1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Expander
; use Expander
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Dbug
; use Exp_Dbug
;
38 with Exp_Disp
; use Exp_Disp
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Exp_Util
; use Exp_Util
;
41 with Fname
; use Fname
;
42 with Freeze
; use Freeze
;
43 with Itypes
; use Itypes
;
44 with Lib
.Xref
; use Lib
.Xref
;
45 with Layout
; use Layout
;
46 with Namet
; use Namet
;
48 with Nlists
; use Nlists
;
49 with Nmake
; use Nmake
;
51 with Output
; use Output
;
52 with Restrict
; use Restrict
;
53 with Rident
; use Rident
;
54 with Rtsfind
; use Rtsfind
;
56 with Sem_Aux
; use Sem_Aux
;
57 with Sem_Cat
; use Sem_Cat
;
58 with Sem_Ch3
; use Sem_Ch3
;
59 with Sem_Ch4
; use Sem_Ch4
;
60 with Sem_Ch5
; use Sem_Ch5
;
61 with Sem_Ch8
; use Sem_Ch8
;
62 with Sem_Ch10
; use Sem_Ch10
;
63 with Sem_Ch12
; use Sem_Ch12
;
64 with Sem_Ch13
; use Sem_Ch13
;
65 with Sem_Dim
; use Sem_Dim
;
66 with Sem_Disp
; use Sem_Disp
;
67 with Sem_Dist
; use Sem_Dist
;
68 with Sem_Elim
; use Sem_Elim
;
69 with Sem_Eval
; use Sem_Eval
;
70 with Sem_Mech
; use Sem_Mech
;
71 with Sem_Prag
; use Sem_Prag
;
72 with Sem_Res
; use Sem_Res
;
73 with Sem_Util
; use Sem_Util
;
74 with Sem_Type
; use Sem_Type
;
75 with Sem_Warn
; use Sem_Warn
;
76 with Sinput
; use Sinput
;
77 with Stand
; use Stand
;
78 with Sinfo
; use Sinfo
;
79 with Sinfo
.CN
; use Sinfo
.CN
;
80 with Snames
; use Snames
;
81 with Stringt
; use Stringt
;
83 with Stylesw
; use Stylesw
;
84 with Targparm
; use Targparm
;
85 with Tbuild
; use Tbuild
;
86 with Uintp
; use Uintp
;
87 with Urealp
; use Urealp
;
88 with Validsw
; use Validsw
;
90 package body Sem_Ch6
is
92 May_Hide_Profile
: Boolean := False;
93 -- This flag is used to indicate that two formals in two subprograms being
94 -- checked for conformance differ only in that one is an access parameter
95 -- while the other is of a general access type with the same designated
96 -- type. In this case, if the rest of the signatures match, a call to
97 -- either subprogram may be ambiguous, which is worth a warning. The flag
98 -- is set in Compatible_Types, and the warning emitted in
99 -- New_Overloaded_Entity.
101 -----------------------
102 -- Local Subprograms --
103 -----------------------
105 procedure Analyze_Null_Procedure
107 Is_Completion
: out Boolean);
108 -- A null procedure can be a declaration or (Ada 2012) a completion.
110 procedure Analyze_Return_Statement
(N
: Node_Id
);
111 -- Common processing for simple and extended return statements
113 procedure Analyze_Function_Return
(N
: Node_Id
);
114 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
115 -- applies to a [generic] function.
117 procedure Analyze_Return_Type
(N
: Node_Id
);
118 -- Subsidiary to Process_Formals: analyze subtype mark in function
119 -- specification in a context where the formals are visible and hide
122 procedure Analyze_Subprogram_Body_Helper
(N
: Node_Id
);
123 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
124 -- that we can use RETURN but not skip the debug output at the end.
126 procedure Analyze_Generic_Subprogram_Body
(N
: Node_Id
; Gen_Id
: Entity_Id
);
127 -- Analyze a generic subprogram body. N is the body to be analyzed, and
128 -- Gen_Id is the defining entity Id for the corresponding spec.
130 procedure Build_Body_To_Inline
(N
: Node_Id
; Subp
: Entity_Id
);
131 -- If a subprogram has pragma Inline and inlining is active, use generic
132 -- machinery to build an unexpanded body for the subprogram. This body is
133 -- subsequently used for inline expansions at call sites. If subprogram can
134 -- be inlined (depending on size and nature of local declarations) this
135 -- function returns true. Otherwise subprogram body is treated normally.
136 -- If proper warnings are enabled and the subprogram contains a construct
137 -- that cannot be inlined, the offending construct is flagged accordingly.
139 function Can_Override_Operator
(Subp
: Entity_Id
) return Boolean;
140 -- Returns true if Subp can override a predefined operator.
142 procedure Check_And_Build_Body_To_Inline
145 Body_Id
: Entity_Id
);
146 -- Spec_Id and Body_Id are the entities of the specification and body of
147 -- the subprogram body N. If N can be inlined by the frontend (supported
148 -- cases documented in Check_Body_To_Inline) then build the body-to-inline
149 -- associated with N and attach it to the declaration node of Spec_Id.
151 procedure Check_Conformance
154 Ctype
: Conformance_Type
;
156 Conforms
: out Boolean;
157 Err_Loc
: Node_Id
:= Empty
;
158 Get_Inst
: Boolean := False;
159 Skip_Controlling_Formals
: Boolean := False);
160 -- Given two entities, this procedure checks that the profiles associated
161 -- with these entities meet the conformance criterion given by the third
162 -- parameter. If they conform, Conforms is set True and control returns
163 -- to the caller. If they do not conform, Conforms is set to False, and
164 -- in addition, if Errmsg is True on the call, proper messages are output
165 -- to complain about the conformance failure. If Err_Loc is non_Empty
166 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
167 -- error messages are placed on the appropriate part of the construct
168 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
169 -- against a formal access-to-subprogram type so Get_Instance_Of must
172 procedure Check_Subprogram_Order
(N
: Node_Id
);
173 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
174 -- the alpha ordering rule for N if this ordering requirement applicable.
176 procedure Check_Returns
180 Proc
: Entity_Id
:= Empty
);
181 -- Called to check for missing return statements in a function body, or for
182 -- returns present in a procedure body which has No_Return set. HSS is the
183 -- handled statement sequence for the subprogram body. This procedure
184 -- checks all flow paths to make sure they either have return (Mode = 'F',
185 -- used for functions) or do not have a return (Mode = 'P', used for
186 -- No_Return procedures). The flag Err is set if there are any control
187 -- paths not explicitly terminated by a return in the function case, and is
188 -- True otherwise. Proc is the entity for the procedure case and is used
189 -- in posting the warning message.
191 procedure Check_Untagged_Equality
(Eq_Op
: Entity_Id
);
192 -- In Ada 2012, a primitive equality operator on an untagged record type
193 -- must appear before the type is frozen, and have the same visibility as
194 -- that of the type. This procedure checks that this rule is met, and
195 -- otherwise emits an error on the subprogram declaration and a warning
196 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
197 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
198 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
199 -- is set, otherwise the call has no effect.
201 procedure Enter_Overloaded_Entity
(S
: Entity_Id
);
202 -- This procedure makes S, a new overloaded entity, into the first visible
203 -- entity with that name.
205 function Is_Non_Overriding_Operation
207 New_E
: Entity_Id
) return Boolean;
208 -- Enforce the rule given in 12.3(18): a private operation in an instance
209 -- overrides an inherited operation only if the corresponding operation
210 -- was overriding in the generic. This needs to be checked for primitive
211 -- operations of types derived (in the generic unit) from formal private
212 -- or formal derived types.
214 procedure Make_Inequality_Operator
(S
: Entity_Id
);
215 -- Create the declaration for an inequality operator that is implicitly
216 -- created by a user-defined equality operator that yields a boolean.
218 procedure Set_Formal_Validity
(Formal_Id
: Entity_Id
);
219 -- Formal_Id is an formal parameter entity. This procedure deals with
220 -- setting the proper validity status for this entity, which depends on
221 -- the kind of parameter and the validity checking mode.
223 ---------------------------------------------
224 -- Analyze_Abstract_Subprogram_Declaration --
225 ---------------------------------------------
227 procedure Analyze_Abstract_Subprogram_Declaration
(N
: Node_Id
) is
228 Designator
: constant Entity_Id
:=
229 Analyze_Subprogram_Specification
(Specification
(N
));
230 Scop
: constant Entity_Id
:= Current_Scope
;
233 Check_SPARK_Restriction
("abstract subprogram is not allowed", N
);
235 Generate_Definition
(Designator
);
236 Set_Contract
(Designator
, Make_Contract
(Sloc
(Designator
)));
237 Set_Is_Abstract_Subprogram
(Designator
);
238 New_Overloaded_Entity
(Designator
);
239 Check_Delayed_Subprogram
(Designator
);
241 Set_Categorization_From_Scope
(Designator
, Scop
);
243 if Ekind
(Scope
(Designator
)) = E_Protected_Type
then
245 ("abstract subprogram not allowed in protected type", N
);
247 -- Issue a warning if the abstract subprogram is neither a dispatching
248 -- operation nor an operation that overrides an inherited subprogram or
249 -- predefined operator, since this most likely indicates a mistake.
251 elsif Warn_On_Redundant_Constructs
252 and then not Is_Dispatching_Operation
(Designator
)
253 and then not Present
(Overridden_Operation
(Designator
))
254 and then (not Is_Operator_Symbol_Name
(Chars
(Designator
))
255 or else Scop
/= Scope
(Etype
(First_Formal
(Designator
))))
258 ("abstract subprogram is not dispatching or overriding?r?", N
);
261 Generate_Reference_To_Formals
(Designator
);
262 Check_Eliminated
(Designator
);
264 if Has_Aspects
(N
) then
265 Analyze_Aspect_Specifications
(N
, Designator
);
267 end Analyze_Abstract_Subprogram_Declaration
;
269 ---------------------------------
270 -- Analyze_Expression_Function --
271 ---------------------------------
273 procedure Analyze_Expression_Function
(N
: Node_Id
) is
274 Loc
: constant Source_Ptr
:= Sloc
(N
);
275 LocX
: constant Source_Ptr
:= Sloc
(Expression
(N
));
276 Expr
: constant Node_Id
:= Expression
(N
);
277 Spec
: constant Node_Id
:= Specification
(N
);
282 -- If the expression is a completion, Prev is the entity whose
283 -- declaration is completed. Def_Id is needed to analyze the spec.
291 -- This is one of the occasions on which we transform the tree during
292 -- semantic analysis. If this is a completion, transform the expression
293 -- function into an equivalent subprogram body, and analyze it.
295 -- Expression functions are inlined unconditionally. The back-end will
296 -- determine whether this is possible.
298 Inline_Processing_Required
:= True;
300 -- Create a specification for the generated body. Types and defauts in
301 -- the profile are copies of the spec, but new entities must be created
302 -- for the unit name and the formals.
304 New_Spec
:= New_Copy_Tree
(Spec
);
305 Set_Defining_Unit_Name
(New_Spec
,
306 Make_Defining_Identifier
(Sloc
(Defining_Unit_Name
(Spec
)),
307 Chars
(Defining_Unit_Name
(Spec
))));
309 if Present
(Parameter_Specifications
(New_Spec
)) then
311 Formal_Spec
: Node_Id
;
315 Formal_Spec
:= First
(Parameter_Specifications
(New_Spec
));
317 -- Create a new formal parameter at the same source position
319 while Present
(Formal_Spec
) loop
320 Def
:= Defining_Identifier
(Formal_Spec
);
321 Set_Defining_Identifier
(Formal_Spec
,
322 Make_Defining_Identifier
(Sloc
(Def
),
323 Chars
=> Chars
(Def
)));
329 Prev
:= Current_Entity_In_Scope
(Defining_Entity
(Spec
));
331 -- If there are previous overloadable entities with the same name,
332 -- check whether any of them is completed by the expression function.
334 if Present
(Prev
) and then Is_Overloadable
(Prev
) then
335 Def_Id
:= Analyze_Subprogram_Specification
(Spec
);
336 Prev
:= Find_Corresponding_Spec
(N
);
339 Ret
:= Make_Simple_Return_Statement
(LocX
, Expression
(N
));
342 Make_Subprogram_Body
(Loc
,
343 Specification
=> New_Spec
,
344 Declarations
=> Empty_List
,
345 Handled_Statement_Sequence
=>
346 Make_Handled_Sequence_Of_Statements
(LocX
,
347 Statements
=> New_List
(Ret
)));
349 -- If the expression completes a generic subprogram, we must create a
350 -- separate node for the body, because at instantiation the original
351 -- node of the generic copy must be a generic subprogram body, and
352 -- cannot be a expression function. Otherwise we just rewrite the
353 -- expression with the non-generic body.
355 if Present
(Prev
) and then Ekind
(Prev
) = E_Generic_Function
then
356 Insert_After
(N
, New_Body
);
358 -- Propagate any aspects or pragmas that apply to the expression
359 -- function to the proper body when the expression function acts
362 if Has_Aspects
(N
) then
363 Move_Aspects
(N
, To
=> New_Body
);
366 Relocate_Pragmas_To_Body
(New_Body
);
368 Rewrite
(N
, Make_Null_Statement
(Loc
));
369 Set_Has_Completion
(Prev
, False);
372 Set_Is_Inlined
(Prev
);
374 elsif Present
(Prev
) and then Comes_From_Source
(Prev
) then
375 Set_Has_Completion
(Prev
, False);
377 -- An expression function that is a completion freezes the
378 -- expression. This means freezing the return type, and if it is
379 -- an access type, freezing its designated type as well.
381 -- Note that we cannot defer this freezing to the analysis of the
382 -- expression itself, because a freeze node might appear in a nested
383 -- scope, leading to an elaboration order issue in gigi.
385 Freeze_Before
(N
, Etype
(Prev
));
387 if Is_Access_Type
(Etype
(Prev
)) then
388 Freeze_Before
(N
, Designated_Type
(Etype
(Prev
)));
391 -- For navigation purposes, indicate that the function is a body
393 Generate_Reference
(Prev
, Defining_Entity
(N
), 'b', Force
=> True);
394 Rewrite
(N
, New_Body
);
396 -- Correct the parent pointer of the aspect specification list to
397 -- reference the rewritten node.
399 if Has_Aspects
(N
) then
400 Set_Parent
(Aspect_Specifications
(N
), N
);
403 -- Propagate any pragmas that apply to the expression function to the
404 -- proper body when the expression function acts as a completion.
405 -- Aspects are automatically transfered because of node rewriting.
407 Relocate_Pragmas_To_Body
(N
);
410 -- Prev is the previous entity with the same name, but it is can
411 -- be an unrelated spec that is not completed by the expression
412 -- function. In that case the relevant entity is the one in the body.
413 -- Not clear that the backend can inline it in this case ???
415 if Has_Completion
(Prev
) then
416 Set_Is_Inlined
(Prev
);
418 -- The formals of the expression function are body formals,
419 -- and do not appear in the ali file, which will only contain
420 -- references to the formals of the original subprogram spec.
427 F1
:= First_Formal
(Def_Id
);
428 F2
:= First_Formal
(Prev
);
430 while Present
(F1
) loop
431 Set_Spec_Entity
(F1
, F2
);
438 Set_Is_Inlined
(Defining_Entity
(New_Body
));
441 -- If this is not a completion, create both a declaration and a body, so
442 -- that the expression can be inlined whenever possible.
445 -- An expression function that is not a completion is not a
446 -- subprogram declaration, and thus cannot appear in a protected
449 if Nkind
(Parent
(N
)) = N_Protected_Definition
then
451 ("an expression function is not a legal protected operation", N
);
455 Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
);
457 Rewrite
(N
, New_Decl
);
459 -- Correct the parent pointer of the aspect specification list to
460 -- reference the rewritten node.
462 if Has_Aspects
(N
) then
463 Set_Parent
(Aspect_Specifications
(N
), N
);
467 Set_Is_Inlined
(Defining_Entity
(New_Decl
));
469 -- To prevent premature freeze action, insert the new body at the end
470 -- of the current declarations, or at the end of the package spec.
471 -- However, resolve usage names now, to prevent spurious visibility
472 -- on later entities. Note that the function can now be called in
473 -- the current declarative part, which will appear to be prior to
474 -- the presence of the body in the code. There are nevertheless no
475 -- order of elaboration issues because all name resolution has taken
476 -- place at the point of declaration.
479 Decls
: List_Id
:= List_Containing
(N
);
480 Par
: constant Node_Id
:= Parent
(Decls
);
481 Id
: constant Entity_Id
:= Defining_Entity
(New_Decl
);
484 if Nkind
(Par
) = N_Package_Specification
485 and then Decls
= Visible_Declarations
(Par
)
486 and then Present
(Private_Declarations
(Par
))
487 and then not Is_Empty_List
(Private_Declarations
(Par
))
489 Decls
:= Private_Declarations
(Par
);
492 Insert_After
(Last
(Decls
), New_Body
);
494 Install_Formals
(Id
);
496 -- Preanalyze the expression for name capture, except in an
497 -- instance, where this has been done during generic analysis,
498 -- and will be redone when analyzing the body.
501 Expr
: constant Node_Id
:= Expression
(Ret
);
504 Set_Parent
(Expr
, Ret
);
506 if not In_Instance
then
507 Preanalyze_Spec_Expression
(Expr
, Etype
(Id
));
515 -- If the return expression is a static constant, we suppress warning
516 -- messages on unused formals, which in most cases will be noise.
518 Set_Is_Trivial_Subprogram
(Defining_Entity
(New_Body
),
519 Is_OK_Static_Expression
(Expr
));
520 end Analyze_Expression_Function
;
522 ----------------------------------------
523 -- Analyze_Extended_Return_Statement --
524 ----------------------------------------
526 procedure Analyze_Extended_Return_Statement
(N
: Node_Id
) is
528 Analyze_Return_Statement
(N
);
529 end Analyze_Extended_Return_Statement
;
531 ----------------------------
532 -- Analyze_Function_Call --
533 ----------------------------
535 procedure Analyze_Function_Call
(N
: Node_Id
) is
536 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
537 Func_Nam
: constant Node_Id
:= Name
(N
);
543 -- A call of the form A.B (X) may be an Ada 2005 call, which is
544 -- rewritten as B (A, X). If the rewriting is successful, the call
545 -- has been analyzed and we just return.
547 if Nkind
(Func_Nam
) = N_Selected_Component
548 and then Name
(N
) /= Func_Nam
549 and then Is_Rewrite_Substitution
(N
)
550 and then Present
(Etype
(N
))
555 -- If error analyzing name, then set Any_Type as result type and return
557 if Etype
(Func_Nam
) = Any_Type
then
558 Set_Etype
(N
, Any_Type
);
562 -- Otherwise analyze the parameters
564 if Present
(Actuals
) then
565 Actual
:= First
(Actuals
);
566 while Present
(Actual
) loop
568 Check_Parameterless_Call
(Actual
);
574 end Analyze_Function_Call
;
576 -----------------------------
577 -- Analyze_Function_Return --
578 -----------------------------
580 procedure Analyze_Function_Return
(N
: Node_Id
) is
581 Loc
: constant Source_Ptr
:= Sloc
(N
);
582 Stm_Entity
: constant Entity_Id
:= Return_Statement_Entity
(N
);
583 Scope_Id
: constant Entity_Id
:= Return_Applies_To
(Stm_Entity
);
585 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
586 -- Function result subtype
588 procedure Check_Limited_Return
(Expr
: Node_Id
);
589 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
590 -- limited types. Used only for simple return statements.
591 -- Expr is the expression returned.
593 procedure Check_Return_Subtype_Indication
(Obj_Decl
: Node_Id
);
594 -- Check that the return_subtype_indication properly matches the result
595 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
597 --------------------------
598 -- Check_Limited_Return --
599 --------------------------
601 procedure Check_Limited_Return
(Expr
: Node_Id
) is
603 -- Ada 2005 (AI-318-02): Return-by-reference types have been
604 -- removed and replaced by anonymous access results. This is an
605 -- incompatibility with Ada 95. Not clear whether this should be
606 -- enforced yet or perhaps controllable with special switch. ???
608 -- A limited interface that is not immutably limited is OK.
610 if Is_Limited_Interface
(R_Type
)
612 not (Is_Task_Interface
(R_Type
)
613 or else Is_Protected_Interface
(R_Type
)
614 or else Is_Synchronized_Interface
(R_Type
))
618 elsif Is_Limited_Type
(R_Type
)
619 and then not Is_Interface
(R_Type
)
620 and then Comes_From_Source
(N
)
621 and then not In_Instance_Body
622 and then not OK_For_Limited_Init_In_05
(R_Type
, Expr
)
626 if Ada_Version
>= Ada_2005
627 and then not Debug_Flag_Dot_L
628 and then not GNAT_Mode
631 ("(Ada 2005) cannot copy object of a limited type " &
632 "(RM-2005 6.5(5.5/2))", Expr
);
634 if Is_Limited_View
(R_Type
) then
636 ("\return by reference not permitted in Ada 2005", Expr
);
639 -- Warn in Ada 95 mode, to give folks a heads up about this
642 -- In GNAT mode, this is just a warning, to allow it to be
643 -- evilly turned off. Otherwise it is a real error.
645 -- In a generic context, simplify the warning because it makes
646 -- no sense to discuss pass-by-reference or copy.
648 elsif Warn_On_Ada_2005_Compatibility
or GNAT_Mode
then
649 if Inside_A_Generic
then
651 ("return of limited object not permitted in Ada 2005 "
652 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
654 elsif Is_Limited_View
(R_Type
) then
656 ("return by reference not permitted in Ada 2005 "
657 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
660 ("cannot copy object of a limited type in Ada 2005 "
661 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
664 -- Ada 95 mode, compatibility warnings disabled
667 return; -- skip continuation messages below
670 if not Inside_A_Generic
then
672 ("\consider switching to return of access type", Expr
);
673 Explain_Limited_Type
(R_Type
, Expr
);
676 end Check_Limited_Return
;
678 -------------------------------------
679 -- Check_Return_Subtype_Indication --
680 -------------------------------------
682 procedure Check_Return_Subtype_Indication
(Obj_Decl
: Node_Id
) is
683 Return_Obj
: constant Node_Id
:= Defining_Identifier
(Obj_Decl
);
685 R_Stm_Type
: constant Entity_Id
:= Etype
(Return_Obj
);
686 -- Subtype given in the extended return statement (must match R_Type)
688 Subtype_Ind
: constant Node_Id
:=
689 Object_Definition
(Original_Node
(Obj_Decl
));
691 R_Type_Is_Anon_Access
: constant Boolean :=
693 E_Anonymous_Access_Subprogram_Type
,
694 E_Anonymous_Access_Protected_Subprogram_Type
,
695 E_Anonymous_Access_Type
);
696 -- True if return type of the function is an anonymous access type
697 -- Can't we make Is_Anonymous_Access_Type in einfo ???
699 R_Stm_Type_Is_Anon_Access
: constant Boolean :=
700 Ekind_In
(R_Stm_Type
,
701 E_Anonymous_Access_Subprogram_Type
,
702 E_Anonymous_Access_Protected_Subprogram_Type
,
703 E_Anonymous_Access_Type
);
704 -- True if type of the return object is an anonymous access type
706 procedure Error_No_Match
(N
: Node_Id
);
707 -- Output error messages for case where types do not statically
708 -- match. N is the location for the messages.
714 procedure Error_No_Match
(N
: Node_Id
) is
717 ("subtype must statically match function result subtype", N
);
719 if not Predicates_Match
(R_Stm_Type
, R_Type
) then
720 Error_Msg_Node_2
:= R_Type
;
722 ("\predicate of & does not match predicate of &",
727 -- Start of processing for Check_Return_Subtype_Indication
730 -- First, avoid cascaded errors
732 if Error_Posted
(Obj_Decl
) or else Error_Posted
(Subtype_Ind
) then
736 -- "return access T" case; check that the return statement also has
737 -- "access T", and that the subtypes statically match:
738 -- if this is an access to subprogram the signatures must match.
740 if R_Type_Is_Anon_Access
then
741 if R_Stm_Type_Is_Anon_Access
then
743 Ekind
(Designated_Type
(R_Stm_Type
)) /= E_Subprogram_Type
745 if Base_Type
(Designated_Type
(R_Stm_Type
)) /=
746 Base_Type
(Designated_Type
(R_Type
))
747 or else not Subtypes_Statically_Match
(R_Stm_Type
, R_Type
)
749 Error_No_Match
(Subtype_Mark
(Subtype_Ind
));
753 -- For two anonymous access to subprogram types, the
754 -- types themselves must be type conformant.
756 if not Conforming_Types
757 (R_Stm_Type
, R_Type
, Fully_Conformant
)
759 Error_No_Match
(Subtype_Ind
);
764 Error_Msg_N
("must use anonymous access type", Subtype_Ind
);
767 -- If the return object is of an anonymous access type, then report
768 -- an error if the function's result type is not also anonymous.
770 elsif R_Stm_Type_Is_Anon_Access
771 and then not R_Type_Is_Anon_Access
773 Error_Msg_N
("anonymous access not allowed for function with " &
774 "named access result", Subtype_Ind
);
776 -- Subtype indication case: check that the return object's type is
777 -- covered by the result type, and that the subtypes statically match
778 -- when the result subtype is constrained. Also handle record types
779 -- with unknown discriminants for which we have built the underlying
780 -- record view. Coverage is needed to allow specific-type return
781 -- objects when the result type is class-wide (see AI05-32).
783 elsif Covers
(Base_Type
(R_Type
), Base_Type
(R_Stm_Type
))
784 or else (Is_Underlying_Record_View
(Base_Type
(R_Stm_Type
))
788 Underlying_Record_View
(Base_Type
(R_Stm_Type
))))
790 -- A null exclusion may be present on the return type, on the
791 -- function specification, on the object declaration or on the
794 if Is_Access_Type
(R_Type
)
796 (Can_Never_Be_Null
(R_Type
)
797 or else Null_Exclusion_Present
(Parent
(Scope_Id
))) /=
798 Can_Never_Be_Null
(R_Stm_Type
)
800 Error_No_Match
(Subtype_Ind
);
803 -- AI05-103: for elementary types, subtypes must statically match
805 if Is_Constrained
(R_Type
)
806 or else Is_Access_Type
(R_Type
)
808 if not Subtypes_Statically_Match
(R_Stm_Type
, R_Type
) then
809 Error_No_Match
(Subtype_Ind
);
813 elsif Etype
(Base_Type
(R_Type
)) = R_Stm_Type
814 and then Is_Null_Extension
(Base_Type
(R_Type
))
820 ("wrong type for return_subtype_indication", Subtype_Ind
);
822 end Check_Return_Subtype_Indication
;
824 ---------------------
825 -- Local Variables --
826 ---------------------
830 -- Start of processing for Analyze_Function_Return
833 Set_Return_Present
(Scope_Id
);
835 if Nkind
(N
) = N_Simple_Return_Statement
then
836 Expr
:= Expression
(N
);
838 -- Guard against a malformed expression. The parser may have tried to
839 -- recover but the node is not analyzable.
841 if Nkind
(Expr
) = N_Error
then
842 Set_Etype
(Expr
, Any_Type
);
843 Expander_Mode_Save_And_Set
(False);
847 -- The resolution of a controlled [extension] aggregate associated
848 -- with a return statement creates a temporary which needs to be
849 -- finalized on function exit. Wrap the return statement inside a
850 -- block so that the finalization machinery can detect this case.
851 -- This early expansion is done only when the return statement is
852 -- not part of a handled sequence of statements.
854 if Nkind_In
(Expr
, N_Aggregate
,
855 N_Extension_Aggregate
)
856 and then Needs_Finalization
(R_Type
)
857 and then Nkind
(Parent
(N
)) /= N_Handled_Sequence_Of_Statements
860 Make_Block_Statement
(Loc
,
861 Handled_Statement_Sequence
=>
862 Make_Handled_Sequence_Of_Statements
(Loc
,
863 Statements
=> New_List
(Relocate_Node
(N
)))));
869 Analyze_And_Resolve
(Expr
, R_Type
);
870 Check_Limited_Return
(Expr
);
873 -- RETURN only allowed in SPARK as the last statement in function
875 if Nkind
(Parent
(N
)) /= N_Handled_Sequence_Of_Statements
877 (Nkind
(Parent
(Parent
(N
))) /= N_Subprogram_Body
878 or else Present
(Next
(N
)))
880 Check_SPARK_Restriction
881 ("RETURN should be the last statement in function", N
);
885 Check_SPARK_Restriction
("extended RETURN is not allowed", N
);
887 -- Analyze parts specific to extended_return_statement:
890 Obj_Decl
: constant Node_Id
:=
891 Last
(Return_Object_Declarations
(N
));
892 Has_Aliased
: constant Boolean := Aliased_Present
(Obj_Decl
);
893 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
896 Expr
:= Expression
(Obj_Decl
);
898 -- Note: The check for OK_For_Limited_Init will happen in
899 -- Analyze_Object_Declaration; we treat it as a normal
900 -- object declaration.
902 Set_Is_Return_Object
(Defining_Identifier
(Obj_Decl
));
905 Check_Return_Subtype_Indication
(Obj_Decl
);
907 if Present
(HSS
) then
910 if Present
(Exception_Handlers
(HSS
)) then
912 -- ???Has_Nested_Block_With_Handler needs to be set.
913 -- Probably by creating an actual N_Block_Statement.
914 -- Probably in Expand.
920 -- Mark the return object as referenced, since the return is an
921 -- implicit reference of the object.
923 Set_Referenced
(Defining_Identifier
(Obj_Decl
));
925 Check_References
(Stm_Entity
);
927 -- Check RM 6.5 (5.9/3)
930 if Ada_Version
< Ada_2012
then
932 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
933 -- Can it really happen (extended return???)
936 ("aliased only allowed for limited"
937 & " return objects in Ada 2012?", N
);
939 elsif not Is_Limited_View
(R_Type
) then
940 Error_Msg_N
("aliased only allowed for limited"
941 & " return objects", N
);
947 -- Case of Expr present
951 -- Defend against previous errors
953 and then Nkind
(Expr
) /= N_Empty
954 and then Present
(Etype
(Expr
))
956 -- Apply constraint check. Note that this is done before the implicit
957 -- conversion of the expression done for anonymous access types to
958 -- ensure correct generation of the null-excluding check associated
959 -- with null-excluding expressions found in return statements.
961 Apply_Constraint_Check
(Expr
, R_Type
);
963 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
964 -- type, apply an implicit conversion of the expression to that type
965 -- to force appropriate static and run-time accessibility checks.
967 if Ada_Version
>= Ada_2005
968 and then Ekind
(R_Type
) = E_Anonymous_Access_Type
970 Rewrite
(Expr
, Convert_To
(R_Type
, Relocate_Node
(Expr
)));
971 Analyze_And_Resolve
(Expr
, R_Type
);
973 -- If this is a local anonymous access to subprogram, the
974 -- accessibility check can be applied statically. The return is
975 -- illegal if the access type of the return expression is declared
976 -- inside of the subprogram (except if it is the subtype indication
977 -- of an extended return statement).
979 elsif Ekind
(R_Type
) = E_Anonymous_Access_Subprogram_Type
then
980 if not Comes_From_Source
(Current_Scope
)
981 or else Ekind
(Current_Scope
) = E_Return_Statement
986 Scope_Depth
(Scope
(Etype
(Expr
))) >= Scope_Depth
(Scope_Id
)
988 Error_Msg_N
("cannot return local access to subprogram", N
);
992 -- If the result type is class-wide, then check that the return
993 -- expression's type is not declared at a deeper level than the
994 -- function (RM05-6.5(5.6/2)).
996 if Ada_Version
>= Ada_2005
997 and then Is_Class_Wide_Type
(R_Type
)
999 if Type_Access_Level
(Etype
(Expr
)) >
1000 Subprogram_Access_Level
(Scope_Id
)
1003 ("level of return expression type is deeper than " &
1004 "class-wide function!", Expr
);
1008 -- Check incorrect use of dynamically tagged expression
1010 if Is_Tagged_Type
(R_Type
) then
1011 Check_Dynamically_Tagged_Expression
1017 -- ??? A real run-time accessibility check is needed in cases
1018 -- involving dereferences of access parameters. For now we just
1019 -- check the static cases.
1021 if (Ada_Version
< Ada_2005
or else Debug_Flag_Dot_L
)
1022 and then Is_Limited_View
(Etype
(Scope_Id
))
1023 and then Object_Access_Level
(Expr
) >
1024 Subprogram_Access_Level
(Scope_Id
)
1026 -- Suppress the message in a generic, where the rewriting
1029 if Inside_A_Generic
then
1034 Make_Raise_Program_Error
(Loc
,
1035 Reason
=> PE_Accessibility_Check_Failed
));
1038 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1039 Error_Msg_N
("cannot return a local value by reference<<", N
);
1040 Error_Msg_NE
("\& [<<", N
, Standard_Program_Error
);
1044 if Known_Null
(Expr
)
1045 and then Nkind
(Parent
(Scope_Id
)) = N_Function_Specification
1046 and then Null_Exclusion_Present
(Parent
(Scope_Id
))
1048 Apply_Compile_Time_Constraint_Error
1050 Msg
=> "(Ada 2005) null not allowed for "
1051 & "null-excluding return??",
1052 Reason
=> CE_Null_Not_Allowed
);
1055 end Analyze_Function_Return
;
1057 -------------------------------------
1058 -- Analyze_Generic_Subprogram_Body --
1059 -------------------------------------
1061 procedure Analyze_Generic_Subprogram_Body
1065 Gen_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Gen_Id
);
1066 Kind
: constant Entity_Kind
:= Ekind
(Gen_Id
);
1067 Body_Id
: Entity_Id
;
1072 -- Copy body and disable expansion while analyzing the generic For a
1073 -- stub, do not copy the stub (which would load the proper body), this
1074 -- will be done when the proper body is analyzed.
1076 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
1077 New_N
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> False);
1082 Spec
:= Specification
(N
);
1084 -- Within the body of the generic, the subprogram is callable, and
1085 -- behaves like the corresponding non-generic unit.
1087 Body_Id
:= Defining_Entity
(Spec
);
1089 if Kind
= E_Generic_Procedure
1090 and then Nkind
(Spec
) /= N_Procedure_Specification
1092 Error_Msg_N
("invalid body for generic procedure ", Body_Id
);
1095 elsif Kind
= E_Generic_Function
1096 and then Nkind
(Spec
) /= N_Function_Specification
1098 Error_Msg_N
("invalid body for generic function ", Body_Id
);
1102 Set_Corresponding_Body
(Gen_Decl
, Body_Id
);
1104 if Has_Completion
(Gen_Id
)
1105 and then Nkind
(Parent
(N
)) /= N_Subunit
1107 Error_Msg_N
("duplicate generic body", N
);
1110 Set_Has_Completion
(Gen_Id
);
1113 if Nkind
(N
) = N_Subprogram_Body_Stub
then
1114 Set_Ekind
(Defining_Entity
(Specification
(N
)), Kind
);
1116 Set_Corresponding_Spec
(N
, Gen_Id
);
1119 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
1120 Set_Cunit_Entity
(Current_Sem_Unit
, Defining_Entity
(N
));
1123 -- Make generic parameters immediately visible in the body. They are
1124 -- needed to process the formals declarations. Then make the formals
1125 -- visible in a separate step.
1127 Push_Scope
(Gen_Id
);
1131 First_Ent
: Entity_Id
;
1134 First_Ent
:= First_Entity
(Gen_Id
);
1137 while Present
(E
) and then not Is_Formal
(E
) loop
1142 Set_Use
(Generic_Formal_Declarations
(Gen_Decl
));
1144 -- Now generic formals are visible, and the specification can be
1145 -- analyzed, for subsequent conformance check.
1147 Body_Id
:= Analyze_Subprogram_Specification
(Spec
);
1149 -- Make formal parameters visible
1153 -- E is the first formal parameter, we loop through the formals
1154 -- installing them so that they will be visible.
1156 Set_First_Entity
(Gen_Id
, E
);
1157 while Present
(E
) loop
1163 -- Visible generic entity is callable within its own body
1165 Set_Ekind
(Gen_Id
, Ekind
(Body_Id
));
1166 Set_Contract
(Body_Id
, Make_Contract
(Sloc
(Body_Id
)));
1167 Set_Ekind
(Body_Id
, E_Subprogram_Body
);
1168 Set_Convention
(Body_Id
, Convention
(Gen_Id
));
1169 Set_Is_Obsolescent
(Body_Id
, Is_Obsolescent
(Gen_Id
));
1170 Set_Scope
(Body_Id
, Scope
(Gen_Id
));
1171 Check_Fully_Conformant
(Body_Id
, Gen_Id
, Body_Id
);
1173 if Nkind
(N
) = N_Subprogram_Body_Stub
then
1175 -- No body to analyze, so restore state of generic unit
1177 Set_Ekind
(Gen_Id
, Kind
);
1178 Set_Ekind
(Body_Id
, Kind
);
1180 if Present
(First_Ent
) then
1181 Set_First_Entity
(Gen_Id
, First_Ent
);
1188 -- If this is a compilation unit, it must be made visible explicitly,
1189 -- because the compilation of the declaration, unlike other library
1190 -- unit declarations, does not. If it is not a unit, the following
1191 -- is redundant but harmless.
1193 Set_Is_Immediately_Visible
(Gen_Id
);
1194 Reference_Body_Formals
(Gen_Id
, Body_Id
);
1196 if Is_Child_Unit
(Gen_Id
) then
1197 Generate_Reference
(Gen_Id
, Scope
(Gen_Id
), 'k', False);
1200 Set_Actual_Subtypes
(N
, Current_Scope
);
1202 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
1203 -- invariants and predicates associated with the body and its spec.
1204 -- Note that this is not pure expansion as Expand_Subprogram_Contract
1205 -- prepares the contract assertions for generic subprograms or for
1206 -- ASIS. Do not generate contract checks in SPARK mode.
1208 if not GNATprove_Mode
then
1209 Expand_Subprogram_Contract
(N
, Gen_Id
, Body_Id
);
1212 -- If the generic unit carries pre- or post-conditions, copy them
1213 -- to the original generic tree, so that they are properly added
1214 -- to any instantiation.
1217 Orig
: constant Node_Id
:= Original_Node
(N
);
1221 Cond
:= First
(Declarations
(N
));
1222 while Present
(Cond
) loop
1223 if Nkind
(Cond
) = N_Pragma
1224 and then Pragma_Name
(Cond
) = Name_Check
1226 Prepend
(New_Copy_Tree
(Cond
), Declarations
(Orig
));
1228 elsif Nkind
(Cond
) = N_Pragma
1229 and then Pragma_Name
(Cond
) = Name_Postcondition
1231 Set_Ekind
(Defining_Entity
(Orig
), Ekind
(Gen_Id
));
1232 Prepend
(New_Copy_Tree
(Cond
), Declarations
(Orig
));
1241 Check_SPARK_Mode_In_Generic
(N
);
1243 Set_SPARK_Pragma
(Body_Id
, SPARK_Mode_Pragma
);
1244 Set_SPARK_Pragma_Inherited
(Body_Id
, True);
1246 Analyze_Declarations
(Declarations
(N
));
1248 Analyze
(Handled_Statement_Sequence
(N
));
1250 Save_Global_References
(Original_Node
(N
));
1252 -- Prior to exiting the scope, include generic formals again (if any
1253 -- are present) in the set of local entities.
1255 if Present
(First_Ent
) then
1256 Set_First_Entity
(Gen_Id
, First_Ent
);
1259 Check_References
(Gen_Id
);
1262 Process_End_Label
(Handled_Statement_Sequence
(N
), 't', Current_Scope
);
1264 Check_Subprogram_Order
(N
);
1266 -- Outside of its body, unit is generic again
1268 Set_Ekind
(Gen_Id
, Kind
);
1269 Generate_Reference
(Gen_Id
, Body_Id
, 'b', Set_Ref
=> False);
1272 Style
.Check_Identifier
(Body_Id
, Gen_Id
);
1276 end Analyze_Generic_Subprogram_Body
;
1278 ----------------------------
1279 -- Analyze_Null_Procedure --
1280 ----------------------------
1282 procedure Analyze_Null_Procedure
1284 Is_Completion
: out Boolean)
1286 Loc
: constant Source_Ptr
:= Sloc
(N
);
1287 Spec
: constant Node_Id
:= Specification
(N
);
1288 Designator
: Entity_Id
;
1290 Null_Body
: Node_Id
:= Empty
;
1294 -- Capture the profile of the null procedure before analysis, for
1295 -- expansion at the freeze point and at each point of call. The body is
1296 -- used if the procedure has preconditions, or if it is a completion. In
1297 -- the first case the body is analyzed at the freeze point, in the other
1298 -- it replaces the null procedure declaration.
1301 Make_Subprogram_Body
(Loc
,
1302 Specification
=> New_Copy_Tree
(Spec
),
1303 Declarations
=> New_List
,
1304 Handled_Statement_Sequence
=>
1305 Make_Handled_Sequence_Of_Statements
(Loc
,
1306 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
1308 -- Create new entities for body and formals
1310 Set_Defining_Unit_Name
(Specification
(Null_Body
),
1311 Make_Defining_Identifier
(Loc
, Chars
(Defining_Entity
(N
))));
1313 Form
:= First
(Parameter_Specifications
(Specification
(Null_Body
)));
1314 while Present
(Form
) loop
1315 Set_Defining_Identifier
(Form
,
1316 Make_Defining_Identifier
(Loc
, Chars
(Defining_Identifier
(Form
))));
1320 -- Determine whether the null procedure may be a completion of a generic
1321 -- suprogram, in which case we use the new null body as the completion
1322 -- and set minimal semantic information on the original declaration,
1323 -- which is rewritten as a null statement.
1325 Prev
:= Current_Entity_In_Scope
(Defining_Entity
(Spec
));
1327 if Present
(Prev
) and then Is_Generic_Subprogram
(Prev
) then
1328 Insert_Before
(N
, Null_Body
);
1329 Set_Ekind
(Defining_Entity
(N
), Ekind
(Prev
));
1330 Set_Contract
(Defining_Entity
(N
), Make_Contract
(Loc
));
1332 Rewrite
(N
, Make_Null_Statement
(Loc
));
1333 Analyze_Generic_Subprogram_Body
(Null_Body
, Prev
);
1334 Is_Completion
:= True;
1338 -- Resolve the types of the formals now, because the freeze point
1339 -- may appear in a different context, e.g. an instantiation.
1341 Form
:= First
(Parameter_Specifications
(Specification
(Null_Body
)));
1342 while Present
(Form
) loop
1343 if Nkind
(Parameter_Type
(Form
)) /= N_Access_Definition
then
1344 Find_Type
(Parameter_Type
(Form
));
1347 No
(Access_To_Subprogram_Definition
(Parameter_Type
(Form
)))
1349 Find_Type
(Subtype_Mark
(Parameter_Type
(Form
)));
1352 -- The case of a null procedure with a formal that is an
1353 -- access_to_subprogram type, and that is used as an actual
1354 -- in an instantiation is left to the enthusiastic reader.
1363 -- If there are previous overloadable entities with the same name,
1364 -- check whether any of them is completed by the null procedure.
1366 if Present
(Prev
) and then Is_Overloadable
(Prev
) then
1367 Designator
:= Analyze_Subprogram_Specification
(Spec
);
1368 Prev
:= Find_Corresponding_Spec
(N
);
1371 if No
(Prev
) or else not Comes_From_Source
(Prev
) then
1372 Designator
:= Analyze_Subprogram_Specification
(Spec
);
1373 Set_Has_Completion
(Designator
);
1375 -- Signal to caller that this is a procedure declaration
1377 Is_Completion
:= False;
1379 -- Null procedures are always inlined, but generic formal subprograms
1380 -- which appear as such in the internal instance of formal packages,
1381 -- need no completion and are not marked Inline.
1384 and then Nkind
(N
) /= N_Formal_Concrete_Subprogram_Declaration
1386 Set_Corresponding_Body
(N
, Defining_Entity
(Null_Body
));
1387 Set_Body_To_Inline
(N
, Null_Body
);
1388 Set_Is_Inlined
(Designator
);
1392 -- The null procedure is a completion
1394 Is_Completion
:= True;
1396 if Expander_Active
then
1397 Rewrite
(N
, Null_Body
);
1401 Designator
:= Analyze_Subprogram_Specification
(Spec
);
1402 Set_Has_Completion
(Designator
);
1403 Set_Has_Completion
(Prev
);
1406 end Analyze_Null_Procedure
;
1408 -----------------------------
1409 -- Analyze_Operator_Symbol --
1410 -----------------------------
1412 -- An operator symbol such as "+" or "and" may appear in context where the
1413 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1414 -- is just a string, as in (conjunction = "or"). In these cases the parser
1415 -- generates this node, and the semantics does the disambiguation. Other
1416 -- such case are actuals in an instantiation, the generic unit in an
1417 -- instantiation, and pragma arguments.
