2074 if (negative)
2076 exp = -exp;
2077 pten = *real_digit (1);
2078 rr = &pten;
2080 else
2081 rr = r;
2083 for (i = 0; exp > 0; ++i, exp >>= 1)
2084 if (exp & 1)
2085 do_multiply (rr, rr, ten_to_ptwo (i));
2087 if (negative)
2088 do_divide (r, r, &pten);
2091 /* Fills R with +Inf. */
2093 void
2094 real_inf (REAL_VALUE_TYPE *r)
2096 get_inf (r, 0);
2099 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2100 we force a QNaN, else we force an SNaN. The string, if not empty,
2101 is parsed as a number and placed in the significand. Return true
2102 if the string was successfully parsed. */
2104 bool
2105 real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
2106 enum machine_mode mode)
2108 const struct real_format *fmt;
2110 fmt = REAL_MODE_FORMAT (mode);
2111 if (fmt == NULL)
2112 abort ();
2114 if (*str == 0)
2116 if (quiet)
2117 get_canonical_qnan (r, 0);
2118 else
2119 get_canonical_snan (r, 0);
2121 else
2123 int base = 10, d;
2124 bool neg = false;
2126 memset (r, 0, sizeof (*r));
2127 r->class = rvc_nan;
2129 /* Parse akin to strtol into the significand of R. */
2131 while (ISSPACE (*str))
2132 str++;
2133 if (*str == '-')
2134 str++, neg = true;
2135 else if (*str == '+')
2136 str++;
2137 if (*str == '0')
2139 if (*++str == 'x')
2140 str++, base = 16;
2141 else
2142 base = 8;
2145 while ((d = hex_value (*str)) < base)
2147 REAL_VALUE_TYPE u;
2149 switch (base)
2151 case 8:
2152 lshift_significand (r, r, 3);
2153 break;
2154 case 16:
2155 lshift_significand (r, r, 4);
2156 break;
2157 case 10:
2158 lshift_significand_1 (&u, r);
2159 lshift_significand (r, r, 3);
2160 add_significands (r, r, &u);
2161 break;
2162 default:
2163 abort ();
2166 get_zero (&u, 0);
2167 u.sig[0] = d;
2168 add_significands (r, r, &u);
2170 str++;
2173 /* Must have consumed the entire string for success. */
2174 if (*str != 0)
2175 return false;
2177 /* Shift the significand into place such that the bits
2178 are in the most significant bits for the format. */
2179 lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
2181 /* Our MSB is always unset for NaNs. */
2182 r->sig[SIGSZ-1] &= ~SIG_MSB;
2184 /* Force quiet or signalling NaN. */
2185 r->signalling = !quiet;
2188 return true;
2191 /* Fills R with the largest finite value representable in mode MODE.
2192 If SIGN is nonzero, R is set to the most negative finite value. */
2194 void
2195 real_maxval (REAL_VALUE_TYPE *r, int sign, enum machine_mode mode)
2197 const struct real_format *fmt;
2198 int np2;
2200 fmt = REAL_MODE_FORMAT (mode);
2201 if (fmt == NULL)
2202 abort ();
2204 r->class = rvc_normal;
2205 r->sign = sign;
2206 r->signalling = 0;
2207 r->canonical = 0;
2208 r->exp = fmt->emax * fmt->log2_b;
2210 np2 = SIGNIFICAND_BITS - fmt->p * fmt->log2_b;
2211 memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
2212 clear_significand_below (r, np2);
2215 /* Fills R with 2**N. */
2217 void
2218 real_2expN (REAL_VALUE_TYPE *r, int n)
2220 memset (r, 0, sizeof (*r));
2222 n++;
2223 if (n > MAX_EXP)
2224 r->class = rvc_inf;
2225 else if (n < -MAX_EXP)
2227 else
2229 r->class = rvc_normal;
2230 r->exp = n;
2231 r->sig[SIGSZ-1] = SIG_MSB;
2236 static void
2237 round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
2239 int p2, np2, i, w;
2240 unsigned long sticky;
2241 bool guard, lsb;
2242 int emin2m1, emax2;
2244 p2 = fmt->p * fmt->log2_b;
2245 emin2m1 = (fmt->emin - 1) * fmt->log2_b;
2246 emax2 = fmt->emax * fmt->log2_b;
2248 np2 = SIGNIFICAND_BITS - p2;
2249 switch (r->class)
2251 underflow:
2252 get_zero (r, r->sign);
2253 case rvc_zero:
2254 if (!fmt->has_signed_zero)
2255 r->sign = 0;
2256 return;
2258 overflow:
2259 get_inf (r, r->sign);
2260 case rvc_inf:
2261 return;
2263 case rvc_nan:
2264 clear_significand_below (r, np2);
2265 return;
2267 case rvc_normal:
2268 break;
2270 default:
2271 abort ();
2274 /* If we're not base2, normalize the exponent to a multiple of
2275 the true base. */
2276 if (fmt->log2_b != 1)
2278 int shift = r->exp & (fmt->log2_b - 1);
2279 if (shift)
2281 shift = fmt->log2_b - shift;
2282 r->sig[0] |= sticky_rshift_significand (r, r, shift);
2283 r->exp += shift;
2287 /* Check the range of the exponent. If we're out of range,
2288 either underflow or overflow. */
2289 if (r->exp > emax2)
2290 goto overflow;
2291 else if (r->exp <= emin2m1)
2293 int diff;
2295 if (!fmt->has_denorm)
2297 /* Don't underflow completely until we've had a chance to round. */
2298 if (r->exp < emin2m1)
2299 goto underflow;
2301 else
2303 diff = emin2m1 - r->exp + 1;
2304 if (diff > p2)
2305 goto underflow;
2307 /* De-normalize the significand. */
2308 r->sig[0] |= sticky_rshift_significand (r, r, diff);
2309 r->exp += diff;
2313 /* There are P2 true significand bits, followed by one guard bit,
2314 followed by one sticky bit, followed by stuff. Fold nonzero
2315 stuff into the sticky bit. */
2317 sticky = 0;
2318 for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
2319 sticky |= r->sig[i];
2320 sticky |=
2321 r->sig[w] & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
2323 guard = test_significand_bit (r, np2 - 1);
2324 lsb = test_significand_bit (r, np2);
2326 /* Round to even. */
2327 if (guard && (sticky || lsb))
2329 REAL_VALUE_TYPE u;
2330 get_zero (&u, 0);
2331 set_significand_bit (&u, np2);
2333 if (add_significands (r, r, &u))
2335 /* Overflow. Means the significand had been all ones, and
2336 is now all zeros. Need to increase the exponent, and
2337 possibly re-normalize it. */
2338 if (++r->exp > emax2)
2339 goto overflow;
2340 r->sig[SIGSZ-1] = SIG_MSB;
2342 if (fmt->log2_b != 1)
2344 int shift = r->exp & (fmt->log2_b - 1);
2345 if (shift)
2347 shift = fmt->log2_b - shift;
2348 rshift_significand (r, r, shift);
2349 r->exp += shift;
2350 if (r->exp > emax2)
2351 goto overflow;
2357 /* Catch underflow that we deferred until after rounding. */
2358 if (r->exp <= emin2m1)
2359 goto underflow;
2361 /* Clear out trailing garbage. */
2362 clear_significand_below (r, np2);
2365 /* Extend or truncate to a new mode. */
2367 void
2368 real_convert (REAL_VALUE_TYPE *r, enum machine_mode mode,
2369 const REAL_VALUE_TYPE *a)
2371 const struct real_format *fmt;
2373 fmt = REAL_MODE_FORMAT (mode);
2374 if (fmt == NULL)
2375 abort ();
2377 *r = *a;
2378 round_for_format (fmt, r);
2380 /* round_for_format de-normalizes denormals. Undo just that part. */
2381 if (r->class == rvc_normal)
2382 normalize (r);
2385 /* Legacy. Likewise, except return the struct directly. */
2387 REAL_VALUE_TYPE
2388 real_value_truncate (enum machine_mode mode, REAL_VALUE_TYPE a)
2390 REAL_VALUE_TYPE r;
2391 real_convert (&r, mode, &a);
2392 return r;
2395 /* Return true if truncating to MODE is exact. */
2397 bool
2398 exact_real_truncate (enum machine_mode mode, const REAL_VALUE_TYPE *a)
2400 REAL_VALUE_TYPE t;
2401 real_convert (&t, mode, a);
2402 return real_identical (&t, a);
2405 /* Write R to the given target format. Place the words of the result
2406 in target word order in BUF. There are always 32 bits in each
2407 long, no matter the size of the host long.
