2004-02-11 Eric Christopher <echristo@redhat.com>
[official-gcc.git] / gcc / genrecog.c
blob7bdc52659cea7ef1cb8ed17f8d7afa2e5ffc8801
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
62 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
65 /* Holds an array of names indexed by insn_code_number. */
66 static char **insn_name_ptr = 0;
67 static int insn_name_ptr_size = 0;
69 /* A listhead of decision trees. The alternatives to a node are kept
70 in a doubly-linked list so we can easily add nodes to the proper
71 place when merging. */
73 struct decision_head
75 struct decision *first;
76 struct decision *last;
79 /* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
83 struct decision_test
85 /* A linked list through the tests attached to a node. */
86 struct decision_test *next;
88 /* These types are roughly in the order in which we'd like to test them. */
89 enum decision_type
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
93 DT_const_int,
94 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
95 DT_accept_op, DT_accept_insn
96 } type;
98 union
100 enum machine_mode mode; /* Machine mode of node. */
101 RTX_CODE code; /* Code to test. */
103 struct
105 const char *name; /* Predicate to call. */
106 int index; /* Index into `preds' or -1. */
107 enum machine_mode mode; /* Machine mode for node. */
108 } pred;
110 const char *c_test; /* Additional test to perform. */
111 int veclen; /* Length of vector. */
112 int dup; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
114 int opno; /* Operand number matched. */
116 struct {
117 int code_number; /* Insn number matched. */
118 int lineno; /* Line number of the insn. */
119 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
120 } insn;
121 } u;
124 /* Data structure for decision tree for recognizing legitimate insns. */
126 struct decision
128 struct decision_head success; /* Nodes to test on success. */
129 struct decision *next; /* Node to test on failure. */
130 struct decision *prev; /* Node whose failure tests us. */
131 struct decision *afterward; /* Node to test on success,
132 but failure of successor nodes. */
134 const char *position; /* String denoting position in pattern. */
136 struct decision_test *tests; /* The tests for this node. */
138 int number; /* Node number, used for labels */
139 int subroutine_number; /* Number of subroutine this node starts */
140 int need_label; /* Label needs to be output. */
143 #define SUBROUTINE_THRESHOLD 100
145 static int next_subroutine_number;
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
151 enum routine_type {
152 RECOG, SPLIT, PEEPHOLE2
155 #define IS_SPLIT(X) ((X) != RECOG)
157 /* Next available node number for tree nodes. */
159 static int next_number;
161 /* Next number to use as an insn_code. */
163 static int next_insn_code;
165 /* Similar, but counts all expressions in the MD file; used for
166 error messages. */
168 static int next_index;
170 /* Record the highest depth we ever have so we know how many variables to
171 allocate in each subroutine we make. */
173 static int max_depth;
175 /* The line number of the start of the pattern currently being processed. */
176 static int pattern_lineno;
178 /* Count of errors. */
179 static int error_count;
181 /* This table contains a list of the rtl codes that can possibly match a
182 predicate defined in recog.c. The function `maybe_both_true' uses it to
183 deduce that there are no expressions that can be matches by certain pairs
184 of tree nodes. Also, if a predicate can match only one code, we can
185 hardwire that code into the node testing the predicate. */
187 static const struct pred_table
189 const char *const name;
190 const RTX_CODE codes[NUM_RTX_CODE];
191 } preds[] = {
192 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
193 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}},
194 #ifdef PREDICATE_CODES
195 PREDICATE_CODES
196 #endif
197 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
198 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF,
199 PLUS, MINUS, MULT}},
200 {"register_operand", {SUBREG, REG, ADDRESSOF}},
201 {"pmode_register_operand", {SUBREG, REG, ADDRESSOF}},
202 {"scratch_operand", {SCRATCH, REG}},
203 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
204 LABEL_REF}},
205 {"const_int_operand", {CONST_INT}},
206 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
207 {"nonimmediate_operand", {SUBREG, REG, MEM, ADDRESSOF}},
208 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
209 LABEL_REF, SUBREG, REG, ADDRESSOF}},
210 {"push_operand", {MEM}},
211 {"pop_operand", {MEM}},
212 {"memory_operand", {SUBREG, MEM}},
213 {"indirect_operand", {SUBREG, MEM}},
214 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
215 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
216 UNLT, LTGT}}
219 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
221 static const char *const special_mode_pred_table[] = {
222 #ifdef SPECIAL_MODE_PREDICATES
223 SPECIAL_MODE_PREDICATES
224 #endif
225 "pmode_register_operand"
228 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
230 static struct decision *new_decision
231 (const char *, struct decision_head *);
232 static struct decision_test *new_decision_test
233 (enum decision_type, struct decision_test ***);
234 static rtx find_operand
235 (rtx, int, rtx);
236 static rtx find_matching_operand
237 (rtx, int);
238 static void validate_pattern
239 (rtx, rtx, rtx, int);
240 static struct decision *add_to_sequence
241 (rtx, struct decision_head *, const char *, enum routine_type, int);
243 static int maybe_both_true_2
244 (struct decision_test *, struct decision_test *);
245 static int maybe_both_true_1
246 (struct decision_test *, struct decision_test *);
247 static int maybe_both_true
248 (struct decision *, struct decision *, int);
250 static int nodes_identical_1
251 (struct decision_test *, struct decision_test *);
252 static int nodes_identical
253 (struct decision *, struct decision *);
254 static void merge_accept_insn
255 (struct decision *, struct decision *);
256 static void merge_trees
257 (struct decision_head *, struct decision_head *);
259 static void factor_tests
260 (struct decision_head *);
261 static void simplify_tests
262 (struct decision_head *);
263 static int break_out_subroutines
264 (struct decision_head *, int);
265 static void find_afterward
266 (struct decision_head *, struct decision *);
268 static void change_state
269 (const char *, const char *, struct decision *, const char *);
270 static void print_code
271 (enum rtx_code);
272 static void write_afterward
273 (struct decision *, struct decision *, const char *);
274 static struct decision *write_switch
275 (struct decision *, int);
276 static void write_cond
277 (struct decision_test *, int, enum routine_type);
278 static void write_action
279 (struct decision *, struct decision_test *, int, int,
280 struct decision *, enum routine_type);
281 static int is_unconditional
282 (struct decision_test *, enum routine_type);
283 static int write_node
284 (struct decision *, int, enum routine_type);
285 static void write_tree_1
286 (struct decision_head *, int, enum routine_type);
287 static void write_tree
288 (struct decision_head *, const char *, enum routine_type, int);
289 static void write_subroutine
290 (struct decision_head *, enum routine_type);
291 static void write_subroutines
292 (struct decision_head *, enum routine_type);
293 static void write_header
294 (void);
296 static struct decision_head make_insn_sequence
297 (rtx, enum routine_type);
298 static void process_tree
299 (struct decision_head *, enum routine_type);
301 static void record_insn_name
302 (int, const char *);
304 static void debug_decision_0
305 (struct decision *, int, int);
306 static void debug_decision_1
307 (struct decision *, int);
308 static void debug_decision_2
309 (struct decision_test *);
310 extern void debug_decision
311 (struct decision *);
312 extern void debug_decision_list
313 (struct decision *);
315 /* Create a new node in sequence after LAST. */
317 static struct decision *
318 new_decision (const char *position, struct decision_head *last)
320 struct decision *new = xcalloc (1, sizeof (struct decision));
322 new->success = *last;
323 new->position = xstrdup (position);
324 new->number = next_number++;
326 last->first = last->last = new;
327 return new;
330 /* Create a new test and link it in at PLACE. */
332 static struct decision_test *
333 new_decision_test (enum decision_type type, struct decision_test ***pplace)
335 struct decision_test **place = *pplace;
336 struct decision_test *test;
338 test = xmalloc (sizeof (*test));
339 test->next = *place;
340 test->type = type;
341 *place = test;
343 place = &test->next;
344 *pplace = place;
346 return test;
349 /* Search for and return operand N, stop when reaching node STOP. */
351 static rtx
352 find_operand (rtx pattern, int n, rtx stop)
354 const char *fmt;
355 RTX_CODE code;
356 int i, j, len;
357 rtx r;
359 if (pattern == stop)
360 return stop;
362 code = GET_CODE (pattern);
363 if ((code == MATCH_SCRATCH
364 || code == MATCH_INSN
365 || code == MATCH_OPERAND
366 || code == MATCH_OPERATOR
367 || code == MATCH_PARALLEL)
368 && XINT (pattern, 0) == n)
369 return pattern;
371 fmt = GET_RTX_FORMAT (code);
