* doc/contrib.texi (Contributors): Add Ira Rosen.
[official-gcc.git] / gcc / tree-ssa-reassoc.c
blob77640e5dd53baf8d367b0a88b3e47bf8adad472f
1 /* Reassociation for trees.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hash-set.h"
29 #include "machmode.h"
30 #include "vec.h"
31 #include "double-int.h"
32 #include "input.h"
33 #include "alias.h"
34 #include "symtab.h"
35 #include "wide-int.h"
36 #include "inchash.h"
37 #include "tree.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
40 #include "predict.h"
41 #include "hard-reg-set.h"
42 #include "function.h"
43 #include "dominance.h"
44 #include "cfg.h"
45 #include "cfganal.h"
46 #include "basic-block.h"
47 #include "gimple-pretty-print.h"
48 #include "tree-inline.h"
49 #include "hash-map.h"
50 #include "tree-ssa-alias.h"
51 #include "internal-fn.h"
52 #include "gimple-fold.h"
53 #include "tree-eh.h"
54 #include "gimple-expr.h"
55 #include "is-a.h"
56 #include "gimple.h"
57 #include "gimple-iterator.h"
58 #include "gimplify-me.h"
59 #include "gimple-ssa.h"
60 #include "tree-cfg.h"
61 #include "tree-phinodes.h"
62 #include "ssa-iterators.h"
63 #include "stringpool.h"
64 #include "tree-ssanames.h"
65 #include "tree-ssa-loop-niter.h"
66 #include "tree-ssa-loop.h"
67 #include "hashtab.h"
68 #include "flags.h"
69 #include "statistics.h"
70 #include "real.h"
71 #include "fixed-value.h"
72 #include "insn-config.h"
73 #include "expmed.h"
74 #include "dojump.h"
75 #include "explow.h"
76 #include "calls.h"
77 #include "emit-rtl.h"
78 #include "varasm.h"
79 #include "stmt.h"
80 #include "expr.h"
81 #include "tree-dfa.h"
82 #include "tree-ssa.h"
83 #include "tree-iterator.h"
84 #include "tree-pass.h"
85 #include "alloc-pool.h"
86 #include "langhooks.h"
87 #include "cfgloop.h"
88 #include "target.h"
89 #include "params.h"
90 #include "diagnostic-core.h"
91 #include "builtins.h"
92 #include "gimplify.h"
93 #include "insn-codes.h"
94 #include "optabs.h"
96 /* This is a simple global reassociation pass. It is, in part, based
97 on the LLVM pass of the same name (They do some things more/less
98 than we do, in different orders, etc).
100 It consists of five steps:
102 1. Breaking up subtract operations into addition + negate, where
103 it would promote the reassociation of adds.
105 2. Left linearization of the expression trees, so that (A+B)+(C+D)
106 becomes (((A+B)+C)+D), which is easier for us to rewrite later.
107 During linearization, we place the operands of the binary
108 expressions into a vector of operand_entry_t
110 3. Optimization of the operand lists, eliminating things like a +
111 -a, a & a, etc.
113 3a. Combine repeated factors with the same occurrence counts
114 into a __builtin_powi call that will later be optimized into
115 an optimal number of multiplies.
117 4. Rewrite the expression trees we linearized and optimized so
118 they are in proper rank order.
120 5. Repropagate negates, as nothing else will clean it up ATM.
122 A bit of theory on #4, since nobody seems to write anything down
123 about why it makes sense to do it the way they do it:
125 We could do this much nicer theoretically, but don't (for reasons
126 explained after how to do it theoretically nice :P).
128 In order to promote the most redundancy elimination, you want
129 binary expressions whose operands are the same rank (or
130 preferably, the same value) exposed to the redundancy eliminator,
131 for possible elimination.
133 So the way to do this if we really cared, is to build the new op
134 tree from the leaves to the roots, merging as you go, and putting the
135 new op on the end of the worklist, until you are left with one
136 thing on the worklist.
138 IE if you have to rewrite the following set of operands (listed with
139 rank in parentheses), with opcode PLUS_EXPR:
141 a (1), b (1), c (1), d (2), e (2)
144 We start with our merge worklist empty, and the ops list with all of
145 those on it.
147 You want to first merge all leaves of the same rank, as much as
148 possible.
150 So first build a binary op of
152 mergetmp = a + b, and put "mergetmp" on the merge worklist.
154 Because there is no three operand form of PLUS_EXPR, c is not going to
155 be exposed to redundancy elimination as a rank 1 operand.
157 So you might as well throw it on the merge worklist (you could also
158 consider it to now be a rank two operand, and merge it with d and e,
159 but in this case, you then have evicted e from a binary op. So at
160 least in this situation, you can't win.)
162 Then build a binary op of d + e
163 mergetmp2 = d + e
165 and put mergetmp2 on the merge worklist.
167 so merge worklist = {mergetmp, c, mergetmp2}
169 Continue building binary ops of these operations until you have only
170 one operation left on the worklist.
172 So we have
174 build binary op
175 mergetmp3 = mergetmp + c
177 worklist = {mergetmp2, mergetmp3}
179 mergetmp4 = mergetmp2 + mergetmp3
181 worklist = {mergetmp4}
183 because we have one operation left, we can now just set the original
184 statement equal to the result of that operation.
186 This will at least expose a + b and d + e to redundancy elimination
187 as binary operations.
189 For extra points, you can reuse the old statements to build the
190 mergetmps, since you shouldn't run out.
192 So why don't we do this?
194 Because it's expensive, and rarely will help. Most trees we are
195 reassociating have 3 or less ops. If they have 2 ops, they already
196 will be written into a nice single binary op. If you have 3 ops, a
197 single simple check suffices to tell you whether the first two are of the
198 same rank. If so, you know to order it
200 mergetmp = op1 + op2
201 newstmt = mergetmp + op3
203 instead of
204 mergetmp = op2 + op3
205 newstmt = mergetmp + op1
207 If all three are of the same rank, you can't expose them all in a
208 single binary operator anyway, so the above is *still* the best you
209 can do.
211 Thus, this is what we do. When we have three ops left, we check to see
212 what order to put them in, and call it a day. As a nod to vector sum
213 reduction, we check if any of the ops are really a phi node that is a
214 destructive update for the associating op, and keep the destructive
215 update together for vector sum reduction recognition. */
218 /* Statistics */
219 static struct
221 int linearized;
222 int constants_eliminated;
223 int ops_eliminated;
224 int rewritten;
225 int pows_encountered;
226 int pows_created;
227 } reassociate_stats;
229 /* Operator, rank pair. */
230 typedef struct operand_entry
232 unsigned int rank;
233 int id;
234 tree op;
235 unsigned int count;
236 } *operand_entry_t;
238 static alloc_pool operand_entry_pool;
240 /* This is used to assign a unique ID to each struct operand_entry
241 so that qsort results are identical on different hosts. */
242 static int next_operand_entry_id;
244 /* Starting rank number for a given basic block, so that we can rank
245 operations using unmovable instructions in that BB based on the bb
246 depth. */
247 static long *bb_rank;
249 /* Operand->rank hashtable. */
250 static hash_map<tree, long> *operand_rank;
252 /* Vector of SSA_NAMEs on which after reassociate_bb is done with
253 all basic blocks the CFG should be adjusted - basic blocks
254 split right after that SSA_NAME's definition statement and before
255 the only use, which must be a bit ior. */
256 static vec<tree> reassoc_branch_fixups;
258 /* Forward decls. */
259 static long get_rank (tree);
260 static bool reassoc_stmt_dominates_stmt_p (gimple, gimple);
262 /* Wrapper around gsi_remove, which adjusts gimple_uid of debug stmts
263 possibly added by gsi_remove. */
265 bool
266 reassoc_remove_stmt (gimple_stmt_iterator *gsi)
268 gimple stmt = gsi_stmt (*gsi);
270 if (!MAY_HAVE_DEBUG_STMTS || gimple_code (stmt) == GIMPLE_PHI)
271 return gsi_remove (gsi, true);
273 gimple_stmt_iterator prev = *gsi;
274 gsi_prev (&prev);
275 unsigned uid = gimple_uid (stmt);
276 basic_block bb = gimple_bb (stmt);
277 bool ret = gsi_remove (gsi, true);
278 if (!gsi_end_p (prev))
279 gsi_next (&prev);
280 else
281 prev = gsi_start_bb (bb);
282 gimple end_stmt = gsi_stmt (*gsi);
283 while ((stmt = gsi_stmt (prev)) != end_stmt)
285 gcc_assert (stmt && is_gimple_debug (stmt) && gimple_uid (stmt) == 0);
286 gimple_set_uid (stmt, uid);
287 gsi_next (&prev);
289 return ret;
292 /* Bias amount for loop-carried phis. We want this to be larger than
293 the depth of any reassociation tree we can see, but not larger than
294 the rank difference between two blocks. */
295 #define PHI_LOOP_BIAS (1 << 15)
297 /* Rank assigned to a phi statement. If STMT is a loop-carried phi of
298 an innermost loop, and the phi has only a single use which is inside
299 the loop, then the rank is the block rank of the loop latch plus an
300 extra bias for the loop-carried dependence. This causes expressions
301 calculated into an accumulator variable to be independent for each
302 iteration of the loop. If STMT is some other phi, the rank is the
303 block rank of its containing block. */
304 static long
305 phi_rank (gimple stmt)
307 basic_block bb = gimple_bb (stmt);
308 struct loop *father = bb->loop_father;
309 tree res;
310 unsigned i;
311 use_operand_p use;
312 gimple use_stmt;
314 /* We only care about real loops (those with a latch). */
315 if (!father->latch)
316 return bb_rank[bb->index];
318 /* Interesting phis must be in headers of innermost loops. */
319 if (bb != father->header
320 || father->inner)
321 return bb_rank[bb->index];
323 /* Ignore virtual SSA_NAMEs. */
324 res = gimple_phi_result (stmt);
325 if (virtual_operand_p (res))
326 return bb_rank[bb->index];
328 /* The phi definition must have a single use, and that use must be
329 within the loop. Otherwise this isn't an accumulator pattern. */
330 if (!single_imm_use (res, &use, &use_stmt)
331 || gimple_bb (use_stmt)->loop_father != father)
332 return bb_rank[bb->index];
334 /* Look for phi arguments from within the loop. If found, bias this phi. */
335 for (i = 0; i < gimple_phi_num_args (stmt); i++)
337 tree arg = gimple_phi_arg_def (stmt, i);
338 if (TREE_CODE (arg) == SSA_NAME
339 && !SSA_NAME_IS_DEFAULT_DEF (arg))
341 gimple def_stmt = SSA_NAME_DEF_STMT (arg);
342 if (gimple_bb (def_stmt)->loop_father == father)
343 return bb_rank[father->latch->index] + PHI_LOOP_BIAS;
347 /* Must be an uninteresting phi. */
348 return bb_rank[bb->index];
351 /* If EXP is an SSA_NAME defined by a PHI statement that represents a
352 loop-carried dependence of an innermost loop, return TRUE; else
353 return FALSE. */
354 static bool
355 loop_carried_phi (tree exp)
357 gimple phi_stmt;
358 long block_rank;
360 if (TREE_CODE (exp) != SSA_NAME
361 || SSA_NAME_IS_DEFAULT_DEF (exp))
362 return false;
364 phi_stmt = SSA_NAME_DEF_STMT (exp);
366 if (gimple_code (SSA_NAME_DEF_STMT (exp)) != GIMPLE_PHI)
367 return false;
369 /* Non-loop-carried phis have block rank. Loop-carried phis have
370 an additional bias added in. If this phi doesn't have block rank,
371 it's biased and should not be propagated. */
372 block_rank = bb_rank[gimple_bb (phi_stmt)->index];
374 if (phi_rank (phi_stmt) != block_rank)
375 return true;
377 return false;
380 /* Return the maximum of RANK and the rank that should be propagated
381 from expression OP. For most operands, this is just the rank of OP.
382 For loop-carried phis, the value is zero to avoid undoing the bias
383 in favor of the phi. */
384 static long
385 propagate_rank (long rank, tree op)
387 long op_rank;
389 if (loop_carried_phi (op))
390 return rank;
392 op_rank = get_rank (op);
394 return MAX (rank, op_rank);
397 /* Look up the operand rank structure for expression E. */
399 static inline long
400 find_operand_rank (tree e)
402 long *slot = operand_rank->get (e);
403 return slot ? *slot : -1;
406 /* Insert {E,RANK} into the operand rank hashtable. */
408 static inline void
409 insert_operand_rank (tree e, long rank)
411 gcc_assert (rank > 0);
412 gcc_assert (!operand_rank->put (e, rank));
415 /* Given an expression E, return the rank of the expression. */
417 static long
418 get_rank (tree e)
420 /* Constants have rank 0. */
421 if (is_gimple_min_invariant (e))
422 return 0;
424 /* SSA_NAME's have the rank of the expression they are the result
426 For globals and uninitialized values, the rank is 0.
427 For function arguments, use the pre-setup rank.
428 For PHI nodes, stores, asm statements, etc, we use the rank of
429 the BB.
430 For simple operations, the rank is the maximum rank of any of
431 its operands, or the bb_rank, whichever is less.
432 I make no claims that this is optimal, however, it gives good
433 results. */
435 /* We make an exception to the normal ranking system to break
436 dependences of accumulator variables in loops. Suppose we
437 have a simple one-block loop containing:
439 x_1 = phi(x_0, x_2)
440 b = a + x_1
441 c = b + d
442 x_2 = c + e
444 As shown, each iteration of the calculation into x is fully
445 dependent upon the iteration before it. We would prefer to
446 see this in the form:
448 x_1 = phi(x_0, x_2)
449 b = a + d
450 c = b + e
451 x_2 = c + x_1
453 If the loop is unrolled, the calculations of b and c from
454 different iterations can be interleaved.
456 To obtain this result during reassociation, we bias the rank
457 of the phi definition x_1 upward, when it is recognized as an
458 accumulator pattern. The artificial rank causes it to be
459 added last, providing the desired independence. */
461 if (TREE_CODE (e) == SSA_NAME)
463 gimple stmt;
464 long rank;
465 int i, n;
466 tree op;
468 if (SSA_NAME_IS_DEFAULT_DEF (e))
469 return find_operand_rank (e);
471 stmt = SSA_NAME_DEF_STMT (e);
472 if (gimple_code (stmt) == GIMPLE_PHI)
473 return phi_rank (stmt);
475 if (!is_gimple_assign (stmt)
476 || gimple_vdef (stmt))
477 return bb_rank[gimple_bb (stmt)->index];
479 /* If we already have a rank for this expression, use that. */
480 rank = find_operand_rank (e);
481 if (rank != -1)
482 return rank;
484 /* Otherwise, find the maximum rank for the operands. As an
485 exception, remove the bias from loop-carried phis when propagating
486 the rank so that dependent operations are not also biased. */
487 rank = 0;
488 if (gimple_assign_single_p (stmt))
490 tree rhs = gimple_assign_rhs1 (stmt);
491 n = TREE_OPERAND_LENGTH (rhs);
492 if (n == 0)
493 rank = propagate_rank (rank, rhs);
494 else
496 for (i = 0; i < n; i++)
498 op = TREE_OPERAND (rhs, i);
500 if (op != NULL_TREE)
501 rank = propagate_rank (rank, op);
505 else
507 n = gimple_num_ops (stmt);
508 for (i = 1; i < n; i++)
510 op = gimple_op (stmt, i);
511 gcc_assert (op);
512 rank = propagate_rank (rank, op);
516 if (dump_file && (dump_flags & TDF_DETAILS))
518 fprintf (dump_file, "Rank for ");
519 print_generic_expr (dump_file, e, 0);
520 fprintf (dump_file, " is %ld\n", (rank + 1));
523 /* Note the rank in the hashtable so we don't recompute it. */
524 insert_operand_rank (e, (rank + 1));
525 return (rank + 1);
528 /* Globals, etc, are rank 0 */
529 return 0;
533 /* We want integer ones to end up last no matter what, since they are
534 the ones we can do the most with. */
535 #define INTEGER_CONST_TYPE 1 << 3
536 #define FLOAT_CONST_TYPE 1 << 2
537 #define OTHER_CONST_TYPE 1 << 1
539 /* Classify an invariant tree into integer, float, or other, so that
540 we can sort them to be near other constants of the same type. */
541 static inline int
542 constant_type (tree t)
544 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
545 return INTEGER_CONST_TYPE;
546 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
547 return FLOAT_CONST_TYPE;
548 else
549 return OTHER_CONST_TYPE;
552 /* qsort comparison function to sort operand entries PA and PB by rank
553 so that the sorted array is ordered by rank in decreasing order. */
554 static int
555 sort_by_operand_rank (const void *pa, const void *pb)
557 const operand_entry_t oea = *(const operand_entry_t *)pa;
558 const operand_entry_t oeb = *(const operand_entry_t *)pb;
560 /* It's nicer for optimize_expression if constants that are likely
561 to fold when added/multiplied//whatever are put next to each
562 other. Since all constants have rank 0, order them by type. */
563 if (oeb->rank == 0 && oea->rank == 0)
565 if (constant_type (oeb->op) != constant_type (oea->op))
566 return constant_type (oeb->op) - constant_type (oea->op);
567 else
568 /* To make sorting result stable, we use unique IDs to determine
569 order. */
570 return oeb->id - oea->id;
573 /* Lastly, make sure the versions that are the same go next to each
574 other. */
575 if ((oeb->rank - oea->rank == 0)
576 && TREE_CODE (oea->op) == SSA_NAME
577 && TREE_CODE (oeb->op) == SSA_NAME)
579 /* As SSA_NAME_VERSION is assigned pretty randomly, because we reuse
580 versions of removed SSA_NAMEs, so if possible, prefer to sort
581 based on basic block and gimple_uid of the SSA_NAME_DEF_STMT.
582 See PR60418. */
583 if (!SSA_NAME_IS_DEFAULT_DEF (oea->op)
584 && !SSA_NAME_IS_DEFAULT_DEF (oeb->op)
585 && SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op))
587 gimple stmta = SSA_NAME_DEF_STMT (oea->op);
588 gimple stmtb = SSA_NAME_DEF_STMT (oeb->op);
589 basic_block bba = gimple_bb (stmta);
590 basic_block bbb = gimple_bb (stmtb);
591 if (bbb != bba)
593 if (bb_rank[bbb->index] != bb_rank[bba->index])
594 return bb_rank[bbb->index] - bb_rank[bba->index];
596 else
598 bool da = reassoc_stmt_dominates_stmt_p (stmta, stmtb);
599 bool db = reassoc_stmt_dominates_stmt_p (stmtb, stmta);
600 if (da != db)
601 return da ? 1 : -1;
605 if (SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op))
606 return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
607 else
608 return oeb->id - oea->id;
611 if (oeb->rank != oea->rank)
612 return oeb->rank - oea->rank;
613 else
614 return oeb->id - oea->id;
617 /* Add an operand entry to *OPS for the tree operand OP. */
619 static void
620 add_to_ops_vec (vec<operand_entry_t> *ops, tree op)
622 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
624 oe->op = op;
625 oe->rank = get_rank (op);
626 oe->id = next_operand_entry_id++;
627 oe->count = 1;
628 ops->safe_push (oe);
631 /* Add an operand entry to *OPS for the tree operand OP with repeat
632 count REPEAT. */
634 static void
635 add_repeat_to_ops_vec (vec<operand_entry_t> *ops, tree op,
636 HOST_WIDE_INT repeat)
638 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
640 oe->op = op;
641 oe->rank = get_rank (op);
642 oe->id = next_operand_entry_id++;
643 oe->count = repeat;
644 ops->safe_push (oe);
646 reassociate_stats.pows_encountered++;
649 /* Return true if STMT is reassociable operation containing a binary
650 operation with tree code CODE, and is inside LOOP. */
652 static bool
653 is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
655 basic_block bb = gimple_bb (stmt);
657 if (gimple_bb (stmt) == NULL)
658 return false;
660 if (!flow_bb_inside_loop_p (loop, bb))
661 return false;
663 if (is_gimple_assign (stmt)
664 && gimple_assign_rhs_code (stmt) == code
665 && has_single_use (gimple_assign_lhs (stmt)))
666 return true;
668 return false;
672 /* Given NAME, if NAME is defined by a unary operation OPCODE, return the
673 operand of the negate operation. Otherwise, return NULL. */
675 static tree
676 get_unary_op (tree name, enum tree_code opcode)
678 gimple stmt = SSA_NAME_DEF_STMT (name);
680 if (!is_gimple_assign (stmt))
681 return NULL_TREE;
683 if (gimple_assign_rhs_code (stmt) == opcode)
684 return gimple_assign_rhs1 (stmt);
685 return NULL_TREE;
688 /* If CURR and LAST are a pair of ops that OPCODE allows us to
689 eliminate through equivalences, do so, remove them from OPS, and
690 return true. Otherwise, return false. */
692 static bool
693 eliminate_duplicate_pair (enum tree_code opcode,
694 vec<operand_entry_t> *ops,
695 bool *all_done,
696 unsigned int i,
697 operand_entry_t curr,
698 operand_entry_t last)
701 /* If we have two of the same op, and the opcode is & |, min, or max,
702 we can eliminate one of them.