1419 procedure Analyze_Operator_Symbol
(N
: Node_Id
) is
1420 Par
: constant Node_Id
:= Parent
(N
);
1423 if (Nkind
(Par
) = N_Function_Call
and then N
= Name
(Par
))
1424 or else Nkind
(Par
) = N_Function_Instantiation
1425 or else (Nkind
(Par
) = N_Indexed_Component
and then N
= Prefix
(Par
))
1426 or else (Nkind
(Par
) = N_Pragma_Argument_Association
1427 and then not Is_Pragma_String_Literal
(Par
))
1428 or else Nkind
(Par
) = N_Subprogram_Renaming_Declaration
1429 or else (Nkind
(Par
) = N_Attribute_Reference
1430 and then Attribute_Name
(Par
) /= Name_Value
)
1432 Find_Direct_Name
(N
);
1435 Change_Operator_Symbol_To_String_Literal
(N
);
1438 end Analyze_Operator_Symbol
;
1440 -----------------------------------
1441 -- Analyze_Parameter_Association --
1442 -----------------------------------
1444 procedure Analyze_Parameter_Association
(N
: Node_Id
) is
1446 Analyze
(Explicit_Actual_Parameter
(N
));
1447 end Analyze_Parameter_Association
;
1449 ----------------------------
1450 -- Analyze_Procedure_Call --
1451 ----------------------------
1453 procedure Analyze_Procedure_Call
(N
: Node_Id
) is
1454 Loc
: constant Source_Ptr
:= Sloc
(N
);
1455 P
: constant Node_Id
:= Name
(N
);
1456 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
1460 procedure Analyze_Call_And_Resolve
;
1461 -- Do Analyze and Resolve calls for procedure call
1462 -- At end, check illegal order dependence.
1464 ------------------------------
1465 -- Analyze_Call_And_Resolve --
1466 ------------------------------
1468 procedure Analyze_Call_And_Resolve
is
1470 if Nkind
(N
) = N_Procedure_Call_Statement
then
1472 Resolve
(N
, Standard_Void_Type
);
1476 end Analyze_Call_And_Resolve
;
1478 -- Start of processing for Analyze_Procedure_Call
1481 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1482 -- a procedure call or an entry call. The prefix may denote an access
1483 -- to subprogram type, in which case an implicit dereference applies.
1484 -- If the prefix is an indexed component (without implicit dereference)
1485 -- then the construct denotes a call to a member of an entire family.
1486 -- If the prefix is a simple name, it may still denote a call to a
1487 -- parameterless member of an entry family. Resolution of these various
1488 -- interpretations is delicate.
1492 -- If this is a call of the form Obj.Op, the call may have been
1493 -- analyzed and possibly rewritten into a block, in which case
1496 if Analyzed
(N
) then
1500 -- If there is an error analyzing the name (which may have been
1501 -- rewritten if the original call was in prefix notation) then error
1502 -- has been emitted already, mark node and return.
1504 if Error_Posted
(N
) or else Etype
(Name
(N
)) = Any_Type
then
1505 Set_Etype
(N
, Any_Type
);
1509 -- Otherwise analyze the parameters
1511 if Present
(Actuals
) then
1512 Actual
:= First
(Actuals
);
1514 while Present
(Actual
) loop
1516 Check_Parameterless_Call
(Actual
);
1521 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1523 if Nkind
(P
) = N_Attribute_Reference
1524 and then Nam_In
(Attribute_Name
(P
), Name_Elab_Spec
,
1526 Name_Elab_Subp_Body
)
1528 if Present
(Actuals
) then
1530 ("no parameters allowed for this call", First
(Actuals
));
1534 Set_Etype
(N
, Standard_Void_Type
);
1537 elsif Is_Entity_Name
(P
)
1538 and then Is_Record_Type
(Etype
(Entity
(P
)))
1539 and then Remote_AST_I_Dereference
(P
)
1543 elsif Is_Entity_Name
(P
)
1544 and then Ekind
(Entity
(P
)) /= E_Entry_Family
1546 if Is_Access_Type
(Etype
(P
))
1547 and then Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
1548 and then No
(Actuals
)
1549 and then Comes_From_Source
(N
)
1551 Error_Msg_N
("missing explicit dereference in call", N
);
1554 Analyze_Call_And_Resolve
;
1556 -- If the prefix is the simple name of an entry family, this is
1557 -- a parameterless call from within the task body itself.
1559 elsif Is_Entity_Name
(P
)
1560 and then Nkind
(P
) = N_Identifier
1561 and then Ekind
(Entity
(P
)) = E_Entry_Family
1562 and then Present
(Actuals
)
1563 and then No
(Next
(First
(Actuals
)))
1565 -- Can be call to parameterless entry family. What appears to be the
1566 -- sole argument is in fact the entry index. Rewrite prefix of node
1567 -- accordingly. Source representation is unchanged by this
1571 Make_Indexed_Component
(Loc
,
1573 Make_Selected_Component
(Loc
,
1574 Prefix
=> New_Occurrence_Of
(Scope
(Entity
(P
)), Loc
),
1575 Selector_Name
=> New_Occurrence_Of
(Entity
(P
), Loc
)),
1576 Expressions
=> Actuals
);
1577 Set_Name
(N
, New_N
);
1578 Set_Etype
(New_N
, Standard_Void_Type
);
1579 Set_Parameter_Associations
(N
, No_List
);
1580 Analyze_Call_And_Resolve
;
1582 elsif Nkind
(P
) = N_Explicit_Dereference
then
1583 if Ekind
(Etype
(P
)) = E_Subprogram_Type
then
1584 Analyze_Call_And_Resolve
;
1586 Error_Msg_N
("expect access to procedure in call", P
);
1589 -- The name can be a selected component or an indexed component that
1590 -- yields an access to subprogram. Such a prefix is legal if the call
1591 -- has parameter associations.
1593 elsif Is_Access_Type
(Etype
(P
))
1594 and then Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
1596 if Present
(Actuals
) then
1597 Analyze_Call_And_Resolve
;
1599 Error_Msg_N
("missing explicit dereference in call ", N
);
1602 -- If not an access to subprogram, then the prefix must resolve to the
1603 -- name of an entry, entry family, or protected operation.
1605 -- For the case of a simple entry call, P is a selected component where
1606 -- the prefix is the task and the selector name is the entry. A call to
1607 -- a protected procedure will have the same syntax. If the protected
1608 -- object contains overloaded operations, the entity may appear as a
1609 -- function, the context will select the operation whose type is Void.
1611 elsif Nkind
(P
) = N_Selected_Component
1612 and then Ekind_In
(Entity
(Selector_Name
(P
)), E_Entry
,
1616 Analyze_Call_And_Resolve
;
1618 elsif Nkind
(P
) = N_Selected_Component
1619 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Entry_Family
1620 and then Present
(Actuals
)
1621 and then No
(Next
(First
(Actuals
)))
1623 -- Can be call to parameterless entry family. What appears to be the
1624 -- sole argument is in fact the entry index. Rewrite prefix of node
1625 -- accordingly. Source representation is unchanged by this
1629 Make_Indexed_Component
(Loc
,
1630 Prefix
=> New_Copy
(P
),
1631 Expressions
=> Actuals
);
1632 Set_Name
(N
, New_N
);
1633 Set_Etype
(New_N
, Standard_Void_Type
);
1634 Set_Parameter_Associations
(N
, No_List
);
1635 Analyze_Call_And_Resolve
;
1637 -- For the case of a reference to an element of an entry family, P is
1638 -- an indexed component whose prefix is a selected component (task and
1639 -- entry family), and whose index is the entry family index.
1641 elsif Nkind
(P
) = N_Indexed_Component
1642 and then Nkind
(Prefix
(P
)) = N_Selected_Component
1643 and then Ekind
(Entity
(Selector_Name
(Prefix
(P
)))) = E_Entry_Family
1645 Analyze_Call_And_Resolve
;
1647 -- If the prefix is the name of an entry family, it is a call from
1648 -- within the task body itself.
1650 elsif Nkind
(P
) = N_Indexed_Component
1651 and then Nkind
(Prefix
(P
)) = N_Identifier
1652 and then Ekind
(Entity
(Prefix
(P
))) = E_Entry_Family
1655 Make_Selected_Component
(Loc
,
1656 Prefix
=> New_Occurrence_Of
(Scope
(Entity
(Prefix
(P
))), Loc
),
1657 Selector_Name
=> New_Occurrence_Of
(Entity
(Prefix
(P
)), Loc
));
1658 Rewrite
(Prefix
(P
), New_N
);
1660 Analyze_Call_And_Resolve
;
1662 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1663 -- procedure name, so the construct can only be a qualified expression.
1665 elsif Nkind
(P
) = N_Qualified_Expression
1666 and then Ada_Version
>= Ada_2012
1668 Rewrite
(N
, Make_Code_Statement
(Loc
, Expression
=> P
));
1671 -- Anything else is an error
1674 Error_Msg_N
("invalid procedure or entry call", N
);
1676 end Analyze_Procedure_Call
;
1678 ------------------------------
1679 -- Analyze_Return_Statement --
1680 ------------------------------
1682 procedure Analyze_Return_Statement
(N
: Node_Id
) is
1684 pragma Assert
(Nkind_In
(N
, N_Simple_Return_Statement
,
1685 N_Extended_Return_Statement
));
1687 Returns_Object
: constant Boolean :=
1688 Nkind
(N
) = N_Extended_Return_Statement
1690 (Nkind
(N
) = N_Simple_Return_Statement
1691 and then Present
(Expression
(N
)));
1692 -- True if we're returning something; that is, "return <expression>;"
1693 -- or "return Result : T [:= ...]". False for "return;". Used for error
1694 -- checking: If Returns_Object is True, N should apply to a function
1695 -- body; otherwise N should apply to a procedure body, entry body,
1696 -- accept statement, or extended return statement.
1698 function Find_What_It_Applies_To
return Entity_Id
;
1699 -- Find the entity representing the innermost enclosing body, accept
1700 -- statement, or extended return statement. If the result is a callable
1701 -- construct or extended return statement, then this will be the value
1702 -- of the Return_Applies_To attribute. Otherwise, the program is
1703 -- illegal. See RM-6.5(4/2).
1705 -----------------------------
1706 -- Find_What_It_Applies_To --
1707 -----------------------------
1709 function Find_What_It_Applies_To
return Entity_Id
is
1710 Result
: Entity_Id
:= Empty
;
1713 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1714 -- and postconditions.
1716 for J
in reverse 0 .. Scope_Stack
.Last
loop
1717 Result
:= Scope_Stack
.Table
(J
).Entity
;
1718 exit when not Ekind_In
(Result
, E_Block
, E_Loop
)
1719 and then Chars
(Result
) /= Name_uPostconditions
;
1722 pragma Assert
(Present
(Result
));
1724 end Find_What_It_Applies_To
;
1726 -- Local declarations
1728 Scope_Id
: constant Entity_Id
:= Find_What_It_Applies_To
;
1729 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
1730 Loc
: constant Source_Ptr
:= Sloc
(N
);
1731 Stm_Entity
: constant Entity_Id
:=
1733 (E_Return_Statement
, Current_Scope
, Loc
, 'R');
1735 -- Start of processing for Analyze_Return_Statement
1738 Set_Return_Statement_Entity
(N
, Stm_Entity
);
1740 Set_Etype
(Stm_Entity
, Standard_Void_Type
);
1741 Set_Return_Applies_To
(Stm_Entity
, Scope_Id
);
1743 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1744 -- (4/2): an inner return statement will apply to this extended return.
1746 if Nkind
(N
) = N_Extended_Return_Statement
then
1747 Push_Scope
(Stm_Entity
);
1750 -- Check that pragma No_Return is obeyed. Don't complain about the
1751 -- implicitly-generated return that is placed at the end.
1753 if No_Return
(Scope_Id
) and then Comes_From_Source
(N
) then
1754 Error_Msg_N
("RETURN statement not allowed (No_Return)", N
);
1757 -- Warn on any unassigned OUT parameters if in procedure
1759 if Ekind
(Scope_Id
) = E_Procedure
then
1760 Warn_On_Unassigned_Out_Parameter
(N
, Scope_Id
);
1763 -- Check that functions return objects, and other things do not
1765 if Kind
= E_Function
or else Kind
= E_Generic_Function
then
1766 if not Returns_Object
then
1767 Error_Msg_N
("missing expression in return from function", N
);
1770 elsif Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
1771 if Returns_Object
then
1772 Error_Msg_N
("procedure cannot return value (use function)", N
);
1775 elsif Kind
= E_Entry
or else Kind
= E_Entry_Family
then
1776 if Returns_Object
then
1777 if Is_Protected_Type
(Scope
(Scope_Id
)) then
1778 Error_Msg_N
("entry body cannot return value", N
);
1780 Error_Msg_N
("accept statement cannot return value", N
);
1784 elsif Kind
= E_Return_Statement
then
1786 -- We are nested within another return statement, which must be an
1787 -- extended_return_statement.
1789 if Returns_Object
then
1790 if Nkind
(N
) = N_Extended_Return_Statement
then
1792 ("extended return statement cannot be nested (use `RETURN;`)",
1795 -- Case of a simple return statement with a value inside extended
1796 -- return statement.
1800 ("return nested in extended return statement cannot return " &
1801 "value (use `RETURN;`)", N
);
1806 Error_Msg_N
("illegal context for return statement", N
);
1809 if Ekind_In
(Kind
, E_Function
, E_Generic_Function
) then
1810 Analyze_Function_Return
(N
);
1812 elsif Ekind_In
(Kind
, E_Procedure
, E_Generic_Procedure
) then
1813 Set_Return_Present
(Scope_Id
);
1816 if Nkind
(N
) = N_Extended_Return_Statement
then
1820 Kill_Current_Values
(Last_Assignment_Only
=> True);
1821 Check_Unreachable_Code
(N
);
1823 Analyze_Dimension
(N
);
1824 end Analyze_Return_Statement
;
1826 -------------------------------------
1827 -- Analyze_Simple_Return_Statement --
1828 -------------------------------------
1830 procedure Analyze_Simple_Return_Statement
(N
: Node_Id
) is
1832 if Present
(Expression
(N
)) then
1833 Mark_Coextensions
(N
, Expression
(N
));
1836 Analyze_Return_Statement
(N
);
1837 end Analyze_Simple_Return_Statement
;
1839 -------------------------
1840 -- Analyze_Return_Type --
1841 -------------------------
1843 procedure Analyze_Return_Type
(N
: Node_Id
) is
1844 Designator
: constant Entity_Id
:= Defining_Entity
(N
);
1845 Typ
: Entity_Id
:= Empty
;
1848 -- Normal case where result definition does not indicate an error
1850 if Result_Definition
(N
) /= Error
then
1851 if Nkind
(Result_Definition
(N
)) = N_Access_Definition
then
1852 Check_SPARK_Restriction
1853 ("access result is not allowed", Result_Definition
(N
));
1855 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1858 AD
: constant Node_Id
:=
1859 Access_To_Subprogram_Definition
(Result_Definition
(N
));
1861 if Present
(AD
) and then Protected_Present
(AD
) then
1862 Typ
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1864 Typ
:= Access_Definition
(N
, Result_Definition
(N
));
1868 Set_Parent
(Typ
, Result_Definition
(N
));
1869 Set_Is_Local_Anonymous_Access
(Typ
);
1870 Set_Etype
(Designator
, Typ
);
1872 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1874 Null_Exclusion_Static_Checks
(N
);
1876 -- Subtype_Mark case
1879 Find_Type
(Result_Definition
(N
));
1880 Typ
:= Entity
(Result_Definition
(N
));
1881 Set_Etype
(Designator
, Typ
);
1883 -- Unconstrained array as result is not allowed in SPARK
1885 if Is_Array_Type
(Typ
) and then not Is_Constrained
(Typ
) then
1886 Check_SPARK_Restriction
1887 ("returning an unconstrained array is not allowed",
1888 Result_Definition
(N
));
1891 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1893 Null_Exclusion_Static_Checks
(N
);
1895 -- If a null exclusion is imposed on the result type, then create
1896 -- a null-excluding itype (an access subtype) and use it as the
1897 -- function's Etype. Note that the null exclusion checks are done
1898 -- right before this, because they don't get applied to types that
1899 -- do not come from source.
1901 if Is_Access_Type
(Typ
) and then Null_Exclusion_Present
(N
) then
1902 Set_Etype
(Designator
,
1903 Create_Null_Excluding_Itype
1906 Scope_Id
=> Scope
(Current_Scope
)));
1908 -- The new subtype must be elaborated before use because
1909 -- it is visible outside of the function. However its base
1910 -- type may not be frozen yet, so the reference that will
1911 -- force elaboration must be attached to the freezing of
1914 -- If the return specification appears on a proper body,
1915 -- the subtype will have been created already on the spec.
1917 if Is_Frozen
(Typ
) then
1918 if Nkind
(Parent
(N
)) = N_Subprogram_Body
1919 and then Nkind
(Parent
(Parent
(N
))) = N_Subunit
1923 Build_Itype_Reference
(Etype
(Designator
), Parent
(N
));
1927 Ensure_Freeze_Node
(Typ
);
1930 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(N
));
1932 Set_Itype
(IR
, Etype
(Designator
));
1933 Append_Freeze_Actions
(Typ
, New_List
(IR
));
1938 Set_Etype
(Designator
, Typ
);
1941 if Ekind
(Typ
) = E_Incomplete_Type
1942 and then Is_Value_Type
(Typ
)
1946 elsif Ekind
(Typ
) = E_Incomplete_Type
1947 or else (Is_Class_Wide_Type
(Typ
)
1948 and then Ekind
(Root_Type
(Typ
)) = E_Incomplete_Type
)
1950 -- AI05-0151: Tagged incomplete types are allowed in all formal
1951 -- parts. Untagged incomplete types are not allowed in bodies.
1953 if Ada_Version
>= Ada_2012
then
1954 if Is_Tagged_Type
(Typ
) then
1957 elsif Nkind
(Parent
(N
)) = N_Subprogram_Body
1958 or else Nkind_In
(Parent
(Parent
(N
)), N_Accept_Statement
,
1962 ("invalid use of untagged incomplete type&",
1966 -- The type must be completed in the current package. This
1967 -- is checked at the end of the package declaration when
1968 -- Taft-amendment types are identified. If the return type
1969 -- is class-wide, there is no required check, the type can
1970 -- be a bona fide TAT.
1972 if Ekind
(Scope
(Current_Scope
)) = E_Package
1973 and then In_Private_Part
(Scope
(Current_Scope
))
1974 and then not Is_Class_Wide_Type
(Typ
)
1976 Append_Elmt
(Designator
, Private_Dependents
(Typ
));
1981 ("invalid use of incomplete type&", Designator
, Typ
);
1986 -- Case where result definition does indicate an error
1989 Set_Etype
(Designator
, Any_Type
);
1991 end Analyze_Return_Type
;
1993 -----------------------------
1994 -- Analyze_Subprogram_Body --
1995 -----------------------------
1997 procedure Analyze_Subprogram_Body
(N
: Node_Id
) is
1998 Loc
: constant Source_Ptr
:= Sloc
(N
);
1999 Body_Spec
: constant Node_Id
:= Specification
(N
);
2000 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2003 if Debug_Flag_C
then
2004 Write_Str
("==> subprogram body ");
2005 Write_Name
(Chars
(Body_Id
));
2006 Write_Str
(" from ");
2007 Write_Location
(Loc
);
2012 Trace_Scope
(N
, Body_Id
, " Analyze subprogram: ");
2014 -- The real work is split out into the helper, so it can do "return;"
2015 -- without skipping the debug output:
2017 Analyze_Subprogram_Body_Helper
(N
);
2019 if Debug_Flag_C
then
2021 Write_Str
("<== subprogram body ");
2022 Write_Name
(Chars
(Body_Id
));
2023 Write_Str
(" from ");
2024 Write_Location
(Loc
);
2027 end Analyze_Subprogram_Body
;
2029 --------------------------------------
2030 -- Analyze_Subprogram_Body_Contract --
2031 --------------------------------------
2033 procedure Analyze_Subprogram_Body_Contract
(Body_Id
: Entity_Id
) is
2034 Body_Decl
: constant Node_Id
:= Parent
(Parent
(Body_Id
));
2035 Spec_Id
: constant Entity_Id
:= Corresponding_Spec
(Body_Decl
);
2037 Ref_Depends
: Node_Id
:= Empty
;
2038 Ref_Global
: Node_Id
:= Empty
;
2041 -- When a subprogram body declaration is erroneous, its defining entity
2042 -- is left unanalyzed. There is nothing left to do in this case because
2043 -- the body lacks a contract.
2045 if not Analyzed
(Body_Id
) then
2049 -- Locate and store pragmas Refined_Depends and Refined_Global since
2050 -- their order of analysis matters.
2052 Prag
:= Classifications
(Contract
(Body_Id
));
2053 while Present
(Prag
) loop
2054 if Pragma_Name
(Prag
) = Name_Refined_Depends
then
2055 Ref_Depends
:= Prag
;
2056 elsif Pragma_Name
(Prag
) = Name_Refined_Global
then
2060 Prag
:= Next_Pragma
(Prag
);
2063 -- Analyze Refined_Global first as Refined_Depends may mention items
2064 -- classified in the global refinement.
2066 if Present
(Ref_Global
) then
2067 Analyze_Refined_Global_In_Decl_Part
(Ref_Global
);
2069 -- When the corresponding Global aspect/pragma references a state with
2070 -- visible refinement, the body requires Refined_Global. Refinement is
2071 -- not required when SPARK checks are suppressed.
2073 elsif Present
(Spec_Id
) then
2074 Prag
:= Get_Pragma
(Spec_Id
, Pragma_Global
);
2076 if SPARK_Mode
/= Off
2077 and then Present
(Prag
)
2078 and then Contains_Refined_State
(Prag
)
2081 ("body of subprogram & requires global refinement",
2082 Body_Decl
, Spec_Id
);
2086 -- Refined_Depends must be analyzed after Refined_Global in order to see
2087 -- the modes of all global refinements.
2089 if Present
(Ref_Depends
) then
2090 Analyze_Refined_Depends_In_Decl_Part
(Ref_Depends
);
2092 -- When the corresponding Depends aspect/pragma references a state with
2093 -- visible refinement, the body requires Refined_Depends. Refinement is
2094 -- not required when SPARK checks are suppressed.
2096 elsif Present
(Spec_Id
) then
2097 Prag
:= Get_Pragma
(Spec_Id
, Pragma_Depends
);
2099 if SPARK_Mode
/= Off
2100 and then Present
(Prag
)
2101 and then Contains_Refined_State
(Prag
)
2104 ("body of subprogram & requires dependance refinement",
2105 Body_Decl
, Spec_Id
);
2108 end Analyze_Subprogram_Body_Contract
;
2110 ------------------------------------
2111 -- Analyze_Subprogram_Body_Helper --
2112 ------------------------------------
2114 -- This procedure is called for regular subprogram bodies, generic bodies,
2115 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2116 -- specification matters, and is used to create a proper declaration for
2117 -- the subprogram, or to perform conformance checks.
2119 procedure Analyze_Subprogram_Body_Helper
(N
: Node_Id
) is
2120 Loc
: constant Source_Ptr
:= Sloc
(N
);
2121 Body_Spec
: constant Node_Id
:= Specification
(N
);
2122 Body_Id
: Entity_Id
:= Defining_Entity
(Body_Spec
);
2123 Prev_Id
: constant Entity_Id
:= Current_Entity_In_Scope
(Body_Id
);
2124 Conformant
: Boolean;
2126 Prot_Typ
: Entity_Id
:= Empty
;
2127 Spec_Id
: Entity_Id
;
2128 Spec_Decl
: Node_Id
:= Empty
;
2130 Last_Real_Spec_Entity
: Entity_Id
:= Empty
;
2131 -- When we analyze a separate spec, the entity chain ends up containing
2132 -- the formals, as well as any itypes generated during analysis of the
2133 -- default expressions for parameters, or the arguments of associated
2134 -- precondition/postcondition pragmas (which are analyzed in the context
2135 -- of the spec since they have visibility on formals).
2137 -- These entities belong with the spec and not the body. However we do
2138 -- the analysis of the body in the context of the spec (again to obtain
2139 -- visibility to the formals), and all the entities generated during
2140 -- this analysis end up also chained to the entity chain of the spec.
2141 -- But they really belong to the body, and there is circuitry to move
2142 -- them from the spec to the body.
2144 -- However, when we do this move, we don't want to move the real spec
2145 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2146 -- variable points to the last real spec entity, so we only move those
2147 -- chained beyond that point. It is initialized to Empty to deal with
2148 -- the case where there is no separate spec.
2150 procedure Check_Anonymous_Return
;
2151 -- Ada 2005: if a function returns an access type that denotes a task,
2152 -- or a type that contains tasks, we must create a master entity for
2153 -- the anonymous type, which typically will be used in an allocator
2154 -- in the body of the function.
2156 procedure Check_Inline_Pragma
(Spec
: in out Node_Id
);
2157 -- Look ahead to recognize a pragma that may appear after the body.
2158 -- If there is a previous spec, check that it appears in the same
2159 -- declarative part. If the pragma is Inline_Always, perform inlining
2160 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2161 -- If the body acts as a spec, and inlining is required, we create a
2162 -- subprogram declaration for it, in order to attach the body to inline.
2163 -- If pragma does not appear after the body, check whether there is
2164 -- an inline pragma before any local declarations.
2166 procedure Check_Missing_Return
;
2167 -- Checks for a function with a no return statements, and also performs
2168 -- the warning checks implemented by Check_Returns. In formal mode, also
2169 -- verify that a function ends with a RETURN and that a procedure does
2170 -- not contain any RETURN.
2172 procedure Diagnose_Misplaced_Aspect_Specifications
;
2173 -- It is known that subprogram body N has aspects, but they are not
2174 -- properly placed. Provide specific error messages depending on the
2175 -- aspects involved.
2177 function Disambiguate_Spec
return Entity_Id
;
2178 -- When a primitive is declared between the private view and the full
2179 -- view of a concurrent type which implements an interface, a special
2180 -- mechanism is used to find the corresponding spec of the primitive
2183 procedure Exchange_Limited_Views
(Subp_Id
: Entity_Id
);
2184 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2185 -- incomplete types coming from a limited context and swap their limited
2186 -- views with the non-limited ones.
2188 function Is_Private_Concurrent_Primitive
2189 (Subp_Id
: Entity_Id
) return Boolean;
2190 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2191 -- type that implements an interface and has a private view.
2193 procedure Set_Trivial_Subprogram
(N
: Node_Id
);
2194 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2195 -- subprogram whose body is being analyzed. N is the statement node
2196 -- causing the flag to be set, if the following statement is a return
2197 -- of an entity, we mark the entity as set in source to suppress any
2198 -- warning on the stylized use of function stubs with a dummy return.
2200 procedure Verify_Overriding_Indicator
;
2201 -- If there was a previous spec, the entity has been entered in the
2202 -- current scope previously. If the body itself carries an overriding
2203 -- indicator, check that it is consistent with the known status of the
2206 ----------------------------
2207 -- Check_Anonymous_Return --
2208 ----------------------------
2210 procedure Check_Anonymous_Return
is
2216 if Present
(Spec_Id
) then
2222 if Ekind
(Scop
) = E_Function
2223 and then Ekind
(Etype
(Scop
)) = E_Anonymous_Access_Type
2224 and then not Is_Thunk
(Scop
)
2225 and then (Has_Task
(Designated_Type
(Etype
(Scop
)))
2227 (Is_Class_Wide_Type
(Designated_Type
(Etype
(Scop
)))
2229 Is_Limited_Record
(Designated_Type
(Etype
(Scop
)))))
2230 and then Expander_Active
2232 -- Avoid cases with no tasking support
2234 and then RTE_Available
(RE_Current_Master
)
2235 and then not Restriction_Active
(No_Task_Hierarchy
)
2238 Make_Object_Declaration
(Loc
,
2239 Defining_Identifier
=>
2240 Make_Defining_Identifier
(Loc
, Name_uMaster
),
2241 Constant_Present
=> True,
2242 Object_Definition
=>
2243 New_Occurrence_Of
(RTE
(RE_Master_Id
), Loc
),
2245 Make_Explicit_Dereference
(Loc
,
2246 New_Occurrence_Of
(RTE
(RE_Current_Master
), Loc
)));
2248 if Present
(Declarations
(N
)) then
2249 Prepend
(Decl
, Declarations
(N
));
2251 Set_Declarations
(N
, New_List
(Decl
));
2254 Set_Master_Id
(Etype
(Scop
), Defining_Identifier
(Decl
));
2255 Set_Has_Master_Entity
(Scop
);
2257 -- Now mark the containing scope as a task master
2260 while Nkind
(Par
) /= N_Compilation_Unit
loop
2261 Par
:= Parent
(Par
);
2262 pragma Assert
(Present
(Par
));
2264 -- If we fall off the top, we are at the outer level, and
2265 -- the environment task is our effective master, so nothing
2269 (Par
, N_Task_Body
, N_Block_Statement
, N_Subprogram_Body
)
2271 Set_Is_Task_Master
(Par
, True);
2276 end Check_Anonymous_Return
;
2278 -------------------------
2279 -- Check_Inline_Pragma --
2280 -------------------------
2282 procedure Check_Inline_Pragma
(Spec
: in out Node_Id
) is
2286 function Is_Inline_Pragma
(N
: Node_Id
) return Boolean;
2287 -- True when N is a pragma Inline or Inline_Always that applies
2288 -- to this subprogram.
2290 -----------------------
2291 -- Is_Inline_Pragma --
2292 -----------------------
2294 function Is_Inline_Pragma
(N
: Node_Id
) return Boolean is
2297 Nkind
(N
) = N_Pragma
2299 (Pragma_Name
(N
) = Name_Inline_Always
2302 and then Pragma_Name
(N
) = Name_Inline
))
2305 (Expression
(First
(Pragma_Argument_Associations
(N
)))) =
2307 end Is_Inline_Pragma
;
2309 -- Start of processing for Check_Inline_Pragma
2312 if not Expander_Active
then
2316 if Is_List_Member
(N
)
2317 and then Present
(Next
(N
))
2318 and then Is_Inline_Pragma
(Next
(N
))
2322 elsif Nkind
(N
) /= N_Subprogram_Body_Stub
2323 and then Present
(Declarations
(N
))
2324 and then Is_Inline_Pragma
(First
(Declarations
(N
)))
2326 Prag
:= First
(Declarations
(N
));
2332 if Present
(Prag
) then
2333 if Present
(Spec_Id
) then
2334 if In_Same_List
(N
, Unit_Declaration_Node
(Spec_Id
)) then
2339 -- Create a subprogram declaration, to make treatment uniform
2342 Subp
: constant Entity_Id
:=
2343 Make_Defining_Identifier
(Loc
, Chars
(Body_Id
));
2344 Decl
: constant Node_Id
:=
2345 Make_Subprogram_Declaration
(Loc
,
2347 New_Copy_Tree
(Specification
(N
)));
2350 Set_Defining_Unit_Name
(Specification
(Decl
), Subp
);
2352 if Present
(First_Formal
(Body_Id
)) then
2353 Plist
:= Copy_Parameter_List
(Body_Id
);
2354 Set_Parameter_Specifications
2355 (Specification
(Decl
), Plist
);
2358 Insert_Before
(N
, Decl
);
2361 Set_Has_Pragma_Inline
(Subp
);
2363 if Pragma_Name
(Prag
) = Name_Inline_Always
then
2364 Set_Is_Inlined
(Subp
);
2365 Set_Has_Pragma_Inline_Always
(Subp
);
2368 -- Prior to copying the subprogram body to create a template
2369 -- for it for subsequent inlining, remove the pragma from
2370 -- the current body so that the copy that will produce the
2371 -- new body will start from a completely unanalyzed tree.
2373 if Nkind
(Parent
(Prag
)) = N_Subprogram_Body
then
2374 Rewrite
(Prag
, Make_Null_Statement
(Sloc
(Prag
)));
2381 end Check_Inline_Pragma
;
2383 --------------------------
2384 -- Check_Missing_Return --
2385 --------------------------
2387 procedure Check_Missing_Return
is
2389 Missing_Ret
: Boolean;
2392 if Nkind
(Body_Spec
) = N_Function_Specification
then
2393 if Present
(Spec_Id
) then
2399 if Return_Present
(Id
) then
2400 Check_Returns
(HSS
, 'F', Missing_Ret
);
2403 Set_Has_Missing_Return
(Id
);
2406 elsif Is_Generic_Subprogram
(Id
)
2407 or else not Is_Machine_Code_Subprogram
(Id
)
2409 Error_Msg_N
("missing RETURN statement in function body", N
);
2412 -- If procedure with No_Return, check returns
2414 elsif Nkind
(Body_Spec
) = N_Procedure_Specification
2415 and then Present
(Spec_Id
)
2416 and then No_Return
(Spec_Id
)
2418 Check_Returns
(HSS
, 'P', Missing_Ret
, Spec_Id
);
2421 -- Special checks in SPARK mode
2423 if Nkind
(Body_Spec
) = N_Function_Specification
then
2425 -- In SPARK mode, last statement of a function should be a return
2428 Stat
: constant Node_Id
:= Last_Source_Statement
(HSS
);
2431 and then not Nkind_In
(Stat
, N_Simple_Return_Statement
,
2432 N_Extended_Return_Statement
)
2434 Check_SPARK_Restriction
2435 ("last statement in function should be RETURN", Stat
);
2439 -- In SPARK mode, verify that a procedure has no return
2441 elsif Nkind
(Body_Spec
) = N_Procedure_Specification
then
2442 if Present
(Spec_Id
) then
2448 -- Would be nice to point to return statement here, can we
2449 -- borrow the Check_Returns procedure here ???
2451 if Return_Present
(Id
) then
2452 Check_SPARK_Restriction
2453 ("procedure should not have RETURN", N
);
2456 end Check_Missing_Return
;
2458 ----------------------------------------------
2459 -- Diagnose_Misplaced_Aspect_Specifications --
2460 ----------------------------------------------
2462 procedure Diagnose_Misplaced_Aspect_Specifications
is
2466 -- The current aspect along with its name and id
2468 procedure SPARK_Aspect_Error
(Ref_Nam
: Name_Id
);
2469 -- Emit an error message concerning SPARK aspect Asp. Ref_Nam is the
2470 -- name of the refined version of the aspect.
2472 ------------------------
2473 -- SPARK_Aspect_Error --
2474 ------------------------
2476 procedure SPARK_Aspect_Error
(Ref_Nam
: Name_Id
) is
2478 -- The corresponding spec already contains the aspect in question
2479 -- and the one appearing on the body must be the refined form:
2481 -- procedure P with Global ...;
2482 -- procedure P with Global ... is ... end P;
2486 if Has_Aspect
(Spec_Id
, Asp_Id
) then
2487 Error_Msg_Name_1
:= Asp_Nam
;
2489 -- Subunits cannot carry aspects that apply to a subprogram
2492 if Nkind
(Parent
(N
)) = N_Subunit
then
2493 Error_Msg_N
("aspect % cannot apply to a subunit", Asp
);
2496 Error_Msg_Name_2
:= Ref_Nam
;
2497 Error_Msg_N
("aspect % should be %", Asp
);
2500 -- Otherwise the aspect must appear in the spec, not in the body:
2503 -- procedure P with Global ... is ... end P;
2507 ("aspect specification must appear in subprogram declaration",
2510 end SPARK_Aspect_Error
;
2512 -- Start of processing for Diagnose_Misplaced_Aspect_Specifications
2515 -- Iterate over the aspect specifications and emit specific errors
2516 -- where applicable.
2518 Asp
:= First
(Aspect_Specifications
(N
));
2519 while Present
(Asp
) loop
2520 Asp_Nam
:= Chars
(Identifier
(Asp
));
2521 Asp_Id
:= Get_Aspect_Id
(Asp_Nam
);
2523 -- Do not emit errors on aspects that can appear on a subprogram
2524 -- body. This scenario occurs when the aspect specification list
2525 -- contains both misplaced and properly placed aspects.
2527 if Aspect_On_Body_Or_Stub_OK
(Asp_Id
) then
2530 -- Special diagnostics for SPARK aspects
2532 elsif Asp_Nam
= Name_Depends
then
2533 SPARK_Aspect_Error
(Name_Refined_Depends
);
2535 elsif Asp_Nam
= Name_Global
then
2536 SPARK_Aspect_Error
(Name_Refined_Global
);
2538 elsif Asp_Nam
= Name_Post
then
2539 SPARK_Aspect_Error
(Name_Refined_Post
);
2543 ("aspect specification must appear in subprogram declaration",
2549 end Diagnose_Misplaced_Aspect_Specifications
;
2551 -----------------------
2552 -- Disambiguate_Spec --
2553 -----------------------
2555 function Disambiguate_Spec
return Entity_Id
is
2556 Priv_Spec
: Entity_Id
;
2559 procedure Replace_Types
(To_Corresponding
: Boolean);
2560 -- Depending on the flag, replace the type of formal parameters of
2561 -- Body_Id if it is a concurrent type implementing interfaces with
2562 -- the corresponding record type or the other way around.
2564 procedure Replace_Types
(To_Corresponding
: Boolean) is
2566 Formal_Typ
: Entity_Id
;
2569 Formal
:= First_Formal
(Body_Id
);
2570 while Present
(Formal
) loop
2571 Formal_Typ
:= Etype
(Formal
);
2573 if Is_Class_Wide_Type
(Formal_Typ
) then
2574 Formal_Typ
:= Root_Type
(Formal_Typ
);
2577 -- From concurrent type to corresponding record
2579 if To_Corresponding
then
2580 if Is_Concurrent_Type
(Formal_Typ
)
2581 and then Present
(Corresponding_Record_Type
(Formal_Typ
))
2582 and then Present
(Interfaces
(
2583 Corresponding_Record_Type
(Formal_Typ
)))
2586 Corresponding_Record_Type
(Formal_Typ
));
2589 -- From corresponding record to concurrent type
2592 if Is_Concurrent_Record_Type
(Formal_Typ
)
2593 and then Present
(Interfaces
(Formal_Typ
))
2596 Corresponding_Concurrent_Type
(Formal_Typ
));
2600 Next_Formal
(Formal
);
2604 -- Start of processing for Disambiguate_Spec
2607 -- Try to retrieve the specification of the body as is. All error
2608 -- messages are suppressed because the body may not have a spec in
2609 -- its current state.
2611 Spec_N
:= Find_Corresponding_Spec
(N
, False);
2613 -- It is possible that this is the body of a primitive declared
2614 -- between a private and a full view of a concurrent type. The
2615 -- controlling parameter of the spec carries the concurrent type,
2616 -- not the corresponding record type as transformed by Analyze_
2617 -- Subprogram_Specification. In such cases, we undo the change
2618 -- made by the analysis of the specification and try to find the
2621 -- Note that wrappers already have their corresponding specs and
2622 -- bodies set during their creation, so if the candidate spec is
2623 -- a wrapper, then we definitely need to swap all types to their
2624 -- original concurrent status.
2627 or else Is_Primitive_Wrapper
(Spec_N
)
2629 -- Restore all references of corresponding record types to the
2630 -- original concurrent types.
2632 Replace_Types
(To_Corresponding
=> False);
2633 Priv_Spec
:= Find_Corresponding_Spec
(N
, False);
2635 -- The current body truly belongs to a primitive declared between
2636 -- a private and a full view. We leave the modified body as is,
2637 -- and return the true spec.
2639 if Present
(Priv_Spec
)
2640 and then Is_Private_Primitive
(Priv_Spec
)
2645 -- In case that this is some sort of error, restore the original
2646 -- state of the body.
2648 Replace_Types
(To_Corresponding
=> True);
2652 end Disambiguate_Spec
;
2654 ----------------------------
2655 -- Exchange_Limited_Views --
2656 ----------------------------
2658 procedure Exchange_Limited_Views
(Subp_Id
: Entity_Id
) is
2659 procedure Detect_And_Exchange
(Id
: Entity_Id
);
2660 -- Determine whether Id's type denotes an incomplete type associated
2661 -- with a limited with clause and exchange the limited view with the
2664 -------------------------
2665 -- Detect_And_Exchange --
2666 -------------------------
2668 procedure Detect_And_Exchange
(Id
: Entity_Id
) is
2669 Typ
: constant Entity_Id
:= Etype
(Id
);
2672 if Ekind
(Typ
) = E_Incomplete_Type
2673 and then From_Limited_With
(Typ
)
2674 and then Present
(Non_Limited_View
(Typ
))
2676 Set_Etype
(Id
, Non_Limited_View
(Typ
));
2678 end Detect_And_Exchange
;
2684 -- Start of processing for Exchange_Limited_Views
2687 if No
(Subp_Id
) then
2690 -- Do not process subprogram bodies as they already use the non-
2691 -- limited view of types.
2693 elsif not Ekind_In
(Subp_Id
, E_Function
, E_Procedure
) then
2697 -- Examine all formals and swap views when applicable
2699 Formal
:= First_Formal
(Subp_Id
);
2700 while Present
(Formal
) loop
2701 Detect_And_Exchange
(Formal
);
2703 Next_Formal
(Formal
);
2706 -- Process the return type of a function
2708 if Ekind
(Subp_Id
) = E_Function
then
2709 Detect_And_Exchange
(Subp_Id
);
2711 end Exchange_Limited_Views
;
2713 -------------------------------------
2714 -- Is_Private_Concurrent_Primitive --
2715 -------------------------------------
2717 function Is_Private_Concurrent_Primitive
2718 (Subp_Id
: Entity_Id
) return Boolean
2720 Formal_Typ
: Entity_Id
;
2723 if Present
(First_Formal
(Subp_Id
)) then
2724 Formal_Typ
:= Etype
(First_Formal
(Subp_Id
));
2726 if Is_Concurrent_Record_Type
(Formal_Typ
) then
2727 if Is_Class_Wide_Type
(Formal_Typ
) then
2728 Formal_Typ
:= Root_Type
(Formal_Typ
);
2731 Formal_Typ
:= Corresponding_Concurrent_Type
(Formal_Typ
);
2734 -- The type of the first formal is a concurrent tagged type with
2738 Is_Concurrent_Type
(Formal_Typ
)
2739 and then Is_Tagged_Type
(Formal_Typ
)
2740 and then Has_Private_Declaration
(Formal_Typ
);
2744 end Is_Private_Concurrent_Primitive
;
2746 ----------------------------
2747 -- Set_Trivial_Subprogram --
2748 ----------------------------
2750 procedure Set_Trivial_Subprogram
(N
: Node_Id
) is
2751 Nxt
: constant Node_Id
:= Next
(N
);
2754 Set_Is_Trivial_Subprogram
(Body_Id
);
2756 if Present
(Spec_Id
) then
2757 Set_Is_Trivial_Subprogram
(Spec_Id
);
2761 and then Nkind
(Nxt
) = N_Simple_Return_Statement
2762 and then No
(Next
(Nxt
))
2763 and then Present
(Expression
(Nxt
))
2764 and then Is_Entity_Name
(Expression
(Nxt
))
2766 Set_Never_Set_In_Source
(Entity
(Expression
(Nxt
)), False);
2768 end Set_Trivial_Subprogram
;
2770 ---------------------------------
2771 -- Verify_Overriding_Indicator --
2772 ---------------------------------
2774 procedure Verify_Overriding_Indicator
is
2776 if Must_Override
(Body_Spec
) then
2777 if Nkind
(Spec_Id
) = N_Defining_Operator_Symbol
2778 and then Operator_Matches_Spec
(Spec_Id
, Spec_Id
)
2782 elsif not Present
(Overridden_Operation
(Spec_Id
)) then
2784 ("subprogram& is not overriding", Body_Spec
, Spec_Id
);
2787 elsif Must_Not_Override
(Body_Spec
) then
2788 if Present
(Overridden_Operation
(Spec_Id
)) then
2790 ("subprogram& overrides inherited operation",
2791 Body_Spec
, Spec_Id
);
2793 elsif Nkind
(Spec_Id
) = N_Defining_Operator_Symbol
2794 and then Operator_Matches_Spec
(Spec_Id
, Spec_Id
)
2797 ("subprogram & overrides predefined operator ",
2798 Body_Spec
, Spec_Id
);
2800 -- If this is not a primitive operation or protected subprogram,
2801 -- then the overriding indicator is altogether illegal.
2803 elsif not Is_Primitive
(Spec_Id
)
2804 and then Ekind
(Scope
(Spec_Id
)) /= E_Protected_Type
2807 ("overriding indicator only allowed " &
2808 "if subprogram is primitive",
2813 and then Present
(Overridden_Operation
(Spec_Id
))
2815 pragma Assert
(Unit_Declaration_Node
(Body_Id
) = N
);
2816 Style
.Missing_Overriding
(N
, Body_Id
);
2819 and then Can_Override_Operator
(Spec_Id
)
2820 and then not Is_Predefined_File_Name
2821 (Unit_File_Name
(Get_Source_Unit
(Spec_Id
)))
2823 pragma Assert
(Unit_Declaration_Node
(Body_Id
) = N
);
2824 Style
.Missing_Overriding
(N
, Body_Id
);
2826 end Verify_Overriding_Indicator
;
2828 -- Start of processing for Analyze_Subprogram_Body_Helper
2831 -- Generic subprograms are handled separately. They always have a
2832 -- generic specification. Determine whether current scope has a
2833 -- previous declaration.
2835 -- If the subprogram body is defined within an instance of the same
2836 -- name, the instance appears as a package renaming, and will be hidden
2837 -- within the subprogram.
2839 if Present
(Prev_Id
)
2840 and then not Is_Overloadable
(Prev_Id
)
2841 and then (Nkind
(Parent
(Prev_Id
)) /= N_Package_Renaming_Declaration
2842 or else Comes_From_Source
(Prev_Id
))
2844 if Is_Generic_Subprogram
(Prev_Id
) then
2846 Set_Is_Compilation_Unit
(Body_Id
, Is_Compilation_Unit
(Spec_Id
));
2847 Set_Is_Child_Unit
(Body_Id
, Is_Child_Unit
(Spec_Id
));
2849 Analyze_Generic_Subprogram_Body
(N
, Spec_Id
);
2851 if Nkind
(N
) = N_Subprogram_Body
then
2852 HSS
:= Handled_Statement_Sequence
(N
);
2853 Check_Missing_Return
;
2859 -- Previous entity conflicts with subprogram name. Attempting to
2860 -- enter name will post error.
