gcc/
[official-gcc.git] / gcc / ada / s-taprop-hpux-dce.adb
blob1c5dcc1a024e879b50a25baa1cebd60c96103a03
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This is a HP-UX DCE threads (HPUX 10) version of this package
34 -- This package contains all the GNULL primitives that interface directly with
35 -- the underlying OS.
37 pragma Polling (Off);
38 -- Turn off polling, we do not want ATC polling to take place during tasking
39 -- operations. It causes infinite loops and other problems.
41 with Ada.Unchecked_Conversion;
43 with Interfaces.C;
45 with System.Tasking.Debug;
46 with System.Interrupt_Management;
47 with System.OS_Constants;
48 with System.OS_Primitives;
49 with System.Task_Primitives.Interrupt_Operations;
51 pragma Warnings (Off);
52 with System.Interrupt_Management.Operations;
53 pragma Elaborate_All (System.Interrupt_Management.Operations);
54 pragma Warnings (On);
56 with System.Soft_Links;
57 -- We use System.Soft_Links instead of System.Tasking.Initialization
58 -- because the later is a higher level package that we shouldn't depend on.
59 -- For example when using the restricted run time, it is replaced by
60 -- System.Tasking.Restricted.Stages.
62 package body System.Task_Primitives.Operations is
64 package OSC renames System.OS_Constants;
65 package SSL renames System.Soft_Links;
67 use System.Tasking.Debug;
68 use System.Tasking;
69 use Interfaces.C;
70 use System.OS_Interface;
71 use System.Parameters;
72 use System.OS_Primitives;
74 package PIO renames System.Task_Primitives.Interrupt_Operations;
76 ----------------
77 -- Local Data --
78 ----------------
80 -- The followings are logically constants, but need to be initialized
81 -- at run time.
83 Single_RTS_Lock : aliased RTS_Lock;
84 -- This is a lock to allow only one thread of control in the RTS at
85 -- a time; it is used to execute in mutual exclusion from all other tasks.
86 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
88 Environment_Task_Id : Task_Id;
89 -- A variable to hold Task_Id for the environment task
91 Unblocked_Signal_Mask : aliased sigset_t;
92 -- The set of signals that should unblocked in all tasks
94 Time_Slice_Val : Integer;
95 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
97 Dispatching_Policy : Character;
98 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
100 -- Note: the reason that Locking_Policy is not needed is that this
101 -- is not implemented for DCE threads. The HPUX 10 port is at this
102 -- stage considered dead, and no further work is planned on it.
104 Foreign_Task_Elaborated : aliased Boolean := True;
105 -- Used to identified fake tasks (i.e., non-Ada Threads)
107 --------------------
108 -- Local Packages --
109 --------------------
111 package Specific is
113 procedure Initialize (Environment_Task : Task_Id);
114 pragma Inline (Initialize);
115 -- Initialize various data needed by this package
117 function Is_Valid_Task return Boolean;
118 pragma Inline (Is_Valid_Task);
119 -- Does the executing thread have a TCB?
121 procedure Set (Self_Id : Task_Id);
122 pragma Inline (Set);
123 -- Set the self id for the current task
125 function Self return Task_Id;
126 pragma Inline (Self);
127 -- Return a pointer to the Ada Task Control Block of the calling task
129 end Specific;
131 package body Specific is separate;
132 -- The body of this package is target specific
134 ----------------------------------
135 -- ATCB allocation/deallocation --
136 ----------------------------------
138 package body ATCB_Allocation is separate;
139 -- The body of this package is shared across several targets
141 ---------------------------------
142 -- Support for foreign threads --
143 ---------------------------------
145 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
146 -- Allocate and Initialize a new ATCB for the current Thread
148 function Register_Foreign_Thread
149 (Thread : Thread_Id) return Task_Id is separate;
151 -----------------------
152 -- Local Subprograms --
153 -----------------------
155 procedure Abort_Handler (Sig : Signal);
157 function To_Address is
158 new Ada.Unchecked_Conversion (Task_Id, System.Address);
160 -------------------
161 -- Abort_Handler --
162 -------------------
164 procedure Abort_Handler (Sig : Signal) is
165 pragma Unreferenced (Sig);
167 Self_Id : constant Task_Id := Self;
168 Result : Interfaces.C.int;
169 Old_Set : aliased sigset_t;
171 begin
172 if Self_Id.Deferral_Level = 0
173 and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level
174 and then not Self_Id.Aborting
175 then
176 Self_Id.Aborting := True;
178 -- Make sure signals used for RTS internal purpose are unmasked
180 Result :=
181 pthread_sigmask
182 (SIG_UNBLOCK,
183 Unblocked_Signal_Mask'Access,
184 Old_Set'Access);
185 pragma Assert (Result = 0);
187 raise Standard'Abort_Signal;
188 end if;
189 end Abort_Handler;
191 -----------------
192 -- Stack_Guard --
193 -----------------
195 -- The underlying thread system sets a guard page at the bottom of a thread
196 -- stack, so nothing is needed.