703 If we have two of the same op, and the opcode is ^, we can
704 eliminate both of them. */
706 if (last && last->op == curr->op)
708 switch (opcode)
710 case MAX_EXPR:
711 case MIN_EXPR:
712 case BIT_IOR_EXPR:
713 case BIT_AND_EXPR:
714 if (dump_file && (dump_flags & TDF_DETAILS))
716 fprintf (dump_file, "Equivalence: ");
717 print_generic_expr (dump_file, curr->op, 0);
718 fprintf (dump_file, " [&|minmax] ");
719 print_generic_expr (dump_file, last->op, 0);
720 fprintf (dump_file, " -> ");
721 print_generic_stmt (dump_file, last->op, 0);
724 ops->ordered_remove (i);
725 reassociate_stats.ops_eliminated ++;
727 return true;
729 case BIT_XOR_EXPR:
730 if (dump_file && (dump_flags & TDF_DETAILS))
732 fprintf (dump_file, "Equivalence: ");
733 print_generic_expr (dump_file, curr->op, 0);
734 fprintf (dump_file, " ^ ");
735 print_generic_expr (dump_file, last->op, 0);
736 fprintf (dump_file, " -> nothing\n");
739 reassociate_stats.ops_eliminated += 2;
741 if (ops->length () == 2)
743 ops->create (0);
744 add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (last->op)));
745 *all_done = true;
747 else
749 ops->ordered_remove (i-1);
750 ops->ordered_remove (i-1);
753 return true;
755 default:
756 break;
759 return false;
762 static vec<tree> plus_negates;
764 /* If OPCODE is PLUS_EXPR, CURR->OP is a negate expression or a bitwise not
765 expression, look in OPS for a corresponding positive operation to cancel
766 it out. If we find one, remove the other from OPS, replace
767 OPS[CURRINDEX] with 0 or -1, respectively, and return true. Otherwise,
768 return false. */
770 static bool
771 eliminate_plus_minus_pair (enum tree_code opcode,
772 vec<operand_entry_t> *ops,
773 unsigned int currindex,
774 operand_entry_t curr)
776 tree negateop;
777 tree notop;
778 unsigned int i;
779 operand_entry_t oe;
781 if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
782 return false;
784 negateop = get_unary_op (curr->op, NEGATE_EXPR);
785 notop = get_unary_op (curr->op, BIT_NOT_EXPR);
786 if (negateop == NULL_TREE && notop == NULL_TREE)
787 return false;
789 /* Any non-negated version will have a rank that is one less than
790 the current rank. So once we hit those ranks, if we don't find
791 one, we can stop. */
793 for (i = currindex + 1;
794 ops->iterate (i, &oe)
795 && oe->rank >= curr->rank - 1 ;
796 i++)
798 if (oe->op == negateop)
801 if (dump_file && (dump_flags & TDF_DETAILS))
803 fprintf (dump_file, "Equivalence: ");
804 print_generic_expr (dump_file, negateop, 0);
805 fprintf (dump_file, " + -");
806 print_generic_expr (dump_file, oe->op, 0);
807 fprintf (dump_file, " -> 0\n");
810 ops->ordered_remove (i);
811 add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (oe->op)));
812 ops->ordered_remove (currindex);
813 reassociate_stats.ops_eliminated ++;
815 return true;
817 else if (oe->op == notop)
819 tree op_type = TREE_TYPE (oe->op);
821 if (dump_file && (dump_flags & TDF_DETAILS))
823 fprintf (dump_file, "Equivalence: ");
824 print_generic_expr (dump_file, notop, 0);
825 fprintf (dump_file, " + ~");
826 print_generic_expr (dump_file, oe->op, 0);
827 fprintf (dump_file, " -> -1\n");
830 ops->ordered_remove (i);
831 add_to_ops_vec (ops, build_int_cst_type (op_type, -1));
832 ops->ordered_remove (currindex);
833 reassociate_stats.ops_eliminated ++;
835 return true;
839 /* CURR->OP is a negate expr in a plus expr: save it for later
840 inspection in repropagate_negates(). */
841 if (negateop != NULL_TREE)
842 plus_negates.safe_push (curr->op);
844 return false;
847 /* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
848 bitwise not expression, look in OPS for a corresponding operand to
849 cancel it out. If we find one, remove the other from OPS, replace
850 OPS[CURRINDEX] with 0, and return true. Otherwise, return
851 false. */
853 static bool
854 eliminate_not_pairs (enum tree_code opcode,
855 vec<operand_entry_t> *ops,
856 unsigned int currindex,
857 operand_entry_t curr)
859 tree notop;
860 unsigned int i;
861 operand_entry_t oe;
863 if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
864 || TREE_CODE (curr->op) != SSA_NAME)
865 return false;
867 notop = get_unary_op (curr->op, BIT_NOT_EXPR);
868 if (notop == NULL_TREE)
869 return false;
871 /* Any non-not version will have a rank that is one less than
872 the current rank. So once we hit those ranks, if we don't find
873 one, we can stop. */
875 for (i = currindex + 1;
876 ops->iterate (i, &oe)
877 && oe->rank >= curr->rank - 1;
878 i++)
880 if (oe->op == notop)
882 if (dump_file && (dump_flags & TDF_DETAILS))
884 fprintf (dump_file, "Equivalence: ");
885 print_generic_expr (dump_file, notop, 0);
886 if (opcode == BIT_AND_EXPR)
887 fprintf (dump_file, " & ~");
888 else if (opcode == BIT_IOR_EXPR)
889 fprintf (dump_file, " | ~");
890 print_generic_expr (dump_file, oe->op, 0);
891 if (opcode == BIT_AND_EXPR)
892 fprintf (dump_file, " -> 0\n");
893 else if (opcode == BIT_IOR_EXPR)
894 fprintf (dump_file, " -> -1\n");
897 if (opcode == BIT_AND_EXPR)
898 oe->op = build_zero_cst (TREE_TYPE (oe->op));
899 else if (opcode == BIT_IOR_EXPR)
900 oe->op = build_all_ones_cst (TREE_TYPE (oe->op));
902 reassociate_stats.ops_eliminated += ops->length () - 1;
903 ops->truncate (0);
904 ops->quick_push (oe);
905 return true;
909 return false;
912 /* Use constant value that may be present in OPS to try to eliminate
913 operands. Note that this function is only really used when we've
914 eliminated ops for other reasons, or merged constants. Across
915 single statements, fold already does all of this, plus more. There
916 is little point in duplicating logic, so I've only included the
917 identities that I could ever construct testcases to trigger. */
919 static void
920 eliminate_using_constants (enum tree_code opcode,
921 vec<operand_entry_t> *ops)
923 operand_entry_t oelast = ops->last ();
924 tree type = TREE_TYPE (oelast->op);
926 if (oelast->rank == 0
927 && (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
929 switch (opcode)
931 case BIT_AND_EXPR:
932 if (integer_zerop (oelast->op))
934 if (ops->length () != 1)
936 if (dump_file && (dump_flags & TDF_DETAILS))
937 fprintf (dump_file, "Found & 0, removing all other ops\n");
939 reassociate_stats.ops_eliminated += ops->length () - 1;
941 ops->truncate (0);
942 ops->quick_push (oelast);
943 return;
946 else if (integer_all_onesp (oelast->op))
948 if (ops->length () != 1)
950 if (dump_file && (dump_flags & TDF_DETAILS))
951 fprintf (dump_file, "Found & -1, removing\n");
952 ops->pop ();
953 reassociate_stats.ops_eliminated++;
956 break;
957 case BIT_IOR_EXPR:
958 if (integer_all_onesp (oelast->op))
960 if (ops->length () != 1)
962 if (dump_file && (dump_flags & TDF_DETAILS))
963 fprintf (dump_file, "Found | -1, removing all other ops\n");
965 reassociate_stats.ops_eliminated += ops->length () - 1;
967 ops->truncate (0);
968 ops->quick_push (oelast);
969 return;
972 else if (integer_zerop (oelast->op))
974 if (ops->length () != 1)
976 if (dump_file && (dump_flags & TDF_DETAILS))
977 fprintf (dump_file, "Found | 0, removing\n");
978 ops->pop ();
979 reassociate_stats.ops_eliminated++;
982 break;
983 case MULT_EXPR:
984 if (integer_zerop (oelast->op)
985 || (FLOAT_TYPE_P (type)
986 && !HONOR_NANS (type)
987 && !HONOR_SIGNED_ZEROS (type)
988 && real_zerop (oelast->op)))
990 if (ops->length () != 1)
992 if (dump_file && (dump_flags & TDF_DETAILS))
993 fprintf (dump_file, "Found * 0, removing all other ops\n");
995 reassociate_stats.ops_eliminated += ops->length () - 1;
996 ops->truncate (1);
997 ops->quick_push (oelast);
998 return;
1001 else if (integer_onep (oelast->op)
1002 || (FLOAT_TYPE_P (type)
1003 && !HONOR_SNANS (type)
1004 && real_onep (oelast->op)))
1006 if (ops->length () != 1)
1008 if (dump_file && (dump_flags & TDF_DETAILS))
1009 fprintf (dump_file, "Found * 1, removing\n");
1010 ops->pop ();
1011 reassociate_stats.ops_eliminated++;
1012 return;
1015 break;
1016 case BIT_XOR_EXPR:
1017 case PLUS_EXPR:
1018 case MINUS_EXPR:
1019 if (integer_zerop (oelast->op)
1020 || (FLOAT_TYPE_P (type)
1021 && (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
1022 && fold_real_zero_addition_p (type, oelast->op,
1023 opcode == MINUS_EXPR)))
1025 if (ops->length () != 1)
1027 if (dump_file && (dump_flags & TDF_DETAILS))
1028 fprintf (dump_file, "Found [|^+] 0, removing\n");
1029 ops->pop ();
1030 reassociate_stats.ops_eliminated++;
1031 return;
1034 break;
1035 default:
1036 break;
1042 static void linearize_expr_tree (vec<operand_entry_t> *, gimple,
1043 bool, bool);
1045 /* Structure for tracking and counting operands. */
1046 typedef struct oecount_s {
1047 int cnt;
1048 int id;
1049 enum tree_code oecode;
1050 tree op;
1051 } oecount;
1054 /* The heap for the oecount hashtable and the sorted list of operands. */
1055 static vec<oecount> cvec;
1058 /* Oecount hashtable helpers. */
1060 struct oecount_hasher
1062 typedef int value_type;
1063 typedef int compare_type;
1064 typedef int store_values_directly;
1065 static inline hashval_t hash (const value_type &);
1066 static inline bool equal (const value_type &, const compare_type &);
1067 static bool is_deleted (int &v) { return v == 1; }
1068 static void mark_deleted (int &e) { e = 1; }
1069 static bool is_empty (int &v) { return v == 0; }
1070 static void mark_empty (int &e) { e = 0; }
1071 static void remove (int &) {}
1074 /* Hash function for oecount. */
1076 inline hashval_t
1077 oecount_hasher::hash (const value_type &p)
1079 const oecount *c = &cvec[p - 42];
1080 return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
1083 /* Comparison function for oecount. */
1085 inline bool
1086 oecount_hasher::equal (const value_type &p1, const compare_type &p2)
1088 const oecount *c1 = &cvec[p1 - 42];
1089 const oecount *c2 = &cvec[p2 - 42];
1090 return (c1->oecode == c2->oecode
1091 && c1->op == c2->op);
1094 /* Comparison function for qsort sorting oecount elements by count. */
1096 static int
1097 oecount_cmp (const void *p1, const void *p2)
1099 const oecount *c1 = (const oecount *)p1;
1100 const oecount *c2 = (const oecount *)p2;
1101 if (c1->cnt != c2->cnt)
1102 return c1->cnt - c2->cnt;
1103 else
1104 /* If counts are identical, use unique IDs to stabilize qsort. */
1105 return c1->id - c2->id;
1108 /* Return TRUE iff STMT represents a builtin call that raises OP
1109 to some exponent. */
1111 static bool
1112 stmt_is_power_of_op (gimple stmt, tree op)
1114 tree fndecl;
1116 if (!is_gimple_call (stmt))
1117 return false;
1119 fndecl = gimple_call_fndecl (stmt);
1121 if (!fndecl
1122 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
1123 return false;
1125 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
1127 CASE_FLT_FN (BUILT_IN_POW):
1128 CASE_FLT_FN (BUILT_IN_POWI):
1129 return (operand_equal_p (gimple_call_arg (stmt, 0), op, 0));
1131 default:
1132 return false;
1136 /* Given STMT which is a __builtin_pow* call, decrement its exponent
1137 in place and return the result. Assumes that stmt_is_power_of_op
1138 was previously called for STMT and returned TRUE. */
1140 static HOST_WIDE_INT
1141 decrement_power (gimple stmt)
1143 REAL_VALUE_TYPE c, cint;
1144 HOST_WIDE_INT power;
1145 tree arg1;
1147 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
1149 CASE_FLT_FN (BUILT_IN_POW):
1150 arg1 = gimple_call_arg (stmt, 1);
1151 c = TREE_REAL_CST (arg1);
1152 power = real_to_integer (&c) - 1;
1153 real_from_integer (&cint, VOIDmode, power, SIGNED);
1154 gimple_call_set_arg (stmt, 1, build_real (TREE_TYPE (arg1), cint));
1155 return power;
1157 CASE_FLT_FN (BUILT_IN_POWI):
1158 arg1 = gimple_call_arg (stmt, 1);
1159 power = TREE_INT_CST_LOW (arg1) - 1;
1160 gimple_call_set_arg (stmt, 1, build_int_cst (TREE_TYPE (arg1), power));
1161 return power;
1163 default:
1164 gcc_unreachable ();
1168 /* Find the single immediate use of STMT's LHS, and replace it
1169 with OP. Remove STMT. If STMT's LHS is the same as *DEF,
1170 replace *DEF with OP as well. */
1172 static void
1173 propagate_op_to_single_use (tree op, gimple stmt, tree *def)
1175 tree lhs;
1176 gimple use_stmt;
1177 use_operand_p use;
1178 gimple_stmt_iterator gsi;
1180 if (is_gimple_call (stmt))
1181 lhs = gimple_call_lhs (stmt);
1182 else
1183 lhs = gimple_assign_lhs (stmt);
1185 gcc_assert (has_single_use (lhs));
1186 single_imm_use (lhs, &use, &use_stmt);
1187 if (lhs == *def)
1188 *def = op;
1189 SET_USE (use, op);
1190 if (TREE_CODE (op) != SSA_NAME)
1191 update_stmt (use_stmt);
1192 gsi = gsi_for_stmt (stmt);
1193 unlink_stmt_vdef (stmt);
1194 reassoc_remove_stmt (&gsi);
1195 release_defs (stmt);
1198 /* Walks the linear chain with result *DEF searching for an operation
1199 with operand OP and code OPCODE removing that from the chain. *DEF
1200 is updated if there is only one operand but no operation left. */
1202 static void
1203 zero_one_operation (tree *def, enum tree_code opcode, tree op)
1205 gimple stmt = SSA_NAME_DEF_STMT (*def);
1209 tree name;
1211 if (opcode == MULT_EXPR
1212 && stmt_is_power_of_op (stmt, op))
1214 if (decrement_power (stmt) == 1)
1215 propagate_op_to_single_use (op, stmt, def);
1216 return;
1219 name = gimple_assign_rhs1 (stmt);
1221 /* If this is the operation we look for and one of the operands
1222 is ours simply propagate the other operand into the stmts
1223 single use. */
1224 if (gimple_assign_rhs_code (stmt) == opcode
1225 && (name == op
1226 || gimple_assign_rhs2 (stmt) == op))
1228 if (name == op)
1229 name = gimple_assign_rhs2 (stmt);
1230 propagate_op_to_single_use (name, stmt, def);
1231 return;
1234 /* We might have a multiply of two __builtin_pow* calls, and
1235 the operand might be hiding in the rightmost one. */
1236 if (opcode == MULT_EXPR
1237 && gimple_assign_rhs_code (stmt) == opcode
1238 && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
1239 && has_single_use (gimple_assign_rhs2 (stmt)))
1241 gimple stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
1242 if (stmt_is_power_of_op (stmt2, op))
1244 if (decrement_power (stmt2) == 1)
1245 propagate_op_to_single_use (op, stmt2, def);
1246 return;
1250 /* Continue walking the chain. */
1251 gcc_assert (name != op
1252 && TREE_CODE (name) == SSA_NAME);
1253 stmt = SSA_NAME_DEF_STMT (name);
1255 while (1);
1258 /* Returns true if statement S1 dominates statement S2. Like
1259 stmt_dominates_stmt_p, but uses stmt UIDs to optimize. */
1261 static bool
1262 reassoc_stmt_dominates_stmt_p (gimple s1, gimple s2)
1264 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1266 /* If bb1 is NULL, it should be a GIMPLE_NOP def stmt of an (D)
1267 SSA_NAME. Assume it lives at the beginning of function and
1268 thus dominates everything. */
1269 if (!bb1 || s1 == s2)
1270 return true;
1272 /* If bb2 is NULL, it doesn't dominate any stmt with a bb. */
1273 if (!bb2)
1274 return false;
1276 if (bb1 == bb2)
1278 /* PHIs in the same basic block are assumed to be
1279 executed all in parallel, if only one stmt is a PHI,
1280 it dominates the other stmt in the same basic block. */
1281 if (gimple_code (s1) == GIMPLE_PHI)
1282 return true;
1284 if (gimple_code (s2) == GIMPLE_PHI)
1285 return false;
1287 gcc_assert (gimple_uid (s1) && gimple_uid (s2));
1289 if (gimple_uid (s1) < gimple_uid (s2))
1290 return true;
1292 if (gimple_uid (s1) > gimple_uid (s2))
1293 return false;
1295 gimple_stmt_iterator gsi = gsi_for_stmt (s1);
1296 unsigned int uid = gimple_uid (s1);
1297 for (gsi_next (&gsi); !gsi_end_p (gsi); gsi_next (&gsi))
1299 gimple s = gsi_stmt (gsi);
1300 if (gimple_uid (s) != uid)
1301 break;
1302 if (s == s2)
1303 return true;
1306 return false;
1309 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
1312 /* Insert STMT after INSERT_POINT. */
1314 static void
1315 insert_stmt_after (gimple stmt, gimple insert_point)
1317 gimple_stmt_iterator gsi;
1318 basic_block bb;
1320 if (gimple_code (insert_point) == GIMPLE_PHI)
1321 bb = gimple_bb (insert_point);
1322 else if (!stmt_ends_bb_p (insert_point))
1324 gsi = gsi_for_stmt (insert_point);
1325 gimple_set_uid (stmt, gimple_uid (insert_point));
1326 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1327 return;
1329 else
1330 /* We assume INSERT_POINT is a SSA_NAME_DEF_STMT of some SSA_NAME,
1331 thus if it must end a basic block, it should be a call that can
1332 throw, or some assignment that can throw. If it throws, the LHS
1333 of it will not be initialized though, so only valid places using
1334 the SSA_NAME should be dominated by the fallthru edge. */
1335 bb = find_fallthru_edge (gimple_bb (insert_point)->succs)->dest;
1336 gsi = gsi_after_labels (bb);
1337 if (gsi_end_p (gsi))
1339 gimple_stmt_iterator gsi2 = gsi_last_bb (bb);
1340 gimple_set_uid (stmt,
1341 gsi_end_p (gsi2) ? 1 : gimple_uid (gsi_stmt (gsi2)));
1343 else
1344 gimple_set_uid (stmt, gimple_uid (gsi_stmt (gsi)));
1345 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1348 /* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
1349 the result. Places the statement after the definition of either
1350 OP1 or OP2. Returns the new statement. */
1352 static gimple
1353 build_and_add_sum (tree type, tree op1, tree op2, enum tree_code opcode)
1355 gimple op1def = NULL, op2def = NULL;
1356 gimple_stmt_iterator gsi;
1357 tree op;
1358 gassign *sum;
1360 /* Create the addition statement. */
1361 op = make_ssa_name (type);
1362 sum = gimple_build_assign (op, opcode, op1, op2);
1364 /* Find an insertion place and insert. */
1365 if (TREE_CODE (op1) == SSA_NAME)
1366 op1def = SSA_NAME_DEF_STMT (op1);
1367 if (TREE_CODE (op2) == SSA_NAME)
1368 op2def = SSA_NAME_DEF_STMT (op2);
1369 if ((!op1def || gimple_nop_p (op1def))
1370 && (!op2def || gimple_nop_p (op2def)))
1372 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1373 if (gsi_end_p (gsi))
1375 gimple_stmt_iterator gsi2
1376 = gsi_last_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1377 gimple_set_uid (sum,
1378 gsi_end_p (gsi2) ? 1 : gimple_uid (gsi_stmt (gsi2)));
1380 else
1381 gimple_set_uid (sum, gimple_uid (gsi_stmt (gsi)));
1382 gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
1384 else
1386 gimple insert_point;
1387 if ((!op1def || gimple_nop_p (op1def))
1388 || (op2def && !gimple_nop_p (op2def)
1389 && reassoc_stmt_dominates_stmt_p (op1def, op2def)))
1390 insert_point = op2def;
1391 else
1392 insert_point = op1def;
1393 insert_stmt_after (sum, insert_point);
1395 update_stmt (sum);
1397 return sum;
1400 /* Perform un-distribution of divisions and multiplications.
1401 A * X + B * X is transformed into (A + B) * X and A / X + B / X
1402 to (A + B) / X for real X.
1404 The algorithm is organized as follows.
1406 - First we walk the addition chain *OPS looking for summands that
1407 are defined by a multiplication or a real division. This results
1408 in the candidates bitmap with relevant indices into *OPS.
1410 - Second we build the chains of multiplications or divisions for
1411 these candidates, counting the number of occurrences of (operand, code)
1412 pairs in all of the candidates chains.
1414 - Third we sort the (operand, code) pairs by number of occurrence and
1415 process them starting with the pair with the most uses.
1417 * For each such pair we walk the candidates again to build a
1418 second candidate bitmap noting all multiplication/division chains
1419 that have at least one occurrence of (operand, code).
