Fix bootstrap failure.
[official-gcc.git] / gcc / asan.c
blobb4b08228933680b37c277653de3c4bbb7cb29b60
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "hash-table.h"
27 #include "predict.h"
28 #include "vec.h"
29 #include "hashtab.h"
30 #include "hash-set.h"
31 #include "machmode.h"
32 #include "tm.h"
33 #include "hard-reg-set.h"
34 #include "input.h"
35 #include "function.h"
36 #include "dominance.h"
37 #include "cfg.h"
38 #include "cfganal.h"
39 #include "basic-block.h"
40 #include "tree-ssa-alias.h"
41 #include "internal-fn.h"
42 #include "gimple-expr.h"
43 #include "is-a.h"
44 #include "inchash.h"
45 #include "gimple.h"
46 #include "gimplify.h"
47 #include "gimple-iterator.h"
48 #include "calls.h"
49 #include "varasm.h"
50 #include "stor-layout.h"
51 #include "tree-iterator.h"
52 #include "hash-map.h"
53 #include "plugin-api.h"
54 #include "ipa-ref.h"
55 #include "cgraph.h"
56 #include "stringpool.h"
57 #include "tree-ssanames.h"
58 #include "tree-pass.h"
59 #include "asan.h"
60 #include "gimple-pretty-print.h"
61 #include "target.h"
62 #include "expr.h"
63 #include "optabs.h"
64 #include "output.h"
65 #include "tm_p.h"
66 #include "langhooks.h"
67 #include "alloc-pool.h"
68 #include "cfgloop.h"
69 #include "gimple-builder.h"
70 #include "ubsan.h"
71 #include "params.h"
72 #include "builtins.h"
74 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
75 with <2x slowdown on average.
77 The tool consists of two parts:
78 instrumentation module (this file) and a run-time library.
79 The instrumentation module adds a run-time check before every memory insn.
80 For a 8- or 16- byte load accessing address X:
81 ShadowAddr = (X >> 3) + Offset
82 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
83 if (ShadowValue)
84 __asan_report_load8(X);
85 For a load of N bytes (N=1, 2 or 4) from address X:
86 ShadowAddr = (X >> 3) + Offset
87 ShadowValue = *(char*)ShadowAddr;
88 if (ShadowValue)
89 if ((X & 7) + N - 1 > ShadowValue)
90 __asan_report_loadN(X);
91 Stores are instrumented similarly, but using __asan_report_storeN functions.
92 A call too __asan_init_vN() is inserted to the list of module CTORs.
93 N is the version number of the AddressSanitizer API. The changes between the
94 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
96 The run-time library redefines malloc (so that redzone are inserted around
97 the allocated memory) and free (so that reuse of free-ed memory is delayed),
98 provides __asan_report* and __asan_init_vN functions.
100 Read more:
101 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
103 The current implementation supports detection of out-of-bounds and
104 use-after-free in the heap, on the stack and for global variables.
106 [Protection of stack variables]
108 To understand how detection of out-of-bounds and use-after-free works
109 for stack variables, lets look at this example on x86_64 where the
110 stack grows downward:
113 foo ()
115 char a[23] = {0};
116 int b[2] = {0};
118 a[5] = 1;
119 b[1] = 2;
121 return a[5] + b[1];
124 For this function, the stack protected by asan will be organized as
125 follows, from the top of the stack to the bottom:
127 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
129 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
130 the next slot be 32 bytes aligned; this one is called Partial
131 Redzone; this 32 bytes alignment is an asan constraint]
133 Slot 3/ [24 bytes for variable 'a']
135 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
137 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
139 Slot 6/ [8 bytes for variable 'b']
141 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
142 'LEFT RedZone']
144 The 32 bytes of LEFT red zone at the bottom of the stack can be
145 decomposed as such:
147 1/ The first 8 bytes contain a magical asan number that is always
148 0x41B58AB3.
150 2/ The following 8 bytes contains a pointer to a string (to be
151 parsed at runtime by the runtime asan library), which format is
152 the following:
154 "<function-name> <space> <num-of-variables-on-the-stack>
155 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
156 <length-of-var-in-bytes> ){n} "
158 where '(...){n}' means the content inside the parenthesis occurs 'n'
159 times, with 'n' being the number of variables on the stack.
161 3/ The following 8 bytes contain the PC of the current function which
162 will be used by the run-time library to print an error message.
164 4/ The following 8 bytes are reserved for internal use by the run-time.
166 The shadow memory for that stack layout is going to look like this:
168 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
169 The F1 byte pattern is a magic number called
170 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
171 the memory for that shadow byte is part of a the LEFT red zone
172 intended to seat at the bottom of the variables on the stack.
174 - content of shadow memory 8 bytes for slots 6 and 5:
175 0xF4F4F400. The F4 byte pattern is a magic number
176 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
177 memory region for this shadow byte is a PARTIAL red zone
178 intended to pad a variable A, so that the slot following
179 {A,padding} is 32 bytes aligned.
181 Note that the fact that the least significant byte of this
182 shadow memory content is 00 means that 8 bytes of its
183 corresponding memory (which corresponds to the memory of
184 variable 'b') is addressable.
186 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
187 The F2 byte pattern is a magic number called
188 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
189 region for this shadow byte is a MIDDLE red zone intended to
190 seat between two 32 aligned slots of {variable,padding}.
192 - content of shadow memory 8 bytes for slot 3 and 2:
193 0xF4000000. This represents is the concatenation of
194 variable 'a' and the partial red zone following it, like what we
195 had for variable 'b'. The least significant 3 bytes being 00
196 means that the 3 bytes of variable 'a' are addressable.
198 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
199 The F3 byte pattern is a magic number called
200 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
201 region for this shadow byte is a RIGHT red zone intended to seat
202 at the top of the variables of the stack.
204 Note that the real variable layout is done in expand_used_vars in
205 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
206 stack variables as well as the different red zones, emits some
207 prologue code to populate the shadow memory as to poison (mark as
208 non-accessible) the regions of the red zones and mark the regions of
209 stack variables as accessible, and emit some epilogue code to
210 un-poison (mark as accessible) the regions of red zones right before
211 the function exits.
213 [Protection of global variables]
215 The basic idea is to insert a red zone between two global variables
216 and install a constructor function that calls the asan runtime to do
217 the populating of the relevant shadow memory regions at load time.
219 So the global variables are laid out as to insert a red zone between
220 them. The size of the red zones is so that each variable starts on a
221 32 bytes boundary.
223 Then a constructor function is installed so that, for each global
224 variable, it calls the runtime asan library function
225 __asan_register_globals_with an instance of this type:
227 struct __asan_global
229 // Address of the beginning of the global variable.
230 const void *__beg;
232 // Initial size of the global variable.
233 uptr __size;
235 // Size of the global variable + size of the red zone. This
236 // size is 32 bytes aligned.
237 uptr __size_with_redzone;
239 // Name of the global variable.
240 const void *__name;
242 // Name of the module where the global variable is declared.
243 const void *__module_name;
245 // 1 if it has dynamic initialization, 0 otherwise.
246 uptr __has_dynamic_init;
248 // A pointer to struct that contains source location, could be NULL.
249 __asan_global_source_location *__location;
252 A destructor function that calls the runtime asan library function
253 _asan_unregister_globals is also installed. */
255 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
256 static bool asan_shadow_offset_computed;
258 /* Sets shadow offset to value in string VAL. */
260 bool
261 set_asan_shadow_offset (const char *val)
263 char *endp;
265 errno = 0;
266 #ifdef HAVE_LONG_LONG
267 asan_shadow_offset_value = strtoull (val, &endp, 0);
268 #else
269 asan_shadow_offset_value = strtoul (val, &endp, 0);
270 #endif
271 if (!(*val != '\0' && *endp == '\0' && errno == 0))
272 return false;
274 asan_shadow_offset_computed = true;
276 return true;
279 /* Returns Asan shadow offset. */
281 static unsigned HOST_WIDE_INT
282 asan_shadow_offset ()
284 if (!asan_shadow_offset_computed)
286 asan_shadow_offset_computed = true;
287 asan_shadow_offset_value = targetm.asan_shadow_offset ();
289 return asan_shadow_offset_value;
292 alias_set_type asan_shadow_set = -1;
294 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
295 alias set is used for all shadow memory accesses. */
296 static GTY(()) tree shadow_ptr_types[2];
298 /* Decl for __asan_option_detect_stack_use_after_return. */
299 static GTY(()) tree asan_detect_stack_use_after_return;
301 /* Various flags for Asan builtins. */
302 enum asan_check_flags
304 ASAN_CHECK_STORE = 1 << 0,
305 ASAN_CHECK_SCALAR_ACCESS = 1 << 1,
306 ASAN_CHECK_NON_ZERO_LEN = 1 << 2,
307 ASAN_CHECK_LAST = 1 << 3
310 /* Hashtable support for memory references used by gimple
311 statements. */
313 /* This type represents a reference to a memory region. */
314 struct asan_mem_ref
316 /* The expression of the beginning of the memory region. */
317 tree start;
319 /* The size of the access. */
320 HOST_WIDE_INT access_size;
323 static alloc_pool asan_mem_ref_alloc_pool;
325 /* This creates the alloc pool used to store the instances of
326 asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
328 static alloc_pool
329 asan_mem_ref_get_alloc_pool ()
331 if (asan_mem_ref_alloc_pool == NULL)
332 asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
333 sizeof (asan_mem_ref),
334 10);
335 return asan_mem_ref_alloc_pool;
339 /* Initializes an instance of asan_mem_ref. */
341 static void
342 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
344 ref->start = start;
345 ref->access_size = access_size;
348 /* Allocates memory for an instance of asan_mem_ref into the memory
349 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
350 START is the address of (or the expression pointing to) the
351 beginning of memory reference. ACCESS_SIZE is the size of the
352 access to the referenced memory. */
354 static asan_mem_ref*
355 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
357 asan_mem_ref *ref =
358 (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
360 asan_mem_ref_init (ref, start, access_size);
361 return ref;
364 /* This builds and returns a pointer to the end of the memory region
365 that starts at START and of length LEN. */
367 tree
368 asan_mem_ref_get_end (tree start, tree len)
370 if (len == NULL_TREE || integer_zerop (len))
371 return start;
373 if (!ptrofftype_p (len))
374 len = convert_to_ptrofftype (len);
376 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
379 /* Return a tree expression that represents the end of the referenced
380 memory region. Beware that this function can actually build a new
381 tree expression. */
383 tree
384 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
386 return asan_mem_ref_get_end (ref->start, len);
389 struct asan_mem_ref_hasher
390 : typed_noop_remove <asan_mem_ref>
392 typedef asan_mem_ref value_type;
393 typedef asan_mem_ref compare_type;
395 static inline hashval_t hash (const value_type *);
396 static inline bool equal (const value_type *, const compare_type *);
399 /* Hash a memory reference. */
401 inline hashval_t
402 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
404 return iterative_hash_expr (mem_ref->start, 0);
407 /* Compare two memory references. We accept the length of either
408 memory references to be NULL_TREE. */
410 inline bool
411 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
412 const asan_mem_ref *m2)
414 return operand_equal_p (m1->start, m2->start, 0);
417 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
419 /* Returns a reference to the hash table containing memory references.