2862 Enter_Name
(Body_Id
);
2866 -- Non-generic case, find the subprogram declaration, if one was seen,
2867 -- or enter new overloaded entity in the current scope. If the
2868 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
2869 -- part of the context of one of its subunits. No need to redo the
2872 elsif Prev_Id
= Body_Id
and then Has_Completion
(Body_Id
) then
2876 Body_Id
:= Analyze_Subprogram_Specification
(Body_Spec
);
2878 if Nkind
(N
) = N_Subprogram_Body_Stub
2879 or else No
(Corresponding_Spec
(N
))
2881 if Is_Private_Concurrent_Primitive
(Body_Id
) then
2882 Spec_Id
:= Disambiguate_Spec
;
2884 Spec_Id
:= Find_Corresponding_Spec
(N
);
2887 -- If this is a duplicate body, no point in analyzing it
2889 if Error_Posted
(N
) then
2893 -- A subprogram body should cause freezing of its own declaration,
2894 -- but if there was no previous explicit declaration, then the
2895 -- subprogram will get frozen too late (there may be code within
2896 -- the body that depends on the subprogram having been frozen,
2897 -- such as uses of extra formals), so we force it to be frozen
2898 -- here. Same holds if the body and spec are compilation units.
2899 -- Finally, if the return type is an anonymous access to protected
2900 -- subprogram, it must be frozen before the body because its
2901 -- expansion has generated an equivalent type that is used when
2902 -- elaborating the body.
2904 -- An exception in the case of Ada 2012, AI05-177: The bodies
2905 -- created for expression functions do not freeze.
2908 and then Nkind
(Original_Node
(N
)) /= N_Expression_Function
2910 Freeze_Before
(N
, Body_Id
);
2912 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
2913 Freeze_Before
(N
, Spec_Id
);
2915 elsif Is_Access_Subprogram_Type
(Etype
(Body_Id
)) then
2916 Freeze_Before
(N
, Etype
(Body_Id
));
2920 Spec_Id
:= Corresponding_Spec
(N
);
2924 -- Language-defined aspects cannot appear on a subprogram body [stub] if
2925 -- the subprogram has a spec. Certain implementation-defined aspects are
2926 -- allowed to break this rule (see table Aspect_On_Body_Or_Stub_OK).
2928 if Has_Aspects
(N
) then
2929 if Present
(Spec_Id
)
2930 and then not Aspects_On_Body_Or_Stub_OK
(N
)
2932 Diagnose_Misplaced_Aspect_Specifications
;
2935 Analyze_Aspect_Specifications
(N
, Body_Id
);
2939 -- Previously we scanned the body to look for nested subprograms, and
2940 -- rejected an inline directive if nested subprograms were present,
2941 -- because the back-end would generate conflicting symbols for the
2942 -- nested bodies. This is now unnecessary.
2944 -- Look ahead to recognize a pragma Inline that appears after the body
2946 Check_Inline_Pragma
(Spec_Id
);
2948 -- Deal with special case of a fully private operation in the body of
2949 -- the protected type. We must create a declaration for the subprogram,
2950 -- in order to attach the protected subprogram that will be used in
2951 -- internal calls. We exclude compiler generated bodies from the
2952 -- expander since the issue does not arise for those cases.
2955 and then Comes_From_Source
(N
)
2956 and then Is_Protected_Type
(Current_Scope
)
2958 Spec_Id
:= Build_Private_Protected_Declaration
(N
);
2961 -- If a separate spec is present, then deal with freezing issues
2963 if Present
(Spec_Id
) then
2964 Spec_Decl
:= Unit_Declaration_Node
(Spec_Id
);
2965 Verify_Overriding_Indicator
;
2967 -- In general, the spec will be frozen when we start analyzing the
2968 -- body. However, for internally generated operations, such as
2969 -- wrapper functions for inherited operations with controlling
2970 -- results, the spec may not have been frozen by the time we expand
2971 -- the freeze actions that include the bodies. In particular, extra
2972 -- formals for accessibility or for return-in-place may need to be
2973 -- generated. Freeze nodes, if any, are inserted before the current
2974 -- body. These freeze actions are also needed in ASIS mode to enable
2975 -- the proper back-annotations.
2977 if not Is_Frozen
(Spec_Id
)
2978 and then (Expander_Active
or ASIS_Mode
)
2980 -- Force the generation of its freezing node to ensure proper
2981 -- management of access types in the backend.
2983 -- This is definitely needed for some cases, but it is not clear
2984 -- why, to be investigated further???
2986 Set_Has_Delayed_Freeze
(Spec_Id
);
2987 Freeze_Before
(N
, Spec_Id
);
2991 -- Mark presence of postcondition procedure in current scope and mark
2992 -- the procedure itself as needing debug info. The latter is important
2993 -- when analyzing decision coverage (for example, for MC/DC coverage).
2995 if Chars
(Body_Id
) = Name_uPostconditions
then
2996 Set_Has_Postconditions
(Current_Scope
);
2997 Set_Debug_Info_Needed
(Body_Id
);
3000 -- Place subprogram on scope stack, and make formals visible. If there
3001 -- is a spec, the visible entity remains that of the spec.
3003 if Present
(Spec_Id
) then
3004 Generate_Reference
(Spec_Id
, Body_Id
, 'b', Set_Ref
=> False);
3006 if Is_Child_Unit
(Spec_Id
) then
3007 Generate_Reference
(Spec_Id
, Scope
(Spec_Id
), 'k', False);
3011 Style
.Check_Identifier
(Body_Id
, Spec_Id
);
3014 Set_Is_Compilation_Unit
(Body_Id
, Is_Compilation_Unit
(Spec_Id
));
3015 Set_Is_Child_Unit
(Body_Id
, Is_Child_Unit
(Spec_Id
));
3017 if Is_Abstract_Subprogram
(Spec_Id
) then
3018 Error_Msg_N
("an abstract subprogram cannot have a body", N
);
3022 Set_Convention
(Body_Id
, Convention
(Spec_Id
));
3023 Set_Has_Completion
(Spec_Id
);
3025 if Is_Protected_Type
(Scope
(Spec_Id
)) then
3026 Prot_Typ
:= Scope
(Spec_Id
);
3029 -- If this is a body generated for a renaming, do not check for
3030 -- full conformance. The check is redundant, because the spec of
3031 -- the body is a copy of the spec in the renaming declaration,
3032 -- and the test can lead to spurious errors on nested defaults.
3034 if Present
(Spec_Decl
)
3035 and then not Comes_From_Source
(N
)
3037 (Nkind
(Original_Node
(Spec_Decl
)) =
3038 N_Subprogram_Renaming_Declaration
3039 or else (Present
(Corresponding_Body
(Spec_Decl
))
3041 Nkind
(Unit_Declaration_Node
3042 (Corresponding_Body
(Spec_Decl
))) =
3043 N_Subprogram_Renaming_Declaration
))
3047 -- Conversely, the spec may have been generated for specless body
3048 -- with an inline pragma.
3050 elsif Comes_From_Source
(N
)
3051 and then not Comes_From_Source
(Spec_Id
)
3052 and then Has_Pragma_Inline
(Spec_Id
)
3059 Fully_Conformant
, True, Conformant
, Body_Id
);
3062 -- If the body is not fully conformant, we have to decide if we
3063 -- should analyze it or not. If it has a really messed up profile
3064 -- then we probably should not analyze it, since we will get too
3065 -- many bogus messages.
3067 -- Our decision is to go ahead in the non-fully conformant case
3068 -- only if it is at least mode conformant with the spec. Note
3069 -- that the call to Check_Fully_Conformant has issued the proper
3070 -- error messages to complain about the lack of conformance.
3073 and then not Mode_Conformant
(Body_Id
, Spec_Id
)
3079 if Spec_Id
/= Body_Id
then
3080 Reference_Body_Formals
(Spec_Id
, Body_Id
);
3083 Set_Ekind
(Body_Id
, E_Subprogram_Body
);
3085 if Nkind
(N
) = N_Subprogram_Body_Stub
then
3086 Set_Corresponding_Spec_Of_Stub
(N
, Spec_Id
);
3091 Set_Corresponding_Spec
(N
, Spec_Id
);
3093 -- Ada 2005 (AI-345): If the operation is a primitive operation
3094 -- of a concurrent type, the type of the first parameter has been
3095 -- replaced with the corresponding record, which is the proper
3096 -- run-time structure to use. However, within the body there may
3097 -- be uses of the formals that depend on primitive operations
3098 -- of the type (in particular calls in prefixed form) for which
3099 -- we need the original concurrent type. The operation may have
3100 -- several controlling formals, so the replacement must be done
3103 if Comes_From_Source
(Spec_Id
)
3104 and then Present
(First_Entity
(Spec_Id
))
3105 and then Ekind
(Etype
(First_Entity
(Spec_Id
))) = E_Record_Type
3106 and then Is_Tagged_Type
(Etype
(First_Entity
(Spec_Id
)))
3107 and then Present
(Interfaces
(Etype
(First_Entity
(Spec_Id
))))
3108 and then Present
(Corresponding_Concurrent_Type
3109 (Etype
(First_Entity
(Spec_Id
))))
3112 Typ
: constant Entity_Id
:= Etype
(First_Entity
(Spec_Id
));
3116 Form
:= First_Formal
(Spec_Id
);
3117 while Present
(Form
) loop
3118 if Etype
(Form
) = Typ
then
3119 Set_Etype
(Form
, Corresponding_Concurrent_Type
(Typ
));
3127 -- Make the formals visible, and place subprogram on scope stack.
3128 -- This is also the point at which we set Last_Real_Spec_Entity
3129 -- to mark the entities which will not be moved to the body.
3131 Install_Formals
(Spec_Id
);
3132 Last_Real_Spec_Entity
:= Last_Entity
(Spec_Id
);
3134 -- Within an instance, add local renaming declarations so that
3135 -- gdb can retrieve the values of actuals more easily. This is
3136 -- only relevant if generating code (and indeed we definitely
3137 -- do not want these definitions -gnatc mode, because that would
3140 if Is_Generic_Instance
(Spec_Id
)
3141 and then Is_Wrapper_Package
(Current_Scope
)
3142 and then Expander_Active
3144 Build_Subprogram_Instance_Renamings
(N
, Current_Scope
);
3147 Push_Scope
(Spec_Id
);
3149 -- Make sure that the subprogram is immediately visible. For
3150 -- child units that have no separate spec this is indispensable.
3151 -- Otherwise it is safe albeit redundant.
3153 Set_Is_Immediately_Visible
(Spec_Id
);
3156 Set_Corresponding_Body
(Unit_Declaration_Node
(Spec_Id
), Body_Id
);
3157 Set_Contract
(Body_Id
, Make_Contract
(Sloc
(Body_Id
)));
3158 Set_Scope
(Body_Id
, Scope
(Spec_Id
));
3159 Set_Is_Obsolescent
(Body_Id
, Is_Obsolescent
(Spec_Id
));
3161 -- Case of subprogram body with no previous spec
3164 -- Check for style warning required
3168 -- Only apply check for source level subprograms for which checks
3169 -- have not been suppressed.
3171 and then Comes_From_Source
(Body_Id
)
3172 and then not Suppress_Style_Checks
(Body_Id
)
3174 -- No warnings within an instance
3176 and then not In_Instance
3178 -- No warnings for expression functions
3180 and then Nkind
(Original_Node
(N
)) /= N_Expression_Function
3182 Style
.Body_With_No_Spec
(N
);
3185 New_Overloaded_Entity
(Body_Id
);
3187 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
3188 Set_Acts_As_Spec
(N
);
3189 Generate_Definition
(Body_Id
);
3190 Set_Contract
(Body_Id
, Make_Contract
(Sloc
(Body_Id
)));
3192 (Body_Id
, Body_Id
, 'b', Set_Ref
=> False, Force
=> True);
3193 Install_Formals
(Body_Id
);
3195 Push_Scope
(Body_Id
);
3198 -- For stubs and bodies with no previous spec, generate references to
3201 Generate_Reference_To_Formals
(Body_Id
);
3204 -- Set SPARK_Mode from context
3206 Set_SPARK_Pragma
(Body_Id
, SPARK_Mode_Pragma
);
3207 Set_SPARK_Pragma_Inherited
(Body_Id
, True);
3209 -- If the return type is an anonymous access type whose designated type
3210 -- is the limited view of a class-wide type and the non-limited view is
3211 -- available, update the return type accordingly.
3213 if Ada_Version
>= Ada_2005
and then Comes_From_Source
(N
) then
3219 Rtyp
:= Etype
(Current_Scope
);
3221 if Ekind
(Rtyp
) = E_Anonymous_Access_Type
then
3222 Etyp
:= Directly_Designated_Type
(Rtyp
);
3224 if Is_Class_Wide_Type
(Etyp
)
3225 and then From_Limited_With
(Etyp
)
3227 Set_Directly_Designated_Type
3228 (Etype
(Current_Scope
), Available_View
(Etyp
));
3234 -- If this is the proper body of a stub, we must verify that the stub
3235 -- conforms to the body, and to the previous spec if one was present.
3236 -- We know already that the body conforms to that spec. This test is
3237 -- only required for subprograms that come from source.
3239 if Nkind
(Parent
(N
)) = N_Subunit
3240 and then Comes_From_Source
(N
)
3241 and then not Error_Posted
(Body_Id
)
3242 and then Nkind
(Corresponding_Stub
(Parent
(N
))) =
3243 N_Subprogram_Body_Stub
3246 Old_Id
: constant Entity_Id
:=
3248 (Specification
(Corresponding_Stub
(Parent
(N
))));
3250 Conformant
: Boolean := False;
3253 if No
(Spec_Id
) then
3254 Check_Fully_Conformant
(Body_Id
, Old_Id
);
3258 (Body_Id
, Old_Id
, Fully_Conformant
, False, Conformant
);
3260 if not Conformant
then
3262 -- The stub was taken to be a new declaration. Indicate that
3265 Set_Has_Completion
(Old_Id
, False);
3271 Set_Has_Completion
(Body_Id
);
3272 Check_Eliminated
(Body_Id
);
3274 if Nkind
(N
) = N_Subprogram_Body_Stub
then
3278 -- Handle frontend inlining. There is no need to prepare us for inlining
3279 -- if we will not generate the code.
3283 if not Debug_Flag_Dot_K
then
3284 if Present
(Spec_Id
)
3285 and then Expander_Active
3287 (Has_Pragma_Inline_Always
(Spec_Id
)
3288 or else (Has_Pragma_Inline
(Spec_Id
) and Front_End_Inlining
))
3290 Build_Body_To_Inline
(N
, Spec_Id
);
3295 elsif Expander_Active
3296 and then Serious_Errors_Detected
= 0
3297 and then Present
(Spec_Id
)
3298 and then Has_Pragma_Inline
(Spec_Id
)
3300 Check_And_Build_Body_To_Inline
(N
, Spec_Id
, Body_Id
);
3303 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3304 -- of the specification we have to install the private withed units.
3305 -- This holds for child units as well.
3307 if Is_Compilation_Unit
(Body_Id
)
3308 or else Nkind
(Parent
(N
)) = N_Compilation_Unit
3310 Install_Private_With_Clauses
(Body_Id
);
3313 Check_Anonymous_Return
;
3315 -- Set the Protected_Formal field of each extra formal of the protected
3316 -- subprogram to reference the corresponding extra formal of the
3317 -- subprogram that implements it. For regular formals this occurs when
3318 -- the protected subprogram's declaration is expanded, but the extra
3319 -- formals don't get created until the subprogram is frozen. We need to
3320 -- do this before analyzing the protected subprogram's body so that any
3321 -- references to the original subprogram's extra formals will be changed
3322 -- refer to the implementing subprogram's formals (see Expand_Formal).
3324 if Present
(Spec_Id
)
3325 and then Is_Protected_Type
(Scope
(Spec_Id
))
3326 and then Present
(Protected_Body_Subprogram
(Spec_Id
))
3329 Impl_Subp
: constant Entity_Id
:=
3330 Protected_Body_Subprogram
(Spec_Id
);
3331 Prot_Ext_Formal
: Entity_Id
:= Extra_Formals
(Spec_Id
);
3332 Impl_Ext_Formal
: Entity_Id
:= Extra_Formals
(Impl_Subp
);
3334 while Present
(Prot_Ext_Formal
) loop
3335 pragma Assert
(Present
(Impl_Ext_Formal
));
3336 Set_Protected_Formal
(Prot_Ext_Formal
, Impl_Ext_Formal
);
3337 Next_Formal_With_Extras
(Prot_Ext_Formal
);
3338 Next_Formal_With_Extras
(Impl_Ext_Formal
);
3343 -- Now we can go on to analyze the body
3345 HSS
:= Handled_Statement_Sequence
(N
);
3346 Set_Actual_Subtypes
(N
, Current_Scope
);
3348 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
3349 -- invariants and predicates associated with the body and its spec.
3350 -- Note that this is not pure expansion as Expand_Subprogram_Contract
3351 -- prepares the contract assertions for generic subprograms or for ASIS.
3352 -- Do not generate contract checks in SPARK mode.
3354 if not GNATprove_Mode
then
3355 Expand_Subprogram_Contract
(N
, Spec_Id
, Body_Id
);
3358 -- Add a declaration for the Protection object, renaming declarations
3359 -- for discriminals and privals and finally a declaration for the entry
3360 -- family index (if applicable). This form of early expansion is done
3361 -- when the Expander is active because Install_Private_Data_Declarations
3362 -- references entities which were created during regular expansion. The
3363 -- subprogram entity must come from source, and not be an internally
3364 -- generated subprogram.
3367 and then Present
(Prot_Typ
)
3368 and then Present
(Spec_Id
)
3369 and then Comes_From_Source
(Spec_Id
)
3370 and then not Is_Eliminated
(Spec_Id
)
3372 Install_Private_Data_Declarations
3373 (Sloc
(N
), Spec_Id
, Prot_Typ
, N
, Declarations
(N
));
3376 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3377 -- may now appear in parameter and result profiles. Since the analysis
3378 -- of a subprogram body may use the parameter and result profile of the
3379 -- spec, swap any limited views with their non-limited counterpart.
3381 if Ada_Version
>= Ada_2012
then
3382 Exchange_Limited_Views
(Spec_Id
);
3385 -- Analyze the declarations (this call will analyze the precondition
3386 -- Check pragmas we prepended to the list, as well as the declaration
3387 -- of the _Postconditions procedure).
3389 Analyze_Declarations
(Declarations
(N
));
3391 -- After declarations have been analyzed, the body has been set
3392 -- its final value of SPARK_Mode. Check that SPARK_Mode for body
3393 -- is consistent with SPARK_Mode for spec.
3395 if Present
(Spec_Id
) and then Present
(SPARK_Pragma
(Body_Id
)) then
3396 if Present
(SPARK_Pragma
(Spec_Id
)) then
3397 if Get_SPARK_Mode_From_Pragma
(SPARK_Pragma
(Spec_Id
)) = Off
3399 Get_SPARK_Mode_From_Pragma
(SPARK_Pragma
(Body_Id
)) = On
3401 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Body_Id
));
3402 Error_Msg_N
("incorrect application of SPARK_Mode#", N
);
3403 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Spec_Id
));
3405 ("\value Off was set for SPARK_Mode on&#", N
, Spec_Id
);
3408 elsif Nkind
(Parent
(Parent
(Spec_Id
))) = N_Subprogram_Body_Stub
then
3412 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Body_Id
));
3413 Error_Msg_N
("incorrect application of SPARK_Mode#", N
);
3414 Error_Msg_Sloc
:= Sloc
(Spec_Id
);
3415 Error_Msg_NE
("\no value was set for SPARK_Mode on&#", N
, Spec_Id
);
3419 -- Check completion, and analyze the statements
3422 Inspect_Deferred_Constant_Completion
(Declarations
(N
));
3425 -- Deal with end of scope processing for the body
3427 Process_End_Label
(HSS
, 't', Current_Scope
);
3429 Check_Subprogram_Order
(N
);
3430 Set_Analyzed
(Body_Id
);
3432 -- If we have a separate spec, then the analysis of the declarations
3433 -- caused the entities in the body to be chained to the spec id, but
3434 -- we want them chained to the body id. Only the formal parameters
3435 -- end up chained to the spec id in this case.
3437 if Present
(Spec_Id
) then
3439 -- We must conform to the categorization of our spec
3441 Validate_Categorization_Dependency
(N
, Spec_Id
);
3443 -- And if this is a child unit, the parent units must conform
3445 if Is_Child_Unit
(Spec_Id
) then
3446 Validate_Categorization_Dependency
3447 (Unit_Declaration_Node
(Spec_Id
), Spec_Id
);
3450 -- Here is where we move entities from the spec to the body
3452 -- Case where there are entities that stay with the spec
3454 if Present
(Last_Real_Spec_Entity
) then
3456 -- No body entities (happens when the only real spec entities come
3457 -- from precondition and postcondition pragmas).
3459 if No
(Last_Entity
(Body_Id
)) then
3461 (Body_Id
, Next_Entity
(Last_Real_Spec_Entity
));
3463 -- Body entities present (formals), so chain stuff past them
3467 (Last_Entity
(Body_Id
), Next_Entity
(Last_Real_Spec_Entity
));
3470 Set_Next_Entity
(Last_Real_Spec_Entity
, Empty
);
3471 Set_Last_Entity
(Body_Id
, Last_Entity
(Spec_Id
));
3472 Set_Last_Entity
(Spec_Id
, Last_Real_Spec_Entity
);
3474 -- Case where there are no spec entities, in this case there can be
3475 -- no body entities either, so just move everything.
3478 pragma Assert
(No
(Last_Entity
(Body_Id
)));
3479 Set_First_Entity
(Body_Id
, First_Entity
(Spec_Id
));
3480 Set_Last_Entity
(Body_Id
, Last_Entity
(Spec_Id
));
3481 Set_First_Entity
(Spec_Id
, Empty
);
3482 Set_Last_Entity
(Spec_Id
, Empty
);
3486 Check_Missing_Return
;
3488 -- Now we are going to check for variables that are never modified in
3489 -- the body of the procedure. But first we deal with a special case
3490 -- where we want to modify this check. If the body of the subprogram
3491 -- starts with a raise statement or its equivalent, or if the body
3492 -- consists entirely of a null statement, then it is pretty obvious that
3493 -- it is OK to not reference the parameters. For example, this might be
3494 -- the following common idiom for a stubbed function: statement of the
3495 -- procedure raises an exception. In particular this deals with the
3496 -- common idiom of a stubbed function, which appears something like:
3498 -- function F (A : Integer) return Some_Type;
3501 -- raise Program_Error;
3505 -- Here the purpose of X is simply to satisfy the annoying requirement
3506 -- in Ada that there be at least one return, and we certainly do not
3507 -- want to go posting warnings on X that it is not initialized. On
3508 -- the other hand, if X is entirely unreferenced that should still
3511 -- What we do is to detect these cases, and if we find them, flag the
3512 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3513 -- suppress unwanted warnings. For the case of the function stub above
3514 -- we have a special test to set X as apparently assigned to suppress
3521 -- Skip initial labels (for one thing this occurs when we are in
3522 -- front end ZCX mode, but in any case it is irrelevant), and also
3523 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
3525 Stm
:= First
(Statements
(HSS
));
3526 while Nkind
(Stm
) = N_Label
3527 or else Nkind
(Stm
) in N_Push_xxx_Label
3532 -- Do the test on the original statement before expansion
3535 Ostm
: constant Node_Id
:= Original_Node
(Stm
);
3538 -- If explicit raise statement, turn on flag
3540 if Nkind
(Ostm
) = N_Raise_Statement
then
3541 Set_Trivial_Subprogram
(Stm
);
3543 -- If null statement, and no following statements, turn on flag
3545 elsif Nkind
(Stm
) = N_Null_Statement
3546 and then Comes_From_Source
(Stm
)
3547 and then No
(Next
(Stm
))
3549 Set_Trivial_Subprogram
(Stm
);
3551 -- Check for explicit call cases which likely raise an exception
3553 elsif Nkind
(Ostm
) = N_Procedure_Call_Statement
then
3554 if Is_Entity_Name
(Name
(Ostm
)) then
3556 Ent
: constant Entity_Id
:= Entity
(Name
(Ostm
));
3559 -- If the procedure is marked No_Return, then likely it
3560 -- raises an exception, but in any case it is not coming
3561 -- back here, so turn on the flag.
3564 and then Ekind
(Ent
) = E_Procedure
3565 and then No_Return
(Ent
)
3567 Set_Trivial_Subprogram
(Stm
);
3575 -- Check for variables that are never modified
3581 -- If there is a separate spec, then transfer Never_Set_In_Source
3582 -- flags from out parameters to the corresponding entities in the
3583 -- body. The reason we do that is we want to post error flags on
3584 -- the body entities, not the spec entities.
3586 if Present
(Spec_Id
) then
3587 E1
:= First_Entity
(Spec_Id
);
3588 while Present
(E1
) loop
3589 if Ekind
(E1
) = E_Out_Parameter
then
3590 E2
:= First_Entity
(Body_Id
);
3591 while Present
(E2
) loop
3592 exit when Chars
(E1
) = Chars
(E2
);
3596 if Present
(E2
) then
3597 Set_Never_Set_In_Source
(E2
, Never_Set_In_Source
(E1
));
3605 -- Check references in body
3607 Check_References
(Body_Id
);
3609 end Analyze_Subprogram_Body_Helper
;
3611 ---------------------------------
3612 -- Analyze_Subprogram_Contract --
3613 ---------------------------------
3615 procedure Analyze_Subprogram_Contract
(Subp
: Entity_Id
) is
3616 Items
: constant Node_Id
:= Contract
(Subp
);
3617 Case_Prag
: Node_Id
:= Empty
;
3618 Depends
: Node_Id
:= Empty
;
3619 Global
: Node_Id
:= Empty
;
3621 Post_Prag
: Node_Id
:= Empty
;
3623 Seen_In_Case
: Boolean := False;
3624 Seen_In_Post
: Boolean := False;
3627 if Present
(Items
) then
3629 -- Analyze pre- and postconditions
3631 Prag
:= Pre_Post_Conditions
(Items
);
3632 while Present
(Prag
) loop
3633 Analyze_Pre_Post_Condition_In_Decl_Part
(Prag
, Subp
);
3635 -- Verify whether a postcondition mentions attribute 'Result and
3636 -- its expression introduces a post-state.
3638 if Warn_On_Suspicious_Contract
3639 and then Pragma_Name
(Prag
) = Name_Postcondition
3642 Check_Result_And_Post_State
(Prag
, Seen_In_Post
);
3645 Prag
:= Next_Pragma
(Prag
);
3648 -- Analyze contract-cases and test-cases
3650 Prag
:= Contract_Test_Cases
(Items
);
3651 while Present
(Prag
) loop
3652 Nam
:= Pragma_Name
(Prag
);
3654 if Nam
= Name_Contract_Cases
then
3655 Analyze_Contract_Cases_In_Decl_Part
(Prag
);
3657 -- Verify whether contract-cases mention attribute 'Result and
3658 -- its expression introduces a post-state. Perform the check
3659 -- only when the pragma is legal.
3661 if Warn_On_Suspicious_Contract
3662 and then not Error_Posted
(Prag
)
3665 Check_Result_And_Post_State
(Prag
, Seen_In_Case
);
3669 pragma Assert
(Nam
= Name_Test_Case
);
3670 Analyze_Test_Case_In_Decl_Part
(Prag
, Subp
);
3673 Prag
:= Next_Pragma
(Prag
);
3676 -- Analyze classification pragmas
3678 Prag
:= Classifications
(Items
);
3679 while Present
(Prag
) loop
3680 Nam
:= Pragma_Name
(Prag
);
3682 if Nam
= Name_Depends
then
3684 else pragma Assert
(Nam
= Name_Global
);
3688 Prag
:= Next_Pragma
(Prag
);
3691 -- Analyze Global first as Depends may mention items classified in
3692 -- the global categorization.
3694 if Present
(Global
) then
3695 Analyze_Global_In_Decl_Part
(Global
);
3698 -- Depends must be analyzed after Global in order to see the modes of
3699 -- all global items.
3701 if Present
(Depends
) then
3702 Analyze_Depends_In_Decl_Part
(Depends
);
3706 -- Emit an error when neither the postconditions nor the contract-cases
3707 -- mention attribute 'Result in the context of a function.
3709 if Warn_On_Suspicious_Contract
3710 and then Ekind_In
(Subp
, E_Function
, E_Generic_Function
)
3712 if Present
(Case_Prag
)
3713 and then not Seen_In_Case
3714 and then Present
(Post_Prag
)
3715 and then not Seen_In_Post
3718 ("neither function postcondition nor contract cases mention "
3719 & "result?T?", Post_Prag
);
3721 elsif Present
(Case_Prag
) and then not Seen_In_Case
then
3723 ("contract cases do not mention result?T?", Case_Prag
);
3725 -- OK if we have at least one IN OUT parameter
3727 elsif Present
(Post_Prag
) and then not Seen_In_Post
then
3731 F
:= First_Formal
(Subp
);
3732 while Present
(F
) loop
3733 if Ekind
(F
) = E_In_Out_Parameter
then
3741 -- If no in-out parameters and no mention of Result, the contract
3742 -- is certainly suspicious.
3745 ("function postcondition does not mention result?T?", Post_Prag
);
3748 end Analyze_Subprogram_Contract
;
3750 ------------------------------------
3751 -- Analyze_Subprogram_Declaration --
3752 ------------------------------------
3754 procedure Analyze_Subprogram_Declaration
(N
: Node_Id
) is
3755 Scop
: constant Entity_Id
:= Current_Scope
;
3756 Designator
: Entity_Id
;
3758 Is_Completion
: Boolean;
3759 -- Indicates whether a null procedure declaration is a completion
3762 -- Null procedures are not allowed in SPARK
3764 if Nkind
(Specification
(N
)) = N_Procedure_Specification
3765 and then Null_Present
(Specification
(N
))
3767 Check_SPARK_Restriction
("null procedure is not allowed", N
);
3769 if Is_Protected_Type
(Current_Scope
) then
3770 Error_Msg_N
("protected operation cannot be a null procedure", N
);
3773 Analyze_Null_Procedure
(N
, Is_Completion
);
3775 if Is_Completion
then
3777 -- The null procedure acts as a body, nothing further is needed.
3783 Designator
:= Analyze_Subprogram_Specification
(Specification
(N
));
3785 -- A reference may already have been generated for the unit name, in
3786 -- which case the following call is redundant. However it is needed for
3787 -- declarations that are the rewriting of an expression function.
3789 Generate_Definition
(Designator
);
3791 -- Set SPARK mode from current context (may be overwritten later with
3792 -- explicit pragma).
3794 Set_SPARK_Pragma
(Designator
, SPARK_Mode_Pragma
);
3795 Set_SPARK_Pragma_Inherited
(Designator
, True);
3797 if Debug_Flag_C
then
3798 Write_Str
("==> subprogram spec ");
3799 Write_Name
(Chars
(Designator
));
3800 Write_Str
(" from ");
3801 Write_Location
(Sloc
(N
));
3806 Validate_RCI_Subprogram_Declaration
(N
);
3807 New_Overloaded_Entity
(Designator
);
3808 Check_Delayed_Subprogram
(Designator
);
3810 -- If the type of the first formal of the current subprogram is a non-
3811 -- generic tagged private type, mark the subprogram as being a private
3812 -- primitive. Ditto if this is a function with controlling result, and
3813 -- the return type is currently private. In both cases, the type of the
3814 -- controlling argument or result must be in the current scope for the
3815 -- operation to be primitive.
3817 if Has_Controlling_Result
(Designator
)
3818 and then Is_Private_Type
(Etype
(Designator
))
3819 and then Scope
(Etype
(Designator
)) = Current_Scope
3820 and then not Is_Generic_Actual_Type
(Etype
(Designator
))
3822 Set_Is_Private_Primitive
(Designator
);
3824 elsif Present
(First_Formal
(Designator
)) then
3826 Formal_Typ
: constant Entity_Id
:=
3827 Etype
(First_Formal
(Designator
));
3829 Set_Is_Private_Primitive
(Designator
,
3830 Is_Tagged_Type
(Formal_Typ
)
3831 and then Scope
(Formal_Typ
) = Current_Scope
3832 and then Is_Private_Type
(Formal_Typ
)
3833 and then not Is_Generic_Actual_Type
(Formal_Typ
));
3837 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
3840 if Ada_Version
>= Ada_2005
3841 and then Comes_From_Source
(N
)
3842 and then Is_Dispatching_Operation
(Designator
)
3849 if Has_Controlling_Result
(Designator
) then
3850 Etyp
:= Etype
(Designator
);
3853 E
:= First_Entity
(Designator
);
3855 and then Is_Formal
(E
)
3856 and then not Is_Controlling_Formal
(E
)
3864 if Is_Access_Type
(Etyp
) then
3865 Etyp
:= Directly_Designated_Type
(Etyp
);
3868 if Is_Interface
(Etyp
)
3869 and then not Is_Abstract_Subprogram
(Designator
)
3870 and then not (Ekind
(Designator
) = E_Procedure
3871 and then Null_Present
(Specification
(N
)))
3873 Error_Msg_Name_1
:= Chars
(Defining_Entity
(N
));
3875 -- Specialize error message based on procedures vs. functions,
3876 -- since functions can't be null subprograms.
3878 if Ekind
(Designator
) = E_Procedure
then
3880 ("interface procedure % must be abstract or null", N
);
3882 Error_Msg_N
("interface function % must be abstract", N
);
3888 -- What is the following code for, it used to be
3890 -- ??? Set_Suppress_Elaboration_Checks
3891 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
3893 -- The following seems equivalent, but a bit dubious
3895 if Elaboration_Checks_Suppressed
(Designator
) then
3896 Set_Kill_Elaboration_Checks
(Designator
);
3899 if Scop
/= Standard_Standard
and then not Is_Child_Unit
(Designator
) then
3900 Set_Categorization_From_Scope
(Designator
, Scop
);
3903 -- For a compilation unit, check for library-unit pragmas
3905 Push_Scope
(Designator
);
3906 Set_Categorization_From_Pragmas
(N
);
3907 Validate_Categorization_Dependency
(N
, Designator
);
3911 -- For a compilation unit, set body required. This flag will only be
3912 -- reset if a valid Import or Interface pragma is processed later on.
3914 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3915 Set_Body_Required
(Parent
(N
), True);
3917 if Ada_Version
>= Ada_2005
3918 and then Nkind
(Specification
(N
)) = N_Procedure_Specification
3919 and then Null_Present
(Specification
(N
))
3922 ("null procedure cannot be declared at library level", N
);
3926 Generate_Reference_To_Formals
(Designator
);
3927 Check_Eliminated
(Designator
);
3929 if Debug_Flag_C
then
3931 Write_Str
("<== subprogram spec ");
3932 Write_Name
(Chars
(Designator
));
3933 Write_Str
(" from ");
3934 Write_Location
(Sloc
(N
));
3938 if Is_Protected_Type
(Current_Scope
) then
3940 -- Indicate that this is a protected operation, because it may be
3941 -- used in subsequent declarations within the protected type.
3943 Set_Convention
(Designator
, Convention_Protected
);
3946 List_Inherited_Pre_Post_Aspects
(Designator
);
3948 if Has_Aspects
(N
) then
3949 Analyze_Aspect_Specifications
(N
, Designator
);
3951 end Analyze_Subprogram_Declaration
;
3953 --------------------------------------
3954 -- Analyze_Subprogram_Specification --
3955 --------------------------------------
3957 -- Reminder: N here really is a subprogram specification (not a subprogram
3958 -- declaration). This procedure is called to analyze the specification in
3959 -- both subprogram bodies and subprogram declarations (specs).
3961 function Analyze_Subprogram_Specification
(N
: Node_Id
) return Entity_Id
is
3962 Designator
: constant Entity_Id
:= Defining_Entity
(N
);
3963 Formals
: constant List_Id
:= Parameter_Specifications
(N
);
3965 -- Start of processing for Analyze_Subprogram_Specification
3968 -- User-defined operator is not allowed in SPARK, except as a renaming
3970 if Nkind
(Defining_Unit_Name
(N
)) = N_Defining_Operator_Symbol
3971 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
3973 Check_SPARK_Restriction
("user-defined operator is not allowed", N
);
3976 -- Proceed with analysis. Do not emit a cross-reference entry if the
3977 -- specification comes from an expression function, because it may be
3978 -- the completion of a previous declaration. It is is not, the cross-
3979 -- reference entry will be emitted for the new subprogram declaration.
3981 if Nkind
(Parent
(N
)) /= N_Expression_Function
then
3982 Generate_Definition
(Designator
);
3985 Set_Contract
(Designator
, Make_Contract
(Sloc
(Designator
)));
3987 if Nkind
(N
) = N_Function_Specification
then
3988 Set_Ekind
(Designator
, E_Function
);
3989 Set_Mechanism
(Designator
, Default_Mechanism
);
3991 Set_Ekind
(Designator
, E_Procedure
);
3992 Set_Etype
(Designator
, Standard_Void_Type
);
3995 -- Introduce new scope for analysis of the formals and the return type
3997 Set_Scope
(Designator
, Current_Scope
);
3999 if Present
(Formals
) then
4000 Push_Scope
(Designator
);
4001 Process_Formals
(Formals
, N
);
4003 -- Check dimensions in N for formals with default expression
4005 Analyze_Dimension_Formals
(N
, Formals
);
4007 -- Ada 2005 (AI-345): If this is an overriding operation of an
4008 -- inherited interface operation, and the controlling type is
4009 -- a synchronized type, replace the type with its corresponding
4010 -- record, to match the proper signature of an overriding operation.
4011 -- Same processing for an access parameter whose designated type is
4012 -- derived from a synchronized interface.
4014 if Ada_Version
>= Ada_2005
then
4017 Formal_Typ
: Entity_Id
;
4018 Rec_Typ
: Entity_Id
;
4019 Desig_Typ
: Entity_Id
;
4022 Formal
:= First_Formal
(Designator
);
4023 while Present
(Formal
) loop
4024 Formal_Typ
:= Etype
(Formal
);
4026 if Is_Concurrent_Type
(Formal_Typ
)
4027 and then Present
(Corresponding_Record_Type
(Formal_Typ
))
4029 Rec_Typ
:= Corresponding_Record_Type
(Formal_Typ
);
4031 if Present
(Interfaces
(Rec_Typ
)) then
4032 Set_Etype
(Formal
, Rec_Typ
);
4035 elsif Ekind
(Formal_Typ
) = E_Anonymous_Access_Type
then
4036 Desig_Typ
:= Designated_Type
(Formal_Typ
);
4038 if Is_Concurrent_Type
(Desig_Typ
)
4039 and then Present
(Corresponding_Record_Type
(Desig_Typ
))
4041 Rec_Typ
:= Corresponding_Record_Type
(Desig_Typ
);
4043 if Present
(Interfaces
(Rec_Typ
)) then
4044 Set_Directly_Designated_Type
(Formal_Typ
, Rec_Typ
);
4049 Next_Formal
(Formal
);
4056 -- The subprogram scope is pushed and popped around the processing of
4057 -- the return type for consistency with call above to Process_Formals
4058 -- (which itself can call Analyze_Return_Type), and to ensure that any
4059 -- itype created for the return type will be associated with the proper
4062 elsif Nkind
(N
) = N_Function_Specification
then
4063 Push_Scope
(Designator
);
4064 Analyze_Return_Type
(N
);
4070 if Nkind
(N
) = N_Function_Specification
then
4072 -- Deal with operator symbol case
4074 if Nkind
(Designator
) = N_Defining_Operator_Symbol
then
4075 Valid_Operator_Definition
(Designator
);
4078 May_Need_Actuals
(Designator
);
4080 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4081 -- the subprogram is abstract also. This does not apply to renaming
4082 -- declarations, where abstractness is inherited, and to subprogram
4083 -- bodies generated for stream operations, which become renamings as
4086 -- In case of primitives associated with abstract interface types
4087 -- the check is applied later (see Analyze_Subprogram_Declaration).
4089 if not Nkind_In
(Original_Node
(Parent
(N
)),
4090 N_Subprogram_Renaming_Declaration
,
4091 N_Abstract_Subprogram_Declaration
,
4092 N_Formal_Abstract_Subprogram_Declaration
)
4094 if Is_Abstract_Type
(Etype
(Designator
))
4095 and then not Is_Interface
(Etype
(Designator
))
4098 ("function that returns abstract type must be abstract", N
);
4100 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4101 -- access result whose designated type is abstract.
4103 elsif Nkind
(Result_Definition
(N
)) = N_Access_Definition
4105 not Is_Class_Wide_Type
(Designated_Type
(Etype
(Designator
)))
4106 and then Is_Abstract_Type
(Designated_Type
(Etype
(Designator
)))
4107 and then Ada_Version
>= Ada_2012
4109 Error_Msg_N
("function whose access result designates "
4110 & "abstract type must be abstract", N
);
4116 end Analyze_Subprogram_Specification
;
4118 --------------------------
4119 -- Build_Body_To_Inline --
4120 --------------------------
4122 procedure Build_Body_To_Inline
(N
: Node_Id
; Subp
: Entity_Id
) is
4123 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
4124 Original_Body
: Node_Id
;
4125 Body_To_Analyze
: Node_Id
;
4126 Max_Size
: constant := 10;
4127 Stat_Count
: Integer := 0;
4129 function Has_Excluded_Declaration
(Decls
: List_Id
) return Boolean;
4130 -- Check for declarations that make inlining not worthwhile
4132 function Has_Excluded_Statement
(Stats
: List_Id
) return Boolean;
4133 -- Check for statements that make inlining not worthwhile: any tasking
4134 -- statement, nested at any level. Keep track of total number of
4135 -- elementary statements, as a measure of acceptable size.
4137 function Has_Pending_Instantiation
return Boolean;
4138 -- If some enclosing body contains instantiations that appear before the
4139 -- corresponding generic body, the enclosing body has a freeze node so
4140 -- that it can be elaborated after the generic itself. This might
4141 -- conflict with subsequent inlinings, so that it is unsafe to try to
4142 -- inline in such a case.
4144 function Has_Single_Return
return Boolean;
4145 -- In general we cannot inline functions that return unconstrained type.
4146 -- However, we can handle such functions if all return statements return
4147 -- a local variable that is the only declaration in the body of the
4148 -- function. In that case the call can be replaced by that local
4149 -- variable as is done for other inlined calls.
4151 procedure Remove_Pragmas
;
4152 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
4153 -- parameter has no meaning when the body is inlined and the formals
4154 -- are rewritten. Remove it from body to inline. The analysis of the
4155 -- non-inlined body will handle the pragma properly.
4157 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean;
4158 -- If the body of the subprogram includes a call that returns an
4159 -- unconstrained type, the secondary stack is involved, and it
4160 -- is not worth inlining.
4162 ------------------------------
4163 -- Has_Excluded_Declaration --
4164 ------------------------------
4166 function Has_Excluded_Declaration
(Decls
: List_Id
) return Boolean is
4169 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean;
4170 -- Nested subprograms make a given body ineligible for inlining, but
4171 -- we make an exception for instantiations of unchecked conversion.
4172 -- The body has not been analyzed yet, so check the name, and verify
4173 -- that the visible entity with that name is the predefined unit.