1421 * We build an alternate addition chain only covering these
1422 candidates with one (operand, code) operation removed from their
1423 multiplication/division chain.
1425 * The first candidate gets replaced by the alternate addition chain
1426 multiplied/divided by the operand.
1428 * All candidate chains get disabled for further processing and
1429 processing of (operand, code) pairs continues.
1431 The alternate addition chains built are re-processed by the main
1432 reassociation algorithm which allows optimizing a * x * y + b * y * x
1433 to (a + b ) * x * y in one invocation of the reassociation pass. */
1435 static bool
1436 undistribute_ops_list (enum tree_code opcode,
1437 vec<operand_entry_t> *ops, struct loop *loop)
1439 unsigned int length = ops->length ();
1440 operand_entry_t oe1;
1441 unsigned i, j;
1442 sbitmap candidates, candidates2;
1443 unsigned nr_candidates, nr_candidates2;
1444 sbitmap_iterator sbi0;
1445 vec<operand_entry_t> *subops;
1446 bool changed = false;
1447 int next_oecount_id = 0;
1449 if (length <= 1
1450 || opcode != PLUS_EXPR)
1451 return false;
1453 /* Build a list of candidates to process. */
1454 candidates = sbitmap_alloc (length);
1455 bitmap_clear (candidates);
1456 nr_candidates = 0;
1457 FOR_EACH_VEC_ELT (*ops, i, oe1)
1459 enum tree_code dcode;
1460 gimple oe1def;
1462 if (TREE_CODE (oe1->op) != SSA_NAME)
1463 continue;
1464 oe1def = SSA_NAME_DEF_STMT (oe1->op);
1465 if (!is_gimple_assign (oe1def))
1466 continue;
1467 dcode = gimple_assign_rhs_code (oe1def);
1468 if ((dcode != MULT_EXPR
1469 && dcode != RDIV_EXPR)
1470 || !is_reassociable_op (oe1def, dcode, loop))
1471 continue;
1473 bitmap_set_bit (candidates, i);
1474 nr_candidates++;
1477 if (nr_candidates < 2)
1479 sbitmap_free (candidates);
1480 return false;
1483 if (dump_file && (dump_flags & TDF_DETAILS))
1485 fprintf (dump_file, "searching for un-distribute opportunities ");
1486 print_generic_expr (dump_file,
1487 (*ops)[bitmap_first_set_bit (candidates)]->op, 0);
1488 fprintf (dump_file, " %d\n", nr_candidates);
1491 /* Build linearized sub-operand lists and the counting table. */
1492 cvec.create (0);
1494 hash_table<oecount_hasher> ctable (15);
1496 /* ??? Macro arguments cannot have multi-argument template types in
1497 them. This typedef is needed to workaround that limitation. */
1498 typedef vec<operand_entry_t> vec_operand_entry_t_heap;
1499 subops = XCNEWVEC (vec_operand_entry_t_heap, ops->length ());
1500 EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
1502 gimple oedef;
1503 enum tree_code oecode;
1504 unsigned j;
1506 oedef = SSA_NAME_DEF_STMT ((*ops)[i]->op);
1507 oecode = gimple_assign_rhs_code (oedef);
1508 linearize_expr_tree (&subops[i], oedef,
1509 associative_tree_code (oecode), false);
1511 FOR_EACH_VEC_ELT (subops[i], j, oe1)
1513 oecount c;
1514 int *slot;
1515 int idx;
1516 c.oecode = oecode;
1517 c.cnt = 1;
1518 c.id = next_oecount_id++;
1519 c.op = oe1->op;
1520 cvec.safe_push (c);
1521 idx = cvec.length () + 41;
1522 slot = ctable.find_slot (idx, INSERT);
1523 if (!*slot)
1525 *slot = idx;
1527 else
1529 cvec.pop ();
1530 cvec[*slot - 42].cnt++;
1535 /* Sort the counting table. */
1536 cvec.qsort (oecount_cmp);
1538 if (dump_file && (dump_flags & TDF_DETAILS))
1540 oecount *c;
1541 fprintf (dump_file, "Candidates:\n");
1542 FOR_EACH_VEC_ELT (cvec, j, c)
1544 fprintf (dump_file, " %u %s: ", c->cnt,
1545 c->oecode == MULT_EXPR
1546 ? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
1547 print_generic_expr (dump_file, c->op, 0);
1548 fprintf (dump_file, "\n");
1552 /* Process the (operand, code) pairs in order of most occurrence. */
1553 candidates2 = sbitmap_alloc (length);
1554 while (!cvec.is_empty ())
1556 oecount *c = &cvec.last ();
1557 if (c->cnt < 2)
1558 break;
1560 /* Now collect the operands in the outer chain that contain
1561 the common operand in their inner chain. */
1562 bitmap_clear (candidates2);
1563 nr_candidates2 = 0;
1564 EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
1566 gimple oedef;
1567 enum tree_code oecode;
1568 unsigned j;
1569 tree op = (*ops)[i]->op;
1571 /* If we undistributed in this chain already this may be
1572 a constant. */
1573 if (TREE_CODE (op) != SSA_NAME)
1574 continue;
1576 oedef = SSA_NAME_DEF_STMT (op);
1577 oecode = gimple_assign_rhs_code (oedef);
1578 if (oecode != c->oecode)
1579 continue;
1581 FOR_EACH_VEC_ELT (subops[i], j, oe1)
1583 if (oe1->op == c->op)
1585 bitmap_set_bit (candidates2, i);
1586 ++nr_candidates2;
1587 break;
1592 if (nr_candidates2 >= 2)
1594 operand_entry_t oe1, oe2;
1595 gimple prod;
1596 int first = bitmap_first_set_bit (candidates2);
1598 /* Build the new addition chain. */
1599 oe1 = (*ops)[first];
1600 if (dump_file && (dump_flags & TDF_DETAILS))
1602 fprintf (dump_file, "Building (");
1603 print_generic_expr (dump_file, oe1->op, 0);
1605 zero_one_operation (&oe1->op, c->oecode, c->op);
1606 EXECUTE_IF_SET_IN_BITMAP (candidates2, first+1, i, sbi0)
1608 gimple sum;
1609 oe2 = (*ops)[i];
1610 if (dump_file && (dump_flags & TDF_DETAILS))
1612 fprintf (dump_file, " + ");
1613 print_generic_expr (dump_file, oe2->op, 0);
1615 zero_one_operation (&oe2->op, c->oecode, c->op);
1616 sum = build_and_add_sum (TREE_TYPE (oe1->op),
1617 oe1->op, oe2->op, opcode);
1618 oe2->op = build_zero_cst (TREE_TYPE (oe2->op));
1619 oe2->rank = 0;
1620 oe1->op = gimple_get_lhs (sum);
1623 /* Apply the multiplication/division. */
1624 prod = build_and_add_sum (TREE_TYPE (oe1->op),
1625 oe1->op, c->op, c->oecode);
1626 if (dump_file && (dump_flags & TDF_DETAILS))
1628 fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
1629 print_generic_expr (dump_file, c->op, 0);
1630 fprintf (dump_file, "\n");
1633 /* Record it in the addition chain and disable further
1634 undistribution with this op. */
1635 oe1->op = gimple_assign_lhs (prod);
1636 oe1->rank = get_rank (oe1->op);
1637 subops[first].release ();
1639 changed = true;
1642 cvec.pop ();
1645 for (i = 0; i < ops->length (); ++i)
1646 subops[i].release ();
1647 free (subops);
1648 cvec.release ();
1649 sbitmap_free (candidates);
1650 sbitmap_free (candidates2);
1652 return changed;
1655 /* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison
1656 expression, examine the other OPS to see if any of them are comparisons
1657 of the same values, which we may be able to combine or eliminate.
1658 For example, we can rewrite (a < b) | (a == b) as (a <= b). */
1660 static bool
1661 eliminate_redundant_comparison (enum tree_code opcode,
1662 vec<operand_entry_t> *ops,
1663 unsigned int currindex,
1664 operand_entry_t curr)
1666 tree op1, op2;
1667 enum tree_code lcode, rcode;
1668 gimple def1, def2;
1669 int i;
1670 operand_entry_t oe;
1672 if (opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
1673 return false;
1675 /* Check that CURR is a comparison. */
1676 if (TREE_CODE (curr->op) != SSA_NAME)
1677 return false;
1678 def1 = SSA_NAME_DEF_STMT (curr->op);
1679 if (!is_gimple_assign (def1))
1680 return false;
1681 lcode = gimple_assign_rhs_code (def1);
1682 if (TREE_CODE_CLASS (lcode) != tcc_comparison)
1683 return false;
1684 op1 = gimple_assign_rhs1 (def1);
1685 op2 = gimple_assign_rhs2 (def1);
1687 /* Now look for a similar comparison in the remaining OPS. */
1688 for (i = currindex + 1; ops->iterate (i, &oe); i++)
1690 tree t;
1692 if (TREE_CODE (oe->op) != SSA_NAME)
1693 continue;
1694 def2 = SSA_NAME_DEF_STMT (oe->op);
1695 if (!is_gimple_assign (def2))
1696 continue;
1697 rcode = gimple_assign_rhs_code (def2);
1698 if (TREE_CODE_CLASS (rcode) != tcc_comparison)
1699 continue;
1701 /* If we got here, we have a match. See if we can combine the
1702 two comparisons. */
1703 if (opcode == BIT_IOR_EXPR)
1704 t = maybe_fold_or_comparisons (lcode, op1, op2,
1705 rcode, gimple_assign_rhs1 (def2),
1706 gimple_assign_rhs2 (def2));
1707 else
1708 t = maybe_fold_and_comparisons (lcode, op1, op2,
1709 rcode, gimple_assign_rhs1 (def2),
1710 gimple_assign_rhs2 (def2));
1711 if (!t)
1712 continue;
1714 /* maybe_fold_and_comparisons and maybe_fold_or_comparisons
1715 always give us a boolean_type_node value back. If the original
1716 BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type,
1717 we need to convert. */
1718 if (!useless_type_conversion_p (TREE_TYPE (curr->op), TREE_TYPE (t)))
1719 t = fold_convert (TREE_TYPE (curr->op), t);
1721 if (TREE_CODE (t) != INTEGER_CST
1722 && !operand_equal_p (t, curr->op, 0))
1724 enum tree_code subcode;
1725 tree newop1, newop2;
1726 if (!COMPARISON_CLASS_P (t))
1727 continue;
1728 extract_ops_from_tree (t, &subcode, &newop1, &newop2);
1729 STRIP_USELESS_TYPE_CONVERSION (newop1);
1730 STRIP_USELESS_TYPE_CONVERSION (newop2);
1731 if (!is_gimple_val (newop1) || !is_gimple_val (newop2))
1732 continue;
1735 if (dump_file && (dump_flags & TDF_DETAILS))
1737 fprintf (dump_file, "Equivalence: ");
1738 print_generic_expr (dump_file, curr->op, 0);
1739 fprintf (dump_file, " %s ", op_symbol_code (opcode));
1740 print_generic_expr (dump_file, oe->op, 0);
1741 fprintf (dump_file, " -> ");
1742 print_generic_expr (dump_file, t, 0);
1743 fprintf (dump_file, "\n");
1746 /* Now we can delete oe, as it has been subsumed by the new combined
1747 expression t. */
1748 ops->ordered_remove (i);
1749 reassociate_stats.ops_eliminated ++;
1751 /* If t is the same as curr->op, we're done. Otherwise we must
1752 replace curr->op with t. Special case is if we got a constant
1753 back, in which case we add it to the end instead of in place of
1754 the current entry. */
1755 if (TREE_CODE (t) == INTEGER_CST)
1757 ops->ordered_remove (currindex);
1758 add_to_ops_vec (ops, t);
1760 else if (!operand_equal_p (t, curr->op, 0))
1762 gimple sum;
1763 enum tree_code subcode;
1764 tree newop1;
1765 tree newop2;
1766 gcc_assert (COMPARISON_CLASS_P (t));
1767 extract_ops_from_tree (t, &subcode, &newop1, &newop2);
1768 STRIP_USELESS_TYPE_CONVERSION (newop1);
1769 STRIP_USELESS_TYPE_CONVERSION (newop2);
1770 gcc_checking_assert (is_gimple_val (newop1)
1771 && is_gimple_val (newop2));
1772 sum = build_and_add_sum (TREE_TYPE (t), newop1, newop2, subcode);
1773 curr->op = gimple_get_lhs (sum);
1775 return true;
1778 return false;
1781 /* Perform various identities and other optimizations on the list of
1782 operand entries, stored in OPS. The tree code for the binary
1783 operation between all the operands is OPCODE. */
1785 static void
1786 optimize_ops_list (enum tree_code opcode,
1787 vec<operand_entry_t> *ops)
1789 unsigned int length = ops->length ();
1790 unsigned int i;
1791 operand_entry_t oe;
1792 operand_entry_t oelast = NULL;
1793 bool iterate = false;
1795 if (length == 1)
1796 return;
1798 oelast = ops->last ();
1800 /* If the last two are constants, pop the constants off, merge them
1801 and try the next two. */
1802 if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
1804 operand_entry_t oelm1 = (*ops)[length - 2];
1806 if (oelm1->rank == 0
1807 && is_gimple_min_invariant (oelm1->op)
1808 && useless_type_conversion_p (TREE_TYPE (oelm1->op),
1809 TREE_TYPE (oelast->op)))
1811 tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
1812 oelm1->op, oelast->op);
1814 if (folded && is_gimple_min_invariant (folded))
1816 if (dump_file && (dump_flags & TDF_DETAILS))
1817 fprintf (dump_file, "Merging constants\n");
1819 ops->pop ();
1820 ops->pop ();
1822 add_to_ops_vec (ops, folded);
1823 reassociate_stats.constants_eliminated++;
1825 optimize_ops_list (opcode, ops);
1826 return;
1831 eliminate_using_constants (opcode, ops);
1832 oelast = NULL;
1834 for (i = 0; ops->iterate (i, &oe);)
1836 bool done = false;
1838 if (eliminate_not_pairs (opcode, ops, i, oe))
1839 return;
1840 if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
1841 || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))
1842 || (!done && eliminate_redundant_comparison (opcode, ops, i, oe)))
1844 if (done)
1845 return;
1846 iterate = true;
1847 oelast = NULL;
1848 continue;
1850 oelast = oe;
1851 i++;
1854 length = ops->length ();
1855 oelast = ops->last ();
1857 if (iterate)
1858 optimize_ops_list (opcode, ops);
1861 /* The following functions are subroutines to optimize_range_tests and allow
1862 it to try to change a logical combination of comparisons into a range
1863 test.
1865 For example, both
1866 X == 2 || X == 5 || X == 3 || X == 4
1868 X >= 2 && X <= 5
1869 are converted to
1870 (unsigned) (X - 2) <= 3
1872 For more information see comments above fold_test_range in fold-const.c,
1873 this implementation is for GIMPLE. */
1875 struct range_entry
1877 tree exp;
1878 tree low;
1879 tree high;
1880 bool in_p;
1881 bool strict_overflow_p;
1882 unsigned int idx, next;
1885 /* This is similar to make_range in fold-const.c, but on top of
1886 GIMPLE instead of trees. If EXP is non-NULL, it should be
1887 an SSA_NAME and STMT argument is ignored, otherwise STMT
1888 argument should be a GIMPLE_COND. */
1890 static void
1891 init_range_entry (struct range_entry *r, tree exp, gimple stmt)
1893 int in_p;
1894 tree low, high;
1895 bool is_bool, strict_overflow_p;
1897 r->exp = NULL_TREE;
1898 r->in_p = false;
1899 r->strict_overflow_p = false;
1900 r->low = NULL_TREE;
1901 r->high = NULL_TREE;
1902 if (exp != NULL_TREE
1903 && (TREE_CODE (exp) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (exp))))
1904 return;
1906 /* Start with simply saying "EXP != 0" and then look at the code of EXP
1907 and see if we can refine the range. Some of the cases below may not
1908 happen, but it doesn't seem worth worrying about this. We "continue"
1909 the outer loop when we've changed something; otherwise we "break"
1910 the switch, which will "break" the while. */
1911 low = exp ? build_int_cst (TREE_TYPE (exp), 0) : boolean_false_node;
1912 high = low;
1913 in_p = 0;
1914 strict_overflow_p = false;
1915 is_bool = false;
1916 if (exp == NULL_TREE)
1917 is_bool = true;
1918 else if (TYPE_PRECISION (TREE_TYPE (exp)) == 1)
1920 if (TYPE_UNSIGNED (TREE_TYPE (exp)))
1921 is_bool = true;
1922 else
1923 return;
1925 else if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE)
1926 is_bool = true;
1928 while (1)
1930 enum tree_code code;
1931 tree arg0, arg1, exp_type;
1932 tree nexp;
1933 location_t loc;
1935 if (exp != NULL_TREE)
1937 if (TREE_CODE (exp) != SSA_NAME
1938 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp))
1939 break;
1941 stmt = SSA_NAME_DEF_STMT (exp);
1942 if (!is_gimple_assign (stmt))
1943 break;
1945 code = gimple_assign_rhs_code (stmt);
1946 arg0 = gimple_assign_rhs1 (stmt);
1947 arg1 = gimple_assign_rhs2 (stmt);
1948 exp_type = TREE_TYPE (exp);
1950 else
1952 code = gimple_cond_code (stmt);
1953 arg0 = gimple_cond_lhs (stmt);
1954 arg1 = gimple_cond_rhs (stmt);
1955 exp_type = boolean_type_node;
1958 if (TREE_CODE (arg0) != SSA_NAME)
1959 break;
1960 loc = gimple_location (stmt);
1961 switch (code)
1963 case BIT_NOT_EXPR:
1964 if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE
1965 /* Ensure the range is either +[-,0], +[0,0],
1966 -[-,0], -[0,0] or +[1,-], +[1,1], -[1,-] or
1967 -[1,1]. If it is e.g. +[-,-] or -[-,-]
1968 or similar expression of unconditional true or
1969 false, it should not be negated. */
1970 && ((high && integer_zerop (high))
1971 || (low && integer_onep (low))))
1973 in_p = !in_p;
1974 exp = arg0;
1975 continue;
1977 break;
1978 case SSA_NAME:
1979 exp = arg0;
1980 continue;
1981 CASE_CONVERT:
1982 if (is_bool)
1983 goto do_default;
1984 if (TYPE_PRECISION (TREE_TYPE (arg0)) == 1)
1986 if (TYPE_UNSIGNED (TREE_TYPE (arg0)))
1987 is_bool = true;
1988 else
1989 return;
1991 else if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE)
1992 is_bool = true;
1993 goto do_default;
1994 case EQ_EXPR:
1995 case NE_EXPR:
1996 case LT_EXPR:
1997 case LE_EXPR:
1998 case GE_EXPR:
1999 case GT_EXPR:
2000 is_bool = true;
2001 /* FALLTHRU */
2002 default:
2003 if (!is_bool)
2004 return;
2005 do_default:
2006 nexp = make_range_step (loc, code, arg0, arg1, exp_type,
2007 &low, &high, &in_p,
2008 &strict_overflow_p);
2009 if (nexp != NULL_TREE)
2011 exp = nexp;
2012 gcc_assert (TREE_CODE (exp) == SSA_NAME);
2013 continue;
2015 break;
2017 break;
2019 if (is_bool)
2021 r->exp = exp;
2022 r->in_p = in_p;
2023 r->low = low;
2024 r->high = high;
2025 r->strict_overflow_p = strict_overflow_p;
2029 /* Comparison function for qsort. Sort entries
2030 without SSA_NAME exp first, then with SSA_NAMEs sorted
2031 by increasing SSA_NAME_VERSION, and for the same SSA_NAMEs
2032 by increasing ->low and if ->low is the same, by increasing
2033 ->high. ->low == NULL_TREE means minimum, ->high == NULL_TREE
2034 maximum. */
2036 static int
2037 range_entry_cmp (const void *a, const void *b)
2039 const struct range_entry *p = (const struct range_entry *) a;
2040 const struct range_entry *q = (const struct range_entry *) b;
2042 if (p->exp != NULL_TREE && TREE_CODE (p->exp) == SSA_NAME)
2044 if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
2046 /* Group range_entries for the same SSA_NAME together. */
2047 if (SSA_NAME_VERSION (p->exp) < SSA_NAME_VERSION (q->exp))
2048 return -1;
2049 else if (SSA_NAME_VERSION (p->exp) > SSA_NAME_VERSION (q->exp))
2050 return 1;
2051 /* If ->low is different, NULL low goes first, then by
2052 ascending low. */
2053 if (p->low != NULL_TREE)
2055 if (q->low != NULL_TREE)
2057 tree tem = fold_binary (LT_EXPR, boolean_type_node,
2058 p->low, q->low);
2059 if (tem && integer_onep (tem))
2060 return -1;
2061 tem = fold_binary (GT_EXPR, boolean_type_node,
2062 p->low, q->low);
2063 if (tem && integer_onep (tem))
2064 return 1;
2066 else
2067 return 1;
2069 else if (q->low != NULL_TREE)
2070 return -1;
2071 /* If ->high is different, NULL high goes last, before that by
2072 ascending high. */
2073 if (p->high != NULL_TREE)
2075 if (q->high != NULL_TREE)
2077 tree tem = fold_binary (LT_EXPR, boolean_type_node,
2078 p->high, q->high);
2079 if (tem && integer_onep (tem))
2080 return -1;
2081 tem = fold_binary (GT_EXPR, boolean_type_node,
2082 p->high, q->high);
2083 if (tem && integer_onep (tem))
2084 return 1;
2086 else
2087 return -1;
2089 else if (q->high != NULL_TREE)
2090 return 1;
2091 /* If both ranges are the same, sort below by ascending idx. */
2093 else
2094 return 1;
2096 else if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
2097 return -1;
2099 if (p->idx < q->idx)
2100 return -1;
2101 else
2103 gcc_checking_assert (p->idx > q->idx);
2104 return 1;
2108 /* Helper routine of optimize_range_test.
