gcc/
[official-gcc.git] / gcc / ada / exp_ch4.adb
blob7065d945b2a0ea34d3928a472feb950492fad399
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Aggr; use Exp_Aggr;
33 with Exp_Atag; use Exp_Atag;
34 with Exp_Ch2; use Exp_Ch2;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch6; use Exp_Ch6;
37 with Exp_Ch7; use Exp_Ch7;
38 with Exp_Ch9; use Exp_Ch9;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Fixd; use Exp_Fixd;
41 with Exp_Intr; use Exp_Intr;
42 with Exp_Pakd; use Exp_Pakd;
43 with Exp_Tss; use Exp_Tss;
44 with Exp_Util; use Exp_Util;
45 with Exp_VFpt; use Exp_VFpt;
46 with Freeze; use Freeze;
47 with Inline; use Inline;
48 with Lib; use Lib;
49 with Namet; use Namet;
50 with Nlists; use Nlists;
51 with Nmake; use Nmake;
52 with Opt; use Opt;
53 with Par_SCO; use Par_SCO;
54 with Restrict; use Restrict;
55 with Rident; use Rident;
56 with Rtsfind; use Rtsfind;
57 with Sem; use Sem;
58 with Sem_Aux; use Sem_Aux;
59 with Sem_Cat; use Sem_Cat;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Eval; use Sem_Eval;
64 with Sem_Res; use Sem_Res;
65 with Sem_Type; use Sem_Type;
66 with Sem_Util; use Sem_Util;
67 with Sem_Warn; use Sem_Warn;
68 with Sinfo; use Sinfo;
69 with Snames; use Snames;
70 with Stand; use Stand;
71 with SCIL_LL; use SCIL_LL;
72 with Targparm; use Targparm;
73 with Tbuild; use Tbuild;
74 with Ttypes; use Ttypes;
75 with Uintp; use Uintp;
76 with Urealp; use Urealp;
77 with Validsw; use Validsw;
79 package body Exp_Ch4 is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Binary_Op_Validity_Checks (N : Node_Id);
86 pragma Inline (Binary_Op_Validity_Checks);
87 -- Performs validity checks for a binary operator
89 procedure Build_Boolean_Array_Proc_Call
90 (N : Node_Id;
91 Op1 : Node_Id;
92 Op2 : Node_Id);
93 -- If a boolean array assignment can be done in place, build call to
94 -- corresponding library procedure.
96 function Current_Anonymous_Master return Entity_Id;
97 -- Return the entity of the heterogeneous finalization master belonging to
98 -- the current unit (either function, package or procedure). This master
99 -- services all anonymous access-to-controlled types. If the current unit
100 -- does not have such master, create one.
102 procedure Displace_Allocator_Pointer (N : Node_Id);
103 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
104 -- Expand_Allocator_Expression. Allocating class-wide interface objects
105 -- this routine displaces the pointer to the allocated object to reference
106 -- the component referencing the corresponding secondary dispatch table.
108 procedure Expand_Allocator_Expression (N : Node_Id);
109 -- Subsidiary to Expand_N_Allocator, for the case when the expression
110 -- is a qualified expression or an aggregate.
112 procedure Expand_Array_Comparison (N : Node_Id);
113 -- This routine handles expansion of the comparison operators (N_Op_Lt,
114 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
115 -- code for these operators is similar, differing only in the details of
116 -- the actual comparison call that is made. Special processing (call a
117 -- run-time routine)
119 function Expand_Array_Equality
120 (Nod : Node_Id;
121 Lhs : Node_Id;
122 Rhs : Node_Id;
123 Bodies : List_Id;
124 Typ : Entity_Id) return Node_Id;
125 -- Expand an array equality into a call to a function implementing this
126 -- equality, and a call to it. Loc is the location for the generated nodes.
127 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
128 -- on which to attach bodies of local functions that are created in the
129 -- process. It is the responsibility of the caller to insert those bodies
130 -- at the right place. Nod provides the Sloc value for the generated code.
131 -- Normally the types used for the generated equality routine are taken
132 -- from Lhs and Rhs. However, in some situations of generated code, the
133 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
134 -- the type to be used for the formal parameters.
136 procedure Expand_Boolean_Operator (N : Node_Id);
137 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
138 -- case of array type arguments.
140 procedure Expand_Short_Circuit_Operator (N : Node_Id);
141 -- Common expansion processing for short-circuit boolean operators
143 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id);
144 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
145 -- where we allow comparison of "out of range" values.
147 function Expand_Composite_Equality
148 (Nod : Node_Id;
149 Typ : Entity_Id;
150 Lhs : Node_Id;
151 Rhs : Node_Id;
152 Bodies : List_Id) return Node_Id;
153 -- Local recursive function used to expand equality for nested composite
154 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
155 -- to attach bodies of local functions that are created in the process.
156 -- It is the responsibility of the caller to insert those bodies at the
157 -- right place. Nod provides the Sloc value for generated code. Lhs and Rhs
158 -- are the left and right sides for the comparison, and Typ is the type of
159 -- the objects to compare.
161 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
162 -- Routine to expand concatenation of a sequence of two or more operands
163 -- (in the list Operands) and replace node Cnode with the result of the
164 -- concatenation. The operands can be of any appropriate type, and can
165 -- include both arrays and singleton elements.
167 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id);
168 -- N is an N_In membership test mode, with the overflow check mode set to
169 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
170 -- integer type. This is a case where top level processing is required to
171 -- handle overflow checks in subtrees.
173 procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
174 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
175 -- fixed. We do not have such a type at runtime, so the purpose of this
176 -- routine is to find the real type by looking up the tree. We also
177 -- determine if the operation must be rounded.
179 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
180 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
181 -- discriminants if it has a constrained nominal type, unless the object
182 -- is a component of an enclosing Unchecked_Union object that is subject
183 -- to a per-object constraint and the enclosing object lacks inferable
184 -- discriminants.
186 -- An expression of an Unchecked_Union type has inferable discriminants
187 -- if it is either a name of an object with inferable discriminants or a
188 -- qualified expression whose subtype mark denotes a constrained subtype.
190 procedure Insert_Dereference_Action (N : Node_Id);
191 -- N is an expression whose type is an access. When the type of the
192 -- associated storage pool is derived from Checked_Pool, generate a
193 -- call to the 'Dereference' primitive operation.
195 function Make_Array_Comparison_Op
196 (Typ : Entity_Id;
197 Nod : Node_Id) return Node_Id;
198 -- Comparisons between arrays are expanded in line. This function produces
199 -- the body of the implementation of (a > b), where a and b are one-
200 -- dimensional arrays of some discrete type. The original node is then
201 -- expanded into the appropriate call to this function. Nod provides the
202 -- Sloc value for the generated code.
204 function Make_Boolean_Array_Op
205 (Typ : Entity_Id;
206 N : Node_Id) return Node_Id;
207 -- Boolean operations on boolean arrays are expanded in line. This function
208 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
209 -- b). It is used only the normal case and not the packed case. The type
210 -- involved, Typ, is the Boolean array type, and the logical operations in
211 -- the body are simple boolean operations. Note that Typ is always a
212 -- constrained type (the caller has ensured this by using
213 -- Convert_To_Actual_Subtype if necessary).
215 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean;
216 -- For signed arithmetic operations when the current overflow mode is
217 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
218 -- as the first thing we do. We then return. We count on the recursive
219 -- apparatus for overflow checks to call us back with an equivalent
220 -- operation that is in CHECKED mode, avoiding a recursive entry into this
221 -- routine, and that is when we will proceed with the expansion of the
222 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
223 -- these optimizations without first making this check, since there may be
224 -- operands further down the tree that are relying on the recursive calls
225 -- triggered by the top level nodes to properly process overflow checking
226 -- and remaining expansion on these nodes. Note that this call back may be
227 -- skipped if the operation is done in Bignum mode but that's fine, since
228 -- the Bignum call takes care of everything.
230 procedure Optimize_Length_Comparison (N : Node_Id);
231 -- Given an expression, if it is of the form X'Length op N (or the other
232 -- way round), where N is known at compile time to be 0 or 1, and X is a
233 -- simple entity, and op is a comparison operator, optimizes it into a
234 -- comparison of First and Last.
236 procedure Process_Transient_Object
237 (Decl : Node_Id;
238 Rel_Node : Node_Id);
239 -- Subsidiary routine to the expansion of expression_with_actions and if
240 -- expressions. Generate all the necessary code to finalize a transient
241 -- controlled object when the enclosing context is elaborated or evaluated.
242 -- Decl denotes the declaration of the transient controlled object which is
243 -- usually the result of a controlled function call. Rel_Node denotes the
244 -- context, either an expression_with_actions or an if expression.
246 procedure Rewrite_Comparison (N : Node_Id);
247 -- If N is the node for a comparison whose outcome can be determined at
248 -- compile time, then the node N can be rewritten with True or False. If
249 -- the outcome cannot be determined at compile time, the call has no
250 -- effect. If N is a type conversion, then this processing is applied to
251 -- its expression. If N is neither comparison nor a type conversion, the
252 -- call has no effect.
254 procedure Tagged_Membership
255 (N : Node_Id;
256 SCIL_Node : out Node_Id;
257 Result : out Node_Id);
258 -- Construct the expression corresponding to the tagged membership test.
259 -- Deals with a second operand being (or not) a class-wide type.
261 function Safe_In_Place_Array_Op
262 (Lhs : Node_Id;
263 Op1 : Node_Id;
264 Op2 : Node_Id) return Boolean;
265 -- In the context of an assignment, where the right-hand side is a boolean
266 -- operation on arrays, check whether operation can be performed in place.
268 procedure Unary_Op_Validity_Checks (N : Node_Id);
269 pragma Inline (Unary_Op_Validity_Checks);
270 -- Performs validity checks for a unary operator
272 -------------------------------
273 -- Binary_Op_Validity_Checks --
274 -------------------------------
276 procedure Binary_Op_Validity_Checks (N : Node_Id) is
277 begin
278 if Validity_Checks_On and Validity_Check_Operands then
279 Ensure_Valid (Left_Opnd (N));
280 Ensure_Valid (Right_Opnd (N));
281 end if;
282 end Binary_Op_Validity_Checks;
284 ------------------------------------
285 -- Build_Boolean_Array_Proc_Call --
286 ------------------------------------
288 procedure Build_Boolean_Array_Proc_Call
289 (N : Node_Id;
290 Op1 : Node_Id;
291 Op2 : Node_Id)
293 Loc : constant Source_Ptr := Sloc (N);
294 Kind : constant Node_Kind := Nkind (Expression (N));
295 Target : constant Node_Id :=
296 Make_Attribute_Reference (Loc,
297 Prefix => Name (N),
298 Attribute_Name => Name_Address);
300 Arg1 : Node_Id := Op1;
301 Arg2 : Node_Id := Op2;
302 Call_Node : Node_Id;
303 Proc_Name : Entity_Id;
305 begin
306 if Kind = N_Op_Not then
307 if Nkind (Op1) in N_Binary_Op then
309 -- Use negated version of the binary operators
311 if Nkind (Op1) = N_Op_And then
312 Proc_Name := RTE (RE_Vector_Nand);
314 elsif Nkind (Op1) = N_Op_Or then
315 Proc_Name := RTE (RE_Vector_Nor);
317 else pragma Assert (Nkind (Op1) = N_Op_Xor);
318 Proc_Name := RTE (RE_Vector_Xor);
319 end if;
321 Call_Node :=
322 Make_Procedure_Call_Statement (Loc,
323 Name => New_Occurrence_Of (Proc_Name, Loc),
325 Parameter_Associations => New_List (
326 Target,
327 Make_Attribute_Reference (Loc,
328 Prefix => Left_Opnd (Op1),
329 Attribute_Name => Name_Address),
331 Make_Attribute_Reference (Loc,
332 Prefix => Right_Opnd (Op1),
333 Attribute_Name => Name_Address),
335 Make_Attribute_Reference (Loc,
336 Prefix => Left_Opnd (Op1),
337 Attribute_Name => Name_Length)));
339 else
340 Proc_Name := RTE (RE_Vector_Not);
342 Call_Node :=
343 Make_Procedure_Call_Statement (Loc,
344 Name => New_Occurrence_Of (Proc_Name, Loc),
345 Parameter_Associations => New_List (
346 Target,
348 Make_Attribute_Reference (Loc,
349 Prefix => Op1,
350 Attribute_Name => Name_Address),
352 Make_Attribute_Reference (Loc,
353 Prefix => Op1,
354 Attribute_Name => Name_Length)));
355 end if;
357 else
358 -- We use the following equivalences:
360 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
361 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
362 -- (not X) xor (not Y) = X xor Y
363 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
365 if Nkind (Op1) = N_Op_Not then
366 Arg1 := Right_Opnd (Op1);
367 Arg2 := Right_Opnd (Op2);
369 if Kind = N_Op_And then
370 Proc_Name := RTE (RE_Vector_Nor);
371 elsif Kind = N_Op_Or then
372 Proc_Name := RTE (RE_Vector_Nand);
373 else
374 Proc_Name := RTE (RE_Vector_Xor);
375 end if;
377 else
378 if Kind = N_Op_And then
379 Proc_Name := RTE (RE_Vector_And);
380 elsif Kind = N_Op_Or then
381 Proc_Name := RTE (RE_Vector_Or);
382 elsif Nkind (Op2) = N_Op_Not then
383 Proc_Name := RTE (RE_Vector_Nxor);
384 Arg2 := Right_Opnd (Op2);
385 else
386 Proc_Name := RTE (RE_Vector_Xor);
387 end if;
388 end if;
390 Call_Node :=
391 Make_Procedure_Call_Statement (Loc,
392 Name => New_Occurrence_Of (Proc_Name, Loc),
393 Parameter_Associations => New_List (
394 Target,
395 Make_Attribute_Reference (Loc,
396 Prefix => Arg1,
397 Attribute_Name => Name_Address),
398 Make_Attribute_Reference (Loc,
399 Prefix => Arg2,
400 Attribute_Name => Name_Address),
401 Make_Attribute_Reference (Loc,
402 Prefix => Arg1,
403 Attribute_Name => Name_Length)));
404 end if;
406 Rewrite (N, Call_Node);
407 Analyze (N);
409 exception
410 when RE_Not_Available =>
411 return;
412 end Build_Boolean_Array_Proc_Call;
414 ------------------------------
415 -- Current_Anonymous_Master --
416 ------------------------------
418 function Current_Anonymous_Master return Entity_Id is
419 Decls : List_Id;
420 Loc : Source_Ptr;
421 Subp_Body : Node_Id;
422 Unit_Decl : Node_Id;
423 Unit_Id : Entity_Id;
425 begin
426 Unit_Id := Cunit_Entity (Current_Sem_Unit);
428 -- Find the entity of the current unit
430 if Ekind (Unit_Id) = E_Subprogram_Body then
432 -- When processing subprogram bodies, the proper scope is always that
433 -- of the spec.
435 Subp_Body := Unit_Id;
436 while Present (Subp_Body)
437 and then Nkind (Subp_Body) /= N_Subprogram_Body
438 loop
439 Subp_Body := Parent (Subp_Body);
440 end loop;
442 Unit_Id := Corresponding_Spec (Subp_Body);
443 end if;
445 Loc := Sloc (Unit_Id);
446 Unit_Decl := Unit (Cunit (Current_Sem_Unit));
448 -- Find the declarations list of the current unit
450 if Nkind (Unit_Decl) = N_Package_Declaration then
451 Unit_Decl := Specification (Unit_Decl);
452 Decls := Visible_Declarations (Unit_Decl);
454 if No (Decls) then
455 Decls := New_List (Make_Null_Statement (Loc));
456 Set_Visible_Declarations (Unit_Decl, Decls);
458 elsif Is_Empty_List (Decls) then
459 Append_To (Decls, Make_Null_Statement (Loc));
460 end if;
462 else
463 Decls := Declarations (Unit_Decl);
465 if No (Decls) then
466 Decls := New_List (Make_Null_Statement (Loc));
467 Set_Declarations (Unit_Decl, Decls);
469 elsif Is_Empty_List (Decls) then
470 Append_To (Decls, Make_Null_Statement (Loc));
471 end if;
472 end if;
474 -- The current unit has an existing anonymous master, traverse its
475 -- declarations and locate the entity.
477 if Has_Anonymous_Master (Unit_Id) then
478 declare
479 Decl : Node_Id;
480 Fin_Mas_Id : Entity_Id;
482 begin
483 Decl := First (Decls);
484 while Present (Decl) loop
486 -- Look for the first variable in the declarations whole type
487 -- is Finalization_Master.
489 if Nkind (Decl) = N_Object_Declaration then
490 Fin_Mas_Id := Defining_Identifier (Decl);
492 if Ekind (Fin_Mas_Id) = E_Variable
493 and then Etype (Fin_Mas_Id) = RTE (RE_Finalization_Master)
494 then
495 return Fin_Mas_Id;
496 end if;
497 end if;
499 Next (Decl);
500 end loop;
502 -- The master was not found even though the unit was labeled as
503 -- having one.
505 raise Program_Error;
506 end;
508 -- Create a new anonymous master
510 else
511 declare
512 First_Decl : constant Node_Id := First (Decls);
513 Action : Node_Id;
514 Fin_Mas_Id : Entity_Id;
516 begin
517 -- Since the master and its associated initialization is inserted
518 -- at top level, use the scope of the unit when analyzing.
520 Push_Scope (Unit_Id);
522 -- Create the finalization master
524 Fin_Mas_Id :=
525 Make_Defining_Identifier (Loc,
526 Chars => New_External_Name (Chars (Unit_Id), "AM"));
528 -- Generate:
529 -- <Fin_Mas_Id> : Finalization_Master;
531 Action :=
532 Make_Object_Declaration (Loc,
533 Defining_Identifier => Fin_Mas_Id,
534 Object_Definition =>
535 New_Occurrence_Of (RTE (RE_Finalization_Master), Loc));
537 Insert_Before_And_Analyze (First_Decl, Action);
539 -- Mark the unit to prevent the generation of multiple masters
541 Set_Has_Anonymous_Master (Unit_Id);
543 -- Do not set the base pool and mode of operation on .NET/JVM
544 -- since those targets do not support pools and all VM masters
545 -- are heterogeneous by default.
547 if VM_Target = No_VM then
549 -- Generate:
550 -- Set_Base_Pool
551 -- (<Fin_Mas_Id>, Global_Pool_Object'Unrestricted_Access);
553 Action :=
554 Make_Procedure_Call_Statement (Loc,
555 Name =>
556 New_Occurrence_Of (RTE (RE_Set_Base_Pool), Loc),
558 Parameter_Associations => New_List (
559 New_Occurrence_Of (Fin_Mas_Id, Loc),
560 Make_Attribute_Reference (Loc,
561 Prefix =>
562 New_Occurrence_Of (RTE (RE_Global_Pool_Object), Loc),
563 Attribute_Name => Name_Unrestricted_Access)));
565 Insert_Before_And_Analyze (First_Decl, Action);
567 -- Generate:
568 -- Set_Is_Heterogeneous (<Fin_Mas_Id>);
570 Action :=
571 Make_Procedure_Call_Statement (Loc,
572 Name =>
573 New_Occurrence_Of (RTE (RE_Set_Is_Heterogeneous), Loc),
574 Parameter_Associations => New_List (
575 New_Occurrence_Of (Fin_Mas_Id, Loc)));
577 Insert_Before_And_Analyze (First_Decl, Action);
578 end if;
580 -- Restore the original state of the scope stack
582 Pop_Scope;
584 return Fin_Mas_Id;
585 end;
586 end if;
587 end Current_Anonymous_Master;
589 --------------------------------
590 -- Displace_Allocator_Pointer --
591 --------------------------------
593 procedure Displace_Allocator_Pointer (N : Node_Id) is
594 Loc : constant Source_Ptr := Sloc (N);
595 Orig_Node : constant Node_Id := Original_Node (N);
596 Dtyp : Entity_Id;
597 Etyp : Entity_Id;
598 PtrT : Entity_Id;
600 begin
601 -- Do nothing in case of VM targets: the virtual machine will handle
602 -- interfaces directly.
604 if not Tagged_Type_Expansion then
605 return;
606 end if;
608 pragma Assert (Nkind (N) = N_Identifier
609 and then Nkind (Orig_Node) = N_Allocator);
611 PtrT := Etype (Orig_Node);
612 Dtyp := Available_View (Designated_Type (PtrT));
613 Etyp := Etype (Expression (Orig_Node));
615 if Is_Class_Wide_Type (Dtyp) and then Is_Interface (Dtyp) then
617 -- If the type of the allocator expression is not an interface type
618 -- we can generate code to reference the record component containing
619 -- the pointer to the secondary dispatch table.
621 if not Is_Interface (Etyp) then
622 declare
623 Saved_Typ : constant Entity_Id := Etype (Orig_Node);
625 begin
626 -- 1) Get access to the allocated object
628 Rewrite (N,
629 Make_Explicit_Dereference (Loc, Relocate_Node (N)));
630 Set_Etype (N, Etyp);
631 Set_Analyzed (N);
633 -- 2) Add the conversion to displace the pointer to reference
634 -- the secondary dispatch table.
636 Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
637 Analyze_And_Resolve (N, Dtyp);
639 -- 3) The 'access to the secondary dispatch table will be used
640 -- as the value returned by the allocator.
642 Rewrite (N,
643 Make_Attribute_Reference (Loc,
644 Prefix => Relocate_Node (N),
645 Attribute_Name => Name_Access));
646 Set_Etype (N, Saved_Typ);
647 Set_Analyzed (N);
648 end;
650 -- If the type of the allocator expression is an interface type we
651 -- generate a run-time call to displace "this" to reference the
652 -- component containing the pointer to the secondary dispatch table
653 -- or else raise Constraint_Error if the actual object does not
654 -- implement the target interface. This case corresponds to the
655 -- following example:
657 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
658 -- begin
659 -- return new Iface_2'Class'(Obj);
660 -- end Op;
662 else
663 Rewrite (N,
664 Unchecked_Convert_To (PtrT,
665 Make_Function_Call (Loc,
666 Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
667 Parameter_Associations => New_List (
668 Unchecked_Convert_To (RTE (RE_Address),
669 Relocate_Node (N)),
671 New_Occurrence_Of
672 (Elists.Node
673 (First_Elmt
674 (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
675 Loc)))));
676 Analyze_And_Resolve (N, PtrT);
677 end if;
678 end if;
679 end Displace_Allocator_Pointer;
681 ---------------------------------
682 -- Expand_Allocator_Expression --
683 ---------------------------------
685 procedure Expand_Allocator_Expression (N : Node_Id) is
686 Loc : constant Source_Ptr := Sloc (N);
687 Exp : constant Node_Id := Expression (Expression (N));
688 PtrT : constant Entity_Id := Etype (N);
689 DesigT : constant Entity_Id := Designated_Type (PtrT);
691 procedure Apply_Accessibility_Check
692 (Ref : Node_Id;
693 Built_In_Place : Boolean := False);
694 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
695 -- type, generate an accessibility check to verify that the level of the
696 -- type of the created object is not deeper than the level of the access
697 -- type. If the type of the qualified expression is class-wide, then
698 -- always generate the check (except in the case where it is known to be
699 -- unnecessary, see comment below). Otherwise, only generate the check
700 -- if the level of the qualified expression type is statically deeper
701 -- than the access type.
703 -- Although the static accessibility will generally have been performed
704 -- as a legality check, it won't have been done in cases where the
705 -- allocator appears in generic body, so a run-time check is needed in
706 -- general. One special case is when the access type is declared in the
707 -- same scope as the class-wide allocator, in which case the check can
708 -- never fail, so it need not be generated.
710 -- As an open issue, there seem to be cases where the static level
711 -- associated with the class-wide object's underlying type is not
712 -- sufficient to perform the proper accessibility check, such as for
713 -- allocators in nested subprograms or accept statements initialized by
714 -- class-wide formals when the actual originates outside at a deeper
715 -- static level. The nested subprogram case might require passing
716 -- accessibility levels along with class-wide parameters, and the task
717 -- case seems to be an actual gap in the language rules that needs to
718 -- be fixed by the ARG. ???
720 -------------------------------
721 -- Apply_Accessibility_Check --
722 -------------------------------
724 procedure Apply_Accessibility_Check
725 (Ref : Node_Id;
726 Built_In_Place : Boolean := False)
728 Pool_Id : constant Entity_Id := Associated_Storage_Pool (PtrT);
729 Cond : Node_Id;
730 Fin_Call : Node_Id;
731 Free_Stmt : Node_Id;
732 Obj_Ref : Node_Id;
733 Stmts : List_Id;
735 begin
736 if Ada_Version >= Ada_2005
737 and then Is_Class_Wide_Type (DesigT)
738 and then (Tagged_Type_Expansion or else VM_Target /= No_VM)
739 and then not Scope_Suppress.Suppress (Accessibility_Check)
740 and then
741 (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
742 or else
743 (Is_Class_Wide_Type (Etype (Exp))
744 and then Scope (PtrT) /= Current_Scope))
745 then
746 -- If the allocator was built in place, Ref is already a reference
747 -- to the access object initialized to the result of the allocator
748 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
749 -- Remove_Side_Effects for cases where the build-in-place call may
750 -- still be the prefix of the reference (to avoid generating
751 -- duplicate calls). Otherwise, it is the entity associated with
752 -- the object containing the address of the allocated object.
754 if Built_In_Place then
755 Remove_Side_Effects (Ref);
756 Obj_Ref := New_Copy_Tree (Ref);
757 else
758 Obj_Ref := New_Occurrence_Of (Ref, Loc);
759 end if;
761 -- Step 1: Create the object clean up code
763 Stmts := New_List;
765 -- Deallocate the object if the accessibility check fails. This
766 -- is done only on targets or profiles that support deallocation.
768 -- Free (Obj_Ref);
770 if RTE_Available (RE_Free) then
771 Free_Stmt := Make_Free_Statement (Loc, New_Copy_Tree (Obj_Ref));
772 Set_Storage_Pool (Free_Stmt, Pool_Id);
774 Append_To (Stmts, Free_Stmt);
776 -- The target or profile cannot deallocate objects
778 else
779 Free_Stmt := Empty;
780 end if;
782 -- Finalize the object if applicable. Generate:
784 -- [Deep_]Finalize (Obj_Ref.all);
786 if Needs_Finalization (DesigT) then
787 Fin_Call :=
788 Make_Final_Call (
789 Obj_Ref =>
790 Make_Explicit_Dereference (Loc, New_Copy (Obj_Ref)),
791 Typ => DesigT);
793 -- When the target or profile supports deallocation, wrap the
794 -- finalization call in a block to ensure proper deallocation
795 -- even if finalization fails. Generate:
797 -- begin
798 -- <Fin_Call>
799 -- exception
800 -- when others =>
801 -- <Free_Stmt>
802 -- raise;
803 -- end;
805 if Present (Free_Stmt) then
806 Fin_Call :=
807 Make_Block_Statement (Loc,
808 Handled_Statement_Sequence =>
809 Make_Handled_Sequence_Of_Statements (Loc,
810 Statements => New_List (Fin_Call),
812 Exception_Handlers => New_List (
813 Make_Exception_Handler (Loc,
814 Exception_Choices => New_List (
815 Make_Others_Choice (Loc)),
817 Statements => New_List (
818 New_Copy_Tree (Free_Stmt),
819 Make_Raise_Statement (Loc))))));
820 end if;
822 Prepend_To (Stmts, Fin_Call);
823 end if;
825 -- Signal the accessibility failure through a Program_Error
827 Append_To (Stmts,
828 Make_Raise_Program_Error (Loc,
829 Condition => New_Occurrence_Of (Standard_True, Loc),
830 Reason => PE_Accessibility_Check_Failed));
832 -- Step 2: Create the accessibility comparison
834 -- Generate:
835 -- Ref'Tag
837 Obj_Ref :=
838 Make_Attribute_Reference (Loc,
839 Prefix => Obj_Ref,
840 Attribute_Name => Name_Tag);
842 -- For tagged types, determine the accessibility level by looking
843 -- at the type specific data of the dispatch table. Generate:
845 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
847 if Tagged_Type_Expansion then
848 Cond := Build_Get_Access_Level (Loc, Obj_Ref);
850 -- Use a runtime call to determine the accessibility level when
851 -- compiling on virtual machine targets. Generate:
853 -- Get_Access_Level (Ref'Tag)
855 else
856 Cond :=
857 Make_Function_Call (Loc,
858 Name =>
859 New_Occurrence_Of (RTE (RE_Get_Access_Level), Loc),
860 Parameter_Associations => New_List (Obj_Ref));
861 end if;
863 Cond :=
864 Make_Op_Gt (Loc,
865 Left_Opnd => Cond,
866 Right_Opnd =>
867 Make_Integer_Literal (Loc, Type_Access_Level (PtrT)));
869 -- Due to the complexity and side effects of the check, utilize an
870 -- if statement instead of the regular Program_Error circuitry.
872 Insert_Action (N,
873 Make_Implicit_If_Statement (N,
874 Condition => Cond,
875 Then_Statements => Stmts));
876 end if;
877 end Apply_Accessibility_Check;
879 -- Local variables
881 Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
882 Indic : constant Node_Id := Subtype_Mark (Expression (N));
883 T : constant Entity_Id := Entity (Indic);
884 Node : Node_Id;
885 Tag_Assign : Node_Id;
886 Temp : Entity_Id;
887 Temp_Decl : Node_Id;
889 TagT : Entity_Id := Empty;
890 -- Type used as source for tag assignment
892 TagR : Node_Id := Empty;
893 -- Target reference for tag assignment
895 -- Start of processing for Expand_Allocator_Expression
897 begin
898 -- Handle call to C++ constructor
900 if Is_CPP_Constructor_Call (Exp) then
901 Make_CPP_Constructor_Call_In_Allocator
902 (Allocator => N,
903 Function_Call => Exp);
904 return;
905 end if;
907 -- In the case of an Ada 2012 allocator whose initial value comes from a
908 -- function call, pass "the accessibility level determined by the point
909 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
910 -- Expand_Call but it couldn't be done there (because the Etype of the
911 -- allocator wasn't set then) so we generate the parameter here. See
912 -- the Boolean variable Defer in (a block within) Expand_Call.
914 if Ada_Version >= Ada_2012 and then Nkind (Exp) = N_Function_Call then
915 declare
916 Subp : Entity_Id;
918 begin
919 if Nkind (Name (Exp)) = N_Explicit_Dereference then
920 Subp := Designated_Type (Etype (Prefix (Name (Exp))));
921 else
922 Subp := Entity (Name (Exp));
923 end if;
925 Subp := Ultimate_Alias (Subp);
927 if Present (Extra_Accessibility_Of_Result (Subp)) then
928 Add_Extra_Actual_To_Call
929 (Subprogram_Call => Exp,
930 Extra_Formal => Extra_Accessibility_Of_Result (Subp),
931 Extra_Actual => Dynamic_Accessibility_Level (PtrT));
932 end if;
933 end;
934 end if;
936 -- Case of tagged type or type requiring finalization
938 if Is_Tagged_Type (T) or else Needs_Finalization (T) then
940 -- Ada 2005 (AI-318-02): If the initialization expression is a call
941 -- to a build-in-place function, then access to the allocated object
942 -- must be passed to the function. Currently we limit such functions
943 -- to those with constrained limited result subtypes, but eventually
944 -- we plan to expand the allowed forms of functions that are treated
945 -- as build-in-place.
947 if Ada_Version >= Ada_2005
948 and then Is_Build_In_Place_Function_Call (Exp)
949 then
950 Make_Build_In_Place_Call_In_Allocator (N, Exp);
951 Apply_Accessibility_Check (N, Built_In_Place => True);
952 return;
953 end if;
955 -- Actions inserted before:
956 -- Temp : constant ptr_T := new T'(Expression);
957 -- Temp._tag = T'tag; -- when not class-wide
958 -- [Deep_]Adjust (Temp.all);
960 -- We analyze by hand the new internal allocator to avoid any
961 -- recursion and inappropriate call to Initialize.
963 -- We don't want to remove side effects when the expression must be
964 -- built in place. In the case of a build-in-place function call,
965 -- that could lead to a duplication of the call, which was already
966 -- substituted for the allocator.
968 if not Aggr_In_Place then
969 Remove_Side_Effects (Exp);
970 end if;
972 Temp := Make_Temporary (Loc, 'P', N);
974 -- For a class wide allocation generate the following code:
976 -- type Equiv_Record is record ... end record;
977 -- implicit subtype CW is <Class_Wide_Subytpe>;
978 -- temp : PtrT := new CW'(CW!(expr));
980 if Is_Class_Wide_Type (T) then
981 Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
983 -- Ada 2005 (AI-251): If the expression is a class-wide interface
984 -- object we generate code to move up "this" to reference the
985 -- base of the object before allocating the new object.
987 -- Note that Exp'Address is recursively expanded into a call
988 -- to Base_Address (Exp.Tag)
990 if Is_Class_Wide_Type (Etype (Exp))
991 and then Is_Interface (Etype (Exp))
992 and then Tagged_Type_Expansion
993 then
994 Set_Expression
995 (Expression (N),
996 Unchecked_Convert_To (Entity (Indic),
997 Make_Explicit_Dereference (Loc,
998 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
999 Make_Attribute_Reference (Loc,
1000 Prefix => Exp,
1001 Attribute_Name => Name_Address)))));
1002 else
1003 Set_Expression
1004 (Expression (N),
1005 Unchecked_Convert_To (Entity (Indic), Exp));
1006 end if;
1008 Analyze_And_Resolve (Expression (N), Entity (Indic));
1009 end if;
1011 -- Processing for allocators returning non-interface types
1013 if not Is_Interface (Directly_Designated_Type (PtrT)) then
1014 if Aggr_In_Place then
1015 Temp_Decl :=
1016 Make_Object_Declaration (Loc,
1017 Defining_Identifier => Temp,
1018 Object_Definition => New_Occurrence_Of (PtrT, Loc),
1019 Expression =>
1020 Make_Allocator (Loc,
1021 Expression =>
1022 New_Occurrence_Of (Etype (Exp), Loc)));
1024 -- Copy the Comes_From_Source flag for the allocator we just
1025 -- built, since logically this allocator is a replacement of
1026 -- the original allocator node. This is for proper handling of
1027 -- restriction No_Implicit_Heap_Allocations.
1029 Set_Comes_From_Source
1030 (Expression (Temp_Decl), Comes_From_Source (N));
1032 Set_No_Initialization (Expression (Temp_Decl));
1033 Insert_Action (N, Temp_Decl);
1035 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1036 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1038 -- Attach the object to the associated finalization master.
1039 -- This is done manually on .NET/JVM since those compilers do
1040 -- no support pools and can't benefit from internally generated
1041 -- Allocate / Deallocate procedures.
1043 if VM_Target /= No_VM
1044 and then Is_Controlled (DesigT)
1045 and then Present (Finalization_Master (PtrT))
1046 then
1047 Insert_Action (N,
1048 Make_Attach_Call (
1049 Obj_Ref => New_Occurrence_Of (Temp, Loc),
1050 Ptr_Typ => PtrT));
1051 end if;
1053 else
1054 Node := Relocate_Node (N);
1055 Set_Analyzed (Node);
1057 Temp_Decl :=
1058 Make_Object_Declaration (Loc,
1059 Defining_Identifier => Temp,
1060 Constant_Present => True,
1061 Object_Definition => New_Occurrence_Of (PtrT, Loc),
1062 Expression => Node);
1064 Insert_Action (N, Temp_Decl);
1065 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1067 -- Attach the object to the associated finalization master.
1068 -- This is done manually on .NET/JVM since those compilers do
1069 -- no support pools and can't benefit from internally generated
1070 -- Allocate / Deallocate procedures.
1072 if VM_Target /= No_VM
1073 and then Is_Controlled (DesigT)
1074 and then Present (Finalization_Master (PtrT))
1075 then
1076 Insert_Action (N,
1077 Make_Attach_Call (
1078 Obj_Ref =>
1079 New_Occurrence_Of (Temp, Loc),
1080 Ptr_Typ => PtrT));
1081 end if;
1082 end if;
1084 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
1085 -- interface type. In this case we use the type of the qualified
1086 -- expression to allocate the object.
1088 else
1089 declare
1090 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
1091 New_Decl : Node_Id;
1093 begin
1094 New_Decl :=
1095 Make_Full_Type_Declaration (Loc,
1096 Defining_Identifier => Def_Id,
1097 Type_Definition =>
1098 Make_Access_To_Object_Definition (Loc,
1099 All_Present => True,
1100 Null_Exclusion_Present => False,
1101 Constant_Present =>
1102 Is_Access_Constant (Etype (N)),
1103 Subtype_Indication =>
1104 New_Occurrence_Of (Etype (Exp), Loc)));
1106 Insert_Action (N, New_Decl);
1108 -- Inherit the allocation-related attributes from the original
1109 -- access type.
1111 Set_Finalization_Master (Def_Id, Finalization_Master (PtrT));
1113 Set_Associated_Storage_Pool (Def_Id,
1114 Associated_Storage_Pool (PtrT));
1116 -- Declare the object using the previous type declaration
1118 if Aggr_In_Place then
1119 Temp_Decl :=
1120 Make_Object_Declaration (Loc,
1121 Defining_Identifier => Temp,
1122 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
1123 Expression =>
1124 Make_Allocator (Loc,
1125 New_Occurrence_Of (Etype (Exp), Loc)));
1127 -- Copy the Comes_From_Source flag for the allocator we just
1128 -- built, since logically this allocator is a replacement of
1129 -- the original allocator node. This is for proper handling
1130 -- of restriction No_Implicit_Heap_Allocations.
1132 Set_Comes_From_Source
1133 (Expression (Temp_Decl), Comes_From_Source (N));
1135 Set_No_Initialization (Expression (Temp_Decl));
1136 Insert_Action (N, Temp_Decl);
1138 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1139 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1141 else
1142 Node := Relocate_Node (N);
1143 Set_Analyzed (Node);
1145 Temp_Decl :=
1146 Make_Object_Declaration (Loc,
1147 Defining_Identifier => Temp,
1148 Constant_Present => True,
1149 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
1150 Expression => Node);
1152 Insert_Action (N, Temp_Decl);
1153 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1154 end if;
1156 -- Generate an additional object containing the address of the
1157 -- returned object. The type of this second object declaration
1158 -- is the correct type required for the common processing that
1159 -- is still performed by this subprogram. The displacement of
1160 -- this pointer to reference the component associated with the
1161 -- interface type will be done at the end of common processing.
1163 New_Decl :=
1164 Make_Object_Declaration (Loc,
1165 Defining_Identifier => Make_Temporary (Loc, 'P'),
1166 Object_Definition => New_Occurrence_Of (PtrT, Loc),
1167 Expression =>
1168 Unchecked_Convert_To (PtrT,
1169 New_Occurrence_Of (Temp, Loc)));
1171 Insert_Action (N, New_Decl);
1173 Temp_Decl := New_Decl;
1174 Temp := Defining_Identifier (New_Decl);
1175 end;
1176 end if;
1178 Apply_Accessibility_Check (Temp);
1180 -- Generate the tag assignment
1182 -- Suppress the tag assignment when VM_Target because VM tags are
1183 -- represented implicitly in objects.
1185 if not Tagged_Type_Expansion then
1186 null;
1188 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1189 -- interface objects because in this case the tag does not change.
1191 elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
1192 pragma Assert (Is_Class_Wide_Type
1193 (Directly_Designated_Type (Etype (N))));
1194 null;
1196 elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
1197 TagT := T;
1198 TagR := New_Occurrence_Of (Temp, Loc);
1200 elsif Is_Private_Type (T)
1201 and then Is_Tagged_Type (Underlying_Type (T))
1202 then
1203 TagT := Underlying_Type (T);
1204 TagR :=
1205 Unchecked_Convert_To (Underlying_Type (T),
1206 Make_Explicit_Dereference (Loc,
1207 Prefix => New_Occurrence_Of (Temp, Loc)));
1208 end if;
1210 if Present (TagT) then
1211 declare
1212 Full_T : constant Entity_Id := Underlying_Type (TagT);
1214 begin
1215 Tag_Assign :=
1216 Make_Assignment_Statement (Loc,
1217 Name =>
1218 Make_Selected_Component (Loc,
1219 Prefix => TagR,
1220 Selector_Name =>
1221 New_Occurrence_Of
1222 (First_Tag_Component (Full_T), Loc)),
1224 Expression =>
1225 Unchecked_Convert_To (RTE (RE_Tag),
1226 New_Occurrence_Of
1227 (Elists.Node
1228 (First_Elmt (Access_Disp_Table (Full_T))), Loc)));
1229 end;
1231 -- The previous assignment has to be done in any case
1233 Set_Assignment_OK (Name (Tag_Assign));
1234 Insert_Action (N, Tag_Assign);
1235 end if;
1237 if Needs_Finalization (DesigT) and then Needs_Finalization (T) then
1239 -- Generate an Adjust call if the object will be moved. In Ada
1240 -- 2005, the object may be inherently limited, in which case
1241 -- there is no Adjust procedure, and the object is built in
1242 -- place. In Ada 95, the object can be limited but not
1243 -- inherently limited if this allocator came from a return
1244 -- statement (we're allocating the result on the secondary
1245 -- stack). In that case, the object will be moved, so we _do_
1246 -- want to Adjust.
1248 if not Aggr_In_Place
1249 and then not Is_Limited_View (T)
1250 then
1251 Insert_Action (N,
1253 -- An unchecked conversion is needed in the classwide case
1254 -- because the designated type can be an ancestor of the
1255 -- subtype mark of the allocator.
1257 Make_Adjust_Call
1258 (Obj_Ref =>
1259 Unchecked_Convert_To (T,
1260 Make_Explicit_Dereference (Loc,
1261 Prefix => New_Occurrence_Of (Temp, Loc))),
1262 Typ => T));
1263 end if;
1265 -- Generate:
1266 -- Set_Finalize_Address (<PtrT>FM, <T>FD'Unrestricted_Access);
1268 -- Do not generate this call in the following cases:
1270 -- * .NET/JVM - these targets do not support address arithmetic
1271 -- and unchecked conversion, key elements of Finalize_Address.
1273 -- * CodePeer mode - TSS primitive Finalize_Address is not
1274 -- created in this mode.
1276 if VM_Target = No_VM
1277 and then not CodePeer_Mode
1278 and then Present (Finalization_Master (PtrT))
1279 and then Present (Temp_Decl)
1280 and then Nkind (Expression (Temp_Decl)) = N_Allocator
1281 then
1282 Insert_Action (N,
1283 Make_Set_Finalize_Address_Call
1284 (Loc => Loc,
1285 Typ => T,
1286 Ptr_Typ => PtrT));
1287 end if;
1288 end if;
1290 Rewrite (N, New_Occurrence_Of (Temp, Loc));
1291 Analyze_And_Resolve (N, PtrT);
1293 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1294 -- component containing the secondary dispatch table of the interface
1295 -- type.