4175 -----------------------------
4176 -- Is_Unchecked_Conversion --
4177 -----------------------------
4179 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean is
4180 Id
: constant Node_Id
:= Name
(D
);
4184 if Nkind
(Id
) = N_Identifier
4185 and then Chars
(Id
) = Name_Unchecked_Conversion
4187 Conv
:= Current_Entity
(Id
);
4189 elsif Nkind_In
(Id
, N_Selected_Component
, N_Expanded_Name
)
4190 and then Chars
(Selector_Name
(Id
)) = Name_Unchecked_Conversion
4192 Conv
:= Current_Entity
(Selector_Name
(Id
));
4197 return Present
(Conv
)
4198 and then Is_Predefined_File_Name
4199 (Unit_File_Name
(Get_Source_Unit
(Conv
)))
4200 and then Is_Intrinsic_Subprogram
(Conv
);
4201 end Is_Unchecked_Conversion
;
4203 -- Start of processing for Has_Excluded_Declaration
4207 while Present
(D
) loop
4208 if (Nkind
(D
) = N_Function_Instantiation
4209 and then not Is_Unchecked_Conversion
(D
))
4210 or else Nkind_In
(D
, N_Protected_Type_Declaration
,
4211 N_Package_Declaration
,
4212 N_Package_Instantiation
,
4214 N_Procedure_Instantiation
,
4215 N_Task_Type_Declaration
)
4218 ("cannot inline & (non-allowed declaration)?", D
, Subp
);
4226 end Has_Excluded_Declaration
;
4228 ----------------------------
4229 -- Has_Excluded_Statement --
4230 ----------------------------
4232 function Has_Excluded_Statement
(Stats
: List_Id
) return Boolean is
4238 while Present
(S
) loop
4239 Stat_Count
:= Stat_Count
+ 1;
4241 if Nkind_In
(S
, N_Abort_Statement
,
4242 N_Asynchronous_Select
,
4243 N_Conditional_Entry_Call
,
4244 N_Delay_Relative_Statement
,
4245 N_Delay_Until_Statement
,
4250 ("cannot inline & (non-allowed statement)?", S
, Subp
);
4253 elsif Nkind
(S
) = N_Block_Statement
then
4254 if Present
(Declarations
(S
))
4255 and then Has_Excluded_Declaration
(Declarations
(S
))
4259 elsif Present
(Handled_Statement_Sequence
(S
))
4262 (Exception_Handlers
(Handled_Statement_Sequence
(S
)))
4264 Has_Excluded_Statement
4265 (Statements
(Handled_Statement_Sequence
(S
))))
4270 elsif Nkind
(S
) = N_Case_Statement
then
4271 E
:= First
(Alternatives
(S
));
4272 while Present
(E
) loop
4273 if Has_Excluded_Statement
(Statements
(E
)) then
4280 elsif Nkind
(S
) = N_If_Statement
then
4281 if Has_Excluded_Statement
(Then_Statements
(S
)) then
4285 if Present
(Elsif_Parts
(S
)) then
4286 E
:= First
(Elsif_Parts
(S
));
4287 while Present
(E
) loop
4288 if Has_Excluded_Statement
(Then_Statements
(E
)) then
4296 if Present
(Else_Statements
(S
))
4297 and then Has_Excluded_Statement
(Else_Statements
(S
))
4302 elsif Nkind
(S
) = N_Loop_Statement
4303 and then Has_Excluded_Statement
(Statements
(S
))
4307 elsif Nkind
(S
) = N_Extended_Return_Statement
then
4308 if Has_Excluded_Statement
4309 (Statements
(Handled_Statement_Sequence
(S
)))
4311 (Exception_Handlers
(Handled_Statement_Sequence
(S
)))
4321 end Has_Excluded_Statement
;
4323 -------------------------------
4324 -- Has_Pending_Instantiation --
4325 -------------------------------
4327 function Has_Pending_Instantiation
return Boolean is
4332 while Present
(S
) loop
4333 if Is_Compilation_Unit
(S
)
4334 or else Is_Child_Unit
(S
)
4338 elsif Ekind
(S
) = E_Package
4339 and then Has_Forward_Instantiation
(S
)
4348 end Has_Pending_Instantiation
;
4350 ------------------------
4351 -- Has_Single_Return --
4352 ------------------------
4354 function Has_Single_Return
return Boolean is
4355 Return_Statement
: Node_Id
:= Empty
;
4357 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
4363 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
4365 if Nkind
(N
) = N_Simple_Return_Statement
then
4366 if Present
(Expression
(N
))
4367 and then Is_Entity_Name
(Expression
(N
))
4369 if No
(Return_Statement
) then
4370 Return_Statement
:= N
;
4373 elsif Chars
(Expression
(N
)) =
4374 Chars
(Expression
(Return_Statement
))
4382 -- A return statement within an extended return is a noop
4385 elsif No
(Expression
(N
))
4386 and then Nkind
(Parent
(Parent
(N
))) =
4387 N_Extended_Return_Statement
4392 -- Expression has wrong form
4397 -- We can only inline a build-in-place function if
4398 -- it has a single extended return.
4400 elsif Nkind
(N
) = N_Extended_Return_Statement
then
4401 if No
(Return_Statement
) then
4402 Return_Statement
:= N
;
4414 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
4416 -- Start of processing for Has_Single_Return
4419 if Check_All_Returns
(N
) /= OK
then
4422 elsif Nkind
(Return_Statement
) = N_Extended_Return_Statement
then
4426 return Present
(Declarations
(N
))
4427 and then Present
(First
(Declarations
(N
)))
4428 and then Chars
(Expression
(Return_Statement
)) =
4429 Chars
(Defining_Identifier
(First
(Declarations
(N
))));
4431 end Has_Single_Return
;
4433 --------------------
4434 -- Remove_Pragmas --
4435 --------------------
4437 procedure Remove_Pragmas
is
4442 Decl
:= First
(Declarations
(Body_To_Analyze
));
4443 while Present
(Decl
) loop
4446 if Nkind
(Decl
) = N_Pragma
4447 and then Nam_In
(Pragma_Name
(Decl
), Name_Unreferenced
,
4457 --------------------------
4458 -- Uses_Secondary_Stack --
4459 --------------------------
4461 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean is
4462 function Check_Call
(N
: Node_Id
) return Traverse_Result
;
4463 -- Look for function calls that return an unconstrained type
4469 function Check_Call
(N
: Node_Id
) return Traverse_Result
is
4471 if Nkind
(N
) = N_Function_Call
4472 and then Is_Entity_Name
(Name
(N
))
4473 and then Is_Composite_Type
(Etype
(Entity
(Name
(N
))))
4474 and then not Is_Constrained
(Etype
(Entity
(Name
(N
))))
4477 ("cannot inline & (call returns unconstrained type)?",
4485 function Check_Calls
is new Traverse_Func
(Check_Call
);
4488 return Check_Calls
(Bod
) = Abandon
;
4489 end Uses_Secondary_Stack
;
4491 -- Start of processing for Build_Body_To_Inline
4494 -- Return immediately if done already
4496 if Nkind
(Decl
) = N_Subprogram_Declaration
4497 and then Present
(Body_To_Inline
(Decl
))
4501 -- Functions that return unconstrained composite types require
4502 -- secondary stack handling, and cannot currently be inlined, unless
4503 -- all return statements return a local variable that is the first
4504 -- local declaration in the body.
4506 elsif Ekind
(Subp
) = E_Function
4507 and then not Is_Scalar_Type
(Etype
(Subp
))
4508 and then not Is_Access_Type
(Etype
(Subp
))
4509 and then not Is_Constrained
(Etype
(Subp
))
4511 if not Has_Single_Return
then
4513 ("cannot inline & (unconstrained return type)?", N
, Subp
);
4517 -- Ditto for functions that return controlled types, where controlled
4518 -- actions interfere in complex ways with inlining.
4520 elsif Ekind
(Subp
) = E_Function
4521 and then Needs_Finalization
(Etype
(Subp
))
4524 ("cannot inline & (controlled return type)?", N
, Subp
);
4528 if Present
(Declarations
(N
))
4529 and then Has_Excluded_Declaration
(Declarations
(N
))
4534 if Present
(Handled_Statement_Sequence
(N
)) then
4535 if Present
(Exception_Handlers
(Handled_Statement_Sequence
(N
))) then
4537 ("cannot inline& (exception handler)?",
4538 First
(Exception_Handlers
(Handled_Statement_Sequence
(N
))),
4542 Has_Excluded_Statement
4543 (Statements
(Handled_Statement_Sequence
(N
)))
4549 -- We do not inline a subprogram that is too large, unless it is
4550 -- marked Inline_Always. This pragma does not suppress the other
4551 -- checks on inlining (forbidden declarations, handlers, etc).
4553 if Stat_Count
> Max_Size
4554 and then not Has_Pragma_Inline_Always
(Subp
)
4556 Cannot_Inline
("cannot inline& (body too large)?", N
, Subp
);
4560 if Has_Pending_Instantiation
then
4562 ("cannot inline& (forward instance within enclosing body)?",
4567 -- Within an instance, the body to inline must be treated as a nested
4568 -- generic, so that the proper global references are preserved.
4570 -- Note that we do not do this at the library level, because it is not
4571 -- needed, and furthermore this causes trouble if front end inlining
4572 -- is activated (-gnatN).
4574 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
4575 Save_Env
(Scope
(Current_Scope
), Scope
(Current_Scope
));
4576 Original_Body
:= Copy_Generic_Node
(N
, Empty
, True);
4578 Original_Body
:= Copy_Separate_Tree
(N
);
4581 -- We need to capture references to the formals in order to substitute
4582 -- the actuals at the point of inlining, i.e. instantiation. To treat
4583 -- the formals as globals to the body to inline, we nest it within
4584 -- a dummy parameterless subprogram, declared within the real one.
4585 -- To avoid generating an internal name (which is never public, and
4586 -- which affects serial numbers of other generated names), we use
4587 -- an internal symbol that cannot conflict with user declarations.
4589 Set_Parameter_Specifications
(Specification
(Original_Body
), No_List
);
4590 Set_Defining_Unit_Name
4591 (Specification
(Original_Body
),
4592 Make_Defining_Identifier
(Sloc
(N
), Name_uParent
));
4593 Set_Corresponding_Spec
(Original_Body
, Empty
);
4595 Body_To_Analyze
:= Copy_Generic_Node
(Original_Body
, Empty
, False);
4597 -- Set return type of function, which is also global and does not need
4600 if Ekind
(Subp
) = E_Function
then
4601 Set_Result_Definition
(Specification
(Body_To_Analyze
),
4602 New_Occurrence_Of
(Etype
(Subp
), Sloc
(N
)));
4605 if No
(Declarations
(N
)) then
4606 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
4608 Append
(Body_To_Analyze
, Declarations
(N
));
4611 Expander_Mode_Save_And_Set
(False);
4614 Analyze
(Body_To_Analyze
);
4615 Push_Scope
(Defining_Entity
(Body_To_Analyze
));
4616 Save_Global_References
(Original_Body
);
4618 Remove
(Body_To_Analyze
);
4620 Expander_Mode_Restore
;
4622 -- Restore environment if previously saved
4624 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
4628 -- If secondary stk used there is no point in inlining. We have
4629 -- already issued the warning in this case, so nothing to do.
4631 if Uses_Secondary_Stack
(Body_To_Analyze
) then
4635 Set_Body_To_Inline
(Decl
, Original_Body
);
4636 Set_Ekind
(Defining_Entity
(Original_Body
), Ekind
(Subp
));
4637 Set_Is_Inlined
(Subp
);
4638 end Build_Body_To_Inline
;
4644 procedure Cannot_Inline
4648 Is_Serious
: Boolean := False)
4651 pragma Assert
(Msg
(Msg
'Last) = '?');
4655 if not Debug_Flag_Dot_K
then
4657 -- Do not emit warning if this is a predefined unit which is not
4658 -- the main unit. With validity checks enabled, some predefined
4659 -- subprograms may contain nested subprograms and become ineligible
4662 if Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(Subp
)))
4663 and then not In_Extended_Main_Source_Unit
(Subp
)
4667 elsif Has_Pragma_Inline_Always
(Subp
) then
4669 -- Remove last character (question mark) to make this into an
4670 -- error, because the Inline_Always pragma cannot be obeyed.
4672 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
4674 elsif Ineffective_Inline_Warnings
then
4675 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
4682 elsif Is_Serious
then
4684 -- Remove last character (question mark) to make this into an error.
4686 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
4688 elsif Optimization_Level
= 0 then
4690 -- Do not emit warning if this is a predefined unit which is not
4691 -- the main unit. This behavior is currently provided for backward
4692 -- compatibility but it will be removed when we enforce the
4693 -- strictness of the new rules.
4695 if Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(Subp
)))
4696 and then not In_Extended_Main_Source_Unit
(Subp
)
4700 elsif Has_Pragma_Inline_Always
(Subp
) then
4702 -- Emit a warning if this is a call to a runtime subprogram
4703 -- which is located inside a generic. Previously this call
4704 -- was silently skipped.
4706 if Is_Generic_Instance
(Subp
) then
4708 Gen_P
: constant Entity_Id
:= Generic_Parent
(Parent
(Subp
));
4710 if Is_Predefined_File_Name
4711 (Unit_File_Name
(Get_Source_Unit
(Gen_P
)))
4713 Set_Is_Inlined
(Subp
, False);
4714 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
4720 -- Remove last character (question mark) to make this into an
4721 -- error, because the Inline_Always pragma cannot be obeyed.
4723 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
4725 else pragma Assert
(Front_End_Inlining
);
4726 Set_Is_Inlined
(Subp
, False);
4728 -- When inlining cannot take place we must issue an error.
4729 -- For backward compatibility we still report a warning.
4731 if Ineffective_Inline_Warnings
then
4732 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
4736 -- Compiling with optimizations enabled it is too early to report
4737 -- problems since the backend may still perform inlining. In order
4738 -- to report unhandled inlinings the program must be compiled with
4739 -- -Winline and the error is reported by the backend.
4746 ------------------------------------
4747 -- Check_And_Build_Body_To_Inline --
4748 ------------------------------------
4750 procedure Check_And_Build_Body_To_Inline
4752 Spec_Id
: Entity_Id
;
4753 Body_Id
: Entity_Id
)
4755 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
);
4756 -- Use generic machinery to build an unexpanded body for the subprogram.
4757 -- This body is subsequently used for inline expansions at call sites.
4759 function Can_Split_Unconstrained_Function
(N
: Node_Id
) return Boolean;
4760 -- Return true if we generate code for the function body N, the function
4761 -- body N has no local declarations and its unique statement is a single
4762 -- extended return statement with a handled statements sequence.
4764 function Check_Body_To_Inline
4766 Subp
: Entity_Id
) return Boolean;
4767 -- N is the N_Subprogram_Body of Subp. Return true if Subp can be
4768 -- inlined by the frontend. These are the rules:
4769 -- * At -O0 use fe inlining when inline_always is specified except if
4770 -- the function returns a controlled type.
4771 -- * At other optimization levels use the fe inlining for both inline
4772 -- and inline_always in the following cases:
4773 -- - function returning a known at compile time constant
4774 -- - function returning a call to an intrinsic function
4775 -- - function returning an unconstrained type (see Can_Split
4776 -- Unconstrained_Function).
4777 -- - function returning a call to a frontend-inlined function
4778 -- Use the back-end mechanism otherwise
4780 -- In addition, in the following cases the function cannot be inlined by
4782 -- - functions that uses the secondary stack
4783 -- - functions that have declarations of:
4784 -- - Concurrent types
4788 -- - functions that have some of the following statements:
4790 -- - asynchronous-select
4791 -- - conditional-entry-call
4794 -- - selective-accept
4795 -- - timed-entry-call
4796 -- - functions that have exception handlers
4797 -- - functions that have some enclosing body containing instantiations
4798 -- that appear before the corresponding generic body.
4800 procedure Generate_Body_To_Inline
4802 Body_To_Inline
: out Node_Id
);
4803 -- Generate a parameterless duplicate of subprogram body N. Occurrences
4804 -- of pragmas referencing the formals are removed since they have no
4805 -- meaning when the body is inlined and the formals are rewritten (the
4806 -- analysis of the non-inlined body will handle these pragmas properly).
4807 -- A new internal name is associated with Body_To_Inline.
4809 procedure Split_Unconstrained_Function
4811 Spec_Id
: Entity_Id
);
4812 -- N is an inlined function body that returns an unconstrained type and
4813 -- has a single extended return statement. Split N in two subprograms:
4814 -- a procedure P' and a function F'. The formals of P' duplicate the
4815 -- formals of N plus an extra formal which is used return a value;
4816 -- its body is composed by the declarations and list of statements
4817 -- of the extended return statement of N.
4819 --------------------------
4820 -- Build_Body_To_Inline --
4821 --------------------------
4823 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
4824 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
4825 Original_Body
: Node_Id
;
4826 Body_To_Analyze
: Node_Id
;
4829 pragma Assert
(Current_Scope
= Spec_Id
);
4831 -- Within an instance, the body to inline must be treated as a nested
4832 -- generic, so that the proper global references are preserved. We
4833 -- do not do this at the library level, because it is not needed, and
4834 -- furthermore this causes trouble if front end inlining is activated
4838 and then Scope
(Current_Scope
) /= Standard_Standard
4840 Save_Env
(Scope
(Current_Scope
), Scope
(Current_Scope
));
4843 -- We need to capture references to the formals in order
4844 -- to substitute the actuals at the point of inlining, i.e.
4845 -- instantiation. To treat the formals as globals to the body to
4846 -- inline, we nest it within a dummy parameterless subprogram,
4847 -- declared within the real one.
4849 Generate_Body_To_Inline
(N
, Original_Body
);
4850 Body_To_Analyze
:= Copy_Generic_Node
(Original_Body
, Empty
, False);
4852 -- Set return type of function, which is also global and does not
4853 -- need to be resolved.
4855 if Ekind
(Spec_Id
) = E_Function
then
4856 Set_Result_Definition
(Specification
(Body_To_Analyze
),
4857 New_Occurrence_Of
(Etype
(Spec_Id
), Sloc
(N
)));
4860 if No
(Declarations
(N
)) then
4861 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
4863 Append_To
(Declarations
(N
), Body_To_Analyze
);
4866 Preanalyze
(Body_To_Analyze
);
4868 Push_Scope
(Defining_Entity
(Body_To_Analyze
));
4869 Save_Global_References
(Original_Body
);
4871 Remove
(Body_To_Analyze
);
4873 -- Restore environment if previously saved
4876 and then Scope
(Current_Scope
) /= Standard_Standard
4881 pragma Assert
(No
(Body_To_Inline
(Decl
)));
4882 Set_Body_To_Inline
(Decl
, Original_Body
);
4883 Set_Ekind
(Defining_Entity
(Original_Body
), Ekind
(Spec_Id
));
4884 end Build_Body_To_Inline
;
4886 --------------------------
4887 -- Check_Body_To_Inline --
4888 --------------------------
4890 function Check_Body_To_Inline
4892 Subp
: Entity_Id
) return Boolean
4894 Max_Size
: constant := 10;
4895 Stat_Count
: Integer := 0;
4897 function Has_Excluded_Declaration
(Decls
: List_Id
) return Boolean;
4898 -- Check for declarations that make inlining not worthwhile
4900 function Has_Excluded_Statement
(Stats
: List_Id
) return Boolean;
4901 -- Check for statements that make inlining not worthwhile: any
4902 -- tasking statement, nested at any level. Keep track of total
4903 -- number of elementary statements, as a measure of acceptable size.
4905 function Has_Pending_Instantiation
return Boolean;
4906 -- Return True if some enclosing body contains instantiations that
4907 -- appear before the corresponding generic body.
4909 function Returns_Compile_Time_Constant
(N
: Node_Id
) return Boolean;
4910 -- Return True if all the return statements of the function body N
4911 -- are simple return statements and return a compile time constant
4913 function Returns_Intrinsic_Function_Call
(N
: Node_Id
) return Boolean;
4914 -- Return True if all the return statements of the function body N
4915 -- are simple return statements and return an intrinsic function call
4917 function Uses_Secondary_Stack
(N
: Node_Id
) return Boolean;
4918 -- If the body of the subprogram includes a call that returns an
4919 -- unconstrained type, the secondary stack is involved, and it
4920 -- is not worth inlining.
4922 ------------------------------
4923 -- Has_Excluded_Declaration --
4924 ------------------------------
4926 function Has_Excluded_Declaration
(Decls
: List_Id
) return Boolean is
4929 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean;
4930 -- Nested subprograms make a given body ineligible for inlining,
4931 -- but we make an exception for instantiations of unchecked
4932 -- conversion. The body has not been analyzed yet, so check the
4933 -- name, and verify that the visible entity with that name is the
4936 -----------------------------
4937 -- Is_Unchecked_Conversion --
4938 -----------------------------
4940 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean is
4941 Id
: constant Node_Id
:= Name
(D
);
4945 if Nkind
(Id
) = N_Identifier
4946 and then Chars
(Id
) = Name_Unchecked_Conversion
4948 Conv
:= Current_Entity
(Id
);
4950 elsif Nkind_In
(Id
, N_Selected_Component
, N_Expanded_Name
)
4952 Chars
(Selector_Name
(Id
)) = Name_Unchecked_Conversion
4954 Conv
:= Current_Entity
(Selector_Name
(Id
));
4959 return Present
(Conv
)
4960 and then Is_Predefined_File_Name
4961 (Unit_File_Name
(Get_Source_Unit
(Conv
)))
4962 and then Is_Intrinsic_Subprogram
(Conv
);
4963 end Is_Unchecked_Conversion
;
4965 -- Start of processing for Has_Excluded_Declaration
4969 while Present
(D
) loop
4970 if (Nkind
(D
) = N_Function_Instantiation
4971 and then not Is_Unchecked_Conversion
(D
))
4972 or else Nkind_In
(D
, N_Protected_Type_Declaration
,
4973 N_Package_Declaration
,
4974 N_Package_Instantiation
,
4976 N_Procedure_Instantiation
,
4977 N_Task_Type_Declaration
)
4980 ("cannot inline & (non-allowed declaration)?", D
, Subp
);
4989 end Has_Excluded_Declaration
;
4991 ----------------------------
4992 -- Has_Excluded_Statement --
4993 ----------------------------
4995 function Has_Excluded_Statement
(Stats
: List_Id
) return Boolean is
5001 while Present
(S
) loop
5002 Stat_Count
:= Stat_Count
+ 1;
5004 if Nkind_In
(S
, N_Abort_Statement
,
5005 N_Asynchronous_Select
,
5006 N_Conditional_Entry_Call
,
5007 N_Delay_Relative_Statement
,
5008 N_Delay_Until_Statement
,
5013 ("cannot inline & (non-allowed statement)?", S
, Subp
);
5016 elsif Nkind
(S
) = N_Block_Statement
then
5017 if Present
(Declarations
(S
))
5018 and then Has_Excluded_Declaration
(Declarations
(S
))
5022 elsif Present
(Handled_Statement_Sequence
(S
)) then
5024 (Exception_Handlers
(Handled_Statement_Sequence
(S
)))
5027 ("cannot inline& (exception handler)?",
5028 First
(Exception_Handlers
5029 (Handled_Statement_Sequence
(S
))),
5033 elsif Has_Excluded_Statement
5034 (Statements
(Handled_Statement_Sequence
(S
)))
5040 elsif Nkind
(S
) = N_Case_Statement
then
5041 E
:= First
(Alternatives
(S
));
5042 while Present
(E
) loop
5043 if Has_Excluded_Statement
(Statements
(E
)) then
5050 elsif Nkind
(S
) = N_If_Statement
then
5051 if Has_Excluded_Statement
(Then_Statements
(S
)) then
5055 if Present
(Elsif_Parts
(S
)) then
5056 E
:= First
(Elsif_Parts
(S
));
5057 while Present
(E
) loop
5058 if Has_Excluded_Statement
(Then_Statements
(E
)) then
5065 if Present
(Else_Statements
(S
))
5066 and then Has_Excluded_Statement
(Else_Statements
(S
))
5071 elsif Nkind
(S
) = N_Loop_Statement
5072 and then Has_Excluded_Statement
(Statements
(S
))
5076 elsif Nkind
(S
) = N_Extended_Return_Statement
then
5077 if Present
(Handled_Statement_Sequence
(S
))
5079 Has_Excluded_Statement
5080 (Statements
(Handled_Statement_Sequence
(S
)))
5084 elsif Present
(Handled_Statement_Sequence
(S
))
5086 Present
(Exception_Handlers
5087 (Handled_Statement_Sequence
(S
)))
5090 ("cannot inline& (exception handler)?",
5091 First
(Exception_Handlers
5092 (Handled_Statement_Sequence
(S
))),
5102 end Has_Excluded_Statement
;
5104 -------------------------------
5105 -- Has_Pending_Instantiation --
5106 -------------------------------
5108 function Has_Pending_Instantiation
return Boolean is
5113 while Present
(S
) loop
5114 if Is_Compilation_Unit
(S
)
5115 or else Is_Child_Unit
(S
)
5119 elsif Ekind
(S
) = E_Package
5120 and then Has_Forward_Instantiation
(S
)
5129 end Has_Pending_Instantiation
;
5131 ------------------------------------
5132 -- Returns_Compile_Time_Constant --
5133 ------------------------------------
5135 function Returns_Compile_Time_Constant
(N
: Node_Id
) return Boolean is
5137 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
5143 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
5145 if Nkind
(N
) = N_Extended_Return_Statement
then
5148 elsif Nkind
(N
) = N_Simple_Return_Statement
then
5149 if Present
(Expression
(N
)) then
5151 Orig_Expr
: constant Node_Id
:=
5152 Original_Node
(Expression
(N
));
5155 if Nkind_In
(Orig_Expr
, N_Integer_Literal
,
5157 N_Character_Literal
)
5161 elsif Is_Entity_Name
(Orig_Expr
)
5162 and then Ekind
(Entity
(Orig_Expr
)) = E_Constant
5163 and then Is_Static_Expression
(Orig_Expr
)
5171 -- Expression has wrong form
5177 -- Continue analyzing statements
5184 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
5186 -- Start of processing for Returns_Compile_Time_Constant
5189 return Check_All_Returns
(N
) = OK
;
5190 end Returns_Compile_Time_Constant
;
5192 --------------------------------------
5193 -- Returns_Intrinsic_Function_Call --
5194 --------------------------------------
5196 function Returns_Intrinsic_Function_Call
5197 (N
: Node_Id
) return Boolean
5199 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
5205 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
5207 if Nkind
(N
) = N_Extended_Return_Statement
then
5210 elsif Nkind
(N
) = N_Simple_Return_Statement
then
5211 if Present
(Expression
(N
)) then
5213 Orig_Expr
: constant Node_Id
:=
5214 Original_Node
(Expression
(N
));
5217 if Nkind
(Orig_Expr
) in N_Op
5218 and then Is_Intrinsic_Subprogram
(Entity
(Orig_Expr
))
5222 elsif Nkind
(Orig_Expr
) in N_Has_Entity
5223 and then Present
(Entity
(Orig_Expr
))
5224 and then Ekind
(Entity
(Orig_Expr
)) = E_Function
5225 and then Is_Inlined
(Entity
(Orig_Expr
))
5229 elsif Nkind
(Orig_Expr
) in N_Has_Entity
5230 and then Present
(Entity
(Orig_Expr
))
5231 and then Is_Intrinsic_Subprogram
(Entity
(Orig_Expr
))
5240 -- Expression has wrong form
5246 -- Continue analyzing statements
5253 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
5255 -- Start of processing for Returns_Intrinsic_Function_Call
5258 return Check_All_Returns
(N
) = OK
;
5259 end Returns_Intrinsic_Function_Call
;
5261 --------------------------
5262 -- Uses_Secondary_Stack --
5263 --------------------------
5265 function Uses_Secondary_Stack
(N
: Node_Id
) return Boolean is
5267 function Check_Call
(N
: Node_Id
) return Traverse_Result
;
5268 -- Look for function calls that return an unconstrained type
5274 function Check_Call
(N
: Node_Id
) return Traverse_Result
is
5276 if Nkind
(N
) = N_Function_Call
5277 and then Is_Entity_Name
(Name
(N
))
5278 and then Is_Composite_Type
(Etype
(Entity
(Name
(N
))))
5279 and then not Is_Constrained
(Etype
(Entity
(Name
(N
))))
5282 ("cannot inline & (call returns unconstrained type)?",
5291 function Check_Calls
is new Traverse_Func
(Check_Call
);
5293 -- Start of processing for Uses_Secondary_Stack
5296 return Check_Calls
(N
) = Abandon
;
5297 end Uses_Secondary_Stack
;
5301 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
5302 May_Inline
: constant Boolean :=
5303 Has_Pragma_Inline_Always
(Spec_Id
)
5304 or else (Has_Pragma_Inline
(Spec_Id
)
5305 and then ((Optimization_Level
> 0
5306 and then Ekind
(Spec_Id
)
5308 or else Front_End_Inlining
));
5309 Body_To_Analyze
: Node_Id
;
5311 -- Start of processing for Check_Body_To_Inline
5314 -- No action needed in stubs since the attribute Body_To_Inline
5317 if Nkind
(Decl
) = N_Subprogram_Body_Stub
then
5320 -- Cannot build the body to inline if the attribute is already set.
5321 -- This attribute may have been set if this is a subprogram renaming
5322 -- declarations (see Freeze.Build_Renamed_Body).
5324 elsif Present
(Body_To_Inline
(Decl
)) then
5327 -- No action needed if the subprogram does not fulfill the minimum
5328 -- conditions to be inlined by the frontend
5330 elsif not May_Inline
then
5334 -- Check excluded declarations
5336 if Present
(Declarations
(N
))
5337 and then Has_Excluded_Declaration
(Declarations
(N
))
5342 -- Check excluded statements
5344 if Present
(Handled_Statement_Sequence
(N
)) then
5346 (Exception_Handlers
(Handled_Statement_Sequence
(N
)))
5349 ("cannot inline& (exception handler)?",
5351 (Exception_Handlers
(Handled_Statement_Sequence
(N
))),
5356 elsif Has_Excluded_Statement
5357 (Statements
(Handled_Statement_Sequence
(N
)))
5363 -- For backward compatibility, compiling under -gnatN we do not
5364 -- inline a subprogram that is too large, unless it is marked
5365 -- Inline_Always. This pragma does not suppress the other checks
5366 -- on inlining (forbidden declarations, handlers, etc).
5368 if Front_End_Inlining
5369 and then not Has_Pragma_Inline_Always
(Subp
)
5370 and then Stat_Count
> Max_Size
5372 Cannot_Inline
("cannot inline& (body too large)?", N
, Subp
);
5376 -- If some enclosing body contains instantiations that appear before
5377 -- the corresponding generic body, the enclosing body has a freeze
5378 -- node so that it can be elaborated after the generic itself. This
5379 -- might conflict with subsequent inlinings, so that it is unsafe to
5380 -- try to inline in such a case.
5382 if Has_Pending_Instantiation
then
5384 ("cannot inline& (forward instance within enclosing body)?",
5390 -- Generate and preanalyze the body to inline (needed to perform
5391 -- the rest of the checks)
5393 Generate_Body_To_Inline
(N
, Body_To_Analyze
);
5395 if Ekind
(Subp
) = E_Function
then
5396 Set_Result_Definition
(Specification
(Body_To_Analyze
),
5397 New_Occurrence_Of
(Etype
(Subp
), Sloc
(N
)));
5400 -- Nest the body to analyze within the real one
5402 if No
(Declarations
(N
)) then
5403 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
5405 Append_To
(Declarations
(N
), Body_To_Analyze
);
5408 Preanalyze
(Body_To_Analyze
);
5409 Remove
(Body_To_Analyze
);
5411 -- Keep separate checks needed when compiling without optimizations
5413 if Optimization_Level
= 0
5415 -- AAMP and VM targets have no support for inlining in the backend
5416 -- and hence we use frontend inlining at all optimization levels.
5418 or else AAMP_On_Target
5419 or else VM_Target
/= No_VM
5421 -- Cannot inline functions whose body has a call that returns an
5422 -- unconstrained type since the secondary stack is involved, and
5423 -- it is not worth inlining.
5425 if Uses_Secondary_Stack
(Body_To_Analyze
) then
5428 -- Cannot inline functions that return controlled types since
5429 -- controlled actions interfere in complex ways with inlining.
5431 elsif Ekind
(Subp
) = E_Function
5432 and then Needs_Finalization
(Etype
(Subp
))
5435 ("cannot inline & (controlled return type)?", N
, Subp
);
5438 elsif Returns_Unconstrained_Type
(Subp
) then
5440 ("cannot inline & (unconstrained return type)?", N
, Subp
);
5444 -- Compiling with optimizations enabled
5447 -- Procedures are never frontend inlined in this case
5449 if Ekind
(Subp
) /= E_Function
then
5452 -- Functions returning unconstrained types are tested
5453 -- separately (see Can_Split_Unconstrained_Function).
5455 elsif Returns_Unconstrained_Type
(Subp
) then
5458 -- Check supported cases
5460 elsif not Returns_Compile_Time_Constant
(Body_To_Analyze
)
5461 and then Convention
(Subp
) /= Convention_Intrinsic
5462 and then not Returns_Intrinsic_Function_Call
(Body_To_Analyze
)
5469 end Check_Body_To_Inline
;
5471 --------------------------------------
5472 -- Can_Split_Unconstrained_Function --
5473 --------------------------------------
5475 function Can_Split_Unconstrained_Function
(N
: Node_Id
) return Boolean
5477 Ret_Node
: constant Node_Id
:=
5478 First
(Statements
(Handled_Statement_Sequence
(N
)));
5482 -- No user defined declarations allowed in the function except inside
5483 -- the unique return statement; implicit labels are the only allowed
5486 if not Is_Empty_List
(Declarations
(N
)) then
5487 D
:= First
(Declarations
(N
));
5488 while Present
(D
) loop
5489 if Nkind
(D
) /= N_Implicit_Label_Declaration
then
5497 -- We only split the inlined function when we are generating the code
5498 -- of its body; otherwise we leave duplicated split subprograms in
5499 -- the tree which (if referenced) generate wrong references at link
5502 return In_Extended_Main_Code_Unit
(N
)
5503 and then Present
(Ret_Node
)
5504 and then Nkind
(Ret_Node
) = N_Extended_Return_Statement
5505 and then No
(Next
(Ret_Node
))
5506 and then Present
(Handled_Statement_Sequence
(Ret_Node
));
5507 end Can_Split_Unconstrained_Function
;
5509 -----------------------------
5510 -- Generate_Body_To_Inline --
5511 -----------------------------
5513 procedure Generate_Body_To_Inline
5515 Body_To_Inline
: out Node_Id
)
5517 procedure Remove_Pragmas
(N
: Node_Id
);
5518 -- Remove occurrences of pragmas that may reference the formals of
5519 -- N. The analysis of the non-inlined body will handle these pragmas
5522 --------------------
5523 -- Remove_Pragmas --
5524 --------------------
5526 procedure Remove_Pragmas
(N
: Node_Id
) is
5531 Decl
:= First
(Declarations
(N
));
5532 while Present
(Decl
) loop
5535 if Nkind
(Decl
) = N_Pragma
5536 and then Nam_In
(Pragma_Name
(Decl
), Name_Unreferenced
,
5546 -- Start of processing for Generate_Body_To_Inline
5549 -- Within an instance, the body to inline must be treated as a nested
5550 -- generic, so that the proper global references are preserved.
5552 -- Note that we do not do this at the library level, because it
5553 -- is not needed, and furthermore this causes trouble if front
5554 -- end inlining is activated (-gnatN).
5557 and then Scope
(Current_Scope
) /= Standard_Standard
5559 Body_To_Inline
:= Copy_Generic_Node
(N
, Empty
, True);
5561 Body_To_Inline
:= Copy_Separate_Tree
(N
);
5564 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
5565 -- parameter has no meaning when the body is inlined and the formals
5566 -- are rewritten. Remove it from body to inline. The analysis of the
5567 -- non-inlined body will handle the pragma properly.
5569 Remove_Pragmas
(Body_To_Inline
);
5571 -- We need to capture references to the formals in order
5572 -- to substitute the actuals at the point of inlining, i.e.
5573 -- instantiation. To treat the formals as globals to the body to
5574 -- inline, we nest it within a dummy parameterless subprogram,
5575 -- declared within the real one.
5577 Set_Parameter_Specifications
5578 (Specification
(Body_To_Inline
), No_List
);
5580 -- A new internal name is associated with Body_To_Inline to avoid
5581 -- conflicts when the non-inlined body N is analyzed.
5583 Set_Defining_Unit_Name
(Specification
(Body_To_Inline
),
5584 Make_Defining_Identifier
(Sloc
(N
), New_Internal_Name
('P')));
5585 Set_Corresponding_Spec
(Body_To_Inline
, Empty
);
5586 end Generate_Body_To_Inline
;
5588 ----------------------------------
5589 -- Split_Unconstrained_Function --
5590 ----------------------------------
5592 procedure Split_Unconstrained_Function
5594 Spec_Id
: Entity_Id
)
5596 Loc
: constant Source_Ptr
:= Sloc
(N
);
5597 Ret_Node
: constant Node_Id
:=
5598 First
(Statements
(Handled_Statement_Sequence
(N
)));
5599 Ret_Obj
: constant Node_Id
:=
5600 First
(Return_Object_Declarations
(Ret_Node
));
5602 procedure Build_Procedure
5603 (Proc_Id
: out Entity_Id
;
5604 Decl_List
: out List_Id
);
5605 -- Build a procedure containing the statements found in the extended
5606 -- return statement of the unconstrained function body N.
5608 procedure Build_Procedure
5609 (Proc_Id
: out Entity_Id
;
5610 Decl_List
: out List_Id
)
5613 Formal_List
: constant List_Id
:= New_List
;
5614 Proc_Spec
: Node_Id
;
5615 Proc_Body
: Node_Id
;
5616 Subp_Name
: constant Name_Id
:= New_Internal_Name
('F');
5617 Body_Decl_List
: List_Id
:= No_List
;
5618 Param_Type
: Node_Id
;
5621 if Nkind
(Object_Definition
(Ret_Obj
)) = N_Identifier
then
5622 Param_Type
:= New_Copy
(Object_Definition
(Ret_Obj
));
5625 New_Copy
(Subtype_Mark
(Object_Definition
(Ret_Obj
)));
5628 Append_To
(Formal_List
,
5629 Make_Parameter_Specification
(Loc
,
5630 Defining_Identifier
=>
5631 Make_Defining_Identifier
(Loc
,
5632 Chars
=> Chars
(Defining_Identifier
(Ret_Obj
))),
5633 In_Present
=> False,
5634 Out_Present
=> True,
5635 Null_Exclusion_Present
=> False,
5636 Parameter_Type
=> Param_Type
));
5638 Formal
:= First_Formal
(Spec_Id
);
5639 while Present
(Formal
) loop
5640 Append_To
(Formal_List
,
5641 Make_Parameter_Specification
(Loc
,
5642 Defining_Identifier
=>
5643 Make_Defining_Identifier
(Sloc
(Formal
),
5644 Chars
=> Chars
(Formal
)),
5645 In_Present
=> In_Present
(Parent
(Formal
)),
5646 Out_Present
=> Out_Present
(Parent
(Formal
)),
5647 Null_Exclusion_Present
=>
5648 Null_Exclusion_Present
(Parent
(Formal
)),
5650 New_Occurrence_Of
(Etype
(Formal
), Loc
),
5652 Copy_Separate_Tree
(Expression
(Parent
(Formal
)))));
5654 Next_Formal
(Formal
);
5658 Make_Defining_Identifier
(Loc
, Chars
=> Subp_Name
);
5661 Make_Procedure_Specification
(Loc
,
5662 Defining_Unit_Name
=> Proc_Id
,
5663 Parameter_Specifications
=> Formal_List
);
5665 Decl_List
:= New_List
;
5667 Append_To
(Decl_List
,
5668 Make_Subprogram_Declaration
(Loc
, Proc_Spec
));
5670 -- Can_Convert_Unconstrained_Function checked that the function
5671 -- has no local declarations except implicit label declarations.
5672 -- Copy these declarations to the built procedure.
5674 if Present
(Declarations
(N
)) then
5675 Body_Decl_List
:= New_List
;
5682 D
:= First
(Declarations
(N
));
5683 while Present
(D
) loop
5684 pragma Assert
(Nkind
(D
) = N_Implicit_Label_Declaration
);
5687 Make_Implicit_Label_Declaration
(Loc
,
5688 Make_Defining_Identifier
(Loc
,
5689 Chars
=> Chars
(Defining_Identifier
(D
))),
5690 Label_Construct
=> Empty
);
5691 Append_To
(Body_Decl_List
, New_D
);
5698 pragma Assert
(Present
(Handled_Statement_Sequence
(Ret_Node
)));
5701 Make_Subprogram_Body
(Loc
,
5702 Specification
=> Copy_Separate_Tree
(Proc_Spec
),
5703 Declarations
=> Body_Decl_List
,
5704 Handled_Statement_Sequence
=>
5705 Copy_Separate_Tree
(Handled_Statement_Sequence
(Ret_Node
)));
5707 Set_Defining_Unit_Name
(Specification
(Proc_Body
),
5708 Make_Defining_Identifier
(Loc
, Subp_Name
));
5710 Append_To
(Decl_List
, Proc_Body
);
5711 end Build_Procedure
;
5715 New_Obj
: constant Node_Id
:= Copy_Separate_Tree
(Ret_Obj
);
5717 Proc_Id
: Entity_Id
;
5718 Proc_Call
: Node_Id
;
5720 -- Start of processing for Split_Unconstrained_Function
5723 -- Build the associated procedure, analyze it and insert it before
5724 -- the function body N
5727 Scope
: constant Entity_Id
:= Current_Scope
;
5728 Decl_List
: List_Id
;
5731 Build_Procedure
(Proc_Id
, Decl_List
);
5732 Insert_Actions
(N
, Decl_List
);
5736 -- Build the call to the generated procedure
5739 Actual_List
: constant List_Id
:= New_List
;
5743 Append_To
(Actual_List
,
5744 New_Occurrence_Of
(Defining_Identifier
(New_Obj
), Loc
));
5746 Formal
:= First_Formal
(Spec_Id
);
5747 while Present
(Formal
) loop
5748 Append_To
(Actual_List
, New_Occurrence_Of
(Formal
, Loc
));
5750 -- Avoid spurious warning on unreferenced formals
5752 Set_Referenced
(Formal
);
5753 Next_Formal
(Formal
);
5757 Make_Procedure_Call_Statement
(Loc
,
5758 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
5759 Parameter_Associations
=> Actual_List
);
5767 -- main_1__F1b (New_Obj, ...);
5772 Make_Block_Statement
(Loc
,
5773 Declarations
=> New_List
(New_Obj
),
5774 Handled_Statement_Sequence
=>
5775 Make_Handled_Sequence_Of_Statements
(Loc
,
5776 Statements
=> New_List
(
5780 Make_Simple_Return_Statement
(Loc
,
5783 (Defining_Identifier
(New_Obj
), Loc
)))));
5785 Rewrite
(Ret_Node
, Blk_Stmt
);
5786 end Split_Unconstrained_Function
;
5788 -- Start of processing for Check_And_Build_Body_To_Inline
5791 -- Do not inline any subprogram that contains nested subprograms, since
5792 -- the backend inlining circuit seems to generate uninitialized
5793 -- references in this case. We know this happens in the case of front
5794 -- end ZCX support, but it also appears it can happen in other cases as
5795 -- well. The backend often rejects attempts to inline in the case of
5796 -- nested procedures anyway, so little if anything is lost by this.
5797 -- Note that this is test is for the benefit of the back-end. There is
5798 -- a separate test for front-end inlining that also rejects nested
5801 -- Do not do this test if errors have been detected, because in some
5802 -- error cases, this code blows up, and we don't need it anyway if
5803 -- there have been errors, since we won't get to the linker anyway.
5805 if Comes_From_Source
(Body_Id
)
5806 and then (Has_Pragma_Inline_Always
(Spec_Id
)
5807 or else Optimization_Level
> 0)
5808 and then Serious_Errors_Detected
= 0
5816 P_Ent
:= Scope
(P_Ent
);
5817 exit when No
(P_Ent
) or else P_Ent
= Standard_Standard
;
5819 if Is_Subprogram
(P_Ent
) then
5820 Set_Is_Inlined
(P_Ent
, False);
5822 if Comes_From_Source
(P_Ent
)
5823 and then Has_Pragma_Inline
(P_Ent
)
5826 ("cannot inline& (nested subprogram)?", N
, P_Ent
,
5827 Is_Serious
=> True);
5834 -- Build the body to inline only if really needed
5836 if Check_Body_To_Inline
(N
, Spec_Id
)
5837 and then Serious_Errors_Detected
= 0
5839 if Returns_Unconstrained_Type
(Spec_Id
) then
5840 if Can_Split_Unconstrained_Function
(N
) then
5841 Split_Unconstrained_Function
(N
, Spec_Id
);
5842 Build_Body_To_Inline
(N
, Spec_Id
);
5843 Set_Is_Inlined
(Spec_Id
);
5846 Build_Body_To_Inline
(N
, Spec_Id
);
5847 Set_Is_Inlined
(Spec_Id
);
5850 end Check_And_Build_Body_To_Inline
;
5852 -----------------------
5853 -- Check_Conformance --
5854 -----------------------
5856 procedure Check_Conformance
5857 (New_Id
: Entity_Id
;
5859 Ctype
: Conformance_Type
;
5861 Conforms
: out Boolean;
5862 Err_Loc
: Node_Id
:= Empty
;
5863 Get_Inst
: Boolean := False;
5864 Skip_Controlling_Formals
: Boolean := False)
5866 procedure Conformance_Error
(Msg
: String; N
: Node_Id
:= New_Id
);
5867 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5868 -- If Errmsg is True, then processing continues to post an error message
5869 -- for conformance error on given node. Two messages are output. The
5870 -- first message points to the previous declaration with a general "no
5871 -- conformance" message. The second is the detailed reason, supplied as
5872 -- Msg. The parameter N provide information for a possible & insertion
5873 -- in the message, and also provides the location for posting the
5874 -- message in the absence of a specified Err_Loc location.