2109 [EXP, IN_P, LOW, HIGH, STRICT_OVERFLOW_P] is a merged range for
2110 RANGE and OTHERRANGE through OTHERRANGE + COUNT - 1 ranges,
2111 OPCODE and OPS are arguments of optimize_range_tests. If OTHERRANGE
2112 is NULL, OTHERRANGEP should not be and then OTHERRANGEP points to
2113 an array of COUNT pointers to other ranges. Return
2114 true if the range merge has been successful.
2115 If OPCODE is ERROR_MARK, this is called from within
2116 maybe_optimize_range_tests and is performing inter-bb range optimization.
2117 In that case, whether an op is BIT_AND_EXPR or BIT_IOR_EXPR is found in
2118 oe->rank. */
2120 static bool
2121 update_range_test (struct range_entry *range, struct range_entry *otherrange,
2122 struct range_entry **otherrangep,
2123 unsigned int count, enum tree_code opcode,
2124 vec<operand_entry_t> *ops, tree exp, gimple_seq seq,
2125 bool in_p, tree low, tree high, bool strict_overflow_p)
2127 operand_entry_t oe = (*ops)[range->idx];
2128 tree op = oe->op;
2129 gimple stmt = op ? SSA_NAME_DEF_STMT (op) :
2130 last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id));
2131 location_t loc = gimple_location (stmt);
2132 tree optype = op ? TREE_TYPE (op) : boolean_type_node;
2133 tree tem = build_range_check (loc, optype, unshare_expr (exp),
2134 in_p, low, high);
2135 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
2136 gimple_stmt_iterator gsi;
2137 unsigned int i;
2139 if (tem == NULL_TREE)
2140 return false;
2142 if (strict_overflow_p && issue_strict_overflow_warning (wc))
2143 warning_at (loc, OPT_Wstrict_overflow,
2144 "assuming signed overflow does not occur "
2145 "when simplifying range test");
2147 if (dump_file && (dump_flags & TDF_DETAILS))
2149 struct range_entry *r;
2150 fprintf (dump_file, "Optimizing range tests ");
2151 print_generic_expr (dump_file, range->exp, 0);
2152 fprintf (dump_file, " %c[", range->in_p ? '+' : '-');
2153 print_generic_expr (dump_file, range->low, 0);
2154 fprintf (dump_file, ", ");
2155 print_generic_expr (dump_file, range->high, 0);
2156 fprintf (dump_file, "]");
2157 for (i = 0; i < count; i++)
2159 if (otherrange)
2160 r = otherrange + i;
2161 else
2162 r = otherrangep[i];
2163 fprintf (dump_file, " and %c[", r->in_p ? '+' : '-');
2164 print_generic_expr (dump_file, r->low, 0);
2165 fprintf (dump_file, ", ");
2166 print_generic_expr (dump_file, r->high, 0);
2167 fprintf (dump_file, "]");
2169 fprintf (dump_file, "\n into ");
2170 print_generic_expr (dump_file, tem, 0);
2171 fprintf (dump_file, "\n");
2174 if (opcode == BIT_IOR_EXPR
2175 || (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
2176 tem = invert_truthvalue_loc (loc, tem);
2178 tem = fold_convert_loc (loc, optype, tem);
2179 gsi = gsi_for_stmt (stmt);
2180 unsigned int uid = gimple_uid (stmt);
2181 /* In rare cases range->exp can be equal to lhs of stmt.
2182 In that case we have to insert after the stmt rather then before
2183 it. If stmt is a PHI, insert it at the start of the basic block. */
2184 if (op != range->exp)
2186 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
2187 tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, true,
2188 GSI_SAME_STMT);
2189 gsi_prev (&gsi);
2191 else if (gimple_code (stmt) != GIMPLE_PHI)
2193 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2194 tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, false,
2195 GSI_CONTINUE_LINKING);
2197 else
2199 gsi = gsi_after_labels (gimple_bb (stmt));
2200 if (!gsi_end_p (gsi))
2201 uid = gimple_uid (gsi_stmt (gsi));
2202 else
2204 gsi = gsi_start_bb (gimple_bb (stmt));
2205 uid = 1;
2206 while (!gsi_end_p (gsi))
2208 uid = gimple_uid (gsi_stmt (gsi));
2209 gsi_next (&gsi);
2212 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
2213 tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, true,
2214 GSI_SAME_STMT);
2215 if (gsi_end_p (gsi))
2216 gsi = gsi_last_bb (gimple_bb (stmt));
2217 else
2218 gsi_prev (&gsi);
2220 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
2221 if (gimple_uid (gsi_stmt (gsi)))
2222 break;
2223 else
2224 gimple_set_uid (gsi_stmt (gsi), uid);
2226 oe->op = tem;
2227 range->exp = exp;
2228 range->low = low;
2229 range->high = high;
2230 range->in_p = in_p;
2231 range->strict_overflow_p = false;
2233 for (i = 0; i < count; i++)
2235 if (otherrange)
2236 range = otherrange + i;
2237 else
2238 range = otherrangep[i];
2239 oe = (*ops)[range->idx];
2240 /* Now change all the other range test immediate uses, so that
2241 those tests will be optimized away. */
2242 if (opcode == ERROR_MARK)
2244 if (oe->op)
2245 oe->op = build_int_cst (TREE_TYPE (oe->op),
2246 oe->rank == BIT_IOR_EXPR ? 0 : 1);
2247 else
2248 oe->op = (oe->rank == BIT_IOR_EXPR
2249 ? boolean_false_node : boolean_true_node);
2251 else
2252 oe->op = error_mark_node;
2253 range->exp = NULL_TREE;
2255 return true;
2258 /* Optimize X == CST1 || X == CST2
2259 if popcount (CST1 ^ CST2) == 1 into
2260 (X & ~(CST1 ^ CST2)) == (CST1 & ~(CST1 ^ CST2)).
2261 Similarly for ranges. E.g.
2262 X != 2 && X != 3 && X != 10 && X != 11
2263 will be transformed by the previous optimization into
2264 !((X - 2U) <= 1U || (X - 10U) <= 1U)
2265 and this loop can transform that into
2266 !(((X & ~8) - 2U) <= 1U). */
2268 static bool
2269 optimize_range_tests_xor (enum tree_code opcode, tree type,
2270 tree lowi, tree lowj, tree highi, tree highj,
2271 vec<operand_entry_t> *ops,
2272 struct range_entry *rangei,
2273 struct range_entry *rangej)
2275 tree lowxor, highxor, tem, exp;
2276 /* Check lowi ^ lowj == highi ^ highj and
2277 popcount (lowi ^ lowj) == 1. */
2278 lowxor = fold_binary (BIT_XOR_EXPR, type, lowi, lowj);
2279 if (lowxor == NULL_TREE || TREE_CODE (lowxor) != INTEGER_CST)
2280 return false;
2281 if (!integer_pow2p (lowxor))
2282 return false;
2283 highxor = fold_binary (BIT_XOR_EXPR, type, highi, highj);
2284 if (!tree_int_cst_equal (lowxor, highxor))
2285 return false;
2287 tem = fold_build1 (BIT_NOT_EXPR, type, lowxor);
2288 exp = fold_build2 (BIT_AND_EXPR, type, rangei->exp, tem);
2289 lowj = fold_build2 (BIT_AND_EXPR, type, lowi, tem);
2290 highj = fold_build2 (BIT_AND_EXPR, type, highi, tem);
2291 if (update_range_test (rangei, rangej, NULL, 1, opcode, ops, exp,
2292 NULL, rangei->in_p, lowj, highj,
2293 rangei->strict_overflow_p
2294 || rangej->strict_overflow_p))
2295 return true;
2296 return false;
2299 /* Optimize X == CST1 || X == CST2
2300 if popcount (CST2 - CST1) == 1 into
2301 ((X - CST1) & ~(CST2 - CST1)) == 0.
2302 Similarly for ranges. E.g.
2303 X == 43 || X == 76 || X == 44 || X == 78 || X == 77 || X == 46
2304 || X == 75 || X == 45
2305 will be transformed by the previous optimization into
2306 (X - 43U) <= 3U || (X - 75U) <= 3U
2307 and this loop can transform that into
2308 ((X - 43U) & ~(75U - 43U)) <= 3U. */
2309 static bool
2310 optimize_range_tests_diff (enum tree_code opcode, tree type,
2311 tree lowi, tree lowj, tree highi, tree highj,
2312 vec<operand_entry_t> *ops,
2313 struct range_entry *rangei,
2314 struct range_entry *rangej)
2316 tree tem1, tem2, mask;
2317 /* Check highi - lowi == highj - lowj. */
2318 tem1 = fold_binary (MINUS_EXPR, type, highi, lowi);
2319 if (tem1 == NULL_TREE || TREE_CODE (tem1) != INTEGER_CST)
2320 return false;
2321 tem2 = fold_binary (MINUS_EXPR, type, highj, lowj);
2322 if (!tree_int_cst_equal (tem1, tem2))
2323 return false;
2324 /* Check popcount (lowj - lowi) == 1. */
2325 tem1 = fold_binary (MINUS_EXPR, type, lowj, lowi);
2326 if (tem1 == NULL_TREE || TREE_CODE (tem1) != INTEGER_CST)
2327 return false;
2328 if (!integer_pow2p (tem1))
2329 return false;
2331 type = unsigned_type_for (type);
2332 tem1 = fold_convert (type, tem1);
2333 tem2 = fold_convert (type, tem2);
2334 lowi = fold_convert (type, lowi);
2335 mask = fold_build1 (BIT_NOT_EXPR, type, tem1);
2336 tem1 = fold_binary (MINUS_EXPR, type,
2337 fold_convert (type, rangei->exp), lowi);
2338 tem1 = fold_build2 (BIT_AND_EXPR, type, tem1, mask);
2339 lowj = build_int_cst (type, 0);
2340 if (update_range_test (rangei, rangej, NULL, 1, opcode, ops, tem1,
2341 NULL, rangei->in_p, lowj, tem2,
2342 rangei->strict_overflow_p
2343 || rangej->strict_overflow_p))
2344 return true;
2345 return false;
2348 /* It does some common checks for function optimize_range_tests_xor and
2349 optimize_range_tests_diff.
2350 If OPTIMIZE_XOR is TRUE, it calls optimize_range_tests_xor.
2351 Else it calls optimize_range_tests_diff. */
2353 static bool
2354 optimize_range_tests_1 (enum tree_code opcode, int first, int length,
2355 bool optimize_xor, vec<operand_entry_t> *ops,
2356 struct range_entry *ranges)
2358 int i, j;
2359 bool any_changes = false;
2360 for (i = first; i < length; i++)
2362 tree lowi, highi, lowj, highj, type, tem;
2364 if (ranges[i].exp == NULL_TREE || ranges[i].in_p)
2365 continue;
2366 type = TREE_TYPE (ranges[i].exp);
2367 if (!INTEGRAL_TYPE_P (type))
2368 continue;
2369 lowi = ranges[i].low;
2370 if (lowi == NULL_TREE)
2371 lowi = TYPE_MIN_VALUE (type);
2372 highi = ranges[i].high;
2373 if (highi == NULL_TREE)
2374 continue;
2375 for (j = i + 1; j < length && j < i + 64; j++)
2377 bool changes;
2378 if (ranges[i].exp != ranges[j].exp || ranges[j].in_p)
2379 continue;
2380 lowj = ranges[j].low;
2381 if (lowj == NULL_TREE)
2382 continue;
2383 highj = ranges[j].high;
2384 if (highj == NULL_TREE)
2385 highj = TYPE_MAX_VALUE (type);
2386 /* Check lowj > highi. */
2387 tem = fold_binary (GT_EXPR, boolean_type_node,
2388 lowj, highi);
2389 if (tem == NULL_TREE || !integer_onep (tem))
2390 continue;
2391 if (optimize_xor)
2392 changes = optimize_range_tests_xor (opcode, type, lowi, lowj,
2393 highi, highj, ops,
2394 ranges + i, ranges + j);
2395 else
2396 changes = optimize_range_tests_diff (opcode, type, lowi, lowj,
2397 highi, highj, ops,
2398 ranges + i, ranges + j);
2399 if (changes)
2401 any_changes = true;
2402 break;
2406 return any_changes;
2409 /* Helper function of optimize_range_tests_to_bit_test. Handle a single
2410 range, EXP, LOW, HIGH, compute bit mask of bits to test and return
2411 EXP on success, NULL otherwise. */
2413 static tree
2414 extract_bit_test_mask (tree exp, int prec, tree totallow, tree low, tree high,
2415 wide_int *mask, tree *totallowp)
2417 tree tem = int_const_binop (MINUS_EXPR, high, low);
2418 if (tem == NULL_TREE
2419 || TREE_CODE (tem) != INTEGER_CST
2420 || TREE_OVERFLOW (tem)
2421 || tree_int_cst_sgn (tem) == -1
2422 || compare_tree_int (tem, prec) != -1)
2423 return NULL_TREE;
2425 unsigned HOST_WIDE_INT max = tree_to_uhwi (tem) + 1;
2426 *mask = wi::shifted_mask (0, max, false, prec);
2427 if (TREE_CODE (exp) == BIT_AND_EXPR
2428 && TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
2430 widest_int msk = wi::to_widest (TREE_OPERAND (exp, 1));
2431 msk = wi::zext (~msk, TYPE_PRECISION (TREE_TYPE (exp)));
2432 if (wi::popcount (msk) == 1
2433 && wi::ltu_p (msk, prec - max))
2435 *mask |= wi::shifted_mask (msk.to_uhwi (), max, false, prec);
2436 max += msk.to_uhwi ();
2437 exp = TREE_OPERAND (exp, 0);
2438 if (integer_zerop (low)
2439 && TREE_CODE (exp) == PLUS_EXPR
2440 && TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
2442 tree ret = TREE_OPERAND (exp, 0);
2443 STRIP_NOPS (ret);
2444 widest_int bias
2445 = wi::neg (wi::sext (wi::to_widest (TREE_OPERAND (exp, 1)),
2446 TYPE_PRECISION (TREE_TYPE (low))));
2447 tree tbias = wide_int_to_tree (TREE_TYPE (ret), bias);
2448 if (totallowp)
2450 *totallowp = tbias;
2451 return ret;
2453 else if (!tree_int_cst_lt (totallow, tbias))
2454 return NULL_TREE;
2455 bias = wi::to_widest (tbias);
2456 bias -= wi::to_widest (totallow);
2457 if (wi::ges_p (bias, 0) && wi::lts_p (bias, prec - max))
2459 *mask = wi::lshift (*mask, bias);
2460 return ret;
2465 if (totallowp)
2466 return exp;
2467 if (!tree_int_cst_lt (totallow, low))
2468 return exp;
2469 tem = int_const_binop (MINUS_EXPR, low, totallow);
2470 if (tem == NULL_TREE
2471 || TREE_CODE (tem) != INTEGER_CST
2472 || TREE_OVERFLOW (tem)
2473 || compare_tree_int (tem, prec - max) == 1)
2474 return NULL_TREE;
2476 *mask = wi::lshift (*mask, wi::to_widest (tem));
2477 return exp;
2480 /* Attempt to optimize small range tests using bit test.
2481 E.g.
2482 X != 43 && X != 76 && X != 44 && X != 78 && X != 49
2483 && X != 77 && X != 46 && X != 75 && X != 45 && X != 82
2484 has been by earlier optimizations optimized into:
2485 ((X - 43U) & ~32U) > 3U && X != 49 && X != 82
2486 As all the 43 through 82 range is less than 64 numbers,
2487 for 64-bit word targets optimize that into:
2488 (X - 43U) > 40U && ((1 << (X - 43U)) & 0x8F0000004FULL) == 0 */
2490 static bool
2491 optimize_range_tests_to_bit_test (enum tree_code opcode, int first, int length,
2492 vec<operand_entry_t> *ops,
2493 struct range_entry *ranges)
2495 int i, j;
2496 bool any_changes = false;
2497 int prec = GET_MODE_BITSIZE (word_mode);
2498 auto_vec<struct range_entry *, 64> candidates;
2500 for (i = first; i < length - 2; i++)
2502 tree lowi, highi, lowj, highj, type;
2504 if (ranges[i].exp == NULL_TREE || ranges[i].in_p)
2505 continue;
2506 type = TREE_TYPE (ranges[i].exp);
2507 if (!INTEGRAL_TYPE_P (type))
2508 continue;
2509 lowi = ranges[i].low;
2510 if (lowi == NULL_TREE)
2511 lowi = TYPE_MIN_VALUE (type);
2512 highi = ranges[i].high;
2513 if (highi == NULL_TREE)
2514 continue;
2515 wide_int mask;
2516 tree exp = extract_bit_test_mask (ranges[i].exp, prec, lowi, lowi,
2517 highi, &mask, &lowi);
2518 if (exp == NULL_TREE)
2519 continue;
2520 bool strict_overflow_p = ranges[i].strict_overflow_p;
2521 candidates.truncate (0);
2522 int end = MIN (i + 64, length);
2523 for (j = i + 1; j < end; j++)
2525 tree exp2;
2526 if (ranges[j].exp == NULL_TREE || ranges[j].in_p)
2527 continue;
2528 if (ranges[j].exp == exp)
2530 else if (TREE_CODE (ranges[j].exp) == BIT_AND_EXPR)
2532 exp2 = TREE_OPERAND (ranges[j].exp, 0);
2533 if (exp2 == exp)
2535 else if (TREE_CODE (exp2) == PLUS_EXPR)
2537 exp2 = TREE_OPERAND (exp2, 0);
2538 STRIP_NOPS (exp2);
2539 if (exp2 != exp)
2540 continue;
2542 else
2543 continue;
2545 else
2546 continue;
2547 lowj = ranges[j].low;
2548 if (lowj == NULL_TREE)
2549 continue;
2550 highj = ranges[j].high;
2551 if (highj == NULL_TREE)
2552 highj = TYPE_MAX_VALUE (type);
2553 wide_int mask2;
2554 exp2 = extract_bit_test_mask (ranges[j].exp, prec, lowi, lowj,
2555 highj, &mask2, NULL);
2556 if (exp2 != exp)
2557 continue;
2558 mask |= mask2;
2559 strict_overflow_p |= ranges[j].strict_overflow_p;
2560 candidates.safe_push (&ranges[j]);
2563 /* If we need otherwise 3 or more comparisons, use a bit test. */
2564 if (candidates.length () >= 2)
2566 tree high = wide_int_to_tree (TREE_TYPE (lowi),
2567 wi::to_widest (lowi)
2568 + prec - 1 - wi::clz (mask));
2569 operand_entry_t oe = (*ops)[ranges[i].idx];
2570 tree op = oe->op;
2571 gimple stmt = op ? SSA_NAME_DEF_STMT (op)
2572 : last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id));
2573 location_t loc = gimple_location (stmt);
2574 tree optype = op ? TREE_TYPE (op) : boolean_type_node;
2576 /* See if it isn't cheaper to pretend the minimum value of the
2577 range is 0, if maximum value is small enough.
2578 We can avoid then subtraction of the minimum value, but the
2579 mask constant could be perhaps more expensive. */
2580 if (compare_tree_int (lowi, 0) > 0
2581 && compare_tree_int (high, prec) < 0)
2583 int cost_diff;
2584 HOST_WIDE_INT m = tree_to_uhwi (lowi);
2585 rtx reg = gen_raw_REG (word_mode, 10000);
2586 bool speed_p = optimize_bb_for_speed_p (gimple_bb (stmt));
2587 cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg,
2588 GEN_INT (-m)), speed_p);
2589 rtx r = immed_wide_int_const (mask, word_mode);
2590 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
2591 speed_p);
2592 r = immed_wide_int_const (wi::lshift (mask, m), word_mode);
2593 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
2594 speed_p);
2595 if (cost_diff > 0)
2597 mask = wi::lshift (mask, m);
2598 lowi = build_zero_cst (TREE_TYPE (lowi));
2602 tree tem = build_range_check (loc, optype, unshare_expr (exp),
2603 false, lowi, high);
2604 if (tem == NULL_TREE || is_gimple_val (tem))
2605 continue;
2606 tree etype = unsigned_type_for (TREE_TYPE (exp));
2607 exp = fold_build2_loc (loc, MINUS_EXPR, etype,
2608 fold_convert_loc (loc, etype, exp),
2609 fold_convert_loc (loc, etype, lowi));
2610 exp = fold_convert_loc (loc, integer_type_node, exp);
2611 tree word_type = lang_hooks.types.type_for_mode (word_mode, 1);
2612 exp = fold_build2_loc (loc, LSHIFT_EXPR, word_type,
2613 build_int_cst (word_type, 1), exp);
2614 exp = fold_build2_loc (loc, BIT_AND_EXPR, word_type, exp,
2615 wide_int_to_tree (word_type, mask));
2616 exp = fold_build2_loc (loc, EQ_EXPR, optype, exp,
2617 build_zero_cst (word_type));
2618 if (is_gimple_val (exp))
2619 continue;
2621 /* The shift might have undefined behavior if TEM is true,
2622 but reassociate_bb isn't prepared to have basic blocks
2623 split when it is running. So, temporarily emit a code
2624 with BIT_IOR_EXPR instead of &&, and fix it up in
2625 branch_fixup. */
2626 gimple_seq seq;
2627 tem = force_gimple_operand (tem, &seq, true, NULL_TREE);
2628 gcc_assert (TREE_CODE (tem) == SSA_NAME);
2629 gimple_set_visited (SSA_NAME_DEF_STMT (tem), true);
2630 gimple_seq seq2;
2631 exp = force_gimple_operand (exp, &seq2, true, NULL_TREE);
2632 gimple_seq_add_seq_without_update (&seq, seq2);
2633 gcc_assert (TREE_CODE (exp) == SSA_NAME);
2634 gimple_set_visited (SSA_NAME_DEF_STMT (exp), true);
2635 gimple g = gimple_build_assign (make_ssa_name (optype),
2636 BIT_IOR_EXPR, tem, exp);
2637 gimple_set_location (g, loc);
2638 gimple_seq_add_stmt_without_update (&seq, g);
2639 exp = gimple_assign_lhs (g);
2640 tree val = build_zero_cst (optype);
2641 if (update_range_test (&ranges[i], NULL, candidates.address (),
2642 candidates.length (), opcode, ops, exp,
2643 seq, false, val, val, strict_overflow_p))
2645 any_changes = true;
2646 reassoc_branch_fixups.safe_push (tem);
2648 else
2649 gimple_seq_discard (seq);
2652 return any_changes;
2655 /* Optimize range tests, similarly how fold_range_test optimizes
2656 it on trees. The tree code for the binary
2657 operation between all the operands is OPCODE.