1297 if Is_Interface (Directly_Designated_Type (PtrT)) then
1298 Displace_Allocator_Pointer (N);
1299 end if;
1301 elsif Aggr_In_Place then
1302 Temp := Make_Temporary (Loc, 'P', N);
1303 Temp_Decl :=
1304 Make_Object_Declaration (Loc,
1305 Defining_Identifier => Temp,
1306 Object_Definition => New_Occurrence_Of (PtrT, Loc),
1307 Expression =>
1308 Make_Allocator (Loc,
1309 Expression => New_Occurrence_Of (Etype (Exp), Loc)));
1311 -- Copy the Comes_From_Source flag for the allocator we just built,
1312 -- since logically this allocator is a replacement of the original
1313 -- allocator node. This is for proper handling of restriction
1314 -- No_Implicit_Heap_Allocations.
1316 Set_Comes_From_Source
1317 (Expression (Temp_Decl), Comes_From_Source (N));
1319 Set_No_Initialization (Expression (Temp_Decl));
1320 Insert_Action (N, Temp_Decl);
1322 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1323 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1325 -- Attach the object to the associated finalization master. Thisis
1326 -- done manually on .NET/JVM since those compilers do no support
1327 -- pools and cannot benefit from internally generated Allocate and
1328 -- Deallocate procedures.
1330 if VM_Target /= No_VM
1331 and then Is_Controlled (DesigT)
1332 and then Present (Finalization_Master (PtrT))
1333 then
1334 Insert_Action (N,
1335 Make_Attach_Call
1336 (Obj_Ref => New_Occurrence_Of (Temp, Loc),
1337 Ptr_Typ => PtrT));
1338 end if;
1340 Rewrite (N, New_Occurrence_Of (Temp, Loc));
1341 Analyze_And_Resolve (N, PtrT);
1343 elsif Is_Access_Type (T) and then Can_Never_Be_Null (T) then
1344 Install_Null_Excluding_Check (Exp);
1346 elsif Is_Access_Type (DesigT)
1347 and then Nkind (Exp) = N_Allocator
1348 and then Nkind (Expression (Exp)) /= N_Qualified_Expression
1349 then
1350 -- Apply constraint to designated subtype indication
1352 Apply_Constraint_Check (Expression (Exp),
1353 Designated_Type (DesigT),
1354 No_Sliding => True);
1356 if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
1358 -- Propagate constraint_error to enclosing allocator
1360 Rewrite (Exp, New_Copy (Expression (Exp)));
1361 end if;
1363 else
1364 Build_Allocate_Deallocate_Proc (N, True);
1366 -- If we have:
1367 -- type A is access T1;
1368 -- X : A := new T2'(...);
1369 -- T1 and T2 can be different subtypes, and we might need to check
1370 -- both constraints. First check against the type of the qualified
1371 -- expression.
1373 Apply_Constraint_Check (Exp, T, No_Sliding => True);
1375 if Do_Range_Check (Exp) then
1376 Set_Do_Range_Check (Exp, False);
1377 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1378 end if;
1380 -- A check is also needed in cases where the designated subtype is
1381 -- constrained and differs from the subtype given in the qualified
1382 -- expression. Note that the check on the qualified expression does
1383 -- not allow sliding, but this check does (a relaxation from Ada 83).
1385 if Is_Constrained (DesigT)
1386 and then not Subtypes_Statically_Match (T, DesigT)
1387 then
1388 Apply_Constraint_Check
1389 (Exp, DesigT, No_Sliding => False);
1391 if Do_Range_Check (Exp) then
1392 Set_Do_Range_Check (Exp, False);
1393 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1394 end if;
1395 end if;
1397 -- For an access to unconstrained packed array, GIGI needs to see an
1398 -- expression with a constrained subtype in order to compute the
1399 -- proper size for the allocator.
1401 if Is_Array_Type (T)
1402 and then not Is_Constrained (T)
1403 and then Is_Packed (T)
1404 then
1405 declare
1406 ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
1407 Internal_Exp : constant Node_Id := Relocate_Node (Exp);
1408 begin
1409 Insert_Action (Exp,
1410 Make_Subtype_Declaration (Loc,
1411 Defining_Identifier => ConstrT,
1412 Subtype_Indication =>
1413 Make_Subtype_From_Expr (Internal_Exp, T)));
1414 Freeze_Itype (ConstrT, Exp);
1415 Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
1416 end;
1417 end if;
1419 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1420 -- to a build-in-place function, then access to the allocated object
1421 -- must be passed to the function. Currently we limit such functions
1422 -- to those with constrained limited result subtypes, but eventually
1423 -- we plan to expand the allowed forms of functions that are treated
1424 -- as build-in-place.
1426 if Ada_Version >= Ada_2005
1427 and then Is_Build_In_Place_Function_Call (Exp)
1428 then
1429 Make_Build_In_Place_Call_In_Allocator (N, Exp);
1430 end if;
1431 end if;
1433 exception
1434 when RE_Not_Available =>
1435 return;
1436 end Expand_Allocator_Expression;
1438 -----------------------------
1439 -- Expand_Array_Comparison --
1440 -----------------------------
1442 -- Expansion is only required in the case of array types. For the unpacked
1443 -- case, an appropriate runtime routine is called. For packed cases, and
1444 -- also in some other cases where a runtime routine cannot be called, the
1445 -- form of the expansion is:
1447 -- [body for greater_nn; boolean_expression]
1449 -- The body is built by Make_Array_Comparison_Op, and the form of the
1450 -- Boolean expression depends on the operator involved.
1452 procedure Expand_Array_Comparison (N : Node_Id) is
1453 Loc : constant Source_Ptr := Sloc (N);
1454 Op1 : Node_Id := Left_Opnd (N);
1455 Op2 : Node_Id := Right_Opnd (N);
1456 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
1457 Ctyp : constant Entity_Id := Component_Type (Typ1);
1459 Expr : Node_Id;
1460 Func_Body : Node_Id;
1461 Func_Name : Entity_Id;
1463 Comp : RE_Id;
1465 Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
1466 -- True for byte addressable target
1468 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
1469 -- Returns True if the length of the given operand is known to be less
1470 -- than 4. Returns False if this length is known to be four or greater
1471 -- or is not known at compile time.
1473 ------------------------
1474 -- Length_Less_Than_4 --
1475 ------------------------
1477 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
1478 Otyp : constant Entity_Id := Etype (Opnd);
1480 begin
1481 if Ekind (Otyp) = E_String_Literal_Subtype then
1482 return String_Literal_Length (Otyp) < 4;
1484 else
1485 declare
1486 Ityp : constant Entity_Id := Etype (First_Index (Otyp));
1487 Lo : constant Node_Id := Type_Low_Bound (Ityp);
1488 Hi : constant Node_Id := Type_High_Bound (Ityp);
1489 Lov : Uint;
1490 Hiv : Uint;
1492 begin
1493 if Compile_Time_Known_Value (Lo) then
1494 Lov := Expr_Value (Lo);
1495 else
1496 return False;
1497 end if;
1499 if Compile_Time_Known_Value (Hi) then
1500 Hiv := Expr_Value (Hi);
1501 else
1502 return False;
1503 end if;
1505 return Hiv < Lov + 3;
1506 end;
1507 end if;
1508 end Length_Less_Than_4;
1510 -- Start of processing for Expand_Array_Comparison
1512 begin
1513 -- Deal first with unpacked case, where we can call a runtime routine
1514 -- except that we avoid this for targets for which are not addressable
1515 -- by bytes, and for the JVM/CIL, since they do not support direct
1516 -- addressing of array components.
1518 if not Is_Bit_Packed_Array (Typ1)
1519 and then Byte_Addressable
1520 and then VM_Target = No_VM
1521 then
1522 -- The call we generate is:
1524 -- Compare_Array_xn[_Unaligned]
1525 -- (left'address, right'address, left'length, right'length) <op> 0
1527 -- x = U for unsigned, S for signed
1528 -- n = 8,16,32,64 for component size
1529 -- Add _Unaligned if length < 4 and component size is 8.
1530 -- <op> is the standard comparison operator
1532 if Component_Size (Typ1) = 8 then
1533 if Length_Less_Than_4 (Op1)
1534 or else
1535 Length_Less_Than_4 (Op2)
1536 then
1537 if Is_Unsigned_Type (Ctyp) then
1538 Comp := RE_Compare_Array_U8_Unaligned;
1539 else
1540 Comp := RE_Compare_Array_S8_Unaligned;
1541 end if;
1543 else
1544 if Is_Unsigned_Type (Ctyp) then
1545 Comp := RE_Compare_Array_U8;
1546 else
1547 Comp := RE_Compare_Array_S8;
1548 end if;
1549 end if;
1551 elsif Component_Size (Typ1) = 16 then
1552 if Is_Unsigned_Type (Ctyp) then
1553 Comp := RE_Compare_Array_U16;
1554 else
1555 Comp := RE_Compare_Array_S16;
1556 end if;
1558 elsif Component_Size (Typ1) = 32 then
1559 if Is_Unsigned_Type (Ctyp) then
1560 Comp := RE_Compare_Array_U32;
1561 else
1562 Comp := RE_Compare_Array_S32;
1563 end if;
1565 else pragma Assert (Component_Size (Typ1) = 64);
1566 if Is_Unsigned_Type (Ctyp) then
1567 Comp := RE_Compare_Array_U64;
1568 else
1569 Comp := RE_Compare_Array_S64;
1570 end if;
1571 end if;
1573 Remove_Side_Effects (Op1, Name_Req => True);
1574 Remove_Side_Effects (Op2, Name_Req => True);
1576 Rewrite (Op1,
1577 Make_Function_Call (Sloc (Op1),
1578 Name => New_Occurrence_Of (RTE (Comp), Loc),
1580 Parameter_Associations => New_List (
1581 Make_Attribute_Reference (Loc,
1582 Prefix => Relocate_Node (Op1),
1583 Attribute_Name => Name_Address),
1585 Make_Attribute_Reference (Loc,
1586 Prefix => Relocate_Node (Op2),
1587 Attribute_Name => Name_Address),
1589 Make_Attribute_Reference (Loc,
1590 Prefix => Relocate_Node (Op1),
1591 Attribute_Name => Name_Length),
1593 Make_Attribute_Reference (Loc,
1594 Prefix => Relocate_Node (Op2),
1595 Attribute_Name => Name_Length))));
1597 Rewrite (Op2,
1598 Make_Integer_Literal (Sloc (Op2),
1599 Intval => Uint_0));
1601 Analyze_And_Resolve (Op1, Standard_Integer);
1602 Analyze_And_Resolve (Op2, Standard_Integer);
1603 return;
1604 end if;
1606 -- Cases where we cannot make runtime call
1608 -- For (a <= b) we convert to not (a > b)
1610 if Chars (N) = Name_Op_Le then
1611 Rewrite (N,
1612 Make_Op_Not (Loc,
1613 Right_Opnd =>
1614 Make_Op_Gt (Loc,
1615 Left_Opnd => Op1,
1616 Right_Opnd => Op2)));
1617 Analyze_And_Resolve (N, Standard_Boolean);
1618 return;
1620 -- For < the Boolean expression is
1621 -- greater__nn (op2, op1)
1623 elsif Chars (N) = Name_Op_Lt then
1624 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1626 -- Switch operands
1628 Op1 := Right_Opnd (N);
1629 Op2 := Left_Opnd (N);
1631 -- For (a >= b) we convert to not (a < b)
1633 elsif Chars (N) = Name_Op_Ge then
1634 Rewrite (N,
1635 Make_Op_Not (Loc,
1636 Right_Opnd =>
1637 Make_Op_Lt (Loc,
1638 Left_Opnd => Op1,
1639 Right_Opnd => Op2)));
1640 Analyze_And_Resolve (N, Standard_Boolean);
1641 return;
1643 -- For > the Boolean expression is
1644 -- greater__nn (op1, op2)
1646 else
1647 pragma Assert (Chars (N) = Name_Op_Gt);
1648 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1649 end if;
1651 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1652 Expr :=
1653 Make_Function_Call (Loc,
1654 Name => New_Occurrence_Of (Func_Name, Loc),
1655 Parameter_Associations => New_List (Op1, Op2));
1657 Insert_Action (N, Func_Body);
1658 Rewrite (N, Expr);
1659 Analyze_And_Resolve (N, Standard_Boolean);
1661 exception
1662 when RE_Not_Available =>
1663 return;
1664 end Expand_Array_Comparison;
1666 ---------------------------
1667 -- Expand_Array_Equality --
1668 ---------------------------
1670 -- Expand an equality function for multi-dimensional arrays. Here is an
1671 -- example of such a function for Nb_Dimension = 2
1673 -- function Enn (A : atyp; B : btyp) return boolean is
1674 -- begin
1675 -- if (A'length (1) = 0 or else A'length (2) = 0)
1676 -- and then
1677 -- (B'length (1) = 0 or else B'length (2) = 0)
1678 -- then
1679 -- return True; -- RM 4.5.2(22)
1680 -- end if;
1682 -- if A'length (1) /= B'length (1)
1683 -- or else
1684 -- A'length (2) /= B'length (2)
1685 -- then
1686 -- return False; -- RM 4.5.2(23)
1687 -- end if;
1689 -- declare
1690 -- A1 : Index_T1 := A'first (1);
1691 -- B1 : Index_T1 := B'first (1);
1692 -- begin
1693 -- loop
1694 -- declare
1695 -- A2 : Index_T2 := A'first (2);
1696 -- B2 : Index_T2 := B'first (2);
1697 -- begin
1698 -- loop
1699 -- if A (A1, A2) /= B (B1, B2) then
1700 -- return False;
1701 -- end if;
1703 -- exit when A2 = A'last (2);
1704 -- A2 := Index_T2'succ (A2);
1705 -- B2 := Index_T2'succ (B2);
1706 -- end loop;
1707 -- end;
1709 -- exit when A1 = A'last (1);
1710 -- A1 := Index_T1'succ (A1);
1711 -- B1 := Index_T1'succ (B1);
1712 -- end loop;
1713 -- end;
1715 -- return true;
1716 -- end Enn;
1718 -- Note on the formal types used (atyp and btyp). If either of the arrays
1719 -- is of a private type, we use the underlying type, and do an unchecked
1720 -- conversion of the actual. If either of the arrays has a bound depending
1721 -- on a discriminant, then we use the base type since otherwise we have an
1722 -- escaped discriminant in the function.
1724 -- If both arrays are constrained and have the same bounds, we can generate
1725 -- a loop with an explicit iteration scheme using a 'Range attribute over
1726 -- the first array.
1728 function Expand_Array_Equality
1729 (Nod : Node_Id;
1730 Lhs : Node_Id;
1731 Rhs : Node_Id;
1732 Bodies : List_Id;
1733 Typ : Entity_Id) return Node_Id
1735 Loc : constant Source_Ptr := Sloc (Nod);
1736 Decls : constant List_Id := New_List;
1737 Index_List1 : constant List_Id := New_List;
1738 Index_List2 : constant List_Id := New_List;
1740 Actuals : List_Id;
1741 Formals : List_Id;
1742 Func_Name : Entity_Id;
1743 Func_Body : Node_Id;
1745 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
1746 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
1748 Ltyp : Entity_Id;
1749 Rtyp : Entity_Id;
1750 -- The parameter types to be used for the formals
1752 function Arr_Attr
1753 (Arr : Entity_Id;
1754 Nam : Name_Id;
1755 Num : Int) return Node_Id;
1756 -- This builds the attribute reference Arr'Nam (Expr)
1758 function Component_Equality (Typ : Entity_Id) return Node_Id;
1759 -- Create one statement to compare corresponding components, designated
1760 -- by a full set of indexes.
1762 function Get_Arg_Type (N : Node_Id) return Entity_Id;
1763 -- Given one of the arguments, computes the appropriate type to be used
1764 -- for that argument in the corresponding function formal
1766 function Handle_One_Dimension
1767 (N : Int;
1768 Index : Node_Id) return Node_Id;
1769 -- This procedure returns the following code
1771 -- declare
1772 -- Bn : Index_T := B'First (N);
1773 -- begin
1774 -- loop
1775 -- xxx
1776 -- exit when An = A'Last (N);
1777 -- An := Index_T'Succ (An)
1778 -- Bn := Index_T'Succ (Bn)
1779 -- end loop;
1780 -- end;
1782 -- If both indexes are constrained and identical, the procedure
1783 -- returns a simpler loop:
1785 -- for An in A'Range (N) loop
1786 -- xxx
1787 -- end loop
1789 -- N is the dimension for which we are generating a loop. Index is the
1790 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1791 -- xxx statement is either the loop or declare for the next dimension
1792 -- or if this is the last dimension the comparison of corresponding
1793 -- components of the arrays.
1795 -- The actual way the code works is to return the comparison of
1796 -- corresponding components for the N+1 call. That's neater.
1798 function Test_Empty_Arrays return Node_Id;
1799 -- This function constructs the test for both arrays being empty
1800 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1801 -- and then
1802 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1804 function Test_Lengths_Correspond return Node_Id;
1805 -- This function constructs the test for arrays having different lengths
1806 -- in at least one index position, in which case the resulting code is:
1808 -- A'length (1) /= B'length (1)
1809 -- or else
1810 -- A'length (2) /= B'length (2)
1811 -- or else
1812 -- ...
1814 --------------
1815 -- Arr_Attr --
1816 --------------
1818 function Arr_Attr
1819 (Arr : Entity_Id;
1820 Nam : Name_Id;
1821 Num : Int) return Node_Id
1823 begin
1824 return
1825 Make_Attribute_Reference (Loc,
1826 Attribute_Name => Nam,
1827 Prefix => New_Occurrence_Of (Arr, Loc),
1828 Expressions => New_List (Make_Integer_Literal (Loc, Num)));
1829 end Arr_Attr;
1831 ------------------------
1832 -- Component_Equality --
1833 ------------------------
1835 function Component_Equality (Typ : Entity_Id) return Node_Id is
1836 Test : Node_Id;
1837 L, R : Node_Id;
1839 begin
1840 -- if a(i1...) /= b(j1...) then return false; end if;
1842 L :=
1843 Make_Indexed_Component (Loc,
1844 Prefix => Make_Identifier (Loc, Chars (A)),
1845 Expressions => Index_List1);
1847 R :=
1848 Make_Indexed_Component (Loc,
1849 Prefix => Make_Identifier (Loc, Chars (B)),
1850 Expressions => Index_List2);
1852 Test := Expand_Composite_Equality
1853 (Nod, Component_Type (Typ), L, R, Decls);
1855 -- If some (sub)component is an unchecked_union, the whole operation
1856 -- will raise program error.
1858 if Nkind (Test) = N_Raise_Program_Error then
1860 -- This node is going to be inserted at a location where a
1861 -- statement is expected: clear its Etype so analysis will set
1862 -- it to the expected Standard_Void_Type.
1864 Set_Etype (Test, Empty);
1865 return Test;
1867 else
1868 return
1869 Make_Implicit_If_Statement (Nod,
1870 Condition => Make_Op_Not (Loc, Right_Opnd => Test),
1871 Then_Statements => New_List (
1872 Make_Simple_Return_Statement (Loc,
1873 Expression => New_Occurrence_Of (Standard_False, Loc))));
1874 end if;
1875 end Component_Equality;
1877 ------------------
1878 -- Get_Arg_Type --
1879 ------------------
1881 function Get_Arg_Type (N : Node_Id) return Entity_Id is
1882 T : Entity_Id;
1883 X : Node_Id;
1885 begin
1886 T := Etype (N);
1888 if No (T) then
1889 return Typ;
1891 else
1892 T := Underlying_Type (T);
1894 X := First_Index (T);
1895 while Present (X) loop
1896 if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
1897 or else
1898 Denotes_Discriminant (Type_High_Bound (Etype (X)))
1899 then
1900 T := Base_Type (T);
1901 exit;
1902 end if;
1904 Next_Index (X);
1905 end loop;
1907 return T;
1908 end if;
1909 end Get_Arg_Type;
1911 --------------------------
1912 -- Handle_One_Dimension --
1913 ---------------------------
1915 function Handle_One_Dimension
1916 (N : Int;
1917 Index : Node_Id) return Node_Id
1919 Need_Separate_Indexes : constant Boolean :=
1920 Ltyp /= Rtyp or else not Is_Constrained (Ltyp);
1921 -- If the index types are identical, and we are working with
1922 -- constrained types, then we can use the same index for both
1923 -- of the arrays.
1925 An : constant Entity_Id := Make_Temporary (Loc, 'A');
1927 Bn : Entity_Id;
1928 Index_T : Entity_Id;
1929 Stm_List : List_Id;
1930 Loop_Stm : Node_Id;
1932 begin
1933 if N > Number_Dimensions (Ltyp) then
1934 return Component_Equality (Ltyp);
1935 end if;
1937 -- Case where we generate a loop
1939 Index_T := Base_Type (Etype (Index));
1941 if Need_Separate_Indexes then
1942 Bn := Make_Temporary (Loc, 'B');
1943 else
1944 Bn := An;
1945 end if;
1947 Append (New_Occurrence_Of (An, Loc), Index_List1);
1948 Append (New_Occurrence_Of (Bn, Loc), Index_List2);
1950 Stm_List := New_List (
1951 Handle_One_Dimension (N + 1, Next_Index (Index)));
1953 if Need_Separate_Indexes then
1955 -- Generate guard for loop, followed by increments of indexes
1957 Append_To (Stm_List,
1958 Make_Exit_Statement (Loc,
1959 Condition =>
1960 Make_Op_Eq (Loc,
1961 Left_Opnd => New_Occurrence_Of (An, Loc),
1962 Right_Opnd => Arr_Attr (A, Name_Last, N))));
1964 Append_To (Stm_List,
1965 Make_Assignment_Statement (Loc,
1966 Name => New_Occurrence_Of (An, Loc),
1967 Expression =>
1968 Make_Attribute_Reference (Loc,
1969 Prefix => New_Occurrence_Of (Index_T, Loc),
1970 Attribute_Name => Name_Succ,
1971 Expressions => New_List (
1972 New_Occurrence_Of (An, Loc)))));
1974 Append_To (Stm_List,
1975 Make_Assignment_Statement (Loc,
1976 Name => New_Occurrence_Of (Bn, Loc),
1977 Expression =>
1978 Make_Attribute_Reference (Loc,
1979 Prefix => New_Occurrence_Of (Index_T, Loc),
1980 Attribute_Name => Name_Succ,
1981 Expressions => New_List (
1982 New_Occurrence_Of (Bn, Loc)))));
1983 end if;
1985 -- If separate indexes, we need a declare block for An and Bn, and a
1986 -- loop without an iteration scheme.
1988 if Need_Separate_Indexes then
1989 Loop_Stm :=
1990 Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
1992 return
1993 Make_Block_Statement (Loc,
1994 Declarations => New_List (
1995 Make_Object_Declaration (Loc,
1996 Defining_Identifier => An,
1997 Object_Definition => New_Occurrence_Of (Index_T, Loc),
1998 Expression => Arr_Attr (A, Name_First, N)),
2000 Make_Object_Declaration (Loc,
2001 Defining_Identifier => Bn,
2002 Object_Definition => New_Occurrence_Of (Index_T, Loc),
2003 Expression => Arr_Attr (B, Name_First, N))),
2005 Handled_Statement_Sequence =>
2006 Make_Handled_Sequence_Of_Statements (Loc,
2007 Statements => New_List (Loop_Stm)));
2009 -- If no separate indexes, return loop statement with explicit
2010 -- iteration scheme on its own
2012 else
2013 Loop_Stm :=
2014 Make_Implicit_Loop_Statement (Nod,
2015 Statements => Stm_List,
2016 Iteration_Scheme =>
2017 Make_Iteration_Scheme (Loc,
2018 Loop_Parameter_Specification =>
2019 Make_Loop_Parameter_Specification (Loc,
2020 Defining_Identifier => An,
2021 Discrete_Subtype_Definition =>
2022 Arr_Attr (A, Name_Range, N))));
2023 return Loop_Stm;
2024 end if;
2025 end Handle_One_Dimension;
2027 -----------------------
2028 -- Test_Empty_Arrays --
2029 -----------------------
2031 function Test_Empty_Arrays return Node_Id is
2032 Alist : Node_Id;
2033 Blist : Node_Id;
2035 Atest : Node_Id;
2036 Btest : Node_Id;
2038 begin
2039 Alist := Empty;
2040 Blist := Empty;
2041 for J in 1 .. Number_Dimensions (Ltyp) loop
2042 Atest :=
2043 Make_Op_Eq (Loc,
2044 Left_Opnd => Arr_Attr (A, Name_Length, J),
2045 Right_Opnd => Make_Integer_Literal (Loc, 0));
2047 Btest :=
2048 Make_Op_Eq (Loc,
2049 Left_Opnd => Arr_Attr (B, Name_Length, J),
2050 Right_Opnd => Make_Integer_Literal (Loc, 0));
2052 if No (Alist) then
2053 Alist := Atest;
2054 Blist := Btest;
2056 else
2057 Alist :=
2058 Make_Or_Else (Loc,
2059 Left_Opnd => Relocate_Node (Alist),
2060 Right_Opnd => Atest);
2062 Blist :=
2063 Make_Or_Else (Loc,
2064 Left_Opnd => Relocate_Node (Blist),
2065 Right_Opnd => Btest);
2066 end if;
2067 end loop;
2069 return
2070 Make_And_Then (Loc,
2071 Left_Opnd => Alist,
2072 Right_Opnd => Blist);
2073 end Test_Empty_Arrays;
2075 -----------------------------
2076 -- Test_Lengths_Correspond --
2077 -----------------------------
2079 function Test_Lengths_Correspond return Node_Id is
2080 Result : Node_Id;
2081 Rtest : Node_Id;
2083 begin
2084 Result := Empty;
2085 for J in 1 .. Number_Dimensions (Ltyp) loop
2086 Rtest :=
2087 Make_Op_Ne (Loc,
2088 Left_Opnd => Arr_Attr (A, Name_Length, J),
2089 Right_Opnd => Arr_Attr (B, Name_Length, J));
2091 if No (Result) then
2092 Result := Rtest;
2093 else
2094 Result :=
2095 Make_Or_Else (Loc,
2096 Left_Opnd => Relocate_Node (Result),
2097 Right_Opnd => Rtest);
2098 end if;
2099 end loop;
2101 return Result;
2102 end Test_Lengths_Correspond;
2104 -- Start of processing for Expand_Array_Equality
2106 begin
2107 Ltyp := Get_Arg_Type (Lhs);
2108 Rtyp := Get_Arg_Type (Rhs);
2110 -- For now, if the argument types are not the same, go to the base type,
2111 -- since the code assumes that the formals have the same type. This is
2112 -- fixable in future ???
2114 if Ltyp /= Rtyp then
2115 Ltyp := Base_Type (Ltyp);
2116 Rtyp := Base_Type (Rtyp);
2117 pragma Assert (Ltyp = Rtyp);
2118 end if;
2120 -- Build list of formals for function
2122 Formals := New_List (
2123 Make_Parameter_Specification (Loc,
2124 Defining_Identifier => A,
2125 Parameter_Type => New_Occurrence_Of (Ltyp, Loc)),
2127 Make_Parameter_Specification (Loc,
2128 Defining_Identifier => B,
2129 Parameter_Type => New_Occurrence_Of (Rtyp, Loc)));
2131 Func_Name := Make_Temporary (Loc, 'E');
2133 -- Build statement sequence for function
2135 Func_Body :=
2136 Make_Subprogram_Body (Loc,
2137 Specification =>
2138 Make_Function_Specification (Loc,
2139 Defining_Unit_Name => Func_Name,
2140 Parameter_Specifications => Formals,
2141 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
2143 Declarations => Decls,
2145 Handled_Statement_Sequence =>
2146 Make_Handled_Sequence_Of_Statements (Loc,
2147 Statements => New_List (
2149 Make_Implicit_If_Statement (Nod,
2150 Condition => Test_Empty_Arrays,
2151 Then_Statements => New_List (
2152 Make_Simple_Return_Statement (Loc,
2153 Expression =>
2154 New_Occurrence_Of (Standard_True, Loc)))),
2156 Make_Implicit_If_Statement (Nod,
2157 Condition => Test_Lengths_Correspond,
2158 Then_Statements => New_List (
2159 Make_Simple_Return_Statement (Loc,
2160 Expression =>
2161 New_Occurrence_Of (Standard_False, Loc)))),
2163 Handle_One_Dimension (1, First_Index (Ltyp)),
2165 Make_Simple_Return_Statement (Loc,
2166 Expression => New_Occurrence_Of (Standard_True, Loc)))));
2168 Set_Has_Completion (Func_Name, True);
2169 Set_Is_Inlined (Func_Name);
2171 -- If the array type is distinct from the type of the arguments, it
2172 -- is the full view of a private type. Apply an unchecked conversion
2173 -- to insure that analysis of the call succeeds.
2175 declare
2176 L, R : Node_Id;
2178 begin
2179 L := Lhs;
2180 R := Rhs;
2182 if No (Etype (Lhs))
2183 or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
2184 then
2185 L := OK_Convert_To (Ltyp, Lhs);
2186 end if;
2188 if No (Etype (Rhs))
2189 or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
2190 then
2191 R := OK_Convert_To (Rtyp, Rhs);
2192 end if;
2194 Actuals := New_List (L, R);
2195 end;
2197 Append_To (Bodies, Func_Body);
2199 return
2200 Make_Function_Call (Loc,
2201 Name => New_Occurrence_Of (Func_Name, Loc),
2202 Parameter_Associations => Actuals);
2203 end Expand_Array_Equality;
2205 -----------------------------
2206 -- Expand_Boolean_Operator --
2207 -----------------------------
2209 -- Note that we first get the actual subtypes of the operands, since we
2210 -- always want to deal with types that have bounds.
2212 procedure Expand_Boolean_Operator (N : Node_Id) is
2213 Typ : constant Entity_Id := Etype (N);
2215 begin
2216 -- Special case of bit packed array where both operands are known to be
2217 -- properly aligned. In this case we use an efficient run time routine
2218 -- to carry out the operation (see System.Bit_Ops).
2220 if Is_Bit_Packed_Array (Typ)
2221 and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
2222 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
2223 then
2224 Expand_Packed_Boolean_Operator (N);
2225 return;
2226 end if;
2228 -- For the normal non-packed case, the general expansion is to build
2229 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2230 -- and then inserting it into the tree. The original operator node is
2231 -- then rewritten as a call to this function. We also use this in the
2232 -- packed case if either operand is a possibly unaligned object.
2234 declare
2235 Loc : constant Source_Ptr := Sloc (N);
2236 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
2237 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
2238 Func_Body : Node_Id;
2239 Func_Name : Entity_Id;
2241 begin
2242 Convert_To_Actual_Subtype (L);
2243 Convert_To_Actual_Subtype (R);
2244 Ensure_Defined (Etype (L), N);
2245 Ensure_Defined (Etype (R), N);
2246 Apply_Length_Check (R, Etype (L));
2248 if Nkind (N) = N_Op_Xor then
2249 Silly_Boolean_Array_Xor_Test (N, Etype (L));
2250 end if;
2252 if Nkind (Parent (N)) = N_Assignment_Statement
2253 and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
2254 then
2255 Build_Boolean_Array_Proc_Call (Parent (N), L, R);
2257 elsif Nkind (Parent (N)) = N_Op_Not
2258 and then Nkind (N) = N_Op_And
2259 and then
2260 Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
2261 then
2262 return;
2263 else
2265 Func_Body := Make_Boolean_Array_Op (Etype (L), N);
2266 Func_Name := Defining_Unit_Name (Specification (Func_Body));
2267 Insert_Action (N, Func_Body);
2269 -- Now rewrite the expression with a call
2271 Rewrite (N,
2272 Make_Function_Call (Loc,
2273 Name => New_Occurrence_Of (Func_Name, Loc),
2274 Parameter_Associations =>
2275 New_List (
2277 Make_Type_Conversion
2278 (Loc, New_Occurrence_Of (Etype (L), Loc), R))));
2280 Analyze_And_Resolve (N, Typ);
2281 end if;
2282 end;
2283 end Expand_Boolean_Operator;
2285 ------------------------------------------------
2286 -- Expand_Compare_Minimize_Eliminate_Overflow --
2287 ------------------------------------------------
2289 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id) is
2290 Loc : constant Source_Ptr := Sloc (N);
2292 Result_Type : constant Entity_Id := Etype (N);
2293 -- Capture result type (could be a derived boolean type)
2295 Llo, Lhi : Uint;
2296 Rlo, Rhi : Uint;
2298 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
2299 -- Entity for Long_Long_Integer'Base
2301 Check : constant Overflow_Mode_Type := Overflow_Check_Mode;
2302 -- Current overflow checking mode
2304 procedure Set_True;
2305 procedure Set_False;
2306 -- These procedures rewrite N with an occurrence of Standard_True or
2307 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2309 ---------------
2310 -- Set_False --
2311 ---------------
2313 procedure Set_False is
2314 begin
2315 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
2316 Warn_On_Known_Condition (N);
2317 end Set_False;
2319 --------------
2320 -- Set_True --
2321 --------------
2323 procedure Set_True is
2324 begin
2325 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
2326 Warn_On_Known_Condition (N);
2327 end Set_True;
2329 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2331 begin
2332 -- Nothing to do unless we have a comparison operator with operands
2333 -- that are signed integer types, and we are operating in either
2334 -- MINIMIZED or ELIMINATED overflow checking mode.
2336 if Nkind (N) not in N_Op_Compare
2337 or else Check not in Minimized_Or_Eliminated
2338 or else not Is_Signed_Integer_Type (Etype (Left_Opnd (N)))
2339 then
2340 return;
2341 end if;
2343 -- OK, this is the case we are interested in. First step is to process
2344 -- our operands using the Minimize_Eliminate circuitry which applies
2345 -- this processing to the two operand subtrees.
2347 Minimize_Eliminate_Overflows
2348 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
2349 Minimize_Eliminate_Overflows
2350 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
2352 -- See if the range information decides the result of the comparison.
2353 -- We can only do this if we in fact have full range information (which
2354 -- won't be the case if either operand is bignum at this stage).
2356 if Llo /= No_Uint and then Rlo /= No_Uint then
2357 case N_Op_Compare (Nkind (N)) is
2358 when N_Op_Eq =>
2359 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2360 Set_True;
2361 elsif Llo > Rhi or else Lhi < Rlo then
2362 Set_False;
2363 end if;
2365 when N_Op_Ge =>
2366 if Llo >= Rhi then
2367 Set_True;
2368 elsif Lhi < Rlo then
2369 Set_False;
2370 end if;
2372 when N_Op_Gt =>
2373 if Llo > Rhi then
2374 Set_True;
2375 elsif Lhi <= Rlo then
2376 Set_False;
2377 end if;
2379 when N_Op_Le =>
2380 if Llo > Rhi then
2381 Set_False;
2382 elsif Lhi <= Rlo then
2383 Set_True;
2384 end if;
2386 when N_Op_Lt =>
2387 if Llo >= Rhi then
2388 Set_False;
2389 elsif Lhi < Rlo then
2390 Set_True;
2391 end if;
2393 when N_Op_Ne =>
2394 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2395 Set_False;
2396 elsif Llo > Rhi or else Lhi < Rlo then
2397 Set_True;
2398 end if;
2399 end case;
2401 -- All done if we did the rewrite
2403 if Nkind (N) not in N_Op_Compare then
2404 return;
2405 end if;
2406 end if;
2408 -- Otherwise, time to do the comparison
2410 declare
2411 Ltype : constant Entity_Id := Etype (Left_Opnd (N));
2412 Rtype : constant Entity_Id := Etype (Right_Opnd (N));
2414 begin
2415 -- If the two operands have the same signed integer type we are
2416 -- all set, nothing more to do. This is the case where either
2417 -- both operands were unchanged, or we rewrote both of them to
2418 -- be Long_Long_Integer.
2420 -- Note: Entity for the comparison may be wrong, but it's not worth
2421 -- the effort to change it, since the back end does not use it.
2423 if Is_Signed_Integer_Type (Ltype)
2424 and then Base_Type (Ltype) = Base_Type (Rtype)
2425 then
2426 return;
2428 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2430 elsif Is_RTE (Ltype, RE_Bignum) or else Is_RTE (Rtype, RE_Bignum) then
2431 declare
2432 Left : Node_Id := Left_Opnd (N);
2433 Right : Node_Id := Right_Opnd (N);
2434 -- Bignum references for left and right operands
2436 begin
2437 if not Is_RTE (Ltype, RE_Bignum) then
2438 Left := Convert_To_Bignum (Left);
2439 elsif not Is_RTE (Rtype, RE_Bignum) then
2440 Right := Convert_To_Bignum (Right);
2441 end if;
2443 -- We rewrite our node with:
2445 -- do
2446 -- Bnn : Result_Type;
2447 -- declare
2448 -- M : Mark_Id := SS_Mark;
2449 -- begin
2450 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2451 -- SS_Release (M);
2452 -- end;
2453 -- in
2454 -- Bnn
2455 -- end
2457 declare
2458 Blk : constant Node_Id := Make_Bignum_Block (Loc);
2459 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
2460 Ent : RE_Id;
2462 begin
2463 case N_Op_Compare (Nkind (N)) is
2464 when N_Op_Eq => Ent := RE_Big_EQ;
2465 when N_Op_Ge => Ent := RE_Big_GE;
2466 when N_Op_Gt => Ent := RE_Big_GT;
2467 when N_Op_Le => Ent := RE_Big_LE;
2468 when N_Op_Lt => Ent := RE_Big_LT;
2469 when N_Op_Ne => Ent := RE_Big_NE;
2470 end case;
2472 -- Insert assignment to Bnn into the bignum block
2474 Insert_Before
2475 (First (Statements (Handled_Statement_Sequence (Blk))),
2476 Make_Assignment_Statement (Loc,
2477 Name => New_Occurrence_Of (Bnn, Loc),
2478 Expression =>
2479 Make_Function_Call (Loc,
2480 Name =>
2481 New_Occurrence_Of (RTE (Ent), Loc),
2482 Parameter_Associations => New_List (Left, Right))));
2484 -- Now do the rewrite with expression actions
2486 Rewrite (N,
2487 Make_Expression_With_Actions (Loc,
2488 Actions => New_List (
2489 Make_Object_Declaration (Loc,
2490 Defining_Identifier => Bnn,
2491 Object_Definition =>
2492 New_Occurrence_Of (Result_Type, Loc)),
2493 Blk),
2494 Expression => New_Occurrence_Of (Bnn, Loc)));
2495 Analyze_And_Resolve (N, Result_Type);
2496 end;
2497 end;
2499 -- No bignums involved, but types are different, so we must have
2500 -- rewritten one of the operands as a Long_Long_Integer but not
2501 -- the other one.
2503 -- If left operand is Long_Long_Integer, convert right operand
2504 -- and we are done (with a comparison of two Long_Long_Integers).
2506 elsif Ltype = LLIB then
2507 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
2508 Analyze_And_Resolve (Right_Opnd (N), LLIB, Suppress => All_Checks);
2509 return;
2511 -- If right operand is Long_Long_Integer, convert left operand
2512 -- and we are done (with a comparison of two Long_Long_Integers).
2514 -- This is the only remaining possibility
2516 else pragma Assert (Rtype = LLIB);
2517 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
2518 Analyze_And_Resolve (Left_Opnd (N), LLIB, Suppress => All_Checks);
2519 return;
2520 end if;
2521 end;
2522 end Expand_Compare_Minimize_Eliminate_Overflow;
2524 -------------------------------
2525 -- Expand_Composite_Equality --
2526 -------------------------------
2528 -- This function is only called for comparing internal fields of composite
2529 -- types when these fields are themselves composites. This is a special
2530 -- case because it is not possible to respect normal Ada visibility rules.
2532 function Expand_Composite_Equality
2533 (Nod : Node_Id;
2534 Typ : Entity_Id;
2535 Lhs : Node_Id;
2536 Rhs : Node_Id;
2537 Bodies : List_Id) return Node_Id
2539 Loc : constant Source_Ptr := Sloc (Nod);
2540 Full_Type : Entity_Id;
2541 Prim : Elmt_Id;
2542 Eq_Op : Entity_Id;
2544 function Find_Primitive_Eq return Node_Id;
2545 -- AI05-0123: Locate primitive equality for type if it exists, and
2546 -- build the corresponding call. If operation is abstract, replace
2547 -- call with an explicit raise. Return Empty if there is no primitive.
2549 -----------------------
2550 -- Find_Primitive_Eq --
2551 -----------------------
2553 function Find_Primitive_Eq return Node_Id is
2554 Prim_E : Elmt_Id;
2555 Prim : Node_Id;
2557 begin
2558 Prim_E := First_Elmt (Collect_Primitive_Operations (Typ));
2559 while Present (Prim_E) loop
2560 Prim := Node (Prim_E);
2562 -- Locate primitive equality with the right signature
2564 if Chars (Prim) = Name_Op_Eq
2565 and then Etype (First_Formal (Prim)) =
2566 Etype (Next_Formal (First_Formal (Prim)))
2567 and then Etype (Prim) = Standard_Boolean
2568 then
2569 if Is_Abstract_Subprogram (Prim) then
2570 return
2571 Make_Raise_Program_Error (Loc,
2572 Reason => PE_Explicit_Raise);
2574 else
2575 return
2576 Make_Function_Call (Loc,
2577 Name => New_Occurrence_Of (Prim, Loc),
2578 Parameter_Associations => New_List (Lhs, Rhs));
2579 end if;
2580 end if;
2582 Next_Elmt (Prim_E);
2583 end loop;
2585 -- If not found, predefined operation will be used
2587 return Empty;
2588 end Find_Primitive_Eq;
2590 -- Start of processing for Expand_Composite_Equality
2592 begin
2593 if Is_Private_Type (Typ) then
2594 Full_Type := Underlying_Type (Typ);
2595 else
2596 Full_Type := Typ;
2597 end if;
2599 -- If the private type has no completion the context may be the
2600 -- expansion of a composite equality for a composite type with some
2601 -- still incomplete components. The expression will not be analyzed
2602 -- until the enclosing type is completed, at which point this will be
2603 -- properly expanded, unless there is a bona fide completion error.
2605 if No (Full_Type) then
2606 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2607 end if;
2609 Full_Type := Base_Type (Full_Type);
2611 -- When the base type itself is private, use the full view to expand
2612 -- the composite equality.
2614 if Is_Private_Type (Full_Type) then
2615 Full_Type := Underlying_Type (Full_Type);
2616 end if;
2618 -- Case of array types
2620 if Is_Array_Type (Full_Type) then
2622 -- If the operand is an elementary type other than a floating-point
2623 -- type, then we can simply use the built-in block bitwise equality,
2624 -- since the predefined equality operators always apply and bitwise
2625 -- equality is fine for all these cases.
2627 if Is_Elementary_Type (Component_Type (Full_Type))
2628 and then not Is_Floating_Point_Type (Component_Type (Full_Type))
2629 then
2630 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2632 -- For composite component types, and floating-point types, use the
2633 -- expansion. This deals with tagged component types (where we use
2634 -- the applicable equality routine) and floating-point, (where we
2635 -- need to worry about negative zeroes), and also the case of any
2636 -- composite type recursively containing such fields.