372 len = GET_RTX_LENGTH (code);
373 for (i = 0; i < len; i++)
375 switch (fmt[i])
377 case 'e': case 'u':
378 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
379 return r;
380 break;
382 case 'V':
383 if (! XVEC (pattern, i))
384 break;
385 /* Fall through. */
387 case 'E':
388 for (j = 0; j < XVECLEN (pattern, i); j++)
389 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
390 != NULL_RTX)
391 return r;
392 break;
394 case 'i': case 'w': case '0': case 's':
395 break;
397 default:
398 abort ();
402 return NULL;
405 /* Search for and return operand M, such that it has a matching
406 constraint for operand N. */
408 static rtx
409 find_matching_operand (rtx pattern, int n)
411 const char *fmt;
412 RTX_CODE code;
413 int i, j, len;
414 rtx r;
416 code = GET_CODE (pattern);
417 if (code == MATCH_OPERAND
418 && (XSTR (pattern, 2)[0] == '0' + n
419 || (XSTR (pattern, 2)[0] == '%'
420 && XSTR (pattern, 2)[1] == '0' + n)))
421 return pattern;
423 fmt = GET_RTX_FORMAT (code);
424 len = GET_RTX_LENGTH (code);
425 for (i = 0; i < len; i++)
427 switch (fmt[i])
429 case 'e': case 'u':
430 if ((r = find_matching_operand (XEXP (pattern, i), n)))
431 return r;
432 break;
434 case 'V':
435 if (! XVEC (pattern, i))
436 break;
437 /* Fall through. */
439 case 'E':
440 for (j = 0; j < XVECLEN (pattern, i); j++)
441 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
442 return r;
443 break;
445 case 'i': case 'w': case '0': case 's':
446 break;
448 default:
449 abort ();
453 return NULL;
457 /* Check for various errors in patterns. SET is nonnull for a destination,
458 and is the complete set pattern. SET_CODE is '=' for normal sets, and
459 '+' within a context that requires in-out constraints. */
461 static void
462 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
464 const char *fmt;
465 RTX_CODE code;
466 size_t i, len;
467 int j;
469 code = GET_CODE (pattern);
470 switch (code)
472 case MATCH_SCRATCH:
473 return;
474 case MATCH_DUP:
475 case MATCH_OP_DUP:
476 case MATCH_PAR_DUP:
477 if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
479 message_with_line (pattern_lineno,
480 "operand %i duplicated before defined",
481 XINT (pattern, 0));
482 error_count++;
484 break;
485 case MATCH_INSN:
486 case MATCH_OPERAND:
487 case MATCH_OPERATOR:
489 const char *pred_name = XSTR (pattern, 1);
490 int allows_non_lvalue = 1, allows_non_const = 1;
491 int special_mode_pred = 0;
492 const char *c_test;
494 if (GET_CODE (insn) == DEFINE_INSN)
495 c_test = XSTR (insn, 2);
496 else
497 c_test = XSTR (insn, 1);
499 if (pred_name[0] != 0)
501 for (i = 0; i < NUM_KNOWN_PREDS; i++)
502 if (! strcmp (preds[i].name, pred_name))
503 break;
505 if (i < NUM_KNOWN_PREDS)
507 int j;
509 allows_non_lvalue = allows_non_const = 0;
510 for (j = 0; preds[i].codes[j] != 0; j++)
512 RTX_CODE c = preds[i].codes[j];
513 if (c != LABEL_REF
514 && c != SYMBOL_REF
515 && c != CONST_INT
516 && c != CONST_DOUBLE
517 && c != CONST
518 && c != HIGH
519 && c != CONSTANT_P_RTX)
520 allows_non_const = 1;
522 if (c != REG
523 && c != SUBREG
524 && c != MEM
525 && c != ADDRESSOF
526 && c != CONCAT
527 && c != PARALLEL
528 && c != STRICT_LOW_PART)
529 allows_non_lvalue = 1;
532 else
534 #ifdef PREDICATE_CODES
535 /* If the port has a list of the predicates it uses but
536 omits one, warn. */
537 message_with_line (pattern_lineno,
538 "warning: `%s' not in PREDICATE_CODES",
539 pred_name);
540 #endif
543 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
544 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
546 special_mode_pred = 1;
547 break;
551 if (code == MATCH_OPERAND)
553 const char constraints0 = XSTR (pattern, 2)[0];
555 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
556 don't use the MATCH_OPERAND constraint, only the predicate.
557 This is confusing to folks doing new ports, so help them
558 not make the mistake. */
559 if (GET_CODE (insn) == DEFINE_EXPAND
560 || GET_CODE (insn) == DEFINE_SPLIT
561 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
563 if (constraints0)
564 message_with_line (pattern_lineno,
565 "warning: constraints not supported in %s",
566 rtx_name[GET_CODE (insn)]);
569 /* A MATCH_OPERAND that is a SET should have an output reload. */
570 else if (set && constraints0)
572 if (set_code == '+')
574 if (constraints0 == '+')
576 /* If we've only got an output reload for this operand,
577 we'd better have a matching input operand. */
578 else if (constraints0 == '='
579 && find_matching_operand (insn, XINT (pattern, 0)))
581 else
583 message_with_line (pattern_lineno,
584 "operand %d missing in-out reload",
585 XINT (pattern, 0));
586 error_count++;
589 else if (constraints0 != '=' && constraints0 != '+')
591 message_with_line (pattern_lineno,
592 "operand %d missing output reload",
593 XINT (pattern, 0));
594 error_count++;
599 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
600 while not likely to occur at runtime, results in less efficient
601 code from insn-recog.c. */
602 if (set
603 && pred_name[0] != '\0'
604 && allows_non_lvalue)
606 message_with_line (pattern_lineno,
607 "warning: destination operand %d allows non-lvalue",
608 XINT (pattern, 0));
611 /* A modeless MATCH_OPERAND can be handy when we can
612 check for multiple modes in the c_test. In most other cases,
613 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
614 and PEEP2 can FAIL within the output pattern. Exclude
615 address_operand, since its mode is related to the mode of
616 the memory not the operand. Exclude the SET_DEST of a call
617 instruction, as that is a common idiom. */
619 if (GET_MODE (pattern) == VOIDmode
620 && code == MATCH_OPERAND
621 && GET_CODE (insn) == DEFINE_INSN
622 && allows_non_const
623 && ! special_mode_pred
624 && pred_name[0] != '\0'
625 && strcmp (pred_name, "address_operand") != 0
626 && strstr (c_test, "operands") == NULL
627 && ! (set
628 && GET_CODE (set) == SET
629 && GET_CODE (SET_SRC (set)) == CALL))
631 message_with_line (pattern_lineno,
632 "warning: operand %d missing mode?",
633 XINT (pattern, 0));
635 return;
638 case SET:
640 enum machine_mode dmode, smode;
641 rtx dest, src;
643 dest = SET_DEST (pattern);
644 src = SET_SRC (pattern);
646 /* STRICT_LOW_PART is a wrapper. Its argument is the real
647 destination, and it's mode should match the source. */
648 if (GET_CODE (dest) == STRICT_LOW_PART)
649 dest = XEXP (dest, 0);
651 /* Find the referent for a DUP. */
653 if (GET_CODE (dest) == MATCH_DUP
654 || GET_CODE (dest) == MATCH_OP_DUP
655 || GET_CODE (dest) == MATCH_PAR_DUP)
656 dest = find_operand (insn, XINT (dest, 0), NULL);
658 if (GET_CODE (src) == MATCH_DUP
659 || GET_CODE (src) == MATCH_OP_DUP
660 || GET_CODE (src) == MATCH_PAR_DUP)
661 src = find_operand (insn, XINT (src, 0), NULL);
663 dmode = GET_MODE (dest);
664 smode = GET_MODE (src);
666 /* The mode of an ADDRESS_OPERAND is the mode of the memory
667 reference, not the mode of the address. */
668 if (GET_CODE (src) == MATCH_OPERAND
669 && ! strcmp (XSTR (src, 1), "address_operand"))
672 /* The operands of a SET must have the same mode unless one
673 is VOIDmode. */
674 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
676 message_with_line (pattern_lineno,
677 "mode mismatch in set: %smode vs %smode",
678 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
679 error_count++;
682 /* If only one of the operands is VOIDmode, and PC or CC0 is
683 not involved, it's probably a mistake. */
684 else if (dmode != smode
685 && GET_CODE (dest) != PC
686 && GET_CODE (dest) != CC0
687 && GET_CODE (src) != PC
688 && GET_CODE (src) != CC0
689 && GET_CODE (src) != CONST_INT)
691 const char *which;
692 which = (dmode == VOIDmode ? "destination" : "source");
693 message_with_line (pattern_lineno,
694 "warning: %s missing a mode?", which);
697 if (dest != SET_DEST (pattern))
698 validate_pattern (dest, insn, pattern, '=');
699 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
700 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
701 return;
704 case CLOBBER:
705 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
706 return;
708 case ZERO_EXTRACT:
709 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
710 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
711 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
712 return;
714 case STRICT_LOW_PART:
715 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
716 return;
718 case LABEL_REF:
719 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
721 message_with_line (pattern_lineno,
722 "operand to label_ref %smode not VOIDmode",
723 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
724 error_count++;
726 break;
728 default:
729 break;
732 fmt = GET_RTX_FORMAT (code);
733 len = GET_RTX_LENGTH (code);
734 for (i = 0; i < len; i++)
736 switch (fmt[i])
738 case 'e': case 'u':
739 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
740 break;
742 case 'E':
743 for (j = 0; j < XVECLEN (pattern, i); j++)
744 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
745 break;
747 case 'i': case 'w': case '0': case 's':
748 break;
750 default:
751 abort ();
756 /* Create a chain of nodes to verify that an rtl expression matches
757 PATTERN.
759 LAST is a pointer to the listhead in the previous node in the chain (or
760 in the calling function, for the first node).