2409 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2411 long
2412 real_to_target_fmt (long *buf, const REAL_VALUE_TYPE *r_orig,
2413 const struct real_format *fmt)
2415 REAL_VALUE_TYPE r;
2416 long buf1;
2418 r = *r_orig;
2419 round_for_format (fmt, &r);
2421 if (!buf)
2422 buf = &buf1;
2423 (*fmt->encode) (fmt, buf, &r);
2425 return *buf;
2428 /* Similar, but look up the format from MODE. */
2430 long
2431 real_to_target (long *buf, const REAL_VALUE_TYPE *r, enum machine_mode mode)
2433 const struct real_format *fmt;
2435 fmt = REAL_MODE_FORMAT (mode);
2436 if (fmt == NULL)
2437 abort ();
2439 return real_to_target_fmt (buf, r, fmt);
2442 /* Read R from the given target format. Read the words of the result
2443 in target word order in BUF. There are always 32 bits in each
2444 long, no matter the size of the host long. */
2446 void
2447 real_from_target_fmt (REAL_VALUE_TYPE *r, const long *buf,
2448 const struct real_format *fmt)
2450 (*fmt->decode) (fmt, r, buf);
2453 /* Similar, but look up the format from MODE. */
2455 void
2456 real_from_target (REAL_VALUE_TYPE *r, const long *buf, enum machine_mode mode)
2458 const struct real_format *fmt;
2460 fmt = REAL_MODE_FORMAT (mode);
2461 if (fmt == NULL)
2462 abort ();
2464 (*fmt->decode) (fmt, r, buf);
2467 /* Return the number of bits in the significand for MODE. */
2468 /* ??? Legacy. Should get access to real_format directly. */
2471 significand_size (enum machine_mode mode)
2473 const struct real_format *fmt;
2475 fmt = REAL_MODE_FORMAT (mode);
2476 if (fmt == NULL)
2477 return 0;
2479 return fmt->p * fmt->log2_b;
2482 /* Return a hash value for the given real value. */
2483 /* ??? The "unsigned int" return value is intended to be hashval_t,
2484 but I didn't want to pull hashtab.h into real.h. */
2486 unsigned int
2487 real_hash (const REAL_VALUE_TYPE *r)
2489 unsigned int h;
2490 size_t i;
2492 h = r->class | (r->sign << 2);
2493 switch (r->class)
2495 case rvc_zero:
2496 case rvc_inf:
2497 return h;
2499 case rvc_normal:
2500 h |= r->exp << 3;
2501 break;
2503 case rvc_nan:
2504 if (r->signalling)
2505 h ^= (unsigned int)-1;
2506 if (r->canonical)
2507 return h;
2508 break;
2510 default:
2511 abort ();
2514 if (sizeof(unsigned long) > sizeof(unsigned int))
2515 for (i = 0; i < SIGSZ; ++i)
2517 unsigned long s = r->sig[i];
2518 h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
2520 else
2521 for (i = 0; i < SIGSZ; ++i)
2522 h ^= r->sig[i];
2524 return h;
2527 /* IEEE single-precision format. */
2529 static void encode_ieee_single (const struct real_format *fmt,
2530 long *, const REAL_VALUE_TYPE *);
2531 static void decode_ieee_single (const struct real_format *,
2532 REAL_VALUE_TYPE *, const long *);
2534 static void
2535 encode_ieee_single (const struct real_format *fmt, long *buf,
2536 const REAL_VALUE_TYPE *r)
2538 unsigned long image, sig, exp;
2539 unsigned long sign = r->sign;
2540 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2542 image = sign << 31;
2543 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
2545 switch (r->class)
2547 case rvc_zero:
2548 break;
2550 case rvc_inf:
2551 if (fmt->has_inf)
2552 image |= 255 << 23;
2553 else
2554 image |= 0x7fffffff;
2555 break;
2557 case rvc_nan:
2558 if (fmt->has_nans)
2560 if (r->canonical)
2561 sig = 0;
2562 if (r->signalling == fmt->qnan_msb_set)
2563 sig &= ~(1 << 22);
2564 else
2565 sig |= 1 << 22;
2566 /* We overload qnan_msb_set here: it's only clear for
2567 mips_ieee_single, which wants all mantissa bits but the
2568 quiet/signalling one set in canonical NaNs (at least
2569 Quiet ones). */
2570 if (r->canonical && !fmt->qnan_msb_set)
2571 sig |= (1 << 22) - 1;
2572 else if (sig == 0)
2573 sig = 1 << 21;
2575 image |= 255 << 23;
2576 image |= sig;
2578 else
2579 image |= 0x7fffffff;
2580 break;
2582 case rvc_normal:
2583 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2584 whereas the intermediate representation is 0.F x 2**exp.
2585 Which means we're off by one. */
2586 if (denormal)
2587 exp = 0;
2588 else
2589 exp = r->exp + 127 - 1;
2590 image |= exp << 23;
2591 image |= sig;
2592 break;
2594 default:
2595 abort ();
2598 buf[0] = image;
2601 static void
2602 decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2603 const long *buf)
2605 unsigned long image = buf[0] & 0xffffffff;
2606 bool sign = (image >> 31) & 1;
2607 int exp = (image >> 23) & 0xff;
2609 memset (r, 0, sizeof (*r));
2610 image <<= HOST_BITS_PER_LONG - 24;
2611 image &= ~SIG_MSB;
2613 if (exp == 0)
2615 if (image && fmt->has_denorm)
2617 r->class = rvc_normal;
2618 r->sign = sign;
2619 r->exp = -126;
2620 r->sig[SIGSZ-1] = image << 1;
2621 normalize (r);
2623 else if (fmt->has_signed_zero)
2624 r->sign = sign;
2626 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
2628 if (image)
2630 r->class = rvc_nan;
2631 r->sign = sign;
2632 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
2633 ^ fmt->qnan_msb_set);
2634 r->sig[SIGSZ-1] = image;
2636 else
2638 r->class = rvc_inf;
2639 r->sign = sign;
2642 else
2644 r->class = rvc_normal;
2645 r->sign = sign;
2646 r->exp = exp - 127 + 1;
2647 r->sig[SIGSZ-1] = image | SIG_MSB;
2651 const struct real_format ieee_single_format =
2653 encode_ieee_single,
2654 decode_ieee_single,
2659 -125,
2660 128,
2662 true,
2663 true,
2664 true,
2665 true,
2666 true
2669 const struct real_format mips_single_format =
2671 encode_ieee_single,
2672 decode_ieee_single,
2677 -125,
2678 128,
2680 true,
2681 true,
2682 true,
2683 true,
2684 false
2688 /* IEEE double-precision format. */
2690 static void encode_ieee_double (const struct real_format *fmt,
2691 long *, const REAL_VALUE_TYPE *);
2692 static void decode_ieee_double (const struct real_format *,
2693 REAL_VALUE_TYPE *, const long *);
2695 static void
2696 encode_ieee_double (const struct real_format *fmt, long *buf,
2697 const REAL_VALUE_TYPE *r)
2699 unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
2700 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2702 image_hi = r->sign << 31;
2703 image_lo = 0;
2705 if (HOST_BITS_PER_LONG == 64)
2707 sig_hi = r->sig[SIGSZ-1];
2708 sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
2709 sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
2711 else
2713 sig_hi = r->sig[SIGSZ-1];
2714 sig_lo = r->sig[SIGSZ-2];
2715 sig_lo = (sig_hi << 21) | (sig_lo >> 11);
2716 sig_hi = (sig_hi >> 11) & 0xfffff;
2719 switch (r->class)
2721 case rvc_zero:
2722 break;
2724 case rvc_inf:
2725 if (fmt->has_inf)
2726 image_hi |= 2047 << 20;
2727 else
2729 image_hi |= 0x7fffffff;
2730 image_lo = 0xffffffff;
2732 break;
2734 case rvc_nan:
2735 if (fmt->has_nans)
2737 if (r->canonical)
2738 sig_hi = sig_lo = 0;
2739 if (r->signalling == fmt->qnan_msb_set)
2740 sig_hi &= ~(1 << 19);
2741 else
2742 sig_hi |= 1 << 19;
2743 /* We overload qnan_msb_set here: it's only clear for
2744 mips_ieee_single, which wants all mantissa bits but the
2745 quiet/signalling one set in canonical NaNs (at least
2746 Quiet ones). */
2747 if (r->canonical && !fmt->qnan_msb_set)
2749 sig_hi |= (1 << 19) - 1;
2750 sig_lo = 0xffffffff;
2752 else if (sig_hi == 0 && sig_lo == 0)
2753 sig_hi = 1 << 18;
2755 image_hi |= 2047 << 20;
2756 image_hi |= sig_hi;
2757 image_lo = sig_lo;
2759 else
2761 image_hi |= 0x7fffffff;
2762 image_lo = 0xffffffff;
2764 break;
2766 case rvc_normal:
2767 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2768 whereas the intermediate representation is 0.F x 2**exp.