2638 else
2639 return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
2640 end if;
2642 -- Case of tagged record types
2644 elsif Is_Tagged_Type (Full_Type) then
2646 -- Call the primitive operation "=" of this type
2648 if Is_Class_Wide_Type (Full_Type) then
2649 Full_Type := Root_Type (Full_Type);
2650 end if;
2652 -- If this is derived from an untagged private type completed with a
2653 -- tagged type, it does not have a full view, so we use the primitive
2654 -- operations of the private type. This check should no longer be
2655 -- necessary when these types receive their full views ???
2657 if Is_Private_Type (Typ)
2658 and then not Is_Tagged_Type (Typ)
2659 and then not Is_Controlled (Typ)
2660 and then Is_Derived_Type (Typ)
2661 and then No (Full_View (Typ))
2662 then
2663 Prim := First_Elmt (Collect_Primitive_Operations (Typ));
2664 else
2665 Prim := First_Elmt (Primitive_Operations (Full_Type));
2666 end if;
2668 loop
2669 Eq_Op := Node (Prim);
2670 exit when Chars (Eq_Op) = Name_Op_Eq
2671 and then Etype (First_Formal (Eq_Op)) =
2672 Etype (Next_Formal (First_Formal (Eq_Op)))
2673 and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
2674 Next_Elmt (Prim);
2675 pragma Assert (Present (Prim));
2676 end loop;
2678 Eq_Op := Node (Prim);
2680 return
2681 Make_Function_Call (Loc,
2682 Name => New_Occurrence_Of (Eq_Op, Loc),
2683 Parameter_Associations =>
2684 New_List
2685 (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
2686 Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
2688 -- Case of untagged record types
2690 elsif Is_Record_Type (Full_Type) then
2691 Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
2693 if Present (Eq_Op) then
2694 if Etype (First_Formal (Eq_Op)) /= Full_Type then
2696 -- Inherited equality from parent type. Convert the actuals to
2697 -- match signature of operation.
2699 declare
2700 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
2702 begin
2703 return
2704 Make_Function_Call (Loc,
2705 Name => New_Occurrence_Of (Eq_Op, Loc),
2706 Parameter_Associations => New_List (
2707 OK_Convert_To (T, Lhs),
2708 OK_Convert_To (T, Rhs)));
2709 end;
2711 else
2712 -- Comparison between Unchecked_Union components
2714 if Is_Unchecked_Union (Full_Type) then
2715 declare
2716 Lhs_Type : Node_Id := Full_Type;
2717 Rhs_Type : Node_Id := Full_Type;
2718 Lhs_Discr_Val : Node_Id;
2719 Rhs_Discr_Val : Node_Id;
2721 begin
2722 -- Lhs subtype
2724 if Nkind (Lhs) = N_Selected_Component then
2725 Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
2726 end if;
2728 -- Rhs subtype
2730 if Nkind (Rhs) = N_Selected_Component then
2731 Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
2732 end if;
2734 -- Lhs of the composite equality
2736 if Is_Constrained (Lhs_Type) then
2738 -- Since the enclosing record type can never be an
2739 -- Unchecked_Union (this code is executed for records
2740 -- that do not have variants), we may reference its
2741 -- discriminant(s).
2743 if Nkind (Lhs) = N_Selected_Component
2744 and then Has_Per_Object_Constraint
2745 (Entity (Selector_Name (Lhs)))
2746 then
2747 Lhs_Discr_Val :=
2748 Make_Selected_Component (Loc,
2749 Prefix => Prefix (Lhs),
2750 Selector_Name =>
2751 New_Copy
2752 (Get_Discriminant_Value
2753 (First_Discriminant (Lhs_Type),
2754 Lhs_Type,
2755 Stored_Constraint (Lhs_Type))));
2757 else
2758 Lhs_Discr_Val :=
2759 New_Copy
2760 (Get_Discriminant_Value
2761 (First_Discriminant (Lhs_Type),
2762 Lhs_Type,
2763 Stored_Constraint (Lhs_Type)));
2765 end if;
2766 else
2767 -- It is not possible to infer the discriminant since
2768 -- the subtype is not constrained.
2770 return
2771 Make_Raise_Program_Error (Loc,
2772 Reason => PE_Unchecked_Union_Restriction);
2773 end if;
2775 -- Rhs of the composite equality
2777 if Is_Constrained (Rhs_Type) then
2778 if Nkind (Rhs) = N_Selected_Component
2779 and then Has_Per_Object_Constraint
2780 (Entity (Selector_Name (Rhs)))
2781 then
2782 Rhs_Discr_Val :=
2783 Make_Selected_Component (Loc,
2784 Prefix => Prefix (Rhs),
2785 Selector_Name =>
2786 New_Copy
2787 (Get_Discriminant_Value
2788 (First_Discriminant (Rhs_Type),
2789 Rhs_Type,
2790 Stored_Constraint (Rhs_Type))));
2792 else
2793 Rhs_Discr_Val :=
2794 New_Copy
2795 (Get_Discriminant_Value
2796 (First_Discriminant (Rhs_Type),
2797 Rhs_Type,
2798 Stored_Constraint (Rhs_Type)));
2800 end if;
2801 else
2802 return
2803 Make_Raise_Program_Error (Loc,
2804 Reason => PE_Unchecked_Union_Restriction);
2805 end if;
2807 -- Call the TSS equality function with the inferred
2808 -- discriminant values.
2810 return
2811 Make_Function_Call (Loc,
2812 Name => New_Occurrence_Of (Eq_Op, Loc),
2813 Parameter_Associations => New_List (
2814 Lhs,
2815 Rhs,
2816 Lhs_Discr_Val,
2817 Rhs_Discr_Val));
2818 end;
2820 else
2821 return
2822 Make_Function_Call (Loc,
2823 Name => New_Occurrence_Of (Eq_Op, Loc),
2824 Parameter_Associations => New_List (Lhs, Rhs));
2825 end if;
2826 end if;
2828 -- Equality composes in Ada 2012 for untagged record types. It also
2829 -- composes for bounded strings, because they are part of the
2830 -- predefined environment. We could make it compose for bounded
2831 -- strings by making them tagged, or by making sure all subcomponents
2832 -- are set to the same value, even when not used. Instead, we have
2833 -- this special case in the compiler, because it's more efficient.
2835 elsif Ada_Version >= Ada_2012 or else Is_Bounded_String (Typ) then
2837 -- If no TSS has been created for the type, check whether there is
2838 -- a primitive equality declared for it.
2840 declare
2841 Op : constant Node_Id := Find_Primitive_Eq;
2843 begin
2844 -- Use user-defined primitive if it exists, otherwise use
2845 -- predefined equality.
2847 if Present (Op) then
2848 return Op;
2849 else
2850 return Make_Op_Eq (Loc, Lhs, Rhs);
2851 end if;
2852 end;
2854 else
2855 return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
2856 end if;
2858 -- Non-composite types (always use predefined equality)
2860 else
2861 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2862 end if;
2863 end Expand_Composite_Equality;
2865 ------------------------
2866 -- Expand_Concatenate --
2867 ------------------------
2869 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
2870 Loc : constant Source_Ptr := Sloc (Cnode);
2872 Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
2873 -- Result type of concatenation
2875 Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
2876 -- Component type. Elements of this component type can appear as one
2877 -- of the operands of concatenation as well as arrays.
2879 Istyp : constant Entity_Id := Etype (First_Index (Atyp));
2880 -- Index subtype
2882 Ityp : constant Entity_Id := Base_Type (Istyp);
2883 -- Index type. This is the base type of the index subtype, and is used
2884 -- for all computed bounds (which may be out of range of Istyp in the
2885 -- case of null ranges).
2887 Artyp : Entity_Id;
2888 -- This is the type we use to do arithmetic to compute the bounds and
2889 -- lengths of operands. The choice of this type is a little subtle and
2890 -- is discussed in a separate section at the start of the body code.
2892 Concatenation_Error : exception;
2893 -- Raised if concatenation is sure to raise a CE
2895 Result_May_Be_Null : Boolean := True;
2896 -- Reset to False if at least one operand is encountered which is known
2897 -- at compile time to be non-null. Used for handling the special case
2898 -- of setting the high bound to the last operand high bound for a null
2899 -- result, thus ensuring a proper high bound in the super-flat case.
2901 N : constant Nat := List_Length (Opnds);
2902 -- Number of concatenation operands including possibly null operands
2904 NN : Nat := 0;
2905 -- Number of operands excluding any known to be null, except that the
2906 -- last operand is always retained, in case it provides the bounds for
2907 -- a null result.
2909 Opnd : Node_Id;
2910 -- Current operand being processed in the loop through operands. After
2911 -- this loop is complete, always contains the last operand (which is not
2912 -- the same as Operands (NN), since null operands are skipped).
2914 -- Arrays describing the operands, only the first NN entries of each
2915 -- array are set (NN < N when we exclude known null operands).
2917 Is_Fixed_Length : array (1 .. N) of Boolean;
2918 -- True if length of corresponding operand known at compile time
2920 Operands : array (1 .. N) of Node_Id;
2921 -- Set to the corresponding entry in the Opnds list (but note that null
2922 -- operands are excluded, so not all entries in the list are stored).
2924 Fixed_Length : array (1 .. N) of Uint;
2925 -- Set to length of operand. Entries in this array are set only if the
2926 -- corresponding entry in Is_Fixed_Length is True.
2928 Opnd_Low_Bound : array (1 .. N) of Node_Id;
2929 -- Set to lower bound of operand. Either an integer literal in the case
2930 -- where the bound is known at compile time, else actual lower bound.
2931 -- The operand low bound is of type Ityp.
2933 Var_Length : array (1 .. N) of Entity_Id;
2934 -- Set to an entity of type Natural that contains the length of an
2935 -- operand whose length is not known at compile time. Entries in this
2936 -- array are set only if the corresponding entry in Is_Fixed_Length
2937 -- is False. The entity is of type Artyp.
2939 Aggr_Length : array (0 .. N) of Node_Id;
2940 -- The J'th entry in an expression node that represents the total length
2941 -- of operands 1 through J. It is either an integer literal node, or a
2942 -- reference to a constant entity with the right value, so it is fine
2943 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
2944 -- entry always is set to zero. The length is of type Artyp.
2946 Low_Bound : Node_Id;
2947 -- A tree node representing the low bound of the result (of type Ityp).
2948 -- This is either an integer literal node, or an identifier reference to
2949 -- a constant entity initialized to the appropriate value.
2951 Last_Opnd_Low_Bound : Node_Id;
2952 -- A tree node representing the low bound of the last operand. This
2953 -- need only be set if the result could be null. It is used for the
2954 -- special case of setting the right low bound for a null result.
2955 -- This is of type Ityp.
2957 Last_Opnd_High_Bound : Node_Id;
2958 -- A tree node representing the high bound of the last operand. This
2959 -- need only be set if the result could be null. It is used for the
2960 -- special case of setting the right high bound for a null result.
2961 -- This is of type Ityp.
2963 High_Bound : Node_Id;
2964 -- A tree node representing the high bound of the result (of type Ityp)
2966 Result : Node_Id;
2967 -- Result of the concatenation (of type Ityp)
2969 Actions : constant List_Id := New_List;
2970 -- Collect actions to be inserted
2972 Known_Non_Null_Operand_Seen : Boolean;
2973 -- Set True during generation of the assignments of operands into
2974 -- result once an operand known to be non-null has been seen.
2976 function Make_Artyp_Literal (Val : Nat) return Node_Id;
2977 -- This function makes an N_Integer_Literal node that is returned in
2978 -- analyzed form with the type set to Artyp. Importantly this literal
2979 -- is not flagged as static, so that if we do computations with it that
2980 -- result in statically detected out of range conditions, we will not
2981 -- generate error messages but instead warning messages.
2983 function To_Artyp (X : Node_Id) return Node_Id;
2984 -- Given a node of type Ityp, returns the corresponding value of type
2985 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2986 -- For enum types, the Pos of the value is returned.
2988 function To_Ityp (X : Node_Id) return Node_Id;
2989 -- The inverse function (uses Val in the case of enumeration types)
2991 ------------------------
2992 -- Make_Artyp_Literal --
2993 ------------------------
2995 function Make_Artyp_Literal (Val : Nat) return Node_Id is
2996 Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
2997 begin
2998 Set_Etype (Result, Artyp);
2999 Set_Analyzed (Result, True);
3000 Set_Is_Static_Expression (Result, False);
3001 return Result;
3002 end Make_Artyp_Literal;
3004 --------------
3005 -- To_Artyp --
3006 --------------
3008 function To_Artyp (X : Node_Id) return Node_Id is
3009 begin
3010 if Ityp = Base_Type (Artyp) then
3011 return X;
3013 elsif Is_Enumeration_Type (Ityp) then
3014 return
3015 Make_Attribute_Reference (Loc,
3016 Prefix => New_Occurrence_Of (Ityp, Loc),
3017 Attribute_Name => Name_Pos,
3018 Expressions => New_List (X));
3020 else
3021 return Convert_To (Artyp, X);
3022 end if;
3023 end To_Artyp;
3025 -------------
3026 -- To_Ityp --
3027 -------------
3029 function To_Ityp (X : Node_Id) return Node_Id is
3030 begin
3031 if Is_Enumeration_Type (Ityp) then
3032 return
3033 Make_Attribute_Reference (Loc,
3034 Prefix => New_Occurrence_Of (Ityp, Loc),
3035 Attribute_Name => Name_Val,
3036 Expressions => New_List (X));
3038 -- Case where we will do a type conversion
3040 else
3041 if Ityp = Base_Type (Artyp) then
3042 return X;
3043 else
3044 return Convert_To (Ityp, X);
3045 end if;
3046 end if;
3047 end To_Ityp;
3049 -- Local Declarations
3051 Lib_Level_Target : constant Boolean :=
3052 Nkind (Parent (Cnode)) = N_Object_Declaration
3053 and then
3054 Is_Library_Level_Entity (Defining_Identifier (Parent (Cnode)));
3056 -- If the concatenation declares a library level entity, we call the
3057 -- built-in concatenation routines to prevent code bloat, regardless
3058 -- of optimization level. This is space-efficient, and prevent linking
3059 -- problems when units are compiled with different optimizations.
3061 Opnd_Typ : Entity_Id;
3062 Ent : Entity_Id;
3063 Len : Uint;
3064 J : Nat;
3065 Clen : Node_Id;
3066 Set : Boolean;
3068 -- Start of processing for Expand_Concatenate
3070 begin
3071 -- Choose an appropriate computational type
3073 -- We will be doing calculations of lengths and bounds in this routine
3074 -- and computing one from the other in some cases, e.g. getting the high
3075 -- bound by adding the length-1 to the low bound.
3077 -- We can't just use the index type, or even its base type for this
3078 -- purpose for two reasons. First it might be an enumeration type which
3079 -- is not suitable for computations of any kind, and second it may
3080 -- simply not have enough range. For example if the index type is
3081 -- -128..+127 then lengths can be up to 256, which is out of range of
3082 -- the type.
3084 -- For enumeration types, we can simply use Standard_Integer, this is
3085 -- sufficient since the actual number of enumeration literals cannot
3086 -- possibly exceed the range of integer (remember we will be doing the
3087 -- arithmetic with POS values, not representation values).
3089 if Is_Enumeration_Type (Ityp) then
3090 Artyp := Standard_Integer;
3092 -- If index type is Positive, we use the standard unsigned type, to give
3093 -- more room on the top of the range, obviating the need for an overflow
3094 -- check when creating the upper bound. This is needed to avoid junk
3095 -- overflow checks in the common case of String types.
3097 -- ??? Disabled for now
3099 -- elsif Istyp = Standard_Positive then
3100 -- Artyp := Standard_Unsigned;
3102 -- For modular types, we use a 32-bit modular type for types whose size
3103 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
3104 -- identity type, and for larger unsigned types we use 64-bits.
3106 elsif Is_Modular_Integer_Type (Ityp) then
3107 if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
3108 Artyp := Standard_Unsigned;
3109 elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
3110 Artyp := Ityp;
3111 else
3112 Artyp := RTE (RE_Long_Long_Unsigned);
3113 end if;
3115 -- Similar treatment for signed types
3117 else
3118 if RM_Size (Ityp) < RM_Size (Standard_Integer) then
3119 Artyp := Standard_Integer;
3120 elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
3121 Artyp := Ityp;
3122 else
3123 Artyp := Standard_Long_Long_Integer;
3124 end if;
3125 end if;
3127 -- Supply dummy entry at start of length array
3129 Aggr_Length (0) := Make_Artyp_Literal (0);
3131 -- Go through operands setting up the above arrays
3133 J := 1;
3134 while J <= N loop
3135 Opnd := Remove_Head (Opnds);
3136 Opnd_Typ := Etype (Opnd);
3138 -- The parent got messed up when we put the operands in a list,
3139 -- so now put back the proper parent for the saved operand, that
3140 -- is to say the concatenation node, to make sure that each operand
3141 -- is seen as a subexpression, e.g. if actions must be inserted.
3143 Set_Parent (Opnd, Cnode);
3145 -- Set will be True when we have setup one entry in the array
3147 Set := False;
3149 -- Singleton element (or character literal) case
3151 if Base_Type (Opnd_Typ) = Ctyp then
3152 NN := NN + 1;
3153 Operands (NN) := Opnd;
3154 Is_Fixed_Length (NN) := True;
3155 Fixed_Length (NN) := Uint_1;
3156 Result_May_Be_Null := False;
3158 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
3159 -- since we know that the result cannot be null).
3161 Opnd_Low_Bound (NN) :=
3162 Make_Attribute_Reference (Loc,
3163 Prefix => New_Occurrence_Of (Istyp, Loc),
3164 Attribute_Name => Name_First);
3166 Set := True;
3168 -- String literal case (can only occur for strings of course)
3170 elsif Nkind (Opnd) = N_String_Literal then
3171 Len := String_Literal_Length (Opnd_Typ);
3173 if Len /= 0 then
3174 Result_May_Be_Null := False;
3175 end if;
3177 -- Capture last operand low and high bound if result could be null
3179 if J = N and then Result_May_Be_Null then
3180 Last_Opnd_Low_Bound :=
3181 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3183 Last_Opnd_High_Bound :=
3184 Make_Op_Subtract (Loc,
3185 Left_Opnd =>
3186 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
3187 Right_Opnd => Make_Integer_Literal (Loc, 1));
3188 end if;
3190 -- Skip null string literal
3192 if J < N and then Len = 0 then
3193 goto Continue;
3194 end if;
3196 NN := NN + 1;
3197 Operands (NN) := Opnd;
3198 Is_Fixed_Length (NN) := True;
3200 -- Set length and bounds
3202 Fixed_Length (NN) := Len;
3204 Opnd_Low_Bound (NN) :=
3205 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3207 Set := True;
3209 -- All other cases
3211 else
3212 -- Check constrained case with known bounds
3214 if Is_Constrained (Opnd_Typ) then
3215 declare
3216 Index : constant Node_Id := First_Index (Opnd_Typ);
3217 Indx_Typ : constant Entity_Id := Etype (Index);
3218 Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
3219 Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
3221 begin
3222 -- Fixed length constrained array type with known at compile
3223 -- time bounds is last case of fixed length operand.
3225 if Compile_Time_Known_Value (Lo)
3226 and then
3227 Compile_Time_Known_Value (Hi)
3228 then
3229 declare
3230 Loval : constant Uint := Expr_Value (Lo);
3231 Hival : constant Uint := Expr_Value (Hi);
3232 Len : constant Uint :=
3233 UI_Max (Hival - Loval + 1, Uint_0);
3235 begin
3236 if Len > 0 then
3237 Result_May_Be_Null := False;
3238 end if;
3240 -- Capture last operand bounds if result could be null
3242 if J = N and then Result_May_Be_Null then
3243 Last_Opnd_Low_Bound :=
3244 Convert_To (Ityp,
3245 Make_Integer_Literal (Loc, Expr_Value (Lo)));
3247 Last_Opnd_High_Bound :=
3248 Convert_To (Ityp,
3249 Make_Integer_Literal (Loc, Expr_Value (Hi)));
3250 end if;
3252 -- Exclude null length case unless last operand
3254 if J < N and then Len = 0 then
3255 goto Continue;
3256 end if;
3258 NN := NN + 1;
3259 Operands (NN) := Opnd;
3260 Is_Fixed_Length (NN) := True;
3261 Fixed_Length (NN) := Len;
3263 Opnd_Low_Bound (NN) :=
3264 To_Ityp
3265 (Make_Integer_Literal (Loc, Expr_Value (Lo)));
3266 Set := True;
3267 end;
3268 end if;
3269 end;
3270 end if;
3272 -- All cases where the length is not known at compile time, or the
3273 -- special case of an operand which is known to be null but has a
3274 -- lower bound other than 1 or is other than a string type.
3276 if not Set then
3277 NN := NN + 1;
3279 -- Capture operand bounds
3281 Opnd_Low_Bound (NN) :=
3282 Make_Attribute_Reference (Loc,
3283 Prefix =>
3284 Duplicate_Subexpr (Opnd, Name_Req => True),
3285 Attribute_Name => Name_First);
3287 -- Capture last operand bounds if result could be null
3289 if J = N and Result_May_Be_Null then
3290 Last_Opnd_Low_Bound :=
3291 Convert_To (Ityp,
3292 Make_Attribute_Reference (Loc,
3293 Prefix =>
3294 Duplicate_Subexpr (Opnd, Name_Req => True),
3295 Attribute_Name => Name_First));
3297 Last_Opnd_High_Bound :=
3298 Convert_To (Ityp,
3299 Make_Attribute_Reference (Loc,
3300 Prefix =>
3301 Duplicate_Subexpr (Opnd, Name_Req => True),
3302 Attribute_Name => Name_Last));
3303 end if;
3305 -- Capture length of operand in entity
3307 Operands (NN) := Opnd;
3308 Is_Fixed_Length (NN) := False;
3310 Var_Length (NN) := Make_Temporary (Loc, 'L');
3312 Append_To (Actions,
3313 Make_Object_Declaration (Loc,
3314 Defining_Identifier => Var_Length (NN),
3315 Constant_Present => True,
3316 Object_Definition => New_Occurrence_Of (Artyp, Loc),
3317 Expression =>
3318 Make_Attribute_Reference (Loc,
3319 Prefix =>
3320 Duplicate_Subexpr (Opnd, Name_Req => True),
3321 Attribute_Name => Name_Length)));
3322 end if;
3323 end if;
3325 -- Set next entry in aggregate length array
3327 -- For first entry, make either integer literal for fixed length
3328 -- or a reference to the saved length for variable length.
3330 if NN = 1 then
3331 if Is_Fixed_Length (1) then
3332 Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
3333 else
3334 Aggr_Length (1) := New_Occurrence_Of (Var_Length (1), Loc);
3335 end if;
3337 -- If entry is fixed length and only fixed lengths so far, make
3338 -- appropriate new integer literal adding new length.
3340 elsif Is_Fixed_Length (NN)
3341 and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
3342 then
3343 Aggr_Length (NN) :=
3344 Make_Integer_Literal (Loc,
3345 Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
3347 -- All other cases, construct an addition node for the length and
3348 -- create an entity initialized to this length.
3350 else
3351 Ent := Make_Temporary (Loc, 'L');
3353 if Is_Fixed_Length (NN) then
3354 Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
3355 else
3356 Clen := New_Occurrence_Of (Var_Length (NN), Loc);
3357 end if;
3359 Append_To (Actions,
3360 Make_Object_Declaration (Loc,
3361 Defining_Identifier => Ent,
3362 Constant_Present => True,
3363 Object_Definition => New_Occurrence_Of (Artyp, Loc),
3364 Expression =>
3365 Make_Op_Add (Loc,
3366 Left_Opnd => New_Copy (Aggr_Length (NN - 1)),
3367 Right_Opnd => Clen)));
3369 Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
3370 end if;
3372 <<Continue>>
3373 J := J + 1;
3374 end loop;
3376 -- If we have only skipped null operands, return the last operand
3378 if NN = 0 then
3379 Result := Opnd;
3380 goto Done;
3381 end if;
3383 -- If we have only one non-null operand, return it and we are done.
3384 -- There is one case in which this cannot be done, and that is when
3385 -- the sole operand is of the element type, in which case it must be
3386 -- converted to an array, and the easiest way of doing that is to go
3387 -- through the normal general circuit.
3389 if NN = 1 and then Base_Type (Etype (Operands (1))) /= Ctyp then
3390 Result := Operands (1);
3391 goto Done;
3392 end if;
3394 -- Cases where we have a real concatenation
3396 -- Next step is to find the low bound for the result array that we
3397 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3399 -- If the ultimate ancestor of the index subtype is a constrained array
3400 -- definition, then the lower bound is that of the index subtype as
3401 -- specified by (RM 4.5.3(6)).
3403 -- The right test here is to go to the root type, and then the ultimate
3404 -- ancestor is the first subtype of this root type.
3406 if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
3407 Low_Bound :=
3408 Make_Attribute_Reference (Loc,
3409 Prefix =>
3410 New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
3411 Attribute_Name => Name_First);
3413 -- If the first operand in the list has known length we know that
3414 -- the lower bound of the result is the lower bound of this operand.
3416 elsif Is_Fixed_Length (1) then
3417 Low_Bound := Opnd_Low_Bound (1);
3419 -- OK, we don't know the lower bound, we have to build a horrible
3420 -- if expression node of the form
3422 -- if Cond1'Length /= 0 then
3423 -- Opnd1 low bound
3424 -- else
3425 -- if Opnd2'Length /= 0 then
3426 -- Opnd2 low bound
3427 -- else
3428 -- ...
3430 -- The nesting ends either when we hit an operand whose length is known
3431 -- at compile time, or on reaching the last operand, whose low bound we
3432 -- take unconditionally whether or not it is null. It's easiest to do
3433 -- this with a recursive procedure:
3435 else
3436 declare
3437 function Get_Known_Bound (J : Nat) return Node_Id;
3438 -- Returns the lower bound determined by operands J .. NN
3440 ---------------------
3441 -- Get_Known_Bound --
3442 ---------------------
3444 function Get_Known_Bound (J : Nat) return Node_Id is
3445 begin
3446 if Is_Fixed_Length (J) or else J = NN then
3447 return New_Copy (Opnd_Low_Bound (J));
3449 else
3450 return
3451 Make_If_Expression (Loc,
3452 Expressions => New_List (
3454 Make_Op_Ne (Loc,
3455 Left_Opnd =>
3456 New_Occurrence_Of (Var_Length (J), Loc),
3457 Right_Opnd =>
3458 Make_Integer_Literal (Loc, 0)),
3460 New_Copy (Opnd_Low_Bound (J)),
3461 Get_Known_Bound (J + 1)));
3462 end if;
3463 end Get_Known_Bound;
3465 begin
3466 Ent := Make_Temporary (Loc, 'L');
3468 Append_To (Actions,
3469 Make_Object_Declaration (Loc,
3470 Defining_Identifier => Ent,
3471 Constant_Present => True,
3472 Object_Definition => New_Occurrence_Of (Ityp, Loc),
3473 Expression => Get_Known_Bound (1)));
3475 Low_Bound := New_Occurrence_Of (Ent, Loc);
3476 end;
3477 end if;
3479 -- Now we can safely compute the upper bound, normally
3480 -- Low_Bound + Length - 1.
3482 High_Bound :=
3483 To_Ityp (
3484 Make_Op_Add (Loc,
3485 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
3486 Right_Opnd =>
3487 Make_Op_Subtract (Loc,
3488 Left_Opnd => New_Copy (Aggr_Length (NN)),
3489 Right_Opnd => Make_Artyp_Literal (1))));
3491 -- Note that calculation of the high bound may cause overflow in some
3492 -- very weird cases, so in the general case we need an overflow check on
3493 -- the high bound. We can avoid this for the common case of string types
3494 -- and other types whose index is Positive, since we chose a wider range
3495 -- for the arithmetic type.
3497 if Istyp /= Standard_Positive then
3498 Activate_Overflow_Check (High_Bound);
3499 end if;
3501 -- Handle the exceptional case where the result is null, in which case
3502 -- case the bounds come from the last operand (so that we get the proper
3503 -- bounds if the last operand is super-flat).
3505 if Result_May_Be_Null then
3506 Low_Bound :=
3507 Make_If_Expression (Loc,
3508 Expressions => New_List (
3509 Make_Op_Eq (Loc,
3510 Left_Opnd => New_Copy (Aggr_Length (NN)),
3511 Right_Opnd => Make_Artyp_Literal (0)),
3512 Last_Opnd_Low_Bound,
3513 Low_Bound));
3515 High_Bound :=
3516 Make_If_Expression (Loc,
3517 Expressions => New_List (
3518 Make_Op_Eq (Loc,
3519 Left_Opnd => New_Copy (Aggr_Length (NN)),
3520 Right_Opnd => Make_Artyp_Literal (0)),
3521 Last_Opnd_High_Bound,
3522 High_Bound));
3523 end if;
3525 -- Here is where we insert the saved up actions
3527 Insert_Actions (Cnode, Actions, Suppress => All_Checks);
3529 -- Now we construct an array object with appropriate bounds. We mark
3530 -- the target as internal to prevent useless initialization when
3531 -- Initialize_Scalars is enabled. Also since this is the actual result
3532 -- entity, we make sure we have debug information for the result.
3534 Ent := Make_Temporary (Loc, 'S');
3535 Set_Is_Internal (Ent);
3536 Set_Needs_Debug_Info (Ent);
3538 -- If the bound is statically known to be out of range, we do not want
3539 -- to abort, we want a warning and a runtime constraint error. Note that
3540 -- we have arranged that the result will not be treated as a static
3541 -- constant, so we won't get an illegality during this insertion.
3543 Insert_Action (Cnode,
3544 Make_Object_Declaration (Loc,
3545 Defining_Identifier => Ent,
3546 Object_Definition =>
3547 Make_Subtype_Indication (Loc,
3548 Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
3549 Constraint =>
3550 Make_Index_Or_Discriminant_Constraint (Loc,
3551 Constraints => New_List (
3552 Make_Range (Loc,
3553 Low_Bound => Low_Bound,
3554 High_Bound => High_Bound))))),
3555 Suppress => All_Checks);
3557 -- If the result of the concatenation appears as the initializing
3558 -- expression of an object declaration, we can just rename the
3559 -- result, rather than copying it.
3561 Set_OK_To_Rename (Ent);
3563 -- Catch the static out of range case now
3565 if Raises_Constraint_Error (High_Bound) then
3566 raise Concatenation_Error;
3567 end if;
3569 -- Now we will generate the assignments to do the actual concatenation
3571 -- There is one case in which we will not do this, namely when all the
3572 -- following conditions are met:
3574 -- The result type is Standard.String
3576 -- There are nine or fewer retained (non-null) operands
3578 -- The optimization level is -O0
3580 -- The corresponding System.Concat_n.Str_Concat_n routine is
3581 -- available in the run time.
3583 -- The debug flag gnatd.c is not set
3585 -- If all these conditions are met then we generate a call to the
3586 -- relevant concatenation routine. The purpose of this is to avoid
3587 -- undesirable code bloat at -O0.
3589 if Atyp = Standard_String
3590 and then NN in 2 .. 9
3591 and then (Lib_Level_Target
3592 or else
3593 ((Opt.Optimization_Level = 0 or else Debug_Flag_Dot_CC)
3594 and then not Debug_Flag_Dot_C))
3595 then
3596 declare
3597 RR : constant array (Nat range 2 .. 9) of RE_Id :=
3598 (RE_Str_Concat_2,
3599 RE_Str_Concat_3,
3600 RE_Str_Concat_4,
3601 RE_Str_Concat_5,
3602 RE_Str_Concat_6,
3603 RE_Str_Concat_7,
3604 RE_Str_Concat_8,
3605 RE_Str_Concat_9);
3607 begin
3608 if RTE_Available (RR (NN)) then
3609 declare
3610 Opnds : constant List_Id :=
3611 New_List (New_Occurrence_Of (Ent, Loc));
3613 begin
3614 for J in 1 .. NN loop
3615 if Is_List_Member (Operands (J)) then
3616 Remove (Operands (J));
3617 end if;
3619 if Base_Type (Etype (Operands (J))) = Ctyp then
3620 Append_To (Opnds,
3621 Make_Aggregate (Loc,
3622 Component_Associations => New_List (
3623 Make_Component_Association (Loc,
3624 Choices => New_List (
3625 Make_Integer_Literal (Loc, 1)),
3626 Expression => Operands (J)))));
3628 else
3629 Append_To (Opnds, Operands (J));
3630 end if;
3631 end loop;
3633 Insert_Action (Cnode,
3634 Make_Procedure_Call_Statement (Loc,
3635 Name => New_Occurrence_Of (RTE (RR (NN)), Loc),
3636 Parameter_Associations => Opnds));
3638 Result := New_Occurrence_Of (Ent, Loc);
3639 goto Done;
3640 end;
3641 end if;
3642 end;
3643 end if;
3645 -- Not special case so generate the assignments
3647 Known_Non_Null_Operand_Seen := False;
3649 for J in 1 .. NN loop
3650 declare
3651 Lo : constant Node_Id :=
3652 Make_Op_Add (Loc,
3653 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
3654 Right_Opnd => Aggr_Length (J - 1));
3656 Hi : constant Node_Id :=
3657 Make_Op_Add (Loc,
3658 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
3659 Right_Opnd =>
3660 Make_Op_Subtract (Loc,
3661 Left_Opnd => Aggr_Length (J),
3662 Right_Opnd => Make_Artyp_Literal (1)));
3664 begin
3665 -- Singleton case, simple assignment
3667 if Base_Type (Etype (Operands (J))) = Ctyp then
3668 Known_Non_Null_Operand_Seen := True;
3669 Insert_Action (Cnode,
3670 Make_Assignment_Statement (Loc,
3671 Name =>
3672 Make_Indexed_Component (Loc,
3673 Prefix => New_Occurrence_Of (Ent, Loc),
3674 Expressions => New_List (To_Ityp (Lo))),
3675 Expression => Operands (J)),
3676 Suppress => All_Checks);
3678 -- Array case, slice assignment, skipped when argument is fixed
3679 -- length and known to be null.
3681 elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
3682 declare
3683 Assign : Node_Id :=
3684 Make_Assignment_Statement (Loc,
3685 Name =>
3686 Make_Slice (Loc,
3687 Prefix =>
3688 New_Occurrence_Of (Ent, Loc),
3689 Discrete_Range =>
3690 Make_Range (Loc,
3691 Low_Bound => To_Ityp (Lo),
3692 High_Bound => To_Ityp (Hi))),
3693 Expression => Operands (J));
3694 begin
3695 if Is_Fixed_Length (J) then
3696 Known_Non_Null_Operand_Seen := True;
3698 elsif not Known_Non_Null_Operand_Seen then
3700 -- Here if operand length is not statically known and no
3701 -- operand known to be non-null has been processed yet.
3702 -- If operand length is 0, we do not need to perform the
3703 -- assignment, and we must avoid the evaluation of the
3704 -- high bound of the slice, since it may underflow if the
3705 -- low bound is Ityp'First.
3707 Assign :=
3708 Make_Implicit_If_Statement (Cnode,
3709 Condition =>
3710 Make_Op_Ne (Loc,
3711 Left_Opnd =>
3712 New_Occurrence_Of (Var_Length (J), Loc),
3713 Right_Opnd => Make_Integer_Literal (Loc, 0)),
3714 Then_Statements => New_List (Assign));
3715 end if;
3717 Insert_Action (Cnode, Assign, Suppress => All_Checks);
3718 end;
3719 end if;
3720 end;
3721 end loop;
3723 -- Finally we build the result, which is a reference to the array object
3725 Result := New_Occurrence_Of (Ent, Loc);
3727 <<Done>>
3728 Rewrite (Cnode, Result);
3729 Analyze_And_Resolve (Cnode, Atyp);
3731 exception
3732 when Concatenation_Error =>
3734 -- Kill warning generated for the declaration of the static out of
3735 -- range high bound, and instead generate a Constraint_Error with
3736 -- an appropriate specific message.
3738 Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
3739 Apply_Compile_Time_Constraint_Error
3740 (N => Cnode,
3741 Msg => "concatenation result upper bound out of range??",
3742 Reason => CE_Range_Check_Failed);
3743 end Expand_Concatenate;
3745 ---------------------------------------------------
3746 -- Expand_Membership_Minimize_Eliminate_Overflow --
3747 ---------------------------------------------------
3749 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id) is
3750 pragma Assert (Nkind (N) = N_In);
3751 -- Despite the name, this routine applies only to N_In, not to
3752 -- N_Not_In. The latter is always rewritten as not (X in Y).
3754 Result_Type : constant Entity_Id := Etype (N);
3755 -- Capture result type, may be a derived boolean type
3757 Loc : constant Source_Ptr := Sloc (N);
3758 Lop : constant Node_Id := Left_Opnd (N);
3759 Rop : constant Node_Id := Right_Opnd (N);
3761 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3762 -- is thus tempting to capture these values, but due to the rewrites
3763 -- that occur as a result of overflow checking, these values change
3764 -- as we go along, and it is safe just to always use Etype explicitly.
3766 Restype : constant Entity_Id := Etype (N);
3767 -- Save result type
3769 Lo, Hi : Uint;
3770 -- Bounds in Minimize calls, not used currently
3772 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
3773 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3775 begin
3776 Minimize_Eliminate_Overflows (Lop, Lo, Hi, Top_Level => False);
3778 -- If right operand is a subtype name, and the subtype name has no
3779 -- predicate, then we can just replace the right operand with an
3780 -- explicit range T'First .. T'Last, and use the explicit range code.
3782 if Nkind (Rop) /= N_Range
3783 and then No (Predicate_Function (Etype (Rop)))
3784 then
3785 declare
3786 Rtyp : constant Entity_Id := Etype (Rop);
3787 begin
3788 Rewrite (Rop,
3789 Make_Range (Loc,
3790 Low_Bound =>
3791 Make_Attribute_Reference (Loc,
3792 Attribute_Name => Name_First,
3793 Prefix => New_Occurrence_Of (Rtyp, Loc)),
3794 High_Bound =>
3795 Make_Attribute_Reference (Loc,
3796 Attribute_Name => Name_Last,
3797 Prefix => New_Occurrence_Of (Rtyp, Loc))));
3798 Analyze_And_Resolve (Rop, Rtyp, Suppress => All_Checks);
3799 end;
3800 end if;
3802 -- Here for the explicit range case. Note that the bounds of the range
3803 -- have not been processed for minimized or eliminated checks.
3805 if Nkind (Rop) = N_Range then
3806 Minimize_Eliminate_Overflows
3807 (Low_Bound (Rop), Lo, Hi, Top_Level => False);
3808 Minimize_Eliminate_Overflows
3809 (High_Bound (Rop), Lo, Hi, Top_Level => False);
3811 -- We have A in B .. C, treated as A >= B and then A <= C
3813 -- Bignum case
3815 if Is_RTE (Etype (Lop), RE_Bignum)
3816 or else Is_RTE (Etype (Low_Bound (Rop)), RE_Bignum)
3817 or else Is_RTE (Etype (High_Bound (Rop)), RE_Bignum)
3818 then
3819 declare
3820 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3821 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
3822 L : constant Entity_Id :=
3823 Make_Defining_Identifier (Loc, Name_uL);
3824 Lopnd : constant Node_Id := Convert_To_Bignum (Lop);
3825 Lbound : constant Node_Id :=
3826 Convert_To_Bignum (Low_Bound (Rop));
3827 Hbound : constant Node_Id :=
3828 Convert_To_Bignum (High_Bound (Rop));
3830 -- Now we rewrite the membership test node to look like
3832 -- do
3833 -- Bnn : Result_Type;
3834 -- declare
3835 -- M : Mark_Id := SS_Mark;
3836 -- L : Bignum := Lopnd;
3837 -- begin
3838 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3839 -- SS_Release (M);
3840 -- end;
3841 -- in
3842 -- Bnn
3843 -- end
3845 begin
3846 -- Insert declaration of L into declarations of bignum block
3848 Insert_After
3849 (Last (Declarations (Blk)),
3850 Make_Object_Declaration (Loc,
3851 Defining_Identifier => L,
3852 Object_Definition =>
3853 New_Occurrence_Of (RTE (RE_Bignum), Loc),
3854 Expression => Lopnd));
3856 -- Insert assignment to Bnn into expressions of bignum block
3858 Insert_Before
3859 (First (Statements (Handled_Statement_Sequence (Blk))),
3860 Make_Assignment_Statement (Loc,
3861 Name => New_Occurrence_Of (Bnn, Loc),
3862 Expression =>
3863 Make_And_Then (Loc,
3864 Left_Opnd =>
3865 Make_Function_Call (Loc,
3866 Name =>
3867 New_Occurrence_Of (RTE (RE_Big_GE), Loc),
3868 Parameter_Associations => New_List (
3869 New_Occurrence_Of (L, Loc),
3870 Lbound)),
3871 Right_Opnd =>
3872 Make_Function_Call (Loc,
3873 Name =>
3874 New_Occurrence_Of (RTE (RE_Big_LE), Loc),
3875 Parameter_Associations => New_List (
3876 New_Occurrence_Of (L, Loc),
3877 Hbound)))));
3879 -- Now rewrite the node
3881 Rewrite (N,
3882 Make_Expression_With_Actions (Loc,
3883 Actions => New_List (
3884 Make_Object_Declaration (Loc,
3885 Defining_Identifier => Bnn,
3886 Object_Definition =>
3887 New_Occurrence_Of (Result_Type, Loc)),
3888 Blk),
3889 Expression => New_Occurrence_Of (Bnn, Loc)));
3890 Analyze_And_Resolve (N, Result_Type);
3891 return;
3892 end;
3894 -- Here if no bignums around
3896 else
3897 -- Case where types are all the same
3899 if Base_Type (Etype (Lop)) = Base_Type (Etype (Low_Bound (Rop)))
3900 and then
3901 Base_Type (Etype (Lop)) = Base_Type (Etype (High_Bound (Rop)))
3902 then
3903 null;
3905 -- If types are not all the same, it means that we have rewritten
3906 -- at least one of them to be of type Long_Long_Integer, and we
3907 -- will convert the other operands to Long_Long_Integer.
3909 else
3910 Convert_To_And_Rewrite (LLIB, Lop);
3911 Set_Analyzed (Lop, False);
3912 Analyze_And_Resolve (Lop, LLIB);
3914 -- For the right operand, avoid unnecessary recursion into
3915 -- this routine, we know that overflow is not possible.
3917 Convert_To_And_Rewrite (LLIB, Low_Bound (Rop));
3918 Convert_To_And_Rewrite (LLIB, High_Bound (Rop));
3919 Set_Analyzed (Rop, False);
3920 Analyze_And_Resolve (Rop, LLIB, Suppress => Overflow_Check);
3921 end if;
3923 -- Now the three operands are of the same signed integer type,
3924 -- so we can use the normal expansion routine for membership,
3925 -- setting the flag to prevent recursion into this procedure.
3927 Set_No_Minimize_Eliminate (N);
3928 Expand_N_In (N);
3929 end if;
3931 -- Right operand is a subtype name and the subtype has a predicate. We
3932 -- have to make sure the predicate is checked, and for that we need to
3933 -- use the standard N_In circuitry with appropriate types.