762 POSITION is the string representing the current position in the insn.
764 INSN_TYPE is the type of insn for which we are emitting code.
766 A pointer to the final node in the chain is returned. */
768 static struct decision *
769 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
770 enum routine_type insn_type, int top)
772 RTX_CODE code;
773 struct decision *this, *sub;
774 struct decision_test *test;
775 struct decision_test **place;
776 char *subpos;
777 size_t i;
778 const char *fmt;
779 int depth = strlen (position);
780 int len;
781 enum machine_mode mode;
783 if (depth > max_depth)
784 max_depth = depth;
786 subpos = xmalloc (depth + 2);
787 strcpy (subpos, position);
788 subpos[depth + 1] = 0;
790 sub = this = new_decision (position, last);
791 place = &this->tests;
793 restart:
794 mode = GET_MODE (pattern);
795 code = GET_CODE (pattern);
797 switch (code)
799 case PARALLEL:
800 /* Toplevel peephole pattern. */
801 if (insn_type == PEEPHOLE2 && top)
803 /* We don't need the node we just created -- unlink it. */
804 last->first = last->last = NULL;
806 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
808 /* Which insn we're looking at is represented by A-Z. We don't
809 ever use 'A', however; it is always implied. */
811 subpos[depth] = (i > 0 ? 'A' + i : 0);
812 sub = add_to_sequence (XVECEXP (pattern, 0, i),
813 last, subpos, insn_type, 0);
814 last = &sub->success;
816 goto ret;
819 /* Else nothing special. */
820 break;
822 case MATCH_PARALLEL:
823 /* The explicit patterns within a match_parallel enforce a minimum
824 length on the vector. The match_parallel predicate may allow
825 for more elements. We do need to check for this minimum here
826 or the code generated to match the internals may reference data
827 beyond the end of the vector. */
828 test = new_decision_test (DT_veclen_ge, &place);
829 test->u.veclen = XVECLEN (pattern, 2);
830 /* Fall through. */
832 case MATCH_OPERAND:
833 case MATCH_SCRATCH:
834 case MATCH_OPERATOR:
835 case MATCH_INSN:
837 const char *pred_name;
838 RTX_CODE was_code = code;
839 int allows_const_int = 1;
841 if (code == MATCH_SCRATCH)
843 pred_name = "scratch_operand";
844 code = UNKNOWN;
846 else
848 pred_name = XSTR (pattern, 1);
849 if (code == MATCH_PARALLEL)
850 code = PARALLEL;
851 else
852 code = UNKNOWN;
855 if (pred_name[0] != 0)
857 test = new_decision_test (DT_pred, &place);
858 test->u.pred.name = pred_name;
859 test->u.pred.mode = mode;
861 /* See if we know about this predicate and save its number.
862 If we do, and it only accepts one code, note that fact.
864 If we know that the predicate does not allow CONST_INT,
865 we know that the only way the predicate can match is if
866 the modes match (here we use the kludge of relying on the
867 fact that "address_operand" accepts CONST_INT; otherwise,
868 it would have to be a special case), so we can test the
869 mode (but we need not). This fact should considerably
870 simplify the generated code. */
872 for (i = 0; i < NUM_KNOWN_PREDS; i++)
873 if (! strcmp (preds[i].name, pred_name))
874 break;
876 if (i < NUM_KNOWN_PREDS)
878 int j;
880 test->u.pred.index = i;
882 if (preds[i].codes[1] == 0 && code == UNKNOWN)
883 code = preds[i].codes[0];
885 allows_const_int = 0;
886 for (j = 0; preds[i].codes[j] != 0; j++)
887 if (preds[i].codes[j] == CONST_INT)
889 allows_const_int = 1;
890 break;
893 else
894 test->u.pred.index = -1;
897 /* Can't enforce a mode if we allow const_int. */
898 if (allows_const_int)
899 mode = VOIDmode;
901 /* Accept the operand, ie. record it in `operands'. */
902 test = new_decision_test (DT_accept_op, &place);
903 test->u.opno = XINT (pattern, 0);
905 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
907 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
908 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
910 subpos[depth] = i + base;
911 sub = add_to_sequence (XVECEXP (pattern, 2, i),
912 &sub->success, subpos, insn_type, 0);
915 goto fini;
918 case MATCH_OP_DUP:
919 code = UNKNOWN;
921 test = new_decision_test (DT_dup, &place);
922 test->u.dup = XINT (pattern, 0);
924 test = new_decision_test (DT_accept_op, &place);
925 test->u.opno = XINT (pattern, 0);
927 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
929 subpos[depth] = i + '0';
930 sub = add_to_sequence (XVECEXP (pattern, 1, i),
931 &sub->success, subpos, insn_type, 0);
933 goto fini;
935 case MATCH_DUP:
936 case MATCH_PAR_DUP:
937 code = UNKNOWN;
939 test = new_decision_test (DT_dup, &place);
940 test->u.dup = XINT (pattern, 0);
941 goto fini;
943 case ADDRESS:
944 pattern = XEXP (pattern, 0);
945 goto restart;
947 default:
948 break;
951 fmt = GET_RTX_FORMAT (code);
952 len = GET_RTX_LENGTH (code);
954 /* Do tests against the current node first. */
955 for (i = 0; i < (size_t) len; i++)
957 if (fmt[i] == 'i')
959 if (i == 0)
961 test = new_decision_test (DT_elt_zero_int, &place);
962 test->u.intval = XINT (pattern, i);
964 else if (i == 1)
966 test = new_decision_test (DT_elt_one_int, &place);
967 test->u.intval = XINT (pattern, i);
969 else
970 abort ();
972 else if (fmt[i] == 'w')
974 /* If this value actually fits in an int, we can use a switch
975 statement here, so indicate that. */
976 enum decision_type type
977 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
978 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
980 if (i != 0)
981 abort ();
983 test = new_decision_test (type, &place);
984 test->u.intval = XWINT (pattern, i);
986 else if (fmt[i] == 'E')
988 if (i != 0)
989 abort ();
991 test = new_decision_test (DT_veclen, &place);
992 test->u.veclen = XVECLEN (pattern, i);
996 /* Now test our sub-patterns. */
997 for (i = 0; i < (size_t) len; i++)
999 switch (fmt[i])
1001 case 'e': case 'u':
1002 subpos[depth] = '0' + i;
1003 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1004 subpos, insn_type, 0);
1005 break;
1007 case 'E':
1009 int j;
1010 for (j = 0; j < XVECLEN (pattern, i); j++)
1012 subpos[depth] = 'a' + j;
1013 sub = add_to_sequence (XVECEXP (pattern, i, j),
1014 &sub->success, subpos, insn_type, 0);
1016 break;
1019 case 'i': case 'w':
1020 /* Handled above. */
1021 break;
1022 case '0':
1023 break;
1025 default:
1026 abort ();
1030 fini:
1031 /* Insert nodes testing mode and code, if they're still relevant,
1032 before any of the nodes we may have added above. */
1033 if (code != UNKNOWN)
1035 place = &this->tests;
1036 test = new_decision_test (DT_code, &place);
1037 test->u.code = code;
1040 if (mode != VOIDmode)
1042 place = &this->tests;
1043 test = new_decision_test (DT_mode, &place);
1044 test->u.mode = mode;
1047 /* If we didn't insert any tests or accept nodes, hork. */
1048 if (this->tests == NULL)
1049 abort ();
1051 ret:
1052 free (subpos);
1053 return sub;
1056 /* A subroutine of maybe_both_true; examines only one test.