2769 Which means we're off by one. */
2770 if (denormal)
2771 exp = 0;
2772 else
2773 exp = r->exp + 1023 - 1;
2774 image_hi |= exp << 20;
2775 image_hi |= sig_hi;
2776 image_lo = sig_lo;
2777 break;
2779 default:
2780 abort ();
2783 if (FLOAT_WORDS_BIG_ENDIAN)
2784 buf[0] = image_hi, buf[1] = image_lo;
2785 else
2786 buf[0] = image_lo, buf[1] = image_hi;
2789 static void
2790 decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2791 const long *buf)
2793 unsigned long image_hi, image_lo;
2794 bool sign;
2795 int exp;
2797 if (FLOAT_WORDS_BIG_ENDIAN)
2798 image_hi = buf[0], image_lo = buf[1];
2799 else
2800 image_lo = buf[0], image_hi = buf[1];
2801 image_lo &= 0xffffffff;
2802 image_hi &= 0xffffffff;
2804 sign = (image_hi >> 31) & 1;
2805 exp = (image_hi >> 20) & 0x7ff;
2807 memset (r, 0, sizeof (*r));
2809 image_hi <<= 32 - 21;
2810 image_hi |= image_lo >> 21;
2811 image_hi &= 0x7fffffff;
2812 image_lo <<= 32 - 21;
2814 if (exp == 0)
2816 if ((image_hi || image_lo) && fmt->has_denorm)
2818 r->class = rvc_normal;
2819 r->sign = sign;
2820 r->exp = -1022;
2821 if (HOST_BITS_PER_LONG == 32)
2823 image_hi = (image_hi << 1) | (image_lo >> 31);
2824 image_lo <<= 1;
2825 r->sig[SIGSZ-1] = image_hi;
2826 r->sig[SIGSZ-2] = image_lo;
2828 else
2830 image_hi = (image_hi << 31 << 2) | (image_lo << 1);
2831 r->sig[SIGSZ-1] = image_hi;
2833 normalize (r);
2835 else if (fmt->has_signed_zero)
2836 r->sign = sign;
2838 else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
2840 if (image_hi || image_lo)
2842 r->class = rvc_nan;
2843 r->sign = sign;
2844 r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
2845 if (HOST_BITS_PER_LONG == 32)
2847 r->sig[SIGSZ-1] = image_hi;
2848 r->sig[SIGSZ-2] = image_lo;
2850 else
2851 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
2853 else
2855 r->class = rvc_inf;
2856 r->sign = sign;
2859 else
2861 r->class = rvc_normal;
2862 r->sign = sign;
2863 r->exp = exp - 1023 + 1;
2864 if (HOST_BITS_PER_LONG == 32)
2866 r->sig[SIGSZ-1] = image_hi | SIG_MSB;
2867 r->sig[SIGSZ-2] = image_lo;
2869 else
2870 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
2874 const struct real_format ieee_double_format =
2876 encode_ieee_double,
2877 decode_ieee_double,
2882 -1021,
2883 1024,
2885 true,
2886 true,
2887 true,
2888 true,
2889 true
2892 const struct real_format mips_double_format =
2894 encode_ieee_double,
2895 decode_ieee_double,
2900 -1021,
2901 1024,
2903 true,
2904 true,
2905 true,
2906 true,
2907 false
2911 /* IEEE extended double precision format. This comes in three
2912 flavors: Intel's as a 12 byte image, Intel's as a 16 byte image,
2913 and Motorola's. */
2915 static void encode_ieee_extended (const struct real_format *fmt,
2916 long *, const REAL_VALUE_TYPE *);
2917 static void decode_ieee_extended (const struct real_format *,
2918 REAL_VALUE_TYPE *, const long *);
2920 static void encode_ieee_extended_128 (const struct real_format *fmt,
2921 long *, const REAL_VALUE_TYPE *);
2922 static void decode_ieee_extended_128 (const struct real_format *,
2923 REAL_VALUE_TYPE *, const long *);
2925 static void
2926 encode_ieee_extended (const struct real_format *fmt, long *buf,
2927 const REAL_VALUE_TYPE *r)
2929 unsigned long image_hi, sig_hi, sig_lo;
2930 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2932 image_hi = r->sign << 15;
2933 sig_hi = sig_lo = 0;
2935 switch (r->class)
2937 case rvc_zero:
2938 break;
2940 case rvc_inf:
2941 if (fmt->has_inf)
2943 image_hi |= 32767;
2945 /* Intel requires the explicit integer bit to be set, otherwise
2946 it considers the value a "pseudo-infinity". Motorola docs
2947 say it doesn't care. */
2948 sig_hi = 0x80000000;
2950 else
2952 image_hi |= 32767;
2953 sig_lo = sig_hi = 0xffffffff;
2955 break;
2957 case rvc_nan:
2958 if (fmt->has_nans)
2960 image_hi |= 32767;
2961 if (HOST_BITS_PER_LONG == 32)
2963 sig_hi = r->sig[SIGSZ-1];
2964 sig_lo = r->sig[SIGSZ-2];
2966 else
2968 sig_lo = r->sig[SIGSZ-1];
2969 sig_hi = sig_lo >> 31 >> 1;
2970 sig_lo &= 0xffffffff;
2972 if (r->signalling == fmt->qnan_msb_set)
2973 sig_hi &= ~(1 << 30);
2974 else
2975 sig_hi |= 1 << 30;
2976 if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
2977 sig_hi = 1 << 29;
2979 /* Intel requires the explicit integer bit to be set, otherwise
2980 it considers the value a "pseudo-nan". Motorola docs say it
2981 doesn't care. */
2982 sig_hi |= 0x80000000;
2984 else
2986 image_hi |= 32767;
2987 sig_lo = sig_hi = 0xffffffff;
2989 break;
2991 case rvc_normal:
2993 int exp = r->exp;
2995 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2996 whereas the intermediate representation is 0.F x 2**exp.