197 -- ??? Check the comment above
199 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
200 pragma Unreferenced (T, On);
201 begin
202 null;
203 end Stack_Guard;
205 -------------------
206 -- Get_Thread_Id --
207 -------------------
209 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
210 begin
211 return T.Common.LL.Thread;
212 end Get_Thread_Id;
214 ----------
215 -- Self --
216 ----------
218 function Self return Task_Id renames Specific.Self;
220 ---------------------
221 -- Initialize_Lock --
222 ---------------------
224 -- Note: mutexes and cond_variables needed per-task basis are initialized
225 -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
226 -- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
227 -- status change of RTS. Therefore raising Storage_Error in the following
228 -- routines should be able to be handled safely.
230 procedure Initialize_Lock
231 (Prio : System.Any_Priority;
232 L : not null access Lock)
234 Attributes : aliased pthread_mutexattr_t;
235 Result : Interfaces.C.int;
237 begin
238 Result := pthread_mutexattr_init (Attributes'Access);
239 pragma Assert (Result = 0 or else Result = ENOMEM);
241 if Result = ENOMEM then
242 raise Storage_Error;
243 end if;
245 L.Priority := Prio;
247 Result := pthread_mutex_init (L.L'Access, Attributes'Access);
248 pragma Assert (Result = 0 or else Result = ENOMEM);
250 if Result = ENOMEM then
251 raise Storage_Error;
252 end if;
254 Result := pthread_mutexattr_destroy (Attributes'Access);
255 pragma Assert (Result = 0);
256 end Initialize_Lock;
258 procedure Initialize_Lock
259 (L : not null access RTS_Lock;
260 Level : Lock_Level)
262 pragma Unreferenced (Level);
264 Attributes : aliased pthread_mutexattr_t;
265 Result : Interfaces.C.int;
267 begin
268 Result := pthread_mutexattr_init (Attributes'Access);
269 pragma Assert (Result = 0 or else Result = ENOMEM);
271 if Result = ENOMEM then
272 raise Storage_Error;
273 end if;
275 Result := pthread_mutex_init (L, Attributes'Access);
277 pragma Assert (Result = 0 or else Result = ENOMEM);
279 if Result = ENOMEM then
280 raise Storage_Error;
281 end if;
283 Result := pthread_mutexattr_destroy (Attributes'Access);
284 pragma Assert (Result = 0);
285 end Initialize_Lock;
287 -------------------
288 -- Finalize_Lock --
289 -------------------
291 procedure Finalize_Lock (L : not null access Lock) is
292 Result : Interfaces.C.int;
293 begin
294 Result := pthread_mutex_destroy (L.L'Access);
295 pragma Assert (Result = 0);
296 end Finalize_Lock;
298 procedure Finalize_Lock (L : not null access RTS_Lock) is
299 Result : Interfaces.C.int;
300 begin
301 Result := pthread_mutex_destroy (L);
302 pragma Assert (Result = 0);
303 end Finalize_Lock;
305 ----------------
306 -- Write_Lock --
307 ----------------
309 procedure Write_Lock
310 (L : not null access Lock;
311 Ceiling_Violation : out Boolean)
313 Result : Interfaces.C.int;
315 begin
316 L.Owner_Priority := Get_Priority (Self);
318 if L.Priority < L.Owner_Priority then
319 Ceiling_Violation := True;
320 return;
321 end if;
323 Result := pthread_mutex_lock (L.L'Access);
324 pragma Assert (Result = 0);
325 Ceiling_Violation := False;
326 end Write_Lock;
328 procedure Write_Lock
329 (L : not null access RTS_Lock;
330 Global_Lock : Boolean := False)
332 Result : Interfaces.C.int;
333 begin
334 if not Single_Lock or else Global_Lock then