1057 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1059 static int
1060 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1062 if (d1->type == d2->type)
1064 switch (d1->type)
1066 case DT_mode:
1067 return d1->u.mode == d2->u.mode;
1069 case DT_code:
1070 return d1->u.code == d2->u.code;
1072 case DT_veclen:
1073 return d1->u.veclen == d2->u.veclen;
1075 case DT_elt_zero_int:
1076 case DT_elt_one_int:
1077 case DT_elt_zero_wide:
1078 case DT_elt_zero_wide_safe:
1079 return d1->u.intval == d2->u.intval;
1081 default:
1082 break;
1086 /* If either has a predicate that we know something about, set
1087 things up so that D1 is the one that always has a known
1088 predicate. Then see if they have any codes in common. */
1090 if (d1->type == DT_pred || d2->type == DT_pred)
1092 if (d2->type == DT_pred)
1094 struct decision_test *tmp;
1095 tmp = d1, d1 = d2, d2 = tmp;
1098 /* If D2 tests a mode, see if it matches D1. */
1099 if (d1->u.pred.mode != VOIDmode)
1101 if (d2->type == DT_mode)
1103 if (d1->u.pred.mode != d2->u.mode
1104 /* The mode of an address_operand predicate is the
1105 mode of the memory, not the operand. It can only
1106 be used for testing the predicate, so we must
1107 ignore it here. */
1108 && strcmp (d1->u.pred.name, "address_operand") != 0)
1109 return 0;
1111 /* Don't check two predicate modes here, because if both predicates
1112 accept CONST_INT, then both can still be true even if the modes
1113 are different. If they don't accept CONST_INT, there will be a
1114 separate DT_mode that will make maybe_both_true_1 return 0. */
1117 if (d1->u.pred.index >= 0)
1119 /* If D2 tests a code, see if it is in the list of valid
1120 codes for D1's predicate. */
1121 if (d2->type == DT_code)
1123 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1124 while (*c != 0)
1126 if (*c == d2->u.code)
1127 break;
1128 ++c;
1130 if (*c == 0)
1131 return 0;
1134 /* Otherwise see if the predicates have any codes in common. */
1135 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1137 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1138 int common = 0;
1140 while (*c1 != 0 && !common)
1142 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1143 while (*c2 != 0 && !common)
1145 common = (*c1 == *c2);
1146 ++c2;
1148 ++c1;
1151 if (!common)
1152 return 0;
1157 /* Tests vs veclen may be known when strict equality is involved. */
1158 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1159 return d1->u.veclen >= d2->u.veclen;
1160 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1161 return d2->u.veclen >= d1->u.veclen;
1163 return -1;
1166 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1167 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1169 static int
1170 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1172 struct decision_test *t1, *t2;
1174 /* A match_operand with no predicate can match anything. Recognize
1175 this by the existence of a lone DT_accept_op test. */
1176 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1177 return 1;
1179 /* Eliminate pairs of tests while they can exactly match. */
1180 while (d1 && d2 && d1->type == d2->type)
1182 if (maybe_both_true_2 (d1, d2) == 0)
1183 return 0;
1184 d1 = d1->next, d2 = d2->next;
1187 /* After that, consider all pairs. */
1188 for (t1 = d1; t1 ; t1 = t1->next)
1189 for (t2 = d2; t2 ; t2 = t2->next)
1190 if (maybe_both_true_2 (t1, t2) == 0)
1191 return 0;
1193 return -1;
1196 /* Return 0 if we can prove that there is no RTL that can match both
1197 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1198 can match both or just that we couldn't prove there wasn't such an RTL).
1200 TOPLEVEL is nonzero if we are to only look at the top level and not
1201 recursively descend. */
1203 static int
1204 maybe_both_true (struct decision *d1, struct decision *d2,
1205 int toplevel)
1207 struct decision *p1, *p2;
1208 int cmp;
1210 /* Don't compare strings on the different positions in insn. Doing so
1211 is incorrect and results in false matches from constructs like
1213 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1214 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1216 [(set (match_operand:HI "register_operand" "r")
1217 (match_operand:HI "register_operand" "r"))]
1219 If we are presented with such, we are recursing through the remainder
1220 of a node's success nodes (from the loop at the end of this function).
1221 Skip forward until we come to a position that matches.
1223 Due to the way position strings are constructed, we know that iterating
1224 forward from the lexically lower position (e.g. "00") will run into
1225 the lexically higher position (e.g. "1") and not the other way around.
1226 This saves a bit of effort. */
1228 cmp = strcmp (d1->position, d2->position);
1229 if (cmp != 0)
1231 if (toplevel)
1232 abort ();
1234 /* If the d2->position was lexically lower, swap. */
1235 if (cmp > 0)
1236 p1 = d1, d1 = d2, d2 = p1;
1238 if (d1->success.first == 0)
1239 return 1;
1240 for (p1 = d1->success.first; p1; p1 = p1->next)
1241 if (maybe_both_true (p1, d2, 0))
1242 return 1;
1244 return 0;
1247 /* Test the current level. */
1248 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1249 if (cmp >= 0)
1250 return cmp;
1252 /* We can't prove that D1 and D2 cannot both be true. If we are only
1253 to check the top level, return 1. Otherwise, see if we can prove
1254 that all choices in both successors are mutually exclusive. If
1255 either does not have any successors, we can't prove they can't both
1256 be true. */
1258 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1259 return 1;
1261 for (p1 = d1->success.first; p1; p1 = p1->next)
1262 for (p2 = d2->success.first; p2; p2 = p2->next)
1263 if (maybe_both_true (p1, p2, 0))
1264 return 1;
1266 return 0;
1269 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1271 static int
1272 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1274 switch (d1->type)
1276 case DT_mode:
1277 return d1->u.mode == d2->u.mode;
1279 case DT_code:
1280 return d1->u.code == d2->u.code;
1282 case DT_pred:
1283 return (d1->u.pred.mode == d2->u.pred.mode
1284 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1286 case DT_c_test:
1287 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1289 case DT_veclen:
1290 case DT_veclen_ge:
1291 return d1->u.veclen == d2->u.veclen;
1293 case DT_dup:
1294 return d1->u.dup == d2->u.dup;
1296 case DT_elt_zero_int:
1297 case DT_elt_one_int:
1298 case DT_elt_zero_wide:
1299 case DT_elt_zero_wide_safe:
1300 return d1->u.intval == d2->u.intval;
1302 case DT_accept_op:
1303 return d1->u.opno == d2->u.opno;
1305 case DT_accept_insn:
1306 /* Differences will be handled in merge_accept_insn. */
1307 return 1;
1309 default:
1310 abort ();
1314 /* True iff the two nodes are identical (on one level only). Due
1315 to the way these lists are constructed, we shouldn't have to
1316 consider different orderings on the tests. */
1318 static int
1319 nodes_identical (struct decision *d1, struct decision *d2)
1321 struct decision_test *t1, *t2;
1323 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1325 if (t1->type != t2->type)
1326 return 0;
1327 if (! nodes_identical_1 (t1, t2))
1328 return 0;
1331 /* For success, they should now both be null. */
1332 if (t1 != t2)
1333 return 0;
1335 /* Check that their subnodes are at the same position, as any one set
1336 of sibling decisions must be at the same position. Allowing this
1337 requires complications to find_afterward and when change_state is
1338 invoked. */
1339 if (d1->success.first
1340 && d2->success.first
1341 && strcmp (d1->success.first->position, d2->success.first->position))
1342 return 0;
1344 return 1;
1347 /* A subroutine of merge_trees; given two nodes that have been declared
1348 identical, cope with two insn accept states. If they differ in the
1349 number of clobbers, then the conflict was created by make_insn_sequence
1350 and we can drop the with-clobbers version on the floor. If both
1351 nodes have no additional clobbers, we have found an ambiguity in the
1352 source machine description. */
1354 static void
1355 merge_accept_insn (struct decision *oldd, struct decision *addd)
1357 struct decision_test *old, *add;
1359 for (old = oldd->tests; old; old = old->next)
1360 if (old->type == DT_accept_insn)
1361 break;
1362 if (old == NULL)
1363 return;
1365 for (add = addd->tests; add; add = add->next)
1366 if (add->type == DT_accept_insn)
1367 break;
1368 if (add == NULL)
1369 return;
1371 /* If one node is for a normal insn and the second is for the base
1372 insn with clobbers stripped off, the second node should be ignored. */
1374 if (old->u.insn.num_clobbers_to_add == 0
1375 && add->u.insn.num_clobbers_to_add > 0)
1377 /* Nothing to do here. */
1379 else if (old->u.insn.num_clobbers_to_add > 0
1380 && add->u.insn.num_clobbers_to_add == 0)
1382 /* In this case, replace OLD with ADD. */
1383 old->u.insn = add->u.insn;
1385 else
1387 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1388 get_insn_name (add->u.insn.code_number),
1389 get_insn_name (old->u.insn.code_number));
1390 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1391 get_insn_name (old->u.insn.code_number));
1392 error_count++;
1396 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1398 static void
1399 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1401 struct decision *next, *add;
1403 if (addh->first == 0)
1404 return;
1405 if (oldh->first == 0)
1407 *oldh = *addh;
1408 return;
1411 /* Trying to merge bits at different positions isn't possible. */
1412 if (strcmp (oldh->first->position, addh->first->position))
1413 abort ();
1415 for (add = addh->first; add ; add = next)
1417 struct decision *old, *insert_before = NULL;
1419 next = add->next;
1421 /* The semantics of pattern matching state that the tests are
1422 done in the order given in the MD file so that if an insn
1423 matches two patterns, the first one will be used. However,
1424 in practice, most, if not all, patterns are unambiguous so
1425 that their order is independent. In that case, we can merge
1426 identical tests and group all similar modes and codes together.
1428 Scan starting from the end of OLDH until we reach a point
1429 where we reach the head of the list or where we pass a
1430 pattern that could also be true if NEW is true. If we find
1431 an identical pattern, we can merge them. Also, record the
1432 last node that tests the same code and mode and the last one
1433 that tests just the same mode.