420 This function ensures that the hash table is created. Note that
421 this hash table is updated by the function
422 update_mem_ref_hash_table. */
424 static hash_table<asan_mem_ref_hasher> *
425 get_mem_ref_hash_table ()
427 if (!asan_mem_ref_ht)
428 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
430 return asan_mem_ref_ht;
433 /* Clear all entries from the memory references hash table. */
435 static void
436 empty_mem_ref_hash_table ()
438 if (asan_mem_ref_ht)
439 asan_mem_ref_ht->empty ();
442 /* Free the memory references hash table. */
444 static void
445 free_mem_ref_resources ()
447 delete asan_mem_ref_ht;
448 asan_mem_ref_ht = NULL;
450 if (asan_mem_ref_alloc_pool)
452 free_alloc_pool (asan_mem_ref_alloc_pool);
453 asan_mem_ref_alloc_pool = NULL;
457 /* Return true iff the memory reference REF has been instrumented. */
459 static bool
460 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
462 asan_mem_ref r;
463 asan_mem_ref_init (&r, ref, access_size);
465 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
466 return saved_ref && saved_ref->access_size >= access_size;
469 /* Return true iff the memory reference REF has been instrumented. */
471 static bool
472 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
474 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
477 /* Return true iff access to memory region starting at REF and of
478 length LEN has been instrumented. */
480 static bool
481 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
483 HOST_WIDE_INT size_in_bytes
484 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
486 return size_in_bytes != -1
487 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
490 /* Set REF to the memory reference present in a gimple assignment
491 ASSIGNMENT. Return true upon successful completion, false
492 otherwise. */
494 static bool
495 get_mem_ref_of_assignment (const gimple assignment,
496 asan_mem_ref *ref,
497 bool *ref_is_store)
499 gcc_assert (gimple_assign_single_p (assignment));
501 if (gimple_store_p (assignment)
502 && !gimple_clobber_p (assignment))
504 ref->start = gimple_assign_lhs (assignment);
505 *ref_is_store = true;
507 else if (gimple_assign_load_p (assignment))
509 ref->start = gimple_assign_rhs1 (assignment);
510 *ref_is_store = false;
512 else
513 return false;
515 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
516 return true;
519 /* Return the memory references contained in a gimple statement
520 representing a builtin call that has to do with memory access. */
522 static bool
523 get_mem_refs_of_builtin_call (const gimple call,
524 asan_mem_ref *src0,
525 tree *src0_len,
526 bool *src0_is_store,
527 asan_mem_ref *src1,
528 tree *src1_len,
529 bool *src1_is_store,
530 asan_mem_ref *dst,
531 tree *dst_len,
532 bool *dst_is_store,
533 bool *dest_is_deref,
534 bool *intercepted_p)
536 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
538 tree callee = gimple_call_fndecl (call);
539 tree source0 = NULL_TREE, source1 = NULL_TREE,
540 dest = NULL_TREE, len = NULL_TREE;
541 bool is_store = true, got_reference_p = false;
542 HOST_WIDE_INT access_size = 1;
544 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
546 switch (DECL_FUNCTION_CODE (callee))
548 /* (s, s, n) style memops. */
549 case BUILT_IN_BCMP:
550 case BUILT_IN_MEMCMP:
551 source0 = gimple_call_arg (call, 0);
552 source1 = gimple_call_arg (call, 1);
553 len = gimple_call_arg (call, 2);
554 break;
556 /* (src, dest, n) style memops. */
557 case BUILT_IN_BCOPY:
558 source0 = gimple_call_arg (call, 0);
559 dest = gimple_call_arg (call, 1);
560 len = gimple_call_arg (call, 2);
561 break;
563 /* (dest, src, n) style memops. */
564 case BUILT_IN_MEMCPY:
565 case BUILT_IN_MEMCPY_CHK:
566 case BUILT_IN_MEMMOVE:
567 case BUILT_IN_MEMMOVE_CHK:
568 case BUILT_IN_MEMPCPY:
569 case BUILT_IN_MEMPCPY_CHK:
570 dest = gimple_call_arg (call, 0);
571 source0 = gimple_call_arg (call, 1);
572 len = gimple_call_arg (call, 2);
573 break;
575 /* (dest, n) style memops. */
576 case BUILT_IN_BZERO:
577 dest = gimple_call_arg (call, 0);
578 len = gimple_call_arg (call, 1);
579 break;
581 /* (dest, x, n) style memops*/
582 case BUILT_IN_MEMSET:
583 case BUILT_IN_MEMSET_CHK:
584 dest = gimple_call_arg (call, 0);
585 len = gimple_call_arg (call, 2);
586 break;
588 case BUILT_IN_STRLEN:
589 source0 = gimple_call_arg (call, 0);
590 len = gimple_call_lhs (call);
591 break ;
593 /* And now the __atomic* and __sync builtins.
594 These are handled differently from the classical memory memory
595 access builtins above. */
597 case BUILT_IN_ATOMIC_LOAD_1:
598 case BUILT_IN_ATOMIC_LOAD_2:
599 case BUILT_IN_ATOMIC_LOAD_4:
600 case BUILT_IN_ATOMIC_LOAD_8:
601 case BUILT_IN_ATOMIC_LOAD_16:
602 is_store = false;
603 /* fall through. */
605 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
606 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
607 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
608 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
609 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
611 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
612 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
613 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
614 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
615 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
617 case BUILT_IN_SYNC_FETCH_AND_OR_1:
618 case BUILT_IN_SYNC_FETCH_AND_OR_2:
619 case BUILT_IN_SYNC_FETCH_AND_OR_4:
620 case BUILT_IN_SYNC_FETCH_AND_OR_8:
621 case BUILT_IN_SYNC_FETCH_AND_OR_16:
623 case BUILT_IN_SYNC_FETCH_AND_AND_1:
624 case BUILT_IN_SYNC_FETCH_AND_AND_2:
625 case BUILT_IN_SYNC_FETCH_AND_AND_4:
626 case BUILT_IN_SYNC_FETCH_AND_AND_8:
627 case BUILT_IN_SYNC_FETCH_AND_AND_16:
629 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
630 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
631 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
632 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
633 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
635 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
636 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
637 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
638 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
640 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
641 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
642 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
643 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
644 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
646 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
647 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
648 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
649 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
650 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
652 case BUILT_IN_SYNC_OR_AND_FETCH_1:
653 case BUILT_IN_SYNC_OR_AND_FETCH_2:
654 case BUILT_IN_SYNC_OR_AND_FETCH_4:
655 case BUILT_IN_SYNC_OR_AND_FETCH_8:
656 case BUILT_IN_SYNC_OR_AND_FETCH_16:
658 case BUILT_IN_SYNC_AND_AND_FETCH_1:
659 case BUILT_IN_SYNC_AND_AND_FETCH_2:
660 case BUILT_IN_SYNC_AND_AND_FETCH_4:
661 case BUILT_IN_SYNC_AND_AND_FETCH_8:
662 case BUILT_IN_SYNC_AND_AND_FETCH_16:
664 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
665 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
666 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
667 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
668 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
670 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
671 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
672 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
673 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
675 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
676 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
677 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
678 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
679 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
681 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
682 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
683 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
684 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
685 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
687 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
688 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
689 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
690 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
691 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
693 case BUILT_IN_SYNC_LOCK_RELEASE_1:
694 case BUILT_IN_SYNC_LOCK_RELEASE_2:
695 case BUILT_IN_SYNC_LOCK_RELEASE_4:
696 case BUILT_IN_SYNC_LOCK_RELEASE_8:
697 case BUILT_IN_SYNC_LOCK_RELEASE_16:
699 case BUILT_IN_ATOMIC_EXCHANGE_1:
700 case BUILT_IN_ATOMIC_EXCHANGE_2:
701 case BUILT_IN_ATOMIC_EXCHANGE_4:
702 case BUILT_IN_ATOMIC_EXCHANGE_8:
703 case BUILT_IN_ATOMIC_EXCHANGE_16:
705 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
706 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
707 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
708 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
709 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
711 case BUILT_IN_ATOMIC_STORE_1:
712 case BUILT_IN_ATOMIC_STORE_2:
713 case BUILT_IN_ATOMIC_STORE_4:
714 case BUILT_IN_ATOMIC_STORE_8:
715 case BUILT_IN_ATOMIC_STORE_16:
717 case BUILT_IN_ATOMIC_ADD_FETCH_1:
718 case BUILT_IN_ATOMIC_ADD_FETCH_2:
719 case BUILT_IN_ATOMIC_ADD_FETCH_4:
720 case BUILT_IN_ATOMIC_ADD_FETCH_8:
721 case BUILT_IN_ATOMIC_ADD_FETCH_16:
723 case BUILT_IN_ATOMIC_SUB_FETCH_1:
724 case BUILT_IN_ATOMIC_SUB_FETCH_2:
725 case BUILT_IN_ATOMIC_SUB_FETCH_4:
726 case BUILT_IN_ATOMIC_SUB_FETCH_8:
727 case BUILT_IN_ATOMIC_SUB_FETCH_16:
729 case BUILT_IN_ATOMIC_AND_FETCH_1:
730 case BUILT_IN_ATOMIC_AND_FETCH_2:
731 case BUILT_IN_ATOMIC_AND_FETCH_4:
732 case BUILT_IN_ATOMIC_AND_FETCH_8:
733 case BUILT_IN_ATOMIC_AND_FETCH_16:
735 case BUILT_IN_ATOMIC_NAND_FETCH_1:
736 case BUILT_IN_ATOMIC_NAND_FETCH_2:
737 case BUILT_IN_ATOMIC_NAND_FETCH_4:
738 case BUILT_IN_ATOMIC_NAND_FETCH_8:
739 case BUILT_IN_ATOMIC_NAND_FETCH_16:
741 case BUILT_IN_ATOMIC_XOR_FETCH_1:
742 case BUILT_IN_ATOMIC_XOR_FETCH_2:
743 case BUILT_IN_ATOMIC_XOR_FETCH_4:
744 case BUILT_IN_ATOMIC_XOR_FETCH_8:
745 case BUILT_IN_ATOMIC_XOR_FETCH_16:
747 case BUILT_IN_ATOMIC_OR_FETCH_1:
748 case BUILT_IN_ATOMIC_OR_FETCH_2:
749 case BUILT_IN_ATOMIC_OR_FETCH_4:
750 case BUILT_IN_ATOMIC_OR_FETCH_8:
751 case BUILT_IN_ATOMIC_OR_FETCH_16:
753 case BUILT_IN_ATOMIC_FETCH_ADD_1:
754 case BUILT_IN_ATOMIC_FETCH_ADD_2:
755 case BUILT_IN_ATOMIC_FETCH_ADD_4:
756 case BUILT_IN_ATOMIC_FETCH_ADD_8:
757 case BUILT_IN_ATOMIC_FETCH_ADD_16:
759 case BUILT_IN_ATOMIC_FETCH_SUB_1:
760 case BUILT_IN_ATOMIC_FETCH_SUB_2:
761 case BUILT_IN_ATOMIC_FETCH_SUB_4:
762 case BUILT_IN_ATOMIC_FETCH_SUB_8:
763 case BUILT_IN_ATOMIC_FETCH_SUB_16:
765 case BUILT_IN_ATOMIC_FETCH_AND_1:
766 case BUILT_IN_ATOMIC_FETCH_AND_2:
767 case BUILT_IN_ATOMIC_FETCH_AND_4:
768 case BUILT_IN_ATOMIC_FETCH_AND_8:
769 case BUILT_IN_ATOMIC_FETCH_AND_16:
771 case BUILT_IN_ATOMIC_FETCH_NAND_1:
772 case BUILT_IN_ATOMIC_FETCH_NAND_2:
773 case BUILT_IN_ATOMIC_FETCH_NAND_4:
774 case BUILT_IN_ATOMIC_FETCH_NAND_8:
775 case BUILT_IN_ATOMIC_FETCH_NAND_16:
777 case BUILT_IN_ATOMIC_FETCH_XOR_1:
778 case BUILT_IN_ATOMIC_FETCH_XOR_2:
779 case BUILT_IN_ATOMIC_FETCH_XOR_4:
780 case BUILT_IN_ATOMIC_FETCH_XOR_8:
781 case BUILT_IN_ATOMIC_FETCH_XOR_16:
783 case BUILT_IN_ATOMIC_FETCH_OR_1:
784 case BUILT_IN_ATOMIC_FETCH_OR_2:
785 case BUILT_IN_ATOMIC_FETCH_OR_4:
786 case BUILT_IN_ATOMIC_FETCH_OR_8:
787 case BUILT_IN_ATOMIC_FETCH_OR_16:
789 dest = gimple_call_arg (call, 0);
790 /* DEST represents the address of a memory location.