2658 If OPCODE is ERROR_MARK, optimize_range_tests is called from within
2659 maybe_optimize_range_tests for inter-bb range optimization.
2660 In that case if oe->op is NULL, oe->id is bb->index whose
2661 GIMPLE_COND is && or ||ed into the test, and oe->rank says
2662 the actual opcode. */
2664 static bool
2665 optimize_range_tests (enum tree_code opcode,
2666 vec<operand_entry_t> *ops)
2668 unsigned int length = ops->length (), i, j, first;
2669 operand_entry_t oe;
2670 struct range_entry *ranges;
2671 bool any_changes = false;
2673 if (length == 1)
2674 return false;
2676 ranges = XNEWVEC (struct range_entry, length);
2677 for (i = 0; i < length; i++)
2679 oe = (*ops)[i];
2680 ranges[i].idx = i;
2681 init_range_entry (ranges + i, oe->op,
2682 oe->op ? NULL :
2683 last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id)));
2684 /* For | invert it now, we will invert it again before emitting
2685 the optimized expression. */
2686 if (opcode == BIT_IOR_EXPR
2687 || (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
2688 ranges[i].in_p = !ranges[i].in_p;
2691 qsort (ranges, length, sizeof (*ranges), range_entry_cmp);
2692 for (i = 0; i < length; i++)
2693 if (ranges[i].exp != NULL_TREE && TREE_CODE (ranges[i].exp) == SSA_NAME)
2694 break;
2696 /* Try to merge ranges. */
2697 for (first = i; i < length; i++)
2699 tree low = ranges[i].low;
2700 tree high = ranges[i].high;
2701 int in_p = ranges[i].in_p;
2702 bool strict_overflow_p = ranges[i].strict_overflow_p;
2703 int update_fail_count = 0;
2705 for (j = i + 1; j < length; j++)
2707 if (ranges[i].exp != ranges[j].exp)
2708 break;
2709 if (!merge_ranges (&in_p, &low, &high, in_p, low, high,
2710 ranges[j].in_p, ranges[j].low, ranges[j].high))
2711 break;
2712 strict_overflow_p |= ranges[j].strict_overflow_p;
2715 if (j == i + 1)
2716 continue;
2718 if (update_range_test (ranges + i, ranges + i + 1, NULL, j - i - 1,
2719 opcode, ops, ranges[i].exp, NULL, in_p,
2720 low, high, strict_overflow_p))
2722 i = j - 1;
2723 any_changes = true;
2725 /* Avoid quadratic complexity if all merge_ranges calls would succeed,
2726 while update_range_test would fail. */
2727 else if (update_fail_count == 64)
2728 i = j - 1;
2729 else
2730 ++update_fail_count;
2733 any_changes |= optimize_range_tests_1 (opcode, first, length, true,
2734 ops, ranges);
2736 if (BRANCH_COST (optimize_function_for_speed_p (cfun), false) >= 2)
2737 any_changes |= optimize_range_tests_1 (opcode, first, length, false,
2738 ops, ranges);
2739 if (lshift_cheap_p (optimize_function_for_speed_p (cfun)))
2740 any_changes |= optimize_range_tests_to_bit_test (opcode, first, length,
2741 ops, ranges);
2743 if (any_changes && opcode != ERROR_MARK)
2745 j = 0;
2746 FOR_EACH_VEC_ELT (*ops, i, oe)
2748 if (oe->op == error_mark_node)
2749 continue;
2750 else if (i != j)
2751 (*ops)[j] = oe;
2752 j++;
2754 ops->truncate (j);
2757 XDELETEVEC (ranges);
2758 return any_changes;
2761 /* Return true if STMT is a cast like:
2762 <bb N>:
2764 _123 = (int) _234;
2766 <bb M>:
2767 # _345 = PHI <_123(N), 1(...), 1(...)>
2768 where _234 has bool type, _123 has single use and
2769 bb N has a single successor M. This is commonly used in
2770 the last block of a range test. */
2772 static bool
2773 final_range_test_p (gimple stmt)
2775 basic_block bb, rhs_bb;
2776 edge e;
2777 tree lhs, rhs;
2778 use_operand_p use_p;
2779 gimple use_stmt;
2781 if (!gimple_assign_cast_p (stmt))
2782 return false;
2783 bb = gimple_bb (stmt);
2784 if (!single_succ_p (bb))
2785 return false;
2786 e = single_succ_edge (bb);
2787 if (e->flags & EDGE_COMPLEX)
2788 return false;
2790 lhs = gimple_assign_lhs (stmt);
2791 rhs = gimple_assign_rhs1 (stmt);
2792 if (!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
2793 || TREE_CODE (rhs) != SSA_NAME
2794 || TREE_CODE (TREE_TYPE (rhs)) != BOOLEAN_TYPE)
2795 return false;
2797 /* Test whether lhs is consumed only by a PHI in the only successor bb. */
2798 if (!single_imm_use (lhs, &use_p, &use_stmt))
2799 return false;
2801 if (gimple_code (use_stmt) != GIMPLE_PHI
2802 || gimple_bb (use_stmt) != e->dest)
2803 return false;
2805 /* And that the rhs is defined in the same loop. */
2806 rhs_bb = gimple_bb (SSA_NAME_DEF_STMT (rhs));
2807 if (rhs_bb == NULL
2808 || !flow_bb_inside_loop_p (loop_containing_stmt (stmt), rhs_bb))
2809 return false;
2811 return true;
2814 /* Return true if BB is suitable basic block for inter-bb range test
2815 optimization. If BACKWARD is true, BB should be the only predecessor
2816 of TEST_BB, and *OTHER_BB is either NULL and filled by the routine,
2817 or compared with to find a common basic block to which all conditions
2818 branch to if true resp. false. If BACKWARD is false, TEST_BB should
2819 be the only predecessor of BB. */
2821 static bool
2822 suitable_cond_bb (basic_block bb, basic_block test_bb, basic_block *other_bb,
2823 bool backward)
2825 edge_iterator ei, ei2;
2826 edge e, e2;
2827 gimple stmt;
2828 gphi_iterator gsi;
2829 bool other_edge_seen = false;
2830 bool is_cond;
2832 if (test_bb == bb)
2833 return false;
2834 /* Check last stmt first. */
2835 stmt = last_stmt (bb);
2836 if (stmt == NULL
2837 || (gimple_code (stmt) != GIMPLE_COND
2838 && (backward || !final_range_test_p (stmt)))
2839 || gimple_visited_p (stmt)
2840 || stmt_could_throw_p (stmt)
2841 || *other_bb == bb)
2842 return false;
2843 is_cond = gimple_code (stmt) == GIMPLE_COND;
2844 if (is_cond)
2846 /* If last stmt is GIMPLE_COND, verify that one of the succ edges
2847 goes to the next bb (if BACKWARD, it is TEST_BB), and the other
2848 to *OTHER_BB (if not set yet, try to find it out). */
2849 if (EDGE_COUNT (bb->succs) != 2)
2850 return false;
2851 FOR_EACH_EDGE (e, ei, bb->succs)
2853 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2854 return false;
2855 if (e->dest == test_bb)
2857 if (backward)
2858 continue;
2859 else
2860 return false;
2862 if (e->dest == bb)
2863 return false;
2864 if (*other_bb == NULL)
2866 FOR_EACH_EDGE (e2, ei2, test_bb->succs)
2867 if (!(e2->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2868 return false;
2869 else if (e->dest == e2->dest)
2870 *other_bb = e->dest;
2871 if (*other_bb == NULL)
2872 return false;
2874 if (e->dest == *other_bb)
2875 other_edge_seen = true;
2876 else if (backward)
2877 return false;
2879 if (*other_bb == NULL || !other_edge_seen)
2880 return false;
2882 else if (single_succ (bb) != *other_bb)
2883 return false;
2885 /* Now check all PHIs of *OTHER_BB. */
2886 e = find_edge (bb, *other_bb);
2887 e2 = find_edge (test_bb, *other_bb);
2888 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2890 gphi *phi = gsi.phi ();
2891 /* If both BB and TEST_BB end with GIMPLE_COND, all PHI arguments
2892 corresponding to BB and TEST_BB predecessor must be the same. */
2893 if (!operand_equal_p (gimple_phi_arg_def (phi, e->dest_idx),
2894 gimple_phi_arg_def (phi, e2->dest_idx), 0))
2896 /* Otherwise, if one of the blocks doesn't end with GIMPLE_COND,
2897 one of the PHIs should have the lhs of the last stmt in
2898 that block as PHI arg and that PHI should have 0 or 1
2899 corresponding to it in all other range test basic blocks
2900 considered. */
2901 if (!is_cond)
2903 if (gimple_phi_arg_def (phi, e->dest_idx)
2904 == gimple_assign_lhs (stmt)
2905 && (integer_zerop (gimple_phi_arg_def (phi, e2->dest_idx))
2906 || integer_onep (gimple_phi_arg_def (phi,
2907 e2->dest_idx))))
2908 continue;
2910 else
2912 gimple test_last = last_stmt (test_bb);
2913 if (gimple_code (test_last) != GIMPLE_COND
2914 && gimple_phi_arg_def (phi, e2->dest_idx)
2915 == gimple_assign_lhs (test_last)
2916 && (integer_zerop (gimple_phi_arg_def (phi, e->dest_idx))
2917 || integer_onep (gimple_phi_arg_def (phi, e->dest_idx))))
2918 continue;
2921 return false;
2924 return true;
2927 /* Return true if BB doesn't have side-effects that would disallow
2928 range test optimization, all SSA_NAMEs set in the bb are consumed
2929 in the bb and there are no PHIs. */
2931 static bool
2932 no_side_effect_bb (basic_block bb)
2934 gimple_stmt_iterator gsi;
2935 gimple last;
2937 if (!gimple_seq_empty_p (phi_nodes (bb)))
2938 return false;
2939 last = last_stmt (bb);
2940 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2942 gimple stmt = gsi_stmt (gsi);
2943 tree lhs;
2944 imm_use_iterator imm_iter;
2945 use_operand_p use_p;
2947 if (is_gimple_debug (stmt))
2948 continue;
2949 if (gimple_has_side_effects (stmt))
2950 return false;
2951 if (stmt == last)
2952 return true;
2953 if (!is_gimple_assign (stmt))
2954 return false;
2955 lhs = gimple_assign_lhs (stmt);
2956 if (TREE_CODE (lhs) != SSA_NAME)
2957 return false;
2958 if (gimple_assign_rhs_could_trap_p (stmt))
2959 return false;
2960 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2962 gimple use_stmt = USE_STMT (use_p);
2963 if (is_gimple_debug (use_stmt))
2964 continue;
2965 if (gimple_bb (use_stmt) != bb)
2966 return false;
2969 return false;
2972 /* If VAR is set by CODE (BIT_{AND,IOR}_EXPR) which is reassociable,
2973 return true and fill in *OPS recursively. */
2975 static bool
2976 get_ops (tree var, enum tree_code code, vec<operand_entry_t> *ops,
2977 struct loop *loop)
2979 gimple stmt = SSA_NAME_DEF_STMT (var);
2980 tree rhs[2];
2981 int i;
2983 if (!is_reassociable_op (stmt, code, loop))
2984 return false;
2986 rhs[0] = gimple_assign_rhs1 (stmt);
2987 rhs[1] = gimple_assign_rhs2 (stmt);
2988 gimple_set_visited (stmt, true);
2989 for (i = 0; i < 2; i++)
2990 if (TREE_CODE (rhs[i]) == SSA_NAME
2991 && !get_ops (rhs[i], code, ops, loop)
2992 && has_single_use (rhs[i]))
2994 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
2996 oe->op = rhs[i];
2997 oe->rank = code;
2998 oe->id = 0;
2999 oe->count = 1;
3000 ops->safe_push (oe);
3002 return true;
3005 /* Find the ops that were added by get_ops starting from VAR, see if
3006 they were changed during update_range_test and if yes, create new
3007 stmts. */
3009 static tree
3010 update_ops (tree var, enum tree_code code, vec<operand_entry_t> ops,
3011 unsigned int *pidx, struct loop *loop)
3013 gimple stmt = SSA_NAME_DEF_STMT (var);
3014 tree rhs[4];
3015 int i;
3017 if (!is_reassociable_op (stmt, code, loop))
3018 return NULL;
3020 rhs[0] = gimple_assign_rhs1 (stmt);
3021 rhs[1] = gimple_assign_rhs2 (stmt);
3022 rhs[2] = rhs[0];
3023 rhs[3] = rhs[1];
3024 for (i = 0; i < 2; i++)
3025 if (TREE_CODE (rhs[i]) == SSA_NAME)
3027 rhs[2 + i] = update_ops (rhs[i], code, ops, pidx, loop);
3028 if (rhs[2 + i] == NULL_TREE)
3030 if (has_single_use (rhs[i]))
3031 rhs[2 + i] = ops[(*pidx)++]->op;
3032 else
3033 rhs[2 + i] = rhs[i];
3036 if ((rhs[2] != rhs[0] || rhs[3] != rhs[1])
3037 && (rhs[2] != rhs[1] || rhs[3] != rhs[0]))
3039 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3040 var = make_ssa_name (TREE_TYPE (var));
3041 gassign *g = gimple_build_assign (var, gimple_assign_rhs_code (stmt),
3042 rhs[2], rhs[3]);
3043 gimple_set_uid (g, gimple_uid (stmt));
3044 gimple_set_visited (g, true);
3045 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3047 return var;
3050 /* Structure to track the initial value passed to get_ops and
3051 the range in the ops vector for each basic block. */
3053 struct inter_bb_range_test_entry
3055 tree op;
3056 unsigned int first_idx, last_idx;
3059 /* Inter-bb range test optimization. */
3061 static void
3062 maybe_optimize_range_tests (gimple stmt)
3064 basic_block first_bb = gimple_bb (stmt);
3065 basic_block last_bb = first_bb;
3066 basic_block other_bb = NULL;
3067 basic_block bb;
3068 edge_iterator ei;
3069 edge e;
3070 auto_vec<operand_entry_t> ops;
3071 auto_vec<inter_bb_range_test_entry> bbinfo;
3072 bool any_changes = false;
3074 /* Consider only basic blocks that end with GIMPLE_COND or
3075 a cast statement satisfying final_range_test_p. All
3076 but the last bb in the first_bb .. last_bb range
3077 should end with GIMPLE_COND. */
3078 if (gimple_code (stmt) == GIMPLE_COND)
3080 if (EDGE_COUNT (first_bb->succs) != 2)
3081 return;
3083 else if (final_range_test_p (stmt))
3084 other_bb = single_succ (first_bb);
3085 else
3086 return;
3088 if (stmt_could_throw_p (stmt))
3089 return;
3091 /* As relative ordering of post-dominator sons isn't fixed,
3092 maybe_optimize_range_tests can be called first on any
3093 bb in the range we want to optimize. So, start searching
3094 backwards, if first_bb can be set to a predecessor. */
3095 while (single_pred_p (first_bb))
3097 basic_block pred_bb = single_pred (first_bb);
3098 if (!suitable_cond_bb (pred_bb, first_bb, &other_bb, true))
3099 break;
3100 if (!no_side_effect_bb (first_bb))
3101 break;
3102 first_bb = pred_bb;
3104 /* If first_bb is last_bb, other_bb hasn't been computed yet.
3105 Before starting forward search in last_bb successors, find
3106 out the other_bb. */
3107 if (first_bb == last_bb)
3109 other_bb = NULL;
3110 /* As non-GIMPLE_COND last stmt always terminates the range,
3111 if forward search didn't discover anything, just give up. */
3112 if (gimple_code (stmt) != GIMPLE_COND)
3113 return;
3114 /* Look at both successors. Either it ends with a GIMPLE_COND
3115 and satisfies suitable_cond_bb, or ends with a cast and
3116 other_bb is that cast's successor. */
3117 FOR_EACH_EDGE (e, ei, first_bb->succs)
3118 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
3119 || e->dest == first_bb)
3120 return;
3121 else if (single_pred_p (e->dest))
3123 stmt = last_stmt (e->dest);
3124 if (stmt
3125 && gimple_code (stmt) == GIMPLE_COND
3126 && EDGE_COUNT (e->dest->succs) == 2)
3128 if (suitable_cond_bb (first_bb, e->dest, &other_bb, true))
3129 break;
3130 else
3131 other_bb = NULL;
3133 else if (stmt
3134 && final_range_test_p (stmt)
3135 && find_edge (first_bb, single_succ (e->dest)))
3137 other_bb = single_succ (e->dest);
3138 if (other_bb == first_bb)
3139 other_bb = NULL;
3142 if (other_bb == NULL)
3143 return;
3145 /* Now do the forward search, moving last_bb to successor bbs
3146 that aren't other_bb. */
3147 while (EDGE_COUNT (last_bb->succs) == 2)
3149 FOR_EACH_EDGE (e, ei, last_bb->succs)
3150 if (e->dest != other_bb)
3151 break;
3152 if (e == NULL)
3153 break;
3154 if (!single_pred_p (e->dest))
3155 break;
3156 if (!suitable_cond_bb (e->dest, last_bb, &other_bb, false))
3157 break;
3158 if (!no_side_effect_bb (e->dest))
3159 break;
3160 last_bb = e->dest;
3162 if (first_bb == last_bb)
3163 return;
3164 /* Here basic blocks first_bb through last_bb's predecessor
3165 end with GIMPLE_COND, all of them have one of the edges to
3166 other_bb and another to another block in the range,
3167 all blocks except first_bb don't have side-effects and
3168 last_bb ends with either GIMPLE_COND, or cast satisfying
3169 final_range_test_p. */
3170 for (bb = last_bb; ; bb = single_pred (bb))
3172 enum tree_code code;
3173 tree lhs, rhs;
3174 inter_bb_range_test_entry bb_ent;
3176 bb_ent.op = NULL_TREE;
3177 bb_ent.first_idx = ops.length ();
3178 bb_ent.last_idx = bb_ent.first_idx;
3179 e = find_edge (bb, other_bb);
3180 stmt = last_stmt (bb);
3181 gimple_set_visited (stmt, true);
3182 if (gimple_code (stmt) != GIMPLE_COND)
3184 use_operand_p use_p;
3185 gimple phi;
3186 edge e2;
3187 unsigned int d;
3189 lhs = gimple_assign_lhs (stmt);
3190 rhs = gimple_assign_rhs1 (stmt);
3191 gcc_assert (bb == last_bb);
3193 /* stmt is
3194 _123 = (int) _234;
3196 followed by:
3197 <bb M>:
3198 # _345 = PHI <_123(N), 1(...), 1(...)>
3200 or 0 instead of 1. If it is 0, the _234
3201 range test is anded together with all the
3202 other range tests, if it is 1, it is ored with
3203 them. */
3204 single_imm_use (lhs, &use_p, &phi);
3205 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
3206 e2 = find_edge (first_bb, other_bb);
3207 d = e2->dest_idx;
3208 gcc_assert (gimple_phi_arg_def (phi, e->dest_idx) == lhs);
3209 if (integer_zerop (gimple_phi_arg_def (phi, d)))
3210 code = BIT_AND_EXPR;
3211 else
3213 gcc_checking_assert (integer_onep (gimple_phi_arg_def (phi, d)));
3214 code = BIT_IOR_EXPR;
3217 /* If _234 SSA_NAME_DEF_STMT is
3218 _234 = _567 | _789;
3219 (or &, corresponding to 1/0 in the phi arguments,
3220 push into ops the individual range test arguments
3221 of the bitwise or resp. and, recursively. */
3222 if (!get_ops (rhs, code, &ops,
3223 loop_containing_stmt (stmt))
3224 && has_single_use (rhs))
3226 /* Otherwise, push the _234 range test itself. */
3227 operand_entry_t oe
3228 = (operand_entry_t) pool_alloc (operand_entry_pool);
3230 oe->op = rhs;
3231 oe->rank = code;
3232 oe->id = 0;
3233 oe->count = 1;
3234 ops.safe_push (oe);
3235 bb_ent.last_idx++;
3237 else
3238 bb_ent.last_idx = ops.length ();
3239 bb_ent.op = rhs;
3240 bbinfo.safe_push (bb_ent);
3241 continue;
3243 /* Otherwise stmt is GIMPLE_COND. */
3244 code = gimple_cond_code (stmt);
3245 lhs = gimple_cond_lhs (stmt);
3246 rhs = gimple_cond_rhs (stmt);
3247 if (TREE_CODE (lhs) == SSA_NAME
3248 && INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3249 && ((code != EQ_EXPR && code != NE_EXPR)
3250 || rhs != boolean_false_node
3251 /* Either push into ops the individual bitwise
3252 or resp. and operands, depending on which
3253 edge is other_bb. */
3254 || !get_ops (lhs, (((e->flags & EDGE_TRUE_VALUE) == 0)
3255 ^ (code == EQ_EXPR))
3256 ? BIT_AND_EXPR : BIT_IOR_EXPR, &ops,
3257 loop_containing_stmt (stmt))))
3259 /* Or push the GIMPLE_COND stmt itself. */
3260 operand_entry_t oe
3261 = (operand_entry_t) pool_alloc (operand_entry_pool);
3263 oe->op = NULL;
3264 oe->rank = (e->flags & EDGE_TRUE_VALUE)
3265 ? BIT_IOR_EXPR : BIT_AND_EXPR;
3266 /* oe->op = NULL signs that there is no SSA_NAME
3267 for the range test, and oe->id instead is the
3268 basic block number, at which's end the GIMPLE_COND
3269 is. */
3270 oe->id = bb->index;
3271 oe->count = 1;
3272 ops.safe_push (oe);
3273 bb_ent.op = NULL;
3274 bb_ent.last_idx++;
3276 else if (ops.length () > bb_ent.first_idx)
3278 bb_ent.op = lhs;
3279 bb_ent.last_idx = ops.length ();
3281 bbinfo.safe_push (bb_ent);
3282 if (bb == first_bb)
3283 break;
3285 if (ops.length () > 1)
3286 any_changes = optimize_range_tests (ERROR_MARK, &ops);
3287 if (any_changes)
3289 unsigned int idx;
3290 /* update_ops relies on has_single_use predicates returning the
3291 same values as it did during get_ops earlier. Additionally it
3292 never removes statements, only adds new ones and it should walk
3293 from the single imm use and check the predicate already before
3294 making those changes.