335 Result := pthread_mutex_lock (L);
336 pragma Assert (Result = 0);
337 end if;
338 end Write_Lock;
340 procedure Write_Lock (T : Task_Id) is
341 Result : Interfaces.C.int;
342 begin
343 if not Single_Lock then
344 Result := pthread_mutex_lock (T.Common.LL.L'Access);
345 pragma Assert (Result = 0);
346 end if;
347 end Write_Lock;
349 ---------------
350 -- Read_Lock --
351 ---------------
353 procedure Read_Lock
354 (L : not null access Lock;
355 Ceiling_Violation : out Boolean)
357 begin
358 Write_Lock (L, Ceiling_Violation);
359 end Read_Lock;
361 ------------
362 -- Unlock --
363 ------------
365 procedure Unlock (L : not null access Lock) is
366 Result : Interfaces.C.int;
367 begin
368 Result := pthread_mutex_unlock (L.L'Access);
369 pragma Assert (Result = 0);
370 end Unlock;
372 procedure Unlock
373 (L : not null access RTS_Lock;
374 Global_Lock : Boolean := False)
376 Result : Interfaces.C.int;
377 begin
378 if not Single_Lock or else Global_Lock then
379 Result := pthread_mutex_unlock (L);
380 pragma Assert (Result = 0);
381 end if;
382 end Unlock;
384 procedure Unlock (T : Task_Id) is
385 Result : Interfaces.C.int;
386 begin
387 if not Single_Lock then
388 Result := pthread_mutex_unlock (T.Common.LL.L'Access);
389 pragma Assert (Result = 0);
390 end if;
391 end Unlock;
393 -----------------
394 -- Set_Ceiling --
395 -----------------
397 -- Dynamic priority ceilings are not supported by the underlying system
399 procedure Set_Ceiling
400 (L : not null access Lock;
401 Prio : System.Any_Priority)
403 pragma Unreferenced (L, Prio);
404 begin
405 null;
406 end Set_Ceiling;
408 -----------
409 -- Sleep --
410 -----------
412 procedure Sleep
413 (Self_ID : Task_Id;
414 Reason : System.Tasking.Task_States)
416 pragma Unreferenced (Reason);
418 Result : Interfaces.C.int;
420 begin
421 Result :=
422 pthread_cond_wait
423 (cond => Self_ID.Common.LL.CV'Access,
424 mutex => (if Single_Lock
425 then Single_RTS_Lock'Access
426 else Self_ID.Common.LL.L'Access));
428 -- EINTR is not considered a failure
430 pragma Assert (Result = 0 or else Result = EINTR);
431 end Sleep;
433 -----------------
434 -- Timed_Sleep --
435 -----------------
437 procedure Timed_Sleep
438 (Self_ID : Task_Id;
439 Time : Duration;
440 Mode : ST.Delay_Modes;
441 Reason : System.Tasking.Task_States;
442 Timedout : out Boolean;
443 Yielded : out Boolean)
445 pragma Unreferenced (Reason);
447 Check_Time : constant Duration := Monotonic_Clock;
448 Abs_Time : Duration;
449 Request : aliased timespec;
450 Result : Interfaces.C.int;
452 begin
453 Timedout := True;
454 Yielded := False;
456 Abs_Time :=
457 (if Mode = Relative
458 then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
459 else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
461 if Abs_Time > Check_Time then
462 Request := To_Timespec (Abs_Time);
464 loop
465 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
467 Result :=
468 pthread_cond_timedwait
469 (cond => Self_ID.Common.LL.CV'Access,
470 mutex => (if Single_Lock
471 then Single_RTS_Lock'Access
472 else Self_ID.Common.LL.L'Access),
473 abstime => Request'Access);
475 exit when Abs_Time <= Monotonic_Clock;
477 if Result = 0 or Result = EINTR then
479 -- Somebody may have called Wakeup for us
481 Timedout := False;
482 exit;
483 end if;
485 pragma Assert (Result = ETIMEDOUT);
486 end loop;
487 end if;