3935 else
3936 pragma Assert (Present (Predicate_Function (Etype (Rop))));
3938 -- If types are "right", just call Expand_N_In preventing recursion
3940 if Base_Type (Etype (Lop)) = Base_Type (Etype (Rop)) then
3941 Set_No_Minimize_Eliminate (N);
3942 Expand_N_In (N);
3944 -- Bignum case
3946 elsif Is_RTE (Etype (Lop), RE_Bignum) then
3948 -- For X in T, we want to rewrite our node as
3950 -- do
3951 -- Bnn : Result_Type;
3953 -- declare
3954 -- M : Mark_Id := SS_Mark;
3955 -- Lnn : Long_Long_Integer'Base
3956 -- Nnn : Bignum;
3958 -- begin
3959 -- Nnn := X;
3961 -- if not Bignum_In_LLI_Range (Nnn) then
3962 -- Bnn := False;
3963 -- else
3964 -- Lnn := From_Bignum (Nnn);
3965 -- Bnn :=
3966 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3967 -- and then T'Base (Lnn) in T;
3968 -- end if;
3970 -- SS_Release (M);
3971 -- end
3972 -- in
3973 -- Bnn
3974 -- end
3976 -- A bit gruesome, but there doesn't seem to be a simpler way
3978 declare
3979 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3980 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
3981 Lnn : constant Entity_Id := Make_Temporary (Loc, 'L', N);
3982 Nnn : constant Entity_Id := Make_Temporary (Loc, 'N', N);
3983 T : constant Entity_Id := Etype (Rop);
3984 TB : constant Entity_Id := Base_Type (T);
3985 Nin : Node_Id;
3987 begin
3988 -- Mark the last membership operation to prevent recursion
3990 Nin :=
3991 Make_In (Loc,
3992 Left_Opnd => Convert_To (TB, New_Occurrence_Of (Lnn, Loc)),
3993 Right_Opnd => New_Occurrence_Of (T, Loc));
3994 Set_No_Minimize_Eliminate (Nin);
3996 -- Now decorate the block
3998 Insert_After
3999 (Last (Declarations (Blk)),
4000 Make_Object_Declaration (Loc,
4001 Defining_Identifier => Lnn,
4002 Object_Definition => New_Occurrence_Of (LLIB, Loc)));
4004 Insert_After
4005 (Last (Declarations (Blk)),
4006 Make_Object_Declaration (Loc,
4007 Defining_Identifier => Nnn,
4008 Object_Definition =>
4009 New_Occurrence_Of (RTE (RE_Bignum), Loc)));
4011 Insert_List_Before
4012 (First (Statements (Handled_Statement_Sequence (Blk))),
4013 New_List (
4014 Make_Assignment_Statement (Loc,
4015 Name => New_Occurrence_Of (Nnn, Loc),
4016 Expression => Relocate_Node (Lop)),
4018 Make_Implicit_If_Statement (N,
4019 Condition =>
4020 Make_Op_Not (Loc,
4021 Right_Opnd =>
4022 Make_Function_Call (Loc,
4023 Name =>
4024 New_Occurrence_Of
4025 (RTE (RE_Bignum_In_LLI_Range), Loc),
4026 Parameter_Associations => New_List (
4027 New_Occurrence_Of (Nnn, Loc)))),
4029 Then_Statements => New_List (
4030 Make_Assignment_Statement (Loc,
4031 Name => New_Occurrence_Of (Bnn, Loc),
4032 Expression =>
4033 New_Occurrence_Of (Standard_False, Loc))),
4035 Else_Statements => New_List (
4036 Make_Assignment_Statement (Loc,
4037 Name => New_Occurrence_Of (Lnn, Loc),
4038 Expression =>
4039 Make_Function_Call (Loc,
4040 Name =>
4041 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4042 Parameter_Associations => New_List (
4043 New_Occurrence_Of (Nnn, Loc)))),
4045 Make_Assignment_Statement (Loc,
4046 Name => New_Occurrence_Of (Bnn, Loc),
4047 Expression =>
4048 Make_And_Then (Loc,
4049 Left_Opnd =>
4050 Make_In (Loc,
4051 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
4052 Right_Opnd =>
4053 Make_Range (Loc,
4054 Low_Bound =>
4055 Convert_To (LLIB,
4056 Make_Attribute_Reference (Loc,
4057 Attribute_Name => Name_First,
4058 Prefix =>
4059 New_Occurrence_Of (TB, Loc))),
4061 High_Bound =>
4062 Convert_To (LLIB,
4063 Make_Attribute_Reference (Loc,
4064 Attribute_Name => Name_Last,
4065 Prefix =>
4066 New_Occurrence_Of (TB, Loc))))),
4068 Right_Opnd => Nin))))));
4070 -- Now we can do the rewrite
4072 Rewrite (N,
4073 Make_Expression_With_Actions (Loc,
4074 Actions => New_List (
4075 Make_Object_Declaration (Loc,
4076 Defining_Identifier => Bnn,
4077 Object_Definition =>
4078 New_Occurrence_Of (Result_Type, Loc)),
4079 Blk),
4080 Expression => New_Occurrence_Of (Bnn, Loc)));
4081 Analyze_And_Resolve (N, Result_Type);
4082 return;
4083 end;
4085 -- Not bignum case, but types don't match (this means we rewrote the
4086 -- left operand to be Long_Long_Integer).
4088 else
4089 pragma Assert (Base_Type (Etype (Lop)) = LLIB);
4091 -- We rewrite the membership test as (where T is the type with
4092 -- the predicate, i.e. the type of the right operand)
4094 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
4095 -- and then T'Base (Lop) in T
4097 declare
4098 T : constant Entity_Id := Etype (Rop);
4099 TB : constant Entity_Id := Base_Type (T);
4100 Nin : Node_Id;
4102 begin
4103 -- The last membership test is marked to prevent recursion
4105 Nin :=
4106 Make_In (Loc,
4107 Left_Opnd => Convert_To (TB, Duplicate_Subexpr (Lop)),
4108 Right_Opnd => New_Occurrence_Of (T, Loc));
4109 Set_No_Minimize_Eliminate (Nin);
4111 -- Now do the rewrite
4113 Rewrite (N,
4114 Make_And_Then (Loc,
4115 Left_Opnd =>
4116 Make_In (Loc,
4117 Left_Opnd => Lop,
4118 Right_Opnd =>
4119 Make_Range (Loc,
4120 Low_Bound =>
4121 Convert_To (LLIB,
4122 Make_Attribute_Reference (Loc,
4123 Attribute_Name => Name_First,
4124 Prefix => New_Occurrence_Of (TB, Loc))),
4125 High_Bound =>
4126 Convert_To (LLIB,
4127 Make_Attribute_Reference (Loc,
4128 Attribute_Name => Name_Last,
4129 Prefix => New_Occurrence_Of (TB, Loc))))),
4130 Right_Opnd => Nin));
4131 Set_Analyzed (N, False);
4132 Analyze_And_Resolve (N, Restype);
4133 end;
4134 end if;
4135 end if;
4136 end Expand_Membership_Minimize_Eliminate_Overflow;
4138 ------------------------
4139 -- Expand_N_Allocator --
4140 ------------------------
4142 procedure Expand_N_Allocator (N : Node_Id) is
4143 Etyp : constant Entity_Id := Etype (Expression (N));
4144 Loc : constant Source_Ptr := Sloc (N);
4145 PtrT : constant Entity_Id := Etype (N);
4147 procedure Rewrite_Coextension (N : Node_Id);
4148 -- Static coextensions have the same lifetime as the entity they
4149 -- constrain. Such occurrences can be rewritten as aliased objects
4150 -- and their unrestricted access used instead of the coextension.
4152 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
4153 -- Given a constrained array type E, returns a node representing the
4154 -- code to compute the size in storage elements for the given type.
4155 -- This is done without using the attribute (which malfunctions for
4156 -- large sizes ???)
4158 -------------------------
4159 -- Rewrite_Coextension --
4160 -------------------------
4162 procedure Rewrite_Coextension (N : Node_Id) is
4163 Temp_Id : constant Node_Id := Make_Temporary (Loc, 'C');
4164 Temp_Decl : Node_Id;
4166 begin
4167 -- Generate:
4168 -- Cnn : aliased Etyp;
4170 Temp_Decl :=
4171 Make_Object_Declaration (Loc,
4172 Defining_Identifier => Temp_Id,
4173 Aliased_Present => True,
4174 Object_Definition => New_Occurrence_Of (Etyp, Loc));
4176 if Nkind (Expression (N)) = N_Qualified_Expression then
4177 Set_Expression (Temp_Decl, Expression (Expression (N)));
4178 end if;
4180 Insert_Action (N, Temp_Decl);
4181 Rewrite (N,
4182 Make_Attribute_Reference (Loc,
4183 Prefix => New_Occurrence_Of (Temp_Id, Loc),
4184 Attribute_Name => Name_Unrestricted_Access));
4186 Analyze_And_Resolve (N, PtrT);
4187 end Rewrite_Coextension;
4189 ------------------------------
4190 -- Size_In_Storage_Elements --
4191 ------------------------------
4193 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
4194 begin
4195 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4196 -- However, the reason for the existence of this function is
4197 -- to construct a test for sizes too large, which means near the
4198 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4199 -- is that we get overflows when sizes are greater than 2**31.
4201 -- So what we end up doing for array types is to use the expression:
4203 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4205 -- which avoids this problem. All this is a bit bogus, but it does
4206 -- mean we catch common cases of trying to allocate arrays that
4207 -- are too large, and which in the absence of a check results in
4208 -- undetected chaos ???
4210 -- Note in particular that this is a pessimistic estimate in the
4211 -- case of packed array types, where an array element might occupy
4212 -- just a fraction of a storage element???
4214 declare
4215 Len : Node_Id;
4216 Res : Node_Id;
4218 begin
4219 for J in 1 .. Number_Dimensions (E) loop
4220 Len :=
4221 Make_Attribute_Reference (Loc,
4222 Prefix => New_Occurrence_Of (E, Loc),
4223 Attribute_Name => Name_Length,
4224 Expressions => New_List (Make_Integer_Literal (Loc, J)));
4226 if J = 1 then
4227 Res := Len;
4229 else
4230 Res :=
4231 Make_Op_Multiply (Loc,
4232 Left_Opnd => Res,
4233 Right_Opnd => Len);
4234 end if;
4235 end loop;
4237 return
4238 Make_Op_Multiply (Loc,
4239 Left_Opnd => Len,
4240 Right_Opnd =>
4241 Make_Attribute_Reference (Loc,
4242 Prefix => New_Occurrence_Of (Component_Type (E), Loc),
4243 Attribute_Name => Name_Max_Size_In_Storage_Elements));
4244 end;
4245 end Size_In_Storage_Elements;
4247 -- Local variables
4249 Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
4250 Desig : Entity_Id;
4251 Nod : Node_Id;
4252 Pool : Entity_Id;
4253 Rel_Typ : Entity_Id;
4254 Temp : Entity_Id;
4256 -- Start of processing for Expand_N_Allocator
4258 begin
4259 -- RM E.2.3(22). We enforce that the expected type of an allocator
4260 -- shall not be a remote access-to-class-wide-limited-private type
4262 -- Why is this being done at expansion time, seems clearly wrong ???
4264 Validate_Remote_Access_To_Class_Wide_Type (N);
4266 -- Processing for anonymous access-to-controlled types. These access
4267 -- types receive a special finalization master which appears in the
4268 -- declarations of the enclosing semantic unit. This expansion is done
4269 -- now to ensure that any additional types generated by this routine or
4270 -- Expand_Allocator_Expression inherit the proper type attributes.
4272 if (Ekind (PtrT) = E_Anonymous_Access_Type
4273 or else (Is_Itype (PtrT) and then No (Finalization_Master (PtrT))))
4274 and then Needs_Finalization (Dtyp)
4275 then
4276 -- Detect the allocation of an anonymous controlled object where the
4277 -- type of the context is named. For example:
4279 -- procedure Proc (Ptr : Named_Access_Typ);
4280 -- Proc (new Designated_Typ);
4282 -- Regardless of the anonymous-to-named access type conversion, the
4283 -- lifetime of the object must be associated with the named access
4284 -- type. Use the finalization-related attributes of this type.
4286 if Nkind_In (Parent (N), N_Type_Conversion,
4287 N_Unchecked_Type_Conversion)
4288 and then Ekind_In (Etype (Parent (N)), E_Access_Subtype,
4289 E_Access_Type,
4290 E_General_Access_Type)
4291 then
4292 Rel_Typ := Etype (Parent (N));
4293 else
4294 Rel_Typ := Empty;
4295 end if;
4297 -- Anonymous access-to-controlled types allocate on the global pool.
4298 -- Do not set this attribute on .NET/JVM since those targets do not
4299 -- support pools.
4301 if No (Associated_Storage_Pool (PtrT)) and then VM_Target = No_VM then
4302 if Present (Rel_Typ) then
4303 Set_Associated_Storage_Pool (PtrT,
4304 Associated_Storage_Pool (Rel_Typ));
4305 else
4306 Set_Associated_Storage_Pool (PtrT,
4307 Get_Global_Pool_For_Access_Type (PtrT));
4308 end if;
4309 end if;
4311 -- The finalization master must be inserted and analyzed as part of
4312 -- the current semantic unit. Note that the master is updated when
4313 -- analysis changes current units.
4315 if Present (Rel_Typ) then
4316 Set_Finalization_Master (PtrT, Finalization_Master (Rel_Typ));
4317 else
4318 Set_Finalization_Master (PtrT, Current_Anonymous_Master);
4319 end if;
4320 end if;
4322 -- Set the storage pool and find the appropriate version of Allocate to
4323 -- call. Do not overwrite the storage pool if it is already set, which
4324 -- can happen for build-in-place function returns (see
4325 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
4327 if No (Storage_Pool (N)) then
4328 Pool := Associated_Storage_Pool (Root_Type (PtrT));
4330 if Present (Pool) then
4331 Set_Storage_Pool (N, Pool);
4333 if Is_RTE (Pool, RE_SS_Pool) then
4334 if VM_Target = No_VM then
4335 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
4336 end if;
4338 -- In the case of an allocator for a simple storage pool, locate
4339 -- and save a reference to the pool type's Allocate routine.
4341 elsif Present (Get_Rep_Pragma
4342 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4343 then
4344 declare
4345 Pool_Type : constant Entity_Id := Base_Type (Etype (Pool));
4346 Alloc_Op : Entity_Id;
4347 begin
4348 Alloc_Op := Get_Name_Entity_Id (Name_Allocate);
4349 while Present (Alloc_Op) loop
4350 if Scope (Alloc_Op) = Scope (Pool_Type)
4351 and then Present (First_Formal (Alloc_Op))
4352 and then Etype (First_Formal (Alloc_Op)) = Pool_Type
4353 then
4354 Set_Procedure_To_Call (N, Alloc_Op);
4355 exit;
4356 else
4357 Alloc_Op := Homonym (Alloc_Op);
4358 end if;
4359 end loop;
4360 end;
4362 elsif Is_Class_Wide_Type (Etype (Pool)) then
4363 Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
4365 else
4366 Set_Procedure_To_Call (N,
4367 Find_Prim_Op (Etype (Pool), Name_Allocate));
4368 end if;
4369 end if;
4370 end if;
4372 -- Under certain circumstances we can replace an allocator by an access
4373 -- to statically allocated storage. The conditions, as noted in AARM
4374 -- 3.10 (10c) are as follows:
4376 -- Size and initial value is known at compile time
4377 -- Access type is access-to-constant
4379 -- The allocator is not part of a constraint on a record component,
4380 -- because in that case the inserted actions are delayed until the
4381 -- record declaration is fully analyzed, which is too late for the
4382 -- analysis of the rewritten allocator.
4384 if Is_Access_Constant (PtrT)
4385 and then Nkind (Expression (N)) = N_Qualified_Expression
4386 and then Compile_Time_Known_Value (Expression (Expression (N)))
4387 and then Size_Known_At_Compile_Time
4388 (Etype (Expression (Expression (N))))
4389 and then not Is_Record_Type (Current_Scope)
4390 then
4391 -- Here we can do the optimization. For the allocator
4393 -- new x'(y)
4395 -- We insert an object declaration
4397 -- Tnn : aliased x := y;
4399 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4400 -- marked as requiring static allocation.
4402 Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
4403 Desig := Subtype_Mark (Expression (N));
4405 -- If context is constrained, use constrained subtype directly,
4406 -- so that the constant is not labelled as having a nominally
4407 -- unconstrained subtype.
4409 if Entity (Desig) = Base_Type (Dtyp) then
4410 Desig := New_Occurrence_Of (Dtyp, Loc);
4411 end if;
4413 Insert_Action (N,
4414 Make_Object_Declaration (Loc,
4415 Defining_Identifier => Temp,
4416 Aliased_Present => True,
4417 Constant_Present => Is_Access_Constant (PtrT),
4418 Object_Definition => Desig,
4419 Expression => Expression (Expression (N))));
4421 Rewrite (N,
4422 Make_Attribute_Reference (Loc,
4423 Prefix => New_Occurrence_Of (Temp, Loc),
4424 Attribute_Name => Name_Unrestricted_Access));
4426 Analyze_And_Resolve (N, PtrT);
4428 -- We set the variable as statically allocated, since we don't want
4429 -- it going on the stack of the current procedure.
4431 Set_Is_Statically_Allocated (Temp);
4432 return;
4433 end if;
4435 -- Same if the allocator is an access discriminant for a local object:
4436 -- instead of an allocator we create a local value and constrain the
4437 -- enclosing object with the corresponding access attribute.
4439 if Is_Static_Coextension (N) then
4440 Rewrite_Coextension (N);
4441 return;
4442 end if;
4444 -- Check for size too large, we do this because the back end misses
4445 -- proper checks here and can generate rubbish allocation calls when
4446 -- we are near the limit. We only do this for the 32-bit address case
4447 -- since that is from a practical point of view where we see a problem.
4449 if System_Address_Size = 32
4450 and then not Storage_Checks_Suppressed (PtrT)
4451 and then not Storage_Checks_Suppressed (Dtyp)
4452 and then not Storage_Checks_Suppressed (Etyp)
4453 then
4454 -- The check we want to generate should look like
4456 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4457 -- raise Storage_Error;
4458 -- end if;
4460 -- where 3.5 gigabytes is a constant large enough to accommodate any
4461 -- reasonable request for. But we can't do it this way because at
4462 -- least at the moment we don't compute this attribute right, and
4463 -- can silently give wrong results when the result gets large. Since
4464 -- this is all about large results, that's bad, so instead we only
4465 -- apply the check for constrained arrays, and manually compute the
4466 -- value of the attribute ???
4468 if Is_Array_Type (Etyp) and then Is_Constrained (Etyp) then
4469 Insert_Action (N,
4470 Make_Raise_Storage_Error (Loc,
4471 Condition =>
4472 Make_Op_Gt (Loc,
4473 Left_Opnd => Size_In_Storage_Elements (Etyp),
4474 Right_Opnd =>
4475 Make_Integer_Literal (Loc, Uint_7 * (Uint_2 ** 29))),
4476 Reason => SE_Object_Too_Large));
4477 end if;
4478 end if;
4480 -- Handle case of qualified expression (other than optimization above)
4481 -- First apply constraint checks, because the bounds or discriminants
4482 -- in the aggregate might not match the subtype mark in the allocator.
4484 if Nkind (Expression (N)) = N_Qualified_Expression then
4485 Apply_Constraint_Check
4486 (Expression (Expression (N)), Etype (Expression (N)));
4488 Expand_Allocator_Expression (N);
4489 return;
4490 end if;
4492 -- If the allocator is for a type which requires initialization, and
4493 -- there is no initial value (i.e. operand is a subtype indication
4494 -- rather than a qualified expression), then we must generate a call to
4495 -- the initialization routine using an expressions action node:
4497 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
4499 -- Here ptr_T is the pointer type for the allocator, and T is the
4500 -- subtype of the allocator. A special case arises if the designated
4501 -- type of the access type is a task or contains tasks. In this case
4502 -- the call to Init (Temp.all ...) is replaced by code that ensures
4503 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
4504 -- for details). In addition, if the type T is a task T, then the
4505 -- first argument to Init must be converted to the task record type.
4507 declare
4508 T : constant Entity_Id := Entity (Expression (N));
4509 Args : List_Id;
4510 Decls : List_Id;
4511 Decl : Node_Id;
4512 Discr : Elmt_Id;
4513 Init : Entity_Id;
4514 Init_Arg1 : Node_Id;
4515 Temp_Decl : Node_Id;
4516 Temp_Type : Entity_Id;
4518 begin
4519 if No_Initialization (N) then
4521 -- Even though this might be a simple allocation, create a custom
4522 -- Allocate if the context requires it. Since .NET/JVM compilers
4523 -- do not support pools, this step is skipped.
4525 if VM_Target = No_VM
4526 and then Present (Finalization_Master (PtrT))
4527 then
4528 Build_Allocate_Deallocate_Proc
4529 (N => N,
4530 Is_Allocate => True);
4531 end if;
4533 -- Case of no initialization procedure present
4535 elsif not Has_Non_Null_Base_Init_Proc (T) then
4537 -- Case of simple initialization required
4539 if Needs_Simple_Initialization (T) then
4540 Check_Restriction (No_Default_Initialization, N);
4541 Rewrite (Expression (N),
4542 Make_Qualified_Expression (Loc,
4543 Subtype_Mark => New_Occurrence_Of (T, Loc),
4544 Expression => Get_Simple_Init_Val (T, N)));
4546 Analyze_And_Resolve (Expression (Expression (N)), T);
4547 Analyze_And_Resolve (Expression (N), T);
4548 Set_Paren_Count (Expression (Expression (N)), 1);
4549 Expand_N_Allocator (N);
4551 -- No initialization required
4553 else
4554 null;
4555 end if;
4557 -- Case of initialization procedure present, must be called
4559 else
4560 Check_Restriction (No_Default_Initialization, N);
4562 if not Restriction_Active (No_Default_Initialization) then
4563 Init := Base_Init_Proc (T);
4564 Nod := N;
4565 Temp := Make_Temporary (Loc, 'P');
4567 -- Construct argument list for the initialization routine call
4569 Init_Arg1 :=
4570 Make_Explicit_Dereference (Loc,
4571 Prefix =>
4572 New_Occurrence_Of (Temp, Loc));
4574 Set_Assignment_OK (Init_Arg1);
4575 Temp_Type := PtrT;
4577 -- The initialization procedure expects a specific type. if the
4578 -- context is access to class wide, indicate that the object
4579 -- being allocated has the right specific type.
4581 if Is_Class_Wide_Type (Dtyp) then
4582 Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
4583 end if;
4585 -- If designated type is a concurrent type or if it is private
4586 -- type whose definition is a concurrent type, the first
4587 -- argument in the Init routine has to be unchecked conversion
4588 -- to the corresponding record type. If the designated type is
4589 -- a derived type, also convert the argument to its root type.
4591 if Is_Concurrent_Type (T) then
4592 Init_Arg1 :=
4593 Unchecked_Convert_To (
4594 Corresponding_Record_Type (T), Init_Arg1);
4596 elsif Is_Private_Type (T)
4597 and then Present (Full_View (T))
4598 and then Is_Concurrent_Type (Full_View (T))
4599 then
4600 Init_Arg1 :=
4601 Unchecked_Convert_To
4602 (Corresponding_Record_Type (Full_View (T)), Init_Arg1);
4604 elsif Etype (First_Formal (Init)) /= Base_Type (T) then
4605 declare
4606 Ftyp : constant Entity_Id := Etype (First_Formal (Init));
4608 begin
4609 Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
4610 Set_Etype (Init_Arg1, Ftyp);
4611 end;
4612 end if;
4614 Args := New_List (Init_Arg1);
4616 -- For the task case, pass the Master_Id of the access type as
4617 -- the value of the _Master parameter, and _Chain as the value
4618 -- of the _Chain parameter (_Chain will be defined as part of
4619 -- the generated code for the allocator).
4621 -- In Ada 2005, the context may be a function that returns an
4622 -- anonymous access type. In that case the Master_Id has been
4623 -- created when expanding the function declaration.
4625 if Has_Task (T) then
4626 if No (Master_Id (Base_Type (PtrT))) then
4628 -- The designated type was an incomplete type, and the
4629 -- access type did not get expanded. Salvage it now.
4631 if not Restriction_Active (No_Task_Hierarchy) then
4632 if Present (Parent (Base_Type (PtrT))) then
4633 Expand_N_Full_Type_Declaration
4634 (Parent (Base_Type (PtrT)));
4636 -- The only other possibility is an itype. For this
4637 -- case, the master must exist in the context. This is
4638 -- the case when the allocator initializes an access
4639 -- component in an init-proc.
4641 else
4642 pragma Assert (Is_Itype (PtrT));
4643 Build_Master_Renaming (PtrT, N);
4644 end if;
4645 end if;
4646 end if;
4648 -- If the context of the allocator is a declaration or an
4649 -- assignment, we can generate a meaningful image for it,
4650 -- even though subsequent assignments might remove the
4651 -- connection between task and entity. We build this image
4652 -- when the left-hand side is a simple variable, a simple
4653 -- indexed assignment or a simple selected component.
4655 if Nkind (Parent (N)) = N_Assignment_Statement then
4656 declare
4657 Nam : constant Node_Id := Name (Parent (N));
4659 begin
4660 if Is_Entity_Name (Nam) then
4661 Decls :=
4662 Build_Task_Image_Decls
4663 (Loc,
4664 New_Occurrence_Of
4665 (Entity (Nam), Sloc (Nam)), T);
4667 elsif Nkind_In (Nam, N_Indexed_Component,
4668 N_Selected_Component)
4669 and then Is_Entity_Name (Prefix (Nam))
4670 then
4671 Decls :=
4672 Build_Task_Image_Decls
4673 (Loc, Nam, Etype (Prefix (Nam)));
4674 else
4675 Decls := Build_Task_Image_Decls (Loc, T, T);
4676 end if;
4677 end;
4679 elsif Nkind (Parent (N)) = N_Object_Declaration then
4680 Decls :=
4681 Build_Task_Image_Decls
4682 (Loc, Defining_Identifier (Parent (N)), T);
4684 else
4685 Decls := Build_Task_Image_Decls (Loc, T, T);
4686 end if;
4688 if Restriction_Active (No_Task_Hierarchy) then
4689 Append_To (Args,
4690 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
4691 else
4692 Append_To (Args,
4693 New_Occurrence_Of
4694 (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
4695 end if;
4697 Append_To (Args, Make_Identifier (Loc, Name_uChain));
4699 Decl := Last (Decls);
4700 Append_To (Args,
4701 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
4703 -- Has_Task is false, Decls not used
4705 else
4706 Decls := No_List;
4707 end if;
4709 -- Add discriminants if discriminated type
4711 declare
4712 Dis : Boolean := False;
4713 Typ : Entity_Id;
4715 begin
4716 if Has_Discriminants (T) then
4717 Dis := True;
4718 Typ := T;
4720 elsif Is_Private_Type (T)
4721 and then Present (Full_View (T))
4722 and then Has_Discriminants (Full_View (T))
4723 then
4724 Dis := True;
4725 Typ := Full_View (T);
4726 end if;
4728 if Dis then
4730 -- If the allocated object will be constrained by the
4731 -- default values for discriminants, then build a subtype
4732 -- with those defaults, and change the allocated subtype
4733 -- to that. Note that this happens in fewer cases in Ada
4734 -- 2005 (AI-363).
4736 if not Is_Constrained (Typ)
4737 and then Present (Discriminant_Default_Value
4738 (First_Discriminant (Typ)))
4739 and then (Ada_Version < Ada_2005
4740 or else not
4741 Object_Type_Has_Constrained_Partial_View
4742 (Typ, Current_Scope))
4743 then
4744 Typ := Build_Default_Subtype (Typ, N);
4745 Set_Expression (N, New_Occurrence_Of (Typ, Loc));
4746 end if;
4748 Discr := First_Elmt (Discriminant_Constraint (Typ));
4749 while Present (Discr) loop
4750 Nod := Node (Discr);
4751 Append (New_Copy_Tree (Node (Discr)), Args);
4753 -- AI-416: when the discriminant constraint is an
4754 -- anonymous access type make sure an accessibility
4755 -- check is inserted if necessary (3.10.2(22.q/2))
4757 if Ada_Version >= Ada_2005
4758 and then
4759 Ekind (Etype (Nod)) = E_Anonymous_Access_Type
4760 then
4761 Apply_Accessibility_Check
4762 (Nod, Typ, Insert_Node => Nod);
4763 end if;
4765 Next_Elmt (Discr);
4766 end loop;
4767 end if;
4768 end;
4770 -- We set the allocator as analyzed so that when we analyze
4771 -- the if expression node, we do not get an unwanted recursive
4772 -- expansion of the allocator expression.
4774 Set_Analyzed (N, True);
4775 Nod := Relocate_Node (N);
4777 -- Here is the transformation:
4778 -- input: new Ctrl_Typ
4779 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
4780 -- Ctrl_TypIP (Temp.all, ...);
4781 -- [Deep_]Initialize (Temp.all);
4783 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
4784 -- is the subtype of the allocator.
4786 Temp_Decl :=
4787 Make_Object_Declaration (Loc,
4788 Defining_Identifier => Temp,
4789 Constant_Present => True,
4790 Object_Definition => New_Occurrence_Of (Temp_Type, Loc),
4791 Expression => Nod);
4793 Set_Assignment_OK (Temp_Decl);
4794 Insert_Action (N, Temp_Decl, Suppress => All_Checks);
4796 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
4798 -- If the designated type is a task type or contains tasks,
4799 -- create block to activate created tasks, and insert
4800 -- declaration for Task_Image variable ahead of call.
4802 if Has_Task (T) then
4803 declare
4804 L : constant List_Id := New_List;
4805 Blk : Node_Id;
4806 begin
4807 Build_Task_Allocate_Block (L, Nod, Args);
4808 Blk := Last (L);
4809 Insert_List_Before (First (Declarations (Blk)), Decls);
4810 Insert_Actions (N, L);
4811 end;
4813 else
4814 Insert_Action (N,
4815 Make_Procedure_Call_Statement (Loc,
4816 Name => New_Occurrence_Of (Init, Loc),
4817 Parameter_Associations => Args));
4818 end if;
4820 if Needs_Finalization (T) then
4822 -- Generate:
4823 -- [Deep_]Initialize (Init_Arg1);
4825 Insert_Action (N,
4826 Make_Init_Call
4827 (Obj_Ref => New_Copy_Tree (Init_Arg1),
4828 Typ => T));
4830 if Present (Finalization_Master (PtrT)) then
4832 -- Special processing for .NET/JVM, the allocated object
4833 -- is attached to the finalization master. Generate:
4835 -- Attach (<PtrT>FM, Root_Controlled_Ptr (Init_Arg1));
4837 -- Types derived from [Limited_]Controlled are the only
4838 -- ones considered since they have fields Prev and Next.
4840 if VM_Target /= No_VM then
4841 if Is_Controlled (T) then
4842 Insert_Action (N,
4843 Make_Attach_Call
4844 (Obj_Ref => New_Copy_Tree (Init_Arg1),
4845 Ptr_Typ => PtrT));
4846 end if;
4848 -- Default case, generate:
4850 -- Set_Finalize_Address
4851 -- (<PtrT>FM, <T>FD'Unrestricted_Access);
4853 -- Do not generate this call in CodePeer mode, as TSS
4854 -- primitive Finalize_Address is not created in this
4855 -- mode.
4857 elsif not CodePeer_Mode then
4858 Insert_Action (N,
4859 Make_Set_Finalize_Address_Call
4860 (Loc => Loc,
4861 Typ => T,
4862 Ptr_Typ => PtrT));
4863 end if;
4864 end if;
4865 end if;
4867 Rewrite (N, New_Occurrence_Of (Temp, Loc));
4868 Analyze_And_Resolve (N, PtrT);
4869 end if;
4870 end if;
4871 end;
4873 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
4874 -- object that has been rewritten as a reference, we displace "this"
4875 -- to reference properly its secondary dispatch table.
4877 if Nkind (N) = N_Identifier and then Is_Interface (Dtyp) then
4878 Displace_Allocator_Pointer (N);
4879 end if;
4881 exception
4882 when RE_Not_Available =>
4883 return;
4884 end Expand_N_Allocator;
4886 -----------------------
4887 -- Expand_N_And_Then --
4888 -----------------------
4890 procedure Expand_N_And_Then (N : Node_Id)
4891 renames Expand_Short_Circuit_Operator;
4893 ------------------------------
4894 -- Expand_N_Case_Expression --
4895 ------------------------------
4897 procedure Expand_N_Case_Expression (N : Node_Id) is
4898 Loc : constant Source_Ptr := Sloc (N);
4899 Typ : constant Entity_Id := Etype (N);
4900 Cstmt : Node_Id;
4901 Decl : Node_Id;
4902 Tnn : Entity_Id;
4903 Pnn : Entity_Id;
4904 Actions : List_Id;
4905 Ttyp : Entity_Id;
4906 Alt : Node_Id;
4907 Fexp : Node_Id;
4909 begin
4910 -- Check for MINIMIZED/ELIMINATED overflow mode
4912 if Minimized_Eliminated_Overflow_Check (N) then
4913 Apply_Arithmetic_Overflow_Check (N);
4914 return;
4915 end if;
4917 -- We expand
4919 -- case X is when A => AX, when B => BX ...
4921 -- to
4923 -- do
4924 -- Tnn : typ;
4925 -- case X is
4926 -- when A =>
4927 -- Tnn := AX;
4928 -- when B =>
4929 -- Tnn := BX;
4930 -- ...
4931 -- end case;
4932 -- in Tnn end;
4934 -- However, this expansion is wrong for limited types, and also
4935 -- wrong for unconstrained types (since the bounds may not be the
4936 -- same in all branches). Furthermore it involves an extra copy
4937 -- for large objects. So we take care of this by using the following
4938 -- modified expansion for non-elementary types:
4940 -- do
4941 -- type Pnn is access all typ;
4942 -- Tnn : Pnn;
4943 -- case X is
4944 -- when A =>
4945 -- T := AX'Unrestricted_Access;
4946 -- when B =>
4947 -- T := BX'Unrestricted_Access;
4948 -- ...
4949 -- end case;
4950 -- in Tnn.all end;
4952 Cstmt :=
4953 Make_Case_Statement (Loc,
4954 Expression => Expression (N),
4955 Alternatives => New_List);
4957 Actions := New_List;
4959 -- Scalar case
4961 if Is_Elementary_Type (Typ) then
4962 Ttyp := Typ;
4964 else
4965 Pnn := Make_Temporary (Loc, 'P');
4966 Append_To (Actions,
4967 Make_Full_Type_Declaration (Loc,
4968 Defining_Identifier => Pnn,
4969 Type_Definition =>
4970 Make_Access_To_Object_Definition (Loc,
4971 All_Present => True,
4972 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
4973 Ttyp := Pnn;
4974 end if;
4976 Tnn := Make_Temporary (Loc, 'T');
4978 -- Create declaration for target of expression, and indicate that it
4979 -- does not require initialization.
4981 Decl :=
4982 Make_Object_Declaration (Loc,
4983 Defining_Identifier => Tnn,
4984 Object_Definition => New_Occurrence_Of (Ttyp, Loc));
4985 Set_No_Initialization (Decl);
4986 Append_To (Actions, Decl);
4988 -- Now process the alternatives
4990 Alt := First (Alternatives (N));
4991 while Present (Alt) loop
4992 declare
4993 Aexp : Node_Id := Expression (Alt);
4994 Aloc : constant Source_Ptr := Sloc (Aexp);
4995 Stats : List_Id;
4997 begin
4998 -- As described above, take Unrestricted_Access for case of non-
4999 -- scalar types, to avoid big copies, and special cases.
5001 if not Is_Elementary_Type (Typ) then
5002 Aexp :=
5003 Make_Attribute_Reference (Aloc,
5004 Prefix => Relocate_Node (Aexp),
5005 Attribute_Name => Name_Unrestricted_Access);
5006 end if;
5008 Stats := New_List (
5009 Make_Assignment_Statement (Aloc,
5010 Name => New_Occurrence_Of (Tnn, Loc),
5011 Expression => Aexp));
5013 -- Propagate declarations inserted in the node by Insert_Actions
5014 -- (for example, temporaries generated to remove side effects).
5015 -- These actions must remain attached to the alternative, given
5016 -- that they are generated by the corresponding expression.
5018 if Present (Sinfo.Actions (Alt)) then
5019 Prepend_List (Sinfo.Actions (Alt), Stats);
5020 end if;
5022 Append_To
5023 (Alternatives (Cstmt),
5024 Make_Case_Statement_Alternative (Sloc (Alt),
5025 Discrete_Choices => Discrete_Choices (Alt),
5026 Statements => Stats));
5027 end;
5029 Next (Alt);
5030 end loop;
5032 Append_To (Actions, Cstmt);
5034 -- Construct and return final expression with actions
5036 if Is_Elementary_Type (Typ) then
5037 Fexp := New_Occurrence_Of (Tnn, Loc);
5038 else
5039 Fexp :=
5040 Make_Explicit_Dereference (Loc,
5041 Prefix => New_Occurrence_Of (Tnn, Loc));
5042 end if;
5044 Rewrite (N,
5045 Make_Expression_With_Actions (Loc,
5046 Expression => Fexp,
5047 Actions => Actions));
5049 Analyze_And_Resolve (N, Typ);
5050 end Expand_N_Case_Expression;
5052 -----------------------------------
5053 -- Expand_N_Explicit_Dereference --
5054 -----------------------------------
5056 procedure Expand_N_Explicit_Dereference (N : Node_Id) is
5057 begin
5058 -- Insert explicit dereference call for the checked storage pool case
5060 Insert_Dereference_Action (Prefix (N));
5062 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5063 -- we set the atomic sync flag.
5065 if Is_Atomic (Etype (N))
5066 and then not Atomic_Synchronization_Disabled (Etype (N))
5067 then
5068 Activate_Atomic_Synchronization (N);
5069 end if;
5070 end Expand_N_Explicit_Dereference;
5072 --------------------------------------
5073 -- Expand_N_Expression_With_Actions --
5074 --------------------------------------
5076 procedure Expand_N_Expression_With_Actions (N : Node_Id) is
5078 function Process_Action (Act : Node_Id) return Traverse_Result;
5079 -- Inspect and process a single action of an expression_with_actions for
5080 -- transient controlled objects. If such objects are found, the routine
5081 -- generates code to clean them up when the context of the expression is
5082 -- evaluated or elaborated.
5084 --------------------
5085 -- Process_Action --
5086 --------------------
5088 function Process_Action (Act : Node_Id) return Traverse_Result is
5089 begin
5090 if Nkind (Act) = N_Object_Declaration
5091 and then Is_Finalizable_Transient (Act, N)
5092 then
5093 Process_Transient_Object (Act, N);
5094 return Abandon;
5096 -- Avoid processing temporary function results multiple times when
5097 -- dealing with nested expression_with_actions.
5099 elsif Nkind (Act) = N_Expression_With_Actions then
5100 return Abandon;
5102 -- Do not process temporary function results in loops. This is done
5103 -- by Expand_N_Loop_Statement and Build_Finalizer.
5105 elsif Nkind (Act) = N_Loop_Statement then
5106 return Abandon;
5107 end if;
5109 return OK;
5110 end Process_Action;
5112 procedure Process_Single_Action is new Traverse_Proc (Process_Action);
5114 -- Local variables
5116 Act : Node_Id;
5118 -- Start of processing for Expand_N_Expression_With_Actions
5120 begin
5121 -- Process the actions as described above
5123 Act := First (Actions (N));
5124 while Present (Act) loop
5125 Process_Single_Action (Act);
5126 Next (Act);
5127 end loop;
5129 -- Deal with case where there are no actions. In this case we simply
5130 -- rewrite the node with its expression since we don't need the actions
5131 -- and the specification of this node does not allow a null action list.
5133 -- Note: we use Rewrite instead of Replace, because Codepeer is using
5134 -- the expanded tree and relying on being able to retrieve the original
5135 -- tree in cases like this. This raises a whole lot of issues of whether
5136 -- we have problems elsewhere, which will be addressed in the future???
5138 if Is_Empty_List (Actions (N)) then
5139 Rewrite (N, Relocate_Node (Expression (N)));
5140 end if;
5141 end Expand_N_Expression_With_Actions;
5143 ----------------------------
5144 -- Expand_N_If_Expression --
5145 ----------------------------
5147 -- Deal with limited types and condition actions
5149 procedure Expand_N_If_Expression (N : Node_Id) is
5150 procedure Process_Actions (Actions : List_Id);
5151 -- Inspect and process a single action list of an if expression for
5152 -- transient controlled objects. If such objects are found, the routine
5153 -- generates code to clean them up when the context of the expression is
5154 -- evaluated or elaborated.
5156 ---------------------
5157 -- Process_Actions --
5158 ---------------------
5160 procedure Process_Actions (Actions : List_Id) is
5161 Act : Node_Id;
5163 begin
5164 Act := First (Actions);
5165 while Present (Act) loop
5166 if Nkind (Act) = N_Object_Declaration
5167 and then Is_Finalizable_Transient (Act, N)
5168 then
5169 Process_Transient_Object (Act, N);
5170 end if;
5172 Next (Act);
5173 end loop;
5174 end Process_Actions;
5176 -- Local variables
5178 Loc : constant Source_Ptr := Sloc (N);
5179 Cond : constant Node_Id := First (Expressions (N));
5180 Thenx : constant Node_Id := Next (Cond);
5181 Elsex : constant Node_Id := Next (Thenx);
5182 Typ : constant Entity_Id := Etype (N);
5184 Actions : List_Id;
5185 Cnn : Entity_Id;
5186 Decl : Node_Id;
5187 Expr : Node_Id;
5188 New_If : Node_Id;
5189 New_N : Node_Id;
5190 Ptr_Typ : Entity_Id;
5192 -- Start of processing for Expand_N_If_Expression
5194 begin
5195 -- Check for MINIMIZED/ELIMINATED overflow mode
5197 if Minimized_Eliminated_Overflow_Check (N) then
5198 Apply_Arithmetic_Overflow_Check (N);
5199 return;
5200 end if;
5202 -- Fold at compile time if condition known. We have already folded
5203 -- static if expressions, but it is possible to fold any case in which
5204 -- the condition is known at compile time, even though the result is
5205 -- non-static.
5207 -- Note that we don't do the fold of such cases in Sem_Elab because
5208 -- it can cause infinite loops with the expander adding a conditional
5209 -- expression, and Sem_Elab circuitry removing it repeatedly.
5211 if Compile_Time_Known_Value (Cond) then
5212 if Is_True (Expr_Value (Cond)) then
5213 Expr := Thenx;
5214 Actions := Then_Actions (N);
5215 else
5216 Expr := Elsex;
5217 Actions := Else_Actions (N);
5218 end if;
5220 Remove (Expr);
5222 if Present (Actions) then
5223 Rewrite (N,
5224 Make_Expression_With_Actions (Loc,
5225 Expression => Relocate_Node (Expr),
5226 Actions => Actions));
5227 Analyze_And_Resolve (N, Typ);
5228 else
5229 Rewrite (N, Relocate_Node (Expr));
5230 end if;
5232 -- Note that the result is never static (legitimate cases of static
5233 -- if expressions were folded in Sem_Eval).