791 instrument_derefs wants the memory location, so lets
792 dereference the address DEST before handing it to
793 instrument_derefs. */
794 if (TREE_CODE (dest) == ADDR_EXPR)
795 dest = TREE_OPERAND (dest, 0);
796 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
797 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
798 dest, build_int_cst (TREE_TYPE (dest), 0));
799 else
800 gcc_unreachable ();
802 access_size = int_size_in_bytes (TREE_TYPE (dest));
805 default:
806 /* The other builtins memory access are not instrumented in this
807 function because they either don't have any length parameter,
808 or their length parameter is just a limit. */
809 break;
812 if (len != NULL_TREE)
814 if (source0 != NULL_TREE)
816 src0->start = source0;
817 src0->access_size = access_size;
818 *src0_len = len;
819 *src0_is_store = false;
822 if (source1 != NULL_TREE)
824 src1->start = source1;
825 src1->access_size = access_size;
826 *src1_len = len;
827 *src1_is_store = false;
830 if (dest != NULL_TREE)
832 dst->start = dest;
833 dst->access_size = access_size;
834 *dst_len = len;
835 *dst_is_store = true;
838 got_reference_p = true;
840 else if (dest)
842 dst->start = dest;
843 dst->access_size = access_size;
844 *dst_len = NULL_TREE;
845 *dst_is_store = is_store;
846 *dest_is_deref = true;
847 got_reference_p = true;
850 return got_reference_p;
853 /* Return true iff a given gimple statement has been instrumented.
854 Note that the statement is "defined" by the memory references it
855 contains. */
857 static bool
858 has_stmt_been_instrumented_p (gimple stmt)
860 if (gimple_assign_single_p (stmt))
862 bool r_is_store;
863 asan_mem_ref r;
864 asan_mem_ref_init (&r, NULL, 1);
866 if (get_mem_ref_of_assignment (stmt, &r, &r_is_store))
867 return has_mem_ref_been_instrumented (&r);
869 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
871 asan_mem_ref src0, src1, dest;
872 asan_mem_ref_init (&src0, NULL, 1);
873 asan_mem_ref_init (&src1, NULL, 1);
874 asan_mem_ref_init (&dest, NULL, 1);
876 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
877 bool src0_is_store = false, src1_is_store = false,
878 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
879 if (get_mem_refs_of_builtin_call (stmt,
880 &src0, &src0_len, &src0_is_store,
881 &src1, &src1_len, &src1_is_store,
882 &dest, &dest_len, &dest_is_store,
883 &dest_is_deref, &intercepted_p))
885 if (src0.start != NULL_TREE
886 && !has_mem_ref_been_instrumented (&src0, src0_len))
887 return false;
889 if (src1.start != NULL_TREE
890 && !has_mem_ref_been_instrumented (&src1, src1_len))
891 return false;
893 if (dest.start != NULL_TREE
894 && !has_mem_ref_been_instrumented (&dest, dest_len))
895 return false;
897 return true;
900 return false;
903 /* Insert a memory reference into the hash table. */
905 static void
906 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
908 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
910 asan_mem_ref r;
911 asan_mem_ref_init (&r, ref, access_size);
913 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
914 if (*slot == NULL || (*slot)->access_size < access_size)
915 *slot = asan_mem_ref_new (ref, access_size);
918 /* Initialize shadow_ptr_types array. */
920 static void
921 asan_init_shadow_ptr_types (void)
923 asan_shadow_set = new_alias_set ();
924 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
925 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
926 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
927 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
928 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
929 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
930 initialize_sanitizer_builtins ();
933 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
935 static tree
936 asan_pp_string (pretty_printer *pp)
938 const char *buf = pp_formatted_text (pp);
939 size_t len = strlen (buf);
940 tree ret = build_string (len + 1, buf);
941 TREE_TYPE (ret)
942 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
943 build_index_type (size_int (len)));
944 TREE_READONLY (ret) = 1;
945 TREE_STATIC (ret) = 1;
946 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
949 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
951 static rtx
952 asan_shadow_cst (unsigned char shadow_bytes[4])
954 int i;
955 unsigned HOST_WIDE_INT val = 0;
956 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
957 for (i = 0; i < 4; i++)
958 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
959 << (BITS_PER_UNIT * i);
960 return gen_int_mode (val, SImode);
963 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
964 though. */
966 static void
967 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
969 rtx_insn *insn, *insns, *jump;
970 rtx_code_label *top_label;
971 rtx end, addr, tmp;
973 start_sequence ();
974 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
975 insns = get_insns ();
976 end_sequence ();
977 for (insn = insns; insn; insn = NEXT_INSN (insn))
978 if (CALL_P (insn))
979 break;
980 if (insn == NULL_RTX)
982 emit_insn (insns);
983 return;
986 gcc_assert ((len & 3) == 0);
987 top_label = gen_label_rtx ();
988 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
989 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
990 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
991 emit_label (top_label);
993 emit_move_insn (shadow_mem, const0_rtx);
994 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
995 true, OPTAB_LIB_WIDEN);
996 if (tmp != addr)
997 emit_move_insn (addr, tmp);
998 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
999 jump = get_last_insn ();
1000 gcc_assert (JUMP_P (jump));
1001 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
1004 void
1005 asan_function_start (void)
1007 section *fnsec = function_section (current_function_decl);
1008 switch_to_section (fnsec);
1009 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1010 current_function_funcdef_no);
1013 /* Insert code to protect stack vars. The prologue sequence should be emitted
1014 directly, epilogue sequence returned. BASE is the register holding the
1015 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1016 array contains pairs of offsets in reverse order, always the end offset
1017 of some gap that needs protection followed by starting offset,
1018 and DECLS is an array of representative decls for each var partition.