2997 Which means we're off by one.
2999 Except for Motorola, which consider exp=0 and explicit
3000 integer bit set to continue to be normalized. In theory
3001 this discrepancy has been taken care of by the difference
3002 in fmt->emin in round_for_format. */
3004 if (denormal)
3005 exp = 0;
3006 else
3008 exp += 16383 - 1;
3009 if (exp < 0)
3010 abort ();
3012 image_hi |= exp;
3014 if (HOST_BITS_PER_LONG == 32)
3016 sig_hi = r->sig[SIGSZ-1];
3017 sig_lo = r->sig[SIGSZ-2];
3019 else
3021 sig_lo = r->sig[SIGSZ-1];
3022 sig_hi = sig_lo >> 31 >> 1;
3023 sig_lo &= 0xffffffff;
3026 break;
3028 default:
3029 abort ();
3032 if (FLOAT_WORDS_BIG_ENDIAN)
3033 buf[0] = image_hi << 16, buf[1] = sig_hi, buf[2] = sig_lo;
3034 else
3035 buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
3038 static void
3039 encode_ieee_extended_128 (const struct real_format *fmt, long *buf,
3040 const REAL_VALUE_TYPE *r)
3042 buf[3 * !FLOAT_WORDS_BIG_ENDIAN] = 0;
3043 encode_ieee_extended (fmt, buf+!!FLOAT_WORDS_BIG_ENDIAN, r);
3046 static void
3047 decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3048 const long *buf)
3050 unsigned long image_hi, sig_hi, sig_lo;
3051 bool sign;
3052 int exp;
3054 if (FLOAT_WORDS_BIG_ENDIAN)
3055 image_hi = buf[0] >> 16, sig_hi = buf[1], sig_lo = buf[2];
3056 else
3057 sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
3058 sig_lo &= 0xffffffff;
3059 sig_hi &= 0xffffffff;
3060 image_hi &= 0xffffffff;
3062 sign = (image_hi >> 15) & 1;
3063 exp = image_hi & 0x7fff;
3065 memset (r, 0, sizeof (*r));
3067 if (exp == 0)
3069 if ((sig_hi || sig_lo) && fmt->has_denorm)
3071 r->class = rvc_normal;
3072 r->sign = sign;
3074 /* When the IEEE format contains a hidden bit, we know that
3075 it's zero at this point, and so shift up the significand
3076 and decrease the exponent to match. In this case, Motorola
3077 defines the explicit integer bit to be valid, so we don't
3078 know whether the msb is set or not. */
3079 r->exp = fmt->emin;
3080 if (HOST_BITS_PER_LONG == 32)
3082 r->sig[SIGSZ-1] = sig_hi;
3083 r->sig[SIGSZ-2] = sig_lo;
3085 else
3086 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3088 normalize (r);
3090 else if (fmt->has_signed_zero)
3091 r->sign = sign;
3093 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3095 /* See above re "pseudo-infinities" and "pseudo-nans".
3096 Short summary is that the MSB will likely always be
3097 set, and that we don't care about it. */
3098 sig_hi &= 0x7fffffff;
3100 if (sig_hi || sig_lo)
3102 r->class = rvc_nan;
3103 r->sign = sign;
3104 r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3105 if (HOST_BITS_PER_LONG == 32)
3107 r->sig[SIGSZ-1] = sig_hi;
3108 r->sig[SIGSZ-2] = sig_lo;
3110 else
3111 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3113 else
3115 r->class = rvc_inf;
3116 r->sign = sign;
3119 else
3121 r->class = rvc_normal;
3122 r->sign = sign;
3123 r->exp = exp - 16383 + 1;
3124 if (HOST_BITS_PER_LONG == 32)
3126 r->sig[SIGSZ-1] = sig_hi;
3127 r->sig[SIGSZ-2] = sig_lo;
3129 else
3130 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3134 static void
3135 decode_ieee_extended_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3136 const long *buf)
3138 decode_ieee_extended (fmt, r, buf+!!FLOAT_WORDS_BIG_ENDIAN);
3141 const struct real_format ieee_extended_motorola_format =
3143 encode_ieee_extended,
3144 decode_ieee_extended,
3149 -16382,
3150 16384,
3152 true,
3153 true,
3154 true,
3155 true,
3156 true
3159 const struct real_format ieee_extended_intel_96_format =
3161 encode_ieee_extended,
3162 decode_ieee_extended,
3167 -16381,
3168 16384,
3170 true,
3171 true,
3172 true,
3173 true,
3174 true
3177 const struct real_format ieee_extended_intel_128_format =
3179 encode_ieee_extended_128,
3180 decode_ieee_extended_128,
3185 -16381,
3186 16384,
3188 true,
3189 true,
3190 true,
3191 true,
3192 true
3195 /* The following caters to i386 systems that set the rounding precision
3196 to 53 bits instead of 64, e.g. FreeBSD. */
3197 const struct real_format ieee_extended_intel_96_round_53_format =
3199 encode_ieee_extended,
3200 decode_ieee_extended,
3205 -16381,
3206 16384,
3208 true,
3209 true,
3210 true,
3211 true,
3212 true
3215 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3216 numbers whose sum is equal to the extended precision value. The number
3217 with greater magnitude is first. This format has the same magnitude
3218 range as an IEEE double precision value, but effectively 106 bits of
3219 significand precision. Infinity and NaN are represented by their IEEE
3220 double precision value stored in the first number, the second number is
3221 ignored. Zeroes, Infinities, and NaNs are set in both doubles
3222 due to precedent. */
3224 static void encode_ibm_extended (const struct real_format *fmt,
3225 long *, const REAL_VALUE_TYPE *);
3226 static void decode_ibm_extended (const struct real_format *,
3227 REAL_VALUE_TYPE *, const long *);
3229 static void
3230 encode_ibm_extended (const struct real_format *fmt, long *buf,
3231 const REAL_VALUE_TYPE *r)
3233 REAL_VALUE_TYPE u, normr, v;
3234 const struct real_format *base_fmt;
3236 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3238 /* Renormlize R before doing any arithmetic on it. */
3239 normr = *r;
3240 if (normr.class == rvc_normal)
3241 normalize (&normr);
3243 /* u = IEEE double precision portion of significand. */
3244 u = normr;
3245 round_for_format (base_fmt, &u);
3246 encode_ieee_double (base_fmt, &buf[0], &u);
3248 if (u.class == rvc_normal)
3250 do_add (&v, &normr, &u, 1);
3251 round_for_format (base_fmt, &v);
3252 encode_ieee_double (base_fmt, &buf[2], &v);
3254 else
3256 /* Inf, NaN, 0 are all representable as doubles, so the
3257 least-significant part can be 0.0. */
3258 buf[2] = 0;
3259 buf[3] = 0;
3263 static void
3264 decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
3265 const long *buf)
3267 REAL_VALUE_TYPE u, v;
3268 const struct real_format *base_fmt;
3270 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3271 decode_ieee_double (base_fmt, &u, &buf[0]);
3273 if (u.class != rvc_zero && u.class != rvc_inf && u.class != rvc_nan)
3275 decode_ieee_double (base_fmt, &v, &buf[2]);
3276 do_add (r, &u, &v, 0);
3278 else
3279 *r = u;
3282 const struct real_format ibm_extended_format =
3284 encode_ibm_extended,
3285 decode_ibm_extended,
3288 53 + 53,
3290 -1021 + 53,
3291 1024,
3293 true,
3294 true,
3295 true,
3296 true,
3297 true
3300 const struct real_format mips_extended_format =
3302 encode_ibm_extended,
3303 decode_ibm_extended,
3306 53 + 53,
3308 -1021 + 53,
3309 1024,
3311 true,
3312 true,
3313 true,
3314 true,
3315 false
3319 /* IEEE quad precision format. */
3321 static void encode_ieee_quad (const struct real_format *fmt,
3322 long *, const REAL_VALUE_TYPE *);
3323 static void decode_ieee_quad (const struct real_format *,
3324 REAL_VALUE_TYPE *, const long *);
3326 static void
3327 encode_ieee_quad (const struct real_format *fmt, long *buf,
3328 const REAL_VALUE_TYPE *r)
3330 unsigned long image3, image2, image1, image0, exp;
3331 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3332 REAL_VALUE_TYPE u;
3334 image3 = r->sign << 31;
3335 image2 = 0;
3336 image1 = 0;
3337 image0 = 0;
3339 rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
3341 switch (r->class)
3343 case rvc_zero:
3344 break;
3346 case rvc_inf:
3347 if (fmt->has_inf)
3348 image3 |= 32767 << 16;
3349 else
3351 image3 |= 0x7fffffff;
3352 image2 = 0xffffffff;
3353 image1 = 0xffffffff;
3354 image0 = 0xffffffff;
3356 break;
3358 case rvc_nan:
3359 if (fmt->has_nans)
3361 image3 |= 32767 << 16;
3363 if (r->canonical)
3365 /* Don't use bits from the significand. The
3366 initialization above is right. */
3368 else if (HOST_BITS_PER_LONG == 32)
3370 image0 = u.sig[0];
3371 image1 = u.sig[1];
3372 image2 = u.sig[2];
3373 image3 |= u.sig[3] & 0xffff;
3375 else
3377 image0 = u.sig[0];
3378 image1 = image0 >> 31 >> 1;
3379 image2 = u.sig[1];
3380 image3 |= (image2 >> 31 >> 1) & 0xffff;
3381 image0 &= 0xffffffff;
3382 image2 &= 0xffffffff;
3384 if (r->signalling == fmt->qnan_msb_set)
3385 image3 &= ~0x8000;
3386 else
3387 image3 |= 0x8000;
3388 /* We overload qnan_msb_set here: it's only clear for
3389 mips_ieee_single, which wants all mantissa bits but the
3390 quiet/signalling one set in canonical NaNs (at least
3391 Quiet ones). */
3392 if (r->canonical && !fmt->qnan_msb_set)
3394 image3 |= 0x7fff;
3395 image2 = image1 = image0 = 0xffffffff;
3397 else if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
3398 image3 |= 0x4000;
3400 else
3402 image3 |= 0x7fffffff;
3403 image2 = 0xffffffff;
3404 image1 = 0xffffffff;
3405 image0 = 0xffffffff;
3407 break;
3409 case rvc_normal:
3410 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3411 whereas the intermediate representation is 0.F x 2**exp.
