* ginclude/float.h: Check that __STDC_WANT_DEC_FP__ is defined,
[official-gcc.git] / libgfortran / generated / minval_i1.c
blob6ac105b2cd9e68463b776bb6d047c04bc1b90d2a
1 /* Implementation of the MINVAL intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include "libgfortran.h"
37 #if defined (HAVE_GFC_INTEGER_1) && defined (HAVE_GFC_INTEGER_1)
40 extern void minval_i1 (gfc_array_i1 * const restrict,
41 gfc_array_i1 * const restrict, const index_type * const restrict);
42 export_proto(minval_i1);
44 void
45 minval_i1 (gfc_array_i1 * const restrict retarray,
46 gfc_array_i1 * const restrict array,
47 const index_type * const restrict pdim)
49 index_type count[GFC_MAX_DIMENSIONS];
50 index_type extent[GFC_MAX_DIMENSIONS];
51 index_type sstride[GFC_MAX_DIMENSIONS];
52 index_type dstride[GFC_MAX_DIMENSIONS];
53 const GFC_INTEGER_1 * restrict base;
54 GFC_INTEGER_1 * restrict dest;
55 index_type rank;
56 index_type n;
57 index_type len;
58 index_type delta;
59 index_type dim;
61 /* Make dim zero based to avoid confusion. */
62 dim = (*pdim) - 1;
63 rank = GFC_DESCRIPTOR_RANK (array) - 1;
65 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
66 delta = array->dim[dim].stride;
68 for (n = 0; n < dim; n++)
70 sstride[n] = array->dim[n].stride;
71 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
73 if (extent[n] < 0)
74 extent[n] = 0;
76 for (n = dim; n < rank; n++)
78 sstride[n] = array->dim[n + 1].stride;
79 extent[n] =
80 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
82 if (extent[n] < 0)
83 extent[n] = 0;
86 if (retarray->data == NULL)
88 size_t alloc_size;
90 for (n = 0; n < rank; n++)
92 retarray->dim[n].lbound = 0;
93 retarray->dim[n].ubound = extent[n]-1;
94 if (n == 0)
95 retarray->dim[n].stride = 1;
96 else
97 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
100 retarray->offset = 0;
101 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
103 alloc_size = sizeof (GFC_INTEGER_1) * retarray->dim[rank-1].stride
104 * extent[rank-1];
106 if (alloc_size == 0)
108 /* Make sure we have a zero-sized array. */
109 retarray->dim[0].lbound = 0;
110 retarray->dim[0].ubound = -1;
111 return;
113 else
114 retarray->data = internal_malloc_size (alloc_size);
116 else
118 if (rank != GFC_DESCRIPTOR_RANK (retarray))
119 runtime_error ("rank of return array incorrect");
122 for (n = 0; n < rank; n++)
124 count[n] = 0;
125 dstride[n] = retarray->dim[n].stride;
126 if (extent[n] <= 0)
127 len = 0;
130 base = array->data;
131 dest = retarray->data;
133 while (base)
135 const GFC_INTEGER_1 * restrict src;
136 GFC_INTEGER_1 result;
137 src = base;
140 result = GFC_INTEGER_1_HUGE;
141 if (len <= 0)
142 *dest = GFC_INTEGER_1_HUGE;
143 else
145 for (n = 0; n < len; n++, src += delta)
148 if (*src < result)
149 result = *src;
151 *dest = result;
154 /* Advance to the next element. */
155 count[0]++;
156 base += sstride[0];
157 dest += dstride[0];
158 n = 0;
159 while (count[n] == extent[n])
161 /* When we get to the end of a dimension, reset it and increment
162 the next dimension. */
163 count[n] = 0;
164 /* We could precalculate these products, but this is a less
165 frequently used path so probably not worth it. */
166 base -= sstride[n] * extent[n];
167 dest -= dstride[n] * extent[n];
168 n++;
169 if (n == rank)
171 /* Break out of the look. */
172 base = NULL;
173 break;
175 else
177 count[n]++;
178 base += sstride[n];
179 dest += dstride[n];
186 extern void mminval_i1 (gfc_array_i1 * const restrict,
187 gfc_array_i1 * const restrict, const index_type * const restrict,
188 gfc_array_l4 * const restrict);
189 export_proto(mminval_i1);
191 void
192 mminval_i1 (gfc_array_i1 * const restrict retarray,
193 gfc_array_i1 * const restrict array,
194 const index_type * const restrict pdim,
195 gfc_array_l4 * const restrict mask)
197 index_type count[GFC_MAX_DIMENSIONS];
198 index_type extent[GFC_MAX_DIMENSIONS];
199 index_type sstride[GFC_MAX_DIMENSIONS];
200 index_type dstride[GFC_MAX_DIMENSIONS];
201 index_type mstride[GFC_MAX_DIMENSIONS];
202 GFC_INTEGER_1 * restrict dest;
203 const GFC_INTEGER_1 * restrict base;
204 const GFC_LOGICAL_4 * restrict mbase;
205 int rank;
206 int dim;
207 index_type n;
208 index_type len;
209 index_type delta;
210 index_type mdelta;
212 dim = (*pdim) - 1;
213 rank = GFC_DESCRIPTOR_RANK (array) - 1;