5876 -----------------------
5877 -- Conformance_Error --
5878 -----------------------
5880 procedure Conformance_Error
(Msg
: String; N
: Node_Id
:= New_Id
) is
5887 if No
(Err_Loc
) then
5893 Error_Msg_Sloc
:= Sloc
(Old_Id
);
5896 when Type_Conformant
=>
5897 Error_Msg_N
-- CODEFIX
5898 ("not type conformant with declaration#!", Enode
);
5900 when Mode_Conformant
=>
5901 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
5903 ("not mode conformant with operation inherited#!",
5907 ("not mode conformant with declaration#!", Enode
);
5910 when Subtype_Conformant
=>
5911 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
5913 ("not subtype conformant with operation inherited#!",
5917 ("not subtype conformant with declaration#!", Enode
);
5920 when Fully_Conformant
=>
5921 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
5922 Error_Msg_N
-- CODEFIX
5923 ("not fully conformant with operation inherited#!",
5926 Error_Msg_N
-- CODEFIX
5927 ("not fully conformant with declaration#!", Enode
);
5931 Error_Msg_NE
(Msg
, Enode
, N
);
5933 end Conformance_Error
;
5937 Old_Type
: constant Entity_Id
:= Etype
(Old_Id
);
5938 New_Type
: constant Entity_Id
:= Etype
(New_Id
);
5939 Old_Formal
: Entity_Id
;
5940 New_Formal
: Entity_Id
;
5941 Access_Types_Match
: Boolean;
5942 Old_Formal_Base
: Entity_Id
;
5943 New_Formal_Base
: Entity_Id
;
5945 -- Start of processing for Check_Conformance
5950 -- We need a special case for operators, since they don't appear
5953 if Ctype
= Type_Conformant
then
5954 if Ekind
(New_Id
) = E_Operator
5955 and then Operator_Matches_Spec
(New_Id
, Old_Id
)
5961 -- If both are functions/operators, check return types conform
5963 if Old_Type
/= Standard_Void_Type
5964 and then New_Type
/= Standard_Void_Type
5967 -- If we are checking interface conformance we omit controlling
5968 -- arguments and result, because we are only checking the conformance
5969 -- of the remaining parameters.
5971 if Has_Controlling_Result
(Old_Id
)
5972 and then Has_Controlling_Result
(New_Id
)
5973 and then Skip_Controlling_Formals
5977 elsif not Conforming_Types
(Old_Type
, New_Type
, Ctype
, Get_Inst
) then
5978 if Ctype
>= Subtype_Conformant
5979 and then not Predicates_Match
(Old_Type
, New_Type
)
5982 ("\predicate of return type does not match!", New_Id
);
5985 ("\return type does not match!", New_Id
);
5991 -- Ada 2005 (AI-231): In case of anonymous access types check the
5992 -- null-exclusion and access-to-constant attributes match.
5994 if Ada_Version
>= Ada_2005
5995 and then Ekind
(Etype
(Old_Type
)) = E_Anonymous_Access_Type
5997 (Can_Never_Be_Null
(Old_Type
) /= Can_Never_Be_Null
(New_Type
)
5998 or else Is_Access_Constant
(Etype
(Old_Type
)) /=
5999 Is_Access_Constant
(Etype
(New_Type
)))
6001 Conformance_Error
("\return type does not match!", New_Id
);
6005 -- If either is a function/operator and the other isn't, error
6007 elsif Old_Type
/= Standard_Void_Type
6008 or else New_Type
/= Standard_Void_Type
6010 Conformance_Error
("\functions can only match functions!", New_Id
);
6014 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
6015 -- If this is a renaming as body, refine error message to indicate that
6016 -- the conflict is with the original declaration. If the entity is not
6017 -- frozen, the conventions don't have to match, the one of the renamed
6018 -- entity is inherited.
6020 if Ctype
>= Subtype_Conformant
then
6021 if Convention
(Old_Id
) /= Convention
(New_Id
) then
6022 if not Is_Frozen
(New_Id
) then
6025 elsif Present
(Err_Loc
)
6026 and then Nkind
(Err_Loc
) = N_Subprogram_Renaming_Declaration
6027 and then Present
(Corresponding_Spec
(Err_Loc
))
6029 Error_Msg_Name_1
:= Chars
(New_Id
);
6031 Name_Ada
+ Convention_Id
'Pos (Convention
(New_Id
));
6032 Conformance_Error
("\prior declaration for% has convention %!");
6035 Conformance_Error
("\calling conventions do not match!");
6040 elsif Is_Formal_Subprogram
(Old_Id
)
6041 or else Is_Formal_Subprogram
(New_Id
)
6043 Conformance_Error
("\formal subprograms not allowed!");
6048 -- Deal with parameters
6050 -- Note: we use the entity information, rather than going directly
6051 -- to the specification in the tree. This is not only simpler, but
6052 -- absolutely necessary for some cases of conformance tests between
6053 -- operators, where the declaration tree simply does not exist.
6055 Old_Formal
:= First_Formal
(Old_Id
);
6056 New_Formal
:= First_Formal
(New_Id
);
6057 while Present
(Old_Formal
) and then Present
(New_Formal
) loop
6058 if Is_Controlling_Formal
(Old_Formal
)
6059 and then Is_Controlling_Formal
(New_Formal
)
6060 and then Skip_Controlling_Formals
6062 -- The controlling formals will have different types when
6063 -- comparing an interface operation with its match, but both
6064 -- or neither must be access parameters.
6066 if Is_Access_Type
(Etype
(Old_Formal
))
6068 Is_Access_Type
(Etype
(New_Formal
))
6070 goto Skip_Controlling_Formal
;
6073 ("\access parameter does not match!", New_Formal
);
6077 -- Ada 2012: Mode conformance also requires that formal parameters
6078 -- be both aliased, or neither.
6080 if Ctype
>= Mode_Conformant
and then Ada_Version
>= Ada_2012
then
6081 if Is_Aliased
(Old_Formal
) /= Is_Aliased
(New_Formal
) then
6083 ("\aliased parameter mismatch!", New_Formal
);
6087 if Ctype
= Fully_Conformant
then
6089 -- Names must match. Error message is more accurate if we do
6090 -- this before checking that the types of the formals match.
6092 if Chars
(Old_Formal
) /= Chars
(New_Formal
) then
6093 Conformance_Error
("\name & does not match!", New_Formal
);
6095 -- Set error posted flag on new formal as well to stop
6096 -- junk cascaded messages in some cases.
6098 Set_Error_Posted
(New_Formal
);
6102 -- Null exclusion must match
6104 if Null_Exclusion_Present
(Parent
(Old_Formal
))
6106 Null_Exclusion_Present
(Parent
(New_Formal
))
6108 -- Only give error if both come from source. This should be
6109 -- investigated some time, since it should not be needed ???
6111 if Comes_From_Source
(Old_Formal
)
6113 Comes_From_Source
(New_Formal
)
6116 ("\null exclusion for & does not match", New_Formal
);
6118 -- Mark error posted on the new formal to avoid duplicated
6119 -- complaint about types not matching.
6121 Set_Error_Posted
(New_Formal
);
6126 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
6127 -- case occurs whenever a subprogram is being renamed and one of its
6128 -- parameters imposes a null exclusion. For example:
6130 -- type T is null record;
6131 -- type Acc_T is access T;
6132 -- subtype Acc_T_Sub is Acc_T;
6134 -- procedure P (Obj : not null Acc_T_Sub); -- itype
6135 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
6138 Old_Formal_Base
:= Etype
(Old_Formal
);
6139 New_Formal_Base
:= Etype
(New_Formal
);
6142 Old_Formal_Base
:= Get_Instance_Of
(Old_Formal_Base
);
6143 New_Formal_Base
:= Get_Instance_Of
(New_Formal_Base
);
6146 Access_Types_Match
:= Ada_Version
>= Ada_2005
6148 -- Ensure that this rule is only applied when New_Id is a
6149 -- renaming of Old_Id.
6151 and then Nkind
(Parent
(Parent
(New_Id
))) =
6152 N_Subprogram_Renaming_Declaration
6153 and then Nkind
(Name
(Parent
(Parent
(New_Id
)))) in N_Has_Entity
6154 and then Present
(Entity
(Name
(Parent
(Parent
(New_Id
)))))
6155 and then Entity
(Name
(Parent
(Parent
(New_Id
)))) = Old_Id
6157 -- Now handle the allowed access-type case
6159 and then Is_Access_Type
(Old_Formal_Base
)
6160 and then Is_Access_Type
(New_Formal_Base
)
6162 -- The type kinds must match. The only exception occurs with
6163 -- multiple generics of the form:
6166 -- type F is private; type A is private;
6167 -- type F_Ptr is access F; type A_Ptr is access A;
6168 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
6169 -- package F_Pack is ... package A_Pack is
6170 -- package F_Inst is
6171 -- new F_Pack (A, A_Ptr, A_P);
6173 -- When checking for conformance between the parameters of A_P
6174 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
6175 -- because the compiler has transformed A_Ptr into a subtype of
6176 -- F_Ptr. We catch this case in the code below.
6178 and then (Ekind
(Old_Formal_Base
) = Ekind
(New_Formal_Base
)
6180 (Is_Generic_Type
(Old_Formal_Base
)
6181 and then Is_Generic_Type
(New_Formal_Base
)
6182 and then Is_Internal
(New_Formal_Base
)
6183 and then Etype
(Etype
(New_Formal_Base
)) =
6185 and then Directly_Designated_Type
(Old_Formal_Base
) =
6186 Directly_Designated_Type
(New_Formal_Base
)
6187 and then ((Is_Itype
(Old_Formal_Base
)
6188 and then Can_Never_Be_Null
(Old_Formal_Base
))
6190 (Is_Itype
(New_Formal_Base
)
6191 and then Can_Never_Be_Null
(New_Formal_Base
)));
6193 -- Types must always match. In the visible part of an instance,
6194 -- usual overloading rules for dispatching operations apply, and
6195 -- we check base types (not the actual subtypes).
6197 if In_Instance_Visible_Part
6198 and then Is_Dispatching_Operation
(New_Id
)
6200 if not Conforming_Types
6201 (T1
=> Base_Type
(Etype
(Old_Formal
)),
6202 T2
=> Base_Type
(Etype
(New_Formal
)),
6204 Get_Inst
=> Get_Inst
)
6205 and then not Access_Types_Match
6207 Conformance_Error
("\type of & does not match!", New_Formal
);
6211 elsif not Conforming_Types
6212 (T1
=> Old_Formal_Base
,
6213 T2
=> New_Formal_Base
,
6215 Get_Inst
=> Get_Inst
)
6216 and then not Access_Types_Match
6218 -- Don't give error message if old type is Any_Type. This test
6219 -- avoids some cascaded errors, e.g. in case of a bad spec.
6221 if Errmsg
and then Old_Formal_Base
= Any_Type
then
6224 if Ctype
>= Subtype_Conformant
6226 not Predicates_Match
(Old_Formal_Base
, New_Formal_Base
)
6229 ("\predicate of & does not match!", New_Formal
);
6232 ("\type of & does not match!", New_Formal
);
6239 -- For mode conformance, mode must match
6241 if Ctype
>= Mode_Conformant
then
6242 if Parameter_Mode
(Old_Formal
) /= Parameter_Mode
(New_Formal
) then
6243 if not Ekind_In
(New_Id
, E_Function
, E_Procedure
)
6244 or else not Is_Primitive_Wrapper
(New_Id
)
6246 Conformance_Error
("\mode of & does not match!", New_Formal
);
6250 T
: constant Entity_Id
:= Find_Dispatching_Type
(New_Id
);
6252 if Is_Protected_Type
6253 (Corresponding_Concurrent_Type
(T
))
6255 Error_Msg_PT
(T
, New_Id
);
6258 ("\mode of & does not match!", New_Formal
);
6265 -- Part of mode conformance for access types is having the same
6266 -- constant modifier.
6268 elsif Access_Types_Match
6269 and then Is_Access_Constant
(Old_Formal_Base
) /=
6270 Is_Access_Constant
(New_Formal_Base
)
6273 ("\constant modifier does not match!", New_Formal
);
6278 if Ctype
>= Subtype_Conformant
then
6280 -- Ada 2005 (AI-231): In case of anonymous access types check
6281 -- the null-exclusion and access-to-constant attributes must
6282 -- match. For null exclusion, we test the types rather than the
6283 -- formals themselves, since the attribute is only set reliably
6284 -- on the formals in the Ada 95 case, and we exclude the case
6285 -- where Old_Formal is marked as controlling, to avoid errors
6286 -- when matching completing bodies with dispatching declarations
6287 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
6289 if Ada_Version
>= Ada_2005
6290 and then Ekind
(Etype
(Old_Formal
)) = E_Anonymous_Access_Type
6291 and then Ekind
(Etype
(New_Formal
)) = E_Anonymous_Access_Type
6293 ((Can_Never_Be_Null
(Etype
(Old_Formal
)) /=
6294 Can_Never_Be_Null
(Etype
(New_Formal
))
6296 not Is_Controlling_Formal
(Old_Formal
))
6298 Is_Access_Constant
(Etype
(Old_Formal
)) /=
6299 Is_Access_Constant
(Etype
(New_Formal
)))
6301 -- Do not complain if error already posted on New_Formal. This
6302 -- avoids some redundant error messages.
6304 and then not Error_Posted
(New_Formal
)
6306 -- It is allowed to omit the null-exclusion in case of stream
6307 -- attribute subprograms. We recognize stream subprograms
6308 -- through their TSS-generated suffix.
6311 TSS_Name
: constant TSS_Name_Type
:= Get_TSS_Name
(New_Id
);
6314 if TSS_Name
/= TSS_Stream_Read
6315 and then TSS_Name
/= TSS_Stream_Write
6316 and then TSS_Name
/= TSS_Stream_Input
6317 and then TSS_Name
/= TSS_Stream_Output
6319 -- Here we have a definite conformance error. It is worth
6320 -- special casing the error message for the case of a
6321 -- controlling formal (which excludes null).
6323 if Is_Controlling_Formal
(New_Formal
) then
6324 Error_Msg_Node_2
:= Scope
(New_Formal
);
6326 ("\controlling formal& of& excludes null, "
6327 & "declaration must exclude null as well",
6330 -- Normal case (couldn't we give more detail here???)
6334 ("\type of & does not match!", New_Formal
);
6343 -- Full conformance checks
6345 if Ctype
= Fully_Conformant
then
6347 -- We have checked already that names match
6349 if Parameter_Mode
(Old_Formal
) = E_In_Parameter
then
6351 -- Check default expressions for in parameters
6354 NewD
: constant Boolean :=
6355 Present
(Default_Value
(New_Formal
));
6356 OldD
: constant Boolean :=
6357 Present
(Default_Value
(Old_Formal
));
6359 if NewD
or OldD
then
6361 -- The old default value has been analyzed because the
6362 -- current full declaration will have frozen everything
6363 -- before. The new default value has not been analyzed,
6364 -- so analyze it now before we check for conformance.
6367 Push_Scope
(New_Id
);
6368 Preanalyze_Spec_Expression
6369 (Default_Value
(New_Formal
), Etype
(New_Formal
));
6373 if not (NewD
and OldD
)
6374 or else not Fully_Conformant_Expressions
6375 (Default_Value
(Old_Formal
),
6376 Default_Value
(New_Formal
))
6379 ("\default expression for & does not match!",
6388 -- A couple of special checks for Ada 83 mode. These checks are
6389 -- skipped if either entity is an operator in package Standard,
6390 -- or if either old or new instance is not from the source program.
6392 if Ada_Version
= Ada_83
6393 and then Sloc
(Old_Id
) > Standard_Location
6394 and then Sloc
(New_Id
) > Standard_Location
6395 and then Comes_From_Source
(Old_Id
)
6396 and then Comes_From_Source
(New_Id
)
6399 Old_Param
: constant Node_Id
:= Declaration_Node
(Old_Formal
);
6400 New_Param
: constant Node_Id
:= Declaration_Node
(New_Formal
);
6403 -- Explicit IN must be present or absent in both cases. This
6404 -- test is required only in the full conformance case.
6406 if In_Present
(Old_Param
) /= In_Present
(New_Param
)
6407 and then Ctype
= Fully_Conformant
6410 ("\(Ada 83) IN must appear in both declarations",
6415 -- Grouping (use of comma in param lists) must be the same
6416 -- This is where we catch a misconformance like:
6419 -- A : Integer; B : Integer
6421 -- which are represented identically in the tree except
6422 -- for the setting of the flags More_Ids and Prev_Ids.
6424 if More_Ids
(Old_Param
) /= More_Ids
(New_Param
)
6425 or else Prev_Ids
(Old_Param
) /= Prev_Ids
(New_Param
)
6428 ("\grouping of & does not match!", New_Formal
);
6434 -- This label is required when skipping controlling formals
6436 <<Skip_Controlling_Formal
>>
6438 Next_Formal
(Old_Formal
);
6439 Next_Formal
(New_Formal
);
6442 if Present
(Old_Formal
) then
6443 Conformance_Error
("\too few parameters!");
6446 elsif Present
(New_Formal
) then
6447 Conformance_Error
("\too many parameters!", New_Formal
);
6450 end Check_Conformance
;
6452 -----------------------
6453 -- Check_Conventions --
6454 -----------------------
6456 procedure Check_Conventions
(Typ
: Entity_Id
) is
6457 Ifaces_List
: Elist_Id
;
6459 procedure Check_Convention
(Op
: Entity_Id
);
6460 -- Verify that the convention of inherited dispatching operation Op is
6461 -- consistent among all subprograms it overrides. In order to minimize
6462 -- the search, Search_From is utilized to designate a specific point in
6463 -- the list rather than iterating over the whole list once more.
6465 ----------------------
6466 -- Check_Convention --
6467 ----------------------
6469 procedure Check_Convention
(Op
: Entity_Id
) is
6470 function Convention_Of
(Id
: Entity_Id
) return Convention_Id
;
6471 -- Given an entity, return its convention. The function treats Ghost
6472 -- as convention Ada because the two have the same dynamic semantics.
6478 function Convention_Of
(Id
: Entity_Id
) return Convention_Id
is
6479 Conv
: constant Convention_Id
:= Convention
(Id
);
6481 if Conv
= Convention_Ghost
then
6482 return Convention_Ada
;
6490 Op_Conv
: constant Convention_Id
:= Convention_Of
(Op
);
6491 Iface_Conv
: Convention_Id
;
6492 Iface_Elmt
: Elmt_Id
;
6493 Iface_Prim_Elmt
: Elmt_Id
;
6494 Iface_Prim
: Entity_Id
;
6496 -- Start of processing for Check_Convention
6499 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
6500 while Present
(Iface_Elmt
) loop
6502 First_Elmt
(Primitive_Operations
(Node
(Iface_Elmt
)));
6503 while Present
(Iface_Prim_Elmt
) loop
6504 Iface_Prim
:= Node
(Iface_Prim_Elmt
);
6505 Iface_Conv
:= Convention_Of
(Iface_Prim
);
6507 if Is_Interface_Conformant
(Typ
, Iface_Prim
, Op
)
6508 and then Iface_Conv
/= Op_Conv
6511 ("inconsistent conventions in primitive operations", Typ
);
6513 Error_Msg_Name_1
:= Chars
(Op
);
6514 Error_Msg_Name_2
:= Get_Convention_Name
(Op_Conv
);
6515 Error_Msg_Sloc
:= Sloc
(Op
);
6517 if Comes_From_Source
(Op
) or else No
(Alias
(Op
)) then
6518 if not Present
(Overridden_Operation
(Op
)) then
6519 Error_Msg_N
("\\primitive % defined #", Typ
);
6522 ("\\overriding operation % with " &
6523 "convention % defined #", Typ
);
6526 else pragma Assert
(Present
(Alias
(Op
)));
6527 Error_Msg_Sloc
:= Sloc
(Alias
(Op
));
6529 ("\\inherited operation % with " &
6530 "convention % defined #", Typ
);
6533 Error_Msg_Name_1
:= Chars
(Op
);
6534 Error_Msg_Name_2
:= Get_Convention_Name
(Iface_Conv
);
6535 Error_Msg_Sloc
:= Sloc
(Iface_Prim
);
6537 ("\\overridden operation % with " &
6538 "convention % defined #", Typ
);
6540 -- Avoid cascading errors
6545 Next_Elmt
(Iface_Prim_Elmt
);
6548 Next_Elmt
(Iface_Elmt
);
6550 end Check_Convention
;
6554 Prim_Op
: Entity_Id
;
6555 Prim_Op_Elmt
: Elmt_Id
;
6557 -- Start of processing for Check_Conventions
6560 if not Has_Interfaces
(Typ
) then
6564 Collect_Interfaces
(Typ
, Ifaces_List
);
6566 -- The algorithm checks every overriding dispatching operation against
6567 -- all the corresponding overridden dispatching operations, detecting
6568 -- differences in conventions.
6570 Prim_Op_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
6571 while Present
(Prim_Op_Elmt
) loop
6572 Prim_Op
:= Node
(Prim_Op_Elmt
);
6574 -- A small optimization: skip the predefined dispatching operations
6575 -- since they always have the same convention.
6577 if not Is_Predefined_Dispatching_Operation
(Prim_Op
) then
6578 Check_Convention
(Prim_Op
);
6581 Next_Elmt
(Prim_Op_Elmt
);
6583 end Check_Conventions
;
6585 ------------------------------
6586 -- Check_Delayed_Subprogram --
6587 ------------------------------
6589 procedure Check_Delayed_Subprogram
(Designator
: Entity_Id
) is
6592 procedure Possible_Freeze
(T
: Entity_Id
);
6593 -- T is the type of either a formal parameter or of the return type.
6594 -- If T is not yet frozen and needs a delayed freeze, then the
6595 -- subprogram itself must be delayed. If T is the limited view of an
6596 -- incomplete type the subprogram must be frozen as well, because
6597 -- T may depend on local types that have not been frozen yet.
6599 ---------------------
6600 -- Possible_Freeze --
6601 ---------------------
6603 procedure Possible_Freeze
(T
: Entity_Id
) is
6605 if Has_Delayed_Freeze
(T
) and then not Is_Frozen
(T
) then
6606 Set_Has_Delayed_Freeze
(Designator
);
6608 elsif Is_Access_Type
(T
)
6609 and then Has_Delayed_Freeze
(Designated_Type
(T
))
6610 and then not Is_Frozen
(Designated_Type
(T
))
6612 Set_Has_Delayed_Freeze
(Designator
);
6614 elsif Ekind
(T
) = E_Incomplete_Type
6615 and then From_Limited_With
(T
)
6617 Set_Has_Delayed_Freeze
(Designator
);
6619 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
6620 -- of a subprogram or entry declaration.
6622 elsif Ekind
(T
) = E_Incomplete_Type
6623 and then Ada_Version
>= Ada_2012
6625 Set_Has_Delayed_Freeze
(Designator
);
6628 end Possible_Freeze
;
6630 -- Start of processing for Check_Delayed_Subprogram
6633 -- All subprograms, including abstract subprograms, may need a freeze
6634 -- node if some formal type or the return type needs one.
6636 Possible_Freeze
(Etype
(Designator
));
6637 Possible_Freeze
(Base_Type
(Etype
(Designator
))); -- needed ???
6639 -- Need delayed freeze if any of the formal types themselves need
6640 -- a delayed freeze and are not yet frozen.
6642 F
:= First_Formal
(Designator
);
6643 while Present
(F
) loop
6644 Possible_Freeze
(Etype
(F
));
6645 Possible_Freeze
(Base_Type
(Etype
(F
))); -- needed ???
6649 -- Mark functions that return by reference. Note that it cannot be
6650 -- done for delayed_freeze subprograms because the underlying
6651 -- returned type may not be known yet (for private types)
6653 if not Has_Delayed_Freeze
(Designator
) and then Expander_Active
then
6655 Typ
: constant Entity_Id
:= Etype
(Designator
);
6656 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
6658 if Is_Limited_View
(Typ
) then
6659 Set_Returns_By_Ref
(Designator
);
6660 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
6661 Set_Returns_By_Ref
(Designator
);
6665 end Check_Delayed_Subprogram
;
6667 ------------------------------------
6668 -- Check_Discriminant_Conformance --
6669 ------------------------------------
6671 procedure Check_Discriminant_Conformance
6676 Old_Discr
: Entity_Id
:= First_Discriminant
(Prev
);
6677 New_Discr
: Node_Id
:= First
(Discriminant_Specifications
(N
));
6678 New_Discr_Id
: Entity_Id
;
6679 New_Discr_Type
: Entity_Id
;
6681 procedure Conformance_Error
(Msg
: String; N
: Node_Id
);
6682 -- Post error message for conformance error on given node. Two messages
6683 -- are output. The first points to the previous declaration with a
6684 -- general "no conformance" message. The second is the detailed reason,
6685 -- supplied as Msg. The parameter N provide information for a possible
6686 -- & insertion in the message.
6688 -----------------------
6689 -- Conformance_Error --
6690 -----------------------
6692 procedure Conformance_Error
(Msg
: String; N
: Node_Id
) is
6694 Error_Msg_Sloc
:= Sloc
(Prev_Loc
);
6695 Error_Msg_N
-- CODEFIX
6696 ("not fully conformant with declaration#!", N
);
6697 Error_Msg_NE
(Msg
, N
, N
);
6698 end Conformance_Error
;
6700 -- Start of processing for Check_Discriminant_Conformance
6703 while Present
(Old_Discr
) and then Present
(New_Discr
) loop
6704 New_Discr_Id
:= Defining_Identifier
(New_Discr
);
6706 -- The subtype mark of the discriminant on the full type has not
6707 -- been analyzed so we do it here. For an access discriminant a new
6710 if Nkind
(Discriminant_Type
(New_Discr
)) = N_Access_Definition
then
6712 Access_Definition
(N
, Discriminant_Type
(New_Discr
));
6715 Analyze
(Discriminant_Type
(New_Discr
));
6716 New_Discr_Type
:= Etype
(Discriminant_Type
(New_Discr
));
6718 -- Ada 2005: if the discriminant definition carries a null
6719 -- exclusion, create an itype to check properly for consistency
6720 -- with partial declaration.
6722 if Is_Access_Type
(New_Discr_Type
)
6723 and then Null_Exclusion_Present
(New_Discr
)
6726 Create_Null_Excluding_Itype
6727 (T
=> New_Discr_Type
,
6728 Related_Nod
=> New_Discr
,
6729 Scope_Id
=> Current_Scope
);
6733 if not Conforming_Types
6734 (Etype
(Old_Discr
), New_Discr_Type
, Fully_Conformant
)
6736 Conformance_Error
("type of & does not match!", New_Discr_Id
);
6739 -- Treat the new discriminant as an occurrence of the old one,
6740 -- for navigation purposes, and fill in some semantic
6741 -- information, for completeness.
6743 Generate_Reference
(Old_Discr
, New_Discr_Id
, 'r');
6744 Set_Etype
(New_Discr_Id
, Etype
(Old_Discr
));
6745 Set_Scope
(New_Discr_Id
, Scope
(Old_Discr
));
6750 if Chars
(Old_Discr
) /= Chars
(Defining_Identifier
(New_Discr
)) then
6751 Conformance_Error
("name & does not match!", New_Discr_Id
);
6755 -- Default expressions must match
6758 NewD
: constant Boolean :=
6759 Present
(Expression
(New_Discr
));
6760 OldD
: constant Boolean :=
6761 Present
(Expression
(Parent
(Old_Discr
)));
6764 if NewD
or OldD
then
6766 -- The old default value has been analyzed and expanded,
6767 -- because the current full declaration will have frozen
6768 -- everything before. The new default values have not been
6769 -- expanded, so expand now to check conformance.
6772 Preanalyze_Spec_Expression
6773 (Expression
(New_Discr
), New_Discr_Type
);
6776 if not (NewD
and OldD
)
6777 or else not Fully_Conformant_Expressions
6778 (Expression
(Parent
(Old_Discr
)),
6779 Expression
(New_Discr
))
6783 ("default expression for & does not match!",
6790 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6792 if Ada_Version
= Ada_83
then
6794 Old_Disc
: constant Node_Id
:= Declaration_Node
(Old_Discr
);
6797 -- Grouping (use of comma in param lists) must be the same
6798 -- This is where we catch a misconformance like:
6801 -- A : Integer; B : Integer
6803 -- which are represented identically in the tree except
6804 -- for the setting of the flags More_Ids and Prev_Ids.
6806 if More_Ids
(Old_Disc
) /= More_Ids
(New_Discr
)
6807 or else Prev_Ids
(Old_Disc
) /= Prev_Ids
(New_Discr
)
6810 ("grouping of & does not match!", New_Discr_Id
);
6816 Next_Discriminant
(Old_Discr
);
6820 if Present
(Old_Discr
) then
6821 Conformance_Error
("too few discriminants!", Defining_Identifier
(N
));
6824 elsif Present
(New_Discr
) then
6826 ("too many discriminants!", Defining_Identifier
(New_Discr
));
6829 end Check_Discriminant_Conformance
;
6831 ----------------------------
6832 -- Check_Fully_Conformant --
6833 ----------------------------
6835 procedure Check_Fully_Conformant
6836 (New_Id
: Entity_Id
;
6838 Err_Loc
: Node_Id
:= Empty
)
6841 pragma Warnings
(Off
, Result
);
6844 (New_Id
, Old_Id
, Fully_Conformant
, True, Result
, Err_Loc
);
6845 end Check_Fully_Conformant
;
6847 ---------------------------
6848 -- Check_Mode_Conformant --
6849 ---------------------------
6851 procedure Check_Mode_Conformant
6852 (New_Id
: Entity_Id
;
6854 Err_Loc
: Node_Id
:= Empty
;
6855 Get_Inst
: Boolean := False)
6858 pragma Warnings
(Off
, Result
);
6861 (New_Id
, Old_Id
, Mode_Conformant
, True, Result
, Err_Loc
, Get_Inst
);
6862 end Check_Mode_Conformant
;
6864 --------------------------------
6865 -- Check_Overriding_Indicator --
6866 --------------------------------
6868 procedure Check_Overriding_Indicator
6870 Overridden_Subp
: Entity_Id
;
6871 Is_Primitive
: Boolean)
6877 -- No overriding indicator for literals
6879 if Ekind
(Subp
) = E_Enumeration_Literal
then
6882 elsif Ekind
(Subp
) = E_Entry
then
6883 Decl
:= Parent
(Subp
);
6885 -- No point in analyzing a malformed operator
6887 elsif Nkind
(Subp
) = N_Defining_Operator_Symbol
6888 and then Error_Posted
(Subp
)
6893 Decl
:= Unit_Declaration_Node
(Subp
);
6896 if Nkind_In
(Decl
, N_Subprogram_Body
,
6897 N_Subprogram_Body_Stub
,
6898 N_Subprogram_Declaration
,
6899 N_Abstract_Subprogram_Declaration
,
6900 N_Subprogram_Renaming_Declaration
)
6902 Spec
:= Specification
(Decl
);
6904 elsif Nkind
(Decl
) = N_Entry_Declaration
then
6911 -- The overriding operation is type conformant with the overridden one,
6912 -- but the names of the formals are not required to match. If the names
6913 -- appear permuted in the overriding operation, this is a possible
6914 -- source of confusion that is worth diagnosing. Controlling formals
6915 -- often carry names that reflect the type, and it is not worthwhile
6916 -- requiring that their names match.
6918 if Present
(Overridden_Subp
)
6919 and then Nkind
(Subp
) /= N_Defining_Operator_Symbol
6926 Form1
:= First_Formal
(Subp
);
6927 Form2
:= First_Formal
(Overridden_Subp
);
6929 -- If the overriding operation is a synchronized operation, skip
6930 -- the first parameter of the overridden operation, which is
6931 -- implicit in the new one. If the operation is declared in the
6932 -- body it is not primitive and all formals must match.
6934 if Is_Concurrent_Type
(Scope
(Subp
))
6935 and then Is_Tagged_Type
(Scope
(Subp
))
6936 and then not Has_Completion
(Scope
(Subp
))
6938 Form2
:= Next_Formal
(Form2
);
6941 if Present
(Form1
) then
6942 Form1
:= Next_Formal
(Form1
);
6943 Form2
:= Next_Formal
(Form2
);
6946 while Present
(Form1
) loop
6947 if not Is_Controlling_Formal
(Form1
)
6948 and then Present
(Next_Formal
(Form2
))
6949 and then Chars
(Form1
) = Chars
(Next_Formal
(Form2
))
6951 Error_Msg_Node_2
:= Alias
(Overridden_Subp
);
6952 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
6954 ("& does not match corresponding formal of&#",
6959 Next_Formal
(Form1
);
6960 Next_Formal
(Form2
);
6965 -- If there is an overridden subprogram, then check that there is no
6966 -- "not overriding" indicator, and mark the subprogram as overriding.
6967 -- This is not done if the overridden subprogram is marked as hidden,
6968 -- which can occur for the case of inherited controlled operations
6969 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6970 -- subprogram is not itself hidden. (Note: This condition could probably
6971 -- be simplified, leaving out the testing for the specific controlled
6972 -- cases, but it seems safer and clearer this way, and echoes similar
6973 -- special-case tests of this kind in other places.)
6975 if Present
(Overridden_Subp
)
6976 and then (not Is_Hidden
(Overridden_Subp
)
6978 (Nam_In
(Chars
(Overridden_Subp
), Name_Initialize
,
6981 and then Present
(Alias
(Overridden_Subp
))
6982 and then not Is_Hidden
(Alias
(Overridden_Subp
))))
6984 if Must_Not_Override
(Spec
) then
6985 Error_Msg_Sloc
:= Sloc
(Overridden_Subp
);
6987 if Ekind
(Subp
) = E_Entry
then
6989 ("entry & overrides inherited operation #", Spec
, Subp
);
6992 ("subprogram & overrides inherited operation #", Spec
, Subp
);
6995 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6996 -- as an extension of Root_Controlled, and thus has a useless Adjust
6997 -- operation. This operation should not be inherited by other limited
6998 -- controlled types. An explicit Adjust for them is not overriding.
7000 elsif Must_Override
(Spec
)
7001 and then Chars
(Overridden_Subp
) = Name_Adjust
7002 and then Is_Limited_Type
(Etype
(First_Formal
(Subp
)))
7003 and then Present
(Alias
(Overridden_Subp
))
7005 Is_Predefined_File_Name
7006 (Unit_File_Name
(Get_Source_Unit
(Alias
(Overridden_Subp
))))
7008 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
7010 elsif Is_Subprogram
(Subp
) then
7011 if Is_Init_Proc
(Subp
) then
7014 elsif No
(Overridden_Operation
(Subp
)) then
7016 -- For entities generated by Derive_Subprograms the overridden
7017 -- operation is the inherited primitive (which is available
7018 -- through the attribute alias)
7020 if (Is_Dispatching_Operation
(Subp
)
7021 or else Is_Dispatching_Operation
(Overridden_Subp
))
7022 and then not Comes_From_Source
(Overridden_Subp
)
7023 and then Find_Dispatching_Type
(Overridden_Subp
) =
7024 Find_Dispatching_Type
(Subp
)
7025 and then Present
(Alias
(Overridden_Subp
))
7026 and then Comes_From_Source
(Alias
(Overridden_Subp
))
7028 Set_Overridden_Operation
(Subp
, Alias
(Overridden_Subp
));
7031 Set_Overridden_Operation
(Subp
, Overridden_Subp
);
7036 -- If primitive flag is set or this is a protected operation, then
7037 -- the operation is overriding at the point of its declaration, so
7038 -- warn if necessary. Otherwise it may have been declared before the
7039 -- operation it overrides and no check is required.
7042 and then not Must_Override
(Spec
)
7043 and then (Is_Primitive
7044 or else Ekind
(Scope
(Subp
)) = E_Protected_Type
)
7046 Style
.Missing_Overriding
(Decl
, Subp
);
7049 -- If Subp is an operator, it may override a predefined operation, if
7050 -- it is defined in the same scope as the type to which it applies.
7051 -- In that case Overridden_Subp is empty because of our implicit
7052 -- representation for predefined operators. We have to check whether the
7053 -- signature of Subp matches that of a predefined operator. Note that
7054 -- first argument provides the name of the operator, and the second
7055 -- argument the signature that may match that of a standard operation.
7056 -- If the indicator is overriding, then the operator must match a
7057 -- predefined signature, because we know already that there is no
7058 -- explicit overridden operation.
7060 elsif Nkind
(Subp
) = N_Defining_Operator_Symbol
then
7061 if Must_Not_Override
(Spec
) then
7063 -- If this is not a primitive or a protected subprogram, then
7064 -- "not overriding" is illegal.
7067 and then Ekind
(Scope
(Subp
)) /= E_Protected_Type
7070 ("overriding indicator only allowed "
7071 & "if subprogram is primitive", Subp
);
7073 elsif Can_Override_Operator
(Subp
) then
7075 ("subprogram& overrides predefined operator ", Spec
, Subp
);
7078 elsif Must_Override
(Spec
) then
7079 if No
(Overridden_Operation
(Subp
))
7080 and then not Can_Override_Operator
(Subp
)
7082 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
7085 elsif not Error_Posted
(Subp
)
7086 and then Style_Check
7087 and then Can_Override_Operator
(Subp
)
7089 not Is_Predefined_File_Name
7090 (Unit_File_Name
(Get_Source_Unit
(Subp
)))
7092 -- If style checks are enabled, indicate that the indicator is
7093 -- missing. However, at the point of declaration, the type of
7094 -- which this is a primitive operation may be private, in which
7095 -- case the indicator would be premature.
7097 if Has_Private_Declaration
(Etype
(Subp
))
7098 or else Has_Private_Declaration
(Etype
(First_Formal
(Subp
)))
7102 Style
.Missing_Overriding
(Decl
, Subp
);
7106 elsif Must_Override
(Spec
) then
7107 if Ekind
(Subp
) = E_Entry
then
7108 Error_Msg_NE
("entry & is not overriding", Spec
, Subp
);
7110 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
7113 -- If the operation is marked "not overriding" and it's not primitive
7114 -- then an error is issued, unless this is an operation of a task or
7115 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
7116 -- has been specified have already been checked above.
7118 elsif Must_Not_Override
(Spec
)
7119 and then not Is_Primitive
7120 and then Ekind
(Subp
) /= E_Entry
7121 and then Ekind
(Scope
(Subp
)) /= E_Protected_Type
7124 ("overriding indicator only allowed if subprogram is primitive",
7128 end Check_Overriding_Indicator
;
7134 -- Note: this procedure needs to know far too much about how the expander
7135 -- messes with exceptions. The use of the flag Exception_Junk and the
7136 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
7137 -- works, but is not very clean. It would be better if the expansion
7138 -- routines would leave Original_Node working nicely, and we could use
7139 -- Original_Node here to ignore all the peculiar expander messing ???
7141 procedure Check_Returns
7145 Proc
: Entity_Id
:= Empty
)
7149 procedure Check_Statement_Sequence
(L
: List_Id
);
7150 -- Internal recursive procedure to check a list of statements for proper
7151 -- termination by a return statement (or a transfer of control or a
7152 -- compound statement that is itself internally properly terminated).
7154 ------------------------------
7155 -- Check_Statement_Sequence --
7156 ------------------------------
7158 procedure Check_Statement_Sequence
(L
: List_Id
) is
7163 function Assert_False
return Boolean;
7164 -- Returns True if Last_Stm is a pragma Assert (False) that has been
7165 -- rewritten as a null statement when assertions are off. The assert
7166 -- is not active, but it is still enough to kill the warning.
7172 function Assert_False
return Boolean is
7173 Orig
: constant Node_Id
:= Original_Node
(Last_Stm
);
7176 if Nkind
(Orig
) = N_Pragma
7177 and then Pragma_Name
(Orig
) = Name_Assert
7178 and then not Error_Posted
(Orig
)
7181 Arg
: constant Node_Id
:=
7182 First
(Pragma_Argument_Associations
(Orig
));
7183 Exp
: constant Node_Id
:= Expression
(Arg
);
7185 return Nkind
(Exp
) = N_Identifier
7186 and then Chars
(Exp
) = Name_False
;
7196 Raise_Exception_Call
: Boolean;
7197 -- Set True if statement sequence terminated by Raise_Exception call
7198 -- or a Reraise_Occurrence call.
7200 -- Start of processing for Check_Statement_Sequence
7203 Raise_Exception_Call
:= False;
7205 -- Get last real statement
7207 Last_Stm
:= Last
(L
);
7209 -- Deal with digging out exception handler statement sequences that
7210 -- have been transformed by the local raise to goto optimization.
7211 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
7212 -- optimization has occurred, we are looking at something like:
7215 -- original stmts in block
7219 -- goto L1; | omitted if No_Exception_Propagation
7224 -- goto L3; -- skip handler when exception not raised
7226 -- <<L1>> -- target label for local exception
7240 -- and what we have to do is to dig out the estmts1 and estmts2
7241 -- sequences (which were the original sequences of statements in
7242 -- the exception handlers) and check them.
7244 if Nkind
(Last_Stm
) = N_Label
and then Exception_Junk
(Last_Stm
) then
7249 exit when Nkind
(Stm
) /= N_Block_Statement
;
7250 exit when not Exception_Junk
(Stm
);
7253 exit when Nkind
(Stm
) /= N_Label
;
7254 exit when not Exception_Junk
(Stm
);
7255 Check_Statement_Sequence
7256 (Statements
(Handled_Statement_Sequence
(Next
(Stm
))));
7261 exit when Nkind
(Stm
) /= N_Goto_Statement
;
7262 exit when not Exception_Junk
(Stm
);
7266 -- Don't count pragmas
7268 while Nkind
(Last_Stm
) = N_Pragma
7270 -- Don't count call to SS_Release (can happen after Raise_Exception)
7273 (Nkind
(Last_Stm
) = N_Procedure_Call_Statement
7275 Nkind
(Name
(Last_Stm
)) = N_Identifier
7277 Is_RTE
(Entity
(Name
(Last_Stm
)), RE_SS_Release
))
7279 -- Don't count exception junk
7282 (Nkind_In
(Last_Stm
, N_Goto_Statement
,
7284 N_Object_Declaration
)
7285 and then Exception_Junk
(Last_Stm
))
7286 or else Nkind
(Last_Stm
) in N_Push_xxx_Label
7287 or else Nkind
(Last_Stm
) in N_Pop_xxx_Label
7289 -- Inserted code, such as finalization calls, is irrelevant: we only
7290 -- need to check original source.
7292 or else Is_Rewrite_Insertion
(Last_Stm
)
7297 -- Here we have the "real" last statement
7299 Kind
:= Nkind
(Last_Stm
);
7301 -- Transfer of control, OK. Note that in the No_Return procedure
7302 -- case, we already diagnosed any explicit return statements, so
7303 -- we can treat them as OK in this context.
7305 if Is_Transfer
(Last_Stm
) then
7308 -- Check cases of explicit non-indirect procedure calls
7310 elsif Kind
= N_Procedure_Call_Statement
7311 and then Is_Entity_Name
(Name
(Last_Stm
))
7313 -- Check call to Raise_Exception procedure which is treated
7314 -- specially, as is a call to Reraise_Occurrence.
7316 -- We suppress the warning in these cases since it is likely that
7317 -- the programmer really does not expect to deal with the case
7318 -- of Null_Occurrence, and thus would find a warning about a
7319 -- missing return curious, and raising Program_Error does not
7320 -- seem such a bad behavior if this does occur.
7322 -- Note that in the Ada 2005 case for Raise_Exception, the actual
7323 -- behavior will be to raise Constraint_Error (see AI-329).
7325 if Is_RTE
(Entity
(Name
(Last_Stm
)), RE_Raise_Exception
)
7327 Is_RTE
(Entity
(Name
(Last_Stm
)), RE_Reraise_Occurrence
)
7329 Raise_Exception_Call
:= True;
7331 -- For Raise_Exception call, test first argument, if it is
7332 -- an attribute reference for a 'Identity call, then we know
7333 -- that the call cannot possibly return.
7336 Arg
: constant Node_Id
:=
7337 Original_Node
(First_Actual
(Last_Stm
));
7339 if Nkind
(Arg
) = N_Attribute_Reference
7340 and then Attribute_Name
(Arg
) = Name_Identity
7347 -- If statement, need to look inside if there is an else and check
7348 -- each constituent statement sequence for proper termination.
7350 elsif Kind
= N_If_Statement
7351 and then Present
(Else_Statements
(Last_Stm
))
7353 Check_Statement_Sequence
(Then_Statements
(Last_Stm
));
7354 Check_Statement_Sequence
(Else_Statements
(Last_Stm
));
7356 if Present
(Elsif_Parts
(Last_Stm
)) then
7358 Elsif_Part
: Node_Id
:= First
(Elsif_Parts
(Last_Stm
));
7361 while Present
(Elsif_Part
) loop
7362 Check_Statement_Sequence
(Then_Statements
(Elsif_Part
));
7370 -- Case statement, check each case for proper termination
7372 elsif Kind
= N_Case_Statement
then
7376 Case_Alt
:= First_Non_Pragma
(Alternatives
(Last_Stm
));
7377 while Present
(Case_Alt
) loop
7378 Check_Statement_Sequence
(Statements
(Case_Alt
));
7379 Next_Non_Pragma
(Case_Alt
);
7385 -- Block statement, check its handled sequence of statements
7387 elsif Kind
= N_Block_Statement
then
7393 (Handled_Statement_Sequence
(Last_Stm
), Mode
, Err1
);
7402 -- Loop statement. If there is an iteration scheme, we can definitely
7403 -- fall out of the loop. Similarly if there is an exit statement, we
7404 -- can fall out. In either case we need a following return.
7406 elsif Kind
= N_Loop_Statement
then
7407 if Present
(Iteration_Scheme
(Last_Stm
))
7408 or else Has_Exit
(Entity
(Identifier
(Last_Stm
)))
7412 -- A loop with no exit statement or iteration scheme is either
7413 -- an infinite loop, or it has some other exit (raise/return).
7414 -- In either case, no warning is required.
7420 -- Timed entry call, check entry call and delay alternatives
7422 -- Note: in expanded code, the timed entry call has been converted
7423 -- to a set of expanded statements on which the check will work
7424 -- correctly in any case.
7426 elsif Kind
= N_Timed_Entry_Call
then
7428 ECA
: constant Node_Id
:= Entry_Call_Alternative
(Last_Stm
);
7429 DCA
: constant Node_Id
:= Delay_Alternative
(Last_Stm
);
7432 -- If statement sequence of entry call alternative is missing,
7433 -- then we can definitely fall through, and we post the error
7434 -- message on the entry call alternative itself.