488 end Timed_Sleep;
490 -----------------
491 -- Timed_Delay --
492 -----------------
494 procedure Timed_Delay
495 (Self_ID : Task_Id;
496 Time : Duration;
497 Mode : ST.Delay_Modes)
499 Check_Time : constant Duration := Monotonic_Clock;
500 Abs_Time : Duration;
501 Request : aliased timespec;
503 Result : Interfaces.C.int;
504 pragma Warnings (Off, Result);
506 begin
507 if Single_Lock then
508 Lock_RTS;
509 end if;
511 Write_Lock (Self_ID);
513 Abs_Time :=
514 (if Mode = Relative
515 then Time + Check_Time
516 else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
518 if Abs_Time > Check_Time then
519 Request := To_Timespec (Abs_Time);
520 Self_ID.Common.State := Delay_Sleep;
522 loop
523 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
525 Result :=
526 pthread_cond_timedwait
527 (cond => Self_ID.Common.LL.CV'Access,
528 mutex => (if Single_Lock
529 then Single_RTS_Lock'Access
530 else Self_ID.Common.LL.L'Access),
531 abstime => Request'Access);
533 exit when Abs_Time <= Monotonic_Clock;
535 pragma Assert (Result = 0 or else
536 Result = ETIMEDOUT or else
537 Result = EINTR);
538 end loop;
540 Self_ID.Common.State := Runnable;
541 end if;
543 Unlock (Self_ID);
545 if Single_Lock then
546 Unlock_RTS;
547 end if;
549 Result := sched_yield;
550 end Timed_Delay;
552 ---------------------
553 -- Monotonic_Clock --
554 ---------------------
556 function Monotonic_Clock return Duration is
557 TS : aliased timespec;
558 Result : Interfaces.C.int;
559 begin
560 Result := Clock_Gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
561 pragma Assert (Result = 0);
562 return To_Duration (TS);
563 end Monotonic_Clock;
565 -------------------
566 -- RT_Resolution --
567 -------------------
569 function RT_Resolution return Duration is
570 begin
571 return 10#1.0#E-6;
572 end RT_Resolution;
574 ------------
575 -- Wakeup --
576 ------------
578 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
579 pragma Unreferenced (Reason);
580 Result : Interfaces.C.int;
581 begin
582 Result := pthread_cond_signal (T.Common.LL.CV'Access);
583 pragma Assert (Result = 0);
584 end Wakeup;
586 -----------
587 -- Yield --
588 -----------
590 procedure Yield (Do_Yield : Boolean := True) is
591 Result : Interfaces.C.int;
592 pragma Unreferenced (Result);
593 begin
594 if Do_Yield then
595 Result := sched_yield;
596 end if;
597 end Yield;
599 ------------------
600 -- Set_Priority --
601 ------------------
603 type Prio_Array_Type is array (System.Any_Priority) of Integer;
604 pragma Atomic_Components (Prio_Array_Type);
606 Prio_Array : Prio_Array_Type;
607 -- Global array containing the id of the currently running task for
608 -- each priority.
610 -- Note: assume we are on single processor with run-til-blocked scheduling
612 procedure Set_Priority
613 (T : Task_Id;
614 Prio : System.Any_Priority;
615 Loss_Of_Inheritance : Boolean := False)
617 Result : Interfaces.C.int;
618 Array_Item : Integer;
619 Param : aliased struct_sched_param;
621 function Get_Policy (Prio : System.Any_Priority) return Character;
622 pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
623 -- Get priority specific dispatching policy
625 Priority_Specific_Policy : constant Character := Get_Policy (Prio);
626 -- Upper case first character of the policy name corresponding to the
627 -- task as set by a Priority_Specific_Dispatching pragma.