1435 If we have no match, place NEW after the closest match we found. */
1437 for (old = oldh->last; old; old = old->prev)
1439 if (nodes_identical (old, add))
1441 merge_accept_insn (old, add);
1442 merge_trees (&old->success, &add->success);
1443 goto merged_nodes;
1446 if (maybe_both_true (old, add, 0))
1447 break;
1449 /* Insert the nodes in DT test type order, which is roughly
1450 how expensive/important the test is. Given that the tests
1451 are also ordered within the list, examining the first is
1452 sufficient. */
1453 if ((int) add->tests->type < (int) old->tests->type)
1454 insert_before = old;
1457 if (insert_before == NULL)
1459 add->next = NULL;
1460 add->prev = oldh->last;
1461 oldh->last->next = add;
1462 oldh->last = add;
1464 else
1466 if ((add->prev = insert_before->prev) != NULL)
1467 add->prev->next = add;
1468 else
1469 oldh->first = add;
1470 add->next = insert_before;
1471 insert_before->prev = add;
1474 merged_nodes:;
1478 /* Walk the tree looking for sub-nodes that perform common tests.
1479 Factor out the common test into a new node. This enables us
1480 (depending on the test type) to emit switch statements later. */
1482 static void
1483 factor_tests (struct decision_head *head)
1485 struct decision *first, *next;
1487 for (first = head->first; first && first->next; first = next)
1489 enum decision_type type;
1490 struct decision *new, *old_last;
1492 type = first->tests->type;
1493 next = first->next;
1495 /* Want at least two compatible sequential nodes. */
1496 if (next->tests->type != type)
1497 continue;
1499 /* Don't want all node types, just those we can turn into
1500 switch statements. */
1501 if (type != DT_mode
1502 && type != DT_code
1503 && type != DT_veclen
1504 && type != DT_elt_zero_int
1505 && type != DT_elt_one_int
1506 && type != DT_elt_zero_wide_safe)
1507 continue;
1509 /* If we'd been performing more than one test, create a new node
1510 below our first test. */
1511 if (first->tests->next != NULL)
1513 new = new_decision (first->position, &first->success);
1514 new->tests = first->tests->next;
1515 first->tests->next = NULL;
1518 /* Crop the node tree off after our first test. */
1519 first->next = NULL;
1520 old_last = head->last;
1521 head->last = first;
1523 /* For each compatible test, adjust to perform only one test in
1524 the top level node, then merge the node back into the tree. */
1527 struct decision_head h;
1529 if (next->tests->next != NULL)
1531 new = new_decision (next->position, &next->success);
1532 new->tests = next->tests->next;
1533 next->tests->next = NULL;
1535 new = next;
1536 next = next->next;
1537 new->next = NULL;
1538 h.first = h.last = new;
1540 merge_trees (head, &h);
1542 while (next && next->tests->type == type);
1544 /* After we run out of compatible tests, graft the remaining nodes
1545 back onto the tree. */
1546 if (next)
1548 next->prev = head->last;
1549 head->last->next = next;
1550 head->last = old_last;
1554 /* Recurse. */
1555 for (first = head->first; first; first = first->next)
1556 factor_tests (&first->success);
1559 /* After factoring, try to simplify the tests on any one node.
1560 Tests that are useful for switch statements are recognizable
1561 by having only a single test on a node -- we'll be manipulating
1562 nodes with multiple tests:
1564 If we have mode tests or code tests that are redundant with
1565 predicates, remove them. */
1567 static void
1568 simplify_tests (struct decision_head *head)
1570 struct decision *tree;
1572 for (tree = head->first; tree; tree = tree->next)
1574 struct decision_test *a, *b;
1576 a = tree->tests;
1577 b = a->next;
1578 if (b == NULL)
1579 continue;
1581 /* Find a predicate node. */
1582 while (b && b->type != DT_pred)
1583 b = b->next;
1584 if (b)
1586 /* Due to how these tests are constructed, we don't even need
1587 to check that the mode and code are compatible -- they were
1588 generated from the predicate in the first place. */
1589 while (a->type == DT_mode || a->type == DT_code)
1590 a = a->next;
1591 tree->tests = a;
1595 /* Recurse. */
1596 for (tree = head->first; tree; tree = tree->next)
1597 simplify_tests (&tree->success);
1600 /* Count the number of subnodes of HEAD. If the number is high enough,
1601 make the first node in HEAD start a separate subroutine in the C code
1602 that is generated. */
1604 static int
1605 break_out_subroutines (struct decision_head *head, int initial)
1607 int size = 0;
1608 struct decision *sub;
1610 for (sub = head->first; sub; sub = sub->next)
1611 size += 1 + break_out_subroutines (&sub->success, 0);
1613 if (size > SUBROUTINE_THRESHOLD && ! initial)
1615 head->first->subroutine_number = ++next_subroutine_number;
1616 size = 1;
1618 return size;
1621 /* For each node p, find the next alternative that might be true
1622 when p is true. */
1624 static void
1625 find_afterward (struct decision_head *head, struct decision *real_afterward)
1627 struct decision *p, *q, *afterward;
1629 /* We can't propagate alternatives across subroutine boundaries.
1630 This is not incorrect, merely a minor optimization loss. */
1632 p = head->first;
1633 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1635 for ( ; p ; p = p->next)
1637 /* Find the next node that might be true if this one fails. */
1638 for (q = p->next; q ; q = q->next)
1639 if (maybe_both_true (p, q, 1))
1640 break;
1642 /* If we reached the end of the list without finding one,
1643 use the incoming afterward position. */
1644 if (!q)
1645 q = afterward;
1646 p->afterward = q;
1647 if (q)
1648 q->need_label = 1;
1651 /* Recurse. */
1652 for (p = head->first; p ; p = p->next)
1653 if (p->success.first)
1654 find_afterward (&p->success, p->afterward);
1656 /* When we are generating a subroutine, record the real afterward
1657 position in the first node where write_tree can find it, and we
1658 can do the right thing at the subroutine call site. */
1659 p = head->first;
1660 if (p->subroutine_number > 0)
1661 p->afterward = real_afterward;
1664 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1665 actions are necessary to move to NEWPOS. If we fail to move to the
1666 new state, branch to node AFTERWARD if nonzero, otherwise return.
1668 Failure to move to the new state can only occur if we are trying to
1669 match multiple insns and we try to step past the end of the stream. */
1671 static void
1672 change_state (const char *oldpos, const char *newpos,
1673 struct decision *afterward, const char *indent)
1675 int odepth = strlen (oldpos);
1676 int ndepth = strlen (newpos);
1677 int depth;
1678 int old_has_insn, new_has_insn;
1680 /* Pop up as many levels as necessary. */
1681 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1682 continue;
1684 /* Hunt for the last [A-Z] in both strings. */
1685 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1686 if (ISUPPER (oldpos[old_has_insn]))
1687 break;
1688 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1689 if (ISUPPER (newpos[new_has_insn]))
1690 break;
1692 /* Go down to desired level. */
1693 while (depth < ndepth)
1695 /* It's a different insn from the first one. */
1696 if (ISUPPER (newpos[depth]))
1698 /* We can only fail if we're moving down the tree. */
1699 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1701 printf ("%stem = peep2_next_insn (%d);\n",
1702 indent, newpos[depth] - 'A');
1704 else
1706 printf ("%stem = peep2_next_insn (%d);\n",
1707 indent, newpos[depth] - 'A');
1708 printf ("%sif (tem == NULL_RTX)\n", indent);
1709 if (afterward)
1710 printf ("%s goto L%d;\n", indent, afterward->number);
1711 else
1712 printf ("%s goto ret0;\n", indent);
1714 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1716 else if (ISLOWER (newpos[depth]))
1717 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1718 indent, depth + 1, depth, newpos[depth] - 'a');
1719 else
1720 printf ("%sx%d = XEXP (x%d, %c);\n",
1721 indent, depth + 1, depth, newpos[depth]);
1722 ++depth;
1726 /* Print the enumerator constant for CODE -- the upcase version of
1727 the name. */
1729 static void
1730 print_code (enum rtx_code code)
1732 const char *p;
1733 for (p = GET_RTX_NAME (code); *p; p++)
1734 putchar (TOUPPER (*p));
1737 /* Emit code to cross an afterward link -- change state and branch. */
1739 static void
1740 write_afterward (struct decision *start, struct decision *afterward,
1741 const char *indent)
1743 if (!afterward || start->subroutine_number > 0)
1744 printf("%sgoto ret0;\n", indent);
1745 else
1747 change_state (start->position, afterward->position, NULL, indent);
1748 printf ("%sgoto L%d;\n", indent, afterward->number);
1752 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1753 special care to avoid "decimal constant is so large that it is unsigned"
1754 warnings in the resulting code. */
1756 static void
1757 print_host_wide_int (HOST_WIDE_INT val)
1759 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1760 if (val == min)
1761 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1762 else
1763 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1766 /* Emit a switch statement, if possible, for an initial sequence of
1767 nodes at START. Return the first node yet untested. */
1769 static struct decision *
1770 write_switch (struct decision *start, int depth)
1772 struct decision *p = start;
1773 enum decision_type type = p->tests->type;
1774 struct decision *needs_label = NULL;
1776 /* If we have two or more nodes in sequence that test the same one
1777 thing, we may be able to use a switch statement. */
1779 if (!p->next
1780 || p->tests->next
1781 || p->next->tests->type != type
1782 || p->next->tests->next
1783 || nodes_identical_1 (p->tests, p->next->tests))
1784 return p;
1786 /* DT_code is special in that we can do interesting things with
1787 known predicates at the same time. */
1788 if (type == DT_code)
1790 char codemap[NUM_RTX_CODE];
1791 struct decision *ret;
1792 RTX_CODE code;
1794 memset (codemap, 0, sizeof(codemap));
1796 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1797 code = p->tests->u.code;
1800 if (p != start && p->need_label && needs_label == NULL)
1801 needs_label = p;
1803 printf (" case ");
1804 print_code (code);
1805 printf (":\n goto L%d;\n", p->success.first->number);
1806 p->success.first->need_label = 1;
1808 codemap[code] = 1;
1809 p = p->next;
1811 while (p
1812 && ! p->tests->next
1813 && p->tests->type == DT_code
1814 && ! codemap[code = p->tests->u.code]);
1816 /* If P is testing a predicate that we know about and we haven't
1817 seen any of the codes that are valid for the predicate, we can
1818 write a series of "case" statement, one for each possible code.