7436 if No
(Statements
(ECA
)) then
7439 -- If statement sequence of delay alternative is missing, then
7440 -- we can definitely fall through, and we post the error
7441 -- message on the delay alternative itself.
7443 -- Note: if both ECA and DCA are missing the return, then we
7444 -- post only one message, should be enough to fix the bugs.
7445 -- If not we will get a message next time on the DCA when the
7448 elsif No
(Statements
(DCA
)) then
7451 -- Else check both statement sequences
7454 Check_Statement_Sequence
(Statements
(ECA
));
7455 Check_Statement_Sequence
(Statements
(DCA
));
7460 -- Conditional entry call, check entry call and else part
7462 -- Note: in expanded code, the conditional entry call has been
7463 -- converted to a set of expanded statements on which the check
7464 -- will work correctly in any case.
7466 elsif Kind
= N_Conditional_Entry_Call
then
7468 ECA
: constant Node_Id
:= Entry_Call_Alternative
(Last_Stm
);
7471 -- If statement sequence of entry call alternative is missing,
7472 -- then we can definitely fall through, and we post the error
7473 -- message on the entry call alternative itself.
7475 if No
(Statements
(ECA
)) then
7478 -- Else check statement sequence and else part
7481 Check_Statement_Sequence
(Statements
(ECA
));
7482 Check_Statement_Sequence
(Else_Statements
(Last_Stm
));
7488 -- If we fall through, issue appropriate message
7492 -- Kill warning if last statement is a raise exception call,
7493 -- or a pragma Assert (False). Note that with assertions enabled,
7494 -- such a pragma has been converted into a raise exception call
7495 -- already, so the Assert_False is for the assertions off case.
7497 if not Raise_Exception_Call
and then not Assert_False
then
7499 -- In GNATprove mode, it is an error to have a missing return
7501 Error_Msg_Warn
:= SPARK_Mode
/= On
;
7503 -- Issue error message or warning
7506 ("RETURN statement missing following this statement<<!",
7509 ("\Program_Error ]<<!", Last_Stm
);
7512 -- Note: we set Err even though we have not issued a warning
7513 -- because we still have a case of a missing return. This is
7514 -- an extremely marginal case, probably will never be noticed
7515 -- but we might as well get it right.
7519 -- Otherwise we have the case of a procedure marked No_Return
7522 if not Raise_Exception_Call
then
7523 if GNATprove_Mode
then
7525 ("implied return after this statement "
7526 & "would have raised Program_Error", Last_Stm
);
7529 ("implied return after this statement "
7530 & "will raise Program_Error??", Last_Stm
);
7533 Error_Msg_Warn
:= SPARK_Mode
/= On
;
7535 ("\procedure & is marked as No_Return<<!", Last_Stm
, Proc
);
7539 RE
: constant Node_Id
:=
7540 Make_Raise_Program_Error
(Sloc
(Last_Stm
),
7541 Reason
=> PE_Implicit_Return
);
7543 Insert_After
(Last_Stm
, RE
);
7547 end Check_Statement_Sequence
;
7549 -- Start of processing for Check_Returns
7553 Check_Statement_Sequence
(Statements
(HSS
));
7555 if Present
(Exception_Handlers
(HSS
)) then
7556 Handler
:= First_Non_Pragma
(Exception_Handlers
(HSS
));
7557 while Present
(Handler
) loop
7558 Check_Statement_Sequence
(Statements
(Handler
));
7559 Next_Non_Pragma
(Handler
);
7564 ----------------------------
7565 -- Check_Subprogram_Order --
7566 ----------------------------
7568 procedure Check_Subprogram_Order
(N
: Node_Id
) is
7570 function Subprogram_Name_Greater
(S1
, S2
: String) return Boolean;
7571 -- This is used to check if S1 > S2 in the sense required by this test,
7572 -- for example nameab < namec, but name2 < name10.
7574 -----------------------------
7575 -- Subprogram_Name_Greater --
7576 -----------------------------
7578 function Subprogram_Name_Greater
(S1
, S2
: String) return Boolean is
7583 -- Deal with special case where names are identical except for a
7584 -- numerical suffix. These are handled specially, taking the numeric
7585 -- ordering from the suffix into account.
7588 while S1
(L1
) in '0' .. '9' loop
7593 while S2
(L2
) in '0' .. '9' loop
7597 -- If non-numeric parts non-equal, do straight compare
7599 if S1
(S1
'First .. L1
) /= S2
(S2
'First .. L2
) then
7602 -- If non-numeric parts equal, compare suffixed numeric parts. Note
7603 -- that a missing suffix is treated as numeric zero in this test.
7607 while L1
< S1
'Last loop
7609 N1
:= N1
* 10 + Character'Pos (S1
(L1
)) - Character'Pos ('0');
7613 while L2
< S2
'Last loop
7615 N2
:= N2
* 10 + Character'Pos (S2
(L2
)) - Character'Pos ('0');
7620 end Subprogram_Name_Greater
;
7622 -- Start of processing for Check_Subprogram_Order
7625 -- Check body in alpha order if this is option
7628 and then Style_Check_Order_Subprograms
7629 and then Nkind
(N
) = N_Subprogram_Body
7630 and then Comes_From_Source
(N
)
7631 and then In_Extended_Main_Source_Unit
(N
)
7635 renames Scope_Stack
.Table
7636 (Scope_Stack
.Last
).Last_Subprogram_Name
;
7638 Body_Id
: constant Entity_Id
:=
7639 Defining_Entity
(Specification
(N
));
7642 Get_Decoded_Name_String
(Chars
(Body_Id
));
7645 if Subprogram_Name_Greater
7646 (LSN
.all, Name_Buffer
(1 .. Name_Len
))
7648 Style
.Subprogram_Not_In_Alpha_Order
(Body_Id
);
7654 LSN
:= new String'(Name_Buffer (1 .. Name_Len));
7657 end Check_Subprogram_Order;
7659 ------------------------------
7660 -- Check_Subtype_Conformant --
7661 ------------------------------
7663 procedure Check_Subtype_Conformant
7664 (New_Id : Entity_Id;
7666 Err_Loc : Node_Id := Empty;
7667 Skip_Controlling_Formals : Boolean := False;
7668 Get_Inst : Boolean := False)
7671 pragma Warnings (Off, Result);
7674 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7675 Skip_Controlling_Formals => Skip_Controlling_Formals,
7676 Get_Inst => Get_Inst);
7677 end Check_Subtype_Conformant;
7679 ---------------------------
7680 -- Check_Type_Conformant --
7681 ---------------------------
7683 procedure Check_Type_Conformant
7684 (New_Id : Entity_Id;
7686 Err_Loc : Node_Id := Empty)
7689 pragma Warnings (Off, Result);
7692 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7693 end Check_Type_Conformant;
7695 ---------------------------
7696 -- Can_Override_Operator --
7697 ---------------------------
7699 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7703 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7707 Typ := Base_Type (Etype (First_Formal (Subp)));
7709 -- Check explicitly that the operation is a primitive of the type
7711 return Operator_Matches_Spec (Subp, Subp)
7712 and then not Is_Generic_Type (Typ)
7713 and then Scope (Subp) = Scope (Typ)
7714 and then not Is_Class_Wide_Type (Typ);
7716 end Can_Override_Operator;
7718 ----------------------
7719 -- Conforming_Types --
7720 ----------------------
7722 function Conforming_Types
7725 Ctype : Conformance_Type;
7726 Get_Inst : Boolean := False) return Boolean
7728 Type_1 : Entity_Id := T1;
7729 Type_2 : Entity_Id := T2;
7730 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7732 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
7733 -- If neither T1 nor T2 are generic actual types, or if they are in
7734 -- different scopes (e.g. parent and child instances), then verify that
7735 -- the base types are equal. Otherwise T1 and T2 must be on the same
7736 -- subtype chain. The whole purpose of this procedure is to prevent
7737 -- spurious ambiguities in an instantiation that may arise if two
7738 -- distinct generic types are instantiated with the same actual.
7740 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
7741 -- An access parameter can designate an incomplete type. If the
7742 -- incomplete type is the limited view of a type from a limited_
7743 -- with_clause, check whether the non-limited view is available. If
7744 -- it is a (non-limited) incomplete type, get the full view.
7746 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
7747 -- Returns True if and only if either T1 denotes a limited view of T2
7748 -- or T2 denotes a limited view of T1. This can arise when the limited
7749 -- with view of a type is used in a subprogram declaration and the
7750 -- subprogram body is in the scope of a regular with clause for the
7751 -- same unit. In such a case, the two type entities can be considered
7752 -- identical for purposes of conformance checking.
7754 ----------------------
7755 -- Base_Types_Match --
7756 ----------------------
7758 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
7759 BT1 : constant Entity_Id := Base_Type (T1);
7760 BT2 : constant Entity_Id := Base_Type (T2);
7766 elsif BT1 = BT2 then
7768 -- The following is too permissive. A more precise test should
7769 -- check that the generic actual is an ancestor subtype of the
7772 -- See code in Find_Corresponding_Spec that applies an additional
7773 -- filter to handle accidental amiguities in instances.
7775 return not Is_Generic_Actual_Type (T1)
7776 or else not Is_Generic_Actual_Type (T2)
7777 or else Scope (T1) /= Scope (T2);
7779 -- If T2 is a generic actual type it is declared as the subtype of
7780 -- the actual. If that actual is itself a subtype we need to use its
7781 -- own base type to check for compatibility.
7783 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
7786 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
7792 end Base_Types_Match;
7794 --------------------------
7795 -- Find_Designated_Type --
7796 --------------------------
7798 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
7802 Desig := Directly_Designated_Type (T);
7804 if Ekind (Desig) = E_Incomplete_Type then
7806 -- If regular incomplete type, get full view if available
7808 if Present (Full_View (Desig)) then
7809 Desig := Full_View (Desig);
7811 -- If limited view of a type, get non-limited view if available,
7812 -- and check again for a regular incomplete type.
7814 elsif Present (Non_Limited_View (Desig)) then
7815 Desig := Get_Full_View (Non_Limited_View (Desig));
7820 end Find_Designated_Type;
7822 -------------------------------
7823 -- Matches_Limited_With_View --
7824 -------------------------------
7826 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
7828 -- In some cases a type imported through a limited_with clause, and
7829 -- its nonlimited view are both visible, for example in an anonymous
7830 -- access-to-class-wide type in a formal. Both entities designate the
7833 if From_Limited_With (T1) and then T2 = Available_View (T1) then
7836 elsif From_Limited_With (T2) and then T1 = Available_View (T2) then
7839 elsif From_Limited_With (T1)
7840 and then From_Limited_With (T2)
7841 and then Available_View (T1) = Available_View (T2)
7848 end Matches_Limited_With_View;
7850 -- Start of processing for Conforming_Types
7853 -- The context is an instance association for a formal access-to-
7854 -- subprogram type; the formal parameter types require mapping because
7855 -- they may denote other formal parameters of the generic unit.
7858 Type_1 := Get_Instance_Of (T1);
7859 Type_2 := Get_Instance_Of (T2);
7862 -- If one of the types is a view of the other introduced by a limited
7863 -- with clause, treat these as conforming for all purposes.
7865 if Matches_Limited_With_View (T1, T2) then
7868 elsif Base_Types_Match (Type_1, Type_2) then
7869 return Ctype <= Mode_Conformant
7870 or else Subtypes_Statically_Match (Type_1, Type_2);
7872 elsif Is_Incomplete_Or_Private_Type (Type_1)
7873 and then Present (Full_View (Type_1))
7874 and then Base_Types_Match (Full_View (Type_1), Type_2)
7876 return Ctype <= Mode_Conformant
7877 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7879 elsif Ekind (Type_2) = E_Incomplete_Type
7880 and then Present (Full_View (Type_2))
7881 and then Base_Types_Match (Type_1, Full_View (Type_2))
7883 return Ctype <= Mode_Conformant
7884 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7886 elsif Is_Private_Type (Type_2)
7887 and then In_Instance
7888 and then Present (Full_View (Type_2))
7889 and then Base_Types_Match (Type_1, Full_View (Type_2))
7891 return Ctype <= Mode_Conformant
7892 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7895 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7896 -- treated recursively because they carry a signature. As far as
7897 -- conformance is concerned, convention plays no role, and either
7898 -- or both could be access to protected subprograms.
7900 Are_Anonymous_Access_To_Subprogram_Types :=
7901 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7902 E_Anonymous_Access_Protected_Subprogram_Type)
7904 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7905 E_Anonymous_Access_Protected_Subprogram_Type);
7907 -- Test anonymous access type case. For this case, static subtype
7908 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7909 -- the base types because we may have built internal subtype entities
7910 -- to handle null-excluding types (see Process_Formals).
7912 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7914 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7916 -- Ada 2005 (AI-254)
7918 or else Are_Anonymous_Access_To_Subprogram_Types
7921 Desig_1 : Entity_Id;
7922 Desig_2 : Entity_Id;
7925 -- In Ada 2005, access constant indicators must match for
7926 -- subtype conformance.
7928 if Ada_Version >= Ada_2005
7929 and then Ctype >= Subtype_Conformant
7931 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7936 Desig_1 := Find_Designated_Type (Type_1);
7937 Desig_2 := Find_Designated_Type (Type_2);
7939 -- If the context is an instance association for a formal
7940 -- access-to-subprogram type; formal access parameter designated
7941 -- types require mapping because they may denote other formal
7942 -- parameters of the generic unit.
7945 Desig_1 := Get_Instance_Of (Desig_1);
7946 Desig_2 := Get_Instance_Of (Desig_2);
7949 -- It is possible for a Class_Wide_Type to be introduced for an
7950 -- incomplete type, in which case there is a separate class_ wide
7951 -- type for the full view. The types conform if their Etypes
7952 -- conform, i.e. one may be the full view of the other. This can
7953 -- only happen in the context of an access parameter, other uses
7954 -- of an incomplete Class_Wide_Type are illegal.
7956 if Is_Class_Wide_Type (Desig_1)
7958 Is_Class_Wide_Type (Desig_2)
7962 (Etype (Base_Type (Desig_1)),
7963 Etype (Base_Type (Desig_2)), Ctype);
7965 elsif Are_Anonymous_Access_To_Subprogram_Types then
7966 if Ada_Version < Ada_2005 then
7967 return Ctype = Type_Conformant
7969 Subtypes_Statically_Match (Desig_1, Desig_2);
7971 -- We must check the conformance of the signatures themselves
7975 Conformant : Boolean;
7978 (Desig_1, Desig_2, Ctype, False, Conformant);
7984 return Base_Type (Desig_1) = Base_Type (Desig_2)
7985 and then (Ctype = Type_Conformant
7987 Subtypes_Statically_Match (Desig_1, Desig_2));
7991 -- Otherwise definitely no match
7994 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7995 and then Is_Access_Type (Type_2))
7996 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7997 and then Is_Access_Type (Type_1)))
8000 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
8002 May_Hide_Profile := True;
8007 end Conforming_Types;
8009 --------------------------
8010 -- Create_Extra_Formals --
8011 --------------------------
8013 procedure Create_Extra_Formals (E : Entity_Id) is
8015 First_Extra : Entity_Id := Empty;
8016 Last_Extra : Entity_Id;
8017 Formal_Type : Entity_Id;
8018 P_Formal : Entity_Id := Empty;
8020 function Add_Extra_Formal
8021 (Assoc_Entity : Entity_Id;
8024 Suffix : String) return Entity_Id;
8025 -- Add an extra formal to the current list of formals and extra formals.
8026 -- The extra formal is added to the end of the list of extra formals,
8027 -- and also returned as the result. These formals are always of mode IN.
8028 -- The new formal has the type Typ, is declared in Scope, and its name
8029 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
8030 -- The following suffixes are currently used. They should not be changed
8031 -- without coordinating with CodePeer, which makes use of these to
8032 -- provide better messages.
8034 -- O denotes the Constrained bit.
8035 -- L denotes the accessibility level.
8036 -- BIP_xxx denotes an extra formal for a build-in-place function. See
8037 -- the full list in exp_ch6.BIP_Formal_Kind.
8039 ----------------------
8040 -- Add_Extra_Formal --
8041 ----------------------
8043 function Add_Extra_Formal
8044 (Assoc_Entity : Entity_Id;
8047 Suffix : String) return Entity_Id
8049 EF : constant Entity_Id :=
8050 Make_Defining_Identifier (Sloc (Assoc_Entity),
8051 Chars => New_External_Name (Chars (Assoc_Entity),
8055 -- A little optimization. Never generate an extra formal for the
8056 -- _init operand of an initialization procedure, since it could
8059 if Chars (Formal) = Name_uInit then
8063 Set_Ekind (EF, E_In_Parameter);
8064 Set_Actual_Subtype (EF, Typ);
8065 Set_Etype (EF, Typ);
8066 Set_Scope (EF, Scope);
8067 Set_Mechanism (EF, Default_Mechanism);
8068 Set_Formal_Validity (EF);
8070 if No (First_Extra) then
8072 Set_Extra_Formals (Scope, First_Extra);
8075 if Present (Last_Extra) then
8076 Set_Extra_Formal (Last_Extra, EF);
8082 end Add_Extra_Formal;
8084 -- Start of processing for Create_Extra_Formals
8087 -- We never generate extra formals if expansion is not active because we
8088 -- don't need them unless we are generating code.
8090 if not Expander_Active then
8094 -- No need to generate extra formals in interface thunks whose target
8095 -- primitive has no extra formals.
8097 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
8101 -- If this is a derived subprogram then the subtypes of the parent
8102 -- subprogram's formal parameters will be used to determine the need
8103 -- for extra formals.
8105 if Is_Overloadable (E) and then Present (Alias (E)) then
8106 P_Formal := First_Formal (Alias (E));
8109 Last_Extra := Empty;
8110 Formal := First_Formal (E);
8111 while Present (Formal) loop
8112 Last_Extra := Formal;
8113 Next_Formal (Formal);
8116 -- If Extra_formals were already created, don't do it again. This
8117 -- situation may arise for subprogram types created as part of
8118 -- dispatching calls (see Expand_Dispatching_Call)
8120 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
8124 -- If the subprogram is a predefined dispatching subprogram then don't
8125 -- generate any extra constrained or accessibility level formals. In
8126 -- general we suppress these for internal subprograms (by not calling
8127 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
8128 -- generated stream attributes do get passed through because extra
8129 -- build-in-place formals are needed in some cases (limited 'Input
).
8131 if Is_Predefined_Internal_Operation
(E
) then
8132 goto Test_For_Func_Result_Extras
;
8135 Formal
:= First_Formal
(E
);
8136 while Present
(Formal
) loop
8138 -- Create extra formal for supporting the attribute 'Constrained.
8139 -- The case of a private type view without discriminants also
8140 -- requires the extra formal if the underlying type has defaulted
8143 if Ekind
(Formal
) /= E_In_Parameter
then
8144 if Present
(P_Formal
) then
8145 Formal_Type
:= Etype
(P_Formal
);
8147 Formal_Type
:= Etype
(Formal
);
8150 -- Do not produce extra formals for Unchecked_Union parameters.
8151 -- Jump directly to the end of the loop.
8153 if Is_Unchecked_Union
(Base_Type
(Formal_Type
)) then
8154 goto Skip_Extra_Formal_Generation
;
8157 if not Has_Discriminants
(Formal_Type
)
8158 and then Ekind
(Formal_Type
) in Private_Kind
8159 and then Present
(Underlying_Type
(Formal_Type
))
8161 Formal_Type
:= Underlying_Type
(Formal_Type
);
8164 -- Suppress the extra formal if formal's subtype is constrained or
8165 -- indefinite, or we're compiling for Ada 2012 and the underlying
8166 -- type is tagged and limited. In Ada 2012, a limited tagged type
8167 -- can have defaulted discriminants, but 'Constrained is required
8168 -- to return True, so the formal is never needed (see AI05-0214).
8169 -- Note that this ensures consistency of calling sequences for
8170 -- dispatching operations when some types in a class have defaults
8171 -- on discriminants and others do not (and requiring the extra
8172 -- formal would introduce distributed overhead).
8174 -- If the type does not have a completion yet, treat as prior to
8175 -- Ada 2012 for consistency.
8177 if Has_Discriminants
(Formal_Type
)
8178 and then not Is_Constrained
(Formal_Type
)
8179 and then not Is_Indefinite_Subtype
(Formal_Type
)
8180 and then (Ada_Version
< Ada_2012
8181 or else No
(Underlying_Type
(Formal_Type
))
8183 (Is_Limited_Type
(Formal_Type
)
8186 (Underlying_Type
(Formal_Type
)))))
8188 Set_Extra_Constrained
8189 (Formal
, Add_Extra_Formal
(Formal
, Standard_Boolean
, E
, "O"));
8193 -- Create extra formal for supporting accessibility checking. This
8194 -- is done for both anonymous access formals and formals of named
8195 -- access types that are marked as controlling formals. The latter
8196 -- case can occur when Expand_Dispatching_Call creates a subprogram
8197 -- type and substitutes the types of access-to-class-wide actuals
8198 -- for the anonymous access-to-specific-type of controlling formals.
8199 -- Base_Type is applied because in cases where there is a null
8200 -- exclusion the formal may have an access subtype.
8202 -- This is suppressed if we specifically suppress accessibility
8203 -- checks at the package level for either the subprogram, or the
8204 -- package in which it resides. However, we do not suppress it
8205 -- simply if the scope has accessibility checks suppressed, since
8206 -- this could cause trouble when clients are compiled with a
8207 -- different suppression setting. The explicit checks at the
8208 -- package level are safe from this point of view.
8210 if (Ekind
(Base_Type
(Etype
(Formal
))) = E_Anonymous_Access_Type
8211 or else (Is_Controlling_Formal
(Formal
)
8212 and then Is_Access_Type
(Base_Type
(Etype
(Formal
)))))
8214 (Explicit_Suppress
(E
, Accessibility_Check
)
8216 Explicit_Suppress
(Scope
(E
), Accessibility_Check
))
8219 or else Present
(Extra_Accessibility
(P_Formal
)))
8221 Set_Extra_Accessibility
8222 (Formal
, Add_Extra_Formal
(Formal
, Standard_Natural
, E
, "L"));
8225 -- This label is required when skipping extra formal generation for
8226 -- Unchecked_Union parameters.
8228 <<Skip_Extra_Formal_Generation
>>
8230 if Present
(P_Formal
) then
8231 Next_Formal
(P_Formal
);
8234 Next_Formal
(Formal
);
8237 <<Test_For_Func_Result_Extras
>>
8239 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8240 -- function call is ... determined by the point of call ...".
8242 if Needs_Result_Accessibility_Level
(E
) then
8243 Set_Extra_Accessibility_Of_Result
8244 (E
, Add_Extra_Formal
(E
, Standard_Natural
, E
, "L"));
8247 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8248 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8250 if Ada_Version
>= Ada_2005
and then Is_Build_In_Place_Function
(E
) then
8252 Result_Subt
: constant Entity_Id
:= Etype
(E
);
8253 Full_Subt
: constant Entity_Id
:= Available_View
(Result_Subt
);
8254 Formal_Typ
: Entity_Id
;
8256 Discard
: Entity_Id
;
8257 pragma Warnings
(Off
, Discard
);
8260 -- In the case of functions with unconstrained result subtypes,
8261 -- add a 4-state formal indicating whether the return object is
8262 -- allocated by the caller (1), or should be allocated by the
8263 -- callee on the secondary stack (2), in the global heap (3), or
8264 -- in a user-defined storage pool (4). For the moment we just use
8265 -- Natural for the type of this formal. Note that this formal
8266 -- isn't usually needed in the case where the result subtype is
8267 -- constrained, but it is needed when the function has a tagged
8268 -- result, because generally such functions can be called in a
8269 -- dispatching context and such calls must be handled like calls
8270 -- to a class-wide function.
8272 if Needs_BIP_Alloc_Form
(E
) then
8275 (E
, Standard_Natural
,
8276 E
, BIP_Formal_Suffix
(BIP_Alloc_Form
));
8278 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8279 -- use a user-defined pool. This formal is not added on
8280 -- .NET/JVM/ZFP as those targets do not support pools.
8282 if VM_Target
= No_VM
8283 and then RTE_Available
(RE_Root_Storage_Pool_Ptr
)
8287 (E
, RTE
(RE_Root_Storage_Pool_Ptr
),
8288 E
, BIP_Formal_Suffix
(BIP_Storage_Pool
));
8292 -- In the case of functions whose result type needs finalization,
8293 -- add an extra formal which represents the finalization master.
8295 if Needs_BIP_Finalization_Master
(E
) then
8298 (E
, RTE
(RE_Finalization_Master_Ptr
),
8299 E
, BIP_Formal_Suffix
(BIP_Finalization_Master
));
8302 -- When the result type contains tasks, add two extra formals: the
8303 -- master of the tasks to be created, and the caller's activation
8306 if Has_Task
(Full_Subt
) then
8309 (E
, RTE
(RE_Master_Id
),
8310 E
, BIP_Formal_Suffix
(BIP_Task_Master
));
8313 (E
, RTE
(RE_Activation_Chain_Access
),
8314 E
, BIP_Formal_Suffix
(BIP_Activation_Chain
));
8317 -- All build-in-place functions get an extra formal that will be
8318 -- passed the address of the return object within the caller.
8321 Create_Itype
(E_Anonymous_Access_Type
, E
, Scope_Id
=> Scope
(E
));
8323 Set_Directly_Designated_Type
(Formal_Typ
, Result_Subt
);
8324 Set_Etype
(Formal_Typ
, Formal_Typ
);
8325 Set_Depends_On_Private
8326 (Formal_Typ
, Has_Private_Component
(Formal_Typ
));
8327 Set_Is_Public
(Formal_Typ
, Is_Public
(Scope
(Formal_Typ
)));
8328 Set_Is_Access_Constant
(Formal_Typ
, False);
8330 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8331 -- the designated type comes from the limited view (for back-end
8334 Set_From_Limited_With
8335 (Formal_Typ
, From_Limited_With
(Result_Subt
));
8337 Layout_Type
(Formal_Typ
);
8341 (E
, Formal_Typ
, E
, BIP_Formal_Suffix
(BIP_Object_Access
));
8344 end Create_Extra_Formals
;
8346 -----------------------------
8347 -- Enter_Overloaded_Entity --
8348 -----------------------------
8350 procedure Enter_Overloaded_Entity
(S
: Entity_Id
) is
8351 E
: Entity_Id
:= Current_Entity_In_Scope
(S
);
8352 C_E
: Entity_Id
:= Current_Entity
(S
);
8356 Set_Has_Homonym
(E
);
8357 Set_Has_Homonym
(S
);
8360 Set_Is_Immediately_Visible
(S
);
8361 Set_Scope
(S
, Current_Scope
);
8363 -- Chain new entity if front of homonym in current scope, so that
8364 -- homonyms are contiguous.
8366 if Present
(E
) and then E
/= C_E
then
8367 while Homonym
(C_E
) /= E
loop
8368 C_E
:= Homonym
(C_E
);
8371 Set_Homonym
(C_E
, S
);
8375 Set_Current_Entity
(S
);
8380 if Is_Inherited_Operation
(S
) then
8381 Append_Inherited_Subprogram
(S
);
8383 Append_Entity
(S
, Current_Scope
);
8386 Set_Public_Status
(S
);
8388 if Debug_Flag_E
then
8389 Write_Str
("New overloaded entity chain: ");
8390 Write_Name
(Chars
(S
));
8393 while Present
(E
) loop
8394 Write_Str
(" "); Write_Int
(Int
(E
));
8401 -- Generate warning for hiding
8404 and then Comes_From_Source
(S
)
8405 and then In_Extended_Main_Source_Unit
(S
)
8412 -- Warn unless genuine overloading. Do not emit warning on
8413 -- hiding predefined operators in Standard (these are either an
8414 -- (artifact of our implicit declarations, or simple noise) but
8415 -- keep warning on a operator defined on a local subtype, because
8416 -- of the real danger that different operators may be applied in
8417 -- various parts of the program.
8419 -- Note that if E and S have the same scope, there is never any
8420 -- hiding. Either the two conflict, and the program is illegal,
8421 -- or S is overriding an implicit inherited subprogram.
8423 if Scope
(E
) /= Scope
(S
)
8424 and then (not Is_Overloadable
(E
)
8425 or else Subtype_Conformant
(E
, S
))
8426 and then (Is_Immediately_Visible
(E
)
8428 Is_Potentially_Use_Visible
(S
))
8430 if Scope
(E
) /= Standard_Standard
then
8431 Error_Msg_Sloc
:= Sloc
(E
);
8432 Error_Msg_N
("declaration of & hides one#?h?", S
);
8434 elsif Nkind
(S
) = N_Defining_Operator_Symbol
8436 Scope
(Base_Type
(Etype
(First_Formal
(S
)))) /= Scope
(S
)
8439 ("declaration of & hides predefined operator?h?", S
);
8444 end Enter_Overloaded_Entity
;
8446 -----------------------------
8447 -- Check_Untagged_Equality --
8448 -----------------------------
8450 procedure Check_Untagged_Equality
(Eq_Op
: Entity_Id
) is
8451 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
8452 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Eq_Op
);
8456 -- This check applies only if we have a subprogram declaration with a
8457 -- non-tagged record type.
8459 if Nkind
(Decl
) /= N_Subprogram_Declaration
8460 or else not Is_Record_Type
(Typ
)
8461 or else Is_Tagged_Type
(Typ
)
8466 -- In Ada 2012 case, we will output errors or warnings depending on
8467 -- the setting of debug flag -gnatd.E.
8469 if Ada_Version
>= Ada_2012
then
8470 Error_Msg_Warn
:= Debug_Flag_Dot_EE
;
8472 -- In earlier versions of Ada, nothing to do unless we are warning on
8473 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8476 if not Warn_On_Ada_2012_Compatibility
then
8481 -- Cases where the type has already been frozen
8483 if Is_Frozen
(Typ
) then
8485 -- If the type is not declared in a package, or if we are in the body
8486 -- of the package or in some other scope, the new operation is not
8487 -- primitive, and therefore legal, though suspicious. Should we
8488 -- generate a warning in this case ???
8490 if Ekind
(Scope
(Typ
)) /= E_Package
8491 or else Scope
(Typ
) /= Current_Scope
8495 -- If the type is a generic actual (sub)type, the operation is not
8496 -- primitive either because the base type is declared elsewhere.
8498 elsif Is_Generic_Actual_Type
(Typ
) then
8501 -- Here we have a definite error of declaration after freezing
8504 if Ada_Version
>= Ada_2012
then
8506 ("equality operator must be declared before type& is "
8507 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op
, Typ
);
8509 -- In Ada 2012 mode with error turned to warning, output one
8510 -- more warning to warn that the equality operation may not
8511 -- compose. This is the consequence of ignoring the error.
8513 if Error_Msg_Warn
then
8514 Error_Msg_N
("\equality operation may not compose??", Eq_Op
);
8519 ("equality operator must be declared before type& is "
8520 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op
, Typ
);
8523 -- If we are in the package body, we could just move the
8524 -- declaration to the package spec, so add a message saying that.
8526 if In_Package_Body
(Scope
(Typ
)) then
8527 if Ada_Version
>= Ada_2012
then
8529 ("\move declaration to package spec<<", Eq_Op
);
8532 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op
);
8535 -- Otherwise try to find the freezing point
8538 Obj_Decl
:= Next
(Parent
(Typ
));
8539 while Present
(Obj_Decl
) and then Obj_Decl
/= Decl
loop
8540 if Nkind
(Obj_Decl
) = N_Object_Declaration
8541 and then Etype
(Defining_Identifier
(Obj_Decl
)) = Typ
8543 -- Freezing point, output warnings
8545 if Ada_Version
>= Ada_2012
then
8547 ("type& is frozen by declaration??", Obj_Decl
, Typ
);
8549 ("\an equality operator cannot be declared after "
8554 ("type& is frozen by declaration (Ada 2012)?y?",
8557 ("\an equality operator cannot be declared after "
8558 & "this point (Ada 2012)?y?",
8570 -- Here if type is not frozen yet. It is illegal to have a primitive
8571 -- equality declared in the private part if the type is visible.
8573 elsif not In_Same_List
(Parent
(Typ
), Decl
)
8574 and then not Is_Limited_Type
(Typ
)
8576 -- Shouldn't we give an RM reference here???
8578 if Ada_Version
>= Ada_2012
then
8580 ("equality operator appears too late<<", Eq_Op
);
8583 ("equality operator appears too late (Ada 2012)?y?", Eq_Op
);
8586 -- No error detected
8591 end Check_Untagged_Equality
;
8593 -----------------------------
8594 -- Find_Corresponding_Spec --
8595 -----------------------------
8597 function Find_Corresponding_Spec
8599 Post_Error
: Boolean := True) return Entity_Id
8601 Spec
: constant Node_Id
:= Specification
(N
);
8602 Designator
: constant Entity_Id
:= Defining_Entity
(Spec
);
8606 function Different_Generic_Profile
(E
: Entity_Id
) return Boolean;
8607 -- Even if fully conformant, a body may depend on a generic actual when
8608 -- the spec does not, or vice versa, in which case they were distinct
8609 -- entities in the generic.
8611 -------------------------------
8612 -- Different_Generic_Profile --
8613 -------------------------------
8615 function Different_Generic_Profile
(E
: Entity_Id
) return Boolean is
8618 function Same_Generic_Actual
(T1
, T2
: Entity_Id
) return Boolean;
8619 -- Check that the types of corresponding formals have the same
8620 -- generic actual if any. We have to account for subtypes of a
8621 -- generic formal, declared between a spec and a body, which may
8622 -- appear distinct in an instance but matched in the generic.
8624 -------------------------
8625 -- Same_Generic_Actual --
8626 -------------------------
8628 function Same_Generic_Actual
(T1
, T2
: Entity_Id
) return Boolean is
8630 return Is_Generic_Actual_Type
(T1
) = Is_Generic_Actual_Type
(T2
)
8632 (Present
(Parent
(T1
))
8633 and then Comes_From_Source
(Parent
(T1
))
8634 and then Nkind
(Parent
(T1
)) = N_Subtype_Declaration
8635 and then Is_Entity_Name
(Subtype_Indication
(Parent
(T1
)))
8636 and then Entity
(Subtype_Indication
(Parent
(T1
))) = T2
);
8637 end Same_Generic_Actual
;
8639 -- Start of processing for Different_Generic_Profile
8642 if not In_Instance
then
8645 elsif Ekind
(E
) = E_Function
8646 and then not Same_Generic_Actual
(Etype
(E
), Etype
(Designator
))
8651 F1
:= First_Formal
(Designator
);
8652 F2
:= First_Formal
(E
);
8653 while Present
(F1
) loop
8654 if not Same_Generic_Actual
(Etype
(F1
), Etype
(F2
)) then
8663 end Different_Generic_Profile
;
8665 -- Start of processing for Find_Corresponding_Spec
8668 E
:= Current_Entity
(Designator
);
8669 while Present
(E
) loop
8671 -- We are looking for a matching spec. It must have the same scope,
8672 -- and the same name, and either be type conformant, or be the case
8673 -- of a library procedure spec and its body (which belong to one
8674 -- another regardless of whether they are type conformant or not).
8676 if Scope
(E
) = Current_Scope
then
8677 if Current_Scope
= Standard_Standard
8678 or else (Ekind
(E
) = Ekind
(Designator
)
8679 and then Type_Conformant
(E
, Designator
))
8681 -- Within an instantiation, we know that spec and body are
8682 -- subtype conformant, because they were subtype conformant in
8683 -- the generic. We choose the subtype-conformant entity here as
8684 -- well, to resolve spurious ambiguities in the instance that
8685 -- were not present in the generic (i.e. when two different
8686 -- types are given the same actual). If we are looking for a
8687 -- spec to match a body, full conformance is expected.
8690 Set_Convention
(Designator
, Convention
(E
));
8692 -- Skip past subprogram bodies and subprogram renamings that
8693 -- may appear to have a matching spec, but that aren't fully
8694 -- conformant with it. That can occur in cases where an
8695 -- actual type causes unrelated homographs in the instance.
8697 if Nkind_In
(N
, N_Subprogram_Body
,
8698 N_Subprogram_Renaming_Declaration
)
8699 and then Present
(Homonym
(E
))
8700 and then not Fully_Conformant
(Designator
, E
)
8704 elsif not Subtype_Conformant
(Designator
, E
) then
8707 elsif Different_Generic_Profile
(E
) then
8712 -- Ada 2012 (AI05-0165): For internally generated bodies of
8713 -- null procedures locate the internally generated spec. We
8714 -- enforce mode conformance since a tagged type may inherit
8715 -- from interfaces several null primitives which differ only
8716 -- in the mode of the formals.
8718 if not (Comes_From_Source
(E
))
8719 and then Is_Null_Procedure
(E
)
8720 and then not Mode_Conformant
(Designator
, E
)
8724 -- For null procedures coming from source that are completions,
8725 -- analysis of the generated body will establish the link.
8727 elsif Comes_From_Source
(E
)
8728 and then Nkind
(Spec
) = N_Procedure_Specification
8729 and then Null_Present
(Spec
)
8733 elsif not Has_Completion
(E
) then
8734 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
8735 Set_Corresponding_Spec
(N
, E
);
8738 Set_Has_Completion
(E
);
8741 elsif Nkind
(Parent
(N
)) = N_Subunit
then
8743 -- If this is the proper body of a subunit, the completion
8744 -- flag is set when analyzing the stub.
8748 -- If E is an internal function with a controlling result that
8749 -- was created for an operation inherited by a null extension,
8750 -- it may be overridden by a body without a previous spec (one
8751 -- more reason why these should be shunned). In that case we
8752 -- remove the generated body if present, because the current
8753 -- one is the explicit overriding.
8755 elsif Ekind
(E
) = E_Function
8756 and then Ada_Version
>= Ada_2005
8757 and then not Comes_From_Source
(E
)
8758 and then Has_Controlling_Result
(E
)
8759 and then Is_Null_Extension
(Etype
(E
))
8760 and then Comes_From_Source
(Spec
)
8762 Set_Has_Completion
(E
, False);
8765 and then Nkind
(Parent
(E
)) = N_Function_Specification
8768 (Unit_Declaration_Node
8769 (Corresponding_Body
(Unit_Declaration_Node
(E
))));
8773 -- If expansion is disabled, or if the wrapper function has
8774 -- not been generated yet, this a late body overriding an
8775 -- inherited operation, or it is an overriding by some other
8776 -- declaration before the controlling result is frozen. In
8777 -- either case this is a declaration of a new entity.
8783 -- If the body already exists, then this is an error unless
8784 -- the previous declaration is the implicit declaration of a
8785 -- derived subprogram. It is also legal for an instance to
8786 -- contain type conformant overloadable declarations (but the
8787 -- generic declaration may not), per 8.3(26/2).
8789 elsif No
(Alias
(E
))
8790 and then not Is_Intrinsic_Subprogram
(E
)
8791 and then not In_Instance
8794 Error_Msg_Sloc
:= Sloc
(E
);
8796 if Is_Imported
(E
) then
8798 ("body not allowed for imported subprogram & declared#",
8801 Error_Msg_NE
("duplicate body for & declared#", N
, E
);
8805 -- Child units cannot be overloaded, so a conformance mismatch
8806 -- between body and a previous spec is an error.
8808 elsif Is_Child_Unit
(E
)
8810 Nkind
(Unit_Declaration_Node
(Designator
)) = N_Subprogram_Body
8812 Nkind
(Parent
(Unit_Declaration_Node
(Designator
))) =
8817 ("body of child unit does not match previous declaration", N
);
8825 -- On exit, we know that no previous declaration of subprogram exists
8828 end Find_Corresponding_Spec
;
8830 ----------------------
8831 -- Fully_Conformant --
8832 ----------------------
8834 function Fully_Conformant
(New_Id
, Old_Id
: Entity_Id
) return Boolean is
8837 Check_Conformance
(New_Id
, Old_Id
, Fully_Conformant
, False, Result
);
8839 end Fully_Conformant
;
8841 ----------------------------------
8842 -- Fully_Conformant_Expressions --
8843 ----------------------------------
8845 function Fully_Conformant_Expressions
8846 (Given_E1
: Node_Id
;
8847 Given_E2
: Node_Id
) return Boolean
8849 E1
: constant Node_Id
:= Original_Node
(Given_E1
);
8850 E2
: constant Node_Id
:= Original_Node
(Given_E2
);
8851 -- We always test conformance on original nodes, since it is possible
8852 -- for analysis and/or expansion to make things look as though they
8853 -- conform when they do not, e.g. by converting 1+2 into 3.
8855 function FCE
(Given_E1
, Given_E2
: Node_Id
) return Boolean
8856 renames Fully_Conformant_Expressions
;
8858 function FCL
(L1
, L2
: List_Id
) return Boolean;
8859 -- Compare elements of two lists for conformance. Elements have to be
8860 -- conformant, and actuals inserted as default parameters do not match
8861 -- explicit actuals with the same value.
8863 function FCO
(Op_Node
, Call_Node
: Node_Id
) return Boolean;
8864 -- Compare an operator node with a function call
8870 function FCL
(L1
, L2
: List_Id
) return Boolean is
8874 if L1
= No_List
then
8880 if L2
= No_List
then
8886 -- Compare two lists, skipping rewrite insertions (we want to compare
8887 -- the original trees, not the expanded versions).
8890 if Is_Rewrite_Insertion
(N1
) then
8892 elsif Is_Rewrite_Insertion
(N2
) then
8898 elsif not FCE
(N1
, N2
) then
8911 function FCO
(Op_Node
, Call_Node
: Node_Id
) return Boolean is
8912 Actuals
: constant List_Id
:= Parameter_Associations
(Call_Node
);
8917 or else Entity
(Op_Node
) /= Entity
(Name
(Call_Node
))
8922 Act
:= First
(Actuals
);
8924 if Nkind
(Op_Node
) in N_Binary_Op
then
8925 if not FCE
(Left_Opnd
(Op_Node
), Act
) then
8932 return Present
(Act
)
8933 and then FCE
(Right_Opnd
(Op_Node
), Act
)
8934 and then No
(Next
(Act
));
8938 -- Start of processing for Fully_Conformant_Expressions
8941 -- Non-conformant if paren count does not match. Note: if some idiot
8942 -- complains that we don't do this right for more than 3 levels of
8943 -- parentheses, they will be treated with the respect they deserve.
8945 if Paren_Count
(E1
) /= Paren_Count
(E2
) then
8948 -- If same entities are referenced, then they are conformant even if
8949 -- they have different forms (RM 8.3.1(19-20)).
8951 elsif Is_Entity_Name
(E1
) and then Is_Entity_Name
(E2
) then
8952 if Present
(Entity
(E1
)) then
8953 return Entity
(E1
) = Entity
(E2
)
8954 or else (Chars
(Entity
(E1
)) = Chars
(Entity
(E2
))
8955 and then Ekind
(Entity
(E1
)) = E_Discriminant
8956 and then Ekind
(Entity
(E2
)) = E_In_Parameter
);
8958 elsif Nkind
(E1
) = N_Expanded_Name
8959 and then Nkind
(E2
) = N_Expanded_Name
8960 and then Nkind
(Selector_Name
(E1
)) = N_Character_Literal
8961 and then Nkind
(Selector_Name
(E2
)) = N_Character_Literal
8963 return Chars
(Selector_Name
(E1
)) = Chars
(Selector_Name
(E2
));
8966 -- Identifiers in component associations don't always have
8967 -- entities, but their names must conform.