1019 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1020 elements long (OFFSETS include gap before the first variable as well
1021 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1022 register which stack vars DECL_RTLs are based on. Either BASE should be
1023 assigned to PBASE, when not doing use after return protection, or
1024 corresponding address based on __asan_stack_malloc* return value. */
1026 rtx_insn *
1027 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1028 HOST_WIDE_INT *offsets, tree *decls, int length)
1030 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1031 rtx_code_label *lab;
1032 rtx_insn *insns;
1033 char buf[30];
1034 unsigned char shadow_bytes[4];
1035 HOST_WIDE_INT base_offset = offsets[length - 1];
1036 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1037 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1038 HOST_WIDE_INT last_offset, last_size;
1039 int l;
1040 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1041 tree str_cst, decl, id;
1042 int use_after_return_class = -1;
1044 if (shadow_ptr_types[0] == NULL_TREE)
1045 asan_init_shadow_ptr_types ();
1047 /* First of all, prepare the description string. */
1048 pretty_printer asan_pp;
1050 pp_decimal_int (&asan_pp, length / 2 - 1);
1051 pp_space (&asan_pp);
1052 for (l = length - 2; l; l -= 2)
1054 tree decl = decls[l / 2 - 1];
1055 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1056 pp_space (&asan_pp);
1057 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1058 pp_space (&asan_pp);
1059 if (DECL_P (decl) && DECL_NAME (decl))
1061 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1062 pp_space (&asan_pp);
1063 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1065 else
1066 pp_string (&asan_pp, "9 <unknown>");
1067 pp_space (&asan_pp);
1069 str_cst = asan_pp_string (&asan_pp);
1071 /* Emit the prologue sequence. */
1072 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1073 && ASAN_USE_AFTER_RETURN)
1075 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1076 /* __asan_stack_malloc_N guarantees alignment
1077 N < 6 ? (64 << N) : 4096 bytes. */
1078 if (alignb > (use_after_return_class < 6
1079 ? (64U << use_after_return_class) : 4096U))
1080 use_after_return_class = -1;
1081 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1082 base_align_bias = ((asan_frame_size + alignb - 1)
1083 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1085 /* Align base if target is STRICT_ALIGNMENT. */
1086 if (STRICT_ALIGNMENT)
1087 base = expand_binop (Pmode, and_optab, base,
1088 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1089 << ASAN_SHADOW_SHIFT)
1090 / BITS_PER_UNIT), Pmode), NULL_RTX,
1091 1, OPTAB_DIRECT);
1093 if (use_after_return_class == -1 && pbase)
1094 emit_move_insn (pbase, base);
1096 base = expand_binop (Pmode, add_optab, base,
1097 gen_int_mode (base_offset - base_align_bias, Pmode),
1098 NULL_RTX, 1, OPTAB_DIRECT);
1099 orig_base = NULL_RTX;
1100 if (use_after_return_class != -1)
1102 if (asan_detect_stack_use_after_return == NULL_TREE)
1104 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1105 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1106 integer_type_node);
1107 SET_DECL_ASSEMBLER_NAME (decl, id);
1108 TREE_ADDRESSABLE (decl) = 1;
1109 DECL_ARTIFICIAL (decl) = 1;
1110 DECL_IGNORED_P (decl) = 1;
1111 DECL_EXTERNAL (decl) = 1;
1112 TREE_STATIC (decl) = 1;
1113 TREE_PUBLIC (decl) = 1;
1114 TREE_USED (decl) = 1;
1115 asan_detect_stack_use_after_return = decl;
1117 orig_base = gen_reg_rtx (Pmode);
1118 emit_move_insn (orig_base, base);
1119 ret = expand_normal (asan_detect_stack_use_after_return);
1120 lab = gen_label_rtx ();
1121 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1122 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1123 VOIDmode, 0, lab, very_likely);
1124 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1125 use_after_return_class);
1126 ret = init_one_libfunc (buf);
1127 rtx addr = convert_memory_address (ptr_mode, base);
1128 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2,
1129 GEN_INT (asan_frame_size
1130 + base_align_bias),
1131 TYPE_MODE (pointer_sized_int_node),
1132 addr, ptr_mode);
1133 ret = convert_memory_address (Pmode, ret);
1134 emit_move_insn (base, ret);
1135 emit_label (lab);
1136 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1137 gen_int_mode (base_align_bias
1138 - base_offset, Pmode),
1139 NULL_RTX, 1, OPTAB_DIRECT));
1141 mem = gen_rtx_MEM (ptr_mode, base);
1142 mem = adjust_address (mem, VOIDmode, base_align_bias);
1143 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1144 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1145 emit_move_insn (mem, expand_normal (str_cst));
1146 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1147 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1148 id = get_identifier (buf);
1149 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1150 VAR_DECL, id, char_type_node);
1151 SET_DECL_ASSEMBLER_NAME (decl, id);
1152 TREE_ADDRESSABLE (decl) = 1;
1153 TREE_READONLY (decl) = 1;
1154 DECL_ARTIFICIAL (decl) = 1;
1155 DECL_IGNORED_P (decl) = 1;
1156 TREE_STATIC (decl) = 1;
1157 TREE_PUBLIC (decl) = 0;
1158 TREE_USED (decl) = 1;
1159 DECL_INITIAL (decl) = decl;
1160 TREE_ASM_WRITTEN (decl) = 1;
1161 TREE_ASM_WRITTEN (id) = 1;
1162 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1163 shadow_base = expand_binop (Pmode, lshr_optab, base,
1164 GEN_INT (ASAN_SHADOW_SHIFT),
1165 NULL_RTX, 1, OPTAB_DIRECT);
1166 shadow_base
1167 = plus_constant (Pmode, shadow_base,
1168 asan_shadow_offset ()
1169 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1170 gcc_assert (asan_shadow_set != -1
1171 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1172 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1173 set_mem_alias_set (shadow_mem, asan_shadow_set);
1174 if (STRICT_ALIGNMENT)
1175 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1176 prev_offset = base_offset;
1177 for (l = length; l; l -= 2)
1179 if (l == 2)
1180 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1181 offset = offsets[l - 1];
1182 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1184 int i;
1185 HOST_WIDE_INT aoff
1186 = base_offset + ((offset - base_offset)
1187 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1188 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1189 (aoff - prev_offset)
1190 >> ASAN_SHADOW_SHIFT);
1191 prev_offset = aoff;
1192 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1193 if (aoff < offset)
1195 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1196 shadow_bytes[i] = 0;
1197 else
1198 shadow_bytes[i] = offset - aoff;
1200 else
1201 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1202 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1203 offset = aoff;
1205 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1207 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1208 (offset - prev_offset)
1209 >> ASAN_SHADOW_SHIFT);
1210 prev_offset = offset;
1211 memset (shadow_bytes, cur_shadow_byte, 4);
1212 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1213 offset += ASAN_RED_ZONE_SIZE;
1215 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1217 do_pending_stack_adjust ();
1219 /* Construct epilogue sequence. */
1220 start_sequence ();
1222 lab = NULL;
1223 if (use_after_return_class != -1)
1225 rtx_code_label *lab2 = gen_label_rtx ();
1226 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1227 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1228 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1229 VOIDmode, 0, lab2, very_likely);
1230 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1231 set_mem_alias_set (shadow_mem, asan_shadow_set);
1232 mem = gen_rtx_MEM (ptr_mode, base);
1233 mem = adjust_address (mem, VOIDmode, base_align_bias);
1234 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1235 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1236 if (use_after_return_class < 5
1237 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1238 BITS_PER_UNIT, true))
1239 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1240 BITS_PER_UNIT, true, 0);
1241 else if (use_after_return_class >= 5
1242 || !set_storage_via_setmem (shadow_mem,
1243 GEN_INT (sz),
1244 gen_int_mode (c, QImode),
1245 BITS_PER_UNIT, BITS_PER_UNIT,
1246 -1, sz, sz, sz))
1248 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1249 use_after_return_class);
1250 ret = init_one_libfunc (buf);
1251 rtx addr = convert_memory_address (ptr_mode, base);
1252 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1253 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1254 GEN_INT (asan_frame_size + base_align_bias),
1255 TYPE_MODE (pointer_sized_int_node),
1256 orig_addr, ptr_mode);
1258 lab = gen_label_rtx ();
1259 emit_jump (lab);
1260 emit_label (lab2);
1263 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1264 set_mem_alias_set (shadow_mem, asan_shadow_set);
1266 if (STRICT_ALIGNMENT)
1267 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1269 prev_offset = base_offset;
1270 last_offset = base_offset;
1271 last_size = 0;
1272 for (l = length; l; l -= 2)
1274 offset = base_offset + ((offsets[l - 1] - base_offset)
1275 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1276 if (last_offset + last_size != offset)
1278 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1279 (last_offset - prev_offset)
1280 >> ASAN_SHADOW_SHIFT);
1281 prev_offset = last_offset;
1282 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1283 last_offset = offset;
1284 last_size = 0;
1286 last_size += base_offset + ((offsets[l - 2] - base_offset)
1287 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1288 - offset;
1290 if (last_size)
1292 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1293 (last_offset - prev_offset)
1294 >> ASAN_SHADOW_SHIFT);
1295 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1298 do_pending_stack_adjust ();
1299 if (lab)
1300 emit_label (lab);
1302 insns = get_insns ();
1303 end_sequence ();
1304 return insns;
1307 /* Return true if DECL, a global var, might be overridden and needs
1308 therefore a local alias. */
1310 static bool
1311 asan_needs_local_alias (tree decl)
1313 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1316 /* Return true if DECL is a VAR_DECL that should be protected
1317 by Address Sanitizer, by appending a red zone with protected
1318 shadow memory after it and aligning it to at least
1319 ASAN_RED_ZONE_SIZE bytes. */
1321 bool
1322 asan_protect_global (tree decl)
1324 if (!ASAN_GLOBALS)
1325 return false;
1327 rtx rtl, symbol;
1329 if (TREE_CODE (decl) == STRING_CST)
1331 /* Instrument all STRING_CSTs except those created
1332 by asan_pp_string here. */
1333 if (shadow_ptr_types[0] != NULL_TREE
1334 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1335 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1336 return false;
1337 return true;
1339 if (TREE_CODE (decl) != VAR_DECL
1340 /* TLS vars aren't statically protectable. */
1341 || DECL_THREAD_LOCAL_P (decl)
1342 /* Externs will be protected elsewhere. */
1343 || DECL_EXTERNAL (decl)
1344 || !DECL_RTL_SET_P (decl)
1345 /* Comdat vars pose an ABI problem, we can't know if
1346 the var that is selected by the linker will have
1347 padding or not. */
1348 || DECL_ONE_ONLY (decl)
1349 /* Similarly for common vars. People can use -fno-common. */
1350 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1351 /* Don't protect if using user section, often vars placed
1352 into user section from multiple TUs are then assumed
1353 to be an array of such vars, putting padding in there
1354 breaks this assumption. */
1355 || (DECL_SECTION_NAME (decl) != NULL
1356 && !symtab_node::get (decl)->implicit_section)
1357 || DECL_SIZE (decl) == 0
1358 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1359 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1360 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1361 || TREE_TYPE (decl) == ubsan_get_source_location_type ())
1362 return false;
1364 rtl = DECL_RTL (decl);
1365 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1366 return false;
1367 symbol = XEXP (rtl, 0);
1369 if (CONSTANT_POOL_ADDRESS_P (symbol)
1370 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1371 return false;
1373 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1374 return false;
1376 #ifndef ASM_OUTPUT_DEF
1377 if (asan_needs_local_alias (decl))
1378 return false;
1379 #endif
1381 return true;
1384 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1385 IS_STORE is either 1 (for a store) or 0 (for a load). */
1387 static tree
1388 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1389 int *nargs)
1391 static enum built_in_function report[2][2][6]
1392 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1393 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1394 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1395 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1396 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1397 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1398 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1399 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1400 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1401 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1402 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1403 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1404 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1405 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1406 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1407 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1408 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1409 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1410 if (size_in_bytes == -1)
1412 *nargs = 2;
1413 return builtin_decl_implicit (report[recover_p][is_store][5]);
1415 *nargs = 1;
1416 int size_log2 = exact_log2 (size_in_bytes);
1417 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1420 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1421 IS_STORE is either 1 (for a store) or 0 (for a load). */
1423 static tree
1424 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1425 int *nargs)
1427 static enum built_in_function check[2][2][6]
1428 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1429 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1430 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1431 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1432 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1433 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1434 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1435 BUILT_IN_ASAN_LOAD2_NOABORT,
1436 BUILT_IN_ASAN_LOAD4_NOABORT,
1437 BUILT_IN_ASAN_LOAD8_NOABORT,
1438 BUILT_IN_ASAN_LOAD16_NOABORT,
1439 BUILT_IN_ASAN_LOADN_NOABORT },
1440 { BUILT_IN_ASAN_STORE1_NOABORT,
1441 BUILT_IN_ASAN_STORE2_NOABORT,
1442 BUILT_IN_ASAN_STORE4_NOABORT,
1443 BUILT_IN_ASAN_STORE8_NOABORT,
1444 BUILT_IN_ASAN_STORE16_NOABORT,
1445 BUILT_IN_ASAN_STOREN_NOABORT } } };
1446 if (size_in_bytes == -1)
1448 *nargs = 2;
1449 return builtin_decl_implicit (check[recover_p][is_store][5]);
1451 *nargs = 1;
1452 int size_log2 = exact_log2 (size_in_bytes);
1453 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1456 /* Split the current basic block and create a condition statement
1457 insertion point right before or after the statement pointed to by
1458 ITER. Return an iterator to the point at which the caller might
1459 safely insert the condition statement.