3295 On the other side, the handling of GIMPLE_COND directly can turn
3296 previously multiply used SSA_NAMEs into single use SSA_NAMEs, so
3297 it needs to be done in a separate loop afterwards. */
3298 for (bb = last_bb, idx = 0; ; bb = single_pred (bb), idx++)
3300 if (bbinfo[idx].first_idx < bbinfo[idx].last_idx
3301 && bbinfo[idx].op != NULL_TREE)
3303 tree new_op;
3305 stmt = last_stmt (bb);
3306 new_op = update_ops (bbinfo[idx].op,
3307 (enum tree_code)
3308 ops[bbinfo[idx].first_idx]->rank,
3309 ops, &bbinfo[idx].first_idx,
3310 loop_containing_stmt (stmt));
3311 if (new_op == NULL_TREE)
3313 gcc_assert (bb == last_bb);
3314 new_op = ops[bbinfo[idx].first_idx++]->op;
3316 if (bbinfo[idx].op != new_op)
3318 imm_use_iterator iter;
3319 use_operand_p use_p;
3320 gimple use_stmt, cast_stmt = NULL;
3322 FOR_EACH_IMM_USE_STMT (use_stmt, iter, bbinfo[idx].op)
3323 if (is_gimple_debug (use_stmt))
3324 continue;
3325 else if (gimple_code (use_stmt) == GIMPLE_COND
3326 || gimple_code (use_stmt) == GIMPLE_PHI)
3327 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3328 SET_USE (use_p, new_op);
3329 else if (gimple_assign_cast_p (use_stmt))
3330 cast_stmt = use_stmt;
3331 else
3332 gcc_unreachable ();
3333 if (cast_stmt)
3335 gcc_assert (bb == last_bb);
3336 tree lhs = gimple_assign_lhs (cast_stmt);
3337 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
3338 enum tree_code rhs_code
3339 = gimple_assign_rhs_code (cast_stmt);
3340 gassign *g;
3341 if (is_gimple_min_invariant (new_op))
3343 new_op = fold_convert (TREE_TYPE (lhs), new_op);
3344 g = gimple_build_assign (new_lhs, new_op);
3346 else
3347 g = gimple_build_assign (new_lhs, rhs_code, new_op);
3348 gimple_stmt_iterator gsi = gsi_for_stmt (cast_stmt);
3349 gimple_set_uid (g, gimple_uid (cast_stmt));
3350 gimple_set_visited (g, true);
3351 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3352 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3353 if (is_gimple_debug (use_stmt))
3354 continue;
3355 else if (gimple_code (use_stmt) == GIMPLE_COND
3356 || gimple_code (use_stmt) == GIMPLE_PHI)
3357 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3358 SET_USE (use_p, new_lhs);
3359 else
3360 gcc_unreachable ();
3364 if (bb == first_bb)
3365 break;
3367 for (bb = last_bb, idx = 0; ; bb = single_pred (bb), idx++)
3369 if (bbinfo[idx].first_idx < bbinfo[idx].last_idx
3370 && bbinfo[idx].op == NULL_TREE
3371 && ops[bbinfo[idx].first_idx]->op != NULL_TREE)
3373 gcond *cond_stmt = as_a <gcond *> (last_stmt (bb));
3374 if (integer_zerop (ops[bbinfo[idx].first_idx]->op))
3375 gimple_cond_make_false (cond_stmt);
3376 else if (integer_onep (ops[bbinfo[idx].first_idx]->op))
3377 gimple_cond_make_true (cond_stmt);
3378 else
3380 gimple_cond_set_code (cond_stmt, NE_EXPR);
3381 gimple_cond_set_lhs (cond_stmt,
3382 ops[bbinfo[idx].first_idx]->op);
3383 gimple_cond_set_rhs (cond_stmt, boolean_false_node);
3385 update_stmt (cond_stmt);
3387 if (bb == first_bb)
3388 break;
3393 /* Return true if OPERAND is defined by a PHI node which uses the LHS
3394 of STMT in it's operands. This is also known as a "destructive
3395 update" operation. */
3397 static bool
3398 is_phi_for_stmt (gimple stmt, tree operand)
3400 gimple def_stmt;
3401 gphi *def_phi;
3402 tree lhs;
3403 use_operand_p arg_p;
3404 ssa_op_iter i;
3406 if (TREE_CODE (operand) != SSA_NAME)
3407 return false;
3409 lhs = gimple_assign_lhs (stmt);
3411 def_stmt = SSA_NAME_DEF_STMT (operand);
3412 def_phi = dyn_cast <gphi *> (def_stmt);
3413 if (!def_phi)
3414 return false;
3416 FOR_EACH_PHI_ARG (arg_p, def_phi, i, SSA_OP_USE)
3417 if (lhs == USE_FROM_PTR (arg_p))
3418 return true;
3419 return false;
3422 /* Remove def stmt of VAR if VAR has zero uses and recurse
3423 on rhs1 operand if so. */
3425 static void
3426 remove_visited_stmt_chain (tree var)
3428 gimple stmt;
3429 gimple_stmt_iterator gsi;
3431 while (1)
3433 if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
3434 return;
3435 stmt = SSA_NAME_DEF_STMT (var);
3436 if (is_gimple_assign (stmt) && gimple_visited_p (stmt))
3438 var = gimple_assign_rhs1 (stmt);
3439 gsi = gsi_for_stmt (stmt);
3440 reassoc_remove_stmt (&gsi);
3441 release_defs (stmt);
3443 else
3444 return;
3448 /* This function checks three consequtive operands in
3449 passed operands vector OPS starting from OPINDEX and
3450 swaps two operands if it is profitable for binary operation
3451 consuming OPINDEX + 1 abnd OPINDEX + 2 operands.
3453 We pair ops with the same rank if possible.
3455 The alternative we try is to see if STMT is a destructive
3456 update style statement, which is like:
3457 b = phi (a, ...)
3458 a = c + b;
3459 In that case, we want to use the destructive update form to
3460 expose the possible vectorizer sum reduction opportunity.
3461 In that case, the third operand will be the phi node. This
3462 check is not performed if STMT is null.
3464 We could, of course, try to be better as noted above, and do a
3465 lot of work to try to find these opportunities in >3 operand
3466 cases, but it is unlikely to be worth it. */
3468 static void
3469 swap_ops_for_binary_stmt (vec<operand_entry_t> ops,
3470 unsigned int opindex, gimple stmt)
3472 operand_entry_t oe1, oe2, oe3;
3474 oe1 = ops[opindex];
3475 oe2 = ops[opindex + 1];
3476 oe3 = ops[opindex + 2];
3478 if ((oe1->rank == oe2->rank
3479 && oe2->rank != oe3->rank)
3480 || (stmt && is_phi_for_stmt (stmt, oe3->op)
3481 && !is_phi_for_stmt (stmt, oe1->op)
3482 && !is_phi_for_stmt (stmt, oe2->op)))
3484 struct operand_entry temp = *oe3;
3485 oe3->op = oe1->op;
3486 oe3->rank = oe1->rank;
3487 oe1->op = temp.op;
3488 oe1->rank= temp.rank;
3490 else if ((oe1->rank == oe3->rank
3491 && oe2->rank != oe3->rank)
3492 || (stmt && is_phi_for_stmt (stmt, oe2->op)
3493 && !is_phi_for_stmt (stmt, oe1->op)
3494 && !is_phi_for_stmt (stmt, oe3->op)))
3496 struct operand_entry temp = *oe2;
3497 oe2->op = oe1->op;
3498 oe2->rank = oe1->rank;
3499 oe1->op = temp.op;
3500 oe1->rank = temp.rank;
3504 /* If definition of RHS1 or RHS2 dominates STMT, return the later of those
3505 two definitions, otherwise return STMT. */
3507 static inline gimple
3508 find_insert_point (gimple stmt, tree rhs1, tree rhs2)
3510 if (TREE_CODE (rhs1) == SSA_NAME
3511 && reassoc_stmt_dominates_stmt_p (stmt, SSA_NAME_DEF_STMT (rhs1)))
3512 stmt = SSA_NAME_DEF_STMT (rhs1);
3513 if (TREE_CODE (rhs2) == SSA_NAME
3514 && reassoc_stmt_dominates_stmt_p (stmt, SSA_NAME_DEF_STMT (rhs2)))
3515 stmt = SSA_NAME_DEF_STMT (rhs2);
3516 return stmt;
3519 /* Recursively rewrite our linearized statements so that the operators
3520 match those in OPS[OPINDEX], putting the computation in rank
3521 order. Return new lhs. */
3523 static tree
3524 rewrite_expr_tree (gimple stmt, unsigned int opindex,
3525 vec<operand_entry_t> ops, bool changed)
3527 tree rhs1 = gimple_assign_rhs1 (stmt);
3528 tree rhs2 = gimple_assign_rhs2 (stmt);
3529 tree lhs = gimple_assign_lhs (stmt);
3530 operand_entry_t oe;
3532 /* The final recursion case for this function is that you have
3533 exactly two operations left.
3534 If we had exactly one op in the entire list to start with, we
3535 would have never called this function, and the tail recursion
3536 rewrites them one at a time. */
3537 if (opindex + 2 == ops.length ())
3539 operand_entry_t oe1, oe2;
3541 oe1 = ops[opindex];
3542 oe2 = ops[opindex + 1];
3544 if (rhs1 != oe1->op || rhs2 != oe2->op)
3546 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3547 unsigned int uid = gimple_uid (stmt);
3549 if (dump_file && (dump_flags & TDF_DETAILS))
3551 fprintf (dump_file, "Transforming ");
3552 print_gimple_stmt (dump_file, stmt, 0, 0);
3555 /* Even when changed is false, reassociation could have e.g. removed
3556 some redundant operations, so unless we are just swapping the
3557 arguments or unless there is no change at all (then we just
3558 return lhs), force creation of a new SSA_NAME. */
3559 if (changed || ((rhs1 != oe2->op || rhs2 != oe1->op) && opindex))
3561 gimple insert_point = find_insert_point (stmt, oe1->op, oe2->op);
3562 lhs = make_ssa_name (TREE_TYPE (lhs));
3563 stmt
3564 = gimple_build_assign (lhs, gimple_assign_rhs_code (stmt),
3565 oe1->op, oe2->op);
3566 gimple_set_uid (stmt, uid);
3567 gimple_set_visited (stmt, true);
3568 if (insert_point == gsi_stmt (gsi))
3569 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
3570 else
3571 insert_stmt_after (stmt, insert_point);
3573 else
3575 gcc_checking_assert (find_insert_point (stmt, oe1->op, oe2->op)
3576 == stmt);
3577 gimple_assign_set_rhs1 (stmt, oe1->op);
3578 gimple_assign_set_rhs2 (stmt, oe2->op);
3579 update_stmt (stmt);
3582 if (rhs1 != oe1->op && rhs1 != oe2->op)
3583 remove_visited_stmt_chain (rhs1);
3585 if (dump_file && (dump_flags & TDF_DETAILS))
3587 fprintf (dump_file, " into ");
3588 print_gimple_stmt (dump_file, stmt, 0, 0);
3591 return lhs;
3594 /* If we hit here, we should have 3 or more ops left. */
3595 gcc_assert (opindex + 2 < ops.length ());
3597 /* Rewrite the next operator. */
3598 oe = ops[opindex];
3600 /* Recurse on the LHS of the binary operator, which is guaranteed to
3601 be the non-leaf side. */
3602 tree new_rhs1
3603 = rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops,
3604 changed || oe->op != rhs2);
3606 if (oe->op != rhs2 || new_rhs1 != rhs1)
3608 if (dump_file && (dump_flags & TDF_DETAILS))
3610 fprintf (dump_file, "Transforming ");
3611 print_gimple_stmt (dump_file, stmt, 0, 0);
3614 /* If changed is false, this is either opindex == 0
3615 or all outer rhs2's were equal to corresponding oe->op,
3616 and powi_result is NULL.
3617 That means lhs is equivalent before and after reassociation.
3618 Otherwise ensure the old lhs SSA_NAME is not reused and
3619 create a new stmt as well, so that any debug stmts will be
3620 properly adjusted. */
3621 if (changed)
3623 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3624 unsigned int uid = gimple_uid (stmt);
3625 gimple insert_point = find_insert_point (stmt, new_rhs1, oe->op);
3627 lhs = make_ssa_name (TREE_TYPE (lhs));
3628 stmt = gimple_build_assign (lhs, gimple_assign_rhs_code (stmt),
3629 new_rhs1, oe->op);
3630 gimple_set_uid (stmt, uid);
3631 gimple_set_visited (stmt, true);
3632 if (insert_point == gsi_stmt (gsi))
3633 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
3634 else
3635 insert_stmt_after (stmt, insert_point);
3637 else
3639 gcc_checking_assert (find_insert_point (stmt, new_rhs1, oe->op)
3640 == stmt);
3641 gimple_assign_set_rhs1 (stmt, new_rhs1);
3642 gimple_assign_set_rhs2 (stmt, oe->op);
3643 update_stmt (stmt);
3646 if (dump_file && (dump_flags & TDF_DETAILS))
3648 fprintf (dump_file, " into ");
3649 print_gimple_stmt (dump_file, stmt, 0, 0);
3652 return lhs;
3655 /* Find out how many cycles we need to compute statements chain.
3656 OPS_NUM holds number os statements in a chain. CPU_WIDTH is a
3657 maximum number of independent statements we may execute per cycle. */
3659 static int
3660 get_required_cycles (int ops_num, int cpu_width)
3662 int res;
3663 int elog;
3664 unsigned int rest;
3666 /* While we have more than 2 * cpu_width operands
3667 we may reduce number of operands by cpu_width
3668 per cycle. */
3669 res = ops_num / (2 * cpu_width);
3671 /* Remained operands count may be reduced twice per cycle
3672 until we have only one operand. */
3673 rest = (unsigned)(ops_num - res * cpu_width);
3674 elog = exact_log2 (rest);
3675 if (elog >= 0)
3676 res += elog;
3677 else
3678 res += floor_log2 (rest) + 1;
3680 return res;
3683 /* Returns an optimal number of registers to use for computation of
3684 given statements. */
3686 static int
3687 get_reassociation_width (int ops_num, enum tree_code opc,
3688 machine_mode mode)
3690 int param_width = PARAM_VALUE (PARAM_TREE_REASSOC_WIDTH);
3691 int width;
3692 int width_min;
3693 int cycles_best;
3695 if (param_width > 0)
3696 width = param_width;
3697 else
3698 width = targetm.sched.reassociation_width (opc, mode);
3700 if (width == 1)
3701 return width;
3703 /* Get the minimal time required for sequence computation. */
3704 cycles_best = get_required_cycles (ops_num, width);
3706 /* Check if we may use less width and still compute sequence for
3707 the same time. It will allow us to reduce registers usage.
3708 get_required_cycles is monotonically increasing with lower width
3709 so we can perform a binary search for the minimal width that still
3710 results in the optimal cycle count. */
3711 width_min = 1;
3712 while (width > width_min)
3714 int width_mid = (width + width_min) / 2;
3716 if (get_required_cycles (ops_num, width_mid) == cycles_best)
3717 width = width_mid;
3718 else if (width_min < width_mid)
3719 width_min = width_mid;
3720 else
3721 break;
3724 return width;
3727 /* Recursively rewrite our linearized statements so that the operators
3728 match those in OPS[OPINDEX], putting the computation in rank
3729 order and trying to allow operations to be executed in
3730 parallel. */
3732 static void
3733 rewrite_expr_tree_parallel (gassign *stmt, int width,
3734 vec<operand_entry_t> ops)
3736 enum tree_code opcode = gimple_assign_rhs_code (stmt);
3737 int op_num = ops.length ();
3738 int stmt_num = op_num - 1;
3739 gimple *stmts = XALLOCAVEC (gimple, stmt_num);
3740 int op_index = op_num - 1;
3741 int stmt_index = 0;
3742 int ready_stmts_end = 0;
3743 int i = 0;
3744 tree last_rhs1 = gimple_assign_rhs1 (stmt);
3746 /* We start expression rewriting from the top statements.
3747 So, in this loop we create a full list of statements
3748 we will work with. */
3749 stmts[stmt_num - 1] = stmt;
3750 for (i = stmt_num - 2; i >= 0; i--)
3751 stmts[i] = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmts[i+1]));
3753 for (i = 0; i < stmt_num; i++)
3755 tree op1, op2;
3757 /* Determine whether we should use results of
3758 already handled statements or not. */
3759 if (ready_stmts_end == 0
3760 && (i - stmt_index >= width || op_index < 1))
3761 ready_stmts_end = i;
3763 /* Now we choose operands for the next statement. Non zero
3764 value in ready_stmts_end means here that we should use
3765 the result of already generated statements as new operand. */
3766 if (ready_stmts_end > 0)
3768 op1 = gimple_assign_lhs (stmts[stmt_index++]);
3769 if (ready_stmts_end > stmt_index)
3770 op2 = gimple_assign_lhs (stmts[stmt_index++]);
3771 else if (op_index >= 0)
3772 op2 = ops[op_index--]->op;
3773 else
3775 gcc_assert (stmt_index < i);
3776 op2 = gimple_assign_lhs (stmts[stmt_index++]);
3779 if (stmt_index >= ready_stmts_end)
3780 ready_stmts_end = 0;
3782 else
3784 if (op_index > 1)
3785 swap_ops_for_binary_stmt (ops, op_index - 2, NULL);
3786 op2 = ops[op_index--]->op;
3787 op1 = ops[op_index--]->op;
3790 /* If we emit the last statement then we should put
3791 operands into the last statement. It will also
3792 break the loop. */
3793 if (op_index < 0 && stmt_index == i)
3794 i = stmt_num - 1;
3796 if (dump_file && (dump_flags & TDF_DETAILS))
3798 fprintf (dump_file, "Transforming ");
3799 print_gimple_stmt (dump_file, stmts[i], 0, 0);
3802 /* We keep original statement only for the last one. All
3803 others are recreated. */
3804 if (i == stmt_num - 1)
3806 gimple_assign_set_rhs1 (stmts[i], op1);
3807 gimple_assign_set_rhs2 (stmts[i], op2);
3808 update_stmt (stmts[i]);
3810 else
3811 stmts[i] = build_and_add_sum (TREE_TYPE (last_rhs1), op1, op2, opcode);
3813 if (dump_file && (dump_flags & TDF_DETAILS))
3815 fprintf (dump_file, " into ");
3816 print_gimple_stmt (dump_file, stmts[i], 0, 0);
3820 remove_visited_stmt_chain (last_rhs1);
3823 /* Transform STMT, which is really (A +B) + (C + D) into the left
3824 linear form, ((A+B)+C)+D.