5235 Set_Is_Static_Expression (N, False);
5236 return;
5237 end if;
5239 -- If the type is limited or unconstrained, we expand as follows to
5240 -- avoid any possibility of improper copies.
5242 -- Note: it may be possible to avoid this special processing if the
5243 -- back end uses its own mechanisms for handling by-reference types ???
5245 -- type Ptr is access all Typ;
5246 -- Cnn : Ptr;
5247 -- if cond then
5248 -- <<then actions>>
5249 -- Cnn := then-expr'Unrestricted_Access;
5250 -- else
5251 -- <<else actions>>
5252 -- Cnn := else-expr'Unrestricted_Access;
5253 -- end if;
5255 -- and replace the if expression by a reference to Cnn.all.
5257 -- This special case can be skipped if the back end handles limited
5258 -- types properly and ensures that no incorrect copies are made.
5260 if Is_By_Reference_Type (Typ)
5261 and then not Back_End_Handles_Limited_Types
5262 then
5263 -- When the "then" or "else" expressions involve controlled function
5264 -- calls, generated temporaries are chained on the corresponding list
5265 -- of actions. These temporaries need to be finalized after the if
5266 -- expression is evaluated.
5268 Process_Actions (Then_Actions (N));
5269 Process_Actions (Else_Actions (N));
5271 -- Generate:
5272 -- type Ann is access all Typ;
5274 Ptr_Typ := Make_Temporary (Loc, 'A');
5276 Insert_Action (N,
5277 Make_Full_Type_Declaration (Loc,
5278 Defining_Identifier => Ptr_Typ,
5279 Type_Definition =>
5280 Make_Access_To_Object_Definition (Loc,
5281 All_Present => True,
5282 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
5284 -- Generate:
5285 -- Cnn : Ann;
5287 Cnn := Make_Temporary (Loc, 'C', N);
5289 Decl :=
5290 Make_Object_Declaration (Loc,
5291 Defining_Identifier => Cnn,
5292 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc));
5294 -- Generate:
5295 -- if Cond then
5296 -- Cnn := <Thenx>'Unrestricted_Access;
5297 -- else
5298 -- Cnn := <Elsex>'Unrestricted_Access;
5299 -- end if;
5301 New_If :=
5302 Make_Implicit_If_Statement (N,
5303 Condition => Relocate_Node (Cond),
5304 Then_Statements => New_List (
5305 Make_Assignment_Statement (Sloc (Thenx),
5306 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
5307 Expression =>
5308 Make_Attribute_Reference (Loc,
5309 Prefix => Relocate_Node (Thenx),
5310 Attribute_Name => Name_Unrestricted_Access))),
5312 Else_Statements => New_List (
5313 Make_Assignment_Statement (Sloc (Elsex),
5314 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
5315 Expression =>
5316 Make_Attribute_Reference (Loc,
5317 Prefix => Relocate_Node (Elsex),
5318 Attribute_Name => Name_Unrestricted_Access))));
5320 New_N :=
5321 Make_Explicit_Dereference (Loc,
5322 Prefix => New_Occurrence_Of (Cnn, Loc));
5324 -- For other types, we only need to expand if there are other actions
5325 -- associated with either branch.
5327 elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
5329 -- We now wrap the actions into the appropriate expression
5331 if Present (Then_Actions (N)) then
5332 Rewrite (Thenx,
5333 Make_Expression_With_Actions (Sloc (Thenx),
5334 Actions => Then_Actions (N),
5335 Expression => Relocate_Node (Thenx)));
5337 Set_Then_Actions (N, No_List);
5338 Analyze_And_Resolve (Thenx, Typ);
5339 end if;
5341 if Present (Else_Actions (N)) then
5342 Rewrite (Elsex,
5343 Make_Expression_With_Actions (Sloc (Elsex),
5344 Actions => Else_Actions (N),
5345 Expression => Relocate_Node (Elsex)));
5347 Set_Else_Actions (N, No_List);
5348 Analyze_And_Resolve (Elsex, Typ);
5349 end if;
5351 return;
5353 -- If no actions then no expansion needed, gigi will handle it using the
5354 -- same approach as a C conditional expression.
5356 else
5357 return;
5358 end if;
5360 -- Fall through here for either the limited expansion, or the case of
5361 -- inserting actions for non-limited types. In both these cases, we must
5362 -- move the SLOC of the parent If statement to the newly created one and
5363 -- change it to the SLOC of the expression which, after expansion, will
5364 -- correspond to what is being evaluated.
5366 if Present (Parent (N)) and then Nkind (Parent (N)) = N_If_Statement then
5367 Set_Sloc (New_If, Sloc (Parent (N)));
5368 Set_Sloc (Parent (N), Loc);
5369 end if;
5371 -- Make sure Then_Actions and Else_Actions are appropriately moved
5372 -- to the new if statement.
5374 if Present (Then_Actions (N)) then
5375 Insert_List_Before
5376 (First (Then_Statements (New_If)), Then_Actions (N));
5377 end if;
5379 if Present (Else_Actions (N)) then
5380 Insert_List_Before
5381 (First (Else_Statements (New_If)), Else_Actions (N));
5382 end if;
5384 Insert_Action (N, Decl);
5385 Insert_Action (N, New_If);
5386 Rewrite (N, New_N);
5387 Analyze_And_Resolve (N, Typ);
5388 end Expand_N_If_Expression;
5390 -----------------
5391 -- Expand_N_In --
5392 -----------------
5394 procedure Expand_N_In (N : Node_Id) is
5395 Loc : constant Source_Ptr := Sloc (N);
5396 Restyp : constant Entity_Id := Etype (N);
5397 Lop : constant Node_Id := Left_Opnd (N);
5398 Rop : constant Node_Id := Right_Opnd (N);
5399 Static : constant Boolean := Is_OK_Static_Expression (N);
5401 Ltyp : Entity_Id;
5402 Rtyp : Entity_Id;
5404 procedure Substitute_Valid_Check;
5405 -- Replaces node N by Lop'Valid. This is done when we have an explicit
5406 -- test for the left operand being in range of its subtype.
5408 ----------------------------
5409 -- Substitute_Valid_Check --
5410 ----------------------------
5412 procedure Substitute_Valid_Check is
5413 begin
5414 Rewrite (N,
5415 Make_Attribute_Reference (Loc,
5416 Prefix => Relocate_Node (Lop),
5417 Attribute_Name => Name_Valid));
5419 Analyze_And_Resolve (N, Restyp);
5421 -- Give warning unless overflow checking is MINIMIZED or ELIMINATED,
5422 -- in which case, this usage makes sense, and in any case, we have
5423 -- actually eliminated the danger of optimization above.
5425 if Overflow_Check_Mode not in Minimized_Or_Eliminated then
5426 Error_Msg_N
5427 ("??explicit membership test may be optimized away", N);
5428 Error_Msg_N -- CODEFIX
5429 ("\??use ''Valid attribute instead", N);
5430 end if;
5432 return;
5433 end Substitute_Valid_Check;
5435 -- Start of processing for Expand_N_In
5437 begin
5438 -- If set membership case, expand with separate procedure
5440 if Present (Alternatives (N)) then
5441 Expand_Set_Membership (N);
5442 return;
5443 end if;
5445 -- Not set membership, proceed with expansion
5447 Ltyp := Etype (Left_Opnd (N));
5448 Rtyp := Etype (Right_Opnd (N));
5450 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
5451 -- type, then expand with a separate procedure. Note the use of the
5452 -- flag No_Minimize_Eliminate to prevent infinite recursion.
5454 if Overflow_Check_Mode in Minimized_Or_Eliminated
5455 and then Is_Signed_Integer_Type (Ltyp)
5456 and then not No_Minimize_Eliminate (N)
5457 then
5458 Expand_Membership_Minimize_Eliminate_Overflow (N);
5459 return;
5460 end if;
5462 -- Check case of explicit test for an expression in range of its
5463 -- subtype. This is suspicious usage and we replace it with a 'Valid
5464 -- test and give a warning for scalar types.
5466 if Is_Scalar_Type (Ltyp)
5468 -- Only relevant for source comparisons
5470 and then Comes_From_Source (N)
5472 -- In floating-point this is a standard way to check for finite values
5473 -- and using 'Valid would typically be a pessimization.
5475 and then not Is_Floating_Point_Type (Ltyp)
5477 -- Don't give the message unless right operand is a type entity and
5478 -- the type of the left operand matches this type. Note that this
5479 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
5480 -- checks have changed the type of the left operand.
5482 and then Nkind (Rop) in N_Has_Entity
5483 and then Ltyp = Entity (Rop)
5485 -- Skip in VM mode, where we have no sense of invalid values. The
5486 -- warning still seems relevant, but not important enough to worry.
5488 and then VM_Target = No_VM
5490 -- Skip this for predicated types, where such expressions are a
5491 -- reasonable way of testing if something meets the predicate.
5493 and then not Present (Predicate_Function (Ltyp))
5494 then
5495 Substitute_Valid_Check;
5496 return;
5497 end if;
5499 -- Do validity check on operands
5501 if Validity_Checks_On and Validity_Check_Operands then
5502 Ensure_Valid (Left_Opnd (N));
5503 Validity_Check_Range (Right_Opnd (N));
5504 end if;
5506 -- Case of explicit range
5508 if Nkind (Rop) = N_Range then
5509 declare
5510 Lo : constant Node_Id := Low_Bound (Rop);
5511 Hi : constant Node_Id := High_Bound (Rop);
5513 Lo_Orig : constant Node_Id := Original_Node (Lo);
5514 Hi_Orig : constant Node_Id := Original_Node (Hi);
5516 Lcheck : Compare_Result;
5517 Ucheck : Compare_Result;
5519 Warn1 : constant Boolean :=
5520 Constant_Condition_Warnings
5521 and then Comes_From_Source (N)
5522 and then not In_Instance;
5523 -- This must be true for any of the optimization warnings, we
5524 -- clearly want to give them only for source with the flag on. We
5525 -- also skip these warnings in an instance since it may be the
5526 -- case that different instantiations have different ranges.
5528 Warn2 : constant Boolean :=
5529 Warn1
5530 and then Nkind (Original_Node (Rop)) = N_Range
5531 and then Is_Integer_Type (Etype (Lo));
5532 -- For the case where only one bound warning is elided, we also
5533 -- insist on an explicit range and an integer type. The reason is
5534 -- that the use of enumeration ranges including an end point is
5535 -- common, as is the use of a subtype name, one of whose bounds is
5536 -- the same as the type of the expression.
5538 begin
5539 -- If test is explicit x'First .. x'Last, replace by valid check
5541 -- Could use some individual comments for this complex test ???
5543 if Is_Scalar_Type (Ltyp)
5545 -- And left operand is X'First where X matches left operand
5546 -- type (this eliminates cases of type mismatch, including
5547 -- the cases where ELIMINATED/MINIMIZED mode has changed the
5548 -- type of the left operand.
5550 and then Nkind (Lo_Orig) = N_Attribute_Reference
5551 and then Attribute_Name (Lo_Orig) = Name_First
5552 and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
5553 and then Entity (Prefix (Lo_Orig)) = Ltyp
5555 -- Same tests for right operand
5557 and then Nkind (Hi_Orig) = N_Attribute_Reference
5558 and then Attribute_Name (Hi_Orig) = Name_Last
5559 and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
5560 and then Entity (Prefix (Hi_Orig)) = Ltyp
5562 -- Relevant only for source cases
5564 and then Comes_From_Source (N)
5566 -- Omit for VM cases, where we don't have invalid values
5568 and then VM_Target = No_VM
5569 then
5570 Substitute_Valid_Check;
5571 goto Leave;
5572 end if;
5574 -- If bounds of type are known at compile time, and the end points
5575 -- are known at compile time and identical, this is another case
5576 -- for substituting a valid test. We only do this for discrete
5577 -- types, since it won't arise in practice for float types.
5579 if Comes_From_Source (N)
5580 and then Is_Discrete_Type (Ltyp)
5581 and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
5582 and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
5583 and then Compile_Time_Known_Value (Lo)
5584 and then Compile_Time_Known_Value (Hi)
5585 and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
5586 and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
5588 -- Kill warnings in instances, since they may be cases where we
5589 -- have a test in the generic that makes sense with some types
5590 -- and not with other types.
5592 and then not In_Instance
5593 then
5594 Substitute_Valid_Check;
5595 goto Leave;
5596 end if;
5598 -- If we have an explicit range, do a bit of optimization based on
5599 -- range analysis (we may be able to kill one or both checks).
5601 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
5602 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
5604 -- If either check is known to fail, replace result by False since
5605 -- the other check does not matter. Preserve the static flag for
5606 -- legality checks, because we are constant-folding beyond RM 4.9.
5608 if Lcheck = LT or else Ucheck = GT then
5609 if Warn1 then
5610 Error_Msg_N ("?c?range test optimized away", N);
5611 Error_Msg_N ("\?c?value is known to be out of range", N);
5612 end if;
5614 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
5615 Analyze_And_Resolve (N, Restyp);
5616 Set_Is_Static_Expression (N, Static);
5617 goto Leave;
5619 -- If both checks are known to succeed, replace result by True,
5620 -- since we know we are in range.
5622 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
5623 if Warn1 then
5624 Error_Msg_N ("?c?range test optimized away", N);
5625 Error_Msg_N ("\?c?value is known to be in range", N);
5626 end if;
5628 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
5629 Analyze_And_Resolve (N, Restyp);
5630 Set_Is_Static_Expression (N, Static);
5631 goto Leave;
5633 -- If lower bound check succeeds and upper bound check is not
5634 -- known to succeed or fail, then replace the range check with
5635 -- a comparison against the upper bound.
5637 elsif Lcheck in Compare_GE then
5638 if Warn2 and then not In_Instance then
5639 Error_Msg_N ("??lower bound test optimized away", Lo);
5640 Error_Msg_N ("\??value is known to be in range", Lo);
5641 end if;
5643 Rewrite (N,
5644 Make_Op_Le (Loc,
5645 Left_Opnd => Lop,
5646 Right_Opnd => High_Bound (Rop)));
5647 Analyze_And_Resolve (N, Restyp);
5648 goto Leave;
5650 -- If upper bound check succeeds and lower bound check is not
5651 -- known to succeed or fail, then replace the range check with
5652 -- a comparison against the lower bound.
5654 elsif Ucheck in Compare_LE then
5655 if Warn2 and then not In_Instance then
5656 Error_Msg_N ("??upper bound test optimized away", Hi);
5657 Error_Msg_N ("\??value is known to be in range", Hi);
5658 end if;
5660 Rewrite (N,
5661 Make_Op_Ge (Loc,
5662 Left_Opnd => Lop,
5663 Right_Opnd => Low_Bound (Rop)));
5664 Analyze_And_Resolve (N, Restyp);
5665 goto Leave;
5666 end if;
5668 -- We couldn't optimize away the range check, but there is one
5669 -- more issue. If we are checking constant conditionals, then we
5670 -- see if we can determine the outcome assuming everything is
5671 -- valid, and if so give an appropriate warning.
5673 if Warn1 and then not Assume_No_Invalid_Values then
5674 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
5675 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
5677 -- Result is out of range for valid value
5679 if Lcheck = LT or else Ucheck = GT then
5680 Error_Msg_N
5681 ("?c?value can only be in range if it is invalid", N);
5683 -- Result is in range for valid value
5685 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
5686 Error_Msg_N
5687 ("?c?value can only be out of range if it is invalid", N);
5689 -- Lower bound check succeeds if value is valid
5691 elsif Warn2 and then Lcheck in Compare_GE then
5692 Error_Msg_N
5693 ("?c?lower bound check only fails if it is invalid", Lo);
5695 -- Upper bound check succeeds if value is valid
5697 elsif Warn2 and then Ucheck in Compare_LE then
5698 Error_Msg_N
5699 ("?c?upper bound check only fails for invalid values", Hi);
5700 end if;
5701 end if;
5702 end;
5704 -- For all other cases of an explicit range, nothing to be done
5706 goto Leave;
5708 -- Here right operand is a subtype mark
5710 else
5711 declare
5712 Typ : Entity_Id := Etype (Rop);
5713 Is_Acc : constant Boolean := Is_Access_Type (Typ);
5714 Cond : Node_Id := Empty;
5715 New_N : Node_Id;
5716 Obj : Node_Id := Lop;
5717 SCIL_Node : Node_Id;
5719 begin
5720 Remove_Side_Effects (Obj);
5722 -- For tagged type, do tagged membership operation
5724 if Is_Tagged_Type (Typ) then
5726 -- No expansion will be performed when VM_Target, as the VM
5727 -- back-ends will handle the membership tests directly (tags
5728 -- are not explicitly represented in Java objects, so the
5729 -- normal tagged membership expansion is not what we want).
5731 if Tagged_Type_Expansion then
5732 Tagged_Membership (N, SCIL_Node, New_N);
5733 Rewrite (N, New_N);
5734 Analyze_And_Resolve (N, Restyp);
5736 -- Update decoration of relocated node referenced by the
5737 -- SCIL node.
5739 if Generate_SCIL and then Present (SCIL_Node) then
5740 Set_SCIL_Node (N, SCIL_Node);
5741 end if;
5742 end if;
5744 goto Leave;
5746 -- If type is scalar type, rewrite as x in t'First .. t'Last.
5747 -- This reason we do this is that the bounds may have the wrong
5748 -- type if they come from the original type definition. Also this
5749 -- way we get all the processing above for an explicit range.
5751 -- Don't do this for predicated types, since in this case we
5752 -- want to check the predicate.
5754 elsif Is_Scalar_Type (Typ) then
5755 if No (Predicate_Function (Typ)) then
5756 Rewrite (Rop,
5757 Make_Range (Loc,
5758 Low_Bound =>
5759 Make_Attribute_Reference (Loc,
5760 Attribute_Name => Name_First,
5761 Prefix => New_Occurrence_Of (Typ, Loc)),
5763 High_Bound =>
5764 Make_Attribute_Reference (Loc,
5765 Attribute_Name => Name_Last,
5766 Prefix => New_Occurrence_Of (Typ, Loc))));
5767 Analyze_And_Resolve (N, Restyp);
5768 end if;
5770 goto Leave;
5772 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
5773 -- a membership test if the subtype mark denotes a constrained
5774 -- Unchecked_Union subtype and the expression lacks inferable
5775 -- discriminants.
5777 elsif Is_Unchecked_Union (Base_Type (Typ))
5778 and then Is_Constrained (Typ)
5779 and then not Has_Inferable_Discriminants (Lop)
5780 then
5781 Insert_Action (N,
5782 Make_Raise_Program_Error (Loc,
5783 Reason => PE_Unchecked_Union_Restriction));
5785 -- Prevent Gigi from generating incorrect code by rewriting the
5786 -- test as False. What is this undocumented thing about ???
5788 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
5789 goto Leave;
5790 end if;
5792 -- Here we have a non-scalar type
5794 if Is_Acc then
5795 Typ := Designated_Type (Typ);
5796 end if;
5798 if not Is_Constrained (Typ) then
5799 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
5800 Analyze_And_Resolve (N, Restyp);
5802 -- For the constrained array case, we have to check the subscripts
5803 -- for an exact match if the lengths are non-zero (the lengths
5804 -- must match in any case).
5806 elsif Is_Array_Type (Typ) then
5807 Check_Subscripts : declare
5808 function Build_Attribute_Reference
5809 (E : Node_Id;
5810 Nam : Name_Id;
5811 Dim : Nat) return Node_Id;
5812 -- Build attribute reference E'Nam (Dim)
5814 -------------------------------
5815 -- Build_Attribute_Reference --
5816 -------------------------------
5818 function Build_Attribute_Reference
5819 (E : Node_Id;
5820 Nam : Name_Id;
5821 Dim : Nat) return Node_Id
5823 begin
5824 return
5825 Make_Attribute_Reference (Loc,
5826 Prefix => E,
5827 Attribute_Name => Nam,
5828 Expressions => New_List (
5829 Make_Integer_Literal (Loc, Dim)));
5830 end Build_Attribute_Reference;
5832 -- Start of processing for Check_Subscripts
5834 begin
5835 for J in 1 .. Number_Dimensions (Typ) loop
5836 Evolve_And_Then (Cond,
5837 Make_Op_Eq (Loc,
5838 Left_Opnd =>
5839 Build_Attribute_Reference
5840 (Duplicate_Subexpr_No_Checks (Obj),
5841 Name_First, J),
5842 Right_Opnd =>
5843 Build_Attribute_Reference
5844 (New_Occurrence_Of (Typ, Loc), Name_First, J)));
5846 Evolve_And_Then (Cond,
5847 Make_Op_Eq (Loc,
5848 Left_Opnd =>
5849 Build_Attribute_Reference
5850 (Duplicate_Subexpr_No_Checks (Obj),
5851 Name_Last, J),
5852 Right_Opnd =>
5853 Build_Attribute_Reference
5854 (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
5855 end loop;
5857 if Is_Acc then
5858 Cond :=
5859 Make_Or_Else (Loc,
5860 Left_Opnd =>
5861 Make_Op_Eq (Loc,
5862 Left_Opnd => Obj,
5863 Right_Opnd => Make_Null (Loc)),
5864 Right_Opnd => Cond);
5865 end if;
5867 Rewrite (N, Cond);
5868 Analyze_And_Resolve (N, Restyp);
5869 end Check_Subscripts;
5871 -- These are the cases where constraint checks may be required,
5872 -- e.g. records with possible discriminants
5874 else
5875 -- Expand the test into a series of discriminant comparisons.
5876 -- The expression that is built is the negation of the one that
5877 -- is used for checking discriminant constraints.
5879 Obj := Relocate_Node (Left_Opnd (N));
5881 if Has_Discriminants (Typ) then
5882 Cond := Make_Op_Not (Loc,
5883 Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
5885 if Is_Acc then
5886 Cond := Make_Or_Else (Loc,
5887 Left_Opnd =>
5888 Make_Op_Eq (Loc,
5889 Left_Opnd => Obj,
5890 Right_Opnd => Make_Null (Loc)),
5891 Right_Opnd => Cond);
5892 end if;
5894 else
5895 Cond := New_Occurrence_Of (Standard_True, Loc);
5896 end if;
5898 Rewrite (N, Cond);
5899 Analyze_And_Resolve (N, Restyp);
5900 end if;
5902 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
5903 -- expression of an anonymous access type. This can involve an
5904 -- accessibility test and a tagged type membership test in the
5905 -- case of tagged designated types.
5907 if Ada_Version >= Ada_2012
5908 and then Is_Acc
5909 and then Ekind (Ltyp) = E_Anonymous_Access_Type
5910 then
5911 declare
5912 Expr_Entity : Entity_Id := Empty;
5913 New_N : Node_Id;
5914 Param_Level : Node_Id;
5915 Type_Level : Node_Id;
5917 begin
5918 if Is_Entity_Name (Lop) then
5919 Expr_Entity := Param_Entity (Lop);
5921 if not Present (Expr_Entity) then
5922 Expr_Entity := Entity (Lop);
5923 end if;
5924 end if;
5926 -- If a conversion of the anonymous access value to the
5927 -- tested type would be illegal, then the result is False.
5929 if not Valid_Conversion
5930 (Lop, Rtyp, Lop, Report_Errs => False)
5931 then
5932 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
5933 Analyze_And_Resolve (N, Restyp);
5935 -- Apply an accessibility check if the access object has an
5936 -- associated access level and when the level of the type is
5937 -- less deep than the level of the access parameter. This
5938 -- only occur for access parameters and stand-alone objects
5939 -- of an anonymous access type.
5941 else
5942 if Present (Expr_Entity)
5943 and then
5944 Present
5945 (Effective_Extra_Accessibility (Expr_Entity))
5946 and then UI_Gt (Object_Access_Level (Lop),
5947 Type_Access_Level (Rtyp))
5948 then
5949 Param_Level :=
5950 New_Occurrence_Of
5951 (Effective_Extra_Accessibility (Expr_Entity), Loc);
5953 Type_Level :=
5954 Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
5956 -- Return True only if the accessibility level of the
5957 -- expression entity is not deeper than the level of
5958 -- the tested access type.
5960 Rewrite (N,
5961 Make_And_Then (Loc,
5962 Left_Opnd => Relocate_Node (N),
5963 Right_Opnd => Make_Op_Le (Loc,
5964 Left_Opnd => Param_Level,
5965 Right_Opnd => Type_Level)));
5967 Analyze_And_Resolve (N);
5968 end if;
5970 -- If the designated type is tagged, do tagged membership
5971 -- operation.
5973 -- *** NOTE: we have to check not null before doing the
5974 -- tagged membership test (but maybe that can be done
5975 -- inside Tagged_Membership?).
5977 if Is_Tagged_Type (Typ) then
5978 Rewrite (N,
5979 Make_And_Then (Loc,
5980 Left_Opnd => Relocate_Node (N),
5981 Right_Opnd =>
5982 Make_Op_Ne (Loc,
5983 Left_Opnd => Obj,
5984 Right_Opnd => Make_Null (Loc))));
5986 -- No expansion will be performed when VM_Target, as
5987 -- the VM back-ends will handle the membership tests
5988 -- directly (tags are not explicitly represented in
5989 -- Java objects, so the normal tagged membership
5990 -- expansion is not what we want).
5992 if Tagged_Type_Expansion then
5994 -- Note that we have to pass Original_Node, because
5995 -- the membership test might already have been
5996 -- rewritten by earlier parts of membership test.
5998 Tagged_Membership
5999 (Original_Node (N), SCIL_Node, New_N);
6001 -- Update decoration of relocated node referenced
6002 -- by the SCIL node.
6004 if Generate_SCIL and then Present (SCIL_Node) then
6005 Set_SCIL_Node (New_N, SCIL_Node);
6006 end if;
6008 Rewrite (N,
6009 Make_And_Then (Loc,
6010 Left_Opnd => Relocate_Node (N),
6011 Right_Opnd => New_N));
6013 Analyze_And_Resolve (N, Restyp);
6014 end if;
6015 end if;
6016 end if;
6017 end;
6018 end if;
6019 end;
6020 end if;
6022 -- At this point, we have done the processing required for the basic
6023 -- membership test, but not yet dealt with the predicate.
6025 <<Leave>>
6027 -- If a predicate is present, then we do the predicate test, but we
6028 -- most certainly want to omit this if we are within the predicate
6029 -- function itself, since otherwise we have an infinite recursion.
6030 -- The check should also not be emitted when testing against a range
6031 -- (the check is only done when the right operand is a subtype; see
6032 -- RM12-4.5.2 (28.1/3-30/3)).
6034 declare
6035 PFunc : constant Entity_Id := Predicate_Function (Rtyp);
6037 begin
6038 if Present (PFunc)
6039 and then Current_Scope /= PFunc
6040 and then Nkind (Rop) /= N_Range
6041 then
6042 Rewrite (N,
6043 Make_And_Then (Loc,
6044 Left_Opnd => Relocate_Node (N),
6045 Right_Opnd => Make_Predicate_Call (Rtyp, Lop, Mem => True)));
6047 -- Analyze new expression, mark left operand as analyzed to
6048 -- avoid infinite recursion adding predicate calls. Similarly,
6049 -- suppress further range checks on the call.
6051 Set_Analyzed (Left_Opnd (N));
6052 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6054 -- All done, skip attempt at compile time determination of result
6056 return;
6057 end if;
6058 end;
6059 end Expand_N_In;
6061 --------------------------------
6062 -- Expand_N_Indexed_Component --
6063 --------------------------------
6065 procedure Expand_N_Indexed_Component (N : Node_Id) is
6066 Loc : constant Source_Ptr := Sloc (N);
6067 Typ : constant Entity_Id := Etype (N);
6068 P : constant Node_Id := Prefix (N);
6069 T : constant Entity_Id := Etype (P);
6070 Atp : Entity_Id;
6072 begin
6073 -- A special optimization, if we have an indexed component that is
6074 -- selecting from a slice, then we can eliminate the slice, since, for
6075 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6076 -- the range check required by the slice. The range check for the slice
6077 -- itself has already been generated. The range check for the
6078 -- subscripting operation is ensured by converting the subject to
6079 -- the subtype of the slice.
6081 -- This optimization not only generates better code, avoiding slice
6082 -- messing especially in the packed case, but more importantly bypasses
6083 -- some problems in handling this peculiar case, for example, the issue
6084 -- of dealing specially with object renamings.
6086 if Nkind (P) = N_Slice then
6087 Rewrite (N,
6088 Make_Indexed_Component (Loc,
6089 Prefix => Prefix (P),
6090 Expressions => New_List (
6091 Convert_To
6092 (Etype (First_Index (Etype (P))),
6093 First (Expressions (N))))));
6094 Analyze_And_Resolve (N, Typ);
6095 return;
6096 end if;
6098 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6099 -- function, then additional actuals must be passed.
6101 if Ada_Version >= Ada_2005
6102 and then Is_Build_In_Place_Function_Call (P)
6103 then
6104 Make_Build_In_Place_Call_In_Anonymous_Context (P);
6105 end if;
6107 -- If the prefix is an access type, then we unconditionally rewrite if
6108 -- as an explicit dereference. This simplifies processing for several
6109 -- cases, including packed array cases and certain cases in which checks
6110 -- must be generated. We used to try to do this only when it was
6111 -- necessary, but it cleans up the code to do it all the time.
6113 if Is_Access_Type (T) then
6114 Insert_Explicit_Dereference (P);
6115 Analyze_And_Resolve (P, Designated_Type (T));
6116 Atp := Designated_Type (T);
6117 else
6118 Atp := T;
6119 end if;
6121 -- Generate index and validity checks
6123 Generate_Index_Checks (N);
6125 if Validity_Checks_On and then Validity_Check_Subscripts then
6126 Apply_Subscript_Validity_Checks (N);
6127 end if;
6129 -- If selecting from an array with atomic components, and atomic sync
6130 -- is not suppressed for this array type, set atomic sync flag.
6132 if (Has_Atomic_Components (Atp)
6133 and then not Atomic_Synchronization_Disabled (Atp))
6134 or else (Is_Atomic (Typ)
6135 and then not Atomic_Synchronization_Disabled (Typ))
6136 then
6137 Activate_Atomic_Synchronization (N);
6138 end if;
6140 -- All done for the non-packed case
6142 if not Is_Packed (Etype (Prefix (N))) then
6143 return;
6144 end if;
6146 -- For packed arrays that are not bit-packed (i.e. the case of an array
6147 -- with one or more index types with a non-contiguous enumeration type),
6148 -- we can always use the normal packed element get circuit.
6150 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
6151 Expand_Packed_Element_Reference (N);
6152 return;
6153 end if;
6155 -- For a reference to a component of a bit packed array, we have to
6156 -- convert it to a reference to the corresponding Packed_Array_Type.
6157 -- We only want to do this for simple references, and not for:
6159 -- Left side of assignment, or prefix of left side of assignment, or
6160 -- prefix of the prefix, to handle packed arrays of packed arrays,
6161 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6163 -- Renaming objects in renaming associations
6164 -- This case is handled when a use of the renamed variable occurs
6166 -- Actual parameters for a procedure call
6167 -- This case is handled in Exp_Ch6.Expand_Actuals
6169 -- The second expression in a 'Read attribute reference
6171 -- The prefix of an address or bit or size attribute reference
6173 -- The following circuit detects these exceptions
6175 declare
6176 Child : Node_Id := N;
6177 Parnt : Node_Id := Parent (N);
6179 begin
6180 loop
6181 if Nkind (Parnt) = N_Unchecked_Expression then
6182 null;
6184 elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
6185 N_Procedure_Call_Statement)
6186 or else (Nkind (Parnt) = N_Parameter_Association
6187 and then
6188 Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
6189 then
6190 return;
6192 elsif Nkind (Parnt) = N_Attribute_Reference
6193 and then Nam_In (Attribute_Name (Parnt), Name_Address,
6194 Name_Bit,
6195 Name_Size)
6196 and then Prefix (Parnt) = Child
6197 then
6198 return;
6200 elsif Nkind (Parnt) = N_Assignment_Statement
6201 and then Name (Parnt) = Child
6202 then
6203 return;
6205 -- If the expression is an index of an indexed component, it must
6206 -- be expanded regardless of context.
6208 elsif Nkind (Parnt) = N_Indexed_Component
6209 and then Child /= Prefix (Parnt)
6210 then
6211 Expand_Packed_Element_Reference (N);
6212 return;
6214 elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
6215 and then Name (Parent (Parnt)) = Parnt
6216 then
6217 return;
6219 elsif Nkind (Parnt) = N_Attribute_Reference
6220 and then Attribute_Name (Parnt) = Name_Read
6221 and then Next (First (Expressions (Parnt))) = Child
6222 then
6223 return;
6225 elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
6226 and then Prefix (Parnt) = Child
6227 then
6228 null;
6230 else
6231 Expand_Packed_Element_Reference (N);
6232 return;
6233 end if;
6235 -- Keep looking up tree for unchecked expression, or if we are the
6236 -- prefix of a possible assignment left side.
6238 Child := Parnt;
6239 Parnt := Parent (Child);
6240 end loop;
6241 end;
6242 end Expand_N_Indexed_Component;
6244 ---------------------
6245 -- Expand_N_Not_In --
6246 ---------------------
6248 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
6249 -- can be done. This avoids needing to duplicate this expansion code.
6251 procedure Expand_N_Not_In (N : Node_Id) is
6252 Loc : constant Source_Ptr := Sloc (N);
6253 Typ : constant Entity_Id := Etype (N);
6254 Cfs : constant Boolean := Comes_From_Source (N);
6256 begin
6257 Rewrite (N,
6258 Make_Op_Not (Loc,
6259 Right_Opnd =>
6260 Make_In (Loc,
6261 Left_Opnd => Left_Opnd (N),
6262 Right_Opnd => Right_Opnd (N))));
6264 -- If this is a set membership, preserve list of alternatives
6266 Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
6268 -- We want this to appear as coming from source if original does (see
6269 -- transformations in Expand_N_In).
6271 Set_Comes_From_Source (N, Cfs);
6272 Set_Comes_From_Source (Right_Opnd (N), Cfs);
6274 -- Now analyze transformed node
6276 Analyze_And_Resolve (N, Typ);
6277 end Expand_N_Not_In;
6279 -------------------
6280 -- Expand_N_Null --
6281 -------------------
6283 -- The only replacement required is for the case of a null of a type that
6284 -- is an access to protected subprogram, or a subtype thereof. We represent
6285 -- such access values as a record, and so we must replace the occurrence of
6286 -- null by the equivalent record (with a null address and a null pointer in
6287 -- it), so that the backend creates the proper value.
6289 procedure Expand_N_Null (N : Node_Id) is
6290 Loc : constant Source_Ptr := Sloc (N);
6291 Typ : constant Entity_Id := Base_Type (Etype (N));
6292 Agg : Node_Id;
6294 begin
6295 if Is_Access_Protected_Subprogram_Type (Typ) then
6296 Agg :=
6297 Make_Aggregate (Loc,
6298 Expressions => New_List (
6299 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
6300 Make_Null (Loc)));
6302 Rewrite (N, Agg);
6303 Analyze_And_Resolve (N, Equivalent_Type (Typ));
6305 -- For subsequent semantic analysis, the node must retain its type.
6306 -- Gigi in any case replaces this type by the corresponding record
6307 -- type before processing the node.
6309 Set_Etype (N, Typ);
6310 end if;
6312 exception
6313 when RE_Not_Available =>
6314 return;
6315 end Expand_N_Null;
6317 ---------------------
6318 -- Expand_N_Op_Abs --
6319 ---------------------
6321 procedure Expand_N_Op_Abs (N : Node_Id) is
6322 Loc : constant Source_Ptr := Sloc (N);
6323 Expr : constant Node_Id := Right_Opnd (N);
6325 begin
6326 Unary_Op_Validity_Checks (N);
6328 -- Check for MINIMIZED/ELIMINATED overflow mode
6330 if Minimized_Eliminated_Overflow_Check (N) then
6331 Apply_Arithmetic_Overflow_Check (N);
6332 return;
6333 end if;
6335 -- Deal with software overflow checking
6337 if not Backend_Overflow_Checks_On_Target
6338 and then Is_Signed_Integer_Type (Etype (N))
6339 and then Do_Overflow_Check (N)
6340 then
6341 -- The only case to worry about is when the argument is equal to the
6342 -- largest negative number, so what we do is to insert the check:
6344 -- [constraint_error when Expr = typ'Base'First]
6346 -- with the usual Duplicate_Subexpr use coding for expr
6348 Insert_Action (N,
6349 Make_Raise_Constraint_Error (Loc,
6350 Condition =>
6351 Make_Op_Eq (Loc,
6352 Left_Opnd => Duplicate_Subexpr (Expr),
6353 Right_Opnd =>
6354 Make_Attribute_Reference (Loc,
6355 Prefix =>
6356 New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
6357 Attribute_Name => Name_First)),
6358 Reason => CE_Overflow_Check_Failed));
6359 end if;
6361 -- Vax floating-point types case
6363 if Vax_Float (Etype (N)) then
6364 Expand_Vax_Arith (N);
6365 end if;
6366 end Expand_N_Op_Abs;
6368 ---------------------
6369 -- Expand_N_Op_Add --
6370 ---------------------
6372 procedure Expand_N_Op_Add (N : Node_Id) is
6373 Typ : constant Entity_Id := Etype (N);
6375 begin
6376 Binary_Op_Validity_Checks (N);
6378 -- Check for MINIMIZED/ELIMINATED overflow mode
6380 if Minimized_Eliminated_Overflow_Check (N) then
6381 Apply_Arithmetic_Overflow_Check (N);
6382 return;
6383 end if;
6385 -- N + 0 = 0 + N = N for integer types
6387 if Is_Integer_Type (Typ) then
6388 if Compile_Time_Known_Value (Right_Opnd (N))
6389 and then Expr_Value (Right_Opnd (N)) = Uint_0
6390 then
6391 Rewrite (N, Left_Opnd (N));
6392 return;
6394 elsif Compile_Time_Known_Value (Left_Opnd (N))
6395 and then Expr_Value (Left_Opnd (N)) = Uint_0
6396 then
6397 Rewrite (N, Right_Opnd (N));
6398 return;
6399 end if;
6400 end if;
6402 -- Arithmetic overflow checks for signed integer/fixed point types
6404 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
6405 Apply_Arithmetic_Overflow_Check (N);
6406 return;
6408 -- Vax floating-point types case
6410 elsif Vax_Float (Typ) then
6411 Expand_Vax_Arith (N);
6412 end if;
6413 end Expand_N_Op_Add;
6415 ---------------------
6416 -- Expand_N_Op_And --
6417 ---------------------
6419 procedure Expand_N_Op_And (N : Node_Id) is
6420 Typ : constant Entity_Id := Etype (N);
6422 begin
6423 Binary_Op_Validity_Checks (N);
6425 if Is_Array_Type (Etype (N)) then
6426 Expand_Boolean_Operator (N);
6428 elsif Is_Boolean_Type (Etype (N)) then
6429 Adjust_Condition (Left_Opnd (N));
6430 Adjust_Condition (Right_Opnd (N));
6431 Set_Etype (N, Standard_Boolean);
6432 Adjust_Result_Type (N, Typ);
6434 elsif Is_Intrinsic_Subprogram (Entity (N)) then
6435 Expand_Intrinsic_Call (N, Entity (N));
6437 end if;
6438 end Expand_N_Op_And;
6440 ------------------------
6441 -- Expand_N_Op_Concat --
6442 ------------------------
6444 procedure Expand_N_Op_Concat (N : Node_Id) is
6445 Opnds : List_Id;
6446 -- List of operands to be concatenated
6448 Cnode : Node_Id;
6449 -- Node which is to be replaced by the result of concatenating the nodes
6450 -- in the list Opnds.
6452 begin
6453 -- Ensure validity of both operands
6455 Binary_Op_Validity_Checks (N);
6457 -- If we are the left operand of a concatenation higher up the tree,
6458 -- then do nothing for now, since we want to deal with a series of
6459 -- concatenations as a unit.
6461 if Nkind (Parent (N)) = N_Op_Concat
6462 and then N = Left_Opnd (Parent (N))
6463 then
6464 return;
6465 end if;
6467 -- We get here with a concatenation whose left operand may be a
6468 -- concatenation itself with a consistent type. We need to process
6469 -- these concatenation operands from left to right, which means
6470 -- from the deepest node in the tree to the highest node.
6472 Cnode := N;
6473 while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
6474 Cnode := Left_Opnd (Cnode);
6475 end loop;
6477 -- Now Cnode is the deepest concatenation, and its parents are the
6478 -- concatenation nodes above, so now we process bottom up, doing the
6479 -- operands.
6481 -- The outer loop runs more than once if more than one concatenation
6482 -- type is involved.
6484 Outer : loop
6485 Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
6486 Set_Parent (Opnds, N);
6488 -- The inner loop gathers concatenation operands
6490 Inner : while Cnode /= N
6491 and then Base_Type (Etype (Cnode)) =
6492 Base_Type (Etype (Parent (Cnode)))
6493 loop
6494 Cnode := Parent (Cnode);
6495 Append (Right_Opnd (Cnode), Opnds);
6496 end loop Inner;
6498 Expand_Concatenate (Cnode, Opnds);
6500 exit Outer when Cnode = N;
6501 Cnode := Parent (Cnode);
6502 end loop Outer;
6503 end Expand_N_Op_Concat;
6505 ------------------------
6506 -- Expand_N_Op_Divide --
6507 ------------------------
6509 procedure Expand_N_Op_Divide (N : Node_Id) is
6510 Loc : constant Source_Ptr := Sloc (N);
6511 Lopnd : constant Node_Id := Left_Opnd (N);
6512 Ropnd : constant Node_Id := Right_Opnd (N);
6513 Ltyp : constant Entity_Id := Etype (Lopnd);
6514 Rtyp : constant Entity_Id := Etype (Ropnd);
6515 Typ : Entity_Id := Etype (N);
6516 Rknow : constant Boolean := Is_Integer_Type (Typ)
6517 and then
6518 Compile_Time_Known_Value (Ropnd);
6519 Rval : Uint;
6521 begin
6522 Binary_Op_Validity_Checks (N);
6524 -- Check for MINIMIZED/ELIMINATED overflow mode
6526 if Minimized_Eliminated_Overflow_Check (N) then
6527 Apply_Arithmetic_Overflow_Check (N);
6528 return;
6529 end if;
6531 -- Otherwise proceed with expansion of division
6533 if Rknow then
6534 Rval := Expr_Value (Ropnd);
6535 end if;
6537 -- N / 1 = N for integer types
6539 if Rknow and then Rval = Uint_1 then
6540 Rewrite (N, Lopnd);
6541 return;
6542 end if;
6544 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
6545 -- Is_Power_Of_2_For_Shift is set means that we know that our left
6546 -- operand is an unsigned integer, as required for this to work.