3412 Which means we're off by one. */
3413 if (denormal)
3414 exp = 0;
3415 else
3416 exp = r->exp + 16383 - 1;
3417 image3 |= exp << 16;
3419 if (HOST_BITS_PER_LONG == 32)
3421 image0 = u.sig[0];
3422 image1 = u.sig[1];
3423 image2 = u.sig[2];
3424 image3 |= u.sig[3] & 0xffff;
3426 else
3428 image0 = u.sig[0];
3429 image1 = image0 >> 31 >> 1;
3430 image2 = u.sig[1];
3431 image3 |= (image2 >> 31 >> 1) & 0xffff;
3432 image0 &= 0xffffffff;
3433 image2 &= 0xffffffff;
3435 break;
3437 default:
3438 abort ();
3441 if (FLOAT_WORDS_BIG_ENDIAN)
3443 buf[0] = image3;
3444 buf[1] = image2;
3445 buf[2] = image1;
3446 buf[3] = image0;
3448 else
3450 buf[0] = image0;
3451 buf[1] = image1;
3452 buf[2] = image2;
3453 buf[3] = image3;
3457 static void
3458 decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3459 const long *buf)
3461 unsigned long image3, image2, image1, image0;
3462 bool sign;
3463 int exp;
3465 if (FLOAT_WORDS_BIG_ENDIAN)
3467 image3 = buf[0];
3468 image2 = buf[1];
3469 image1 = buf[2];
3470 image0 = buf[3];
3472 else
3474 image0 = buf[0];
3475 image1 = buf[1];
3476 image2 = buf[2];
3477 image3 = buf[3];
3479 image0 &= 0xffffffff;
3480 image1 &= 0xffffffff;
3481 image2 &= 0xffffffff;
3483 sign = (image3 >> 31) & 1;
3484 exp = (image3 >> 16) & 0x7fff;
3485 image3 &= 0xffff;
3487 memset (r, 0, sizeof (*r));
3489 if (exp == 0)
3491 if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
3493 r->class = rvc_normal;
3494 r->sign = sign;
3496 r->exp = -16382 + (SIGNIFICAND_BITS - 112);
3497 if (HOST_BITS_PER_LONG == 32)
3499 r->sig[0] = image0;
3500 r->sig[1] = image1;
3501 r->sig[2] = image2;
3502 r->sig[3] = image3;
3504 else
3506 r->sig[0] = (image1 << 31 << 1) | image0;
3507 r->sig[1] = (image3 << 31 << 1) | image2;
3510 normalize (r);
3512 else if (fmt->has_signed_zero)
3513 r->sign = sign;
3515 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3517 if (image3 | image2 | image1 | image0)
3519 r->class = rvc_nan;
3520 r->sign = sign;
3521 r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
3523 if (HOST_BITS_PER_LONG == 32)
3525 r->sig[0] = image0;
3526 r->sig[1] = image1;
3527 r->sig[2] = image2;
3528 r->sig[3] = image3;
3530 else
3532 r->sig[0] = (image1 << 31 << 1) | image0;
3533 r->sig[1] = (image3 << 31 << 1) | image2;
3535 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
3537 else
3539 r->class = rvc_inf;
3540 r->sign = sign;
3543 else
3545 r->class = rvc_normal;
3546 r->sign = sign;
3547 r->exp = exp - 16383 + 1;
3549 if (HOST_BITS_PER_LONG == 32)
3551 r->sig[0] = image0;
3552 r->sig[1] = image1;
3553 r->sig[2] = image2;
3554 r->sig[3] = image3;
3556 else
3558 r->sig[0] = (image1 << 31 << 1) | image0;
3559 r->sig[1] = (image3 << 31 << 1) | image2;
3561 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
3562 r->sig[SIGSZ-1] |= SIG_MSB;
3566 const struct real_format ieee_quad_format =
3568 encode_ieee_quad,
3569 decode_ieee_quad,
3572 113,
3573 113,
3574 -16381,
3575 16384,
3576 127,
3577 true,
3578 true,
3579 true,
3580 true,
3581 true
3584 const struct real_format mips_quad_format =
3586 encode_ieee_quad,
3587 decode_ieee_quad,
3590 113,
3591 113,
3592 -16381,
3593 16384,
3594 127,
3595 true,
3596 true,
3597 true,
3598 true,
3599 false
3602 /* Descriptions of VAX floating point formats can be found beginning at
3604 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
3606 The thing to remember is that they're almost IEEE, except for word
3607 order, exponent bias, and the lack of infinities, nans, and denormals.