1461 THEN_BLOCK must be set to the address of an uninitialized instance
1462 of basic_block. The function will then set *THEN_BLOCK to the
1463 'then block' of the condition statement to be inserted by the
1464 caller.
1466 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1467 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1469 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1470 block' of the condition statement to be inserted by the caller.
1472 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1473 statements starting from *ITER, and *THEN_BLOCK is a new empty
1474 block.
1476 *ITER is adjusted to point to always point to the first statement
1477 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1478 same as what ITER was pointing to prior to calling this function,
1479 if BEFORE_P is true; otherwise, it is its following statement. */
1481 gimple_stmt_iterator
1482 create_cond_insert_point (gimple_stmt_iterator *iter,
1483 bool before_p,
1484 bool then_more_likely_p,
1485 bool create_then_fallthru_edge,
1486 basic_block *then_block,
1487 basic_block *fallthrough_block)
1489 gimple_stmt_iterator gsi = *iter;
1491 if (!gsi_end_p (gsi) && before_p)
1492 gsi_prev (&gsi);
1494 basic_block cur_bb = gsi_bb (*iter);
1496 edge e = split_block (cur_bb, gsi_stmt (gsi));
1498 /* Get a hold on the 'condition block', the 'then block' and the
1499 'else block'. */
1500 basic_block cond_bb = e->src;
1501 basic_block fallthru_bb = e->dest;
1502 basic_block then_bb = create_empty_bb (cond_bb);
1503 if (current_loops)
1505 add_bb_to_loop (then_bb, cond_bb->loop_father);
1506 loops_state_set (LOOPS_NEED_FIXUP);
1509 /* Set up the newly created 'then block'. */
1510 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1511 int fallthrough_probability
1512 = then_more_likely_p
1513 ? PROB_VERY_UNLIKELY
1514 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1515 e->probability = PROB_ALWAYS - fallthrough_probability;
1516 if (create_then_fallthru_edge)
1517 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1519 /* Set up the fallthrough basic block. */
1520 e = find_edge (cond_bb, fallthru_bb);
1521 e->flags = EDGE_FALSE_VALUE;
1522 e->count = cond_bb->count;
1523 e->probability = fallthrough_probability;
1525 /* Update dominance info for the newly created then_bb; note that
1526 fallthru_bb's dominance info has already been updated by
1527 split_bock. */
1528 if (dom_info_available_p (CDI_DOMINATORS))
1529 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1531 *then_block = then_bb;
1532 *fallthrough_block = fallthru_bb;
1533 *iter = gsi_start_bb (fallthru_bb);
1535 return gsi_last_bb (cond_bb);
1538 /* Insert an if condition followed by a 'then block' right before the
1539 statement pointed to by ITER. The fallthrough block -- which is the
1540 else block of the condition as well as the destination of the
1541 outcoming edge of the 'then block' -- starts with the statement
1542 pointed to by ITER.
1544 COND is the condition of the if.
1546 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1547 'then block' is higher than the probability of the edge to the
1548 fallthrough block.
1550 Upon completion of the function, *THEN_BB is set to the newly
1551 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1552 fallthrough block.
1554 *ITER is adjusted to still point to the same statement it was
1555 pointing to initially. */
1557 static void
1558 insert_if_then_before_iter (gimple cond,
1559 gimple_stmt_iterator *iter,
1560 bool then_more_likely_p,
1561 basic_block *then_bb,
1562 basic_block *fallthrough_bb)
1564 gimple_stmt_iterator cond_insert_point =
1565 create_cond_insert_point (iter,
1566 /*before_p=*/true,
1567 then_more_likely_p,
1568 /*create_then_fallthru_edge=*/true,
1569 then_bb,
1570 fallthrough_bb);
1571 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1574 /* Build
1575 (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset (). */
1577 static tree
1578 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1579 tree base_addr, tree shadow_ptr_type)
1581 tree t, uintptr_type = TREE_TYPE (base_addr);
1582 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1583 gimple g;
1585 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1586 g = gimple_build_assign_with_ops (RSHIFT_EXPR,
1587 make_ssa_name (uintptr_type, NULL),
1588 base_addr, t);
1589 gimple_set_location (g, location);
1590 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1592 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1593 g = gimple_build_assign_with_ops (PLUS_EXPR,
1594 make_ssa_name (uintptr_type, NULL),
1595 gimple_assign_lhs (g), t);
1596 gimple_set_location (g, location);
1597 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1599 g = gimple_build_assign_with_ops (NOP_EXPR,
1600 make_ssa_name (shadow_ptr_type, NULL),
1601 gimple_assign_lhs (g), NULL_TREE);
1602 gimple_set_location (g, location);
1603 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1605 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1606 build_int_cst (shadow_ptr_type, 0));
1607 g = gimple_build_assign_with_ops (MEM_REF,
1608 make_ssa_name (shadow_type, NULL),
1609 t, NULL_TREE);
1610 gimple_set_location (g, location);
1611 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1612 return gimple_assign_lhs (g);
1615 /* BASE can already be an SSA_NAME; in that case, do not create a
1616 new SSA_NAME for it. */
1618 static tree
1619 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1620 bool before_p)
1622 if (TREE_CODE (base) == SSA_NAME)
1623 return base;
1624 gimple g
1625 = gimple_build_assign_with_ops (TREE_CODE (base),
1626 make_ssa_name (TREE_TYPE (base), NULL),
1627 base, NULL_TREE);
1628 gimple_set_location (g, loc);
1629 if (before_p)
1630 gsi_insert_before (iter, g, GSI_SAME_STMT);
1631 else
1632 gsi_insert_after (iter, g, GSI_NEW_STMT);
1633 return gimple_assign_lhs (g);
1636 /* LEN can already have necessary size and precision;
1637 in that case, do not create a new variable. */
1639 tree
1640 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1641 bool before_p)
1643 if (ptrofftype_p (len))
1644 return len;
1645 gimple g
1646 = gimple_build_assign_with_ops (NOP_EXPR,
1647 make_ssa_name (pointer_sized_int_node, NULL),
1648 len, NULL);
1649 gimple_set_location (g, loc);
1650 if (before_p)
1651 gsi_insert_before (iter, g, GSI_SAME_STMT);
1652 else
1653 gsi_insert_after (iter, g, GSI_NEW_STMT);
1654 return gimple_assign_lhs (g);
1657 /* Instrument the memory access instruction BASE. Insert new
1658 statements before or after ITER.
1660 Note that the memory access represented by BASE can be either an
1661 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1662 location. IS_STORE is TRUE for a store, FALSE for a load.
1663 BEFORE_P is TRUE for inserting the instrumentation code before
1664 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1665 for a scalar memory access and FALSE for memory region access.
1666 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1667 length. ALIGN tells alignment of accessed memory object.
1669 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1670 memory region have already been instrumented.
1672 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1673 statement it was pointing to prior to calling this function,
1674 otherwise, it points to the statement logically following it. */
1676 static void
1677 build_check_stmt (location_t loc, tree base, tree len,
1678 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1679 bool is_non_zero_len, bool before_p, bool is_store,
1680 bool is_scalar_access, unsigned int align = 0)
1682 gimple_stmt_iterator gsi = *iter;
1683 gimple g;
1685 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1687 gsi = *iter;
1689 base = unshare_expr (base);
1690 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1692 if (len)
1694 len = unshare_expr (len);
1695 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1697 else
1699 gcc_assert (size_in_bytes != -1);
1700 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1703 if (size_in_bytes > 1)
1705 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1706 || size_in_bytes > 16)
1707 is_scalar_access = false;
1708 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1710 /* On non-strict alignment targets, if
1711 16-byte access is just 8-byte aligned,
1712 this will result in misaligned shadow
1713 memory 2 byte load, but otherwise can
1714 be handled using one read. */
1715 if (size_in_bytes != 16
1716 || STRICT_ALIGNMENT
1717 || align < 8 * BITS_PER_UNIT)
1718 is_scalar_access = false;
1722 HOST_WIDE_INT flags = 0;
1723 if (is_store)
1724 flags |= ASAN_CHECK_STORE;
1725 if (is_non_zero_len)
1726 flags |= ASAN_CHECK_NON_ZERO_LEN;
1727 if (is_scalar_access)
1728 flags |= ASAN_CHECK_SCALAR_ACCESS;
1730 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
1731 build_int_cst (integer_type_node, flags),
1732 base, len,
1733 build_int_cst (integer_type_node,
1734 align / BITS_PER_UNIT));
1735 gimple_set_location (g, loc);
1736 if (before_p)
1737 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1738 else
1740 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1741 gsi_next (&gsi);
1742 *iter = gsi;
1746 /* If T represents a memory access, add instrumentation code before ITER.