6548 if Nkind (Ropnd) = N_Op_Expon
6549 and then Is_Power_Of_2_For_Shift (Ropnd)
6551 -- We cannot do this transformation in configurable run time mode if we
6552 -- have 64-bit integers and long shifts are not available.
6554 and then (Esize (Ltyp) <= 32 or else Support_Long_Shifts_On_Target)
6555 then
6556 Rewrite (N,
6557 Make_Op_Shift_Right (Loc,
6558 Left_Opnd => Lopnd,
6559 Right_Opnd =>
6560 Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
6561 Analyze_And_Resolve (N, Typ);
6562 return;
6563 end if;
6565 -- Do required fixup of universal fixed operation
6567 if Typ = Universal_Fixed then
6568 Fixup_Universal_Fixed_Operation (N);
6569 Typ := Etype (N);
6570 end if;
6572 -- Divisions with fixed-point results
6574 if Is_Fixed_Point_Type (Typ) then
6576 -- No special processing if Treat_Fixed_As_Integer is set, since
6577 -- from a semantic point of view such operations are simply integer
6578 -- operations and will be treated that way.
6580 if not Treat_Fixed_As_Integer (N) then
6581 if Is_Integer_Type (Rtyp) then
6582 Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
6583 else
6584 Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
6585 end if;
6586 end if;
6588 -- Other cases of division of fixed-point operands. Again we exclude the
6589 -- case where Treat_Fixed_As_Integer is set.
6591 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
6592 and then not Treat_Fixed_As_Integer (N)
6593 then
6594 if Is_Integer_Type (Typ) then
6595 Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
6596 else
6597 pragma Assert (Is_Floating_Point_Type (Typ));
6598 Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
6599 end if;
6601 -- Mixed-mode operations can appear in a non-static universal context,
6602 -- in which case the integer argument must be converted explicitly.
6604 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
6605 Rewrite (Ropnd,
6606 Convert_To (Universal_Real, Relocate_Node (Ropnd)));
6608 Analyze_And_Resolve (Ropnd, Universal_Real);
6610 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
6611 Rewrite (Lopnd,
6612 Convert_To (Universal_Real, Relocate_Node (Lopnd)));
6614 Analyze_And_Resolve (Lopnd, Universal_Real);
6616 -- Non-fixed point cases, do integer zero divide and overflow checks
6618 elsif Is_Integer_Type (Typ) then
6619 Apply_Divide_Checks (N);
6621 -- Deal with Vax_Float
6623 elsif Vax_Float (Typ) then
6624 Expand_Vax_Arith (N);
6625 return;
6626 end if;
6627 end Expand_N_Op_Divide;
6629 --------------------
6630 -- Expand_N_Op_Eq --
6631 --------------------
6633 procedure Expand_N_Op_Eq (N : Node_Id) is
6634 Loc : constant Source_Ptr := Sloc (N);
6635 Typ : constant Entity_Id := Etype (N);
6636 Lhs : constant Node_Id := Left_Opnd (N);
6637 Rhs : constant Node_Id := Right_Opnd (N);
6638 Bodies : constant List_Id := New_List;
6639 A_Typ : constant Entity_Id := Etype (Lhs);
6641 Typl : Entity_Id := A_Typ;
6642 Op_Name : Entity_Id;
6643 Prim : Elmt_Id;
6645 procedure Build_Equality_Call (Eq : Entity_Id);
6646 -- If a constructed equality exists for the type or for its parent,
6647 -- build and analyze call, adding conversions if the operation is
6648 -- inherited.
6650 function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
6651 -- Determines whether a type has a subcomponent of an unconstrained
6652 -- Unchecked_Union subtype. Typ is a record type.
6654 -------------------------
6655 -- Build_Equality_Call --
6656 -------------------------
6658 procedure Build_Equality_Call (Eq : Entity_Id) is
6659 Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
6660 L_Exp : Node_Id := Relocate_Node (Lhs);
6661 R_Exp : Node_Id := Relocate_Node (Rhs);
6663 begin
6664 if Base_Type (Op_Type) /= Base_Type (A_Typ)
6665 and then not Is_Class_Wide_Type (A_Typ)
6666 then
6667 L_Exp := OK_Convert_To (Op_Type, L_Exp);
6668 R_Exp := OK_Convert_To (Op_Type, R_Exp);
6669 end if;
6671 -- If we have an Unchecked_Union, we need to add the inferred
6672 -- discriminant values as actuals in the function call. At this
6673 -- point, the expansion has determined that both operands have
6674 -- inferable discriminants.
6676 if Is_Unchecked_Union (Op_Type) then
6677 declare
6678 Lhs_Type : constant Node_Id := Etype (L_Exp);
6679 Rhs_Type : constant Node_Id := Etype (R_Exp);
6681 Lhs_Discr_Vals : Elist_Id;
6682 -- List of inferred discriminant values for left operand.
6684 Rhs_Discr_Vals : Elist_Id;
6685 -- List of inferred discriminant values for right operand.
6687 Discr : Entity_Id;
6689 begin
6690 Lhs_Discr_Vals := New_Elmt_List;
6691 Rhs_Discr_Vals := New_Elmt_List;
6693 -- Per-object constrained selected components require special
6694 -- attention. If the enclosing scope of the component is an
6695 -- Unchecked_Union, we cannot reference its discriminants
6696 -- directly. This is why we use the extra parameters of the
6697 -- equality function of the enclosing Unchecked_Union.
6699 -- type UU_Type (Discr : Integer := 0) is
6700 -- . . .
6701 -- end record;
6702 -- pragma Unchecked_Union (UU_Type);
6704 -- 1. Unchecked_Union enclosing record:
6706 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
6707 -- . . .
6708 -- Comp : UU_Type (Discr);
6709 -- . . .
6710 -- end Enclosing_UU_Type;
6711 -- pragma Unchecked_Union (Enclosing_UU_Type);
6713 -- Obj1 : Enclosing_UU_Type;
6714 -- Obj2 : Enclosing_UU_Type (1);
6716 -- [. . .] Obj1 = Obj2 [. . .]
6718 -- Generated code:
6720 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
6722 -- A and B are the formal parameters of the equality function
6723 -- of Enclosing_UU_Type. The function always has two extra
6724 -- formals to capture the inferred discriminant values for
6725 -- each discriminant of the type.
6727 -- 2. Non-Unchecked_Union enclosing record:
6729 -- type
6730 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
6731 -- is record
6732 -- . . .
6733 -- Comp : UU_Type (Discr);
6734 -- . . .
6735 -- end Enclosing_Non_UU_Type;
6737 -- Obj1 : Enclosing_Non_UU_Type;
6738 -- Obj2 : Enclosing_Non_UU_Type (1);
6740 -- ... Obj1 = Obj2 ...
6742 -- Generated code:
6744 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
6745 -- obj1.discr, obj2.discr)) then
6747 -- In this case we can directly reference the discriminants of
6748 -- the enclosing record.
6750 -- Process left operand of equality
6752 if Nkind (Lhs) = N_Selected_Component
6753 and then
6754 Has_Per_Object_Constraint (Entity (Selector_Name (Lhs)))
6755 then
6756 -- If enclosing record is an Unchecked_Union, use formals
6757 -- corresponding to each discriminant. The name of the
6758 -- formal is that of the discriminant, with added suffix,
6759 -- see Exp_Ch3.Build_Record_Equality for details.
6761 if Is_Unchecked_Union
6762 (Scope (Entity (Selector_Name (Lhs))))
6763 then
6764 Discr :=
6765 First_Discriminant
6766 (Scope (Entity (Selector_Name (Lhs))));
6767 while Present (Discr) loop
6768 Append_Elmt (
6769 Make_Identifier (Loc,
6770 Chars => New_External_Name (Chars (Discr), 'A')),
6771 To => Lhs_Discr_Vals);
6772 Next_Discriminant (Discr);
6773 end loop;
6775 -- If enclosing record is of a non-Unchecked_Union type, it
6776 -- is possible to reference its discriminants directly.
6778 else
6779 Discr := First_Discriminant (Lhs_Type);
6780 while Present (Discr) loop
6781 Append_Elmt (
6782 Make_Selected_Component (Loc,
6783 Prefix => Prefix (Lhs),
6784 Selector_Name =>
6785 New_Copy
6786 (Get_Discriminant_Value (Discr,
6787 Lhs_Type,
6788 Stored_Constraint (Lhs_Type)))),
6789 To => Lhs_Discr_Vals);
6790 Next_Discriminant (Discr);
6791 end loop;
6792 end if;
6794 -- Otherwise operand is on object with a constrained type.
6795 -- Infer the discriminant values from the constraint.
6797 else
6799 Discr := First_Discriminant (Lhs_Type);
6800 while Present (Discr) loop
6801 Append_Elmt (
6802 New_Copy
6803 (Get_Discriminant_Value (Discr,
6804 Lhs_Type,
6805 Stored_Constraint (Lhs_Type))),
6806 To => Lhs_Discr_Vals);
6807 Next_Discriminant (Discr);
6808 end loop;
6809 end if;
6811 -- Similar processing for right operand of equality
6813 if Nkind (Rhs) = N_Selected_Component
6814 and then
6815 Has_Per_Object_Constraint (Entity (Selector_Name (Rhs)))
6816 then
6817 if Is_Unchecked_Union
6818 (Scope (Entity (Selector_Name (Rhs))))
6819 then
6820 Discr :=
6821 First_Discriminant
6822 (Scope (Entity (Selector_Name (Rhs))));
6823 while Present (Discr) loop
6824 Append_Elmt (
6825 Make_Identifier (Loc,
6826 Chars => New_External_Name (Chars (Discr), 'B')),
6827 To => Rhs_Discr_Vals);
6828 Next_Discriminant (Discr);
6829 end loop;
6831 else
6832 Discr := First_Discriminant (Rhs_Type);
6833 while Present (Discr) loop
6834 Append_Elmt (
6835 Make_Selected_Component (Loc,
6836 Prefix => Prefix (Rhs),
6837 Selector_Name =>
6838 New_Copy (Get_Discriminant_Value
6839 (Discr,
6840 Rhs_Type,
6841 Stored_Constraint (Rhs_Type)))),
6842 To => Rhs_Discr_Vals);
6843 Next_Discriminant (Discr);
6844 end loop;
6845 end if;
6847 else
6848 Discr := First_Discriminant (Rhs_Type);
6849 while Present (Discr) loop
6850 Append_Elmt (
6851 New_Copy (Get_Discriminant_Value
6852 (Discr,
6853 Rhs_Type,
6854 Stored_Constraint (Rhs_Type))),
6855 To => Rhs_Discr_Vals);
6856 Next_Discriminant (Discr);
6857 end loop;
6858 end if;
6860 -- Now merge the list of discriminant values so that values
6861 -- of corresponding discriminants are adjacent.
6863 declare
6864 Params : List_Id;
6865 L_Elmt : Elmt_Id;
6866 R_Elmt : Elmt_Id;
6868 begin
6869 Params := New_List (L_Exp, R_Exp);
6870 L_Elmt := First_Elmt (Lhs_Discr_Vals);
6871 R_Elmt := First_Elmt (Rhs_Discr_Vals);
6872 while Present (L_Elmt) loop
6873 Append_To (Params, Node (L_Elmt));
6874 Append_To (Params, Node (R_Elmt));
6875 Next_Elmt (L_Elmt);
6876 Next_Elmt (R_Elmt);
6877 end loop;
6879 Rewrite (N,
6880 Make_Function_Call (Loc,
6881 Name => New_Occurrence_Of (Eq, Loc),
6882 Parameter_Associations => Params));
6883 end;
6884 end;
6886 -- Normal case, not an unchecked union
6888 else
6889 Rewrite (N,
6890 Make_Function_Call (Loc,
6891 Name => New_Occurrence_Of (Eq, Loc),
6892 Parameter_Associations => New_List (L_Exp, R_Exp)));
6893 end if;
6895 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6896 end Build_Equality_Call;
6898 ------------------------------------
6899 -- Has_Unconstrained_UU_Component --
6900 ------------------------------------
6902 function Has_Unconstrained_UU_Component
6903 (Typ : Node_Id) return Boolean
6905 Tdef : constant Node_Id :=
6906 Type_Definition (Declaration_Node (Base_Type (Typ)));
6907 Clist : Node_Id;
6908 Vpart : Node_Id;
6910 function Component_Is_Unconstrained_UU
6911 (Comp : Node_Id) return Boolean;
6912 -- Determines whether the subtype of the component is an
6913 -- unconstrained Unchecked_Union.
6915 function Variant_Is_Unconstrained_UU
6916 (Variant : Node_Id) return Boolean;
6917 -- Determines whether a component of the variant has an unconstrained
6918 -- Unchecked_Union subtype.
6920 -----------------------------------
6921 -- Component_Is_Unconstrained_UU --
6922 -----------------------------------
6924 function Component_Is_Unconstrained_UU
6925 (Comp : Node_Id) return Boolean
6927 begin
6928 if Nkind (Comp) /= N_Component_Declaration then
6929 return False;
6930 end if;
6932 declare
6933 Sindic : constant Node_Id :=
6934 Subtype_Indication (Component_Definition (Comp));
6936 begin
6937 -- Unconstrained nominal type. In the case of a constraint
6938 -- present, the node kind would have been N_Subtype_Indication.
6940 if Nkind (Sindic) = N_Identifier then
6941 return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
6942 end if;
6944 return False;
6945 end;
6946 end Component_Is_Unconstrained_UU;
6948 ---------------------------------
6949 -- Variant_Is_Unconstrained_UU --
6950 ---------------------------------
6952 function Variant_Is_Unconstrained_UU
6953 (Variant : Node_Id) return Boolean
6955 Clist : constant Node_Id := Component_List (Variant);
6957 begin
6958 if Is_Empty_List (Component_Items (Clist)) then
6959 return False;
6960 end if;
6962 -- We only need to test one component
6964 declare
6965 Comp : Node_Id := First (Component_Items (Clist));
6967 begin
6968 while Present (Comp) loop
6969 if Component_Is_Unconstrained_UU (Comp) then
6970 return True;
6971 end if;
6973 Next (Comp);
6974 end loop;
6975 end;
6977 -- None of the components withing the variant were of
6978 -- unconstrained Unchecked_Union type.
6980 return False;
6981 end Variant_Is_Unconstrained_UU;
6983 -- Start of processing for Has_Unconstrained_UU_Component
6985 begin
6986 if Null_Present (Tdef) then
6987 return False;
6988 end if;
6990 Clist := Component_List (Tdef);
6991 Vpart := Variant_Part (Clist);
6993 -- Inspect available components
6995 if Present (Component_Items (Clist)) then
6996 declare
6997 Comp : Node_Id := First (Component_Items (Clist));
6999 begin
7000 while Present (Comp) loop
7002 -- One component is sufficient
7004 if Component_Is_Unconstrained_UU (Comp) then
7005 return True;
7006 end if;
7008 Next (Comp);
7009 end loop;
7010 end;
7011 end if;
7013 -- Inspect available components withing variants
7015 if Present (Vpart) then
7016 declare
7017 Variant : Node_Id := First (Variants (Vpart));
7019 begin
7020 while Present (Variant) loop
7022 -- One component within a variant is sufficient
7024 if Variant_Is_Unconstrained_UU (Variant) then
7025 return True;
7026 end if;
7028 Next (Variant);
7029 end loop;
7030 end;
7031 end if;
7033 -- Neither the available components, nor the components inside the
7034 -- variant parts were of an unconstrained Unchecked_Union subtype.
7036 return False;
7037 end Has_Unconstrained_UU_Component;
7039 -- Start of processing for Expand_N_Op_Eq
7041 begin
7042 Binary_Op_Validity_Checks (N);
7044 -- Deal with private types
7046 if Ekind (Typl) = E_Private_Type then
7047 Typl := Underlying_Type (Typl);
7048 elsif Ekind (Typl) = E_Private_Subtype then
7049 Typl := Underlying_Type (Base_Type (Typl));
7050 else
7051 null;
7052 end if;
7054 -- It may happen in error situations that the underlying type is not
7055 -- set. The error will be detected later, here we just defend the
7056 -- expander code.
7058 if No (Typl) then
7059 return;
7060 end if;
7062 Typl := Base_Type (Typl);
7064 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7065 -- means we no longer have a comparison operation, we are all done.
7067 Expand_Compare_Minimize_Eliminate_Overflow (N);
7069 if Nkind (N) /= N_Op_Eq then
7070 return;
7071 end if;
7073 -- Boolean types (requiring handling of non-standard case)
7075 if Is_Boolean_Type (Typl) then
7076 Adjust_Condition (Left_Opnd (N));
7077 Adjust_Condition (Right_Opnd (N));
7078 Set_Etype (N, Standard_Boolean);
7079 Adjust_Result_Type (N, Typ);
7081 -- Array types
7083 elsif Is_Array_Type (Typl) then
7085 -- If we are doing full validity checking, and it is possible for the
7086 -- array elements to be invalid then expand out array comparisons to
7087 -- make sure that we check the array elements.
7089 if Validity_Check_Operands
7090 and then not Is_Known_Valid (Component_Type (Typl))
7091 then
7092 declare
7093 Save_Force_Validity_Checks : constant Boolean :=
7094 Force_Validity_Checks;
7095 begin
7096 Force_Validity_Checks := True;
7097 Rewrite (N,
7098 Expand_Array_Equality
7100 Relocate_Node (Lhs),
7101 Relocate_Node (Rhs),
7102 Bodies,
7103 Typl));
7104 Insert_Actions (N, Bodies);
7105 Analyze_And_Resolve (N, Standard_Boolean);
7106 Force_Validity_Checks := Save_Force_Validity_Checks;
7107 end;
7109 -- Packed case where both operands are known aligned
7111 elsif Is_Bit_Packed_Array (Typl)
7112 and then not Is_Possibly_Unaligned_Object (Lhs)
7113 and then not Is_Possibly_Unaligned_Object (Rhs)
7114 then
7115 Expand_Packed_Eq (N);
7117 -- Where the component type is elementary we can use a block bit
7118 -- comparison (if supported on the target) exception in the case
7119 -- of floating-point (negative zero issues require element by
7120 -- element comparison), and atomic types (where we must be sure
7121 -- to load elements independently) and possibly unaligned arrays.
7123 elsif Is_Elementary_Type (Component_Type (Typl))
7124 and then not Is_Floating_Point_Type (Component_Type (Typl))
7125 and then not Is_Atomic (Component_Type (Typl))
7126 and then not Is_Possibly_Unaligned_Object (Lhs)
7127 and then not Is_Possibly_Unaligned_Object (Rhs)
7128 and then Support_Composite_Compare_On_Target
7129 then
7130 null;
7132 -- For composite and floating-point cases, expand equality loop to
7133 -- make sure of using proper comparisons for tagged types, and
7134 -- correctly handling the floating-point case.
7136 else
7137 Rewrite (N,
7138 Expand_Array_Equality
7140 Relocate_Node (Lhs),
7141 Relocate_Node (Rhs),
7142 Bodies,
7143 Typl));
7144 Insert_Actions (N, Bodies, Suppress => All_Checks);
7145 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7146 end if;
7148 -- Record Types
7150 elsif Is_Record_Type (Typl) then
7152 -- For tagged types, use the primitive "="
7154 if Is_Tagged_Type (Typl) then
7156 -- No need to do anything else compiling under restriction
7157 -- No_Dispatching_Calls. During the semantic analysis we
7158 -- already notified such violation.
7160 if Restriction_Active (No_Dispatching_Calls) then
7161 return;
7162 end if;
7164 -- If this is derived from an untagged private type completed with
7165 -- a tagged type, it does not have a full view, so we use the
7166 -- primitive operations of the private type. This check should no
7167 -- longer be necessary when these types get their full views???
7169 if Is_Private_Type (A_Typ)
7170 and then not Is_Tagged_Type (A_Typ)
7171 and then Is_Derived_Type (A_Typ)
7172 and then No (Full_View (A_Typ))
7173 then
7174 -- Search for equality operation, checking that the operands
7175 -- have the same type. Note that we must find a matching entry,
7176 -- or something is very wrong.
7178 Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
7180 while Present (Prim) loop
7181 exit when Chars (Node (Prim)) = Name_Op_Eq
7182 and then Etype (First_Formal (Node (Prim))) =
7183 Etype (Next_Formal (First_Formal (Node (Prim))))
7184 and then
7185 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7187 Next_Elmt (Prim);
7188 end loop;
7190 pragma Assert (Present (Prim));
7191 Op_Name := Node (Prim);
7193 -- Find the type's predefined equality or an overriding
7194 -- user- defined equality. The reason for not simply calling
7195 -- Find_Prim_Op here is that there may be a user-defined
7196 -- overloaded equality op that precedes the equality that we want,
7197 -- so we have to explicitly search (e.g., there could be an
7198 -- equality with two different parameter types).
7200 else
7201 if Is_Class_Wide_Type (Typl) then
7202 Typl := Root_Type (Typl);
7203 end if;
7205 Prim := First_Elmt (Primitive_Operations (Typl));
7206 while Present (Prim) loop
7207 exit when Chars (Node (Prim)) = Name_Op_Eq
7208 and then Etype (First_Formal (Node (Prim))) =
7209 Etype (Next_Formal (First_Formal (Node (Prim))))
7210 and then
7211 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7213 Next_Elmt (Prim);
7214 end loop;
7216 pragma Assert (Present (Prim));
7217 Op_Name := Node (Prim);
7218 end if;
7220 Build_Equality_Call (Op_Name);
7222 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
7223 -- predefined equality operator for a type which has a subcomponent
7224 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
7226 elsif Has_Unconstrained_UU_Component (Typl) then
7227 Insert_Action (N,
7228 Make_Raise_Program_Error (Loc,
7229 Reason => PE_Unchecked_Union_Restriction));
7231 -- Prevent Gigi from generating incorrect code by rewriting the
7232 -- equality as a standard False. (is this documented somewhere???)
7234 Rewrite (N,
7235 New_Occurrence_Of (Standard_False, Loc));
7237 elsif Is_Unchecked_Union (Typl) then
7239 -- If we can infer the discriminants of the operands, we make a
7240 -- call to the TSS equality function.
7242 if Has_Inferable_Discriminants (Lhs)
7243 and then
7244 Has_Inferable_Discriminants (Rhs)
7245 then
7246 Build_Equality_Call
7247 (TSS (Root_Type (Typl), TSS_Composite_Equality));
7249 else
7250 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
7251 -- the predefined equality operator for an Unchecked_Union type
7252 -- if either of the operands lack inferable discriminants.
7254 Insert_Action (N,
7255 Make_Raise_Program_Error (Loc,
7256 Reason => PE_Unchecked_Union_Restriction));
7258 -- Prevent Gigi from generating incorrect code by rewriting
7259 -- the equality as a standard False (documented where???).
7261 Rewrite (N,
7262 New_Occurrence_Of (Standard_False, Loc));
7264 end if;
7266 -- If a type support function is present (for complex cases), use it
7268 elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
7269 Build_Equality_Call
7270 (TSS (Root_Type (Typl), TSS_Composite_Equality));
7272 -- When comparing two Bounded_Strings, use the primitive equality of
7273 -- the root Super_String type.
7275 elsif Is_Bounded_String (Typl) then
7276 Prim :=
7277 First_Elmt (Collect_Primitive_Operations (Root_Type (Typl)));
7279 while Present (Prim) loop
7280 exit when Chars (Node (Prim)) = Name_Op_Eq
7281 and then Etype (First_Formal (Node (Prim))) =
7282 Etype (Next_Formal (First_Formal (Node (Prim))))
7283 and then Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7285 Next_Elmt (Prim);
7286 end loop;
7288 -- A Super_String type should always have a primitive equality
7290 pragma Assert (Present (Prim));
7291 Build_Equality_Call (Node (Prim));
7293 -- Otherwise expand the component by component equality. Note that
7294 -- we never use block-bit comparisons for records, because of the
7295 -- problems with gaps. The backend will often be able to recombine
7296 -- the separate comparisons that we generate here.
7298 else
7299 Remove_Side_Effects (Lhs);
7300 Remove_Side_Effects (Rhs);
7301 Rewrite (N,
7302 Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
7304 Insert_Actions (N, Bodies, Suppress => All_Checks);
7305 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7306 end if;
7307 end if;
7309 -- Test if result is known at compile time
7311 Rewrite_Comparison (N);
7313 -- If we still have comparison for Vax_Float, process it
7315 if Vax_Float (Typl) and then Nkind (N) in N_Op_Compare then
7316 Expand_Vax_Comparison (N);
7317 return;
7318 end if;
7320 Optimize_Length_Comparison (N);
7321 end Expand_N_Op_Eq;
7323 -----------------------
7324 -- Expand_N_Op_Expon --
7325 -----------------------
7327 procedure Expand_N_Op_Expon (N : Node_Id) is
7328 Loc : constant Source_Ptr := Sloc (N);
7329 Typ : constant Entity_Id := Etype (N);
7330 Rtyp : constant Entity_Id := Root_Type (Typ);
7331 Base : constant Node_Id := Relocate_Node (Left_Opnd (N));
7332 Bastyp : constant Node_Id := Etype (Base);
7333 Exp : constant Node_Id := Relocate_Node (Right_Opnd (N));
7334 Exptyp : constant Entity_Id := Etype (Exp);
7335 Ovflo : constant Boolean := Do_Overflow_Check (N);
7336 Expv : Uint;
7337 Temp : Node_Id;
7338 Rent : RE_Id;
7339 Ent : Entity_Id;
7340 Etyp : Entity_Id;
7341 Xnode : Node_Id;
7343 begin
7344 Binary_Op_Validity_Checks (N);
7346 -- CodePeer wants to see the unexpanded N_Op_Expon node
7348 if CodePeer_Mode then
7349 return;
7350 end if;
7352 -- If either operand is of a private type, then we have the use of an
7353 -- intrinsic operator, and we get rid of the privateness, by using root
7354 -- types of underlying types for the actual operation. Otherwise the
7355 -- private types will cause trouble if we expand multiplications or
7356 -- shifts etc. We also do this transformation if the result type is
7357 -- different from the base type.
7359 if Is_Private_Type (Etype (Base))
7360 or else Is_Private_Type (Typ)
7361 or else Is_Private_Type (Exptyp)
7362 or else Rtyp /= Root_Type (Bastyp)
7363 then
7364 declare
7365 Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
7366 Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
7367 begin
7368 Rewrite (N,
7369 Unchecked_Convert_To (Typ,
7370 Make_Op_Expon (Loc,
7371 Left_Opnd => Unchecked_Convert_To (Bt, Base),
7372 Right_Opnd => Unchecked_Convert_To (Et, Exp))));
7373 Analyze_And_Resolve (N, Typ);
7374 return;
7375 end;
7376 end if;
7378 -- Check for MINIMIZED/ELIMINATED overflow mode
7380 if Minimized_Eliminated_Overflow_Check (N) then
7381 Apply_Arithmetic_Overflow_Check (N);
7382 return;
7383 end if;
7385 -- Test for case of known right argument where we can replace the
7386 -- exponentiation by an equivalent expression using multiplication.
7388 -- Note: use CRT_Safe version of Compile_Time_Known_Value because in
7389 -- configurable run-time mode, we may not have the exponentiation
7390 -- routine available, and we don't want the legality of the program
7391 -- to depend on how clever the compiler is in knowing values.
7393 if CRT_Safe_Compile_Time_Known_Value (Exp) then
7394 Expv := Expr_Value (Exp);
7396 -- We only fold small non-negative exponents. You might think we
7397 -- could fold small negative exponents for the real case, but we
7398 -- can't because we are required to raise Constraint_Error for
7399 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
7400 -- See ACVC test C4A012B.
7402 if Expv >= 0 and then Expv <= 4 then
7404 -- X ** 0 = 1 (or 1.0)
7406 if Expv = 0 then
7408 -- Call Remove_Side_Effects to ensure that any side effects
7409 -- in the ignored left operand (in particular function calls
7410 -- to user defined functions) are properly executed.
7412 Remove_Side_Effects (Base);
7414 if Ekind (Typ) in Integer_Kind then
7415 Xnode := Make_Integer_Literal (Loc, Intval => 1);
7416 else
7417 Xnode := Make_Real_Literal (Loc, Ureal_1);
7418 end if;
7420 -- X ** 1 = X
7422 elsif Expv = 1 then
7423 Xnode := Base;
7425 -- X ** 2 = X * X
7427 elsif Expv = 2 then
7428 Xnode :=
7429 Make_Op_Multiply (Loc,
7430 Left_Opnd => Duplicate_Subexpr (Base),
7431 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
7433 -- X ** 3 = X * X * X
7435 elsif Expv = 3 then
7436 Xnode :=
7437 Make_Op_Multiply (Loc,
7438 Left_Opnd =>
7439 Make_Op_Multiply (Loc,
7440 Left_Opnd => Duplicate_Subexpr (Base),
7441 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
7442 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
7444 -- X ** 4 ->
7446 -- do
7447 -- En : constant base'type := base * base;
7448 -- in
7449 -- En * En
7451 else
7452 pragma Assert (Expv = 4);
7453 Temp := Make_Temporary (Loc, 'E', Base);
7455 Xnode :=
7456 Make_Expression_With_Actions (Loc,
7457 Actions => New_List (
7458 Make_Object_Declaration (Loc,
7459 Defining_Identifier => Temp,
7460 Constant_Present => True,
7461 Object_Definition => New_Occurrence_Of (Typ, Loc),
7462 Expression =>
7463 Make_Op_Multiply (Loc,
7464 Left_Opnd =>
7465 Duplicate_Subexpr (Base),
7466 Right_Opnd =>
7467 Duplicate_Subexpr_No_Checks (Base)))),
7469 Expression =>
7470 Make_Op_Multiply (Loc,
7471 Left_Opnd => New_Occurrence_Of (Temp, Loc),
7472 Right_Opnd => New_Occurrence_Of (Temp, Loc)));
7473 end if;
7475 Rewrite (N, Xnode);
7476 Analyze_And_Resolve (N, Typ);
7477 return;
7478 end if;
7479 end if;
7481 -- Case of (2 ** expression) appearing as an argument of an integer
7482 -- multiplication, or as the right argument of a division of a non-
7483 -- negative integer. In such cases we leave the node untouched, setting
7484 -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
7485 -- of the higher level node converts it into a shift.
7487 -- Another case is 2 ** N in any other context. We simply convert
7488 -- this to 1 * 2 ** N, and then the above transformation applies.
7490 -- Note: this transformation is not applicable for a modular type with
7491 -- a non-binary modulus in the multiplication case, since we get a wrong
7492 -- result if the shift causes an overflow before the modular reduction.
7494 -- Note: we used to check that Exptyp was an unsigned type. But that is
7495 -- an unnecessary check, since if Exp is negative, we have a run-time
7496 -- error that is either caught (so we get the right result) or we have
7497 -- suppressed the check, in which case the code is erroneous anyway.
7499 if Nkind (Base) = N_Integer_Literal
7500 and then CRT_Safe_Compile_Time_Known_Value (Base)
7501 and then Expr_Value (Base) = Uint_2
7502 and then Is_Integer_Type (Root_Type (Exptyp))
7503 and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
7504 and then not Ovflo
7505 then
7506 -- First the multiply and divide cases
7508 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
7509 declare
7510 P : constant Node_Id := Parent (N);
7511 L : constant Node_Id := Left_Opnd (P);
7512 R : constant Node_Id := Right_Opnd (P);
7514 begin
7515 if (Nkind (P) = N_Op_Multiply
7516 and then not Non_Binary_Modulus (Typ)
7517 and then
7518 ((Is_Integer_Type (Etype (L)) and then R = N)
7519 or else
7520 (Is_Integer_Type (Etype (R)) and then L = N))
7521 and then not Do_Overflow_Check (P))
7522 or else
7523 (Nkind (P) = N_Op_Divide
7524 and then Is_Integer_Type (Etype (L))
7525 and then Is_Unsigned_Type (Etype (L))
7526 and then R = N
7527 and then not Do_Overflow_Check (P))
7528 then
7529 Set_Is_Power_Of_2_For_Shift (N);
7530 return;
7531 end if;
7532 end;
7534 -- Now the other cases
7536 elsif not Non_Binary_Modulus (Typ) then
7537 Rewrite (N,
7538 Make_Op_Multiply (Loc,
7539 Left_Opnd => Make_Integer_Literal (Loc, 1),
7540 Right_Opnd => Relocate_Node (N)));
7541 Analyze_And_Resolve (N, Typ);
7542 return;
7543 end if;
7544 end if;
7546 -- Fall through if exponentiation must be done using a runtime routine
7548 -- First deal with modular case
7550 if Is_Modular_Integer_Type (Rtyp) then
7552 -- Non-binary case, we call the special exponentiation routine for
7553 -- the non-binary case, converting the argument to Long_Long_Integer
7554 -- and passing the modulus value. Then the result is converted back
7555 -- to the base type.
7557 if Non_Binary_Modulus (Rtyp) then
7558 Rewrite (N,
7559 Convert_To (Typ,
7560 Make_Function_Call (Loc,
7561 Name => New_Occurrence_Of (RTE (RE_Exp_Modular), Loc),
7562 Parameter_Associations => New_List (
7563 Convert_To (Standard_Integer, Base),
7564 Make_Integer_Literal (Loc, Modulus (Rtyp)),
7565 Exp))));
7567 -- Binary case, in this case, we call one of two routines, either the
7568 -- unsigned integer case, or the unsigned long long integer case,
7569 -- with a final "and" operation to do the required mod.
7571 else
7572 if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
7573 Ent := RTE (RE_Exp_Unsigned);
7574 else
7575 Ent := RTE (RE_Exp_Long_Long_Unsigned);
7576 end if;
7578 Rewrite (N,
7579 Convert_To (Typ,
7580 Make_Op_And (Loc,
7581 Left_Opnd =>
7582 Make_Function_Call (Loc,
7583 Name => New_Occurrence_Of (Ent, Loc),
7584 Parameter_Associations => New_List (
7585 Convert_To (Etype (First_Formal (Ent)), Base),
7586 Exp)),
7587 Right_Opnd =>
7588 Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
7590 end if;
7592 -- Common exit point for modular type case
7594 Analyze_And_Resolve (N, Typ);
7595 return;
7597 -- Signed integer cases, done using either Integer or Long_Long_Integer.
7598 -- It is not worth having routines for Short_[Short_]Integer, since for
7599 -- most machines it would not help, and it would generate more code that
7600 -- might need certification when a certified run time is required.
7602 -- In the integer cases, we have two routines, one for when overflow
7603 -- checks are required, and one when they are not required, since there
7604 -- is a real gain in omitting checks on many machines.
7606 elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
7607 or else (Rtyp = Base_Type (Standard_Long_Integer)
7608 and then
7609 Esize (Standard_Long_Integer) > Esize (Standard_Integer))
7610 or else Rtyp = Universal_Integer
7611 then
7612 Etyp := Standard_Long_Long_Integer;
7614 -- Overflow checking is the only choice on the AAMP target, where
7615 -- arithmetic instructions check overflow automatically, so only
7616 -- one version of the exponentiation unit is needed.
7618 if Ovflo or AAMP_On_Target then
7619 Rent := RE_Exp_Long_Long_Integer;
7620 else
7621 Rent := RE_Exn_Long_Long_Integer;
7622 end if;
7624 elsif Is_Signed_Integer_Type (Rtyp) then
7625 Etyp := Standard_Integer;
7627 -- Overflow checking is the only choice on the AAMP target, where
7628 -- arithmetic instructions check overflow automatically, so only
7629 -- one version of the exponentiation unit is needed.
7631 if Ovflo or AAMP_On_Target then
7632 Rent := RE_Exp_Integer;
7633 else
7634 Rent := RE_Exn_Integer;
7635 end if;
7637 -- Floating-point cases, always done using Long_Long_Float. We do not
7638 -- need separate routines for the overflow case here, since in the case
7639 -- of floating-point, we generate infinities anyway as a rule (either
7640 -- that or we automatically trap overflow), and if there is an infinity
7641 -- generated and a range check is required, the check will fail anyway.
7643 else
7644 pragma Assert (Is_Floating_Point_Type (Rtyp));
7645 Etyp := Standard_Long_Long_Float;
7646 Rent := RE_Exn_Long_Long_Float;
7647 end if;
7649 -- Common processing for integer cases and floating-point cases.
7650 -- If we are in the right type, we can call runtime routine directly
7652 if Typ = Etyp
7653 and then Rtyp /= Universal_Integer
7654 and then Rtyp /= Universal_Real
7655 then
7656 Rewrite (N,
7657 Make_Function_Call (Loc,
7658 Name => New_Occurrence_Of (RTE (Rent), Loc),
7659 Parameter_Associations => New_List (Base, Exp)));
7661 -- Otherwise we have to introduce conversions (conversions are also
7662 -- required in the universal cases, since the runtime routine is
7663 -- typed using one of the standard types).
7665 else
7666 Rewrite (N,
7667 Convert_To (Typ,
7668 Make_Function_Call (Loc,
7669 Name => New_Occurrence_Of (RTE (Rent), Loc),
7670 Parameter_Associations => New_List (
7671 Convert_To (Etyp, Base),
7672 Exp))));
7673 end if;
7675 Analyze_And_Resolve (N, Typ);
7676 return;
7678 exception
7679 when RE_Not_Available =>
7680 return;
7681 end Expand_N_Op_Expon;
7683 --------------------
7684 -- Expand_N_Op_Ge --
7685 --------------------
7687 procedure Expand_N_Op_Ge (N : Node_Id) is
7688 Typ : constant Entity_Id := Etype (N);
7689 Op1 : constant Node_Id := Left_Opnd (N);
7690 Op2 : constant Node_Id := Right_Opnd (N);
7691 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7693 begin
7694 Binary_Op_Validity_Checks (N);
7696 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7697 -- means we no longer have a comparison operation, we are all done.
7699 Expand_Compare_Minimize_Eliminate_Overflow (N);
7701 if Nkind (N) /= N_Op_Ge then
7702 return;
7703 end if;
7705 -- Array type case
7707 if Is_Array_Type (Typ1) then
7708 Expand_Array_Comparison (N);
7709 return;
7710 end if;
7712 -- Deal with boolean operands
7714 if Is_Boolean_Type (Typ1) then
7715 Adjust_Condition (Op1);
7716 Adjust_Condition (Op2);
7717 Set_Etype (N, Standard_Boolean);
7718 Adjust_Result_Type (N, Typ);
7719 end if;
7721 Rewrite_Comparison (N);
7723 -- If we still have comparison, and Vax_Float type, process it
7725 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
7726 Expand_Vax_Comparison (N);
7727 return;
7728 end if;
7730 Optimize_Length_Comparison (N);
7731 end Expand_N_Op_Ge;
7733 --------------------
7734 -- Expand_N_Op_Gt --
7735 --------------------
7737 procedure Expand_N_Op_Gt (N : Node_Id) is
7738 Typ : constant Entity_Id := Etype (N);
7739 Op1 : constant Node_Id := Left_Opnd (N);
7740 Op2 : constant Node_Id := Right_Opnd (N);
7741 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7743 begin
7744 Binary_Op_Validity_Checks (N);
7746 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7747 -- means we no longer have a comparison operation, we are all done.
7749 Expand_Compare_Minimize_Eliminate_Overflow (N);
7751 if Nkind (N) /= N_Op_Gt then
7752 return;
7753 end if;
7755 -- Deal with array type operands
7757 if Is_Array_Type (Typ1) then
7758 Expand_Array_Comparison (N);
7759 return;
7760 end if;
7762 -- Deal with boolean type operands
7764 if Is_Boolean_Type (Typ1) then
7765 Adjust_Condition (Op1);
7766 Adjust_Condition (Op2);
7767 Set_Etype (N, Standard_Boolean);
7768 Adjust_Result_Type (N, Typ);
7769 end if;
7771 Rewrite_Comparison (N);
7773 -- If we still have comparison, and Vax_Float type, process it
7775 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
7776 Expand_Vax_Comparison (N);
7777 return;
7778 end if;
7780 Optimize_Length_Comparison (N);
7781 end Expand_N_Op_Gt;
7783 --------------------
7784 -- Expand_N_Op_Le --
7785 --------------------
7787 procedure Expand_N_Op_Le (N : Node_Id) is
7788 Typ : constant Entity_Id := Etype (N);
7789 Op1 : constant Node_Id := Left_Opnd (N);
7790 Op2 : constant Node_Id := Right_Opnd (N);
7791 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7793 begin
7794 Binary_Op_Validity_Checks (N);
7796 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7797 -- means we no longer have a comparison operation, we are all done.
7799 Expand_Compare_Minimize_Eliminate_Overflow (N);
7801 if Nkind (N) /= N_Op_Le then
7802 return;
7803 end if;
7805 -- Deal with array type operands
7807 if Is_Array_Type (Typ1) then
7808 Expand_Array_Comparison (N);
7809 return;
7810 end if;
7812 -- Deal with Boolean type operands
7814 if Is_Boolean_Type (Typ1) then
7815 Adjust_Condition (Op1);
7816 Adjust_Condition (Op2);
7817 Set_Etype (N, Standard_Boolean);
7818 Adjust_Result_Type (N, Typ);
7819 end if;
7821 Rewrite_Comparison (N);
7823 -- If we still have comparison, and Vax_Float type, process it
7825 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
7826 Expand_Vax_Comparison (N);
7827 return;
7828 end if;
7830 Optimize_Length_Comparison (N);
7831 end Expand_N_Op_Le;
7833 --------------------
7834 -- Expand_N_Op_Lt --
7835 --------------------
7837 procedure Expand_N_Op_Lt (N : Node_Id) is
7838 Typ : constant Entity_Id := Etype (N);
7839 Op1 : constant Node_Id := Left_Opnd (N);
7840 Op2 : constant Node_Id := Right_Opnd (N);
7841 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7843 begin
7844 Binary_Op_Validity_Checks (N);
7846 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7847 -- means we no longer have a comparison operation, we are all done.