3825 Recurse on D if necessary. */
3827 static void
3828 linearize_expr (gimple stmt)
3830 gimple_stmt_iterator gsi;
3831 gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3832 gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
3833 gimple oldbinrhs = binrhs;
3834 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
3835 gimple newbinrhs = NULL;
3836 struct loop *loop = loop_containing_stmt (stmt);
3837 tree lhs = gimple_assign_lhs (stmt);
3839 gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
3840 && is_reassociable_op (binrhs, rhscode, loop));
3842 gsi = gsi_for_stmt (stmt);
3844 gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
3845 binrhs = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
3846 gimple_assign_rhs_code (binrhs),
3847 gimple_assign_lhs (binlhs),
3848 gimple_assign_rhs2 (binrhs));
3849 gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
3850 gsi_insert_before (&gsi, binrhs, GSI_SAME_STMT);
3851 gimple_set_uid (binrhs, gimple_uid (stmt));
3853 if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
3854 newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
3856 if (dump_file && (dump_flags & TDF_DETAILS))
3858 fprintf (dump_file, "Linearized: ");
3859 print_gimple_stmt (dump_file, stmt, 0, 0);
3862 reassociate_stats.linearized++;
3863 update_stmt (stmt);
3865 gsi = gsi_for_stmt (oldbinrhs);
3866 reassoc_remove_stmt (&gsi);
3867 release_defs (oldbinrhs);
3869 gimple_set_visited (stmt, true);
3870 gimple_set_visited (binlhs, true);
3871 gimple_set_visited (binrhs, true);
3873 /* Tail recurse on the new rhs if it still needs reassociation. */
3874 if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
3875 /* ??? This should probably be linearize_expr (newbinrhs) but I don't
3876 want to change the algorithm while converting to tuples. */
3877 linearize_expr (stmt);
3880 /* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
3881 it. Otherwise, return NULL. */
3883 static gimple
3884 get_single_immediate_use (tree lhs)
3886 use_operand_p immuse;
3887 gimple immusestmt;
3889 if (TREE_CODE (lhs) == SSA_NAME
3890 && single_imm_use (lhs, &immuse, &immusestmt)
3891 && is_gimple_assign (immusestmt))
3892 return immusestmt;
3894 return NULL;
3897 /* Recursively negate the value of TONEGATE, and return the SSA_NAME
3898 representing the negated value. Insertions of any necessary
3899 instructions go before GSI.
3900 This function is recursive in that, if you hand it "a_5" as the
3901 value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
3902 transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
3904 static tree
3905 negate_value (tree tonegate, gimple_stmt_iterator *gsip)
3907 gimple negatedefstmt = NULL;
3908 tree resultofnegate;
3909 gimple_stmt_iterator gsi;
3910 unsigned int uid;
3912 /* If we are trying to negate a name, defined by an add, negate the
3913 add operands instead. */
3914 if (TREE_CODE (tonegate) == SSA_NAME)
3915 negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
3916 if (TREE_CODE (tonegate) == SSA_NAME
3917 && is_gimple_assign (negatedefstmt)
3918 && TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
3919 && has_single_use (gimple_assign_lhs (negatedefstmt))
3920 && gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
3922 tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
3923 tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
3924 tree lhs = gimple_assign_lhs (negatedefstmt);
3925 gimple g;
3927 gsi = gsi_for_stmt (negatedefstmt);
3928 rhs1 = negate_value (rhs1, &gsi);
3930 gsi = gsi_for_stmt (negatedefstmt);
3931 rhs2 = negate_value (rhs2, &gsi);
3933 gsi = gsi_for_stmt (negatedefstmt);
3934 lhs = make_ssa_name (TREE_TYPE (lhs));
3935 gimple_set_visited (negatedefstmt, true);
3936 g = gimple_build_assign (lhs, PLUS_EXPR, rhs1, rhs2);
3937 gimple_set_uid (g, gimple_uid (negatedefstmt));
3938 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3939 return lhs;
3942 tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
3943 resultofnegate = force_gimple_operand_gsi (gsip, tonegate, true,
3944 NULL_TREE, true, GSI_SAME_STMT);
3945 gsi = *gsip;
3946 uid = gimple_uid (gsi_stmt (gsi));
3947 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3949 gimple stmt = gsi_stmt (gsi);
3950 if (gimple_uid (stmt) != 0)
3951 break;
3952 gimple_set_uid (stmt, uid);
3954 return resultofnegate;
3957 /* Return true if we should break up the subtract in STMT into an add
3958 with negate. This is true when we the subtract operands are really
3959 adds, or the subtract itself is used in an add expression. In
3960 either case, breaking up the subtract into an add with negate
3961 exposes the adds to reassociation. */
3963 static bool
3964 should_break_up_subtract (gimple stmt)
3966 tree lhs = gimple_assign_lhs (stmt);
3967 tree binlhs = gimple_assign_rhs1 (stmt);
3968 tree binrhs = gimple_assign_rhs2 (stmt);
3969 gimple immusestmt;
3970 struct loop *loop = loop_containing_stmt (stmt);
3972 if (TREE_CODE (binlhs) == SSA_NAME
3973 && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
3974 return true;
3976 if (TREE_CODE (binrhs) == SSA_NAME
3977 && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
3978 return true;
3980 if (TREE_CODE (lhs) == SSA_NAME
3981 && (immusestmt = get_single_immediate_use (lhs))
3982 && is_gimple_assign (immusestmt)
3983 && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
3984 || gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
3985 return true;
3986 return false;
3989 /* Transform STMT from A - B into A + -B. */
3991 static void
3992 break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
3994 tree rhs1 = gimple_assign_rhs1 (stmt);
3995 tree rhs2 = gimple_assign_rhs2 (stmt);
3997 if (dump_file && (dump_flags & TDF_DETAILS))
3999 fprintf (dump_file, "Breaking up subtract ");
4000 print_gimple_stmt (dump_file, stmt, 0, 0);
4003 rhs2 = negate_value (rhs2, gsip);
4004 gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
4005 update_stmt (stmt);
4008 /* Determine whether STMT is a builtin call that raises an SSA name
4009 to an integer power and has only one use. If so, and this is early
4010 reassociation and unsafe math optimizations are permitted, place
4011 the SSA name in *BASE and the exponent in *EXPONENT, and return TRUE.
4012 If any of these conditions does not hold, return FALSE. */
4014 static bool
4015 acceptable_pow_call (gimple stmt, tree *base, HOST_WIDE_INT *exponent)
4017 tree fndecl, arg1;
4018 REAL_VALUE_TYPE c, cint;
4020 if (!first_pass_instance
4021 || !flag_unsafe_math_optimizations
4022 || !is_gimple_call (stmt)
4023 || !has_single_use (gimple_call_lhs (stmt)))
4024 return false;
4026 fndecl = gimple_call_fndecl (stmt);
4028 if (!fndecl
4029 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
4030 return false;
4032 switch (DECL_FUNCTION_CODE (fndecl))
4034 CASE_FLT_FN (BUILT_IN_POW):
4035 if (flag_errno_math)
4036 return false;
4038 *base = gimple_call_arg (stmt, 0);
4039 arg1 = gimple_call_arg (stmt, 1);
4041 if (TREE_CODE (arg1) != REAL_CST)
4042 return false;
4044 c = TREE_REAL_CST (arg1);
4046 if (REAL_EXP (&c) > HOST_BITS_PER_WIDE_INT)
4047 return false;
4049 *exponent = real_to_integer (&c);
4050 real_from_integer (&cint, VOIDmode, *exponent, SIGNED);
4051 if (!real_identical (&c, &cint))
4052 return false;
4054 break;
4056 CASE_FLT_FN (BUILT_IN_POWI):
4057 *base = gimple_call_arg (stmt, 0);
4058 arg1 = gimple_call_arg (stmt, 1);
4060 if (!tree_fits_shwi_p (arg1))
4061 return false;
4063 *exponent = tree_to_shwi (arg1);
4064 break;
4066 default:
4067 return false;
4070 /* Expanding negative exponents is generally unproductive, so we don't
4071 complicate matters with those. Exponents of zero and one should
4072 have been handled by expression folding. */
4073 if (*exponent < 2 || TREE_CODE (*base) != SSA_NAME)
4074 return false;
4076 return true;
4079 /* Recursively linearize a binary expression that is the RHS of STMT.
4080 Place the operands of the expression tree in the vector named OPS. */
4082 static void
4083 linearize_expr_tree (vec<operand_entry_t> *ops, gimple stmt,
4084 bool is_associative, bool set_visited)
4086 tree binlhs = gimple_assign_rhs1 (stmt);
4087 tree binrhs = gimple_assign_rhs2 (stmt);
4088 gimple binlhsdef = NULL, binrhsdef = NULL;
4089 bool binlhsisreassoc = false;
4090 bool binrhsisreassoc = false;
4091 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
4092 struct loop *loop = loop_containing_stmt (stmt);
4093 tree base = NULL_TREE;
4094 HOST_WIDE_INT exponent = 0;
4096 if (set_visited)
4097 gimple_set_visited (stmt, true);
4099 if (TREE_CODE (binlhs) == SSA_NAME)
4101 binlhsdef = SSA_NAME_DEF_STMT (binlhs);
4102 binlhsisreassoc = (is_reassociable_op (binlhsdef, rhscode, loop)
4103 && !stmt_could_throw_p (binlhsdef));
4106 if (TREE_CODE (binrhs) == SSA_NAME)
4108 binrhsdef = SSA_NAME_DEF_STMT (binrhs);
4109 binrhsisreassoc = (is_reassociable_op (binrhsdef, rhscode, loop)
4110 && !stmt_could_throw_p (binrhsdef));
4113 /* If the LHS is not reassociable, but the RHS is, we need to swap
4114 them. If neither is reassociable, there is nothing we can do, so
4115 just put them in the ops vector. If the LHS is reassociable,
4116 linearize it. If both are reassociable, then linearize the RHS
4117 and the LHS. */
4119 if (!binlhsisreassoc)
4121 tree temp;
4123 /* If this is not a associative operation like division, give up. */
4124 if (!is_associative)
4126 add_to_ops_vec (ops, binrhs);
4127 return;
4130 if (!binrhsisreassoc)
4132 if (rhscode == MULT_EXPR
4133 && TREE_CODE (binrhs) == SSA_NAME
4134 && acceptable_pow_call (binrhsdef, &base, &exponent))
4136 add_repeat_to_ops_vec (ops, base, exponent);
4137 gimple_set_visited (binrhsdef, true);
4139 else
4140 add_to_ops_vec (ops, binrhs);
4142 if (rhscode == MULT_EXPR
4143 && TREE_CODE (binlhs) == SSA_NAME
4144 && acceptable_pow_call (binlhsdef, &base, &exponent))
4146 add_repeat_to_ops_vec (ops, base, exponent);
4147 gimple_set_visited (binlhsdef, true);
4149 else
4150 add_to_ops_vec (ops, binlhs);
4152 return;
4155 if (dump_file && (dump_flags & TDF_DETAILS))
4157 fprintf (dump_file, "swapping operands of ");
4158 print_gimple_stmt (dump_file, stmt, 0, 0);
4161 swap_ssa_operands (stmt,
4162 gimple_assign_rhs1_ptr (stmt),
4163 gimple_assign_rhs2_ptr (stmt));
4164 update_stmt (stmt);
4166 if (dump_file && (dump_flags & TDF_DETAILS))
4168 fprintf (dump_file, " is now ");
4169 print_gimple_stmt (dump_file, stmt, 0, 0);
4172 /* We want to make it so the lhs is always the reassociative op,
4173 so swap. */
4174 temp = binlhs;
4175 binlhs = binrhs;
4176 binrhs = temp;
4178 else if (binrhsisreassoc)
4180 linearize_expr (stmt);
4181 binlhs = gimple_assign_rhs1 (stmt);
4182 binrhs = gimple_assign_rhs2 (stmt);
4185 gcc_assert (TREE_CODE (binrhs) != SSA_NAME
4186 || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
4187 rhscode, loop));
4188 linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
4189 is_associative, set_visited);
4191 if (rhscode == MULT_EXPR
4192 && TREE_CODE (binrhs) == SSA_NAME
4193 && acceptable_pow_call (SSA_NAME_DEF_STMT (binrhs), &base, &exponent))
4195 add_repeat_to_ops_vec (ops, base, exponent);
4196 gimple_set_visited (SSA_NAME_DEF_STMT (binrhs), true);
4198 else
4199 add_to_ops_vec (ops, binrhs);
4202 /* Repropagate the negates back into subtracts, since no other pass
4203 currently does it. */
4205 static void
4206 repropagate_negates (void)
4208 unsigned int i = 0;
4209 tree negate;
4211 FOR_EACH_VEC_ELT (plus_negates, i, negate)
4213 gimple user = get_single_immediate_use (negate);
4215 if (!user || !is_gimple_assign (user))
4216 continue;
4218 /* The negate operand can be either operand of a PLUS_EXPR
4219 (it can be the LHS if the RHS is a constant for example).
4221 Force the negate operand to the RHS of the PLUS_EXPR, then
4222 transform the PLUS_EXPR into a MINUS_EXPR. */
4223 if (gimple_assign_rhs_code (user) == PLUS_EXPR)
4225 /* If the negated operand appears on the LHS of the
4226 PLUS_EXPR, exchange the operands of the PLUS_EXPR
4227 to force the negated operand to the RHS of the PLUS_EXPR. */
4228 if (gimple_assign_rhs1 (user) == negate)
4230 swap_ssa_operands (user,
4231 gimple_assign_rhs1_ptr (user),
4232 gimple_assign_rhs2_ptr (user));
4235 /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
4236 the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
4237 if (gimple_assign_rhs2 (user) == negate)
4239 tree rhs1 = gimple_assign_rhs1 (user);
4240 tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
4241 gimple_stmt_iterator gsi = gsi_for_stmt (user);
4242 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
4243 update_stmt (user);
4246 else if (gimple_assign_rhs_code (user) == MINUS_EXPR)
4248 if (gimple_assign_rhs1 (user) == negate)
4250 /* We have
4251 x = -a
4252 y = x - b
4253 which we transform into
4254 x = a + b
4255 y = -x .
4256 This pushes down the negate which we possibly can merge
4257 into some other operation, hence insert it into the
4258 plus_negates vector. */
4259 gimple feed = SSA_NAME_DEF_STMT (negate);
4260 tree a = gimple_assign_rhs1 (feed);
4261 tree b = gimple_assign_rhs2 (user);
4262 gimple_stmt_iterator gsi = gsi_for_stmt (feed);
4263 gimple_stmt_iterator gsi2 = gsi_for_stmt (user);
4264 tree x = make_ssa_name (TREE_TYPE (gimple_assign_lhs (feed)));
4265 gimple g = gimple_build_assign (x, PLUS_EXPR, a, b);
4266 gsi_insert_before (&gsi2, g, GSI_SAME_STMT);
4267 gimple_assign_set_rhs_with_ops (&gsi2, NEGATE_EXPR, x);
4268 user = gsi_stmt (gsi2);
4269 update_stmt (user);
4270 reassoc_remove_stmt (&gsi);
4271 release_defs (feed);
4272 plus_negates.safe_push (gimple_assign_lhs (user));
4274 else
4276 /* Transform "x = -a; y = b - x" into "y = b + a", getting
4277 rid of one operation. */
4278 gimple feed = SSA_NAME_DEF_STMT (negate);
4279 tree a = gimple_assign_rhs1 (feed);
4280 tree rhs1 = gimple_assign_rhs1 (user);
4281 gimple_stmt_iterator gsi = gsi_for_stmt (user);
4282 gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, rhs1, a);
4283 update_stmt (gsi_stmt (gsi));
4289 /* Returns true if OP is of a type for which we can do reassociation.
4290 That is for integral or non-saturating fixed-point types, and for
4291 floating point type when associative-math is enabled. */
4293 static bool
4294 can_reassociate_p (tree op)
4296 tree type = TREE_TYPE (op);
4297 if ((INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
4298 || NON_SAT_FIXED_POINT_TYPE_P (type)
4299 || (flag_associative_math && FLOAT_TYPE_P (type)))
4300 return true;
4301 return false;
4304 /* Break up subtract operations in block BB.
4306 We do this top down because we don't know whether the subtract is
4307 part of a possible chain of reassociation except at the top.
4309 IE given
4310 d = f + g
4311 c = a + e
4312 b = c - d
4313 q = b - r
4314 k = t - q
4316 we want to break up k = t - q, but we won't until we've transformed q
4317 = b - r, which won't be broken up until we transform b = c - d.
4319 En passant, clear the GIMPLE visited flag on every statement
4320 and set UIDs within each basic block. */
4322 static void
4323 break_up_subtract_bb (basic_block bb)
4325 gimple_stmt_iterator gsi;
4326 basic_block son;
4327 unsigned int uid = 1;
4329 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4331 gimple stmt = gsi_stmt (gsi);
4332 gimple_set_visited (stmt, false);
4333 gimple_set_uid (stmt, uid++);
4335 if (!is_gimple_assign (stmt)
4336 || !can_reassociate_p (gimple_assign_lhs (stmt)))
4337 continue;
4339 /* Look for simple gimple subtract operations. */
4340 if (gimple_assign_rhs_code (stmt) == MINUS_EXPR)
4342 if (!can_reassociate_p (gimple_assign_rhs1 (stmt))
4343 || !can_reassociate_p (gimple_assign_rhs2 (stmt)))
4344 continue;
4346 /* Check for a subtract used only in an addition. If this
4347 is the case, transform it into add of a negate for better
4348 reassociation. IE transform C = A-B into C = A + -B if C
4349 is only used in an addition. */
4350 if (should_break_up_subtract (stmt))
4351 break_up_subtract (stmt, &gsi);
4353 else if (gimple_assign_rhs_code (stmt) == NEGATE_EXPR
4354 && can_reassociate_p (gimple_assign_rhs1 (stmt)))
4355 plus_negates.safe_push (gimple_assign_lhs (stmt));
4357 for (son = first_dom_son (CDI_DOMINATORS, bb);
4358 son;
4359 son = next_dom_son (CDI_DOMINATORS, son))
4360 break_up_subtract_bb (son);
4363 /* Used for repeated factor analysis. */
4364 struct repeat_factor_d
4366 /* An SSA name that occurs in a multiply chain. */
4367 tree factor;
4369 /* Cached rank of the factor. */
4370 unsigned rank;
4372 /* Number of occurrences of the factor in the chain. */
4373 HOST_WIDE_INT count;
4375 /* An SSA name representing the product of this factor and
4376 all factors appearing later in the repeated factor vector. */
4377 tree repr;
4380 typedef struct repeat_factor_d repeat_factor, *repeat_factor_t;
4381 typedef const struct repeat_factor_d *const_repeat_factor_t;
4384 static vec<repeat_factor> repeat_factor_vec;
4386 /* Used for sorting the repeat factor vector. Sort primarily by
4387 ascending occurrence count, secondarily by descending rank. */
4389 static int
4390 compare_repeat_factors (const void *x1, const void *x2)
4392 const_repeat_factor_t rf1 = (const_repeat_factor_t) x1;
4393 const_repeat_factor_t rf2 = (const_repeat_factor_t) x2;
4395 if (rf1->count != rf2->count)
4396 return rf1->count - rf2->count;
4398 return rf2->rank - rf1->rank;
4401 /* Look for repeated operands in OPS in the multiply tree rooted at
4402 STMT. Replace them with an optimal sequence of multiplies and powi
4403 builtin calls, and remove the used operands from OPS. Return an
4404 SSA name representing the value of the replacement sequence. */
4406 static tree
4407 attempt_builtin_powi (gimple stmt, vec<operand_entry_t> *ops)
4409 unsigned i, j, vec_len;
4410 int ii;
4411 operand_entry_t oe;
4412 repeat_factor_t rf1, rf2;
4413 repeat_factor rfnew;
4414 tree result = NULL_TREE;
4415 tree target_ssa, iter_result;
4416 tree type = TREE_TYPE (gimple_get_lhs (stmt));
4417 tree powi_fndecl = mathfn_built_in (type, BUILT_IN_POWI);
4418 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
4419 gimple mul_stmt, pow_stmt;
4421 /* Nothing to do if BUILT_IN_POWI doesn't exist for this type and
4422 target. */
4423 if (!powi_fndecl)
4424 return NULL_TREE;
4426 /* Allocate the repeated factor vector. */
4427 repeat_factor_vec.create (10);
4429 /* Scan the OPS vector for all SSA names in the product and build
4430 up a vector of occurrence counts for each factor. */
4431 FOR_EACH_VEC_ELT (*ops, i, oe)
4433 if (TREE_CODE (oe->op) == SSA_NAME)
4435 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
4437 if (rf1->factor == oe->op)
4439 rf1->count += oe->count;
4440 break;
4444 if (j >= repeat_factor_vec.length ())
4446 rfnew.factor = oe->op;
4447 rfnew.rank = oe->rank;
4448 rfnew.count = oe->count;
4449 rfnew.repr = NULL_TREE;
4450 repeat_factor_vec.safe_push (rfnew);
4455 /* Sort the repeated factor vector by (a) increasing occurrence count,
4456 and (b) decreasing rank. */
4457 repeat_factor_vec.qsort (compare_repeat_factors);
4459 /* It is generally best to combine as many base factors as possible
4460 into a product before applying __builtin_powi to the result.
4461 However, the sort order chosen for the repeated factor vector
4462 allows us to cache partial results for the product of the base
4463 factors for subsequent use. When we already have a cached partial
4464 result from a previous iteration, it is best to make use of it
4465 before looking for another __builtin_pow opportunity.