1747 LOCATION is source code location.
1748 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1750 static void
1751 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1752 location_t location, bool is_store)
1754 if (is_store && !ASAN_INSTRUMENT_WRITES)
1755 return;
1756 if (!is_store && !ASAN_INSTRUMENT_READS)
1757 return;
1759 tree type, base;
1760 HOST_WIDE_INT size_in_bytes;
1762 type = TREE_TYPE (t);
1763 switch (TREE_CODE (t))
1765 case ARRAY_REF:
1766 case COMPONENT_REF:
1767 case INDIRECT_REF:
1768 case MEM_REF:
1769 case VAR_DECL:
1770 case BIT_FIELD_REF:
1771 break;
1772 /* FALLTHRU */
1773 default:
1774 return;
1777 size_in_bytes = int_size_in_bytes (type);
1778 if (size_in_bytes <= 0)
1779 return;
1781 HOST_WIDE_INT bitsize, bitpos;
1782 tree offset;
1783 machine_mode mode;
1784 int volatilep = 0, unsignedp = 0;
1785 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset,
1786 &mode, &unsignedp, &volatilep, false);
1788 if (TREE_CODE (t) == COMPONENT_REF
1789 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1791 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1792 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1793 TREE_OPERAND (t, 0), repr,
1794 NULL_TREE), location, is_store);
1795 return;
1798 if (bitpos % BITS_PER_UNIT
1799 || bitsize != size_in_bytes * BITS_PER_UNIT)
1800 return;
1802 if (TREE_CODE (inner) == VAR_DECL
1803 && offset == NULL_TREE
1804 && bitpos >= 0
1805 && DECL_SIZE (inner)
1806 && tree_fits_shwi_p (DECL_SIZE (inner))
1807 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1809 if (DECL_THREAD_LOCAL_P (inner))
1810 return;
1811 if (!TREE_STATIC (inner))
1813 /* Automatic vars in the current function will be always
1814 accessible. */
1815 if (decl_function_context (inner) == current_function_decl)
1816 return;
1818 /* Always instrument external vars, they might be dynamically
1819 initialized. */
1820 else if (!DECL_EXTERNAL (inner))
1822 /* For static vars if they are known not to be dynamically
1823 initialized, they will be always accessible. */
1824 varpool_node *vnode = varpool_node::get (inner);
1825 if (vnode && !vnode->dynamically_initialized)
1826 return;
1830 base = build_fold_addr_expr (t);
1831 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1833 unsigned int align = get_object_alignment (t);
1834 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1835 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1836 is_store, /*is_scalar_access*/true, align);
1837 update_mem_ref_hash_table (base, size_in_bytes);
1838 update_mem_ref_hash_table (t, size_in_bytes);
1843 /* Insert a memory reference into the hash table if access length
1844 can be determined in compile time. */
1846 static void
1847 maybe_update_mem_ref_hash_table (tree base, tree len)
1849 if (!POINTER_TYPE_P (TREE_TYPE (base))
1850 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
1851 return;
1853 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1855 if (size_in_bytes != -1)
1856 update_mem_ref_hash_table (base, size_in_bytes);
1859 /* Instrument an access to a contiguous memory region that starts at
1860 the address pointed to by BASE, over a length of LEN (expressed in
1861 the sizeof (*BASE) bytes). ITER points to the instruction before
1862 which the instrumentation instructions must be inserted. LOCATION
1863 is the source location that the instrumentation instructions must
1864 have. If IS_STORE is true, then the memory access is a store;
1865 otherwise, it's a load. */
1867 static void
1868 instrument_mem_region_access (tree base, tree len,
1869 gimple_stmt_iterator *iter,
1870 location_t location, bool is_store)
1872 if (!POINTER_TYPE_P (TREE_TYPE (base))
1873 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1874 || integer_zerop (len))
1875 return;
1877 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1879 if ((size_in_bytes == -1)
1880 || !has_mem_ref_been_instrumented (base, size_in_bytes))
1882 build_check_stmt (location, base, len, size_in_bytes, iter,
1883 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1884 is_store, /*is_scalar_access*/false, /*align*/0);
1887 maybe_update_mem_ref_hash_table (base, len);
1888 *iter = gsi_for_stmt (gsi_stmt (*iter));
1891 /* Instrument the call to a built-in memory access function that is
1892 pointed to by the iterator ITER.
1894 Upon completion, return TRUE iff *ITER has been advanced to the
1895 statement following the one it was originally pointing to. */
1897 static bool
1898 instrument_builtin_call (gimple_stmt_iterator *iter)
1900 if (!ASAN_MEMINTRIN)
1901 return false;
1903 bool iter_advanced_p = false;
1904 gimple call = gsi_stmt (*iter);
1906 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1908 location_t loc = gimple_location (call);
1910 asan_mem_ref src0, src1, dest;
1911 asan_mem_ref_init (&src0, NULL, 1);
1912 asan_mem_ref_init (&src1, NULL, 1);
1913 asan_mem_ref_init (&dest, NULL, 1);
1915 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1916 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
1917 dest_is_deref = false, intercepted_p = true;
1919 if (get_mem_refs_of_builtin_call (call,
1920 &src0, &src0_len, &src0_is_store,
1921 &src1, &src1_len, &src1_is_store,
1922 &dest, &dest_len, &dest_is_store,
1923 &dest_is_deref, &intercepted_p))
1925 if (dest_is_deref)
1927 instrument_derefs (iter, dest.start, loc, dest_is_store);
1928 gsi_next (iter);
1929 iter_advanced_p = true;
1931 else if (!intercepted_p
1932 && (src0_len || src1_len || dest_len))
1934 if (src0.start != NULL_TREE)
1935 instrument_mem_region_access (src0.start, src0_len,
1936 iter, loc, /*is_store=*/false);
1937 if (src1.start != NULL_TREE)
1938 instrument_mem_region_access (src1.start, src1_len,
1939 iter, loc, /*is_store=*/false);
1940 if (dest.start != NULL_TREE)
1941 instrument_mem_region_access (dest.start, dest_len,
1942 iter, loc, /*is_store=*/true);
1944 *iter = gsi_for_stmt (call);
1945 gsi_next (iter);
1946 iter_advanced_p = true;
1948 else
1950 if (src0.start != NULL_TREE)
1951 maybe_update_mem_ref_hash_table (src0.start, src0_len);
1952 if (src1.start != NULL_TREE)
1953 maybe_update_mem_ref_hash_table (src1.start, src1_len);
1954 if (dest.start != NULL_TREE)
1955 maybe_update_mem_ref_hash_table (dest.start, dest_len);
1958 return iter_advanced_p;
1961 /* Instrument the assignment statement ITER if it is subject to
1962 instrumentation. Return TRUE iff instrumentation actually
1963 happened. In that case, the iterator ITER is advanced to the next
1964 logical expression following the one initially pointed to by ITER,
1965 and the relevant memory reference that which access has been
1966 instrumented is added to the memory references hash table. */
1968 static bool
1969 maybe_instrument_assignment (gimple_stmt_iterator *iter)
1971 gimple s = gsi_stmt (*iter);
1973 gcc_assert (gimple_assign_single_p (s));
1975 tree ref_expr = NULL_TREE;
1976 bool is_store, is_instrumented = false;
1978 if (gimple_store_p (s))
1980 ref_expr = gimple_assign_lhs (s);
1981 is_store = true;
1982 instrument_derefs (iter, ref_expr,
1983 gimple_location (s),
1984 is_store);
1985 is_instrumented = true;
1988 if (gimple_assign_load_p (s))
1990 ref_expr = gimple_assign_rhs1 (s);
1991 is_store = false;
1992 instrument_derefs (iter, ref_expr,
1993 gimple_location (s),
1994 is_store);
1995 is_instrumented = true;
1998 if (is_instrumented)
1999 gsi_next (iter);
2001 return is_instrumented;
2004 /* Instrument the function call pointed to by the iterator ITER, if it
2005 is subject to instrumentation. At the moment, the only function
2006 calls that are instrumented are some built-in functions that access
2007 memory. Look at instrument_builtin_call to learn more.
2009 Upon completion return TRUE iff *ITER was advanced to the statement
2010 following the one it was originally pointing to. */
2012 static bool
2013 maybe_instrument_call (gimple_stmt_iterator *iter)
2015 gimple stmt = gsi_stmt (*iter);
2016 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2018 if (is_builtin && instrument_builtin_call (iter))
2019 return true;
2021 if (gimple_call_noreturn_p (stmt))
2023 if (is_builtin)
2025 tree callee = gimple_call_fndecl (stmt);
2026 switch (DECL_FUNCTION_CODE (callee))
2028 case BUILT_IN_UNREACHABLE:
2029 case BUILT_IN_TRAP:
2030 /* Don't instrument these. */
2031 return false;
2032 default:
2033 break;
2036 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2037 gimple g = gimple_build_call (decl, 0);
2038 gimple_set_location (g, gimple_location (stmt));
2039 gsi_insert_before (iter, g, GSI_SAME_STMT);
2041 return false;
2044 /* Walk each instruction of all basic block and instrument those that
2045 represent memory references: loads, stores, or function calls.
2046 In a given basic block, this function avoids instrumenting memory
2047 references that have already been instrumented. */
2049 static void
2050 transform_statements (void)
2052 basic_block bb, last_bb = NULL;
2053 gimple_stmt_iterator i;
2054 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2056 FOR_EACH_BB_FN (bb, cfun)
2058 basic_block prev_bb = bb;
2060 if (bb->index >= saved_last_basic_block) continue;
2062 /* Flush the mem ref hash table, if current bb doesn't have
2063 exactly one predecessor, or if that predecessor (skipping
2064 over asan created basic blocks) isn't the last processed
2065 basic block. Thus we effectively flush on extended basic
2066 block boundaries. */
2067 while (single_pred_p (prev_bb))
2069 prev_bb = single_pred (prev_bb);
2070 if (prev_bb->index < saved_last_basic_block)
2071 break;
2073 if (prev_bb != last_bb)
2074 empty_mem_ref_hash_table ();
2075 last_bb = bb;
2077 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2079 gimple s = gsi_stmt (i);
2081 if (has_stmt_been_instrumented_p (s))
2082 gsi_next (&i);
2083 else if (gimple_assign_single_p (s)
2084 && !gimple_clobber_p (s)
2085 && maybe_instrument_assignment (&i))
2086 /* Nothing to do as maybe_instrument_assignment advanced
2087 the iterator I. */;
2088 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2089 /* Nothing to do as maybe_instrument_call
2090 advanced the iterator I. */;
2091 else
2093 /* No instrumentation happened.
2095 If the current instruction is a function call that
2096 might free something, let's forget about the memory
2097 references that got instrumented. Otherwise we might
2098 miss some instrumentation opportunities. */
2099 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2100 empty_mem_ref_hash_table ();
2102 gsi_next (&i);
2106 free_mem_ref_resources ();
2109 /* Build
2110 __asan_before_dynamic_init (module_name)
2112 __asan_after_dynamic_init ()
2113 call. */
2115 tree
2116 asan_dynamic_init_call (bool after_p)
2118 tree fn = builtin_decl_implicit (after_p
2119 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2120 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2121 tree module_name_cst = NULL_TREE;
2122 if (!after_p)
2124 pretty_printer module_name_pp;
2125 pp_string (&module_name_pp, main_input_filename);
2127 if (shadow_ptr_types[0] == NULL_TREE)
2128 asan_init_shadow_ptr_types ();
2129 module_name_cst = asan_pp_string (&module_name_pp);
2130 module_name_cst = fold_convert (const_ptr_type_node,
2131 module_name_cst);
2134 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2137 /* Build
2138 struct __asan_global
2140 const void *__beg;
2141 uptr __size;
2142 uptr __size_with_redzone;
2143 const void *__name;
2144 const void *__module_name;
2145 uptr __has_dynamic_init;
2146 __asan_global_source_location *__location;
2147 } type. */
2149 static tree
2150 asan_global_struct (void)
2152 static const char *field_names[7]
2153 = { "__beg", "__size", "__size_with_redzone",
2154 "__name", "__module_name", "__has_dynamic_init", "__location"};
2155 tree fields[7], ret;
2156 int i;
2158 ret = make_node (RECORD_TYPE);
2159 for (i = 0; i < 7; i++)
2161 fields[i]
2162 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2163 get_identifier (field_names[i]),
2164 (i == 0 || i == 3) ? const_ptr_type_node
2165 : pointer_sized_int_node);
2166 DECL_CONTEXT (fields[i]) = ret;
2167 if (i)
2168 DECL_CHAIN (fields[i - 1]) = fields[i];
2170 TYPE_FIELDS (ret) = fields[0];
2171 TYPE_NAME (ret) = get_identifier ("__asan_global");
2172 layout_type (ret);
2173 return ret;
2176 /* Append description of a single global DECL into vector V.