7849 Expand_Compare_Minimize_Eliminate_Overflow (N);
7851 if Nkind (N) /= N_Op_Lt then
7852 return;
7853 end if;
7855 -- Deal with array type operands
7857 if Is_Array_Type (Typ1) then
7858 Expand_Array_Comparison (N);
7859 return;
7860 end if;
7862 -- Deal with Boolean type operands
7864 if Is_Boolean_Type (Typ1) then
7865 Adjust_Condition (Op1);
7866 Adjust_Condition (Op2);
7867 Set_Etype (N, Standard_Boolean);
7868 Adjust_Result_Type (N, Typ);
7869 end if;
7871 Rewrite_Comparison (N);
7873 -- If we still have comparison, and Vax_Float type, process it
7875 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
7876 Expand_Vax_Comparison (N);
7877 return;
7878 end if;
7880 Optimize_Length_Comparison (N);
7881 end Expand_N_Op_Lt;
7883 -----------------------
7884 -- Expand_N_Op_Minus --
7885 -----------------------
7887 procedure Expand_N_Op_Minus (N : Node_Id) is
7888 Loc : constant Source_Ptr := Sloc (N);
7889 Typ : constant Entity_Id := Etype (N);
7891 begin
7892 Unary_Op_Validity_Checks (N);
7894 -- Check for MINIMIZED/ELIMINATED overflow mode
7896 if Minimized_Eliminated_Overflow_Check (N) then
7897 Apply_Arithmetic_Overflow_Check (N);
7898 return;
7899 end if;
7901 if not Backend_Overflow_Checks_On_Target
7902 and then Is_Signed_Integer_Type (Etype (N))
7903 and then Do_Overflow_Check (N)
7904 then
7905 -- Software overflow checking expands -expr into (0 - expr)
7907 Rewrite (N,
7908 Make_Op_Subtract (Loc,
7909 Left_Opnd => Make_Integer_Literal (Loc, 0),
7910 Right_Opnd => Right_Opnd (N)));
7912 Analyze_And_Resolve (N, Typ);
7914 -- Vax floating-point types case
7916 elsif Vax_Float (Etype (N)) then
7917 Expand_Vax_Arith (N);
7918 end if;
7919 end Expand_N_Op_Minus;
7921 ---------------------
7922 -- Expand_N_Op_Mod --
7923 ---------------------
7925 procedure Expand_N_Op_Mod (N : Node_Id) is
7926 Loc : constant Source_Ptr := Sloc (N);
7927 Typ : constant Entity_Id := Etype (N);
7928 DDC : constant Boolean := Do_Division_Check (N);
7930 Left : Node_Id;
7931 Right : Node_Id;
7933 LLB : Uint;
7934 Llo : Uint;
7935 Lhi : Uint;
7936 LOK : Boolean;
7937 Rlo : Uint;
7938 Rhi : Uint;
7939 ROK : Boolean;
7941 pragma Warnings (Off, Lhi);
7943 begin
7944 Binary_Op_Validity_Checks (N);
7946 -- Check for MINIMIZED/ELIMINATED overflow mode
7948 if Minimized_Eliminated_Overflow_Check (N) then
7949 Apply_Arithmetic_Overflow_Check (N);
7950 return;
7951 end if;
7953 if Is_Integer_Type (Etype (N)) then
7954 Apply_Divide_Checks (N);
7956 -- All done if we don't have a MOD any more, which can happen as a
7957 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
7959 if Nkind (N) /= N_Op_Mod then
7960 return;
7961 end if;
7962 end if;
7964 -- Proceed with expansion of mod operator
7966 Left := Left_Opnd (N);
7967 Right := Right_Opnd (N);
7969 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
7970 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
7972 -- Convert mod to rem if operands are both known to be non-negative, or
7973 -- both known to be non-positive (these are the cases in which rem and
7974 -- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
7975 -- likely that this will improve the quality of code, (the operation now
7976 -- corresponds to the hardware remainder), and it does not seem likely
7977 -- that it could be harmful. It also avoids some cases of the elaborate
7978 -- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
7980 if (LOK and ROK)
7981 and then ((Llo >= 0 and then Rlo >= 0)
7982 or else
7983 (Lhi <= 0 and then Rhi <= 0))
7984 then
7985 Rewrite (N,
7986 Make_Op_Rem (Sloc (N),
7987 Left_Opnd => Left_Opnd (N),
7988 Right_Opnd => Right_Opnd (N)));
7990 -- Instead of reanalyzing the node we do the analysis manually. This
7991 -- avoids anomalies when the replacement is done in an instance and
7992 -- is epsilon more efficient.
7994 Set_Entity (N, Standard_Entity (S_Op_Rem));
7995 Set_Etype (N, Typ);
7996 Set_Do_Division_Check (N, DDC);
7997 Expand_N_Op_Rem (N);
7998 Set_Analyzed (N);
7999 return;
8001 -- Otherwise, normal mod processing
8003 else
8004 -- Apply optimization x mod 1 = 0. We don't really need that with
8005 -- gcc, but it is useful with other back ends (e.g. AAMP), and is
8006 -- certainly harmless.
8008 if Is_Integer_Type (Etype (N))
8009 and then Compile_Time_Known_Value (Right)
8010 and then Expr_Value (Right) = Uint_1
8011 then
8012 -- Call Remove_Side_Effects to ensure that any side effects in
8013 -- the ignored left operand (in particular function calls to
8014 -- user defined functions) are properly executed.
8016 Remove_Side_Effects (Left);
8018 Rewrite (N, Make_Integer_Literal (Loc, 0));
8019 Analyze_And_Resolve (N, Typ);
8020 return;
8021 end if;
8023 -- If we still have a mod operator and we are in Modify_Tree_For_C
8024 -- mode, and we have a signed integer type, then here is where we do
8025 -- the rewrite in terms of Rem. Note this rewrite bypasses the need
8026 -- for the special handling of the annoying case of largest negative
8027 -- number mod minus one.
8029 if Nkind (N) = N_Op_Mod
8030 and then Is_Signed_Integer_Type (Typ)
8031 and then Modify_Tree_For_C
8032 then
8033 -- In the general case, we expand A mod B as
8035 -- Tnn : constant typ := A rem B;
8036 -- ..
8037 -- (if (A >= 0) = (B >= 0) then Tnn
8038 -- elsif Tnn = 0 then 0
8039 -- else Tnn + B)
8041 -- The comparison can be written simply as A >= 0 if we know that
8042 -- B >= 0 which is a very common case.
8044 -- An important optimization is when B is known at compile time
8045 -- to be 2**K for some constant. In this case we can simply AND
8046 -- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
8047 -- and that works for both the positive and negative cases.
8049 declare
8050 P2 : constant Nat := Power_Of_Two (Right);
8052 begin
8053 if P2 /= 0 then
8054 Rewrite (N,
8055 Unchecked_Convert_To (Typ,
8056 Make_Op_And (Loc,
8057 Left_Opnd =>
8058 Unchecked_Convert_To
8059 (Corresponding_Unsigned_Type (Typ), Left),
8060 Right_Opnd =>
8061 Make_Integer_Literal (Loc, 2 ** P2 - 1))));
8062 Analyze_And_Resolve (N, Typ);
8063 return;
8064 end if;
8065 end;
8067 -- Here for the full rewrite
8069 declare
8070 Tnn : constant Entity_Id := Make_Temporary (Sloc (N), 'T', N);
8071 Cmp : Node_Id;
8073 begin
8074 Cmp :=
8075 Make_Op_Ge (Loc,
8076 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
8077 Right_Opnd => Make_Integer_Literal (Loc, 0));
8079 if not LOK or else Rlo < 0 then
8080 Cmp :=
8081 Make_Op_Eq (Loc,
8082 Left_Opnd => Cmp,
8083 Right_Opnd =>
8084 Make_Op_Ge (Loc,
8085 Left_Opnd => Duplicate_Subexpr_No_Checks (Right),
8086 Right_Opnd => Make_Integer_Literal (Loc, 0)));
8087 end if;
8089 Insert_Action (N,
8090 Make_Object_Declaration (Loc,
8091 Defining_Identifier => Tnn,
8092 Constant_Present => True,
8093 Object_Definition => New_Occurrence_Of (Typ, Loc),
8094 Expression =>
8095 Make_Op_Rem (Loc,
8096 Left_Opnd => Left,
8097 Right_Opnd => Right)));
8099 Rewrite (N,
8100 Make_If_Expression (Loc,
8101 Expressions => New_List (
8102 Cmp,
8103 New_Occurrence_Of (Tnn, Loc),
8104 Make_If_Expression (Loc,
8105 Is_Elsif => True,
8106 Expressions => New_List (
8107 Make_Op_Eq (Loc,
8108 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8109 Right_Opnd => Make_Integer_Literal (Loc, 0)),
8110 Make_Integer_Literal (Loc, 0),
8111 Make_Op_Add (Loc,
8112 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8113 Right_Opnd =>
8114 Duplicate_Subexpr_No_Checks (Right)))))));
8116 Analyze_And_Resolve (N, Typ);
8117 return;
8118 end;
8119 end if;
8121 -- Deal with annoying case of largest negative number mod minus one.
8122 -- Gigi may not handle this case correctly, because on some targets,
8123 -- the mod value is computed using a divide instruction which gives
8124 -- an overflow trap for this case.
8126 -- It would be a bit more efficient to figure out which targets
8127 -- this is really needed for, but in practice it is reasonable
8128 -- to do the following special check in all cases, since it means
8129 -- we get a clearer message, and also the overhead is minimal given
8130 -- that division is expensive in any case.
8132 -- In fact the check is quite easy, if the right operand is -1, then
8133 -- the mod value is always 0, and we can just ignore the left operand
8134 -- completely in this case.
8136 -- This only applies if we still have a mod operator. Skip if we
8137 -- have already rewritten this (e.g. in the case of eliminated
8138 -- overflow checks which have driven us into bignum mode).
8140 if Nkind (N) = N_Op_Mod then
8142 -- The operand type may be private (e.g. in the expansion of an
8143 -- intrinsic operation) so we must use the underlying type to get
8144 -- the bounds, and convert the literals explicitly.
8146 LLB :=
8147 Expr_Value
8148 (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
8150 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
8151 and then ((not LOK) or else (Llo = LLB))
8152 then
8153 Rewrite (N,
8154 Make_If_Expression (Loc,
8155 Expressions => New_List (
8156 Make_Op_Eq (Loc,
8157 Left_Opnd => Duplicate_Subexpr (Right),
8158 Right_Opnd =>
8159 Unchecked_Convert_To (Typ,
8160 Make_Integer_Literal (Loc, -1))),
8161 Unchecked_Convert_To (Typ,
8162 Make_Integer_Literal (Loc, Uint_0)),
8163 Relocate_Node (N))));
8165 Set_Analyzed (Next (Next (First (Expressions (N)))));
8166 Analyze_And_Resolve (N, Typ);
8167 end if;
8168 end if;
8169 end if;
8170 end Expand_N_Op_Mod;
8172 --------------------------
8173 -- Expand_N_Op_Multiply --
8174 --------------------------
8176 procedure Expand_N_Op_Multiply (N : Node_Id) is
8177 Loc : constant Source_Ptr := Sloc (N);
8178 Lop : constant Node_Id := Left_Opnd (N);
8179 Rop : constant Node_Id := Right_Opnd (N);
8181 Lp2 : constant Boolean :=
8182 Nkind (Lop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Lop);
8183 Rp2 : constant Boolean :=
8184 Nkind (Rop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Rop);
8186 Ltyp : constant Entity_Id := Etype (Lop);
8187 Rtyp : constant Entity_Id := Etype (Rop);
8188 Typ : Entity_Id := Etype (N);
8190 begin
8191 Binary_Op_Validity_Checks (N);
8193 -- Check for MINIMIZED/ELIMINATED overflow mode
8195 if Minimized_Eliminated_Overflow_Check (N) then
8196 Apply_Arithmetic_Overflow_Check (N);
8197 return;
8198 end if;
8200 -- Special optimizations for integer types
8202 if Is_Integer_Type (Typ) then
8204 -- N * 0 = 0 for integer types
8206 if Compile_Time_Known_Value (Rop)
8207 and then Expr_Value (Rop) = Uint_0
8208 then
8209 -- Call Remove_Side_Effects to ensure that any side effects in
8210 -- the ignored left operand (in particular function calls to
8211 -- user defined functions) are properly executed.
8213 Remove_Side_Effects (Lop);
8215 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
8216 Analyze_And_Resolve (N, Typ);
8217 return;
8218 end if;
8220 -- Similar handling for 0 * N = 0
8222 if Compile_Time_Known_Value (Lop)
8223 and then Expr_Value (Lop) = Uint_0
8224 then
8225 Remove_Side_Effects (Rop);
8226 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
8227 Analyze_And_Resolve (N, Typ);
8228 return;
8229 end if;
8231 -- N * 1 = 1 * N = N for integer types
8233 -- This optimisation is not done if we are going to
8234 -- rewrite the product 1 * 2 ** N to a shift.
8236 if Compile_Time_Known_Value (Rop)
8237 and then Expr_Value (Rop) = Uint_1
8238 and then not Lp2
8239 then
8240 Rewrite (N, Lop);
8241 return;
8243 elsif Compile_Time_Known_Value (Lop)
8244 and then Expr_Value (Lop) = Uint_1
8245 and then not Rp2
8246 then
8247 Rewrite (N, Rop);
8248 return;
8249 end if;
8250 end if;
8252 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
8253 -- Is_Power_Of_2_For_Shift is set means that we know that our left
8254 -- operand is an integer, as required for this to work.
8256 if Rp2 then
8257 if Lp2 then
8259 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
8261 Rewrite (N,
8262 Make_Op_Expon (Loc,
8263 Left_Opnd => Make_Integer_Literal (Loc, 2),
8264 Right_Opnd =>
8265 Make_Op_Add (Loc,
8266 Left_Opnd => Right_Opnd (Lop),
8267 Right_Opnd => Right_Opnd (Rop))));
8268 Analyze_And_Resolve (N, Typ);
8269 return;
8271 else
8272 -- If the result is modular, perform the reduction of the result
8273 -- appropriately.
8275 if Is_Modular_Integer_Type (Typ)
8276 and then not Non_Binary_Modulus (Typ)
8277 then
8278 Rewrite (N,
8279 Make_Op_And (Loc,
8280 Left_Opnd =>
8281 Make_Op_Shift_Left (Loc,
8282 Left_Opnd => Lop,
8283 Right_Opnd =>
8284 Convert_To (Standard_Natural, Right_Opnd (Rop))),
8285 Right_Opnd =>
8286 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
8288 else
8289 Rewrite (N,
8290 Make_Op_Shift_Left (Loc,
8291 Left_Opnd => Lop,
8292 Right_Opnd =>
8293 Convert_To (Standard_Natural, Right_Opnd (Rop))));
8294 end if;
8296 Analyze_And_Resolve (N, Typ);
8297 return;
8298 end if;
8300 -- Same processing for the operands the other way round
8302 elsif Lp2 then
8303 if Is_Modular_Integer_Type (Typ)
8304 and then not Non_Binary_Modulus (Typ)
8305 then
8306 Rewrite (N,
8307 Make_Op_And (Loc,
8308 Left_Opnd =>
8309 Make_Op_Shift_Left (Loc,
8310 Left_Opnd => Rop,
8311 Right_Opnd =>
8312 Convert_To (Standard_Natural, Right_Opnd (Lop))),
8313 Right_Opnd =>
8314 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
8316 else
8317 Rewrite (N,
8318 Make_Op_Shift_Left (Loc,
8319 Left_Opnd => Rop,
8320 Right_Opnd =>
8321 Convert_To (Standard_Natural, Right_Opnd (Lop))));
8322 end if;
8324 Analyze_And_Resolve (N, Typ);
8325 return;
8326 end if;
8328 -- Do required fixup of universal fixed operation
8330 if Typ = Universal_Fixed then
8331 Fixup_Universal_Fixed_Operation (N);
8332 Typ := Etype (N);
8333 end if;
8335 -- Multiplications with fixed-point results
8337 if Is_Fixed_Point_Type (Typ) then
8339 -- No special processing if Treat_Fixed_As_Integer is set, since from
8340 -- a semantic point of view such operations are simply integer
8341 -- operations and will be treated that way.
8343 if not Treat_Fixed_As_Integer (N) then
8345 -- Case of fixed * integer => fixed
8347 if Is_Integer_Type (Rtyp) then
8348 Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
8350 -- Case of integer * fixed => fixed
8352 elsif Is_Integer_Type (Ltyp) then
8353 Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
8355 -- Case of fixed * fixed => fixed
8357 else
8358 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
8359 end if;
8360 end if;
8362 -- Other cases of multiplication of fixed-point operands. Again we
8363 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
8365 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
8366 and then not Treat_Fixed_As_Integer (N)
8367 then
8368 if Is_Integer_Type (Typ) then
8369 Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
8370 else
8371 pragma Assert (Is_Floating_Point_Type (Typ));
8372 Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
8373 end if;
8375 -- Mixed-mode operations can appear in a non-static universal context,
8376 -- in which case the integer argument must be converted explicitly.
8378 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
8379 Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
8380 Analyze_And_Resolve (Rop, Universal_Real);
8382 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
8383 Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
8384 Analyze_And_Resolve (Lop, Universal_Real);
8386 -- Non-fixed point cases, check software overflow checking required
8388 elsif Is_Signed_Integer_Type (Etype (N)) then
8389 Apply_Arithmetic_Overflow_Check (N);
8391 -- Deal with VAX float case
8393 elsif Vax_Float (Typ) then
8394 Expand_Vax_Arith (N);
8395 return;
8396 end if;
8397 end Expand_N_Op_Multiply;
8399 --------------------
8400 -- Expand_N_Op_Ne --
8401 --------------------
8403 procedure Expand_N_Op_Ne (N : Node_Id) is
8404 Typ : constant Entity_Id := Etype (Left_Opnd (N));
8406 begin
8407 -- Case of elementary type with standard operator
8409 if Is_Elementary_Type (Typ)
8410 and then Sloc (Entity (N)) = Standard_Location
8411 then
8412 Binary_Op_Validity_Checks (N);
8414 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
8415 -- means we no longer have a /= operation, we are all done.
8417 Expand_Compare_Minimize_Eliminate_Overflow (N);
8419 if Nkind (N) /= N_Op_Ne then
8420 return;
8421 end if;
8423 -- Boolean types (requiring handling of non-standard case)
8425 if Is_Boolean_Type (Typ) then
8426 Adjust_Condition (Left_Opnd (N));
8427 Adjust_Condition (Right_Opnd (N));
8428 Set_Etype (N, Standard_Boolean);
8429 Adjust_Result_Type (N, Typ);
8430 end if;
8432 Rewrite_Comparison (N);
8434 -- If we still have comparison for Vax_Float, process it
8436 if Vax_Float (Typ) and then Nkind (N) in N_Op_Compare then
8437 Expand_Vax_Comparison (N);
8438 return;
8439 end if;
8441 -- For all cases other than elementary types, we rewrite node as the
8442 -- negation of an equality operation, and reanalyze. The equality to be
8443 -- used is defined in the same scope and has the same signature. This
8444 -- signature must be set explicitly since in an instance it may not have
8445 -- the same visibility as in the generic unit. This avoids duplicating
8446 -- or factoring the complex code for record/array equality tests etc.
8448 else
8449 declare
8450 Loc : constant Source_Ptr := Sloc (N);
8451 Neg : Node_Id;
8452 Ne : constant Entity_Id := Entity (N);
8454 begin
8455 Binary_Op_Validity_Checks (N);
8457 Neg :=
8458 Make_Op_Not (Loc,
8459 Right_Opnd =>
8460 Make_Op_Eq (Loc,
8461 Left_Opnd => Left_Opnd (N),
8462 Right_Opnd => Right_Opnd (N)));
8463 Set_Paren_Count (Right_Opnd (Neg), 1);
8465 if Scope (Ne) /= Standard_Standard then
8466 Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
8467 end if;
8469 -- For navigation purposes, we want to treat the inequality as an
8470 -- implicit reference to the corresponding equality. Preserve the
8471 -- Comes_From_ source flag to generate proper Xref entries.
8473 Preserve_Comes_From_Source (Neg, N);
8474 Preserve_Comes_From_Source (Right_Opnd (Neg), N);
8475 Rewrite (N, Neg);
8476 Analyze_And_Resolve (N, Standard_Boolean);
8477 end;
8478 end if;
8480 Optimize_Length_Comparison (N);
8481 end Expand_N_Op_Ne;
8483 ---------------------
8484 -- Expand_N_Op_Not --
8485 ---------------------
8487 -- If the argument is other than a Boolean array type, there is no special
8488 -- expansion required, except for VMS operations on signed integers.
8490 -- For the packed case, we call the special routine in Exp_Pakd, except
8491 -- that if the component size is greater than one, we use the standard
8492 -- routine generating a gruesome loop (it is so peculiar to have packed
8493 -- arrays with non-standard Boolean representations anyway, so it does not
8494 -- matter that we do not handle this case efficiently).
8496 -- For the unpacked case (and for the special packed case where we have non
8497 -- standard Booleans, as discussed above), we generate and insert into the
8498 -- tree the following function definition:
8500 -- function Nnnn (A : arr) is
8501 -- B : arr;
8502 -- begin
8503 -- for J in a'range loop
8504 -- B (J) := not A (J);
8505 -- end loop;
8506 -- return B;
8507 -- end Nnnn;
8509 -- Here arr is the actual subtype of the parameter (and hence always
8510 -- constrained). Then we replace the not with a call to this function.
8512 procedure Expand_N_Op_Not (N : Node_Id) is
8513 Loc : constant Source_Ptr := Sloc (N);
8514 Typ : constant Entity_Id := Etype (N);
8515 Opnd : Node_Id;
8516 Arr : Entity_Id;
8517 A : Entity_Id;
8518 B : Entity_Id;
8519 J : Entity_Id;
8520 A_J : Node_Id;
8521 B_J : Node_Id;
8523 Func_Name : Entity_Id;
8524 Loop_Statement : Node_Id;
8526 begin
8527 Unary_Op_Validity_Checks (N);
8529 -- For boolean operand, deal with non-standard booleans
8531 if Is_Boolean_Type (Typ) then
8532 Adjust_Condition (Right_Opnd (N));
8533 Set_Etype (N, Standard_Boolean);
8534 Adjust_Result_Type (N, Typ);
8535 return;
8536 end if;
8538 -- For the VMS "not" on signed integer types, use conversion to and from
8539 -- a predefined modular type.
8541 if Is_VMS_Operator (Entity (N)) then
8542 declare
8543 Rtyp : Entity_Id;
8544 Utyp : Entity_Id;
8546 begin
8547 -- If this is a derived type, retrieve original VMS type so that
8548 -- the proper sized type is used for intermediate values.
8550 if Is_Derived_Type (Typ) then
8551 Rtyp := First_Subtype (Etype (Typ));
8552 else
8553 Rtyp := Typ;
8554 end if;
8556 -- The proper unsigned type must have a size compatible with the
8557 -- operand, to prevent misalignment.
8559 if RM_Size (Rtyp) <= 8 then
8560 Utyp := RTE (RE_Unsigned_8);
8562 elsif RM_Size (Rtyp) <= 16 then
8563 Utyp := RTE (RE_Unsigned_16);
8565 elsif RM_Size (Rtyp) = RM_Size (Standard_Unsigned) then
8566 Utyp := RTE (RE_Unsigned_32);
8568 else
8569 Utyp := RTE (RE_Long_Long_Unsigned);
8570 end if;
8572 Rewrite (N,
8573 Unchecked_Convert_To (Typ,
8574 Make_Op_Not (Loc,
8575 Unchecked_Convert_To (Utyp, Right_Opnd (N)))));
8576 Analyze_And_Resolve (N, Typ);
8577 return;
8578 end;
8579 end if;
8581 -- Only array types need any other processing
8583 if not Is_Array_Type (Typ) then
8584 return;
8585 end if;
8587 -- Case of array operand. If bit packed with a component size of 1,
8588 -- handle it in Exp_Pakd if the operand is known to be aligned.
8590 if Is_Bit_Packed_Array (Typ)
8591 and then Component_Size (Typ) = 1
8592 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
8593 then
8594 Expand_Packed_Not (N);
8595 return;
8596 end if;
8598 -- Case of array operand which is not bit-packed. If the context is
8599 -- a safe assignment, call in-place operation, If context is a larger
8600 -- boolean expression in the context of a safe assignment, expansion is
8601 -- done by enclosing operation.
8603 Opnd := Relocate_Node (Right_Opnd (N));
8604 Convert_To_Actual_Subtype (Opnd);
8605 Arr := Etype (Opnd);
8606 Ensure_Defined (Arr, N);
8607 Silly_Boolean_Array_Not_Test (N, Arr);
8609 if Nkind (Parent (N)) = N_Assignment_Statement then
8610 if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
8611 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
8612 return;
8614 -- Special case the negation of a binary operation
8616 elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
8617 and then Safe_In_Place_Array_Op
8618 (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
8619 then
8620 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
8621 return;
8622 end if;
8624 elsif Nkind (Parent (N)) in N_Binary_Op
8625 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
8626 then
8627 declare
8628 Op1 : constant Node_Id := Left_Opnd (Parent (N));
8629 Op2 : constant Node_Id := Right_Opnd (Parent (N));
8630 Lhs : constant Node_Id := Name (Parent (Parent (N)));
8632 begin
8633 if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
8635 -- (not A) op (not B) can be reduced to a single call
8637 if N = Op1 and then Nkind (Op2) = N_Op_Not then
8638 return;
8640 elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
8641 return;
8643 -- A xor (not B) can also be special-cased
8645 elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
8646 return;
8647 end if;
8648 end if;
8649 end;
8650 end if;
8652 A := Make_Defining_Identifier (Loc, Name_uA);
8653 B := Make_Defining_Identifier (Loc, Name_uB);
8654 J := Make_Defining_Identifier (Loc, Name_uJ);
8656 A_J :=
8657 Make_Indexed_Component (Loc,
8658 Prefix => New_Occurrence_Of (A, Loc),
8659 Expressions => New_List (New_Occurrence_Of (J, Loc)));
8661 B_J :=
8662 Make_Indexed_Component (Loc,
8663 Prefix => New_Occurrence_Of (B, Loc),
8664 Expressions => New_List (New_Occurrence_Of (J, Loc)));
8666 Loop_Statement :=
8667 Make_Implicit_Loop_Statement (N,
8668 Identifier => Empty,
8670 Iteration_Scheme =>
8671 Make_Iteration_Scheme (Loc,
8672 Loop_Parameter_Specification =>
8673 Make_Loop_Parameter_Specification (Loc,
8674 Defining_Identifier => J,
8675 Discrete_Subtype_Definition =>
8676 Make_Attribute_Reference (Loc,
8677 Prefix => Make_Identifier (Loc, Chars (A)),
8678 Attribute_Name => Name_Range))),
8680 Statements => New_List (
8681 Make_Assignment_Statement (Loc,
8682 Name => B_J,
8683 Expression => Make_Op_Not (Loc, A_J))));
8685 Func_Name := Make_Temporary (Loc, 'N');
8686 Set_Is_Inlined (Func_Name);
8688 Insert_Action (N,
8689 Make_Subprogram_Body (Loc,
8690 Specification =>
8691 Make_Function_Specification (Loc,
8692 Defining_Unit_Name => Func_Name,
8693 Parameter_Specifications => New_List (
8694 Make_Parameter_Specification (Loc,
8695 Defining_Identifier => A,
8696 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8697 Result_Definition => New_Occurrence_Of (Typ, Loc)),
8699 Declarations => New_List (
8700 Make_Object_Declaration (Loc,
8701 Defining_Identifier => B,
8702 Object_Definition => New_Occurrence_Of (Arr, Loc))),
8704 Handled_Statement_Sequence =>
8705 Make_Handled_Sequence_Of_Statements (Loc,
8706 Statements => New_List (
8707 Loop_Statement,
8708 Make_Simple_Return_Statement (Loc,
8709 Expression => Make_Identifier (Loc, Chars (B)))))));
8711 Rewrite (N,
8712 Make_Function_Call (Loc,
8713 Name => New_Occurrence_Of (Func_Name, Loc),
8714 Parameter_Associations => New_List (Opnd)));
8716 Analyze_And_Resolve (N, Typ);
8717 end Expand_N_Op_Not;
8719 --------------------
8720 -- Expand_N_Op_Or --
8721 --------------------
8723 procedure Expand_N_Op_Or (N : Node_Id) is
8724 Typ : constant Entity_Id := Etype (N);
8726 begin
8727 Binary_Op_Validity_Checks (N);
8729 if Is_Array_Type (Etype (N)) then
8730 Expand_Boolean_Operator (N);
8732 elsif Is_Boolean_Type (Etype (N)) then
8733 Adjust_Condition (Left_Opnd (N));
8734 Adjust_Condition (Right_Opnd (N));
8735 Set_Etype (N, Standard_Boolean);
8736 Adjust_Result_Type (N, Typ);
8738 elsif Is_Intrinsic_Subprogram (Entity (N)) then
8739 Expand_Intrinsic_Call (N, Entity (N));
8741 end if;
8742 end Expand_N_Op_Or;
8744 ----------------------
8745 -- Expand_N_Op_Plus --
8746 ----------------------
8748 procedure Expand_N_Op_Plus (N : Node_Id) is
8749 begin
8750 Unary_Op_Validity_Checks (N);
8752 -- Check for MINIMIZED/ELIMINATED overflow mode
8754 if Minimized_Eliminated_Overflow_Check (N) then
8755 Apply_Arithmetic_Overflow_Check (N);
8756 return;
8757 end if;
8758 end Expand_N_Op_Plus;
8760 ---------------------
8761 -- Expand_N_Op_Rem --
8762 ---------------------
8764 procedure Expand_N_Op_Rem (N : Node_Id) is
8765 Loc : constant Source_Ptr := Sloc (N);
8766 Typ : constant Entity_Id := Etype (N);
8768 Left : Node_Id;
8769 Right : Node_Id;
8771 Lo : Uint;
8772 Hi : Uint;
8773 OK : Boolean;
8775 Lneg : Boolean;
8776 Rneg : Boolean;
8777 -- Set if corresponding operand can be negative
8779 pragma Unreferenced (Hi);
8781 begin
8782 Binary_Op_Validity_Checks (N);
8784 -- Check for MINIMIZED/ELIMINATED overflow mode
8786 if Minimized_Eliminated_Overflow_Check (N) then
8787 Apply_Arithmetic_Overflow_Check (N);
8788 return;
8789 end if;
8791 if Is_Integer_Type (Etype (N)) then
8792 Apply_Divide_Checks (N);
8794 -- All done if we don't have a REM any more, which can happen as a
8795 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8797 if Nkind (N) /= N_Op_Rem then
8798 return;
8799 end if;
8800 end if;
8802 -- Proceed with expansion of REM
8804 Left := Left_Opnd (N);
8805 Right := Right_Opnd (N);
8807 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
8808 -- but it is useful with other back ends (e.g. AAMP), and is certainly
8809 -- harmless.
8811 if Is_Integer_Type (Etype (N))
8812 and then Compile_Time_Known_Value (Right)
8813 and then Expr_Value (Right) = Uint_1
8814 then
8815 -- Call Remove_Side_Effects to ensure that any side effects in the
8816 -- ignored left operand (in particular function calls to user defined
8817 -- functions) are properly executed.
8819 Remove_Side_Effects (Left);
8821 Rewrite (N, Make_Integer_Literal (Loc, 0));
8822 Analyze_And_Resolve (N, Typ);
8823 return;
8824 end if;
8826 -- Deal with annoying case of largest negative number remainder minus
8827 -- one. Gigi may not handle this case correctly, because on some
8828 -- targets, the mod value is computed using a divide instruction
8829 -- which gives an overflow trap for this case.
8831 -- It would be a bit more efficient to figure out which targets this
8832 -- is really needed for, but in practice it is reasonable to do the
8833 -- following special check in all cases, since it means we get a clearer
8834 -- message, and also the overhead is minimal given that division is
8835 -- expensive in any case.
8837 -- In fact the check is quite easy, if the right operand is -1, then
8838 -- the remainder is always 0, and we can just ignore the left operand
8839 -- completely in this case.
8841 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
8842 Lneg := (not OK) or else Lo < 0;
8844 Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
8845 Rneg := (not OK) or else Lo < 0;
8847 -- We won't mess with trying to find out if the left operand can really
8848 -- be the largest negative number (that's a pain in the case of private
8849 -- types and this is really marginal). We will just assume that we need
8850 -- the test if the left operand can be negative at all.
8852 if Lneg and Rneg then
8853 Rewrite (N,
8854 Make_If_Expression (Loc,
8855 Expressions => New_List (
8856 Make_Op_Eq (Loc,
8857 Left_Opnd => Duplicate_Subexpr (Right),
8858 Right_Opnd =>
8859 Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
8861 Unchecked_Convert_To (Typ,
8862 Make_Integer_Literal (Loc, Uint_0)),
8864 Relocate_Node (N))));
8866 Set_Analyzed (Next (Next (First (Expressions (N)))));
8867 Analyze_And_Resolve (N, Typ);
8868 end if;
8869 end Expand_N_Op_Rem;
8871 -----------------------------
8872 -- Expand_N_Op_Rotate_Left --
8873 -----------------------------
8875 procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
8876 begin
8877 Binary_Op_Validity_Checks (N);
8879 -- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
8880 -- so we rewrite in terms of logical shifts
8882 -- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
8884 -- where Bits is the shift count mod Esize (the mod operation here
8885 -- deals with ludicrous large shift counts, which are apparently OK).
8887 -- What about non-binary modulus ???
8889 declare
8890 Loc : constant Source_Ptr := Sloc (N);
8891 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
8892 Typ : constant Entity_Id := Etype (N);
8894 begin
8895 if Modify_Tree_For_C then
8896 Rewrite (Right_Opnd (N),
8897 Make_Op_Rem (Loc,
8898 Left_Opnd => Relocate_Node (Right_Opnd (N)),
8899 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
8901 Analyze_And_Resolve (Right_Opnd (N), Rtp);
8903 Rewrite (N,
8904 Make_Op_Or (Loc,
8905 Left_Opnd =>
8906 Make_Op_Shift_Left (Loc,
8907 Left_Opnd => Left_Opnd (N),
8908 Right_Opnd => Right_Opnd (N)),
8910 Right_Opnd =>
8911 Make_Op_Shift_Right (Loc,
8912 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
8913 Right_Opnd =>
8914 Make_Op_Subtract (Loc,
8915 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
8916 Right_Opnd =>
8917 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
8919 Analyze_And_Resolve (N, Typ);
8920 end if;
8921 end;
8922 end Expand_N_Op_Rotate_Left;
8924 ------------------------------
8925 -- Expand_N_Op_Rotate_Right --
8926 ------------------------------
8928 procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
8929 begin
8930 Binary_Op_Validity_Checks (N);
8932 -- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
8933 -- so we rewrite in terms of logical shifts
8935 -- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
8937 -- where Bits is the shift count mod Esize (the mod operation here
8938 -- deals with ludicrous large shift counts, which are apparently OK).
8940 -- What about non-binary modulus ???
8942 declare
8943 Loc : constant Source_Ptr := Sloc (N);
8944 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
8945 Typ : constant Entity_Id := Etype (N);
8947 begin
8948 Rewrite (Right_Opnd (N),
8949 Make_Op_Rem (Loc,
8950 Left_Opnd => Relocate_Node (Right_Opnd (N)),
8951 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
8953 Analyze_And_Resolve (Right_Opnd (N), Rtp);
8955 if Modify_Tree_For_C then
8956 Rewrite (N,
8957 Make_Op_Or (Loc,
8958 Left_Opnd =>
8959 Make_Op_Shift_Right (Loc,
8960 Left_Opnd => Left_Opnd (N),
8961 Right_Opnd => Right_Opnd (N)),
8963 Right_Opnd =>
8964 Make_Op_Shift_Left (Loc,
8965 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
8966 Right_Opnd =>
8967 Make_Op_Subtract (Loc,
8968 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
8969 Right_Opnd =>
8970 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
8972 Analyze_And_Resolve (N, Typ);
8973 end if;
8974 end;
8975 end Expand_N_Op_Rotate_Right;
8977 ----------------------------
8978 -- Expand_N_Op_Shift_Left --
8979 ----------------------------
8981 -- Note: nothing in this routine depends on left as opposed to right shifts
8982 -- so we share the routine for expanding shift right operations.
8984 procedure Expand_N_Op_Shift_Left (N : Node_Id) is
8985 begin
8986 Binary_Op_Validity_Checks (N);
8988 -- If we are in Modify_Tree_For_C mode, then ensure that the right
8989 -- operand is not greater than the word size (since that would not
8990 -- be defined properly by the corresponding C shift operator).
8992 if Modify_Tree_For_C then
8993 declare
8994 Right : constant Node_Id := Right_Opnd (N);
8995 Loc : constant Source_Ptr := Sloc (Right);
8996 Typ : constant Entity_Id := Etype (N);
8997 Siz : constant Uint := Esize (Typ);
8998 Orig : Node_Id;
8999 OK : Boolean;
9000 Lo : Uint;
9001 Hi : Uint;
9003 begin
9004 if Compile_Time_Known_Value (Right) then
9005 if Expr_Value (Right) >= Siz then
9006 Rewrite (N, Make_Integer_Literal (Loc, 0));
9007 Analyze_And_Resolve (N, Typ);
9008 end if;
9010 -- Not compile time known, find range
9012 else
9013 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
9015 -- Nothing to do if known to be OK range, otherwise expand
9017 if not OK or else Hi >= Siz then
9019 -- Prevent recursion on copy of shift node
9021 Orig := Relocate_Node (N);
9022 Set_Analyzed (Orig);
9024 -- Now do the rewrite
9026 Rewrite (N,
9027 Make_If_Expression (Loc,
9028 Expressions => New_List (
9029 Make_Op_Ge (Loc,
9030 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
9031 Right_Opnd => Make_Integer_Literal (Loc, Siz)),
9032 Make_Integer_Literal (Loc, 0),
9033 Orig)));
9034 Analyze_And_Resolve (N, Typ);
9035 end if;
9036 end if;
9037 end;
9038 end if;
9039 end Expand_N_Op_Shift_Left;
9041 -----------------------------
9042 -- Expand_N_Op_Shift_Right --
9043 -----------------------------
9045 procedure Expand_N_Op_Shift_Right (N : Node_Id) is
9046 begin
9047 -- Share shift left circuit
9049 Expand_N_Op_Shift_Left (N);
9050 end Expand_N_Op_Shift_Right;
9052 ----------------------------------------
9053 -- Expand_N_Op_Shift_Right_Arithmetic --
9054 ----------------------------------------
9056 procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
9057 begin
9058 Binary_Op_Validity_Checks (N);
9060 -- If we are in Modify_Tree_For_C mode, there is no shift right
9061 -- arithmetic in C, so we rewrite in terms of logical shifts.
9063 -- Shift_Right (Num, Bits) or
9064 -- (if Num >= Sign
9065 -- then not (Shift_Right (Mask, bits))
9066 -- else 0)
9068 -- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
9070 -- Note: in almost all C compilers it would work to just shift a
9071 -- signed integer right, but it's undefined and we cannot rely on it.
9073 -- Note: the above works fine for shift counts greater than or equal
9074 -- to the word size, since in this case (not (Shift_Right (Mask, bits)))
9075 -- generates all 1'bits.
9077 -- What about non-binary modulus ???
9079 declare
9080 Loc : constant Source_Ptr := Sloc (N);
9081 Typ : constant Entity_Id := Etype (N);
9082 Sign : constant Uint := 2 ** (Esize (Typ) - 1);
9083 Mask : constant Uint := (2 ** Esize (Typ)) - 1;
9084 Left : constant Node_Id := Left_Opnd (N);
9085 Right : constant Node_Id := Right_Opnd (N);
9086 Maskx : Node_Id;
9088 begin
9089 if Modify_Tree_For_C then
9091 -- Here if not (Shift_Right (Mask, bits)) can be computed at
9092 -- compile time as a single constant.
9094 if Compile_Time_Known_Value (Right) then
9095 declare
9096 Val : constant Uint := Expr_Value (Right);
9098 begin
9099 if Val >= Esize (Typ) then
9100 Maskx := Make_Integer_Literal (Loc, Mask);
9102 else
9103 Maskx :=
9104 Make_Integer_Literal (Loc,
9105 Intval => Mask - (Mask / (2 ** Expr_Value (Right))));
9106 end if;
9107 end;
9109 else
9110 Maskx :=
9111 Make_Op_Not (Loc,
9112 Right_Opnd =>
9113 Make_Op_Shift_Right (Loc,
9114 Left_Opnd => Make_Integer_Literal (Loc, Mask),
9115 Right_Opnd => Duplicate_Subexpr_No_Checks (Right)));
9116 end if;
9118 -- Now do the rewrite
9120 Rewrite (N,
9121 Make_Op_Or (Loc,
9122 Left_Opnd =>
9123 Make_Op_Shift_Right (Loc,
9124 Left_Opnd => Left,
9125 Right_Opnd => Right),
9126 Right_Opnd =>
9127 Make_If_Expression (Loc,
9128 Expressions => New_List (
9129 Make_Op_Ge (Loc,
9130 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
9131 Right_Opnd => Make_Integer_Literal (Loc, Sign)),
9132 Maskx,
9133 Make_Integer_Literal (Loc, 0)))));
9134 Analyze_And_Resolve (N, Typ);
9135 end if;
9136 end;
9137 end Expand_N_Op_Shift_Right_Arithmetic;
9139 --------------------------
9140 -- Expand_N_Op_Subtract --
9141 --------------------------
9143 procedure Expand_N_Op_Subtract (N : Node_Id) is
9144 Typ : constant Entity_Id := Etype (N);
9146 begin
9147 Binary_Op_Validity_Checks (N);
9149 -- Check for MINIMIZED/ELIMINATED overflow mode
9151 if Minimized_Eliminated_Overflow_Check (N) then
9152 Apply_Arithmetic_Overflow_Check (N);
9153 return;
9154 end if;
9156 -- N - 0 = N for integer types
9158 if Is_Integer_Type (Typ)
9159 and then Compile_Time_Known_Value (Right_Opnd (N))
9160 and then Expr_Value (Right_Opnd (N)) = 0
9161 then
9162 Rewrite (N, Left_Opnd (N));
9163 return;
9164 end if;
9166 -- Arithmetic overflow checks for signed integer/fixed point types
9168 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
9169 Apply_Arithmetic_Overflow_Check (N);
9171 -- VAX floating-point types case
9173 elsif Vax_Float (Typ) then
9174 Expand_Vax_Arith (N);
9175 end if;
9176 end Expand_N_Op_Subtract;
9178 ---------------------
9179 -- Expand_N_Op_Xor --
9180 ---------------------
9182 procedure Expand_N_Op_Xor (N : Node_Id) is
9183 Typ : constant Entity_Id := Etype (N);
9185 begin
9186 Binary_Op_Validity_Checks (N);
9188 if Is_Array_Type (Etype (N)) then
9189 Expand_Boolean_Operator (N);
9191 elsif Is_Boolean_Type (Etype (N)) then
9192 Adjust_Condition (Left_Opnd (N));
9193 Adjust_Condition (Right_Opnd (N));
9194 Set_Etype (N, Standard_Boolean);
9195 Adjust_Result_Type (N, Typ);
9197 elsif Is_Intrinsic_Subprogram (Entity (N)) then
9198 Expand_Intrinsic_Call (N, Entity (N));
9200 end if;
9201 end Expand_N_Op_Xor;
9203 ----------------------
9204 -- Expand_N_Or_Else --
9205 ----------------------
9207 procedure Expand_N_Or_Else (N : Node_Id)
9208 renames Expand_Short_Circuit_Operator;
9210 -----------------------------------
9211 -- Expand_N_Qualified_Expression --
9212 -----------------------------------
9214 procedure Expand_N_Qualified_Expression (N : Node_Id) is
9215 Operand : constant Node_Id := Expression (N);
9216 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
9218 begin
9219 -- Do validity check if validity checking operands
9221 if Validity_Checks_On and Validity_Check_Operands then
9222 Ensure_Valid (Operand);
9223 end if;
9225 -- Apply possible constraint check
9227 Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
9229 if Do_Range_Check (Operand) then
9230 Set_Do_Range_Check (Operand, False);
9231 Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
9232 end if;
9233 end Expand_N_Qualified_Expression;
9235 ------------------------------------
9236 -- Expand_N_Quantified_Expression --
9237 ------------------------------------
9239 -- We expand:
9241 -- for all X in range => Cond
9243 -- into:
9245 -- T := True;
9246 -- for X in range loop
9247 -- if not Cond then
9248 -- T := False;
9249 -- exit;
9250 -- end if;
9251 -- end loop;
9253 -- Similarly, an existentially quantified expression:
9255 -- for some X in range => Cond
9257 -- becomes:
9259 -- T := False;
9260 -- for X in range loop
9261 -- if Cond then
9262 -- T := True;
9263 -- exit;
9264 -- end if;
9265 -- end loop;
9267 -- In both cases, the iteration may be over a container in which case it is
9268 -- given by an iterator specification, not a loop parameter specification.