629 begin
630 Param.sched_priority := Interfaces.C.int (Underlying_Priorities (Prio));
632 if Dispatching_Policy = 'R'
633 or else Priority_Specific_Policy = 'R'
634 or else Time_Slice_Val > 0
635 then
636 Result :=
637 pthread_setschedparam
638 (T.Common.LL.Thread, SCHED_RR, Param'Access);
640 elsif Dispatching_Policy = 'F'
641 or else Priority_Specific_Policy = 'F'
642 or else Time_Slice_Val = 0
643 then
644 Result :=
645 pthread_setschedparam
646 (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
648 else
649 Result :=
650 pthread_setschedparam
651 (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
652 end if;
654 pragma Assert (Result = 0);
656 if Dispatching_Policy = 'F' or else Priority_Specific_Policy = 'F' then
658 -- Annex D requirement [RM D.2.2 par. 9]:
659 -- If the task drops its priority due to the loss of inherited
660 -- priority, it is added at the head of the ready queue for its
661 -- new active priority.
663 if Loss_Of_Inheritance
664 and then Prio < T.Common.Current_Priority
665 then
666 Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
667 Prio_Array (T.Common.Base_Priority) := Array_Item;
669 loop
670 -- Let some processes a chance to arrive
672 Yield;
674 -- Then wait for our turn to proceed
676 exit when Array_Item = Prio_Array (T.Common.Base_Priority)
677 or else Prio_Array (T.Common.Base_Priority) = 1;
678 end loop;
680 Prio_Array (T.Common.Base_Priority) :=
681 Prio_Array (T.Common.Base_Priority) - 1;
682 end if;
683 end if;
685 T.Common.Current_Priority := Prio;
686 end Set_Priority;
688 ------------------
689 -- Get_Priority --
690 ------------------
692 function Get_Priority (T : Task_Id) return System.Any_Priority is
693 begin
694 return T.Common.Current_Priority;
695 end Get_Priority;
697 ----------------
698 -- Enter_Task --
699 ----------------
701 procedure Enter_Task (Self_ID : Task_Id) is
702 begin
703 Self_ID.Common.LL.Thread := pthread_self;
704 Specific.Set (Self_ID);
705 end Enter_Task;
707 -------------------
708 -- Is_Valid_Task --
709 -------------------
711 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
713 -----------------------------
714 -- Register_Foreign_Thread --
715 -----------------------------
717 function Register_Foreign_Thread return Task_Id is
718 begin
719 if Is_Valid_Task then
720 return Self;
721 else
722 return Register_Foreign_Thread (pthread_self);
723 end if;
724 end Register_Foreign_Thread;
726 --------------------
727 -- Initialize_TCB --
728 --------------------
730 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
731 Mutex_Attr : aliased pthread_mutexattr_t;
732 Result : Interfaces.C.int;
733 Cond_Attr : aliased pthread_condattr_t;
735 begin
736 if not Single_Lock then
737 Result := pthread_mutexattr_init (Mutex_Attr'Access);
738 pragma Assert (Result = 0 or else Result = ENOMEM);
740 if Result = 0 then
741 Result :=
742 pthread_mutex_init
743 (Self_ID.Common.LL.L'Access, Mutex_Attr'Access);
744 pragma Assert (Result = 0 or else Result = ENOMEM);
745 end if;
747 if Result /= 0 then
748 Succeeded := False;
749 return;
750 end if;
752 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
753 pragma Assert (Result = 0);
754 end if;
756 Result := pthread_condattr_init (Cond_Attr'Access);
757 pragma Assert (Result = 0 or else Result = ENOMEM);
759 if Result = 0 then
760 Result :=
761 pthread_cond_init
762 (Self_ID.Common.LL.CV'Access,
763 Cond_Attr'Access);
764 pragma Assert (Result = 0 or else Result = ENOMEM);
765 end if;
767 if Result = 0 then
768 Succeeded := True;
769 else
770 if not Single_Lock then
771 Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
772 pragma Assert (Result = 0);
773 end if;
775 Succeeded := False;
776 end if;
778 Result := pthread_condattr_destroy (Cond_Attr'Access);
779 pragma Assert (Result = 0);
780 end Initialize_TCB;
782 -----------------
783 -- Create_Task --
784 -----------------
786 procedure Create_Task
787 (T : Task_Id;
788 Wrapper : System.Address;
789 Stack_Size : System.Parameters.Size_Type;
790 Priority : System.Any_Priority;
791 Succeeded : out Boolean)
793 Attributes : aliased pthread_attr_t;
794 Result : Interfaces.C.int;
796 function Thread_Body_Access is new
797 Ada.Unchecked_Conversion (System.Address, Thread_Body);
799 begin
800 Result := pthread_attr_init (Attributes'Access);
801 pragma Assert (Result = 0 or else Result = ENOMEM);
803 if Result /= 0 then
804 Succeeded := False;
805 return;
806 end if;
808 Result := pthread_attr_setstacksize
809 (Attributes'Access, Interfaces.C.size_t (Stack_Size));
810 pragma Assert (Result = 0);
812 -- Since the initial signal mask of a thread is inherited from the
813 -- creator, and the Environment task has all its signals masked, we
814 -- do not need to manipulate caller's signal mask at this point.