2177 TYPE is __asan_global struct type as returned by asan_global_struct. */
2179 static void
2180 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2182 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2183 unsigned HOST_WIDE_INT size;
2184 tree str_cst, module_name_cst, refdecl = decl;
2185 vec<constructor_elt, va_gc> *vinner = NULL;
2187 pretty_printer asan_pp, module_name_pp;
2189 if (DECL_NAME (decl))
2190 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2191 else
2192 pp_string (&asan_pp, "<unknown>");
2193 str_cst = asan_pp_string (&asan_pp);
2195 pp_string (&module_name_pp, main_input_filename);
2196 module_name_cst = asan_pp_string (&module_name_pp);
2198 if (asan_needs_local_alias (decl))
2200 char buf[20];
2201 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2202 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2203 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2204 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2205 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2206 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2207 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2208 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2209 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2210 TREE_STATIC (refdecl) = 1;
2211 TREE_PUBLIC (refdecl) = 0;
2212 TREE_USED (refdecl) = 1;
2213 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2216 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2217 fold_convert (const_ptr_type_node,
2218 build_fold_addr_expr (refdecl)));
2219 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2220 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2221 size += asan_red_zone_size (size);
2222 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2223 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2224 fold_convert (const_ptr_type_node, str_cst));
2225 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2226 fold_convert (const_ptr_type_node, module_name_cst));
2227 varpool_node *vnode = varpool_node::get (decl);
2228 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2229 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2230 build_int_cst (uptr, has_dynamic_init));
2231 tree locptr = NULL_TREE;
2232 location_t loc = DECL_SOURCE_LOCATION (decl);
2233 expanded_location xloc = expand_location (loc);
2234 if (xloc.file != NULL)
2236 static int lasanloccnt = 0;
2237 char buf[25];
2238 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2239 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2240 ubsan_get_source_location_type ());
2241 TREE_STATIC (var) = 1;
2242 TREE_PUBLIC (var) = 0;
2243 DECL_ARTIFICIAL (var) = 1;
2244 DECL_IGNORED_P (var) = 1;
2245 pretty_printer filename_pp;
2246 pp_string (&filename_pp, xloc.file);
2247 tree str = asan_pp_string (&filename_pp);
2248 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2249 NULL_TREE, str, NULL_TREE,
2250 build_int_cst (unsigned_type_node,
2251 xloc.line), NULL_TREE,
2252 build_int_cst (unsigned_type_node,
2253 xloc.column));
2254 TREE_CONSTANT (ctor) = 1;
2255 TREE_STATIC (ctor) = 1;
2256 DECL_INITIAL (var) = ctor;
2257 varpool_node::finalize_decl (var);
2258 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2260 else
2261 locptr = build_int_cst (uptr, 0);
2262 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2263 init = build_constructor (type, vinner);
2264 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2267 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2268 void
2269 initialize_sanitizer_builtins (void)
2271 tree decl;
2273 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2274 return;
2276 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2277 tree BT_FN_VOID_PTR
2278 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2279 tree BT_FN_VOID_CONST_PTR
2280 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2281 tree BT_FN_VOID_PTR_PTR
2282 = build_function_type_list (void_type_node, ptr_type_node,
2283 ptr_type_node, NULL_TREE);
2284 tree BT_FN_VOID_PTR_PTR_PTR
2285 = build_function_type_list (void_type_node, ptr_type_node,
2286 ptr_type_node, ptr_type_node, NULL_TREE);
2287 tree BT_FN_VOID_PTR_PTRMODE
2288 = build_function_type_list (void_type_node, ptr_type_node,
2289 pointer_sized_int_node, NULL_TREE);
2290 tree BT_FN_VOID_INT
2291 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2292 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2293 tree BT_FN_IX_CONST_VPTR_INT[5];
2294 tree BT_FN_IX_VPTR_IX_INT[5];
2295 tree BT_FN_VOID_VPTR_IX_INT[5];
2296 tree vptr
2297 = build_pointer_type (build_qualified_type (void_type_node,
2298 TYPE_QUAL_VOLATILE));
2299 tree cvptr
2300 = build_pointer_type (build_qualified_type (void_type_node,
2301 TYPE_QUAL_VOLATILE
2302 |TYPE_QUAL_CONST));
2303 tree boolt
2304 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2305 int i;
2306 for (i = 0; i < 5; i++)
2308 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2309 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2310 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2311 integer_type_node, integer_type_node,
2312 NULL_TREE);
2313 BT_FN_IX_CONST_VPTR_INT[i]
2314 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2315 BT_FN_IX_VPTR_IX_INT[i]
2316 = build_function_type_list (ix, vptr, ix, integer_type_node,
2317 NULL_TREE);
2318 BT_FN_VOID_VPTR_IX_INT[i]
2319 = build_function_type_list (void_type_node, vptr, ix,
2320 integer_type_node, NULL_TREE);
2322 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2323 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2324 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2325 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2326 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2327 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2328 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2329 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2330 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2331 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2332 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2333 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2334 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2335 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2336 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2337 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2338 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2339 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2340 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2341 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2342 #undef ATTR_NOTHROW_LEAF_LIST
2343 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2344 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2345 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2346 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2347 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2348 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2349 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2350 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2351 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2352 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2353 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2354 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2355 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2356 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2357 #undef DEF_SANITIZER_BUILTIN
2358 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2359 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2360 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2361 set_call_expr_flags (decl, ATTRS); \
2362 set_builtin_decl (ENUM, decl, true);
2364 #include "sanitizer.def"
2366 #undef DEF_SANITIZER_BUILTIN
2369 /* Called via htab_traverse. Count number of emitted
2370 STRING_CSTs in the constant hash table. */
2373 count_string_csts (constant_descriptor_tree **slot,
2374 unsigned HOST_WIDE_INT *data)
2376 struct constant_descriptor_tree *desc = *slot;
2377 if (TREE_CODE (desc->value) == STRING_CST
2378 && TREE_ASM_WRITTEN (desc->value)
2379 && asan_protect_global (desc->value))
2380 ++*data;
2381 return 1;
2384 /* Helper structure to pass two parameters to
2385 add_string_csts. */
2387 struct asan_add_string_csts_data
2389 tree type;
2390 vec<constructor_elt, va_gc> *v;
2393 /* Called via hash_table::traverse. Call asan_add_global
2394 on emitted STRING_CSTs from the constant hash table. */
2397 add_string_csts (constant_descriptor_tree **slot,
2398 asan_add_string_csts_data *aascd)
2400 struct constant_descriptor_tree *desc = *slot;
2401 if (TREE_CODE (desc->value) == STRING_CST
2402 && TREE_ASM_WRITTEN (desc->value)
2403 && asan_protect_global (desc->value))
2405 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2406 aascd->type, aascd->v);
2408 return 1;
2411 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2412 invoke ggc_collect. */
2413 static GTY(()) tree asan_ctor_statements;
2415 /* Module-level instrumentation.
2416 - Insert __asan_init_vN() into the list of CTORs.
2417 - TODO: insert redzones around globals.
2420 void
2421 asan_finish_file (void)
2423 varpool_node *vnode;
2424 unsigned HOST_WIDE_INT gcount = 0;
2426 if (shadow_ptr_types[0] == NULL_TREE)
2427 asan_init_shadow_ptr_types ();
2428 /* Avoid instrumenting code in the asan ctors/dtors.
2429 We don't need to insert padding after the description strings,
2430 nor after .LASAN* array. */
2431 flag_sanitize &= ~SANITIZE_ADDRESS;
2433 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2435 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2436 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2438 FOR_EACH_DEFINED_VARIABLE (vnode)
2439 if (TREE_ASM_WRITTEN (vnode->decl)
2440 && asan_protect_global (vnode->decl))
2441 ++gcount;
2442 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2443 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2444 (&gcount);
2445 if (gcount)
2447 tree type = asan_global_struct (), var, ctor;
2448 tree dtor_statements = NULL_TREE;
2449 vec<constructor_elt, va_gc> *v;
2450 char buf[20];
2452 type = build_array_type_nelts (type, gcount);
2453 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2454 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2455 type);
2456 TREE_STATIC (var) = 1;
2457 TREE_PUBLIC (var) = 0;
2458 DECL_ARTIFICIAL (var) = 1;
2459 DECL_IGNORED_P (var) = 1;
2460 vec_alloc (v, gcount);
2461 FOR_EACH_DEFINED_VARIABLE (vnode)
2462 if (TREE_ASM_WRITTEN (vnode->decl)
2463 && asan_protect_global (vnode->decl))
2464 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2465 struct asan_add_string_csts_data aascd;
2466 aascd.type = TREE_TYPE (type);
2467 aascd.v = v;
2468 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2469 (&aascd);
2470 ctor = build_constructor (type, v);
2471 TREE_CONSTANT (ctor) = 1;
2472 TREE_STATIC (ctor) = 1;
2473 DECL_INITIAL (var) = ctor;
2474 varpool_node::finalize_decl (var);
2476 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2477 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2478 append_to_statement_list (build_call_expr (fn, 2,
2479 build_fold_addr_expr (var),
2480 gcount_tree),
2481 &asan_ctor_statements);
2483 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2484 append_to_statement_list (build_call_expr (fn, 2,
2485 build_fold_addr_expr (var),
2486 gcount_tree),
2487 &dtor_statements);
2488 cgraph_build_static_cdtor ('D', dtor_statements,
2489 MAX_RESERVED_INIT_PRIORITY - 1);
2491 if (asan_ctor_statements)
2492 cgraph_build_static_cdtor ('I', asan_ctor_statements,
2493 MAX_RESERVED_INIT_PRIORITY - 1);
2494 flag_sanitize |= SANITIZE_ADDRESS;
2497 /* Expand the ASAN_{LOAD,STORE} builtins. */
2499 static bool
2500 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2502 gimple g = gsi_stmt (*iter);
2503 location_t loc = gimple_location (g);
2505 bool recover_p
2506 = (flag_sanitize & flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
2508 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2509 gcc_assert (flags < ASAN_CHECK_LAST);
2510 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2511 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2512 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2514 tree base = gimple_call_arg (g, 1);
2515 tree len = gimple_call_arg (g, 2);
2516 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
2518 HOST_WIDE_INT size_in_bytes
2519 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2521 if (use_calls)
2523 /* Instrument using callbacks. */
2524 gimple g
2525 = gimple_build_assign_with_ops (NOP_EXPR,
2526 make_ssa_name (pointer_sized_int_node,
2527 NULL),
2528 base, NULL_TREE);
2529 gimple_set_location (g, loc);
2530 gsi_insert_before (iter, g, GSI_SAME_STMT);
2531 tree base_addr = gimple_assign_lhs (g);
2533 int nargs;
2534 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
2535 if (nargs == 1)
2536 g = gimple_build_call (fun, 1, base_addr);
2537 else
2539 gcc_assert (nargs == 2);
2540 g = gimple_build_assign_with_ops (NOP_EXPR,
2541 make_ssa_name (pointer_sized_int_node,
2542 NULL),
2543 len, NULL_TREE);
2544 gimple_set_location (g, loc);
2545 gsi_insert_before (iter, g, GSI_SAME_STMT);
2546 tree sz_arg = gimple_assign_lhs (g);
2547 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2549 gimple_set_location (g, loc);
2550 gsi_replace (iter, g, false);
2551 return false;
2554 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2556 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2557 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2559 gimple_stmt_iterator gsi = *iter;
2561 if (!is_non_zero_len)
2563 /* So, the length of the memory area to asan-protect is
2564 non-constant. Let's guard the generated instrumentation code
2565 like:
2567 if (len != 0)
2569 //asan instrumentation code goes here.