3609 We don't implement the H_floating format here, simply because neither
3610 the VAX or Alpha ports use it. */
3612 static void encode_vax_f (const struct real_format *fmt,
3613 long *, const REAL_VALUE_TYPE *);
3614 static void decode_vax_f (const struct real_format *,
3615 REAL_VALUE_TYPE *, const long *);
3616 static void encode_vax_d (const struct real_format *fmt,
3617 long *, const REAL_VALUE_TYPE *);
3618 static void decode_vax_d (const struct real_format *,
3619 REAL_VALUE_TYPE *, const long *);
3620 static void encode_vax_g (const struct real_format *fmt,
3621 long *, const REAL_VALUE_TYPE *);
3622 static void decode_vax_g (const struct real_format *,
3623 REAL_VALUE_TYPE *, const long *);
3625 static void
3626 encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3627 const REAL_VALUE_TYPE *r)
3629 unsigned long sign, exp, sig, image;
3631 sign = r->sign << 15;
3633 switch (r->class)
3635 case rvc_zero:
3636 image = 0;
3637 break;
3639 case rvc_inf:
3640 case rvc_nan:
3641 image = 0xffff7fff | sign;
3642 break;
3644 case rvc_normal:
3645 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
3646 exp = r->exp + 128;
3648 image = (sig << 16) & 0xffff0000;
3649 image |= sign;
3650 image |= exp << 7;
3651 image |= sig >> 16;
3652 break;
3654 default:
3655 abort ();
3658 buf[0] = image;
3661 static void
3662 decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
3663 REAL_VALUE_TYPE *r, const long *buf)
3665 unsigned long image = buf[0] & 0xffffffff;
3666 int exp = (image >> 7) & 0xff;
3668 memset (r, 0, sizeof (*r));
3670 if (exp != 0)
3672 r->class = rvc_normal;
3673 r->sign = (image >> 15) & 1;
3674 r->exp = exp - 128;
3676 image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
3677 r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
3681 static void
3682 encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3683 const REAL_VALUE_TYPE *r)
3685 unsigned long image0, image1, sign = r->sign << 15;
3687 switch (r->class)
3689 case rvc_zero:
3690 image0 = image1 = 0;
3691 break;
3693 case rvc_inf:
3694 case rvc_nan:
3695 image0 = 0xffff7fff | sign;
3696 image1 = 0xffffffff;
3697 break;
3699 case rvc_normal:
3700 /* Extract the significand into straight hi:lo. */
3701 if (HOST_BITS_PER_LONG == 64)
3703 image0 = r->sig[SIGSZ-1];
3704 image1 = (image0 >> (64 - 56)) & 0xffffffff;
3705 image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
3707 else
3709 image0 = r->sig[SIGSZ-1];
3710 image1 = r->sig[SIGSZ-2];
3711 image1 = (image0 << 24) | (image1 >> 8);
3712 image0 = (image0 >> 8) & 0xffffff;
3715 /* Rearrange the half-words of the significand to match the
3716 external format. */
3717 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
3718 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
3720 /* Add the sign and exponent. */
3721 image0 |= sign;
3722 image0 |= (r->exp + 128) << 7;
3723 break;
3725 default:
3726 abort ();
3729 if (FLOAT_WORDS_BIG_ENDIAN)
3730 buf[0] = image1, buf[1] = image0;
3731 else
3732 buf[0] = image0, buf[1] = image1;
3735 static void
3736 decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
3737 REAL_VALUE_TYPE *r, const long *buf)
3739 unsigned long image0, image1;
3740 int exp;
3742 if (FLOAT_WORDS_BIG_ENDIAN)
3743 image1 = buf[0], image0 = buf[1];
3744 else
3745 image0 = buf[0], image1 = buf[1];
3746 image0 &= 0xffffffff;
3747 image1 &= 0xffffffff;
3749 exp = (image0 >> 7) & 0xff;
3751 memset (r, 0, sizeof (*r));
3753 if (exp != 0)
3755 r->class = rvc_normal;
3756 r->sign = (image0 >> 15) & 1;
3757 r->exp = exp - 128;
3759 /* Rearrange the half-words of the external format into
3760 proper ascending order. */
3761 image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
3762 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
3764 if (HOST_BITS_PER_LONG == 64)
3766 image0 = (image0 << 31 << 1) | image1;
3767 image0 <<= 64 - 56;
3768 image0 |= SIG_MSB;
3769 r->sig[SIGSZ-1] = image0;
3771 else
3773 r->sig[SIGSZ-1] = image0;
3774 r->sig[SIGSZ-2] = image1;
3775 lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
3776 r->sig[SIGSZ-1] |= SIG_MSB;
3781 static void
3782 encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3783 const REAL_VALUE_TYPE *r)
3785 unsigned long image0, image1, sign = r->sign << 15;
3787 switch (r->class)
3789 case rvc_zero:
3790 image0 = image1 = 0;
3791 break;
3793 case rvc_inf:
3794 case rvc_nan:
3795 image0 = 0xffff7fff | sign;
3796 image1 = 0xffffffff;
3797 break;
3799 case rvc_normal:
3800 /* Extract the significand into straight hi:lo. */
3801 if (HOST_BITS_PER_LONG == 64)
3803 image0 = r->sig[SIGSZ-1];
3804 image1 = (image0 >> (64 - 53)) & 0xffffffff;
3805 image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
3807 else
3809 image0 = r->sig[SIGSZ-1];
3810 image1 = r->sig[SIGSZ-2];
3811 image1 = (image0 << 21) | (image1 >> 11);
3812 image0 = (image0 >> 11) & 0xfffff;
3815 /* Rearrange the half-words of the significand to match the
3816 external format. */
3817 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
3818 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
3820 /* Add the sign and exponent. */
3821 image0 |= sign;
3822 image0 |= (r->exp + 1024) << 4;
3823 break;
3825 default:
3826 abort ();
3829 if (FLOAT_WORDS_BIG_ENDIAN)
3830 buf[0] = image1, buf[1] = image0;
3831 else
3832 buf[0] = image0, buf[1] = image1;
3835 static void
3836 decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
3837 REAL_VALUE_TYPE *r, const long *buf)
3839 unsigned long image0, image1;
3840 int exp;
3842 if (FLOAT_WORDS_BIG_ENDIAN)
3843 image1 = buf[0], image0 = buf[1];
3844 else
3845 image0 = buf[0], image1 = buf[1];
3846 image0 &= 0xffffffff;
3847 image1 &= 0xffffffff;
3849 exp = (image0 >> 4) & 0x7ff;
3851 memset (r, 0, sizeof (*r));
3853 if (exp != 0)
3855 r->class = rvc_normal;
3856 r->sign = (image0 >> 15) & 1;
3857 r->exp = exp - 1024;
3859 /* Rearrange the half-words of the external format into
3860 proper ascending order. */
3861 image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
3862 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
3864 if (HOST_BITS_PER_LONG == 64)
3866 image0 = (image0 << 31 << 1) | image1;
3867 image0 <<= 64 - 53;
3868 image0 |= SIG_MSB;
3869 r->sig[SIGSZ-1] = image0;
3871 else
3873 r->sig[SIGSZ-1] = image0;
3874 r->sig[SIGSZ-2] = image1;
3875 lshift_significand (r, r, 64 - 53);
3876 r->sig[SIGSZ-1] |= SIG_MSB;
3881 const struct real_format vax_f_format =
3883 encode_vax_f,
3884 decode_vax_f,
3889 -127,
3890 127,
3892 false,
3893 false,
3894 false,
3895 false,
3896 false
3899 const struct real_format vax_d_format =
3901 encode_vax_d,
3902 decode_vax_d,
3907 -127,
3908 127,
3910 false,
3911 false,
3912 false,
3913 false,
3914 false
3917 const struct real_format vax_g_format =
3919 encode_vax_g,
3920 decode_vax_g,
3925 -1023,
3926 1023,
3928 false,
3929 false,
3930 false,
3931 false,
3932 false
3935 /* A good reference for these can be found in chapter 9 of
3936 "ESA/390 Principles of Operation", IBM document number SA22-7201-01.