1819 Since we are already in a switch, these redundant tests are very
1820 cheap and will reduce the number of predicates called. */
1822 /* Note that while we write out cases for these predicates here,
1823 we don't actually write the test here, as it gets kinda messy.
1824 It is trivial to leave this to later by telling our caller that
1825 we only processed the CODE tests. */
1826 if (needs_label != NULL)
1827 ret = needs_label;
1828 else
1829 ret = p;
1831 while (p && p->tests->type == DT_pred
1832 && p->tests->u.pred.index >= 0)
1834 const RTX_CODE *c;
1836 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1837 if (codemap[(int) *c] != 0)
1838 goto pred_done;
1840 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1842 printf (" case ");
1843 print_code (*c);
1844 printf (":\n");
1845 codemap[(int) *c] = 1;
1848 printf (" goto L%d;\n", p->number);
1849 p->need_label = 1;
1850 p = p->next;
1853 pred_done:
1854 /* Make the default case skip the predicates we managed to match. */
1856 printf (" default:\n");
1857 if (p != ret)
1859 if (p)
1861 printf (" goto L%d;\n", p->number);
1862 p->need_label = 1;
1864 else
1865 write_afterward (start, start->afterward, " ");
1867 else
1868 printf (" break;\n");
1869 printf (" }\n");
1871 return ret;
1873 else if (type == DT_mode
1874 || type == DT_veclen
1875 || type == DT_elt_zero_int
1876 || type == DT_elt_one_int
1877 || type == DT_elt_zero_wide_safe)
1879 const char *indent = "";
1881 /* We cast switch parameter to integer, so we must ensure that the value
1882 fits. */
1883 if (type == DT_elt_zero_wide_safe)
1885 indent = " ";
1886 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1888 printf ("%s switch (", indent);
1889 switch (type)
1891 case DT_mode:
1892 printf ("GET_MODE (x%d)", depth);
1893 break;
1894 case DT_veclen:
1895 printf ("XVECLEN (x%d, 0)", depth);
1896 break;
1897 case DT_elt_zero_int:
1898 printf ("XINT (x%d, 0)", depth);
1899 break;
1900 case DT_elt_one_int:
1901 printf ("XINT (x%d, 1)", depth);
1902 break;
1903 case DT_elt_zero_wide_safe:
1904 /* Convert result of XWINT to int for portability since some C
1905 compilers won't do it and some will. */
1906 printf ("(int) XWINT (x%d, 0)", depth);
1907 break;
1908 default:
1909 abort ();
1911 printf (")\n%s {\n", indent);
1915 /* Merge trees will not unify identical nodes if their
1916 sub-nodes are at different levels. Thus we must check
1917 for duplicate cases. */
1918 struct decision *q;
1919 for (q = start; q != p; q = q->next)
1920 if (nodes_identical_1 (p->tests, q->tests))
1921 goto case_done;
1923 if (p != start && p->need_label && needs_label == NULL)
1924 needs_label = p;
1926 printf ("%s case ", indent);
1927 switch (type)
1929 case DT_mode:
1930 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1931 break;
1932 case DT_veclen:
1933 printf ("%d", p->tests->u.veclen);
1934 break;
1935 case DT_elt_zero_int:
1936 case DT_elt_one_int:
1937 case DT_elt_zero_wide:
1938 case DT_elt_zero_wide_safe:
1939 print_host_wide_int (p->tests->u.intval);
1940 break;
1941 default:
1942 abort ();
1944 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
1945 p->success.first->need_label = 1;
1947 p = p->next;
1949 while (p && p->tests->type == type && !p->tests->next);
1951 case_done:
1952 printf ("%s default:\n%s break;\n%s }\n",
1953 indent, indent, indent);
1955 return needs_label != NULL ? needs_label : p;
1957 else
1959 /* None of the other tests are amenable. */
1960 return p;
1964 /* Emit code for one test. */
1966 static void
1967 write_cond (struct decision_test *p, int depth,
1968 enum routine_type subroutine_type)
1970 switch (p->type)
1972 case DT_mode:
1973 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1974 break;
1976 case DT_code:
1977 printf ("GET_CODE (x%d) == ", depth);
1978 print_code (p->u.code);
1979 break;
1981 case DT_veclen:
1982 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1983 break;
1985 case DT_elt_zero_int:
1986 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1987 break;
1989 case DT_elt_one_int:
1990 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1991 break;
1993 case DT_elt_zero_wide:
1994 case DT_elt_zero_wide_safe:
1995 printf ("XWINT (x%d, 0) == ", depth);
1996 print_host_wide_int (p->u.intval);
1997 break;
1999 case DT_const_int:
2000 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
2001 depth, (int) p->u.intval);
2002 break;
2004 case DT_veclen_ge:
2005 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2006 break;
2008 case DT_dup:
2009 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2010 break;
2012 case DT_pred:
2013 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2014 GET_MODE_NAME (p->u.pred.mode));
2015 break;
2017 case DT_c_test:
2018 printf ("(%s)", p->u.c_test);
2019 break;
2021 case DT_accept_insn:
2022 switch (subroutine_type)
2024 case RECOG:
2025 if (p->u.insn.num_clobbers_to_add == 0)
2026 abort ();
2027 printf ("pnum_clobbers != NULL");
2028 break;
2030 default:
2031 abort ();
2033 break;
2035 default:
2036 abort ();
2040 /* Emit code for one action. The previous tests have succeeded;
2041 TEST is the last of the chain. In the normal case we simply
2042 perform a state change. For the `accept' tests we must do more work. */
2044 static void
2045 write_action (struct decision *p, struct decision_test *test,
2046 int depth, int uncond, struct decision *success,
2047 enum routine_type subroutine_type)
2049 const char *indent;
2050 int want_close = 0;
2052 if (uncond)
2053 indent = " ";
2054 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2056 fputs (" {\n", stdout);
2057 indent = " ";
2058 want_close = 1;
2060 else
2061 indent = " ";
2063 if (test->type == DT_accept_op)
2065 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2067 /* Only allow DT_accept_insn to follow. */
2068 if (test->next)
2070 test = test->next;
2071 if (test->type != DT_accept_insn)
2072 abort ();
2076 /* Sanity check that we're now at the end of the list of tests. */
2077 if (test->next)
2078 abort ();
2080 if (test->type == DT_accept_insn)
2082 switch (subroutine_type)
2084 case RECOG:
2085 if (test->u.insn.num_clobbers_to_add != 0)
2086 printf ("%s*pnum_clobbers = %d;\n",
2087 indent, test->u.insn.num_clobbers_to_add);
2088 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2089 break;
2091 case SPLIT:
2092 printf ("%sreturn gen_split_%d (operands);\n",
2093 indent, test->u.insn.code_number);
2094 break;
2096 case PEEPHOLE2:
2098 int match_len = 0, i;
2100 for (i = strlen (p->position) - 1; i >= 0; --i)
2101 if (ISUPPER (p->position[i]))
2103 match_len = p->position[i] - 'A';
2104 break;
2106 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2107 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2108 indent, test->u.insn.code_number);
2109 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2111 break;
2113 default:
2114 abort ();
2117 else
2119 printf("%sgoto L%d;\n", indent, success->number);
2120 success->need_label = 1;
2123 if (want_close)
2124 fputs (" }\n", stdout);
2127 /* Return 1 if the test is always true and has no fallthru path. Return -1
2128 if the test does have a fallthru path, but requires that the condition be
2129 terminated. Otherwise return 0 for a normal test. */
2130 /* ??? is_unconditional is a stupid name for a tri-state function. */
2132 static int
2133 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2135 if (t->type == DT_accept_op)
2136 return 1;
2138 if (t->type == DT_accept_insn)
2140 switch (subroutine_type)
2142 case RECOG:
2143 return (t->u.insn.num_clobbers_to_add == 0);
2144 case SPLIT:
2145 return 1;
2146 case PEEPHOLE2:
2147 return -1;
2148 default:
2149 abort ();
2153 return 0;
2156 /* Emit code for one node -- the conditional and the accompanying action.