815 -- All tasks in RTS will have All_Tasks_Mask initially.
817 Result := pthread_create
818 (T.Common.LL.Thread'Access,
819 Attributes'Access,
820 Thread_Body_Access (Wrapper),
821 To_Address (T));
822 pragma Assert (Result = 0 or else Result = EAGAIN);
824 Succeeded := Result = 0;
826 pthread_detach (T.Common.LL.Thread'Access);
827 -- Detach the thread using pthread_detach, since DCE threads do not have
828 -- pthread_attr_set_detachstate.
830 Result := pthread_attr_destroy (Attributes'Access);
831 pragma Assert (Result = 0);
833 Set_Priority (T, Priority);
834 end Create_Task;
836 ------------------
837 -- Finalize_TCB --
838 ------------------
840 procedure Finalize_TCB (T : Task_Id) is
841 Result : Interfaces.C.int;
843 begin
844 if not Single_Lock then
845 Result := pthread_mutex_destroy (T.Common.LL.L'Access);
846 pragma Assert (Result = 0);
847 end if;
849 Result := pthread_cond_destroy (T.Common.LL.CV'Access);
850 pragma Assert (Result = 0);
852 if T.Known_Tasks_Index /= -1 then
853 Known_Tasks (T.Known_Tasks_Index) := null;
854 end if;
856 ATCB_Allocation.Free_ATCB (T);
857 end Finalize_TCB;
859 ---------------
860 -- Exit_Task --
861 ---------------
863 procedure Exit_Task is
864 begin
865 Specific.Set (null);
866 end Exit_Task;
868 ----------------
869 -- Abort_Task --
870 ----------------
872 procedure Abort_Task (T : Task_Id) is
873 begin
874 -- Interrupt Server_Tasks may be waiting on an "event" flag (signal)
876 if T.Common.State = Interrupt_Server_Blocked_On_Event_Flag then
877 System.Interrupt_Management.Operations.Interrupt_Self_Process
878 (PIO.Get_Interrupt_ID (T));
879 end if;
880 end Abort_Task;
882 ----------------
883 -- Initialize --
884 ----------------
886 procedure Initialize (S : in out Suspension_Object) is
887 Mutex_Attr : aliased pthread_mutexattr_t;
888 Cond_Attr : aliased pthread_condattr_t;
889 Result : Interfaces.C.int;
890 begin
891 -- Initialize internal state (always to False (ARM D.10(6)))
893 S.State := False;
894 S.Waiting := False;
896 -- Initialize internal mutex
898 Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
899 pragma Assert (Result = 0 or else Result = ENOMEM);
901 if Result = ENOMEM then
902 raise Storage_Error;
903 end if;
905 -- Initialize internal condition variable
907 Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
908 pragma Assert (Result = 0 or else Result = ENOMEM);
910 if Result /= 0 then
911 Result := pthread_mutex_destroy (S.L'Access);
912 pragma Assert (Result = 0);
914 if Result = ENOMEM then
915 raise Storage_Error;
916 end if;
917 end if;
918 end Initialize;
920 --------------
921 -- Finalize --
922 --------------
924 procedure Finalize (S : in out Suspension_Object) is
925 Result : Interfaces.C.int;
927 begin
928 -- Destroy internal mutex
930 Result := pthread_mutex_destroy (S.L'Access);
931 pragma Assert (Result = 0);
933 -- Destroy internal condition variable
935 Result := pthread_cond_destroy (S.CV'Access);
936 pragma Assert (Result = 0);
937 end Finalize;
939 -------------------
940 -- Current_State --
941 -------------------
943 function Current_State (S : Suspension_Object) return Boolean is
944 begin
945 -- We do not want to use lock on this read operation. State is marked
946 -- as Atomic so that we ensure that the value retrieved is correct.