3937 An on-line version can be found here:
3939 http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DZ9AR001/9.1?DT=19930923083613
3942 static void encode_i370_single (const struct real_format *fmt,
3943 long *, const REAL_VALUE_TYPE *);
3944 static void decode_i370_single (const struct real_format *,
3945 REAL_VALUE_TYPE *, const long *);
3946 static void encode_i370_double (const struct real_format *fmt,
3947 long *, const REAL_VALUE_TYPE *);
3948 static void decode_i370_double (const struct real_format *,
3949 REAL_VALUE_TYPE *, const long *);
3951 static void
3952 encode_i370_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
3953 long *buf, const REAL_VALUE_TYPE *r)
3955 unsigned long sign, exp, sig, image;
3957 sign = r->sign << 31;
3959 switch (r->class)
3961 case rvc_zero:
3962 image = 0;
3963 break;
3965 case rvc_inf:
3966 case rvc_nan:
3967 image = 0x7fffffff | sign;
3968 break;
3970 case rvc_normal:
3971 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0xffffff;
3972 exp = ((r->exp / 4) + 64) << 24;
3973 image = sign | exp | sig;
3974 break;
3976 default:
3977 abort ();
3980 buf[0] = image;
3983 static void
3984 decode_i370_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
3985 REAL_VALUE_TYPE *r, const long *buf)
3987 unsigned long sign, sig, image = buf[0];
3988 int exp;
3990 sign = (image >> 31) & 1;
3991 exp = (image >> 24) & 0x7f;
3992 sig = image & 0xffffff;
3994 memset (r, 0, sizeof (*r));
3996 if (exp || sig)
3998 r->class = rvc_normal;
3999 r->sign = sign;
4000 r->exp = (exp - 64) * 4;
4001 r->sig[SIGSZ-1] = sig << (HOST_BITS_PER_LONG - 24);
4002 normalize (r);
4006 static void
4007 encode_i370_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4008 long *buf, const REAL_VALUE_TYPE *r)
4010 unsigned long sign, exp, image_hi, image_lo;
4012 sign = r->sign << 31;
4014 switch (r->class)
4016 case rvc_zero:
4017 image_hi = image_lo = 0;
4018 break;
4020 case rvc_inf:
4021 case rvc_nan:
4022 image_hi = 0x7fffffff | sign;
4023 image_lo = 0xffffffff;
4024 break;
4026 case rvc_normal:
4027 if (HOST_BITS_PER_LONG == 64)
4029 image_hi = r->sig[SIGSZ-1];
4030 image_lo = (image_hi >> (64 - 56)) & 0xffffffff;
4031 image_hi = (image_hi >> (64 - 56 + 1) >> 31) & 0xffffff;
4033 else
4035 image_hi = r->sig[SIGSZ-1];
4036 image_lo = r->sig[SIGSZ-2];
4037 image_lo = (image_lo >> 8) | (image_hi << 24);
4038 image_hi >>= 8;
4041 exp = ((r->exp / 4) + 64) << 24;
4042 image_hi |= sign | exp;
4043 break;
4045 default:
4046 abort ();
4049 if (FLOAT_WORDS_BIG_ENDIAN)
4050 buf[0] = image_hi, buf[1] = image_lo;
4051 else
4052 buf[0] = image_lo, buf[1] = image_hi;
4055 static void
4056 decode_i370_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4057 REAL_VALUE_TYPE *r, const long *buf)
4059 unsigned long sign, image_hi, image_lo;
4060 int exp;
4062 if (FLOAT_WORDS_BIG_ENDIAN)
4063 image_hi = buf[0], image_lo = buf[1];
4064 else
4065 image_lo = buf[0], image_hi = buf[1];
4067 sign = (image_hi >> 31) & 1;
4068 exp = (image_hi >> 24) & 0x7f;
4069 image_hi &= 0xffffff;
4070 image_lo &= 0xffffffff;
4072 memset (r, 0, sizeof (*r));
4074 if (exp || image_hi || image_lo)
4076 r->class = rvc_normal;
4077 r->sign = sign;
4078 r->exp = (exp - 64) * 4 + (SIGNIFICAND_BITS - 56);
4080 if (HOST_BITS_PER_LONG == 32)
4082 r->sig[0] = image_lo;
4083 r->sig[1] = image_hi;
4085 else
4086 r->sig[0] = image_lo | (image_hi << 31 << 1);
4088 normalize (r);
4092 const struct real_format i370_single_format =
4094 encode_i370_single,
4095 decode_i370_single,
4100 -64,
4103 false,
4104 false,
4105 false, /* ??? The encoding does allow for "unnormals". */
4106 false, /* ??? The encoding does allow for "unnormals". */
4107 false
4110 const struct real_format i370_double_format =
4112 encode_i370_double,
4113 decode_i370_double,
4118 -64,
4121 false,
4122 false,
4123 false, /* ??? The encoding does allow for "unnormals". */
4124 false, /* ??? The encoding does allow for "unnormals". */
4125 false
4128 /* The "twos-complement" c4x format is officially defined as
4130 x = s(~s).f * 2**e
4132 This is rather misleading. One must remember that F is signed.
4133 A better description would be
4135 x = -1**s * ((s + 1 + .f) * 2**e
4137 So if we have a (4 bit) fraction of .1000 with a sign bit of 1,
4138 that's -1 * (1+1+(-.5)) == -1.5. I think.
4140 The constructions here are taken from Tables 5-1 and 5-2 of the
4141 TMS320C4x User's Guide wherein step-by-step instructions for
4142 conversion from IEEE are presented. That's close enough to our
4143 internal representation so as to make things easy.
4145 See http://www-s.ti.com/sc/psheets/spru063c/spru063c.pdf */
4147 static void encode_c4x_single (const struct real_format *fmt,
4148 long *, const REAL_VALUE_TYPE *);
4149 static void decode_c4x_single (const struct real_format *,
4150 REAL_VALUE_TYPE *, const long *);
4151 static void encode_c4x_extended (const struct real_format *fmt,
4152 long *, const REAL_VALUE_TYPE *);
4153 static void decode_c4x_extended (const struct real_format *,
4154 REAL_VALUE_TYPE *, const long *);
4156 static void
4157 encode_c4x_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4158 long *buf, const REAL_VALUE_TYPE *r)
4160 unsigned long image, exp, sig;
4162 switch (r->class)
4164 case rvc_zero:
4165 exp = -128;
4166 sig = 0;
4167 break;
4169 case rvc_inf:
4170 case rvc_nan:
4171 exp = 127;
4172 sig = 0x800000 - r->sign;
4173 break;
4175 case rvc_normal:
4176 exp = r->exp - 1;
4177 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
4178 if (r->sign)
4180 if (sig)
4181 sig = -sig;
4182 else
4183 exp--;
4184 sig |= 0x800000;
4186 break;
4188 default:
4189 abort ();
4192 image = ((exp & 0xff) << 24) | (sig & 0xffffff);
4193 buf[0] = image;
4196 static void
4197 decode_c4x_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4198 REAL_VALUE_TYPE *r, const long *buf)
4200 unsigned long image = buf[0];
4201 unsigned long sig;
4202 int exp, sf;
4204 exp = (((image >> 24) & 0xff) ^ 0x80) - 0x80;
4205 sf = ((image & 0xffffff) ^ 0x800000) - 0x800000;
4207 memset (r, 0, sizeof (*r));
4209 if (exp != -128)
4211 r->class = rvc_normal;
4213 sig = sf & 0x7fffff;
4214 if (sf < 0)
4216 r->sign = 1;
4217 if (sig)
4218 sig = -sig;
4219 else
4220 exp++;
4222 sig = (sig << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
4224 r->exp = exp + 1;
4225 r->sig[SIGSZ-1] = sig;
4229 static void
4230 encode_c4x_extended (const struct real_format *fmt ATTRIBUTE_UNUSED,
4231 long *buf, const REAL_VALUE_TYPE *r)
4233 unsigned long exp, sig;
4235 switch (r->class)
4237 case rvc_zero:
4238 exp = -128;
4239 sig = 0;
4240 break;
4242 case rvc_inf:
4243 case rvc_nan:
4244 exp = 127;
4245 sig = 0x80000000 - r->sign;
4246 break;
4248 case rvc_normal:
4249 exp = r->exp - 1;
4251 sig = r->sig[SIGSZ-1];
4252 if (HOST_BITS_PER_LONG == 64)
4253 sig = sig >> 1 >> 31;
4254 sig &= 0x7fffffff;
4256 if (r->sign)
4258 if (sig)
4259 sig = -sig;
4260 else
4261 exp--;
4262 sig |= 0x80000000;
4264 break;
4266 default:
4267 abort ();
4270 exp = (exp & 0xff) << 24;
4271 sig &= 0xffffffff;
4273 if (FLOAT_WORDS_BIG_ENDIAN)
4274 buf[0] = exp, buf[1] = sig;
4275 else
4276 buf[0] = sig, buf[0] = exp;
4279 static void
4280 decode_c4x_extended (const struct real_format *fmt ATTRIBUTE_UNUSED,
4281 REAL_VALUE_TYPE *r, const long *buf)
4283 unsigned long sig;
4284 int exp, sf;
4286 if (FLOAT_WORDS_BIG_ENDIAN)
4287 exp = buf[0], sf = buf[1];
4288 else
4289 sf = buf[0], exp = buf[1];
4291 exp = (((exp >> 24) & 0xff) & 0x80) - 0x80;
4292 sf = ((sf & 0xffffffff) ^ 0x80000000) - 0x80000000;
4294 memset (r, 0, sizeof (*r));
4296 if (exp != -128)
4298 r->class = rvc_normal;
4300 sig = sf & 0x7fffffff;
4301 if (sf < 0)
4303 r->sign = 1;
4304 if (sig)
4305 sig = -sig;
4306 else
4307 exp++;
4309 if (HOST_BITS_PER_LONG == 64)
4310 sig = sig << 1 << 31;
4311 sig |= SIG_MSB;
4313 r->exp = exp + 1;
4314 r->sig[SIGSZ-1] = sig;
4318 const struct real_format c4x_single_format =
4320 encode_c4x_single,
4321 decode_c4x_single,
4326 -126,
4327 128,
4329 false,
4330 false,
4331 false,
4332 false,
4333 false
4336 const struct real_format c4x_extended_format =
4338 encode_c4x_extended,
4339 decode_c4x_extended,
4344 -126,
4345 128,
4347 false,
4348 false,
4349 false,
4350 false,
4351 false
4355 /* A synthetic "format" for internal arithmetic. It's the size of the
4356 internal significand minus the two bits needed for proper rounding.