2157 Return true if there is no fallthru path. */
2159 static int
2160 write_node (struct decision *p, int depth,
2161 enum routine_type subroutine_type)
2163 struct decision_test *test, *last_test;
2164 int uncond;
2166 /* Scan the tests and simplify comparisons against small
2167 constants. */
2168 for (test = p->tests; test; test = test->next)
2170 if (test->type == DT_code
2171 && test->u.code == CONST_INT
2172 && test->next
2173 && test->next->type == DT_elt_zero_wide_safe
2174 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2175 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2177 test->type = DT_const_int;
2178 test->u.intval = test->next->u.intval;
2179 test->next = test->next->next;
2183 last_test = test = p->tests;
2184 uncond = is_unconditional (test, subroutine_type);
2185 if (uncond == 0)
2187 printf (" if (");
2188 write_cond (test, depth, subroutine_type);
2190 while ((test = test->next) != NULL)
2192 last_test = test;
2193 if (is_unconditional (test, subroutine_type))
2194 break;
2196 printf ("\n && ");
2197 write_cond (test, depth, subroutine_type);
2200 printf (")\n");
2203 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2205 return uncond > 0;
2208 /* Emit code for all of the sibling nodes of HEAD. */
2210 static void
2211 write_tree_1 (struct decision_head *head, int depth,
2212 enum routine_type subroutine_type)
2214 struct decision *p, *next;
2215 int uncond = 0;
2217 for (p = head->first; p ; p = next)
2219 /* The label for the first element was printed in write_tree. */
2220 if (p != head->first && p->need_label)
2221 OUTPUT_LABEL (" ", p->number);
2223 /* Attempt to write a switch statement for a whole sequence. */
2224 next = write_switch (p, depth);
2225 if (p != next)
2226 uncond = 0;
2227 else
2229 /* Failed -- fall back and write one node. */
2230 uncond = write_node (p, depth, subroutine_type);
2231 next = p->next;
2235 /* Finished with this chain. Close a fallthru path by branching
2236 to the afterward node. */
2237 if (! uncond)
2238 write_afterward (head->last, head->last->afterward, " ");
2241 /* Write out the decision tree starting at HEAD. PREVPOS is the
2242 position at the node that branched to this node. */
2244 static void
2245 write_tree (struct decision_head *head, const char *prevpos,
2246 enum routine_type type, int initial)
2248 struct decision *p = head->first;
2250 putchar ('\n');
2251 if (p->need_label)
2252 OUTPUT_LABEL (" ", p->number);
2254 if (! initial && p->subroutine_number > 0)
2256 static const char * const name_prefix[] = {
2257 "recog", "split", "peephole2"
2260 static const char * const call_suffix[] = {
2261 ", pnum_clobbers", "", ", _pmatch_len"
2264 /* This node has been broken out into a separate subroutine.
2265 Call it, test the result, and branch accordingly. */
2267 if (p->afterward)
2269 printf (" tem = %s_%d (x0, insn%s);\n",
2270 name_prefix[type], p->subroutine_number, call_suffix[type]);
2271 if (IS_SPLIT (type))
2272 printf (" if (tem != 0)\n return tem;\n");
2273 else
2274 printf (" if (tem >= 0)\n return tem;\n");
2276 change_state (p->position, p->afterward->position, NULL, " ");
2277 printf (" goto L%d;\n", p->afterward->number);
2279 else
2281 printf (" return %s_%d (x0, insn%s);\n",
2282 name_prefix[type], p->subroutine_number, call_suffix[type]);
2285 else
2287 int depth = strlen (p->position);
2289 change_state (prevpos, p->position, head->last->afterward, " ");
2290 write_tree_1 (head, depth, type);
2292 for (p = head->first; p; p = p->next)
2293 if (p->success.first)
2294 write_tree (&p->success, p->position, type, 0);
2298 /* Write out a subroutine of type TYPE to do comparisons starting at
2299 node TREE. */
2301 static void
2302 write_subroutine (struct decision_head *head, enum routine_type type)
2304 int subfunction = head->first ? head->first->subroutine_number : 0;
2305 const char *s_or_e;
2306 char extension[32];
2307 int i;
2309 s_or_e = subfunction ? "static " : "";
2311 if (subfunction)
2312 sprintf (extension, "_%d", subfunction);
2313 else if (type == RECOG)
2314 extension[0] = '\0';
2315 else
2316 strcpy (extension, "_insns");
2318 switch (type)
2320 case RECOG:
2321 printf ("%sint\n\
2322 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2323 break;
2324 case SPLIT:
2325 printf ("%srtx\n\
2326 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2327 s_or_e, extension);
2328 break;
2329 case PEEPHOLE2:
2330 printf ("%srtx\n\
2331 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2332 s_or_e, extension);
2333 break;
2336 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2337 for (i = 1; i <= max_depth; i++)
2338 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2340 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2342 if (!subfunction)
2343 printf (" recog_data.insn = NULL_RTX;\n");
2345 if (head->first)
2346 write_tree (head, "", type, 1);
2347 else
2348 printf (" goto ret0;\n");
2350 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2353 /* In break_out_subroutines, we discovered the boundaries for the
2354 subroutines, but did not write them out. Do so now. */
2356 static void
2357 write_subroutines (struct decision_head *head, enum routine_type type)
2359 struct decision *p;
2361 for (p = head->first; p ; p = p->next)
2362 if (p->success.first)
2363 write_subroutines (&p->success, type);
2365 if (head->first->subroutine_number > 0)
2366 write_subroutine (head, type);
2369 /* Begin the output file. */
2371 static void
2372 write_header (void)
2374 puts ("\
2375 /* Generated automatically by the program `genrecog' from the target\n\
2376 machine description file. */\n\
2378 #include \"config.h\"\n\
2379 #include \"system.h\"\n\
2380 #include \"coretypes.h\"\n\
2381 #include \"tm.h\"\n\
2382 #include \"rtl.h\"\n\
2383 #include \"tm_p.h\"\n\
2384 #include \"function.h\"\n\
2385 #include \"insn-config.h\"\n\
2386 #include \"recog.h\"\n\
2387 #include \"real.h\"\n\
2388 #include \"output.h\"\n\
2389 #include \"flags.h\"\n\
2390 #include \"hard-reg-set.h\"\n\
2391 #include \"resource.h\"\n\
2392 #include \"toplev.h\"\n\
2393 #include \"reload.h\"\n\
2394 \n");
2396 puts ("\n\
2397 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2398 X0 is a valid instruction.\n\
2400 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2401 returns a nonnegative number which is the insn code number for the\n\
2402 pattern that matched. This is the same as the order in the machine\n\
2403 description of the entry that matched. This number can be used as an\n\
2404 index into `insn_data' and other tables.\n");
2405 puts ("\
2406 The third argument to recog is an optional pointer to an int. If\n\
2407 present, recog will accept a pattern if it matches except for missing\n\
2408 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2409 the optional pointer will be set to the number of CLOBBERs that need\n\
2410 to be added (it should be initialized to zero by the caller). If it");
2411 puts ("\
2412 is set nonzero, the caller should allocate a PARALLEL of the\n\
2413 appropriate size, copy the initial entries, and call add_clobbers\n\
2414 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2417 puts ("\n\
2418 The function split_insns returns 0 if the rtl could not\n\
2419 be split or the split rtl as an INSN list if it can be.\n\
2421 The function peephole2_insns returns 0 if the rtl could not\n\
2422 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2423 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2424 */\n\n");
2428 /* Construct and return a sequence of decisions
2429 that will recognize INSN.