8969 return Nkind
(E1
) = N_Identifier
8970 and then Nkind
(E2
) = N_Identifier
8971 and then Chars
(E1
) = Chars
(E2
);
8974 elsif Nkind
(E1
) = N_Character_Literal
8975 and then Nkind
(E2
) = N_Expanded_Name
8977 return Nkind
(Selector_Name
(E2
)) = N_Character_Literal
8978 and then Chars
(E1
) = Chars
(Selector_Name
(E2
));
8980 elsif Nkind
(E2
) = N_Character_Literal
8981 and then Nkind
(E1
) = N_Expanded_Name
8983 return Nkind
(Selector_Name
(E1
)) = N_Character_Literal
8984 and then Chars
(E2
) = Chars
(Selector_Name
(E1
));
8986 elsif Nkind
(E1
) in N_Op
and then Nkind
(E2
) = N_Function_Call
then
8987 return FCO
(E1
, E2
);
8989 elsif Nkind
(E2
) in N_Op
and then Nkind
(E1
) = N_Function_Call
then
8990 return FCO
(E2
, E1
);
8992 -- Otherwise we must have the same syntactic entity
8994 elsif Nkind
(E1
) /= Nkind
(E2
) then
8997 -- At this point, we specialize by node type
9004 FCL
(Expressions
(E1
), Expressions
(E2
))
9006 FCL
(Component_Associations
(E1
),
9007 Component_Associations
(E2
));
9010 if Nkind
(Expression
(E1
)) = N_Qualified_Expression
9012 Nkind
(Expression
(E2
)) = N_Qualified_Expression
9014 return FCE
(Expression
(E1
), Expression
(E2
));
9016 -- Check that the subtype marks and any constraints
9021 Indic1
: constant Node_Id
:= Expression
(E1
);
9022 Indic2
: constant Node_Id
:= Expression
(E2
);
9027 if Nkind
(Indic1
) /= N_Subtype_Indication
then
9029 Nkind
(Indic2
) /= N_Subtype_Indication
9030 and then Entity
(Indic1
) = Entity
(Indic2
);
9032 elsif Nkind
(Indic2
) /= N_Subtype_Indication
then
9034 Nkind
(Indic1
) /= N_Subtype_Indication
9035 and then Entity
(Indic1
) = Entity
(Indic2
);
9038 if Entity
(Subtype_Mark
(Indic1
)) /=
9039 Entity
(Subtype_Mark
(Indic2
))
9044 Elt1
:= First
(Constraints
(Constraint
(Indic1
)));
9045 Elt2
:= First
(Constraints
(Constraint
(Indic2
)));
9046 while Present
(Elt1
) and then Present
(Elt2
) loop
9047 if not FCE
(Elt1
, Elt2
) then
9060 when N_Attribute_Reference
=>
9062 Attribute_Name
(E1
) = Attribute_Name
(E2
)
9063 and then FCL
(Expressions
(E1
), Expressions
(E2
));
9067 Entity
(E1
) = Entity
(E2
)
9068 and then FCE
(Left_Opnd
(E1
), Left_Opnd
(E2
))
9069 and then FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
9071 when N_Short_Circuit | N_Membership_Test
=>
9073 FCE
(Left_Opnd
(E1
), Left_Opnd
(E2
))
9075 FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
9077 when N_Case_Expression
=>
9083 if not FCE
(Expression
(E1
), Expression
(E2
)) then
9087 Alt1
:= First
(Alternatives
(E1
));
9088 Alt2
:= First
(Alternatives
(E2
));
9090 if Present
(Alt1
) /= Present
(Alt2
) then
9092 elsif No
(Alt1
) then
9096 if not FCE
(Expression
(Alt1
), Expression
(Alt2
))
9097 or else not FCL
(Discrete_Choices
(Alt1
),
9098 Discrete_Choices
(Alt2
))
9109 when N_Character_Literal
=>
9111 Char_Literal_Value
(E1
) = Char_Literal_Value
(E2
);
9113 when N_Component_Association
=>
9115 FCL
(Choices
(E1
), Choices
(E2
))
9117 FCE
(Expression
(E1
), Expression
(E2
));
9119 when N_Explicit_Dereference
=>
9121 FCE
(Prefix
(E1
), Prefix
(E2
));
9123 when N_Extension_Aggregate
=>
9125 FCL
(Expressions
(E1
), Expressions
(E2
))
9126 and then Null_Record_Present
(E1
) =
9127 Null_Record_Present
(E2
)
9128 and then FCL
(Component_Associations
(E1
),
9129 Component_Associations
(E2
));
9131 when N_Function_Call
=>
9133 FCE
(Name
(E1
), Name
(E2
))
9135 FCL
(Parameter_Associations
(E1
),
9136 Parameter_Associations
(E2
));
9138 when N_If_Expression
=>
9140 FCL
(Expressions
(E1
), Expressions
(E2
));
9142 when N_Indexed_Component
=>
9144 FCE
(Prefix
(E1
), Prefix
(E2
))
9146 FCL
(Expressions
(E1
), Expressions
(E2
));
9148 when N_Integer_Literal
=>
9149 return (Intval
(E1
) = Intval
(E2
));
9154 when N_Operator_Symbol
=>
9156 Chars
(E1
) = Chars
(E2
);
9158 when N_Others_Choice
=>
9161 when N_Parameter_Association
=>
9163 Chars
(Selector_Name
(E1
)) = Chars
(Selector_Name
(E2
))
9164 and then FCE
(Explicit_Actual_Parameter
(E1
),
9165 Explicit_Actual_Parameter
(E2
));
9167 when N_Qualified_Expression
=>
9169 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
9171 FCE
(Expression
(E1
), Expression
(E2
));
9173 when N_Quantified_Expression
=>
9174 if not FCE
(Condition
(E1
), Condition
(E2
)) then
9178 if Present
(Loop_Parameter_Specification
(E1
))
9179 and then Present
(Loop_Parameter_Specification
(E2
))
9182 L1
: constant Node_Id
:=
9183 Loop_Parameter_Specification
(E1
);
9184 L2
: constant Node_Id
:=
9185 Loop_Parameter_Specification
(E2
);
9189 Reverse_Present
(L1
) = Reverse_Present
(L2
)
9191 FCE
(Defining_Identifier
(L1
),
9192 Defining_Identifier
(L2
))
9194 FCE
(Discrete_Subtype_Definition
(L1
),
9195 Discrete_Subtype_Definition
(L2
));
9198 elsif Present
(Iterator_Specification
(E1
))
9199 and then Present
(Iterator_Specification
(E2
))
9202 I1
: constant Node_Id
:= Iterator_Specification
(E1
);
9203 I2
: constant Node_Id
:= Iterator_Specification
(E2
);
9207 FCE
(Defining_Identifier
(I1
),
9208 Defining_Identifier
(I2
))
9210 Of_Present
(I1
) = Of_Present
(I2
)
9212 Reverse_Present
(I1
) = Reverse_Present
(I2
)
9213 and then FCE
(Name
(I1
), Name
(I2
))
9214 and then FCE
(Subtype_Indication
(I1
),
9215 Subtype_Indication
(I2
));
9218 -- The quantified expressions used different specifications to
9219 -- walk their respective ranges.
9227 FCE
(Low_Bound
(E1
), Low_Bound
(E2
))
9229 FCE
(High_Bound
(E1
), High_Bound
(E2
));
9231 when N_Real_Literal
=>
9232 return (Realval
(E1
) = Realval
(E2
));
9234 when N_Selected_Component
=>
9236 FCE
(Prefix
(E1
), Prefix
(E2
))
9238 FCE
(Selector_Name
(E1
), Selector_Name
(E2
));
9242 FCE
(Prefix
(E1
), Prefix
(E2
))
9244 FCE
(Discrete_Range
(E1
), Discrete_Range
(E2
));
9246 when N_String_Literal
=>
9248 S1
: constant String_Id
:= Strval
(E1
);
9249 S2
: constant String_Id
:= Strval
(E2
);
9250 L1
: constant Nat
:= String_Length
(S1
);
9251 L2
: constant Nat
:= String_Length
(S2
);
9258 for J
in 1 .. L1
loop
9259 if Get_String_Char
(S1
, J
) /=
9260 Get_String_Char
(S2
, J
)
9270 when N_Type_Conversion
=>
9272 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
9274 FCE
(Expression
(E1
), Expression
(E2
));
9278 Entity
(E1
) = Entity
(E2
)
9280 FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
9282 when N_Unchecked_Type_Conversion
=>
9284 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
9286 FCE
(Expression
(E1
), Expression
(E2
));
9288 -- All other node types cannot appear in this context. Strictly
9289 -- we should raise a fatal internal error. Instead we just ignore
9290 -- the nodes. This means that if anyone makes a mistake in the
9291 -- expander and mucks an expression tree irretrievably, the result
9292 -- will be a failure to detect a (probably very obscure) case
9293 -- of non-conformance, which is better than bombing on some
9294 -- case where two expressions do in fact conform.
9301 end Fully_Conformant_Expressions
;
9303 ----------------------------------------
9304 -- Fully_Conformant_Discrete_Subtypes --
9305 ----------------------------------------
9307 function Fully_Conformant_Discrete_Subtypes
9308 (Given_S1
: Node_Id
;
9309 Given_S2
: Node_Id
) return Boolean
9311 S1
: constant Node_Id
:= Original_Node
(Given_S1
);
9312 S2
: constant Node_Id
:= Original_Node
(Given_S2
);
9314 function Conforming_Bounds
(B1
, B2
: Node_Id
) return Boolean;
9315 -- Special-case for a bound given by a discriminant, which in the body
9316 -- is replaced with the discriminal of the enclosing type.
9318 function Conforming_Ranges
(R1
, R2
: Node_Id
) return Boolean;
9319 -- Check both bounds
9321 -----------------------
9322 -- Conforming_Bounds --
9323 -----------------------
9325 function Conforming_Bounds
(B1
, B2
: Node_Id
) return Boolean is
9327 if Is_Entity_Name
(B1
)
9328 and then Is_Entity_Name
(B2
)
9329 and then Ekind
(Entity
(B1
)) = E_Discriminant
9331 return Chars
(B1
) = Chars
(B2
);
9334 return Fully_Conformant_Expressions
(B1
, B2
);
9336 end Conforming_Bounds
;
9338 -----------------------
9339 -- Conforming_Ranges --
9340 -----------------------
9342 function Conforming_Ranges
(R1
, R2
: Node_Id
) return Boolean is
9345 Conforming_Bounds
(Low_Bound
(R1
), Low_Bound
(R2
))
9347 Conforming_Bounds
(High_Bound
(R1
), High_Bound
(R2
));
9348 end Conforming_Ranges
;
9350 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9353 if Nkind
(S1
) /= Nkind
(S2
) then
9356 elsif Is_Entity_Name
(S1
) then
9357 return Entity
(S1
) = Entity
(S2
);
9359 elsif Nkind
(S1
) = N_Range
then
9360 return Conforming_Ranges
(S1
, S2
);
9362 elsif Nkind
(S1
) = N_Subtype_Indication
then
9364 Entity
(Subtype_Mark
(S1
)) = Entity
(Subtype_Mark
(S2
))
9367 (Range_Expression
(Constraint
(S1
)),
9368 Range_Expression
(Constraint
(S2
)));
9372 end Fully_Conformant_Discrete_Subtypes
;
9374 --------------------
9375 -- Install_Entity --
9376 --------------------
9378 procedure Install_Entity
(E
: Entity_Id
) is
9379 Prev
: constant Entity_Id
:= Current_Entity
(E
);
9381 Set_Is_Immediately_Visible
(E
);
9382 Set_Current_Entity
(E
);
9383 Set_Homonym
(E
, Prev
);
9386 ---------------------
9387 -- Install_Formals --
9388 ---------------------
9390 procedure Install_Formals
(Id
: Entity_Id
) is
9393 F
:= First_Formal
(Id
);
9394 while Present
(F
) loop
9398 end Install_Formals
;
9400 -----------------------------
9401 -- Is_Interface_Conformant --
9402 -----------------------------
9404 function Is_Interface_Conformant
9405 (Tagged_Type
: Entity_Id
;
9406 Iface_Prim
: Entity_Id
;
9407 Prim
: Entity_Id
) return Boolean
9409 -- The operation may in fact be an inherited (implicit) operation
9410 -- rather than the original interface primitive, so retrieve the
9411 -- ultimate ancestor.
9413 Iface
: constant Entity_Id
:=
9414 Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
));
9415 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Prim
);
9417 function Controlling_Formal
(Prim
: Entity_Id
) return Entity_Id
;
9418 -- Return the controlling formal of Prim
9420 ------------------------
9421 -- Controlling_Formal --
9422 ------------------------
9424 function Controlling_Formal
(Prim
: Entity_Id
) return Entity_Id
is
9428 E
:= First_Entity
(Prim
);
9429 while Present
(E
) loop
9430 if Is_Formal
(E
) and then Is_Controlling_Formal
(E
) then
9438 end Controlling_Formal
;
9442 Iface_Ctrl_F
: constant Entity_Id
:= Controlling_Formal
(Iface_Prim
);
9443 Prim_Ctrl_F
: constant Entity_Id
:= Controlling_Formal
(Prim
);
9445 -- Start of processing for Is_Interface_Conformant
9448 pragma Assert
(Is_Subprogram
(Iface_Prim
)
9449 and then Is_Subprogram
(Prim
)
9450 and then Is_Dispatching_Operation
(Iface_Prim
)
9451 and then Is_Dispatching_Operation
(Prim
));
9453 pragma Assert
(Is_Interface
(Iface
)
9454 or else (Present
(Alias
(Iface_Prim
))
9457 (Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
)))));
9459 if Prim
= Iface_Prim
9460 or else not Is_Subprogram
(Prim
)
9461 or else Ekind
(Prim
) /= Ekind
(Iface_Prim
)
9462 or else not Is_Dispatching_Operation
(Prim
)
9463 or else Scope
(Prim
) /= Scope
(Tagged_Type
)
9465 or else Base_Type
(Typ
) /= Base_Type
(Tagged_Type
)
9466 or else not Primitive_Names_Match
(Iface_Prim
, Prim
)
9470 -- The mode of the controlling formals must match
9472 elsif Present
(Iface_Ctrl_F
)
9473 and then Present
(Prim_Ctrl_F
)
9474 and then Ekind
(Iface_Ctrl_F
) /= Ekind
(Prim_Ctrl_F
)
9478 -- Case of a procedure, or a function whose result type matches the
9479 -- result type of the interface primitive, or a function that has no
9480 -- controlling result (I or access I).
9482 elsif Ekind
(Iface_Prim
) = E_Procedure
9483 or else Etype
(Prim
) = Etype
(Iface_Prim
)
9484 or else not Has_Controlling_Result
(Prim
)
9486 return Type_Conformant
9487 (Iface_Prim
, Prim
, Skip_Controlling_Formals
=> True);
9489 -- Case of a function returning an interface, or an access to one. Check
9490 -- that the return types correspond.
9492 elsif Implements_Interface
(Typ
, Iface
) then
9493 if (Ekind
(Etype
(Prim
)) = E_Anonymous_Access_Type
)
9495 (Ekind
(Etype
(Iface_Prim
)) = E_Anonymous_Access_Type
)
9500 Type_Conformant
(Prim
, Ultimate_Alias
(Iface_Prim
),
9501 Skip_Controlling_Formals
=> True);
9507 end Is_Interface_Conformant
;
9509 ---------------------------------
9510 -- Is_Non_Overriding_Operation --
9511 ---------------------------------
9513 function Is_Non_Overriding_Operation
9514 (Prev_E
: Entity_Id
;
9515 New_E
: Entity_Id
) return Boolean
9519 G_Typ
: Entity_Id
:= Empty
;
9521 function Get_Generic_Parent_Type
(F_Typ
: Entity_Id
) return Entity_Id
;
9522 -- If F_Type is a derived type associated with a generic actual subtype,
9523 -- then return its Generic_Parent_Type attribute, else return Empty.
9525 function Types_Correspond
9526 (P_Type
: Entity_Id
;
9527 N_Type
: Entity_Id
) return Boolean;
9528 -- Returns true if and only if the types (or designated types in the
9529 -- case of anonymous access types) are the same or N_Type is derived
9530 -- directly or indirectly from P_Type.
9532 -----------------------------
9533 -- Get_Generic_Parent_Type --
9534 -----------------------------
9536 function Get_Generic_Parent_Type
(F_Typ
: Entity_Id
) return Entity_Id
is
9542 if Is_Derived_Type
(F_Typ
)
9543 and then Nkind
(Parent
(F_Typ
)) = N_Full_Type_Declaration
9545 -- The tree must be traversed to determine the parent subtype in
9546 -- the generic unit, which unfortunately isn't always available
9547 -- via semantic attributes. ??? (Note: The use of Original_Node
9548 -- is needed for cases where a full derived type has been
9551 Defn
:= Type_Definition
(Original_Node
(Parent
(F_Typ
)));
9552 if Nkind
(Defn
) = N_Derived_Type_Definition
then
9553 Indic
:= Subtype_Indication
(Defn
);
9555 if Nkind
(Indic
) = N_Subtype_Indication
then
9556 G_Typ
:= Entity
(Subtype_Mark
(Indic
));
9558 G_Typ
:= Entity
(Indic
);
9561 if Nkind
(Parent
(G_Typ
)) = N_Subtype_Declaration
9562 and then Present
(Generic_Parent_Type
(Parent
(G_Typ
)))
9564 return Generic_Parent_Type
(Parent
(G_Typ
));
9570 end Get_Generic_Parent_Type
;
9572 ----------------------
9573 -- Types_Correspond --
9574 ----------------------
9576 function Types_Correspond
9577 (P_Type
: Entity_Id
;
9578 N_Type
: Entity_Id
) return Boolean
9580 Prev_Type
: Entity_Id
:= Base_Type
(P_Type
);
9581 New_Type
: Entity_Id
:= Base_Type
(N_Type
);
9584 if Ekind
(Prev_Type
) = E_Anonymous_Access_Type
then
9585 Prev_Type
:= Designated_Type
(Prev_Type
);
9588 if Ekind
(New_Type
) = E_Anonymous_Access_Type
then
9589 New_Type
:= Designated_Type
(New_Type
);
9592 if Prev_Type
= New_Type
then
9595 elsif not Is_Class_Wide_Type
(New_Type
) then
9596 while Etype
(New_Type
) /= New_Type
loop
9597 New_Type
:= Etype
(New_Type
);
9598 if New_Type
= Prev_Type
then
9604 end Types_Correspond
;
9606 -- Start of processing for Is_Non_Overriding_Operation
9609 -- In the case where both operations are implicit derived subprograms
9610 -- then neither overrides the other. This can only occur in certain
9611 -- obscure cases (e.g., derivation from homographs created in a generic
9614 if Present
(Alias
(Prev_E
)) and then Present
(Alias
(New_E
)) then
9617 elsif Ekind
(Current_Scope
) = E_Package
9618 and then Is_Generic_Instance
(Current_Scope
)
9619 and then In_Private_Part
(Current_Scope
)
9620 and then Comes_From_Source
(New_E
)
9622 -- We examine the formals and result type of the inherited operation,
9623 -- to determine whether their type is derived from (the instance of)
9624 -- a generic type. The first such formal or result type is the one
9627 Formal
:= First_Formal
(Prev_E
);
9628 while Present
(Formal
) loop
9629 F_Typ
:= Base_Type
(Etype
(Formal
));
9631 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
9632 F_Typ
:= Designated_Type
(F_Typ
);
9635 G_Typ
:= Get_Generic_Parent_Type
(F_Typ
);
9636 exit when Present
(G_Typ
);
9638 Next_Formal
(Formal
);
9641 if No
(G_Typ
) and then Ekind
(Prev_E
) = E_Function
then
9642 G_Typ
:= Get_Generic_Parent_Type
(Base_Type
(Etype
(Prev_E
)));
9649 -- If the generic type is a private type, then the original operation
9650 -- was not overriding in the generic, because there was no primitive
9651 -- operation to override.
9653 if Nkind
(Parent
(G_Typ
)) = N_Formal_Type_Declaration
9654 and then Nkind
(Formal_Type_Definition
(Parent
(G_Typ
))) =
9655 N_Formal_Private_Type_Definition
9659 -- The generic parent type is the ancestor of a formal derived
9660 -- type declaration. We need to check whether it has a primitive
9661 -- operation that should be overridden by New_E in the generic.
9665 P_Formal
: Entity_Id
;
9666 N_Formal
: Entity_Id
;
9670 Prim_Elt
: Elmt_Id
:= First_Elmt
(Primitive_Operations
(G_Typ
));
9673 while Present
(Prim_Elt
) loop
9674 P_Prim
:= Node
(Prim_Elt
);
9676 if Chars
(P_Prim
) = Chars
(New_E
)
9677 and then Ekind
(P_Prim
) = Ekind
(New_E
)
9679 P_Formal
:= First_Formal
(P_Prim
);
9680 N_Formal
:= First_Formal
(New_E
);
9681 while Present
(P_Formal
) and then Present
(N_Formal
) loop
9682 P_Typ
:= Etype
(P_Formal
);
9683 N_Typ
:= Etype
(N_Formal
);
9685 if not Types_Correspond
(P_Typ
, N_Typ
) then
9689 Next_Entity
(P_Formal
);
9690 Next_Entity
(N_Formal
);
9693 -- Found a matching primitive operation belonging to the
9694 -- formal ancestor type, so the new subprogram is
9698 and then No
(N_Formal
)
9699 and then (Ekind
(New_E
) /= E_Function
9702 (Etype
(P_Prim
), Etype
(New_E
)))
9708 Next_Elmt
(Prim_Elt
);
9711 -- If no match found, then the new subprogram does not override
9712 -- in the generic (nor in the instance).
9714 -- If the type in question is not abstract, and the subprogram
9715 -- is, this will be an error if the new operation is in the
9716 -- private part of the instance. Emit a warning now, which will
9717 -- make the subsequent error message easier to understand.
9719 if not Is_Abstract_Type
(F_Typ
)
9720 and then Is_Abstract_Subprogram
(Prev_E
)
9721 and then In_Private_Part
(Current_Scope
)
9723 Error_Msg_Node_2
:= F_Typ
;
9725 ("private operation& in generic unit does not override " &
9726 "any primitive operation of& (RM 12.3 (18))??",
9736 end Is_Non_Overriding_Operation
;
9738 -------------------------------------
9739 -- List_Inherited_Pre_Post_Aspects --
9740 -------------------------------------
9742 procedure List_Inherited_Pre_Post_Aspects
(E
: Entity_Id
) is
9744 if Opt
.List_Inherited_Aspects
9745 and then (Is_Subprogram
(E
) or else Is_Generic_Subprogram
(E
))
9748 Inherited
: constant Subprogram_List
:= Inherited_Subprograms
(E
);
9752 for J
in Inherited
'Range loop
9753 P
:= Pre_Post_Conditions
(Contract
(Inherited
(J
)));
9754 while Present
(P
) loop
9755 Error_Msg_Sloc
:= Sloc
(P
);
9757 if Class_Present
(P
) and then not Split_PPC
(P
) then
9758 if Pragma_Name
(P
) = Name_Precondition
then
9760 ("info: & inherits `Pre''Class` aspect from #?L?",
9764 ("info: & inherits `Post''Class` aspect from #?L?",
9769 P
:= Next_Pragma
(P
);
9774 end List_Inherited_Pre_Post_Aspects
;
9776 ------------------------------
9777 -- Make_Inequality_Operator --
9778 ------------------------------
9780 -- S is the defining identifier of an equality operator. We build a
9781 -- subprogram declaration with the right signature. This operation is
9782 -- intrinsic, because it is always expanded as the negation of the
9783 -- call to the equality function.
9785 procedure Make_Inequality_Operator
(S
: Entity_Id
) is
9786 Loc
: constant Source_Ptr
:= Sloc
(S
);
9789 Op_Name
: Entity_Id
;
9791 FF
: constant Entity_Id
:= First_Formal
(S
);
9792 NF
: constant Entity_Id
:= Next_Formal
(FF
);
9795 -- Check that equality was properly defined, ignore call if not
9802 A
: constant Entity_Id
:=
9803 Make_Defining_Identifier
(Sloc
(FF
),
9804 Chars
=> Chars
(FF
));
9806 B
: constant Entity_Id
:=
9807 Make_Defining_Identifier
(Sloc
(NF
),
9808 Chars
=> Chars
(NF
));
9811 Op_Name
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Ne
);
9813 Formals
:= New_List
(
9814 Make_Parameter_Specification
(Loc
,
9815 Defining_Identifier
=> A
,
9817 New_Occurrence_Of
(Etype
(First_Formal
(S
)),
9818 Sloc
(Etype
(First_Formal
(S
))))),
9820 Make_Parameter_Specification
(Loc
,
9821 Defining_Identifier
=> B
,
9823 New_Occurrence_Of
(Etype
(Next_Formal
(First_Formal
(S
))),
9824 Sloc
(Etype
(Next_Formal
(First_Formal
(S
)))))));
9827 Make_Subprogram_Declaration
(Loc
,
9829 Make_Function_Specification
(Loc
,
9830 Defining_Unit_Name
=> Op_Name
,
9831 Parameter_Specifications
=> Formals
,
9832 Result_Definition
=>
9833 New_Occurrence_Of
(Standard_Boolean
, Loc
)));
9835 -- Insert inequality right after equality if it is explicit or after
9836 -- the derived type when implicit. These entities are created only
9837 -- for visibility purposes, and eventually replaced in the course
9838 -- of expansion, so they do not need to be attached to the tree and
9839 -- seen by the back-end. Keeping them internal also avoids spurious
9840 -- freezing problems. The declaration is inserted in the tree for
9841 -- analysis, and removed afterwards. If the equality operator comes
9842 -- from an explicit declaration, attach the inequality immediately
9843 -- after. Else the equality is inherited from a derived type
9844 -- declaration, so insert inequality after that declaration.
9846 if No
(Alias
(S
)) then
9847 Insert_After
(Unit_Declaration_Node
(S
), Decl
);
9848 elsif Is_List_Member
(Parent
(S
)) then
9849 Insert_After
(Parent
(S
), Decl
);
9851 Insert_After
(Parent
(Etype
(First_Formal
(S
))), Decl
);
9854 Mark_Rewrite_Insertion
(Decl
);
9855 Set_Is_Intrinsic_Subprogram
(Op_Name
);
9858 Set_Has_Completion
(Op_Name
);
9859 Set_Corresponding_Equality
(Op_Name
, S
);
9860 Set_Is_Abstract_Subprogram
(Op_Name
, Is_Abstract_Subprogram
(S
));
9862 end Make_Inequality_Operator
;
9864 ----------------------
9865 -- May_Need_Actuals --
9866 ----------------------
9868 procedure May_Need_Actuals
(Fun
: Entity_Id
) is
9873 F
:= First_Formal
(Fun
);
9875 while Present
(F
) loop
9876 if No
(Default_Value
(F
)) then
9884 Set_Needs_No_Actuals
(Fun
, B
);
9885 end May_Need_Actuals
;
9887 ---------------------
9888 -- Mode_Conformant --
9889 ---------------------
9891 function Mode_Conformant
(New_Id
, Old_Id
: Entity_Id
) return Boolean is
9894 Check_Conformance
(New_Id
, Old_Id
, Mode_Conformant
, False, Result
);
9896 end Mode_Conformant
;
9898 ---------------------------
9899 -- New_Overloaded_Entity --
9900 ---------------------------
9902 procedure New_Overloaded_Entity
9904 Derived_Type
: Entity_Id
:= Empty
)
9906 Overridden_Subp
: Entity_Id
:= Empty
;
9907 -- Set if the current scope has an operation that is type-conformant
9908 -- with S, and becomes hidden by S.
9910 Is_Primitive_Subp
: Boolean;
9911 -- Set to True if the new subprogram is primitive
9914 -- Entity that S overrides
9916 Prev_Vis
: Entity_Id
:= Empty
;
9917 -- Predecessor of E in Homonym chain
9919 procedure Check_For_Primitive_Subprogram
9920 (Is_Primitive
: out Boolean;
9921 Is_Overriding
: Boolean := False);
9922 -- If the subprogram being analyzed is a primitive operation of the type
9923 -- of a formal or result, set the Has_Primitive_Operations flag on the
9924 -- type, and set Is_Primitive to True (otherwise set to False). Set the
9925 -- corresponding flag on the entity itself for later use.
9927 procedure Check_Synchronized_Overriding
9928 (Def_Id
: Entity_Id
;
9929 Overridden_Subp
: out Entity_Id
);
9930 -- First determine if Def_Id is an entry or a subprogram either defined
9931 -- in the scope of a task or protected type, or is a primitive of such
9932 -- a type. Check whether Def_Id overrides a subprogram of an interface
9933 -- implemented by the synchronized type, return the overridden entity
9936 function Is_Private_Declaration
(E
: Entity_Id
) return Boolean;
9937 -- Check that E is declared in the private part of the current package,
9938 -- or in the package body, where it may hide a previous declaration.
9939 -- We can't use In_Private_Part by itself because this flag is also
9940 -- set when freezing entities, so we must examine the place of the
9941 -- declaration in the tree, and recognize wrapper packages as well.
9943 function Is_Overriding_Alias
9945 New_E
: Entity_Id
) return Boolean;
9946 -- Check whether new subprogram and old subprogram are both inherited
9947 -- from subprograms that have distinct dispatch table entries. This can
9948 -- occur with derivations from instances with accidental homonyms. The
9949 -- function is conservative given that the converse is only true within
9950 -- instances that contain accidental overloadings.
9952 ------------------------------------
9953 -- Check_For_Primitive_Subprogram --
9954 ------------------------------------
9956 procedure Check_For_Primitive_Subprogram
9957 (Is_Primitive
: out Boolean;
9958 Is_Overriding
: Boolean := False)
9964 function Visible_Part_Type
(T
: Entity_Id
) return Boolean;
9965 -- Returns true if T is declared in the visible part of the current
9966 -- package scope; otherwise returns false. Assumes that T is declared
9969 procedure Check_Private_Overriding
(T
: Entity_Id
);
9970 -- Checks that if a primitive abstract subprogram of a visible
9971 -- abstract type is declared in a private part, then it must override
9972 -- an abstract subprogram declared in the visible part. Also checks
9973 -- that if a primitive function with a controlling result is declared
9974 -- in a private part, then it must override a function declared in
9975 -- the visible part.
9977 ------------------------------
9978 -- Check_Private_Overriding --
9979 ------------------------------
9981 procedure Check_Private_Overriding
(T
: Entity_Id
) is
9983 if Is_Package_Or_Generic_Package
(Current_Scope
)
9984 and then In_Private_Part
(Current_Scope
)
9985 and then Visible_Part_Type
(T
)
9986 and then not In_Instance
9988 if Is_Abstract_Type
(T
)
9989 and then Is_Abstract_Subprogram
(S
)
9990 and then (not Is_Overriding
9991 or else not Is_Abstract_Subprogram
(E
))
9994 ("abstract subprograms must be visible "
9995 & "(RM 3.9.3(10))!", S
);
9997 elsif Ekind
(S
) = E_Function
and then not Is_Overriding
then
9998 if Is_Tagged_Type
(T
) and then T
= Base_Type
(Etype
(S
)) then
10000 ("private function with tagged result must"
10001 & " override visible-part function", S
);
10003 ("\move subprogram to the visible part"
10004 & " (RM 3.9.3(10))", S
);
10006 -- AI05-0073: extend this test to the case of a function
10007 -- with a controlling access result.
10009 elsif Ekind
(Etype
(S
)) = E_Anonymous_Access_Type
10010 and then Is_Tagged_Type
(Designated_Type
(Etype
(S
)))
10012 not Is_Class_Wide_Type
(Designated_Type
(Etype
(S
)))
10013 and then Ada_Version
>= Ada_2012
10016 ("private function with controlling access result "
10017 & "must override visible-part function", S
);
10019 ("\move subprogram to the visible part"
10020 & " (RM 3.9.3(10))", S
);
10024 end Check_Private_Overriding
;
10026 -----------------------
10027 -- Visible_Part_Type --
10028 -----------------------
10030 function Visible_Part_Type
(T
: Entity_Id
) return Boolean is
10031 P
: constant Node_Id
:= Unit_Declaration_Node
(Scope
(T
));
10035 -- If the entity is a private type, then it must be declared in a
10038 if Ekind
(T
) in Private_Kind
then
10042 -- Otherwise, we traverse the visible part looking for its
10043 -- corresponding declaration. We cannot use the declaration
10044 -- node directly because in the private part the entity of a
10045 -- private type is the one in the full view, which does not
10046 -- indicate that it is the completion of something visible.
10048 N
:= First
(Visible_Declarations
(Specification
(P
)));
10049 while Present
(N
) loop
10050 if Nkind
(N
) = N_Full_Type_Declaration
10051 and then Present
(Defining_Identifier
(N
))
10052 and then T
= Defining_Identifier
(N
)
10056 elsif Nkind_In
(N
, N_Private_Type_Declaration
,
10057 N_Private_Extension_Declaration
)
10058 and then Present
(Defining_Identifier
(N
))
10059 and then T
= Full_View
(Defining_Identifier
(N
))
10068 end Visible_Part_Type
;
10070 -- Start of processing for Check_For_Primitive_Subprogram
10073 Is_Primitive
:= False;
10075 if not Comes_From_Source
(S
) then
10078 -- If subprogram is at library level, it is not primitive operation
10080 elsif Current_Scope
= Standard_Standard
then
10083 elsif (Is_Package_Or_Generic_Package
(Current_Scope
)
10084 and then not In_Package_Body
(Current_Scope
))
10085 or else Is_Overriding
10087 -- For function, check return type
10089 if Ekind
(S
) = E_Function
then
10090 if Ekind
(Etype
(S
)) = E_Anonymous_Access_Type
then
10091 F_Typ
:= Designated_Type
(Etype
(S
));
10093 F_Typ
:= Etype
(S
);
10096 B_Typ
:= Base_Type
(F_Typ
);
10098 if Scope
(B_Typ
) = Current_Scope
10099 and then not Is_Class_Wide_Type
(B_Typ
)
10100 and then not Is_Generic_Type
(B_Typ
)
10102 Is_Primitive
:= True;
10103 Set_Has_Primitive_Operations
(B_Typ
);
10104 Set_Is_Primitive
(S
);
10105 Check_Private_Overriding
(B_Typ
);
10109 -- For all subprograms, check formals
10111 Formal
:= First_Formal
(S
);
10112 while Present
(Formal
) loop
10113 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
10114 F_Typ
:= Designated_Type
(Etype
(Formal
));
10116 F_Typ
:= Etype
(Formal
);
10119 B_Typ
:= Base_Type
(F_Typ
);
10121 if Ekind
(B_Typ
) = E_Access_Subtype
then
10122 B_Typ
:= Base_Type
(B_Typ
);
10125 if Scope
(B_Typ
) = Current_Scope
10126 and then not Is_Class_Wide_Type
(B_Typ
)
10127 and then not Is_Generic_Type
(B_Typ
)
10129 Is_Primitive
:= True;
10130 Set_Is_Primitive
(S
);
10131 Set_Has_Primitive_Operations
(B_Typ
);
10132 Check_Private_Overriding
(B_Typ
);
10135 Next_Formal
(Formal
);
10138 -- Special case: An equality function can be redefined for a type
10139 -- occurring in a declarative part, and won't otherwise be treated as
10140 -- a primitive because it doesn't occur in a package spec and doesn't
10141 -- override an inherited subprogram. It's important that we mark it
10142 -- primitive so it can be returned by Collect_Primitive_Operations
10143 -- and be used in composing the equality operation of later types
10144 -- that have a component of the type.
10146 elsif Chars
(S
) = Name_Op_Eq
10147 and then Etype
(S
) = Standard_Boolean
10149 B_Typ
:= Base_Type
(Etype
(First_Formal
(S
)));
10151 if Scope
(B_Typ
) = Current_Scope
10153 Base_Type
(Etype
(Next_Formal
(First_Formal
(S
)))) = B_Typ
10154 and then not Is_Limited_Type
(B_Typ
)
10156 Is_Primitive
:= True;
10157 Set_Is_Primitive
(S
);
10158 Set_Has_Primitive_Operations
(B_Typ
);
10159 Check_Private_Overriding
(B_Typ
);
10162 end Check_For_Primitive_Subprogram
;
10164 -----------------------------------
10165 -- Check_Synchronized_Overriding --
10166 -----------------------------------
10168 procedure Check_Synchronized_Overriding
10169 (Def_Id
: Entity_Id
;
10170 Overridden_Subp
: out Entity_Id
)
10172 Ifaces_List
: Elist_Id
;
10173 In_Scope
: Boolean;
10176 function Matches_Prefixed_View_Profile
10177 (Prim_Params
: List_Id
;
10178 Iface_Params
: List_Id
) return Boolean;
10179 -- Determine whether a subprogram's parameter profile Prim_Params
10180 -- matches that of a potentially overridden interface subprogram
10181 -- Iface_Params. Also determine if the type of first parameter of
10182 -- Iface_Params is an implemented interface.
10184 -----------------------------------
10185 -- Matches_Prefixed_View_Profile --
10186 -----------------------------------
10188 function Matches_Prefixed_View_Profile
10189 (Prim_Params
: List_Id
;
10190 Iface_Params
: List_Id
) return Boolean
10192 Iface_Id
: Entity_Id
;
10193 Iface_Param
: Node_Id
;
10194 Iface_Typ
: Entity_Id
;
10195 Prim_Id
: Entity_Id
;
10196 Prim_Param
: Node_Id
;
10197 Prim_Typ
: Entity_Id
;
10199 function Is_Implemented
10200 (Ifaces_List
: Elist_Id
;
10201 Iface
: Entity_Id
) return Boolean;
10202 -- Determine if Iface is implemented by the current task or
10205 --------------------
10206 -- Is_Implemented --
10207 --------------------
10209 function Is_Implemented
10210 (Ifaces_List
: Elist_Id
;
10211 Iface
: Entity_Id
) return Boolean
10213 Iface_Elmt
: Elmt_Id
;
10216 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
10217 while Present
(Iface_Elmt
) loop
10218 if Node
(Iface_Elmt
) = Iface
then
10222 Next_Elmt
(Iface_Elmt
);
10226 end Is_Implemented
;
10228 -- Start of processing for Matches_Prefixed_View_Profile
10231 Iface_Param
:= First
(Iface_Params
);
10232 Iface_Typ
:= Etype
(Defining_Identifier
(Iface_Param
));
10234 if Is_Access_Type
(Iface_Typ
) then
10235 Iface_Typ
:= Designated_Type
(Iface_Typ
);
10238 Prim_Param
:= First
(Prim_Params
);
10240 -- The first parameter of the potentially overridden subprogram
10241 -- must be an interface implemented by Prim.
10243 if not Is_Interface
(Iface_Typ
)
10244 or else not Is_Implemented
(Ifaces_List
, Iface_Typ
)
10249 -- The checks on the object parameters are done, move onto the
10250 -- rest of the parameters.
10252 if not In_Scope
then
10253 Prim_Param
:= Next
(Prim_Param
);
10256 Iface_Param
:= Next
(Iface_Param
);
10257 while Present
(Iface_Param
) and then Present
(Prim_Param
) loop
10258 Iface_Id
:= Defining_Identifier
(Iface_Param
);
10259 Iface_Typ
:= Find_Parameter_Type
(Iface_Param
);
10261 Prim_Id
:= Defining_Identifier
(Prim_Param
);
10262 Prim_Typ
:= Find_Parameter_Type
(Prim_Param
);
10264 if Ekind
(Iface_Typ
) = E_Anonymous_Access_Type
10265 and then Ekind
(Prim_Typ
) = E_Anonymous_Access_Type
10266 and then Is_Concurrent_Type
(Designated_Type
(Prim_Typ
))
10268 Iface_Typ
:= Designated_Type
(Iface_Typ
);
10269 Prim_Typ
:= Designated_Type
(Prim_Typ
);
10272 -- Case of multiple interface types inside a parameter profile
10274 -- (Obj_Param : in out Iface; ...; Param : Iface)
10276 -- If the interface type is implemented, then the matching type
10277 -- in the primitive should be the implementing record type.
10279 if Ekind
(Iface_Typ
) = E_Record_Type
10280 and then Is_Interface
(Iface_Typ
)
10281 and then Is_Implemented
(Ifaces_List
, Iface_Typ
)
10283 if Prim_Typ
/= Typ
then
10287 -- The two parameters must be both mode and subtype conformant
10289 elsif Ekind
(Iface_Id
) /= Ekind
(Prim_Id
)
10291 Conforming_Types
(Iface_Typ
, Prim_Typ
, Subtype_Conformant
)
10296 Next
(Iface_Param
);
10300 -- One of the two lists contains more parameters than the other
10302 if Present
(Iface_Param
) or else Present
(Prim_Param
) then
10307 end Matches_Prefixed_View_Profile
;
10309 -- Start of processing for Check_Synchronized_Overriding
10312 Overridden_Subp
:= Empty
;
10314 -- Def_Id must be an entry or a subprogram. We should skip predefined
10315 -- primitives internally generated by the frontend; however at this
10316 -- stage predefined primitives are still not fully decorated. As a
10317 -- minor optimization we skip here internally generated subprograms.
10319 if (Ekind
(Def_Id
) /= E_Entry
10320 and then Ekind
(Def_Id
) /= E_Function
10321 and then Ekind
(Def_Id
) /= E_Procedure
)
10322 or else not Comes_From_Source
(Def_Id
)
10327 -- Search for the concurrent declaration since it contains the list
10328 -- of all implemented interfaces. In this case, the subprogram is
10329 -- declared within the scope of a protected or a task type.
10331 if Present
(Scope
(Def_Id
))
10332 and then Is_Concurrent_Type
(Scope
(Def_Id
))
10333 and then not Is_Generic_Actual_Type
(Scope
(Def_Id
))
10335 Typ
:= Scope
(Def_Id
);
10338 -- The enclosing scope is not a synchronized type and the subprogram
10341 elsif No
(First_Formal
(Def_Id
)) then
10344 -- The subprogram has formals and hence it may be a primitive of a
10345 -- concurrent type.
10348 Typ
:= Etype
(First_Formal
(Def_Id
));
10350 if Is_Access_Type
(Typ
) then
10351 Typ
:= Directly_Designated_Type
(Typ
);
10354 if Is_Concurrent_Type
(Typ
)
10355 and then not Is_Generic_Actual_Type
(Typ
)
10359 -- This case occurs when the concurrent type is declared within
10360 -- a generic unit. As a result the corresponding record has been
10361 -- built and used as the type of the first formal, we just have
10362 -- to retrieve the corresponding concurrent type.
10364 elsif Is_Concurrent_Record_Type
(Typ
)
10365 and then not Is_Class_Wide_Type
(Typ
)
10366 and then Present
(Corresponding_Concurrent_Type
(Typ
))
10368 Typ
:= Corresponding_Concurrent_Type
(Typ
);
10376 -- There is no overriding to check if is an inherited operation in a
10377 -- type derivation on for a generic actual.
10379 Collect_Interfaces
(Typ
, Ifaces_List
);
10381 if Is_Empty_Elmt_List
(Ifaces_List
) then
10385 -- Determine whether entry or subprogram Def_Id overrides a primitive
10386 -- operation that belongs to one of the interfaces in Ifaces_List.
10389 Candidate
: Entity_Id
:= Empty
;
10390 Hom
: Entity_Id
:= Empty
;
10391 Iface_Typ
: Entity_Id
;
10392 Subp
: Entity_Id
:= Empty
;
10395 -- Traverse the homonym chain, looking for a potentially
10396 -- overridden subprogram that belongs to an implemented
10399 Hom
:= Current_Entity_In_Scope
(Def_Id
);
10400 while Present
(Hom
) loop
10404 or else not Is_Overloadable
(Subp
)
10405 or else not Is_Primitive
(Subp
)
10406 or else not Is_Dispatching_Operation
(Subp
)
10407 or else not Present
(Find_Dispatching_Type
(Subp
))
10408 or else not Is_Interface
(Find_Dispatching_Type
(Subp
))
10412 -- Entries and procedures can override abstract or null
10413 -- interface procedures.
10415 elsif (Ekind
(Def_Id
) = E_Procedure
10416 or else Ekind
(Def_Id
) = E_Entry
)
10417 and then Ekind
(Subp
) = E_Procedure
10418 and then Matches_Prefixed_View_Profile
10419 (Parameter_Specifications
(Parent
(Def_Id
)),
10420 Parameter_Specifications
(Parent
(Subp
)))
10424 -- For an overridden subprogram Subp, check whether the mode
10425 -- of its first parameter is correct depending on the kind
10426 -- of synchronized type.
10429 Formal
: constant Node_Id
:= First_Formal
(Candidate
);
10432 -- In order for an entry or a protected procedure to
10433 -- override, the first parameter of the overridden
10434 -- routine must be of mode "out", "in out" or
10435 -- access-to-variable.
10437 if Ekind_In
(Candidate
, E_Entry
, E_Procedure
)
10438 and then Is_Protected_Type
(Typ
)
10439 and then Ekind
(Formal
) /= E_In_Out_Parameter
10440 and then Ekind
(Formal
) /= E_Out_Parameter
10441 and then Nkind
(Parameter_Type
(Parent
(Formal
))) /=
10442 N_Access_Definition
10446 -- All other cases are OK since a task entry or routine
10447 -- does not have a restriction on the mode of the first
10448 -- parameter of the overridden interface routine.
10451 Overridden_Subp
:= Candidate
;
10456 -- Functions can override abstract interface functions
10458 elsif Ekind
(Def_Id
) = E_Function
10459 and then Ekind
(Subp
) = E_Function
10460 and then Matches_Prefixed_View_Profile
10461 (Parameter_Specifications
(Parent
(Def_Id
)),
10462 Parameter_Specifications
(Parent
(Subp
)))
10463 and then Etype
(Result_Definition
(Parent
(Def_Id
))) =
10464 Etype
(Result_Definition
(Parent
(Subp
)))
10466 Overridden_Subp
:= Subp
;
10470 Hom
:= Homonym
(Hom
);
10473 -- After examining all candidates for overriding, we are left with
10474 -- the best match which is a mode incompatible interface routine.
10475 -- Do not emit an error if the Expander is active since this error
10476 -- will be detected later on after all concurrent types are
10477 -- expanded and all wrappers are built. This check is meant for
10478 -- spec-only compilations.
10480 if Present
(Candidate
) and then not Expander_Active
then
10482 Find_Parameter_Type
(Parent
(First_Formal
(Candidate
)));
10484 -- Def_Id is primitive of a protected type, declared inside the
10485 -- type, and the candidate is primitive of a limited or
10486 -- synchronized interface.