215 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
216 if (len <= 0)
217 return;
218 delta = array->dim[dim].stride;
219 mdelta = mask->dim[dim].stride;
221 for (n = 0; n < dim; n++)
223 sstride[n] = array->dim[n].stride;
224 mstride[n] = mask->dim[n].stride;
225 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
227 if (extent[n] < 0)
228 extent[n] = 0;
231 for (n = dim; n < rank; n++)
233 sstride[n] = array->dim[n + 1].stride;
234 mstride[n] = mask->dim[n + 1].stride;
235 extent[n] =
236 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
238 if (extent[n] < 0)
239 extent[n] = 0;
242 if (retarray->data == NULL)
244 size_t alloc_size;
246 for (n = 0; n < rank; n++)
248 retarray->dim[n].lbound = 0;
249 retarray->dim[n].ubound = extent[n]-1;
250 if (n == 0)
251 retarray->dim[n].stride = 1;
252 else
253 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
256 alloc_size = sizeof (GFC_INTEGER_1) * retarray->dim[rank-1].stride
257 * extent[rank-1];
259 retarray->offset = 0;
260 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
262 if (alloc_size == 0)
264 /* Make sure we have a zero-sized array. */
265 retarray->dim[0].lbound = 0;
266 retarray->dim[0].ubound = -1;
267 return;
269 else
270 retarray->data = internal_malloc_size (alloc_size);
273 else
275 if (rank != GFC_DESCRIPTOR_RANK (retarray))
276 runtime_error ("rank of return array incorrect");
279 for (n = 0; n < rank; n++)
281 count[n] = 0;
282 dstride[n] = retarray->dim[n].stride;
283 if (extent[n] <= 0)
284 return;
287 dest = retarray->data;
288 base = array->data;
289 mbase = mask->data;
291 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
293 /* This allows the same loop to be used for all logical types. */
294 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
295 for (n = 0; n < rank; n++)
296 mstride[n] <<= 1;
297 mdelta <<= 1;
298 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
301 while (base)
303 const GFC_INTEGER_1 * restrict src;
304 const GFC_LOGICAL_4 * restrict msrc;
305 GFC_INTEGER_1 result;
306 src = base;
307 msrc = mbase;
310 result = GFC_INTEGER_1_HUGE;
311 if (len <= 0)
312 *dest = GFC_INTEGER_1_HUGE;
313 else
315 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
318 if (*msrc && *src < result)
319 result = *src;
321 *dest = result;
324 /* Advance to the next element. */
325 count[0]++;
326 base += sstride[0];
327 mbase += mstride[0];
328 dest += dstride[0];
329 n = 0;
330 while (count[n] == extent[n])
332 /* When we get to the end of a dimension, reset it and increment
333 the next dimension. */
334 count[n] = 0;
335 /* We could precalculate these products, but this is a less
336 frequently used path so probably not worth it. */
337 base -= sstride[n] * extent[n];
338 mbase -= mstride[n] * extent[n];
339 dest -= dstride[n] * extent[n];
340 n++;
341 if (n == rank)
343 /* Break out of the look. */
344 base = NULL;
345 break;
347 else
349 count[n]++;
350 base += sstride[n];
351 mbase += mstride[n];
352 dest += dstride[n];
359 extern void sminval_i1 (gfc_array_i1 * const restrict,
360 gfc_array_i1 * const restrict, const index_type * const restrict,
361 GFC_LOGICAL_4 *);
362 export_proto(sminval_i1);
364 void
365 sminval_i1 (gfc_array_i1 * const restrict retarray,
366 gfc_array_i1 * const restrict array,
367 const index_type * const restrict pdim,
368 GFC_LOGICAL_4 * mask)
370 index_type rank;
371 index_type n;
372 index_type dstride;
373 GFC_INTEGER_1 *dest;
375 if (*mask)
377 minval_i1 (retarray, array, pdim);
378 return;
380 rank = GFC_DESCRIPTOR_RANK (array);
381 if (rank <= 0)
382 runtime_error ("Rank of array needs to be > 0");
384 if (retarray->data == NULL)
386 retarray->dim[0].lbound = 0;
387 retarray->dim[0].ubound = rank-1;
388 retarray->dim[0].stride = 1;
389 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
390 retarray->offset = 0;
391 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_1) * rank);
393 else
395 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
396 runtime_error ("rank of return array does not equal 1");
398 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
399 runtime_error ("dimension of return array incorrect");
402 dstride = retarray->dim[0].stride;
403 dest = retarray->data;
405 for (n = 0; n < rank; n++)
406 dest[n * dstride] = GFC_INTEGER_1_HUGE ;
409 #endif