4467 As an example, consider x * x * y * y * y * z * z * z * z.
4468 We want to first compose the product x * y * z, raise it to the
4469 second power, then multiply this by y * z, and finally multiply
4470 by z. This can be done in 5 multiplies provided we cache y * z
4471 for use in both expressions:
4473 t1 = y * z
4474 t2 = t1 * x
4475 t3 = t2 * t2
4476 t4 = t1 * t3
4477 result = t4 * z
4479 If we instead ignored the cached y * z and first multiplied by
4480 the __builtin_pow opportunity z * z, we would get the inferior:
4482 t1 = y * z
4483 t2 = t1 * x
4484 t3 = t2 * t2
4485 t4 = z * z
4486 t5 = t3 * t4
4487 result = t5 * y */
4489 vec_len = repeat_factor_vec.length ();
4491 /* Repeatedly look for opportunities to create a builtin_powi call. */
4492 while (true)
4494 HOST_WIDE_INT power;
4496 /* First look for the largest cached product of factors from
4497 preceding iterations. If found, create a builtin_powi for
4498 it if the minimum occurrence count for its factors is at
4499 least 2, or just use this cached product as our next
4500 multiplicand if the minimum occurrence count is 1. */
4501 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
4503 if (rf1->repr && rf1->count > 0)
4504 break;
4507 if (j < vec_len)
4509 power = rf1->count;
4511 if (power == 1)
4513 iter_result = rf1->repr;
4515 if (dump_file && (dump_flags & TDF_DETAILS))
4517 unsigned elt;
4518 repeat_factor_t rf;
4519 fputs ("Multiplying by cached product ", dump_file);
4520 for (elt = j; elt < vec_len; elt++)
4522 rf = &repeat_factor_vec[elt];
4523 print_generic_expr (dump_file, rf->factor, 0);
4524 if (elt < vec_len - 1)
4525 fputs (" * ", dump_file);
4527 fputs ("\n", dump_file);
4530 else
4532 iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
4533 pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
4534 build_int_cst (integer_type_node,
4535 power));
4536 gimple_call_set_lhs (pow_stmt, iter_result);
4537 gimple_set_location (pow_stmt, gimple_location (stmt));
4538 gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
4540 if (dump_file && (dump_flags & TDF_DETAILS))
4542 unsigned elt;
4543 repeat_factor_t rf;
4544 fputs ("Building __builtin_pow call for cached product (",
4545 dump_file);
4546 for (elt = j; elt < vec_len; elt++)
4548 rf = &repeat_factor_vec[elt];
4549 print_generic_expr (dump_file, rf->factor, 0);
4550 if (elt < vec_len - 1)
4551 fputs (" * ", dump_file);
4553 fprintf (dump_file, ")^"HOST_WIDE_INT_PRINT_DEC"\n",
4554 power);
4558 else
4560 /* Otherwise, find the first factor in the repeated factor
4561 vector whose occurrence count is at least 2. If no such
4562 factor exists, there are no builtin_powi opportunities
4563 remaining. */
4564 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
4566 if (rf1->count >= 2)
4567 break;
4570 if (j >= vec_len)
4571 break;
4573 power = rf1->count;
4575 if (dump_file && (dump_flags & TDF_DETAILS))
4577 unsigned elt;
4578 repeat_factor_t rf;
4579 fputs ("Building __builtin_pow call for (", dump_file);
4580 for (elt = j; elt < vec_len; elt++)
4582 rf = &repeat_factor_vec[elt];
4583 print_generic_expr (dump_file, rf->factor, 0);
4584 if (elt < vec_len - 1)
4585 fputs (" * ", dump_file);
4587 fprintf (dump_file, ")^"HOST_WIDE_INT_PRINT_DEC"\n", power);
4590 reassociate_stats.pows_created++;
4592 /* Visit each element of the vector in reverse order (so that
4593 high-occurrence elements are visited first, and within the
4594 same occurrence count, lower-ranked elements are visited
4595 first). Form a linear product of all elements in this order
4596 whose occurrencce count is at least that of element J.
4597 Record the SSA name representing the product of each element
4598 with all subsequent elements in the vector. */
4599 if (j == vec_len - 1)
4600 rf1->repr = rf1->factor;
4601 else
4603 for (ii = vec_len - 2; ii >= (int)j; ii--)
4605 tree op1, op2;
4607 rf1 = &repeat_factor_vec[ii];
4608 rf2 = &repeat_factor_vec[ii + 1];
4610 /* Init the last factor's representative to be itself. */
4611 if (!rf2->repr)
4612 rf2->repr = rf2->factor;
4614 op1 = rf1->factor;
4615 op2 = rf2->repr;
4617 target_ssa = make_temp_ssa_name (type, NULL, "reassocpow");
4618 mul_stmt = gimple_build_assign (target_ssa, MULT_EXPR,
4619 op1, op2);
4620 gimple_set_location (mul_stmt, gimple_location (stmt));
4621 gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
4622 rf1->repr = target_ssa;
4624 /* Don't reprocess the multiply we just introduced. */
4625 gimple_set_visited (mul_stmt, true);
4629 /* Form a call to __builtin_powi for the maximum product
4630 just formed, raised to the power obtained earlier. */
4631 rf1 = &repeat_factor_vec[j];
4632 iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
4633 pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
4634 build_int_cst (integer_type_node,
4635 power));
4636 gimple_call_set_lhs (pow_stmt, iter_result);
4637 gimple_set_location (pow_stmt, gimple_location (stmt));
4638 gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
4641 /* If we previously formed at least one other builtin_powi call,
4642 form the product of this one and those others. */
4643 if (result)
4645 tree new_result = make_temp_ssa_name (type, NULL, "reassocpow");
4646 mul_stmt = gimple_build_assign (new_result, MULT_EXPR,
4647 result, iter_result);
4648 gimple_set_location (mul_stmt, gimple_location (stmt));
4649 gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
4650 gimple_set_visited (mul_stmt, true);
4651 result = new_result;
4653 else
4654 result = iter_result;
4656 /* Decrement the occurrence count of each element in the product
4657 by the count found above, and remove this many copies of each
4658 factor from OPS. */
4659 for (i = j; i < vec_len; i++)
4661 unsigned k = power;
4662 unsigned n;
4664 rf1 = &repeat_factor_vec[i];
4665 rf1->count -= power;
4667 FOR_EACH_VEC_ELT_REVERSE (*ops, n, oe)
4669 if (oe->op == rf1->factor)
4671 if (oe->count <= k)
4673 ops->ordered_remove (n);
4674 k -= oe->count;
4676 if (k == 0)
4677 break;
4679 else
4681 oe->count -= k;
4682 break;
4689 /* At this point all elements in the repeated factor vector have a
4690 remaining occurrence count of 0 or 1, and those with a count of 1
4691 don't have cached representatives. Re-sort the ops vector and
4692 clean up. */
4693 ops->qsort (sort_by_operand_rank);
4694 repeat_factor_vec.release ();
4696 /* Return the final product computed herein. Note that there may
4697 still be some elements with single occurrence count left in OPS;
4698 those will be handled by the normal reassociation logic. */
4699 return result;
4702 /* Transform STMT at *GSI into a copy by replacing its rhs with NEW_RHS. */
4704 static void
4705 transform_stmt_to_copy (gimple_stmt_iterator *gsi, gimple stmt, tree new_rhs)
4707 tree rhs1;
4709 if (dump_file && (dump_flags & TDF_DETAILS))
4711 fprintf (dump_file, "Transforming ");
4712 print_gimple_stmt (dump_file, stmt, 0, 0);
4715 rhs1 = gimple_assign_rhs1 (stmt);
4716 gimple_assign_set_rhs_from_tree (gsi, new_rhs);
4717 update_stmt (stmt);
4718 remove_visited_stmt_chain (rhs1);
4720 if (dump_file && (dump_flags & TDF_DETAILS))
4722 fprintf (dump_file, " into ");
4723 print_gimple_stmt (dump_file, stmt, 0, 0);
4727 /* Transform STMT at *GSI into a multiply of RHS1 and RHS2. */
4729 static void
4730 transform_stmt_to_multiply (gimple_stmt_iterator *gsi, gimple stmt,
4731 tree rhs1, tree rhs2)
4733 if (dump_file && (dump_flags & TDF_DETAILS))
4735 fprintf (dump_file, "Transforming ");
4736 print_gimple_stmt (dump_file, stmt, 0, 0);
4739 gimple_assign_set_rhs_with_ops (gsi, MULT_EXPR, rhs1, rhs2);
4740 update_stmt (gsi_stmt (*gsi));
4741 remove_visited_stmt_chain (rhs1);
4743 if (dump_file && (dump_flags & TDF_DETAILS))
4745 fprintf (dump_file, " into ");
4746 print_gimple_stmt (dump_file, stmt, 0, 0);
4750 /* Reassociate expressions in basic block BB and its post-dominator as
4751 children. */
4753 static void
4754 reassociate_bb (basic_block bb)
4756 gimple_stmt_iterator gsi;
4757 basic_block son;
4758 gimple stmt = last_stmt (bb);
4760 if (stmt && !gimple_visited_p (stmt))
4761 maybe_optimize_range_tests (stmt);
4763 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
4765 stmt = gsi_stmt (gsi);
4767 if (is_gimple_assign (stmt)
4768 && !stmt_could_throw_p (stmt))
4770 tree lhs, rhs1, rhs2;
4771 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4773 /* If this is not a gimple binary expression, there is
4774 nothing for us to do with it. */
4775 if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
4776 continue;
4778 /* If this was part of an already processed statement,
4779 we don't need to touch it again. */
4780 if (gimple_visited_p (stmt))
4782 /* This statement might have become dead because of previous
4783 reassociations. */
4784 if (has_zero_uses (gimple_get_lhs (stmt)))
4786 reassoc_remove_stmt (&gsi);
4787 release_defs (stmt);
4788 /* We might end up removing the last stmt above which
4789 places the iterator to the end of the sequence.
4790 Reset it to the last stmt in this case which might
4791 be the end of the sequence as well if we removed
4792 the last statement of the sequence. In which case
4793 we need to bail out. */
4794 if (gsi_end_p (gsi))
4796 gsi = gsi_last_bb (bb);
4797 if (gsi_end_p (gsi))
4798 break;
4801 continue;
4804 lhs = gimple_assign_lhs (stmt);
4805 rhs1 = gimple_assign_rhs1 (stmt);
4806 rhs2 = gimple_assign_rhs2 (stmt);
4808 /* For non-bit or min/max operations we can't associate
4809 all types. Verify that here. */
4810 if (rhs_code != BIT_IOR_EXPR
4811 && rhs_code != BIT_AND_EXPR
4812 && rhs_code != BIT_XOR_EXPR
4813 && rhs_code != MIN_EXPR
4814 && rhs_code != MAX_EXPR
4815 && (!can_reassociate_p (lhs)
4816 || !can_reassociate_p (rhs1)
4817 || !can_reassociate_p (rhs2)))
4818 continue;
4820 if (associative_tree_code (rhs_code))
4822 auto_vec<operand_entry_t> ops;
4823 tree powi_result = NULL_TREE;
4825 /* There may be no immediate uses left by the time we
4826 get here because we may have eliminated them all. */
4827 if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
4828 continue;
4830 gimple_set_visited (stmt, true);
4831 linearize_expr_tree (&ops, stmt, true, true);
4832 ops.qsort (sort_by_operand_rank);
4833 optimize_ops_list (rhs_code, &ops);
4834 if (undistribute_ops_list (rhs_code, &ops,
4835 loop_containing_stmt (stmt)))
4837 ops.qsort (sort_by_operand_rank);
4838 optimize_ops_list (rhs_code, &ops);
4841 if (rhs_code == BIT_IOR_EXPR || rhs_code == BIT_AND_EXPR)
4842 optimize_range_tests (rhs_code, &ops);
4844 if (first_pass_instance
4845 && rhs_code == MULT_EXPR
4846 && flag_unsafe_math_optimizations)
4847 powi_result = attempt_builtin_powi (stmt, &ops);
4849 /* If the operand vector is now empty, all operands were
4850 consumed by the __builtin_powi optimization. */
4851 if (ops.length () == 0)
4852 transform_stmt_to_copy (&gsi, stmt, powi_result);
4853 else if (ops.length () == 1)
4855 tree last_op = ops.last ()->op;
4857 if (powi_result)
4858 transform_stmt_to_multiply (&gsi, stmt, last_op,
4859 powi_result);
4860 else
4861 transform_stmt_to_copy (&gsi, stmt, last_op);
4863 else
4865 machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
4866 int ops_num = ops.length ();
4867 int width = get_reassociation_width (ops_num, rhs_code, mode);
4868 tree new_lhs = lhs;
4870 if (dump_file && (dump_flags & TDF_DETAILS))
4871 fprintf (dump_file,
4872 "Width = %d was chosen for reassociation\n", width);
4874 if (width > 1
4875 && ops.length () > 3)
4876 rewrite_expr_tree_parallel (as_a <gassign *> (stmt),
4877 width, ops);
4878 else
4880 /* When there are three operands left, we want
4881 to make sure the ones that get the double
4882 binary op are chosen wisely. */
4883 int len = ops.length ();
4884 if (len >= 3)
4885 swap_ops_for_binary_stmt (ops, len - 3, stmt);
4887 new_lhs = rewrite_expr_tree (stmt, 0, ops,
4888 powi_result != NULL);
4891 /* If we combined some repeated factors into a
4892 __builtin_powi call, multiply that result by the
4893 reassociated operands. */
4894 if (powi_result)
4896 gimple mul_stmt, lhs_stmt = SSA_NAME_DEF_STMT (lhs);
4897 tree type = TREE_TYPE (lhs);
4898 tree target_ssa = make_temp_ssa_name (type, NULL,
4899 "reassocpow");
4900 gimple_set_lhs (lhs_stmt, target_ssa);
4901 update_stmt (lhs_stmt);
4902 if (lhs != new_lhs)
4903 target_ssa = new_lhs;
4904 mul_stmt = gimple_build_assign (lhs, MULT_EXPR,
4905 powi_result, target_ssa);
4906 gimple_set_location (mul_stmt, gimple_location (stmt));
4907 gsi_insert_after (&gsi, mul_stmt, GSI_NEW_STMT);
4913 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
4914 son;
4915 son = next_dom_son (CDI_POST_DOMINATORS, son))
4916 reassociate_bb (son);
4919 /* Add jumps around shifts for range tests turned into bit tests.
4920 For each SSA_NAME VAR we have code like:
4921 VAR = ...; // final stmt of range comparison
4922 // bit test here...;
4923 OTHERVAR = ...; // final stmt of the bit test sequence
4924 RES = VAR | OTHERVAR;
4925 Turn the above into:
4926 VAR = ...;
4927 if (VAR != 0)
4928 goto <l3>;
4929 else
4930 goto <l2>;
4931 <l2>:
4932 // bit test here...;
4933 OTHERVAR = ...;
4934 <l3>:
4935 # RES = PHI<1(l1), OTHERVAR(l2)>; */
4937 static void
4938 branch_fixup (void)
4940 tree var;
4941 unsigned int i;
4943 FOR_EACH_VEC_ELT (reassoc_branch_fixups, i, var)
4945 gimple def_stmt = SSA_NAME_DEF_STMT (var);
4946 gimple use_stmt;
4947 use_operand_p use;
4948 bool ok = single_imm_use (var, &use, &use_stmt);
4949 gcc_assert (ok
4950 && is_gimple_assign (use_stmt)
4951 && gimple_assign_rhs_code (use_stmt) == BIT_IOR_EXPR
4952 && gimple_bb (def_stmt) == gimple_bb (use_stmt));
4954 basic_block cond_bb = gimple_bb (def_stmt);
4955 basic_block then_bb = split_block (cond_bb, def_stmt)->dest;
4956 basic_block merge_bb = split_block (then_bb, use_stmt)->dest;
4958 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
4959 gimple g = gimple_build_cond (NE_EXPR, var,
4960 build_zero_cst (TREE_TYPE (var)),
4961 NULL_TREE, NULL_TREE);
4962 location_t loc = gimple_location (use_stmt);
4963 gimple_set_location (g, loc);
4964 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
4966 edge etrue = make_edge (cond_bb, merge_bb, EDGE_TRUE_VALUE);
4967 etrue->probability = REG_BR_PROB_BASE / 2;
4968 etrue->count = cond_bb->count / 2;
4969 edge efalse = find_edge (cond_bb, then_bb);
4970 efalse->flags = EDGE_FALSE_VALUE;
4971 efalse->probability -= etrue->probability;
4972 efalse->count -= etrue->count;
4973 then_bb->count -= etrue->count;
4975 tree othervar = NULL_TREE;
4976 if (gimple_assign_rhs1 (use_stmt) == var)
4977 othervar = gimple_assign_rhs2 (use_stmt);
4978 else if (gimple_assign_rhs2 (use_stmt) == var)
4979 othervar = gimple_assign_rhs1 (use_stmt);
4980 else
4981 gcc_unreachable ();
4982 tree lhs = gimple_assign_lhs (use_stmt);
4983 gphi *phi = create_phi_node (lhs, merge_bb);
4984 add_phi_arg (phi, build_one_cst (TREE_TYPE (lhs)), etrue, loc);
4985 add_phi_arg (phi, othervar, single_succ_edge (then_bb), loc);
4986 gsi = gsi_for_stmt (use_stmt);
4987 gsi_remove (&gsi, true);
4989 set_immediate_dominator (CDI_DOMINATORS, merge_bb, cond_bb);
4990 set_immediate_dominator (CDI_POST_DOMINATORS, cond_bb, merge_bb);
4992 reassoc_branch_fixups.release ();
4995 void dump_ops_vector (FILE *file, vec<operand_entry_t> ops);
4996 void debug_ops_vector (vec<operand_entry_t> ops);
4998 /* Dump the operand entry vector OPS to FILE. */
5000 void
5001 dump_ops_vector (FILE *file, vec<operand_entry_t> ops)
5003 operand_entry_t oe;
5004 unsigned int i;
5006 FOR_EACH_VEC_ELT (ops, i, oe)
5008 fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
5009 print_generic_expr (file, oe->op, 0);
5013 /* Dump the operand entry vector OPS to STDERR. */
5015 DEBUG_FUNCTION void
5016 debug_ops_vector (vec<operand_entry_t> ops)
5018 dump_ops_vector (stderr, ops);
5021 static void
5022 do_reassoc (void)
5024 break_up_subtract_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5025 reassociate_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5028 /* Initialize the reassociation pass. */
5030 static void
5031 init_reassoc (void)
5033 int i;
5034 long rank = 2;
5035 int *bbs = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
5037 /* Find the loops, so that we can prevent moving calculations in
5038 them. */
5039 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5041 memset (&reassociate_stats, 0, sizeof (reassociate_stats));
5043 operand_entry_pool = create_alloc_pool ("operand entry pool",
5044 sizeof (struct operand_entry), 30);
5045 next_operand_entry_id = 0;
5047 /* Reverse RPO (Reverse Post Order) will give us something where
5048 deeper loops come later. */
5049 pre_and_rev_post_order_compute (NULL, bbs, false);
5050 bb_rank = XCNEWVEC (long, last_basic_block_for_fn (cfun));
5051 operand_rank = new hash_map<tree, long>;
5053 /* Give each default definition a distinct rank. This includes
5054 parameters and the static chain. Walk backwards over all
5055 SSA names so that we get proper rank ordering according
5056 to tree_swap_operands_p. */
5057 for (i = num_ssa_names - 1; i > 0; --i)
5059 tree name = ssa_name (i);
5060 if (name && SSA_NAME_IS_DEFAULT_DEF (name))
5061 insert_operand_rank (name, ++rank);
5064 /* Set up rank for each BB */
5065 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
5066 bb_rank[bbs[i]] = ++rank << 16;
5068 free (bbs);
5069 calculate_dominance_info (CDI_POST_DOMINATORS);
5070 plus_negates = vNULL;
5073 /* Cleanup after the reassociation pass, and print stats if
5074 requested. */
5076 static void
5077 fini_reassoc (void)
5079 statistics_counter_event (cfun, "Linearized",
5080 reassociate_stats.linearized);
5081 statistics_counter_event (cfun, "Constants eliminated",
5082 reassociate_stats.constants_eliminated);
5083 statistics_counter_event (cfun, "Ops eliminated",
5084 reassociate_stats.ops_eliminated);
5085 statistics_counter_event (cfun, "Statements rewritten",
5086 reassociate_stats.rewritten);
5087 statistics_counter_event (cfun, "Built-in pow[i] calls encountered",
5088 reassociate_stats.pows_encountered);
5089 statistics_counter_event (cfun, "Built-in powi calls created",
5090 reassociate_stats.pows_created);
5092 delete operand_rank;
5093 free_alloc_pool (operand_entry_pool);
5094 free (bb_rank);
5095 plus_negates.release ();
5096 free_dominance_info (CDI_POST_DOMINATORS);
5097 loop_optimizer_finalize ();
5100 /* Gate and execute functions for Reassociation. */
5102 static unsigned int
5103 execute_reassoc (void)
5105 init_reassoc ();
5107 do_reassoc ();
5108 repropagate_negates ();
5109 branch_fixup ();
5111 fini_reassoc ();
5112 return 0;
5115 namespace {
5117 const pass_data pass_data_reassoc =
5119 GIMPLE_PASS, /* type */
5120 "reassoc", /* name */
5121 OPTGROUP_NONE, /* optinfo_flags */
5122 TV_TREE_REASSOC, /* tv_id */
5123 ( PROP_cfg | PROP_ssa ), /* properties_required */
5124 0, /* properties_provided */
5125 0, /* properties_destroyed */
5126 0, /* todo_flags_start */
5127 TODO_update_ssa_only_virtuals, /* todo_flags_finish */
5130 class pass_reassoc : public gimple_opt_pass
5132 public:
5133 pass_reassoc (gcc::context *ctxt)
5134 : gimple_opt_pass (pass_data_reassoc, ctxt)
5137 /* opt_pass methods: */
5138 opt_pass * clone () { return new pass_reassoc (m_ctxt); }
5139 virtual bool gate (function *) { return flag_tree_reassoc != 0; }
5140 virtual unsigned int execute (function *) { return execute_reassoc (); }
5142 }; // class pass_reassoc
5144 } // anon namespace
5146 gimple_opt_pass *
5147 make_pass_reassoc (gcc::context *ctxt)
5149 return new pass_reassoc (ctxt);