4357 The encode and decode routines exist only to satisfy our paranoia
4358 harness. */
4360 static void encode_internal (const struct real_format *fmt,
4361 long *, const REAL_VALUE_TYPE *);
4362 static void decode_internal (const struct real_format *,
4363 REAL_VALUE_TYPE *, const long *);
4365 static void
4366 encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4367 const REAL_VALUE_TYPE *r)
4369 memcpy (buf, r, sizeof (*r));
4372 static void
4373 decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
4374 REAL_VALUE_TYPE *r, const long *buf)
4376 memcpy (r, buf, sizeof (*r));
4379 const struct real_format real_internal_format =
4381 encode_internal,
4382 decode_internal,
4385 SIGNIFICAND_BITS - 2,
4386 SIGNIFICAND_BITS - 2,
4387 -MAX_EXP,
4388 MAX_EXP,
4390 true,
4391 true,
4392 false,
4393 true,
4394 true
4397 /* Calculate the square root of X in mode MODE, and store the result
4398 in R. Return TRUE if the operation does not raise an exception.
4399 For details see "High Precision Division and Square Root",
4400 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4401 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4403 bool
4404 real_sqrt (REAL_VALUE_TYPE *r, enum machine_mode mode,
4405 const REAL_VALUE_TYPE *x)
4407 static REAL_VALUE_TYPE halfthree;
4408 static bool init = false;
4409 REAL_VALUE_TYPE h, t, i;
4410 int iter, exp;
4412 /* sqrt(-0.0) is -0.0. */
4413 if (real_isnegzero (x))
4415 *r = *x;
4416 return false;
4419 /* Negative arguments return NaN. */
4420 if (real_isneg (x))
4422 get_canonical_qnan (r, 0);
4423 return false;
4426 /* Infinity and NaN return themselves. */
4427 if (real_isinf (x) || real_isnan (x))
4429 *r = *x;
4430 return false;
4433 if (!init)
4435 do_add (&halfthree, &dconst1, &dconsthalf, 0);
4436 init = true;
4439 /* Initial guess for reciprocal sqrt, i. */
4440 exp = real_exponent (x);
4441 real_ldexp (&i, &dconst1, -exp/2);
4443 /* Newton's iteration for reciprocal sqrt, i. */
4444 for (iter = 0; iter < 16; iter++)
4446 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4447 do_multiply (&t, x, &i);
4448 do_multiply (&h, &t, &i);
4449 do_multiply (&t, &h, &dconsthalf);
4450 do_add (&h, &halfthree, &t, 1);
4451 do_multiply (&t, &i, &h);
4453 /* Check for early convergence. */
4454 if (iter >= 6 && real_identical (&i, &t))
4455 break;
4457 /* ??? Unroll loop to avoid copying. */
4458 i = t;
4461 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4462 do_multiply (&t, x, &i);
4463 do_multiply (&h, &t, &i);
4464 do_add (&i, &dconst1, &h, 1);
4465 do_multiply (&h, &t, &i);
4466 do_multiply (&i, &dconsthalf, &h);
4467 do_add (&h, &t, &i, 0);
4469 /* ??? We need a Tuckerman test to get the last bit. */
4471 real_convert (r, mode, &h);
4472 return true;
4475 /* Calculate X raised to the integer exponent N in mode MODE and store
4476 the result in R. Return true if the result may be inexact due to
4477 loss of precision. The algorithm is the classic "left-to-right binary
4478 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4479 Algorithms", "The Art of Computer Programming", Volume 2. */
4481 bool
4482 real_powi (REAL_VALUE_TYPE *r, enum machine_mode mode,
4483 const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
4485 unsigned HOST_WIDE_INT bit;
4486 REAL_VALUE_TYPE t;
4487 bool inexact = false;
4488 bool init = false;
4489 bool neg;
4490 int i;
4492 if (n == 0)
4494 *r = dconst1;
4495 return false;
4497 else if (n < 0)
4499 /* Don't worry about overflow, from now on n is unsigned. */
4500 neg = true;
4501 n = -n;
4503 else
4504 neg = false;
4506 t = *x;
4507 bit = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
4508 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
4510 if (init)
4512 inexact |= do_multiply (&t, &t, &t);
4513 if (n & bit)
4514 inexact |= do_multiply (&t, &t, x);
4516 else if (n & bit)
4517 init = true;
4518 bit >>= 1;
4521 if (neg)
4522 inexact |= do_divide (&t, &dconst1, &t);
4524 real_convert (r, mode, &t);
4525 return inexact;
4528 /* Round X to the nearest integer not larger in absolute value, i.e.
4529 towards zero, placing the result in R in mode MODE. */
4531 void
4532 real_trunc (REAL_VALUE_TYPE *r, enum machine_mode mode,
4533 const REAL_VALUE_TYPE *x)
4535 do_fix_trunc (r, x);
4536 if (mode != VOIDmode)
4537 real_convert (r, mode, r);
4540 /* Round X to the largest integer not greater in value, i.e. round
4541 down, placing the result in R in mode MODE. */
4543 void
4544 real_floor (REAL_VALUE_TYPE *r, enum machine_mode mode,
4545 const REAL_VALUE_TYPE *x)
4547 REAL_VALUE_TYPE t;
4549 do_fix_trunc (&t, x);
4550 if (! real_identical (&t, x) && x->sign)
4551 do_add (&t, &t, &dconstm1, 0);
4552 if (mode != VOIDmode)
4553 real_convert (r, mode, &t);
4556 /* Round X to the smallest integer not less then argument, i.e. round
4557 up, placing the result in R in mode MODE. */
4559 void
4560 real_ceil (REAL_VALUE_TYPE *r, enum machine_mode mode,
4561 const REAL_VALUE_TYPE *x)
4563 REAL_VALUE_TYPE t;
4565 do_fix_trunc (&t, x);
4566 if (! real_identical (&t, x) && ! x->sign)
4567 do_add (&t, &t, &dconst1, 0);
4568 if (mode != VOIDmode)
4569 real_convert (r, mode, &t);
4572 /* Round X to the nearest integer, but round halfway cases away from
4573 zero. */
4575 void
4576 real_round (REAL_VALUE_TYPE *r, enum machine_mode mode,
4577 const REAL_VALUE_TYPE *x)
4579 do_add (r, x, &dconsthalf, x->sign);
4580 do_fix_trunc (r, r);
4581 if (mode != VOIDmode)
4582 real_convert (r, mode, r);