10489 and then Is_Protected_Type
(Typ
)
10491 (Is_Limited_Interface
(Iface_Typ
)
10492 or else Is_Protected_Interface
(Iface_Typ
)
10493 or else Is_Synchronized_Interface
(Iface_Typ
)
10494 or else Is_Task_Interface
(Iface_Typ
))
10496 Error_Msg_PT
(Parent
(Typ
), Candidate
);
10500 Overridden_Subp
:= Candidate
;
10503 end Check_Synchronized_Overriding
;
10505 ----------------------------
10506 -- Is_Private_Declaration --
10507 ----------------------------
10509 function Is_Private_Declaration
(E
: Entity_Id
) return Boolean is
10510 Priv_Decls
: List_Id
;
10511 Decl
: constant Node_Id
:= Unit_Declaration_Node
(E
);
10514 if Is_Package_Or_Generic_Package
(Current_Scope
)
10515 and then In_Private_Part
(Current_Scope
)
10518 Private_Declarations
(Package_Specification
(Current_Scope
));
10520 return In_Package_Body
(Current_Scope
)
10522 (Is_List_Member
(Decl
)
10523 and then List_Containing
(Decl
) = Priv_Decls
)
10524 or else (Nkind
(Parent
(Decl
)) = N_Package_Specification
10526 Is_Compilation_Unit
10527 (Defining_Entity
(Parent
(Decl
)))
10528 and then List_Containing
(Parent
(Parent
(Decl
))) =
10533 end Is_Private_Declaration
;
10535 --------------------------
10536 -- Is_Overriding_Alias --
10537 --------------------------
10539 function Is_Overriding_Alias
10540 (Old_E
: Entity_Id
;
10541 New_E
: Entity_Id
) return Boolean
10543 AO
: constant Entity_Id
:= Alias
(Old_E
);
10544 AN
: constant Entity_Id
:= Alias
(New_E
);
10547 return Scope
(AO
) /= Scope
(AN
)
10548 or else No
(DTC_Entity
(AO
))
10549 or else No
(DTC_Entity
(AN
))
10550 or else DT_Position
(AO
) = DT_Position
(AN
);
10551 end Is_Overriding_Alias
;
10553 -- Start of processing for New_Overloaded_Entity
10556 -- We need to look for an entity that S may override. This must be a
10557 -- homonym in the current scope, so we look for the first homonym of
10558 -- S in the current scope as the starting point for the search.
10560 E
:= Current_Entity_In_Scope
(S
);
10562 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10563 -- They are directly added to the list of primitive operations of
10564 -- Derived_Type, unless this is a rederivation in the private part
10565 -- of an operation that was already derived in the visible part of
10566 -- the current package.
10568 if Ada_Version
>= Ada_2005
10569 and then Present
(Derived_Type
)
10570 and then Present
(Alias
(S
))
10571 and then Is_Dispatching_Operation
(Alias
(S
))
10572 and then Present
(Find_Dispatching_Type
(Alias
(S
)))
10573 and then Is_Interface
(Find_Dispatching_Type
(Alias
(S
)))
10575 -- For private types, when the full-view is processed we propagate to
10576 -- the full view the non-overridden entities whose attribute "alias"
10577 -- references an interface primitive. These entities were added by
10578 -- Derive_Subprograms to ensure that interface primitives are
10581 -- Inside_Freeze_Actions is non zero when S corresponds with an
10582 -- internal entity that links an interface primitive with its
10583 -- covering primitive through attribute Interface_Alias (see
10584 -- Add_Internal_Interface_Entities).
10586 if Inside_Freezing_Actions
= 0
10587 and then Is_Package_Or_Generic_Package
(Current_Scope
)
10588 and then In_Private_Part
(Current_Scope
)
10589 and then Nkind
(Parent
(E
)) = N_Private_Extension_Declaration
10590 and then Nkind
(Parent
(S
)) = N_Full_Type_Declaration
10591 and then Full_View
(Defining_Identifier
(Parent
(E
)))
10592 = Defining_Identifier
(Parent
(S
))
10593 and then Alias
(E
) = Alias
(S
)
10595 Check_Operation_From_Private_View
(S
, E
);
10596 Set_Is_Dispatching_Operation
(S
);
10601 Enter_Overloaded_Entity
(S
);
10602 Check_Dispatching_Operation
(S
, Empty
);
10603 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
10609 -- If there is no homonym then this is definitely not overriding
10612 Enter_Overloaded_Entity
(S
);
10613 Check_Dispatching_Operation
(S
, Empty
);
10614 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
10616 -- If subprogram has an explicit declaration, check whether it has an
10617 -- overriding indicator.
10619 if Comes_From_Source
(S
) then
10620 Check_Synchronized_Overriding
(S
, Overridden_Subp
);
10622 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10623 -- it may have overridden some hidden inherited primitive. Update
10624 -- Overridden_Subp to avoid spurious errors when checking the
10625 -- overriding indicator.
10627 if Ada_Version
>= Ada_2012
10628 and then No
(Overridden_Subp
)
10629 and then Is_Dispatching_Operation
(S
)
10630 and then Present
(Overridden_Operation
(S
))
10632 Overridden_Subp
:= Overridden_Operation
(S
);
10635 Check_Overriding_Indicator
10636 (S
, Overridden_Subp
, Is_Primitive
=> Is_Primitive_Subp
);
10639 -- If there is a homonym that is not overloadable, then we have an
10640 -- error, except for the special cases checked explicitly below.
10642 elsif not Is_Overloadable
(E
) then
10644 -- Check for spurious conflict produced by a subprogram that has the
10645 -- same name as that of the enclosing generic package. The conflict
10646 -- occurs within an instance, between the subprogram and the renaming
10647 -- declaration for the package. After the subprogram, the package
10648 -- renaming declaration becomes hidden.
10650 if Ekind
(E
) = E_Package
10651 and then Present
(Renamed_Object
(E
))
10652 and then Renamed_Object
(E
) = Current_Scope
10653 and then Nkind
(Parent
(Renamed_Object
(E
))) =
10654 N_Package_Specification
10655 and then Present
(Generic_Parent
(Parent
(Renamed_Object
(E
))))
10658 Set_Is_Immediately_Visible
(E
, False);
10659 Enter_Overloaded_Entity
(S
);
10660 Set_Homonym
(S
, Homonym
(E
));
10661 Check_Dispatching_Operation
(S
, Empty
);
10662 Check_Overriding_Indicator
(S
, Empty
, Is_Primitive
=> False);
10664 -- If the subprogram is implicit it is hidden by the previous
10665 -- declaration. However if it is dispatching, it must appear in the
10666 -- dispatch table anyway, because it can be dispatched to even if it
10667 -- cannot be called directly.
10669 elsif Present
(Alias
(S
)) and then not Comes_From_Source
(S
) then
10670 Set_Scope
(S
, Current_Scope
);
10672 if Is_Dispatching_Operation
(Alias
(S
)) then
10673 Check_Dispatching_Operation
(S
, Empty
);
10679 Error_Msg_Sloc
:= Sloc
(E
);
10681 -- Generate message, with useful additional warning if in generic
10683 if Is_Generic_Unit
(E
) then
10684 Error_Msg_N
("previous generic unit cannot be overloaded", S
);
10685 Error_Msg_N
("\& conflicts with declaration#", S
);
10687 Error_Msg_N
("& conflicts with declaration#", S
);
10693 -- E exists and is overloadable
10696 Check_Synchronized_Overriding
(S
, Overridden_Subp
);
10698 -- Loop through E and its homonyms to determine if any of them is
10699 -- the candidate for overriding by S.
10701 while Present
(E
) loop
10703 -- Definitely not interesting if not in the current scope
10705 if Scope
(E
) /= Current_Scope
then
10708 -- A function can overload the name of an abstract state. The
10709 -- state can be viewed as a function with a profile that cannot
10710 -- be matched by anything.
10712 elsif Ekind
(S
) = E_Function
10713 and then Ekind
(E
) = E_Abstract_State
10715 Enter_Overloaded_Entity
(S
);
10718 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10719 -- procedures locate the internally generated spec. We enforce
10720 -- mode conformance since a tagged type may inherit from
10721 -- interfaces several null primitives which differ only in
10722 -- the mode of the formals.
10724 elsif not Comes_From_Source
(S
)
10725 and then Is_Null_Procedure
(S
)
10726 and then not Mode_Conformant
(E
, S
)
10730 -- Check if we have type conformance
10732 elsif Type_Conformant
(E
, S
) then
10734 -- If the old and new entities have the same profile and one
10735 -- is not the body of the other, then this is an error, unless
10736 -- one of them is implicitly declared.
10738 -- There are some cases when both can be implicit, for example
10739 -- when both a literal and a function that overrides it are
10740 -- inherited in a derivation, or when an inherited operation
10741 -- of a tagged full type overrides the inherited operation of
10742 -- a private extension. Ada 83 had a special rule for the
10743 -- literal case. In Ada 95, the later implicit operation hides
10744 -- the former, and the literal is always the former. In the
10745 -- odd case where both are derived operations declared at the
10746 -- same point, both operations should be declared, and in that
10747 -- case we bypass the following test and proceed to the next
10748 -- part. This can only occur for certain obscure cases in
10749 -- instances, when an operation on a type derived from a formal
10750 -- private type does not override a homograph inherited from
10751 -- the actual. In subsequent derivations of such a type, the
10752 -- DT positions of these operations remain distinct, if they
10755 if Present
(Alias
(S
))
10756 and then (No
(Alias
(E
))
10757 or else Comes_From_Source
(E
)
10758 or else Is_Abstract_Subprogram
(S
)
10760 (Is_Dispatching_Operation
(E
)
10761 and then Is_Overriding_Alias
(E
, S
)))
10762 and then Ekind
(E
) /= E_Enumeration_Literal
10764 -- When an derived operation is overloaded it may be due to
10765 -- the fact that the full view of a private extension
10766 -- re-inherits. It has to be dealt with.
10768 if Is_Package_Or_Generic_Package
(Current_Scope
)
10769 and then In_Private_Part
(Current_Scope
)
10771 Check_Operation_From_Private_View
(S
, E
);
10774 -- In any case the implicit operation remains hidden by the
10775 -- existing declaration, which is overriding. Indicate that
10776 -- E overrides the operation from which S is inherited.
10778 if Present
(Alias
(S
)) then
10779 Set_Overridden_Operation
(E
, Alias
(S
));
10781 Set_Overridden_Operation
(E
, S
);
10784 if Comes_From_Source
(E
) then
10785 Check_Overriding_Indicator
(E
, S
, Is_Primitive
=> False);
10790 -- Within an instance, the renaming declarations for actual
10791 -- subprograms may become ambiguous, but they do not hide each
10794 elsif Ekind
(E
) /= E_Entry
10795 and then not Comes_From_Source
(E
)
10796 and then not Is_Generic_Instance
(E
)
10797 and then (Present
(Alias
(E
))
10798 or else Is_Intrinsic_Subprogram
(E
))
10799 and then (not In_Instance
10800 or else No
(Parent
(E
))
10801 or else Nkind
(Unit_Declaration_Node
(E
)) /=
10802 N_Subprogram_Renaming_Declaration
)
10804 -- A subprogram child unit is not allowed to override an
10805 -- inherited subprogram (10.1.1(20)).
10807 if Is_Child_Unit
(S
) then
10809 ("child unit overrides inherited subprogram in parent",
10814 if Is_Non_Overriding_Operation
(E
, S
) then
10815 Enter_Overloaded_Entity
(S
);
10817 if No
(Derived_Type
)
10818 or else Is_Tagged_Type
(Derived_Type
)
10820 Check_Dispatching_Operation
(S
, Empty
);
10826 -- E is a derived operation or an internal operator which
10827 -- is being overridden. Remove E from further visibility.
10828 -- Furthermore, if E is a dispatching operation, it must be
10829 -- replaced in the list of primitive operations of its type
10830 -- (see Override_Dispatching_Operation).
10832 Overridden_Subp
:= E
;
10838 Prev
:= First_Entity
(Current_Scope
);
10839 while Present
(Prev
) and then Next_Entity
(Prev
) /= E
loop
10840 Next_Entity
(Prev
);
10843 -- It is possible for E to be in the current scope and
10844 -- yet not in the entity chain. This can only occur in a
10845 -- generic context where E is an implicit concatenation
10846 -- in the formal part, because in a generic body the
10847 -- entity chain starts with the formals.
10850 (Present
(Prev
) or else Chars
(E
) = Name_Op_Concat
);
10852 -- E must be removed both from the entity_list of the
10853 -- current scope, and from the visibility chain
10855 if Debug_Flag_E
then
10856 Write_Str
("Override implicit operation ");
10857 Write_Int
(Int
(E
));
10861 -- If E is a predefined concatenation, it stands for four
10862 -- different operations. As a result, a single explicit
10863 -- declaration does not hide it. In a possible ambiguous
10864 -- situation, Disambiguate chooses the user-defined op,
10865 -- so it is correct to retain the previous internal one.
10867 if Chars
(E
) /= Name_Op_Concat
10868 or else Ekind
(E
) /= E_Operator
10870 -- For nondispatching derived operations that are
10871 -- overridden by a subprogram declared in the private
10872 -- part of a package, we retain the derived subprogram
10873 -- but mark it as not immediately visible. If the
10874 -- derived operation was declared in the visible part
10875 -- then this ensures that it will still be visible
10876 -- outside the package with the proper signature
10877 -- (calls from outside must also be directed to this
10878 -- version rather than the overriding one, unlike the
10879 -- dispatching case). Calls from inside the package
10880 -- will still resolve to the overriding subprogram
10881 -- since the derived one is marked as not visible
10882 -- within the package.
10884 -- If the private operation is dispatching, we achieve
10885 -- the overriding by keeping the implicit operation
10886 -- but setting its alias to be the overriding one. In
10887 -- this fashion the proper body is executed in all
10888 -- cases, but the original signature is used outside
10891 -- If the overriding is not in the private part, we
10892 -- remove the implicit operation altogether.
10894 if Is_Private_Declaration
(S
) then
10895 if not Is_Dispatching_Operation
(E
) then
10896 Set_Is_Immediately_Visible
(E
, False);
10898 -- Work done in Override_Dispatching_Operation,
10899 -- so nothing else needs to be done here.
10905 -- Find predecessor of E in Homonym chain
10907 if E
= Current_Entity
(E
) then
10910 Prev_Vis
:= Current_Entity
(E
);
10911 while Homonym
(Prev_Vis
) /= E
loop
10912 Prev_Vis
:= Homonym
(Prev_Vis
);
10916 if Prev_Vis
/= Empty
then
10918 -- Skip E in the visibility chain
10920 Set_Homonym
(Prev_Vis
, Homonym
(E
));
10923 Set_Name_Entity_Id
(Chars
(E
), Homonym
(E
));
10926 Set_Next_Entity
(Prev
, Next_Entity
(E
));
10928 if No
(Next_Entity
(Prev
)) then
10929 Set_Last_Entity
(Current_Scope
, Prev
);
10934 Enter_Overloaded_Entity
(S
);
10936 -- For entities generated by Derive_Subprograms the
10937 -- overridden operation is the inherited primitive
10938 -- (which is available through the attribute alias).
10940 if not (Comes_From_Source
(E
))
10941 and then Is_Dispatching_Operation
(E
)
10942 and then Find_Dispatching_Type
(E
) =
10943 Find_Dispatching_Type
(S
)
10944 and then Present
(Alias
(E
))
10945 and then Comes_From_Source
(Alias
(E
))
10947 Set_Overridden_Operation
(S
, Alias
(E
));
10949 -- Normal case of setting entity as overridden
10951 -- Note: Static_Initialization and Overridden_Operation
10952 -- attributes use the same field in subprogram entities.
10953 -- Static_Initialization is only defined for internal
10954 -- initialization procedures, where Overridden_Operation
10955 -- is irrelevant. Therefore the setting of this attribute
10956 -- must check whether the target is an init_proc.
10958 elsif not Is_Init_Proc
(S
) then
10959 Set_Overridden_Operation
(S
, E
);
10962 Check_Overriding_Indicator
(S
, E
, Is_Primitive
=> True);
10964 -- If S is a user-defined subprogram or a null procedure
10965 -- expanded to override an inherited null procedure, or a
10966 -- predefined dispatching primitive then indicate that E
10967 -- overrides the operation from which S is inherited.
10969 if Comes_From_Source
(S
)
10971 (Present
(Parent
(S
))
10973 Nkind
(Parent
(S
)) = N_Procedure_Specification
10975 Null_Present
(Parent
(S
)))
10977 (Present
(Alias
(E
))
10979 Is_Predefined_Dispatching_Operation
(Alias
(E
)))
10981 if Present
(Alias
(E
)) then
10982 Set_Overridden_Operation
(S
, Alias
(E
));
10986 if Is_Dispatching_Operation
(E
) then
10988 -- An overriding dispatching subprogram inherits the
10989 -- convention of the overridden subprogram (AI-117).
10991 Set_Convention
(S
, Convention
(E
));
10992 Check_Dispatching_Operation
(S
, E
);
10995 Check_Dispatching_Operation
(S
, Empty
);
10998 Check_For_Primitive_Subprogram
10999 (Is_Primitive_Subp
, Is_Overriding
=> True);
11000 goto Check_Inequality
;
11003 -- Apparent redeclarations in instances can occur when two
11004 -- formal types get the same actual type. The subprograms in
11005 -- in the instance are legal, even if not callable from the
11006 -- outside. Calls from within are disambiguated elsewhere.
11007 -- For dispatching operations in the visible part, the usual
11008 -- rules apply, and operations with the same profile are not
11009 -- legal (B830001).
11011 elsif (In_Instance_Visible_Part
11012 and then not Is_Dispatching_Operation
(E
))
11013 or else In_Instance_Not_Visible
11017 -- Here we have a real error (identical profile)
11020 Error_Msg_Sloc
:= Sloc
(E
);
11022 -- Avoid cascaded errors if the entity appears in
11023 -- subsequent calls.
11025 Set_Scope
(S
, Current_Scope
);
11027 -- Generate error, with extra useful warning for the case
11028 -- of a generic instance with no completion.
11030 if Is_Generic_Instance
(S
)
11031 and then not Has_Completion
(E
)
11034 ("instantiation cannot provide body for&", S
);
11035 Error_Msg_N
("\& conflicts with declaration#", S
);
11037 Error_Msg_N
("& conflicts with declaration#", S
);
11044 -- If one subprogram has an access parameter and the other
11045 -- a parameter of an access type, calls to either might be
11046 -- ambiguous. Verify that parameters match except for the
11047 -- access parameter.
11049 if May_Hide_Profile
then
11055 F1
:= First_Formal
(S
);
11056 F2
:= First_Formal
(E
);
11057 while Present
(F1
) and then Present
(F2
) loop
11058 if Is_Access_Type
(Etype
(F1
)) then
11059 if not Is_Access_Type
(Etype
(F2
))
11060 or else not Conforming_Types
11061 (Designated_Type
(Etype
(F1
)),
11062 Designated_Type
(Etype
(F2
)),
11065 May_Hide_Profile
:= False;
11069 not Conforming_Types
11070 (Etype
(F1
), Etype
(F2
), Type_Conformant
)
11072 May_Hide_Profile
:= False;
11079 if May_Hide_Profile
11083 Error_Msg_NE
("calls to& may be ambiguous??", S
, S
);
11092 -- On exit, we know that S is a new entity
11094 Enter_Overloaded_Entity
(S
);
11095 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
11096 Check_Overriding_Indicator
11097 (S
, Overridden_Subp
, Is_Primitive
=> Is_Primitive_Subp
);
11099 -- Overloading is not allowed in SPARK, except for operators
11101 if Nkind
(S
) /= N_Defining_Operator_Symbol
then
11102 Error_Msg_Sloc
:= Sloc
(Homonym
(S
));
11103 Check_SPARK_Restriction
11104 ("overloading not allowed with entity#", S
);
11107 -- If S is a derived operation for an untagged type then by
11108 -- definition it's not a dispatching operation (even if the parent
11109 -- operation was dispatching), so Check_Dispatching_Operation is not
11110 -- called in that case.
11112 if No
(Derived_Type
)
11113 or else Is_Tagged_Type
(Derived_Type
)
11115 Check_Dispatching_Operation
(S
, Empty
);
11119 -- If this is a user-defined equality operator that is not a derived
11120 -- subprogram, create the corresponding inequality. If the operation is
11121 -- dispatching, the expansion is done elsewhere, and we do not create
11122 -- an explicit inequality operation.
11124 <<Check_Inequality
>>
11125 if Chars
(S
) = Name_Op_Eq
11126 and then Etype
(S
) = Standard_Boolean
11127 and then Present
(Parent
(S
))
11128 and then not Is_Dispatching_Operation
(S
)
11130 Make_Inequality_Operator
(S
);
11131 Check_Untagged_Equality
(S
);
11133 end New_Overloaded_Entity
;
11135 ---------------------
11136 -- Process_Formals --
11137 ---------------------
11139 procedure Process_Formals
11141 Related_Nod
: Node_Id
)
11143 Param_Spec
: Node_Id
;
11144 Formal
: Entity_Id
;
11145 Formal_Type
: Entity_Id
;
11149 Num_Out_Params
: Nat
:= 0;
11150 First_Out_Param
: Entity_Id
:= Empty
;
11151 -- Used for setting Is_Only_Out_Parameter
11153 function Designates_From_Limited_With
(Typ
: Entity_Id
) return Boolean;
11154 -- Determine whether an access type designates a type coming from a
11157 function Is_Class_Wide_Default
(D
: Node_Id
) return Boolean;
11158 -- Check whether the default has a class-wide type. After analysis the
11159 -- default has the type of the formal, so we must also check explicitly
11160 -- for an access attribute.
11162 ----------------------------------
11163 -- Designates_From_Limited_With --
11164 ----------------------------------
11166 function Designates_From_Limited_With
(Typ
: Entity_Id
) return Boolean is
11167 Desig
: Entity_Id
:= Typ
;
11170 if Is_Access_Type
(Desig
) then
11171 Desig
:= Directly_Designated_Type
(Desig
);
11174 if Is_Class_Wide_Type
(Desig
) then
11175 Desig
:= Root_Type
(Desig
);
11179 Ekind
(Desig
) = E_Incomplete_Type
11180 and then From_Limited_With
(Desig
);
11181 end Designates_From_Limited_With
;
11183 ---------------------------
11184 -- Is_Class_Wide_Default --
11185 ---------------------------
11187 function Is_Class_Wide_Default
(D
: Node_Id
) return Boolean is
11189 return Is_Class_Wide_Type
(Designated_Type
(Etype
(D
)))
11190 or else (Nkind
(D
) = N_Attribute_Reference
11191 and then Attribute_Name
(D
) = Name_Access
11192 and then Is_Class_Wide_Type
(Etype
(Prefix
(D
))));
11193 end Is_Class_Wide_Default
;
11195 -- Start of processing for Process_Formals
11198 -- In order to prevent premature use of the formals in the same formal
11199 -- part, the Ekind is left undefined until all default expressions are
11200 -- analyzed. The Ekind is established in a separate loop at the end.
11202 Param_Spec
:= First
(T
);
11203 while Present
(Param_Spec
) loop
11204 Formal
:= Defining_Identifier
(Param_Spec
);
11205 Set_Never_Set_In_Source
(Formal
, True);
11206 Enter_Name
(Formal
);
11208 -- Case of ordinary parameters
11210 if Nkind
(Parameter_Type
(Param_Spec
)) /= N_Access_Definition
then
11211 Find_Type
(Parameter_Type
(Param_Spec
));
11212 Ptype
:= Parameter_Type
(Param_Spec
);
11214 if Ptype
= Error
then
11218 Formal_Type
:= Entity
(Ptype
);
11220 if Is_Incomplete_Type
(Formal_Type
)
11222 (Is_Class_Wide_Type
(Formal_Type
)
11223 and then Is_Incomplete_Type
(Root_Type
(Formal_Type
)))
11225 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11226 -- primitive operations, as long as their completion is
11227 -- in the same declarative part. If in the private part
11228 -- this means that the type cannot be a Taft-amendment type.
11229 -- Check is done on package exit. For access to subprograms,
11230 -- the use is legal for Taft-amendment types.
11232 -- Ada 2012: tagged incomplete types are allowed as generic
11233 -- formal types. They do not introduce dependencies and the
11234 -- corresponding generic subprogram does not have a delayed
11235 -- freeze, because it does not need a freeze node. However,
11236 -- it is still the case that untagged incomplete types cannot
11237 -- be Taft-amendment types and must be completed in private
11238 -- part, so the subprogram must appear in the list of private
11239 -- dependents of the type.
11241 if Is_Tagged_Type
(Formal_Type
)
11242 or else Ada_Version
>= Ada_2012
11244 if Ekind
(Scope
(Current_Scope
)) = E_Package
11245 and then not From_Limited_With
(Formal_Type
)
11246 and then not Is_Generic_Type
(Formal_Type
)
11247 and then not Is_Class_Wide_Type
(Formal_Type
)
11250 (Parent
(T
), N_Access_Function_Definition
,
11251 N_Access_Procedure_Definition
)
11255 Private_Dependents
(Base_Type
(Formal_Type
)));
11257 -- Freezing is delayed to ensure that Register_Prim
11258 -- will get called for this operation, which is needed
11259 -- in cases where static dispatch tables aren't built.
11260 -- (Note that the same is done for controlling access
11261 -- parameter cases in function Access_Definition.)
11263 Set_Has_Delayed_Freeze
(Current_Scope
);
11267 -- Special handling of Value_Type for CIL case
11269 elsif Is_Value_Type
(Formal_Type
) then
11272 elsif not Nkind_In
(Parent
(T
), N_Access_Function_Definition
,
11273 N_Access_Procedure_Definition
)
11275 -- AI05-0151: Tagged incomplete types are allowed in all
11276 -- formal parts. Untagged incomplete types are not allowed
11279 if Ada_Version
>= Ada_2012
then
11280 if Is_Tagged_Type
(Formal_Type
) then
11283 elsif Nkind_In
(Parent
(Parent
(T
)), N_Accept_Statement
,
11288 ("invalid use of untagged incomplete type&",
11289 Ptype
, Formal_Type
);
11294 ("invalid use of incomplete type&",
11295 Param_Spec
, Formal_Type
);
11297 -- Further checks on the legality of incomplete types
11298 -- in formal parts are delayed until the freeze point
11299 -- of the enclosing subprogram or access to subprogram.
11303 elsif Ekind
(Formal_Type
) = E_Void
then
11305 ("premature use of&",
11306 Parameter_Type
(Param_Spec
), Formal_Type
);
11309 -- Ada 2012 (AI-142): Handle aliased parameters
11311 if Ada_Version
>= Ada_2012
11312 and then Aliased_Present
(Param_Spec
)
11314 Set_Is_Aliased
(Formal
);
11317 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11318 -- declaration corresponding to the null-excluding type of the
11319 -- formal in the enclosing scope. Finally, replace the parameter
11320 -- type of the formal with the internal subtype.
11322 if Ada_Version
>= Ada_2005
11323 and then Null_Exclusion_Present
(Param_Spec
)
11325 if not Is_Access_Type
(Formal_Type
) then
11327 ("`NOT NULL` allowed only for an access type", Param_Spec
);
11330 if Can_Never_Be_Null
(Formal_Type
)
11331 and then Comes_From_Source
(Related_Nod
)
11334 ("`NOT NULL` not allowed (& already excludes null)",
11335 Param_Spec
, Formal_Type
);
11339 Create_Null_Excluding_Itype
11341 Related_Nod
=> Related_Nod
,
11342 Scope_Id
=> Scope
(Current_Scope
));
11344 -- If the designated type of the itype is an itype that is
11345 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11346 -- on the access subtype, to prevent order-of-elaboration
11347 -- issues in the backend.
11350 -- type T is access procedure;
11351 -- procedure Op (O : not null T);
11353 if Is_Itype
(Directly_Designated_Type
(Formal_Type
))
11355 not Is_Frozen
(Directly_Designated_Type
(Formal_Type
))
11357 Set_Has_Delayed_Freeze
(Formal_Type
);
11362 -- An access formal type
11366 Access_Definition
(Related_Nod
, Parameter_Type
(Param_Spec
));
11368 -- No need to continue if we already notified errors
11370 if not Present
(Formal_Type
) then
11374 -- Ada 2005 (AI-254)
11377 AD
: constant Node_Id
:=
11378 Access_To_Subprogram_Definition
11379 (Parameter_Type
(Param_Spec
));
11381 if Present
(AD
) and then Protected_Present
(AD
) then
11383 Replace_Anonymous_Access_To_Protected_Subprogram
11389 Set_Etype
(Formal
, Formal_Type
);
11391 -- Deal with default expression if present
11393 Default
:= Expression
(Param_Spec
);
11395 if Present
(Default
) then
11396 Check_SPARK_Restriction
11397 ("default expression is not allowed", Default
);
11399 if Out_Present
(Param_Spec
) then
11401 ("default initialization only allowed for IN parameters",
11405 -- Do the special preanalysis of the expression (see section on
11406 -- "Handling of Default Expressions" in the spec of package Sem).
11408 Preanalyze_Spec_Expression
(Default
, Formal_Type
);
11410 -- An access to constant cannot be the default for
11411 -- an access parameter that is an access to variable.
11413 if Ekind
(Formal_Type
) = E_Anonymous_Access_Type
11414 and then not Is_Access_Constant
(Formal_Type
)
11415 and then Is_Access_Type
(Etype
(Default
))
11416 and then Is_Access_Constant
(Etype
(Default
))
11419 ("formal that is access to variable cannot be initialized " &
11420 "with an access-to-constant expression", Default
);
11423 -- Check that the designated type of an access parameter's default
11424 -- is not a class-wide type unless the parameter's designated type
11425 -- is also class-wide.
11427 if Ekind
(Formal_Type
) = E_Anonymous_Access_Type
11428 and then not Designates_From_Limited_With
(Formal_Type
)
11429 and then Is_Class_Wide_Default
(Default
)
11430 and then not Is_Class_Wide_Type
(Designated_Type
(Formal_Type
))
11433 ("access to class-wide expression not allowed here", Default
);
11436 -- Check incorrect use of dynamically tagged expressions
11438 if Is_Tagged_Type
(Formal_Type
) then
11439 Check_Dynamically_Tagged_Expression
11441 Typ
=> Formal_Type
,
11442 Related_Nod
=> Default
);
11446 -- Ada 2005 (AI-231): Static checks
11448 if Ada_Version
>= Ada_2005
11449 and then Is_Access_Type
(Etype
(Formal
))
11450 and then Can_Never_Be_Null
(Etype
(Formal
))
11452 Null_Exclusion_Static_Checks
(Param_Spec
);
11455 -- The following checks are relevant when SPARK_Mode is on as these
11456 -- are not standard Ada legality rules.
11459 and then Ekind_In
(Scope
(Formal
), E_Function
, E_Generic_Function
)
11461 -- A function cannot have a parameter of mode IN OUT or OUT
11464 if Ekind_In
(Formal
, E_In_Out_Parameter
, E_Out_Parameter
) then
11466 ("function cannot have parameter of mode `OUT` or `IN OUT`",
11469 -- A function cannot have a volatile formal parameter
11470 -- (SPARK RM 7.1.3(10)).
11472 elsif Is_SPARK_Volatile_Object
(Formal
) then
11474 ("function cannot have a volatile formal parameter", Formal
);
11482 -- If this is the formal part of a function specification, analyze the
11483 -- subtype mark in the context where the formals are visible but not
11484 -- yet usable, and may hide outer homographs.
11486 if Nkind
(Related_Nod
) = N_Function_Specification
then
11487 Analyze_Return_Type
(Related_Nod
);
11490 -- Now set the kind (mode) of each formal
11492 Param_Spec
:= First
(T
);
11493 while Present
(Param_Spec
) loop
11494 Formal
:= Defining_Identifier
(Param_Spec
);
11495 Set_Formal_Mode
(Formal
);
11497 if Ekind
(Formal
) = E_In_Parameter
then
11498 Set_Default_Value
(Formal
, Expression
(Param_Spec
));
11500 if Present
(Expression
(Param_Spec
)) then
11501 Default
:= Expression
(Param_Spec
);
11503 if Is_Scalar_Type
(Etype
(Default
)) then
11504 if Nkind
(Parameter_Type
(Param_Spec
)) /=
11505 N_Access_Definition
11507 Formal_Type
:= Entity
(Parameter_Type
(Param_Spec
));
11511 (Related_Nod
, Parameter_Type
(Param_Spec
));
11514 Apply_Scalar_Range_Check
(Default
, Formal_Type
);
11518 elsif Ekind
(Formal
) = E_Out_Parameter
then
11519 Num_Out_Params
:= Num_Out_Params
+ 1;
11521 if Num_Out_Params
= 1 then
11522 First_Out_Param
:= Formal
;
11525 elsif Ekind
(Formal
) = E_In_Out_Parameter
then
11526 Num_Out_Params
:= Num_Out_Params
+ 1;
11529 -- Skip remaining processing if formal type was in error
11531 if Etype
(Formal
) = Any_Type
or else Error_Posted
(Formal
) then
11532 goto Next_Parameter
;
11535 -- Force call by reference if aliased
11537 if Is_Aliased
(Formal
) then
11538 Set_Mechanism
(Formal
, By_Reference
);
11540 -- Warn if user asked this to be passed by copy
11542 if Convention
(Formal_Type
) = Convention_Ada_Pass_By_Copy
then
11544 ("cannot pass aliased parameter & by copy?", Formal
);
11547 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11549 elsif Convention
(Formal_Type
) = Convention_Ada_Pass_By_Copy
then
11550 Set_Mechanism
(Formal
, By_Copy
);
11552 elsif Convention
(Formal_Type
) = Convention_Ada_Pass_By_Reference
then
11553 Set_Mechanism
(Formal
, By_Reference
);
11560 if Present
(First_Out_Param
) and then Num_Out_Params
= 1 then
11561 Set_Is_Only_Out_Parameter
(First_Out_Param
);
11563 end Process_Formals
;
11565 ----------------------------
11566 -- Reference_Body_Formals --
11567 ----------------------------
11569 procedure Reference_Body_Formals
(Spec
: Entity_Id
; Bod
: Entity_Id
) is
11574 if Error_Posted
(Spec
) then
11578 -- Iterate over both lists. They may be of different lengths if the two
11579 -- specs are not conformant.
11581 Fs
:= First_Formal
(Spec
);
11582 Fb
:= First_Formal
(Bod
);
11583 while Present
(Fs
) and then Present
(Fb
) loop
11584 Generate_Reference
(Fs
, Fb
, 'b');
11586 if Style_Check
then
11587 Style
.Check_Identifier
(Fb
, Fs
);
11590 Set_Spec_Entity
(Fb
, Fs
);
11591 Set_Referenced
(Fs
, False);
11595 end Reference_Body_Formals
;
11597 -------------------------
11598 -- Set_Actual_Subtypes --
11599 -------------------------
11601 procedure Set_Actual_Subtypes
(N
: Node_Id
; Subp
: Entity_Id
) is
11603 Formal
: Entity_Id
;
11605 First_Stmt
: Node_Id
:= Empty
;
11606 AS_Needed
: Boolean;
11609 -- If this is an empty initialization procedure, no need to create
11610 -- actual subtypes (small optimization).
11612 if Ekind
(Subp
) = E_Procedure
and then Is_Null_Init_Proc
(Subp
) then
11616 Formal
:= First_Formal
(Subp
);
11617 while Present
(Formal
) loop
11618 T
:= Etype
(Formal
);
11620 -- We never need an actual subtype for a constrained formal
11622 if Is_Constrained
(T
) then
11623 AS_Needed
:= False;
11625 -- If we have unknown discriminants, then we do not need an actual
11626 -- subtype, or more accurately we cannot figure it out. Note that
11627 -- all class-wide types have unknown discriminants.
11629 elsif Has_Unknown_Discriminants
(T
) then
11630 AS_Needed
:= False;
11632 -- At this stage we have an unconstrained type that may need an
11633 -- actual subtype. For sure the actual subtype is needed if we have
11634 -- an unconstrained array type.
11636 elsif Is_Array_Type
(T
) then
11639 -- The only other case needing an actual subtype is an unconstrained
11640 -- record type which is an IN parameter (we cannot generate actual
11641 -- subtypes for the OUT or IN OUT case, since an assignment can
11642 -- change the discriminant values. However we exclude the case of
11643 -- initialization procedures, since discriminants are handled very
11644 -- specially in this context, see the section entitled "Handling of
11645 -- Discriminants" in Einfo.
11647 -- We also exclude the case of Discrim_SO_Functions (functions used
11648 -- in front end layout mode for size/offset values), since in such
11649 -- functions only discriminants are referenced, and not only are such
11650 -- subtypes not needed, but they cannot always be generated, because
11651 -- of order of elaboration issues.
11653 elsif Is_Record_Type
(T
)
11654 and then Ekind
(Formal
) = E_In_Parameter
11655 and then Chars
(Formal
) /= Name_uInit
11656 and then not Is_Unchecked_Union
(T
)
11657 and then not Is_Discrim_SO_Function
(Subp
)
11661 -- All other cases do not need an actual subtype
11664 AS_Needed
:= False;
11667 -- Generate actual subtypes for unconstrained arrays and
11668 -- unconstrained discriminated records.
11671 if Nkind
(N
) = N_Accept_Statement
then
11673 -- If expansion is active, the formal is replaced by a local
11674 -- variable that renames the corresponding entry of the
11675 -- parameter block, and it is this local variable that may
11676 -- require an actual subtype.
11678 if Expander_Active
then
11679 Decl
:= Build_Actual_Subtype
(T
, Renamed_Object
(Formal
));
11681 Decl
:= Build_Actual_Subtype
(T
, Formal
);
11684 if Present
(Handled_Statement_Sequence
(N
)) then
11686 First
(Statements
(Handled_Statement_Sequence
(N
)));
11687 Prepend
(Decl
, Statements
(Handled_Statement_Sequence
(N
)));
11688 Mark_Rewrite_Insertion
(Decl
);
11690 -- If the accept statement has no body, there will be no
11691 -- reference to the actuals, so no need to compute actual
11698 Decl
:= Build_Actual_Subtype
(T
, Formal
);
11699 Prepend
(Decl
, Declarations
(N
));
11700 Mark_Rewrite_Insertion
(Decl
);
11703 -- The declaration uses the bounds of an existing object, and
11704 -- therefore needs no constraint checks.
11706 Analyze
(Decl
, Suppress
=> All_Checks
);
11708 -- We need to freeze manually the generated type when it is
11709 -- inserted anywhere else than in a declarative part.
11711 if Present
(First_Stmt
) then
11712 Insert_List_Before_And_Analyze
(First_Stmt
,
11713 Freeze_Entity
(Defining_Identifier
(Decl
), N
));
11715 -- Ditto if the type has a dynamic predicate, because the
11716 -- generated function will mention the actual subtype.
11718 elsif Has_Dynamic_Predicate_Aspect
(T
) then
11719 Insert_List_Before_And_Analyze
(Decl
,
11720 Freeze_Entity
(Defining_Identifier
(Decl
), N
));
11723 if Nkind
(N
) = N_Accept_Statement
11724 and then Expander_Active
11726 Set_Actual_Subtype
(Renamed_Object
(Formal
),
11727 Defining_Identifier
(Decl
));
11729 Set_Actual_Subtype
(Formal
, Defining_Identifier
(Decl
));
11733 Next_Formal
(Formal
);
11735 end Set_Actual_Subtypes
;
11737 ---------------------
11738 -- Set_Formal_Mode --
11739 ---------------------
11741 procedure Set_Formal_Mode
(Formal_Id
: Entity_Id
) is
11742 Spec
: constant Node_Id
:= Parent
(Formal_Id
);
11745 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11746 -- since we ensure that corresponding actuals are always valid at the
11747 -- point of the call.
11749 if Out_Present
(Spec
) then
11750 if Ekind
(Scope
(Formal_Id
)) = E_Function
11751 or else Ekind
(Scope
(Formal_Id
)) = E_Generic_Function
11753 -- [IN] OUT parameters allowed for functions in Ada 2012
11755 if Ada_Version
>= Ada_2012
then
11757 -- Even in Ada 2012 operators can only have IN parameters
11759 if Is_Operator_Symbol_Name
(Chars
(Scope
(Formal_Id
))) then
11760 Error_Msg_N
("operators can only have IN parameters", Spec
);
11763 if In_Present
(Spec
) then
11764 Set_Ekind
(Formal_Id
, E_In_Out_Parameter
);
11766 Set_Ekind
(Formal_Id
, E_Out_Parameter
);
11769 -- But not in earlier versions of Ada
11772 Error_Msg_N
("functions can only have IN parameters", Spec
);
11773 Set_Ekind
(Formal_Id
, E_In_Parameter
);
11776 elsif In_Present
(Spec
) then
11777 Set_Ekind
(Formal_Id
, E_In_Out_Parameter
);
11780 Set_Ekind
(Formal_Id
, E_Out_Parameter
);
11781 Set_Never_Set_In_Source
(Formal_Id
, True);
11782 Set_Is_True_Constant
(Formal_Id
, False);
11783 Set_Current_Value
(Formal_Id
, Empty
);
11787 Set_Ekind
(Formal_Id
, E_In_Parameter
);
11790 -- Set Is_Known_Non_Null for access parameters since the language
11791 -- guarantees that access parameters are always non-null. We also set
11792 -- Can_Never_Be_Null, since there is no way to change the value.
11794 if Nkind
(Parameter_Type
(Spec
)) = N_Access_Definition
then
11796 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11797 -- null; In Ada 2005, only if then null_exclusion is explicit.
11799 if Ada_Version
< Ada_2005
11800 or else Can_Never_Be_Null
(Etype
(Formal_Id
))
11802 Set_Is_Known_Non_Null
(Formal_Id
);
11803 Set_Can_Never_Be_Null
(Formal_Id
);
11806 -- Ada 2005 (AI-231): Null-exclusion access subtype
11808 elsif Is_Access_Type
(Etype
(Formal_Id
))
11809 and then Can_Never_Be_Null
(Etype
(Formal_Id
))
11811 Set_Is_Known_Non_Null
(Formal_Id
);
11813 -- We can also set Can_Never_Be_Null (thus preventing some junk
11814 -- access checks) for the case of an IN parameter, which cannot
11815 -- be changed, or for an IN OUT parameter, which can be changed but
11816 -- not to a null value. But for an OUT parameter, the initial value
11817 -- passed in can be null, so we can't set this flag in that case.
11819 if Ekind
(Formal_Id
) /= E_Out_Parameter
then
11820 Set_Can_Never_Be_Null
(Formal_Id
);
11824 Set_Mechanism
(Formal_Id
, Default_Mechanism
);
11825 Set_Formal_Validity
(Formal_Id
);
11826 end Set_Formal_Mode
;
11828 -------------------------
11829 -- Set_Formal_Validity --
11830 -------------------------
11832 procedure Set_Formal_Validity
(Formal_Id
: Entity_Id
) is
11834 -- If no validity checking, then we cannot assume anything about the
11835 -- validity of parameters, since we do not know there is any checking
11836 -- of the validity on the call side.
11838 if not Validity_Checks_On
then
11841 -- If validity checking for parameters is enabled, this means we are
11842 -- not supposed to make any assumptions about argument values.
11844 elsif Validity_Check_Parameters
then
11847 -- If we are checking in parameters, we will assume that the caller is
11848 -- also checking parameters, so we can assume the parameter is valid.
11850 elsif Ekind
(Formal_Id
) = E_In_Parameter
11851 and then Validity_Check_In_Params
11853 Set_Is_Known_Valid
(Formal_Id
, True);
11855 -- Similar treatment for IN OUT parameters
11857 elsif Ekind
(Formal_Id
) = E_In_Out_Parameter
11858 and then Validity_Check_In_Out_Params
11860 Set_Is_Known_Valid
(Formal_Id
, True);
11862 end Set_Formal_Validity
;
11864 ------------------------
11865 -- Subtype_Conformant --
11866 ------------------------
11868 function Subtype_Conformant
11869 (New_Id
: Entity_Id
;
11870 Old_Id
: Entity_Id
;
11871 Skip_Controlling_Formals
: Boolean := False) return Boolean
11875 Check_Conformance
(New_Id
, Old_Id
, Subtype_Conformant
, False, Result
,
11876 Skip_Controlling_Formals
=> Skip_Controlling_Formals
);
11878 end Subtype_Conformant
;
11880 ---------------------
11881 -- Type_Conformant --
11882 ---------------------
11884 function Type_Conformant
11885 (New_Id
: Entity_Id
;
11886 Old_Id
: Entity_Id
;
11887 Skip_Controlling_Formals
: Boolean := False) return Boolean
11891 May_Hide_Profile
:= False;
11894 (New_Id
, Old_Id
, Type_Conformant
, False, Result
,
11895 Skip_Controlling_Formals
=> Skip_Controlling_Formals
);
11897 end Type_Conformant
;
11899 -------------------------------
11900 -- Valid_Operator_Definition --
11901 -------------------------------
11903 procedure Valid_Operator_Definition
(Designator
: Entity_Id
) is
11906 Id
: constant Name_Id
:= Chars
(Designator
);
11910 F
:= First_Formal
(Designator
);
11911 while Present
(F
) loop
11914 if Present
(Default_Value
(F
)) then
11916 ("default values not allowed for operator parameters",
11923 -- Verify that user-defined operators have proper number of arguments
11924 -- First case of operators which can only be unary
11926 if Nam_In
(Id
, Name_Op_Not
, Name_Op_Abs
) then
11929 -- Case of operators which can be unary or binary
11931 elsif Nam_In
(Id
, Name_Op_Add
, Name_Op_Subtract
) then
11932 N_OK
:= (N
in 1 .. 2);
11934 -- All other operators can only be binary
11942 ("incorrect number of arguments for operator", Designator
);
11946 and then Base_Type
(Etype
(Designator
)) = Standard_Boolean
11947 and then not Is_Intrinsic_Subprogram
(Designator
)
11950 ("explicit definition of inequality not allowed", Designator
);
11952 end Valid_Operator_Definition
;