2431 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2433 static struct decision_head
2434 make_insn_sequence (rtx insn, enum routine_type type)
2436 rtx x;
2437 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2438 int truth = maybe_eval_c_test (c_test);
2439 struct decision *last;
2440 struct decision_test *test, **place;
2441 struct decision_head head;
2442 char c_test_pos[2];
2444 /* We should never see an insn whose C test is false at compile time. */
2445 if (truth == 0)
2446 abort ();
2448 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2450 c_test_pos[0] = '\0';
2451 if (type == PEEPHOLE2)
2453 int i, j;
2455 /* peephole2 gets special treatment:
2456 - X always gets an outer parallel even if it's only one entry
2457 - we remove all traces of outer-level match_scratch and match_dup
2458 expressions here. */
2459 x = rtx_alloc (PARALLEL);
2460 PUT_MODE (x, VOIDmode);
2461 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2462 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2464 rtx tmp = XVECEXP (insn, 0, i);
2465 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2467 XVECEXP (x, 0, j) = tmp;
2468 j++;
2471 XVECLEN (x, 0) = j;
2473 c_test_pos[0] = 'A' + j - 1;
2474 c_test_pos[1] = '\0';
2476 else if (XVECLEN (insn, type == RECOG) == 1)
2477 x = XVECEXP (insn, type == RECOG, 0);
2478 else
2480 x = rtx_alloc (PARALLEL);
2481 XVEC (x, 0) = XVEC (insn, type == RECOG);
2482 PUT_MODE (x, VOIDmode);
2485 validate_pattern (x, insn, NULL_RTX, 0);
2487 memset(&head, 0, sizeof(head));
2488 last = add_to_sequence (x, &head, "", type, 1);
2490 /* Find the end of the test chain on the last node. */
2491 for (test = last->tests; test->next; test = test->next)
2492 continue;
2493 place = &test->next;
2495 /* Skip the C test if it's known to be true at compile time. */
2496 if (truth == -1)
2498 /* Need a new node if we have another test to add. */
2499 if (test->type == DT_accept_op)
2501 last = new_decision (c_test_pos, &last->success);
2502 place = &last->tests;
2504 test = new_decision_test (DT_c_test, &place);
2505 test->u.c_test = c_test;
2508 test = new_decision_test (DT_accept_insn, &place);
2509 test->u.insn.code_number = next_insn_code;
2510 test->u.insn.lineno = pattern_lineno;
2511 test->u.insn.num_clobbers_to_add = 0;
2513 switch (type)
2515 case RECOG:
2516 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2517 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2518 If so, set up to recognize the pattern without these CLOBBERs. */
2520 if (GET_CODE (x) == PARALLEL)
2522 int i;
2524 /* Find the last non-clobber in the parallel. */
2525 for (i = XVECLEN (x, 0); i > 0; i--)
2527 rtx y = XVECEXP (x, 0, i - 1);
2528 if (GET_CODE (y) != CLOBBER
2529 || (GET_CODE (XEXP (y, 0)) != REG
2530 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2531 break;
2534 if (i != XVECLEN (x, 0))
2536 rtx new;
2537 struct decision_head clobber_head;
2539 /* Build a similar insn without the clobbers. */
2540 if (i == 1)
2541 new = XVECEXP (x, 0, 0);
2542 else
2544 int j;
2546 new = rtx_alloc (PARALLEL);
2547 XVEC (new, 0) = rtvec_alloc (i);
2548 for (j = i - 1; j >= 0; j--)
2549 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2552 /* Recognize it. */
2553 memset (&clobber_head, 0, sizeof(clobber_head));
2554 last = add_to_sequence (new, &clobber_head, "", type, 1);
2556 /* Find the end of the test chain on the last node. */
2557 for (test = last->tests; test->next; test = test->next)
2558 continue;
2560 /* We definitely have a new test to add -- create a new
2561 node if needed. */
2562 place = &test->next;
2563 if (test->type == DT_accept_op)
2565 last = new_decision ("", &last->success);
2566 place = &last->tests;
2569 /* Skip the C test if it's known to be true at compile
2570 time. */
2571 if (truth == -1)
2573 test = new_decision_test (DT_c_test, &place);
2574 test->u.c_test = c_test;
2577 test = new_decision_test (DT_accept_insn, &place);
2578 test->u.insn.code_number = next_insn_code;
2579 test->u.insn.lineno = pattern_lineno;
2580 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2582 merge_trees (&head, &clobber_head);
2585 break;
2587 case SPLIT:
2588 /* Define the subroutine we will call below and emit in genemit. */
2589 printf ("extern rtx gen_split_%d (rtx *);\n", next_insn_code);
2590 break;
2592 case PEEPHOLE2:
2593 /* Define the subroutine we will call below and emit in genemit. */
2594 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2595 next_insn_code);
2596 break;
2599 return head;
2602 static void
2603 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2605 if (head->first == NULL)
2607 /* We can elide peephole2_insns, but not recog or split_insns. */
2608 if (subroutine_type == PEEPHOLE2)
2609 return;
2611 else
2613 factor_tests (head);
2615 next_subroutine_number = 0;
2616 break_out_subroutines (head, 1);
2617 find_afterward (head, NULL);
2619 /* We run this after find_afterward, because find_afterward needs
2620 the redundant DT_mode tests on predicates to determine whether
2621 two tests can both be true or not. */
2622 simplify_tests(head);
2624 write_subroutines (head, subroutine_type);
2627 write_subroutine (head, subroutine_type);
2630 extern int main (int, char **);
2633 main (int argc, char **argv)
2635 rtx desc;
2636 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2638 progname = "genrecog";
2640 memset (&recog_tree, 0, sizeof recog_tree);
2641 memset (&split_tree, 0, sizeof split_tree);
2642 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2644 if (argc <= 1)
2645 fatal ("no input file name");
2647 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2648 return (FATAL_EXIT_CODE);
2650 next_insn_code = 0;
2651 next_index = 0;
2653 write_header ();
2655 /* Read the machine description. */
2657 while (1)
2659 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2660 if (desc == NULL)
2661 break;
2663 if (GET_CODE (desc) == DEFINE_INSN)
2665 h = make_insn_sequence (desc, RECOG);
2666 merge_trees (&recog_tree, &h);
2668 else if (GET_CODE (desc) == DEFINE_SPLIT)
2670 h = make_insn_sequence (desc, SPLIT);
2671 merge_trees (&split_tree, &h);
2673 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2675 h = make_insn_sequence (desc, PEEPHOLE2);
2676 merge_trees (&peephole2_tree, &h);
2679 next_index++;
2682 if (error_count)
2683 return FATAL_EXIT_CODE;
2685 puts ("\n\n");
2687 process_tree (&recog_tree, RECOG);
2688 process_tree (&split_tree, SPLIT);
2689 process_tree (&peephole2_tree, PEEPHOLE2);
2691 fflush (stdout);
2692 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2695 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2696 const char *
2697 get_insn_name (int code)
2699 if (code < insn_name_ptr_size)
2700 return insn_name_ptr[code];
2701 else
2702 return NULL;
2705 static void
2706 record_insn_name (int code, const char *name)
2708 static const char *last_real_name = "insn";
2709 static int last_real_code = 0;
2710 char *new;
2712 if (insn_name_ptr_size <= code)
2714 int new_size;
2715 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2716 insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2717 memset (insn_name_ptr + insn_name_ptr_size, 0,
2718 sizeof(char *) * (new_size - insn_name_ptr_size));
2719 insn_name_ptr_size = new_size;
2722 if (!name || name[0] == '\0')
2724 new = xmalloc (strlen (last_real_name) + 10);
2725 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2727 else
2729 last_real_name = new = xstrdup (name);
2730 last_real_code = code;
2733 insn_name_ptr[code] = new;
2736 static void
2737 debug_decision_2 (struct decision_test *test)
2739 switch (test->type)
2741 case DT_mode:
2742 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2743 break;
2744 case DT_code:
2745 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2746 break;
2747 case DT_veclen:
2748 fprintf (stderr, "veclen=%d", test->u.veclen);
2749 break;
2750 case DT_elt_zero_int:
2751 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2752 break;
2753 case DT_elt_one_int:
2754 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2755 break;
2756 case DT_elt_zero_wide:
2757 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2758 break;
2759 case DT_elt_zero_wide_safe:
2760 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2761 break;
2762 case DT_veclen_ge:
2763 fprintf (stderr, "veclen>=%d", test->u.veclen);
2764 break;
2765 case DT_dup:
2766 fprintf (stderr, "dup=%d", test->u.dup);
2767 break;
2768 case DT_pred:
2769 fprintf (stderr, "pred=(%s,%s)",
2770 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2771 break;
2772 case DT_c_test:
2774 char sub[16+4];
2775 strncpy (sub, test->u.c_test, sizeof(sub));
2776 memcpy (sub+16, "...", 4);
2777 fprintf (stderr, "c_test=\"%s\"", sub);
2779 break;
2780 case DT_accept_op:
2781 fprintf (stderr, "A_op=%d", test->u.opno);
2782 break;
2783 case DT_accept_insn:
2784 fprintf (stderr, "A_insn=(%d,%d)",
2785 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2786 break;
2788 default:
2789 abort ();
2793 static void
2794 debug_decision_1 (struct decision *d, int indent)
2796 int i;
2797 struct decision_test *test;
2799 if (d == NULL)
2801 for (i = 0; i < indent; ++i)
2802 putc (' ', stderr);
2803 fputs ("(nil)\n", stderr);
2804 return;
2807 for (i = 0; i < indent; ++i)
2808 putc (' ', stderr);
2810 putc ('{', stderr);
2811 test = d->tests;
2812 if (test)
2814 debug_decision_2 (test);
2815 while ((test = test->next) != NULL)
2817 fputs (" + ", stderr);
2818 debug_decision_2 (test);
2821 fprintf (stderr, "} %d n %d a %d\n", d->number,
2822 (d->next ? d->next->number : -1),
2823 (d->afterward ? d->afterward->number : -1));
2826 static void
2827 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2829 struct decision *n;
2830 int i;
2832 if (maxdepth < 0)
2833 return;
2834 if (d == NULL)
2836 for (i = 0; i < indent; ++i)
2837 putc (' ', stderr);
2838 fputs ("(nil)\n", stderr);
2839 return;
2842 debug_decision_1 (d, indent);
2843 for (n = d->success.first; n ; n = n->next)
2844 debug_decision_0 (n, indent + 2, maxdepth - 1);
2847 void
2848 debug_decision (struct decision *d)
2850 debug_decision_0 (d, 0, 1000000);
2853 void
2854 debug_decision_list (struct decision *d)
2856 while (d)
2858 debug_decision_0 (d, 0, 0);
2859 d = d->next;