948 return S.State;
949 end Current_State;
951 ---------------
952 -- Set_False --
953 ---------------
955 procedure Set_False (S : in out Suspension_Object) is
956 Result : Interfaces.C.int;
958 begin
959 SSL.Abort_Defer.all;
961 Result := pthread_mutex_lock (S.L'Access);
962 pragma Assert (Result = 0);
964 S.State := False;
966 Result := pthread_mutex_unlock (S.L'Access);
967 pragma Assert (Result = 0);
969 SSL.Abort_Undefer.all;
970 end Set_False;
972 --------------
973 -- Set_True --
974 --------------
976 procedure Set_True (S : in out Suspension_Object) is
977 Result : Interfaces.C.int;
979 begin
980 SSL.Abort_Defer.all;
982 Result := pthread_mutex_lock (S.L'Access);
983 pragma Assert (Result = 0);
985 -- If there is already a task waiting on this suspension object then
986 -- we resume it, leaving the state of the suspension object to False,
987 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
988 -- the state to True.
990 if S.Waiting then
991 S.Waiting := False;
992 S.State := False;
994 Result := pthread_cond_signal (S.CV'Access);
995 pragma Assert (Result = 0);
997 else
998 S.State := True;
999 end if;
1001 Result := pthread_mutex_unlock (S.L'Access);
1002 pragma Assert (Result = 0);
1004 SSL.Abort_Undefer.all;
1005 end Set_True;
1007 ------------------------
1008 -- Suspend_Until_True --
1009 ------------------------
1011 procedure Suspend_Until_True (S : in out Suspension_Object) is
1012 Result : Interfaces.C.int;
1014 begin
1015 SSL.Abort_Defer.all;
1017 Result := pthread_mutex_lock (S.L'Access);
1018 pragma Assert (Result = 0);
1020 if S.Waiting then
1021 -- Program_Error must be raised upon calling Suspend_Until_True
1022 -- if another task is already waiting on that suspension object
1023 -- (ARM D.10 par. 10).
1025 Result := pthread_mutex_unlock (S.L'Access);
1026 pragma Assert (Result = 0);
1028 SSL.Abort_Undefer.all;
1030 raise Program_Error;
1031 else
1032 -- Suspend the task if the state is False. Otherwise, the task
1033 -- continues its execution, and the state of the suspension object
1034 -- is set to False (ARM D.10 par. 9).
1036 if S.State then
1037 S.State := False;
1038 else
1039 S.Waiting := True;
1041 loop
1042 -- Loop in case pthread_cond_wait returns earlier than expected
1043 -- (e.g. in case of EINTR caused by a signal).
1045 Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1046 pragma Assert (Result = 0 or else Result = EINTR);
1048 exit when not S.Waiting;
1049 end loop;
1050 end if;
1052 Result := pthread_mutex_unlock (S.L'Access);
1053 pragma Assert (Result = 0);
1055 SSL.Abort_Undefer.all;
1056 end if;
1057 end Suspend_Until_True;
1059 ----------------
1060 -- Check_Exit --
1061 ----------------
1063 -- Dummy version
1065 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1066 pragma Unreferenced (Self_ID);
1067 begin
1068 return True;
1069 end Check_Exit;
1071 --------------------
1072 -- Check_No_Locks --
1073 --------------------
1075 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1076 pragma Unreferenced (Self_ID);
1077 begin
1078 return True;
1079 end Check_No_Locks;
1081 ----------------------
1082 -- Environment_Task --
1083 ----------------------
1085 function Environment_Task return Task_Id is
1086 begin
1087 return Environment_Task_Id;
1088 end Environment_Task;
1090 --------------
1091 -- Lock_RTS --
1092 --------------
1094 procedure Lock_RTS is
1095 begin
1096 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1097 end Lock_RTS;
1099 ----------------
1100 -- Unlock_RTS --
1101 ----------------
1103 procedure Unlock_RTS is
1104 begin
1105 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1106 end Unlock_RTS;
1108 ------------------
1109 -- Suspend_Task --