2571 // falltrough instructions, starting with *ITER. */
2573 g = gimple_build_cond (NE_EXPR,
2574 len,
2575 build_int_cst (TREE_TYPE (len), 0),
2576 NULL_TREE, NULL_TREE);
2577 gimple_set_location (g, loc);
2579 basic_block then_bb, fallthrough_bb;
2580 insert_if_then_before_iter (g, iter, /*then_more_likely_p=*/true,
2581 &then_bb, &fallthrough_bb);
2582 /* Note that fallthrough_bb starts with the statement that was
2583 pointed to by ITER. */
2585 /* The 'then block' of the 'if (len != 0) condition is where
2586 we'll generate the asan instrumentation code now. */
2587 gsi = gsi_last_bb (then_bb);
2590 /* Get an iterator on the point where we can add the condition
2591 statement for the instrumentation. */
2592 basic_block then_bb, else_bb;
2593 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2594 /*then_more_likely_p=*/false,
2595 /*create_then_fallthru_edge*/recover_p,
2596 &then_bb,
2597 &else_bb);
2599 g = gimple_build_assign_with_ops (NOP_EXPR,
2600 make_ssa_name (pointer_sized_int_node,
2601 NULL),
2602 base, NULL_TREE);
2603 gimple_set_location (g, loc);
2604 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2605 tree base_addr = gimple_assign_lhs (g);
2607 tree t = NULL_TREE;
2608 if (real_size_in_bytes >= 8)
2610 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2611 shadow_ptr_type);
2612 t = shadow;
2614 else
2616 /* Slow path for 1, 2 and 4 byte accesses. */
2617 /* Test (shadow != 0)
2618 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2619 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2620 shadow_ptr_type);
2621 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2622 gimple_seq seq = NULL;
2623 gimple_seq_add_stmt (&seq, shadow_test);
2624 /* Aligned (>= 8 bytes) can test just
2625 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
2626 to be 0. */
2627 if (align < 8)
2629 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2630 base_addr, 7));
2631 gimple_seq_add_stmt (&seq,
2632 build_type_cast (shadow_type,
2633 gimple_seq_last (seq)));
2634 if (real_size_in_bytes > 1)
2635 gimple_seq_add_stmt (&seq,
2636 build_assign (PLUS_EXPR,
2637 gimple_seq_last (seq),
2638 real_size_in_bytes - 1));
2639 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
2641 else
2642 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
2643 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
2644 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2645 gimple_seq_last (seq)));
2646 t = gimple_assign_lhs (gimple_seq_last (seq));
2647 gimple_seq_set_location (seq, loc);
2648 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2650 /* For non-constant, misaligned or otherwise weird access sizes,
2651 check first and last byte. */
2652 if (size_in_bytes == -1)
2654 g = gimple_build_assign_with_ops (MINUS_EXPR,
2655 make_ssa_name (pointer_sized_int_node, NULL),
2656 len,
2657 build_int_cst (pointer_sized_int_node, 1));
2658 gimple_set_location (g, loc);
2659 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2660 tree last = gimple_assign_lhs (g);
2661 g = gimple_build_assign_with_ops (PLUS_EXPR,
2662 make_ssa_name (pointer_sized_int_node, NULL),
2663 base_addr,
2664 last);
2665 gimple_set_location (g, loc);
2666 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2667 tree base_end_addr = gimple_assign_lhs (g);
2669 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
2670 shadow_ptr_type);
2671 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2672 gimple_seq seq = NULL;
2673 gimple_seq_add_stmt (&seq, shadow_test);
2674 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2675 base_end_addr, 7));
2676 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2677 gimple_seq_last (seq)));
2678 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2679 gimple_seq_last (seq),
2680 shadow));
2681 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2682 gimple_seq_last (seq)));
2683 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
2684 gimple_seq_last (seq)));
2685 t = gimple_assign_lhs (gimple_seq_last (seq));
2686 gimple_seq_set_location (seq, loc);
2687 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2691 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
2692 NULL_TREE, NULL_TREE);
2693 gimple_set_location (g, loc);
2694 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2696 /* Generate call to the run-time library (e.g. __asan_report_load8). */
2697 gsi = gsi_start_bb (then_bb);
2698 int nargs;
2699 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
2700 g = gimple_build_call (fun, nargs, base_addr, len);
2701 gimple_set_location (g, loc);
2702 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2704 gsi_remove (iter, true);
2705 *iter = gsi_start_bb (else_bb);
2707 return true;
2710 /* Instrument the current function. */
2712 static unsigned int
2713 asan_instrument (void)
2715 if (shadow_ptr_types[0] == NULL_TREE)
2716 asan_init_shadow_ptr_types ();
2717 transform_statements ();
2718 return 0;
2721 static bool
2722 gate_asan (void)
2724 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2725 && !lookup_attribute ("no_sanitize_address",
2726 DECL_ATTRIBUTES (current_function_decl));
2729 namespace {
2731 const pass_data pass_data_asan =
2733 GIMPLE_PASS, /* type */
2734 "asan", /* name */
2735 OPTGROUP_NONE, /* optinfo_flags */
2736 TV_NONE, /* tv_id */
2737 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2738 0, /* properties_provided */
2739 0, /* properties_destroyed */
2740 0, /* todo_flags_start */
2741 TODO_update_ssa, /* todo_flags_finish */
2744 class pass_asan : public gimple_opt_pass
2746 public:
2747 pass_asan (gcc::context *ctxt)
2748 : gimple_opt_pass (pass_data_asan, ctxt)
2751 /* opt_pass methods: */
2752 opt_pass * clone () { return new pass_asan (m_ctxt); }
2753 virtual bool gate (function *) { return gate_asan (); }
2754 virtual unsigned int execute (function *) { return asan_instrument (); }
2756 }; // class pass_asan
2758 } // anon namespace
2760 gimple_opt_pass *
2761 make_pass_asan (gcc::context *ctxt)
2763 return new pass_asan (ctxt);
2766 namespace {
2768 const pass_data pass_data_asan_O0 =
2770 GIMPLE_PASS, /* type */
2771 "asan0", /* name */
2772 OPTGROUP_NONE, /* optinfo_flags */
2773 TV_NONE, /* tv_id */
2774 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2775 0, /* properties_provided */
2776 0, /* properties_destroyed */
2777 0, /* todo_flags_start */
2778 TODO_update_ssa, /* todo_flags_finish */
2781 class pass_asan_O0 : public gimple_opt_pass
2783 public:
2784 pass_asan_O0 (gcc::context *ctxt)
2785 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2788 /* opt_pass methods: */
2789 virtual bool gate (function *) { return !optimize && gate_asan (); }
2790 virtual unsigned int execute (function *) { return asan_instrument (); }
2792 }; // class pass_asan_O0
2794 } // anon namespace
2796 gimple_opt_pass *
2797 make_pass_asan_O0 (gcc::context *ctxt)
2799 return new pass_asan_O0 (ctxt);
2802 /* Perform optimization of sanitize functions. */
2804 namespace {
2806 const pass_data pass_data_sanopt =
2808 GIMPLE_PASS, /* type */
2809 "sanopt", /* name */
2810 OPTGROUP_NONE, /* optinfo_flags */
2811 TV_NONE, /* tv_id */
2812 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2813 0, /* properties_provided */
2814 0, /* properties_destroyed */
2815 0, /* todo_flags_start */
2816 TODO_update_ssa, /* todo_flags_finish */
2819 class pass_sanopt : public gimple_opt_pass
2821 public:
2822 pass_sanopt (gcc::context *ctxt)
2823 : gimple_opt_pass (pass_data_sanopt, ctxt)
2826 /* opt_pass methods: */
2827 virtual bool gate (function *) { return flag_sanitize; }
2828 virtual unsigned int execute (function *);
2830 }; // class pass_sanopt
2832 unsigned int
2833 pass_sanopt::execute (function *fun)
2835 basic_block bb;
2837 int asan_num_accesses = 0;
2838 if (flag_sanitize & SANITIZE_ADDRESS)
2840 gimple_stmt_iterator gsi;
2841 FOR_EACH_BB_FN (bb, fun)
2842 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2844 gimple stmt = gsi_stmt (gsi);
2845 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)
2846 && gimple_call_internal_fn (stmt) == IFN_ASAN_CHECK)
2847 ++asan_num_accesses;
2851 bool use_calls = ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD < INT_MAX
2852 && asan_num_accesses >= ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD;
2854 FOR_EACH_BB_FN (bb, fun)
2856 gimple_stmt_iterator gsi;
2857 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2859 gimple stmt = gsi_stmt (gsi);
2860 bool no_next = false;
2862 if (!is_gimple_call (stmt))
2864 gsi_next (&gsi);
2865 continue;
2868 if (gimple_call_internal_p (stmt))
2870 enum internal_fn ifn = gimple_call_internal_fn (stmt);
2871 switch (ifn)
2873 case IFN_UBSAN_NULL:
2874 no_next = ubsan_expand_null_ifn (&gsi);
2875 break;
2876 case IFN_UBSAN_BOUNDS:
2877 no_next = ubsan_expand_bounds_ifn (&gsi);
2878 break;
2879 case IFN_UBSAN_OBJECT_SIZE:
2880 no_next = ubsan_expand_objsize_ifn (&gsi);
2881 break;
2882 case IFN_ASAN_CHECK:
2883 no_next = asan_expand_check_ifn (&gsi, use_calls);
2884 break;
2885 default:
2886 break;
2890 if (dump_file && (dump_flags & TDF_DETAILS))
2892 fprintf (dump_file, "Optimized\n ");
2893 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2894 fprintf (dump_file, "\n");
2897 if (!no_next)
2898 gsi_next (&gsi);
2901 return 0;
2904 } // anon namespace
2906 gimple_opt_pass *
2907 make_pass_sanopt (gcc::context *ctxt)
2909 return new pass_sanopt (ctxt);
2912 #include "gt-asan.h"