1110 ------------------
1112 function Suspend_Task
1113 (T : ST.Task_Id;
1114 Thread_Self : Thread_Id) return Boolean
1116 pragma Unreferenced (T);
1117 pragma Unreferenced (Thread_Self);
1118 begin
1119 return False;
1120 end Suspend_Task;
1122 -----------------
1123 -- Resume_Task --
1124 -----------------
1126 function Resume_Task
1127 (T : ST.Task_Id;
1128 Thread_Self : Thread_Id) return Boolean
1130 pragma Unreferenced (T);
1131 pragma Unreferenced (Thread_Self);
1132 begin
1133 return False;
1134 end Resume_Task;
1136 --------------------
1137 -- Stop_All_Tasks --
1138 --------------------
1140 procedure Stop_All_Tasks is
1141 begin
1142 null;
1143 end Stop_All_Tasks;
1145 ---------------
1146 -- Stop_Task --
1147 ---------------
1149 function Stop_Task (T : ST.Task_Id) return Boolean is
1150 pragma Unreferenced (T);
1151 begin
1152 return False;
1153 end Stop_Task;
1155 -------------------
1156 -- Continue_Task --
1157 -------------------
1159 function Continue_Task (T : ST.Task_Id) return Boolean is
1160 pragma Unreferenced (T);
1161 begin
1162 return False;
1163 end Continue_Task;
1165 ----------------
1166 -- Initialize --
1167 ----------------
1169 procedure Initialize (Environment_Task : Task_Id) is
1170 act : aliased struct_sigaction;
1171 old_act : aliased struct_sigaction;
1172 Tmp_Set : aliased sigset_t;
1173 Result : Interfaces.C.int;
1175 function State
1176 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1177 pragma Import (C, State, "__gnat_get_interrupt_state");
1178 -- Get interrupt state. Defined in a-init.c. The input argument is
1179 -- the interrupt number, and the result is one of the following:
1181 Default : constant Character := 's';
1182 -- 'n' this interrupt not set by any Interrupt_State pragma
1183 -- 'u' Interrupt_State pragma set state to User
1184 -- 'r' Interrupt_State pragma set state to Runtime
1185 -- 's' Interrupt_State pragma set state to System (use "default"
1186 -- system handler)
1188 begin
1189 Environment_Task_Id := Environment_Task;
1191 Interrupt_Management.Initialize;
1193 -- Initialize the lock used to synchronize chain of all ATCBs
1195 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1197 Specific.Initialize (Environment_Task);
1199 -- Make environment task known here because it doesn't go through
1200 -- Activate_Tasks, which does it for all other tasks.
1202 Known_Tasks (Known_Tasks'First) := Environment_Task;
1203 Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1205 Enter_Task (Environment_Task);
1207 -- Install the abort-signal handler
1209 if State (System.Interrupt_Management.Abort_Task_Interrupt)
1210 /= Default
1211 then
1212 act.sa_flags := 0;
1213 act.sa_handler := Abort_Handler'Address;
1215 Result := sigemptyset (Tmp_Set'Access);
1216 pragma Assert (Result = 0);
1217 act.sa_mask := Tmp_Set;
1219 Result :=
1220 sigaction (
1221 Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1222 act'Unchecked_Access,
1223 old_act'Unchecked_Access);
1224 pragma Assert (Result = 0);
1225 end if;
1226 end Initialize;
1228 -- NOTE: Unlike other pthread implementations, we do *not* mask all
1229 -- signals here since we handle signals using the process-wide primitive
1230 -- signal, rather than using sigthreadmask and sigwait. The reason of
1231 -- this difference is that sigwait doesn't work when some critical
1232 -- signals (SIGABRT, SIGPIPE) are masked.
1234 -----------------------
1235 -- Set_Task_Affinity --
1236 -----------------------
1238 procedure Set_Task_Affinity (T : ST.Task_Id) is
1239 pragma Unreferenced (T);
1241 begin
1242 -- Setting task affinity is not supported by the underlying system
1244 null;
1245 end Set_Task_Affinity;
1247 end System.Task_Primitives.Operations;