9270 procedure Expand_N_Quantified_Expression (N : Node_Id) is
9271 Actions : constant List_Id := New_List;
9272 For_All : constant Boolean := All_Present (N);
9273 Iter_Spec : constant Node_Id := Iterator_Specification (N);
9274 Loc : constant Source_Ptr := Sloc (N);
9275 Loop_Spec : constant Node_Id := Loop_Parameter_Specification (N);
9276 Cond : Node_Id;
9277 Flag : Entity_Id;
9278 Scheme : Node_Id;
9279 Stmts : List_Id;
9281 begin
9282 -- Create the declaration of the flag which tracks the status of the
9283 -- quantified expression. Generate:
9285 -- Flag : Boolean := (True | False);
9287 Flag := Make_Temporary (Loc, 'T', N);
9289 Append_To (Actions,
9290 Make_Object_Declaration (Loc,
9291 Defining_Identifier => Flag,
9292 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
9293 Expression =>
9294 New_Occurrence_Of (Boolean_Literals (For_All), Loc)));
9296 -- Construct the circuitry which tracks the status of the quantified
9297 -- expression. Generate:
9299 -- if [not] Cond then
9300 -- Flag := (False | True);
9301 -- exit;
9302 -- end if;
9304 Cond := Relocate_Node (Condition (N));
9306 if For_All then
9307 Cond := Make_Op_Not (Loc, Cond);
9308 end if;
9310 Stmts := New_List (
9311 Make_Implicit_If_Statement (N,
9312 Condition => Cond,
9313 Then_Statements => New_List (
9314 Make_Assignment_Statement (Loc,
9315 Name => New_Occurrence_Of (Flag, Loc),
9316 Expression =>
9317 New_Occurrence_Of (Boolean_Literals (not For_All), Loc)),
9318 Make_Exit_Statement (Loc))));
9320 -- Build the loop equivalent of the quantified expression
9322 if Present (Iter_Spec) then
9323 Scheme :=
9324 Make_Iteration_Scheme (Loc,
9325 Iterator_Specification => Iter_Spec);
9326 else
9327 Scheme :=
9328 Make_Iteration_Scheme (Loc,
9329 Loop_Parameter_Specification => Loop_Spec);
9330 end if;
9332 Append_To (Actions,
9333 Make_Loop_Statement (Loc,
9334 Iteration_Scheme => Scheme,
9335 Statements => Stmts,
9336 End_Label => Empty));
9338 -- Transform the quantified expression
9340 Rewrite (N,
9341 Make_Expression_With_Actions (Loc,
9342 Expression => New_Occurrence_Of (Flag, Loc),
9343 Actions => Actions));
9344 Analyze_And_Resolve (N, Standard_Boolean);
9345 end Expand_N_Quantified_Expression;
9347 ---------------------------------
9348 -- Expand_N_Selected_Component --
9349 ---------------------------------
9351 procedure Expand_N_Selected_Component (N : Node_Id) is
9352 Loc : constant Source_Ptr := Sloc (N);
9353 Par : constant Node_Id := Parent (N);
9354 P : constant Node_Id := Prefix (N);
9355 S : constant Node_Id := Selector_Name (N);
9356 Ptyp : Entity_Id := Underlying_Type (Etype (P));
9357 Disc : Entity_Id;
9358 New_N : Node_Id;
9359 Dcon : Elmt_Id;
9360 Dval : Node_Id;
9362 function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
9363 -- Gigi needs a temporary for prefixes that depend on a discriminant,
9364 -- unless the context of an assignment can provide size information.
9365 -- Don't we have a general routine that does this???
9367 function Is_Subtype_Declaration return Boolean;
9368 -- The replacement of a discriminant reference by its value is required
9369 -- if this is part of the initialization of an temporary generated by a
9370 -- change of representation. This shows up as the construction of a
9371 -- discriminant constraint for a subtype declared at the same point as
9372 -- the entity in the prefix of the selected component. We recognize this
9373 -- case when the context of the reference is:
9374 -- subtype ST is T(Obj.D);
9375 -- where the entity for Obj comes from source, and ST has the same sloc.
9377 -----------------------
9378 -- In_Left_Hand_Side --
9379 -----------------------
9381 function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
9382 begin
9383 return (Nkind (Parent (Comp)) = N_Assignment_Statement
9384 and then Comp = Name (Parent (Comp)))
9385 or else (Present (Parent (Comp))
9386 and then Nkind (Parent (Comp)) in N_Subexpr
9387 and then In_Left_Hand_Side (Parent (Comp)));
9388 end In_Left_Hand_Side;
9390 -----------------------------
9391 -- Is_Subtype_Declaration --
9392 -----------------------------
9394 function Is_Subtype_Declaration return Boolean is
9395 Par : constant Node_Id := Parent (N);
9396 begin
9397 return
9398 Nkind (Par) = N_Index_Or_Discriminant_Constraint
9399 and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
9400 and then Comes_From_Source (Entity (Prefix (N)))
9401 and then Sloc (Par) = Sloc (Entity (Prefix (N)));
9402 end Is_Subtype_Declaration;
9404 -- Start of processing for Expand_N_Selected_Component
9406 begin
9407 -- Insert explicit dereference if required
9409 if Is_Access_Type (Ptyp) then
9411 -- First set prefix type to proper access type, in case it currently
9412 -- has a private (non-access) view of this type.
9414 Set_Etype (P, Ptyp);
9416 Insert_Explicit_Dereference (P);
9417 Analyze_And_Resolve (P, Designated_Type (Ptyp));
9419 if Ekind (Etype (P)) = E_Private_Subtype
9420 and then Is_For_Access_Subtype (Etype (P))
9421 then
9422 Set_Etype (P, Base_Type (Etype (P)));
9423 end if;
9425 Ptyp := Etype (P);
9426 end if;
9428 -- Deal with discriminant check required
9430 if Do_Discriminant_Check (N) then
9431 if Present (Discriminant_Checking_Func
9432 (Original_Record_Component (Entity (S))))
9433 then
9434 -- Present the discriminant checking function to the backend, so
9435 -- that it can inline the call to the function.
9437 Add_Inlined_Body
9438 (Discriminant_Checking_Func
9439 (Original_Record_Component (Entity (S))));
9441 -- Now reset the flag and generate the call
9443 Set_Do_Discriminant_Check (N, False);
9444 Generate_Discriminant_Check (N);
9446 -- In the case of Unchecked_Union, no discriminant checking is
9447 -- actually performed.
9449 else
9450 Set_Do_Discriminant_Check (N, False);
9451 end if;
9452 end if;
9454 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9455 -- function, then additional actuals must be passed.
9457 if Ada_Version >= Ada_2005
9458 and then Is_Build_In_Place_Function_Call (P)
9459 then
9460 Make_Build_In_Place_Call_In_Anonymous_Context (P);
9461 end if;
9463 -- Gigi cannot handle unchecked conversions that are the prefix of a
9464 -- selected component with discriminants. This must be checked during
9465 -- expansion, because during analysis the type of the selector is not
9466 -- known at the point the prefix is analyzed. If the conversion is the
9467 -- target of an assignment, then we cannot force the evaluation.
9469 if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
9470 and then Has_Discriminants (Etype (N))
9471 and then not In_Left_Hand_Side (N)
9472 then
9473 Force_Evaluation (Prefix (N));
9474 end if;
9476 -- Remaining processing applies only if selector is a discriminant
9478 if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
9480 -- If the selector is a discriminant of a constrained record type,
9481 -- we may be able to rewrite the expression with the actual value
9482 -- of the discriminant, a useful optimization in some cases.
9484 if Is_Record_Type (Ptyp)
9485 and then Has_Discriminants (Ptyp)
9486 and then Is_Constrained (Ptyp)
9487 then
9488 -- Do this optimization for discrete types only, and not for
9489 -- access types (access discriminants get us into trouble).
9491 if not Is_Discrete_Type (Etype (N)) then
9492 null;
9494 -- Don't do this on the left hand of an assignment statement.
9495 -- Normally one would think that references like this would not
9496 -- occur, but they do in generated code, and mean that we really
9497 -- do want to assign the discriminant.
9499 elsif Nkind (Par) = N_Assignment_Statement
9500 and then Name (Par) = N
9501 then
9502 null;
9504 -- Don't do this optimization for the prefix of an attribute or
9505 -- the name of an object renaming declaration since these are
9506 -- contexts where we do not want the value anyway.
9508 elsif (Nkind (Par) = N_Attribute_Reference
9509 and then Prefix (Par) = N)
9510 or else Is_Renamed_Object (N)
9511 then
9512 null;
9514 -- Don't do this optimization if we are within the code for a
9515 -- discriminant check, since the whole point of such a check may
9516 -- be to verify the condition on which the code below depends.
9518 elsif Is_In_Discriminant_Check (N) then
9519 null;
9521 -- Green light to see if we can do the optimization. There is
9522 -- still one condition that inhibits the optimization below but
9523 -- now is the time to check the particular discriminant.
9525 else
9526 -- Loop through discriminants to find the matching discriminant
9527 -- constraint to see if we can copy it.
9529 Disc := First_Discriminant (Ptyp);
9530 Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
9531 Discr_Loop : while Present (Dcon) loop
9532 Dval := Node (Dcon);
9534 -- Check if this is the matching discriminant and if the
9535 -- discriminant value is simple enough to make sense to
9536 -- copy. We don't want to copy complex expressions, and
9537 -- indeed to do so can cause trouble (before we put in
9538 -- this guard, a discriminant expression containing an
9539 -- AND THEN was copied, causing problems for coverage
9540 -- analysis tools).
9542 -- However, if the reference is part of the initialization
9543 -- code generated for an object declaration, we must use
9544 -- the discriminant value from the subtype constraint,
9545 -- because the selected component may be a reference to the
9546 -- object being initialized, whose discriminant is not yet
9547 -- set. This only happens in complex cases involving changes
9548 -- or representation.
9550 if Disc = Entity (Selector_Name (N))
9551 and then (Is_Entity_Name (Dval)
9552 or else Compile_Time_Known_Value (Dval)
9553 or else Is_Subtype_Declaration)
9554 then
9555 -- Here we have the matching discriminant. Check for
9556 -- the case of a discriminant of a component that is
9557 -- constrained by an outer discriminant, which cannot
9558 -- be optimized away.
9560 if Denotes_Discriminant
9561 (Dval, Check_Concurrent => True)
9562 then
9563 exit Discr_Loop;
9565 elsif Nkind (Original_Node (Dval)) = N_Selected_Component
9566 and then
9567 Denotes_Discriminant
9568 (Selector_Name (Original_Node (Dval)), True)
9569 then
9570 exit Discr_Loop;
9572 -- Do not retrieve value if constraint is not static. It
9573 -- is generally not useful, and the constraint may be a
9574 -- rewritten outer discriminant in which case it is in
9575 -- fact incorrect.
9577 elsif Is_Entity_Name (Dval)
9578 and then
9579 Nkind (Parent (Entity (Dval))) = N_Object_Declaration
9580 and then Present (Expression (Parent (Entity (Dval))))
9581 and then not
9582 Is_Static_Expression
9583 (Expression (Parent (Entity (Dval))))
9584 then
9585 exit Discr_Loop;
9587 -- In the context of a case statement, the expression may
9588 -- have the base type of the discriminant, and we need to
9589 -- preserve the constraint to avoid spurious errors on
9590 -- missing cases.
9592 elsif Nkind (Parent (N)) = N_Case_Statement
9593 and then Etype (Dval) /= Etype (Disc)
9594 then
9595 Rewrite (N,
9596 Make_Qualified_Expression (Loc,
9597 Subtype_Mark =>
9598 New_Occurrence_Of (Etype (Disc), Loc),
9599 Expression =>
9600 New_Copy_Tree (Dval)));
9601 Analyze_And_Resolve (N, Etype (Disc));
9603 -- In case that comes out as a static expression,
9604 -- reset it (a selected component is never static).
9606 Set_Is_Static_Expression (N, False);
9607 return;
9609 -- Otherwise we can just copy the constraint, but the
9610 -- result is certainly not static. In some cases the
9611 -- discriminant constraint has been analyzed in the
9612 -- context of the original subtype indication, but for
9613 -- itypes the constraint might not have been analyzed
9614 -- yet, and this must be done now.
9616 else
9617 Rewrite (N, New_Copy_Tree (Dval));
9618 Analyze_And_Resolve (N);
9619 Set_Is_Static_Expression (N, False);
9620 return;
9621 end if;
9622 end if;
9624 Next_Elmt (Dcon);
9625 Next_Discriminant (Disc);
9626 end loop Discr_Loop;
9628 -- Note: the above loop should always find a matching
9629 -- discriminant, but if it does not, we just missed an
9630 -- optimization due to some glitch (perhaps a previous
9631 -- error), so ignore.
9633 end if;
9634 end if;
9636 -- The only remaining processing is in the case of a discriminant of
9637 -- a concurrent object, where we rewrite the prefix to denote the
9638 -- corresponding record type. If the type is derived and has renamed
9639 -- discriminants, use corresponding discriminant, which is the one
9640 -- that appears in the corresponding record.
9642 if not Is_Concurrent_Type (Ptyp) then
9643 return;
9644 end if;
9646 Disc := Entity (Selector_Name (N));
9648 if Is_Derived_Type (Ptyp)
9649 and then Present (Corresponding_Discriminant (Disc))
9650 then
9651 Disc := Corresponding_Discriminant (Disc);
9652 end if;
9654 New_N :=
9655 Make_Selected_Component (Loc,
9656 Prefix =>
9657 Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
9658 New_Copy_Tree (P)),
9659 Selector_Name => Make_Identifier (Loc, Chars (Disc)));
9661 Rewrite (N, New_N);
9662 Analyze (N);
9663 end if;
9665 -- Set Atomic_Sync_Required if necessary for atomic component
9667 if Nkind (N) = N_Selected_Component then
9668 declare
9669 E : constant Entity_Id := Entity (Selector_Name (N));
9670 Set : Boolean;
9672 begin
9673 -- If component is atomic, but type is not, setting depends on
9674 -- disable/enable state for the component.
9676 if Is_Atomic (E) and then not Is_Atomic (Etype (E)) then
9677 Set := not Atomic_Synchronization_Disabled (E);
9679 -- If component is not atomic, but its type is atomic, setting
9680 -- depends on disable/enable state for the type.
9682 elsif not Is_Atomic (E) and then Is_Atomic (Etype (E)) then
9683 Set := not Atomic_Synchronization_Disabled (Etype (E));
9685 -- If both component and type are atomic, we disable if either
9686 -- component or its type have sync disabled.
9688 elsif Is_Atomic (E) and then Is_Atomic (Etype (E)) then
9689 Set := (not Atomic_Synchronization_Disabled (E))
9690 and then
9691 (not Atomic_Synchronization_Disabled (Etype (E)));
9693 else
9694 Set := False;
9695 end if;
9697 -- Set flag if required
9699 if Set then
9700 Activate_Atomic_Synchronization (N);
9701 end if;
9702 end;
9703 end if;
9704 end Expand_N_Selected_Component;
9706 --------------------
9707 -- Expand_N_Slice --
9708 --------------------
9710 procedure Expand_N_Slice (N : Node_Id) is
9711 Loc : constant Source_Ptr := Sloc (N);
9712 Typ : constant Entity_Id := Etype (N);
9714 function Is_Procedure_Actual (N : Node_Id) return Boolean;
9715 -- Check whether the argument is an actual for a procedure call, in
9716 -- which case the expansion of a bit-packed slice is deferred until the
9717 -- call itself is expanded. The reason this is required is that we might
9718 -- have an IN OUT or OUT parameter, and the copy out is essential, and
9719 -- that copy out would be missed if we created a temporary here in
9720 -- Expand_N_Slice. Note that we don't bother to test specifically for an
9721 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
9722 -- is harmless to defer expansion in the IN case, since the call
9723 -- processing will still generate the appropriate copy in operation,
9724 -- which will take care of the slice.
9726 procedure Make_Temporary_For_Slice;
9727 -- Create a named variable for the value of the slice, in cases where
9728 -- the back-end cannot handle it properly, e.g. when packed types or
9729 -- unaligned slices are involved.
9731 -------------------------
9732 -- Is_Procedure_Actual --
9733 -------------------------
9735 function Is_Procedure_Actual (N : Node_Id) return Boolean is
9736 Par : Node_Id := Parent (N);
9738 begin
9739 loop
9740 -- If our parent is a procedure call we can return
9742 if Nkind (Par) = N_Procedure_Call_Statement then
9743 return True;
9745 -- If our parent is a type conversion, keep climbing the tree,
9746 -- since a type conversion can be a procedure actual. Also keep
9747 -- climbing if parameter association or a qualified expression,
9748 -- since these are additional cases that do can appear on
9749 -- procedure actuals.
9751 elsif Nkind_In (Par, N_Type_Conversion,
9752 N_Parameter_Association,
9753 N_Qualified_Expression)
9754 then
9755 Par := Parent (Par);
9757 -- Any other case is not what we are looking for
9759 else
9760 return False;
9761 end if;
9762 end loop;
9763 end Is_Procedure_Actual;
9765 ------------------------------
9766 -- Make_Temporary_For_Slice --
9767 ------------------------------
9769 procedure Make_Temporary_For_Slice is
9770 Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
9771 Decl : Node_Id;
9773 begin
9774 Decl :=
9775 Make_Object_Declaration (Loc,
9776 Defining_Identifier => Ent,
9777 Object_Definition => New_Occurrence_Of (Typ, Loc));
9779 Set_No_Initialization (Decl);
9781 Insert_Actions (N, New_List (
9782 Decl,
9783 Make_Assignment_Statement (Loc,
9784 Name => New_Occurrence_Of (Ent, Loc),
9785 Expression => Relocate_Node (N))));
9787 Rewrite (N, New_Occurrence_Of (Ent, Loc));
9788 Analyze_And_Resolve (N, Typ);
9789 end Make_Temporary_For_Slice;
9791 -- Local variables
9793 Pref : constant Node_Id := Prefix (N);
9794 Pref_Typ : Entity_Id := Etype (Pref);
9796 -- Start of processing for Expand_N_Slice
9798 begin
9799 -- Special handling for access types
9801 if Is_Access_Type (Pref_Typ) then
9802 Pref_Typ := Designated_Type (Pref_Typ);
9804 Rewrite (Pref,
9805 Make_Explicit_Dereference (Sloc (N),
9806 Prefix => Relocate_Node (Pref)));
9808 Analyze_And_Resolve (Pref, Pref_Typ);
9809 end if;
9811 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9812 -- function, then additional actuals must be passed.
9814 if Ada_Version >= Ada_2005
9815 and then Is_Build_In_Place_Function_Call (Pref)
9816 then
9817 Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
9818 end if;
9820 -- The remaining case to be handled is packed slices. We can leave
9821 -- packed slices as they are in the following situations:
9823 -- 1. Right or left side of an assignment (we can handle this
9824 -- situation correctly in the assignment statement expansion).
9826 -- 2. Prefix of indexed component (the slide is optimized away in this
9827 -- case, see the start of Expand_N_Slice.)
9829 -- 3. Object renaming declaration, since we want the name of the
9830 -- slice, not the value.
9832 -- 4. Argument to procedure call, since copy-in/copy-out handling may
9833 -- be required, and this is handled in the expansion of call
9834 -- itself.
9836 -- 5. Prefix of an address attribute (this is an error which is caught
9837 -- elsewhere, and the expansion would interfere with generating the
9838 -- error message).
9840 if not Is_Packed (Typ) then
9842 -- Apply transformation for actuals of a function call, where
9843 -- Expand_Actuals is not used.
9845 if Nkind (Parent (N)) = N_Function_Call
9846 and then Is_Possibly_Unaligned_Slice (N)
9847 then
9848 Make_Temporary_For_Slice;
9849 end if;
9851 elsif Nkind (Parent (N)) = N_Assignment_Statement
9852 or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
9853 and then Parent (N) = Name (Parent (Parent (N))))
9854 then
9855 return;
9857 elsif Nkind (Parent (N)) = N_Indexed_Component
9858 or else Is_Renamed_Object (N)
9859 or else Is_Procedure_Actual (N)
9860 then
9861 return;
9863 elsif Nkind (Parent (N)) = N_Attribute_Reference
9864 and then Attribute_Name (Parent (N)) = Name_Address
9865 then
9866 return;
9868 else
9869 Make_Temporary_For_Slice;
9870 end if;
9871 end Expand_N_Slice;
9873 ------------------------------
9874 -- Expand_N_Type_Conversion --
9875 ------------------------------
9877 procedure Expand_N_Type_Conversion (N : Node_Id) is
9878 Loc : constant Source_Ptr := Sloc (N);
9879 Operand : constant Node_Id := Expression (N);
9880 Target_Type : constant Entity_Id := Etype (N);
9881 Operand_Type : Entity_Id := Etype (Operand);
9883 procedure Handle_Changed_Representation;
9884 -- This is called in the case of record and array type conversions to
9885 -- see if there is a change of representation to be handled. Change of
9886 -- representation is actually handled at the assignment statement level,
9887 -- and what this procedure does is rewrite node N conversion as an
9888 -- assignment to temporary. If there is no change of representation,
9889 -- then the conversion node is unchanged.
9891 procedure Raise_Accessibility_Error;
9892 -- Called when we know that an accessibility check will fail. Rewrites
9893 -- node N to an appropriate raise statement and outputs warning msgs.
9894 -- The Etype of the raise node is set to Target_Type.
9896 procedure Real_Range_Check;
9897 -- Handles generation of range check for real target value
9899 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
9900 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
9901 -- evaluates to True.
9903 -----------------------------------
9904 -- Handle_Changed_Representation --
9905 -----------------------------------
9907 procedure Handle_Changed_Representation is
9908 Temp : Entity_Id;
9909 Decl : Node_Id;
9910 Odef : Node_Id;
9911 Disc : Node_Id;
9912 N_Ix : Node_Id;
9913 Cons : List_Id;
9915 begin
9916 -- Nothing else to do if no change of representation
9918 if Same_Representation (Operand_Type, Target_Type) then
9919 return;
9921 -- The real change of representation work is done by the assignment
9922 -- statement processing. So if this type conversion is appearing as
9923 -- the expression of an assignment statement, nothing needs to be
9924 -- done to the conversion.
9926 elsif Nkind (Parent (N)) = N_Assignment_Statement then
9927 return;
9929 -- Otherwise we need to generate a temporary variable, and do the
9930 -- change of representation assignment into that temporary variable.
9931 -- The conversion is then replaced by a reference to this variable.
9933 else
9934 Cons := No_List;
9936 -- If type is unconstrained we have to add a constraint, copied
9937 -- from the actual value of the left hand side.
9939 if not Is_Constrained (Target_Type) then
9940 if Has_Discriminants (Operand_Type) then
9941 Disc := First_Discriminant (Operand_Type);
9943 if Disc /= First_Stored_Discriminant (Operand_Type) then
9944 Disc := First_Stored_Discriminant (Operand_Type);
9945 end if;
9947 Cons := New_List;
9948 while Present (Disc) loop
9949 Append_To (Cons,
9950 Make_Selected_Component (Loc,
9951 Prefix =>
9952 Duplicate_Subexpr_Move_Checks (Operand),
9953 Selector_Name =>
9954 Make_Identifier (Loc, Chars (Disc))));
9955 Next_Discriminant (Disc);
9956 end loop;
9958 elsif Is_Array_Type (Operand_Type) then
9959 N_Ix := First_Index (Target_Type);
9960 Cons := New_List;
9962 for J in 1 .. Number_Dimensions (Operand_Type) loop
9964 -- We convert the bounds explicitly. We use an unchecked
9965 -- conversion because bounds checks are done elsewhere.
9967 Append_To (Cons,
9968 Make_Range (Loc,
9969 Low_Bound =>
9970 Unchecked_Convert_To (Etype (N_Ix),
9971 Make_Attribute_Reference (Loc,
9972 Prefix =>
9973 Duplicate_Subexpr_No_Checks
9974 (Operand, Name_Req => True),
9975 Attribute_Name => Name_First,
9976 Expressions => New_List (
9977 Make_Integer_Literal (Loc, J)))),
9979 High_Bound =>
9980 Unchecked_Convert_To (Etype (N_Ix),
9981 Make_Attribute_Reference (Loc,
9982 Prefix =>
9983 Duplicate_Subexpr_No_Checks
9984 (Operand, Name_Req => True),
9985 Attribute_Name => Name_Last,
9986 Expressions => New_List (
9987 Make_Integer_Literal (Loc, J))))));
9989 Next_Index (N_Ix);
9990 end loop;
9991 end if;
9992 end if;
9994 Odef := New_Occurrence_Of (Target_Type, Loc);
9996 if Present (Cons) then
9997 Odef :=
9998 Make_Subtype_Indication (Loc,
9999 Subtype_Mark => Odef,
10000 Constraint =>
10001 Make_Index_Or_Discriminant_Constraint (Loc,
10002 Constraints => Cons));
10003 end if;
10005 Temp := Make_Temporary (Loc, 'C');
10006 Decl :=
10007 Make_Object_Declaration (Loc,
10008 Defining_Identifier => Temp,
10009 Object_Definition => Odef);
10011 Set_No_Initialization (Decl, True);
10013 -- Insert required actions. It is essential to suppress checks
10014 -- since we have suppressed default initialization, which means
10015 -- that the variable we create may have no discriminants.
10017 Insert_Actions (N,
10018 New_List (
10019 Decl,
10020 Make_Assignment_Statement (Loc,
10021 Name => New_Occurrence_Of (Temp, Loc),
10022 Expression => Relocate_Node (N))),
10023 Suppress => All_Checks);
10025 Rewrite (N, New_Occurrence_Of (Temp, Loc));
10026 return;
10027 end if;
10028 end Handle_Changed_Representation;
10030 -------------------------------
10031 -- Raise_Accessibility_Error --
10032 -------------------------------
10034 procedure Raise_Accessibility_Error is
10035 begin
10036 Error_Msg_Warn := SPARK_Mode /= On;
10037 Rewrite (N,
10038 Make_Raise_Program_Error (Sloc (N),
10039 Reason => PE_Accessibility_Check_Failed));
10040 Set_Etype (N, Target_Type);
10042 Error_Msg_N ("<<accessibility check failure", N);
10043 Error_Msg_NE ("\<<& [", N, Standard_Program_Error);
10044 end Raise_Accessibility_Error;
10046 ----------------------
10047 -- Real_Range_Check --
10048 ----------------------
10050 -- Case of conversions to floating-point or fixed-point. If range checks
10051 -- are enabled and the target type has a range constraint, we convert:
10053 -- typ (x)
10055 -- to
10057 -- Tnn : typ'Base := typ'Base (x);
10058 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
10059 -- Tnn
10061 -- This is necessary when there is a conversion of integer to float or
10062 -- to fixed-point to ensure that the correct checks are made. It is not
10063 -- necessary for float to float where it is enough to simply set the
10064 -- Do_Range_Check flag.
10066 procedure Real_Range_Check is
10067 Btyp : constant Entity_Id := Base_Type (Target_Type);
10068 Lo : constant Node_Id := Type_Low_Bound (Target_Type);
10069 Hi : constant Node_Id := Type_High_Bound (Target_Type);
10070 Xtyp : constant Entity_Id := Etype (Operand);
10071 Conv : Node_Id;
10072 Tnn : Entity_Id;
10074 begin
10075 -- Nothing to do if conversion was rewritten
10077 if Nkind (N) /= N_Type_Conversion then
10078 return;
10079 end if;
10081 -- Nothing to do if range checks suppressed, or target has the same
10082 -- range as the base type (or is the base type).
10084 if Range_Checks_Suppressed (Target_Type)
10085 or else (Lo = Type_Low_Bound (Btyp)
10086 and then
10087 Hi = Type_High_Bound (Btyp))
10088 then
10089 return;
10090 end if;
10092 -- Nothing to do if expression is an entity on which checks have been
10093 -- suppressed.
10095 if Is_Entity_Name (Operand)
10096 and then Range_Checks_Suppressed (Entity (Operand))
10097 then
10098 return;
10099 end if;
10101 -- Nothing to do if bounds are all static and we can tell that the
10102 -- expression is within the bounds of the target. Note that if the
10103 -- operand is of an unconstrained floating-point type, then we do
10104 -- not trust it to be in range (might be infinite)
10106 declare
10107 S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
10108 S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
10110 begin
10111 if (not Is_Floating_Point_Type (Xtyp)
10112 or else Is_Constrained (Xtyp))
10113 and then Compile_Time_Known_Value (S_Lo)
10114 and then Compile_Time_Known_Value (S_Hi)
10115 and then Compile_Time_Known_Value (Hi)
10116 and then Compile_Time_Known_Value (Lo)
10117 then
10118 declare
10119 D_Lov : constant Ureal := Expr_Value_R (Lo);
10120 D_Hiv : constant Ureal := Expr_Value_R (Hi);
10121 S_Lov : Ureal;
10122 S_Hiv : Ureal;
10124 begin
10125 if Is_Real_Type (Xtyp) then
10126 S_Lov := Expr_Value_R (S_Lo);
10127 S_Hiv := Expr_Value_R (S_Hi);
10128 else
10129 S_Lov := UR_From_Uint (Expr_Value (S_Lo));
10130 S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
10131 end if;
10133 if D_Hiv > D_Lov
10134 and then S_Lov >= D_Lov
10135 and then S_Hiv <= D_Hiv
10136 then
10137 Set_Do_Range_Check (Operand, False);
10138 return;
10139 end if;
10140 end;
10141 end if;
10142 end;
10144 -- For float to float conversions, we are done
10146 if Is_Floating_Point_Type (Xtyp)
10147 and then
10148 Is_Floating_Point_Type (Btyp)
10149 then
10150 return;
10151 end if;
10153 -- Otherwise rewrite the conversion as described above
10155 Conv := Relocate_Node (N);
10156 Rewrite (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
10157 Set_Etype (Conv, Btyp);
10159 -- Enable overflow except for case of integer to float conversions,
10160 -- where it is never required, since we can never have overflow in
10161 -- this case.
10163 if not Is_Integer_Type (Etype (Operand)) then
10164 Enable_Overflow_Check (Conv);
10165 end if;
10167 Tnn := Make_Temporary (Loc, 'T', Conv);
10169 Insert_Actions (N, New_List (
10170 Make_Object_Declaration (Loc,
10171 Defining_Identifier => Tnn,
10172 Object_Definition => New_Occurrence_Of (Btyp, Loc),
10173 Constant_Present => True,
10174 Expression => Conv),
10176 Make_Raise_Constraint_Error (Loc,
10177 Condition =>
10178 Make_Or_Else (Loc,
10179 Left_Opnd =>
10180 Make_Op_Lt (Loc,
10181 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
10182 Right_Opnd =>
10183 Make_Attribute_Reference (Loc,
10184 Attribute_Name => Name_First,
10185 Prefix =>
10186 New_Occurrence_Of (Target_Type, Loc))),
10188 Right_Opnd =>
10189 Make_Op_Gt (Loc,
10190 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
10191 Right_Opnd =>
10192 Make_Attribute_Reference (Loc,
10193 Attribute_Name => Name_Last,
10194 Prefix =>
10195 New_Occurrence_Of (Target_Type, Loc)))),
10196 Reason => CE_Range_Check_Failed)));
10198 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
10199 Analyze_And_Resolve (N, Btyp);
10200 end Real_Range_Check;
10202 -----------------------------
10203 -- Has_Extra_Accessibility --
10204 -----------------------------
10206 -- Returns true for a formal of an anonymous access type or for
10207 -- an Ada 2012-style stand-alone object of an anonymous access type.
10209 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
10210 begin
10211 if Is_Formal (Id) or else Ekind_In (Id, E_Constant, E_Variable) then
10212 return Present (Effective_Extra_Accessibility (Id));
10213 else
10214 return False;
10215 end if;
10216 end Has_Extra_Accessibility;
10218 -- Start of processing for Expand_N_Type_Conversion
10220 begin
10221 -- First remove check marks put by the semantic analysis on the type
10222 -- conversion between array types. We need these checks, and they will
10223 -- be generated by this expansion routine, but we do not depend on these
10224 -- flags being set, and since we do intend to expand the checks in the
10225 -- front end, we don't want them on the tree passed to the back end.
10227 if Is_Array_Type (Target_Type) then
10228 if Is_Constrained (Target_Type) then
10229 Set_Do_Length_Check (N, False);
10230 else
10231 Set_Do_Range_Check (Operand, False);
10232 end if;
10233 end if;
10235 -- Nothing at all to do if conversion is to the identical type so remove
10236 -- the conversion completely, it is useless, except that it may carry
10237 -- an Assignment_OK attribute, which must be propagated to the operand.
10239 if Operand_Type = Target_Type then
10240 if Assignment_OK (N) then
10241 Set_Assignment_OK (Operand);
10242 end if;
10244 Rewrite (N, Relocate_Node (Operand));
10245 goto Done;
10246 end if;
10248 -- Nothing to do if this is the second argument of read. This is a
10249 -- "backwards" conversion that will be handled by the specialized code
10250 -- in attribute processing.
10252 if Nkind (Parent (N)) = N_Attribute_Reference
10253 and then Attribute_Name (Parent (N)) = Name_Read
10254 and then Next (First (Expressions (Parent (N)))) = N
10255 then
10256 goto Done;
10257 end if;
10259 -- Check for case of converting to a type that has an invariant
10260 -- associated with it. This required an invariant check. We convert
10262 -- typ (expr)
10264 -- into
10266 -- do invariant_check (typ (expr)) in typ (expr);
10268 -- using Duplicate_Subexpr to avoid multiple side effects
10270 -- Note: the Comes_From_Source check, and then the resetting of this
10271 -- flag prevents what would otherwise be an infinite recursion.
10273 if Has_Invariants (Target_Type)
10274 and then Present (Invariant_Procedure (Target_Type))
10275 and then Comes_From_Source (N)
10276 then
10277 Set_Comes_From_Source (N, False);
10278 Rewrite (N,
10279 Make_Expression_With_Actions (Loc,
10280 Actions => New_List (
10281 Make_Invariant_Call (Duplicate_Subexpr (N))),
10282 Expression => Duplicate_Subexpr_No_Checks (N)));
10283 Analyze_And_Resolve (N, Target_Type);
10284 goto Done;
10285 end if;
10287 -- Here if we may need to expand conversion
10289 -- If the operand of the type conversion is an arithmetic operation on
10290 -- signed integers, and the based type of the signed integer type in
10291 -- question is smaller than Standard.Integer, we promote both of the
10292 -- operands to type Integer.
10294 -- For example, if we have
10296 -- target-type (opnd1 + opnd2)
10298 -- and opnd1 and opnd2 are of type short integer, then we rewrite
10299 -- this as:
10301 -- target-type (integer(opnd1) + integer(opnd2))
10303 -- We do this because we are always allowed to compute in a larger type
10304 -- if we do the right thing with the result, and in this case we are
10305 -- going to do a conversion which will do an appropriate check to make
10306 -- sure that things are in range of the target type in any case. This
10307 -- avoids some unnecessary intermediate overflows.
10309 -- We might consider a similar transformation in the case where the
10310 -- target is a real type or a 64-bit integer type, and the operand
10311 -- is an arithmetic operation using a 32-bit integer type. However,
10312 -- we do not bother with this case, because it could cause significant
10313 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
10314 -- much cheaper, but we don't want different behavior on 32-bit and
10315 -- 64-bit machines. Note that the exclusion of the 64-bit case also
10316 -- handles the configurable run-time cases where 64-bit arithmetic
10317 -- may simply be unavailable.
10319 -- Note: this circuit is partially redundant with respect to the circuit
10320 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
10321 -- the processing here. Also we still need the Checks circuit, since we
10322 -- have to be sure not to generate junk overflow checks in the first
10323 -- place, since it would be trick to remove them here.
10325 if Integer_Promotion_Possible (N) then
10327 -- All conditions met, go ahead with transformation
10329 declare
10330 Opnd : Node_Id;
10331 L, R : Node_Id;
10333 begin
10334 R :=
10335 Make_Type_Conversion (Loc,
10336 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
10337 Expression => Relocate_Node (Right_Opnd (Operand)));
10339 Opnd := New_Op_Node (Nkind (Operand), Loc);
10340 Set_Right_Opnd (Opnd, R);
10342 if Nkind (Operand) in N_Binary_Op then
10343 L :=
10344 Make_Type_Conversion (Loc,
10345 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
10346 Expression => Relocate_Node (Left_Opnd (Operand)));
10348 Set_Left_Opnd (Opnd, L);
10349 end if;
10351 Rewrite (N,
10352 Make_Type_Conversion (Loc,
10353 Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
10354 Expression => Opnd));
10356 Analyze_And_Resolve (N, Target_Type);
10357 goto Done;
10358 end;
10359 end if;
10361 -- Do validity check if validity checking operands
10363 if Validity_Checks_On and Validity_Check_Operands then
10364 Ensure_Valid (Operand);
10365 end if;
10367 -- Special case of converting from non-standard boolean type
10369 if Is_Boolean_Type (Operand_Type)
10370 and then (Nonzero_Is_True (Operand_Type))
10371 then
10372 Adjust_Condition (Operand);
10373 Set_Etype (Operand, Standard_Boolean);
10374 Operand_Type := Standard_Boolean;
10375 end if;
10377 -- Case of converting to an access type
10379 if Is_Access_Type (Target_Type) then
10381 -- Apply an accessibility check when the conversion operand is an
10382 -- access parameter (or a renaming thereof), unless conversion was
10383 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
10384 -- Note that other checks may still need to be applied below (such
10385 -- as tagged type checks).
10387 if Is_Entity_Name (Operand)
10388 and then Has_Extra_Accessibility (Entity (Operand))
10389 and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
10390 and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
10391 or else Attribute_Name (Original_Node (N)) = Name_Access)
10392 then
10393 Apply_Accessibility_Check
10394 (Operand, Target_Type, Insert_Node => Operand);
10396 -- If the level of the operand type is statically deeper than the
10397 -- level of the target type, then force Program_Error. Note that this
10398 -- can only occur for cases where the attribute is within the body of
10399 -- an instantiation (otherwise the conversion will already have been
10400 -- rejected as illegal). Note: warnings are issued by the analyzer
10401 -- for the instance cases.
10403 elsif In_Instance_Body
10404 and then Type_Access_Level (Operand_Type) >
10405 Type_Access_Level (Target_Type)
10406 then
10407 Raise_Accessibility_Error;
10409 -- When the operand is a selected access discriminant the check needs
10410 -- to be made against the level of the object denoted by the prefix
10411 -- of the selected name. Force Program_Error for this case as well
10412 -- (this accessibility violation can only happen if within the body
10413 -- of an instantiation).
10415 elsif In_Instance_Body
10416 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
10417 and then Nkind (Operand) = N_Selected_Component
10418 and then Object_Access_Level (Operand) >
10419 Type_Access_Level (Target_Type)
10420 then
10421 Raise_Accessibility_Error;
10422 goto Done;
10423 end if;
10424 end if;
10426 -- Case of conversions of tagged types and access to tagged types
10428 -- When needed, that is to say when the expression is class-wide, Add
10429 -- runtime a tag check for (strict) downward conversion by using the
10430 -- membership test, generating:
10432 -- [constraint_error when Operand not in Target_Type'Class]
10434 -- or in the access type case
10436 -- [constraint_error
10437 -- when Operand /= null
10438 -- and then Operand.all not in
10439 -- Designated_Type (Target_Type)'Class]
10441 if (Is_Access_Type (Target_Type)
10442 and then Is_Tagged_Type (Designated_Type (Target_Type)))
10443 or else Is_Tagged_Type (Target_Type)
10444 then
10445 -- Do not do any expansion in the access type case if the parent is a
10446 -- renaming, since this is an error situation which will be caught by
10447 -- Sem_Ch8, and the expansion can interfere with this error check.
10449 if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
10450 goto Done;
10451 end if;
10453 -- Otherwise, proceed with processing tagged conversion
10455 Tagged_Conversion : declare
10456 Actual_Op_Typ : Entity_Id;
10457 Actual_Targ_Typ : Entity_Id;
10458 Make_Conversion : Boolean := False;
10459 Root_Op_Typ : Entity_Id;
10461 procedure Make_Tag_Check (Targ_Typ : Entity_Id);
10462 -- Create a membership check to test whether Operand is a member
10463 -- of Targ_Typ. If the original Target_Type is an access, include
10464 -- a test for null value. The check is inserted at N.
10466 --------------------
10467 -- Make_Tag_Check --
10468 --------------------
10470 procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
10471 Cond : Node_Id;
10473 begin
10474 -- Generate:
10475 -- [Constraint_Error
10476 -- when Operand /= null
10477 -- and then Operand.all not in Targ_Typ]
10479 if Is_Access_Type (Target_Type) then
10480 Cond :=
10481 Make_And_Then (Loc,
10482 Left_Opnd =>
10483 Make_Op_Ne (Loc,
10484 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
10485 Right_Opnd => Make_Null (Loc)),
10487 Right_Opnd =>
10488 Make_Not_In (Loc,
10489 Left_Opnd =>
10490 Make_Explicit_Dereference (Loc,
10491 Prefix => Duplicate_Subexpr_No_Checks (Operand)),
10492 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc)));
10494 -- Generate:
10495 -- [Constraint_Error when Operand not in Targ_Typ]
10497 else
10498 Cond :=
10499 Make_Not_In (Loc,
10500 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
10501 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc));
10502 end if;
10504 Insert_Action (N,
10505 Make_Raise_Constraint_Error (Loc,
10506 Condition => Cond,
10507 Reason => CE_Tag_Check_Failed));
10508 end Make_Tag_Check;
10510 -- Start of processing for Tagged_Conversion
10512 begin
10513 -- Handle entities from the limited view
10515 if Is_Access_Type (Operand_Type) then
10516 Actual_Op_Typ :=
10517 Available_View (Designated_Type (Operand_Type));
10518 else
10519 Actual_Op_Typ := Operand_Type;
10520 end if;
10522 if Is_Access_Type (Target_Type) then
10523 Actual_Targ_Typ :=
10524 Available_View (Designated_Type (Target_Type));
10525 else
10526 Actual_Targ_Typ := Target_Type;
10527 end if;
10529 Root_Op_Typ := Root_Type (Actual_Op_Typ);
10531 -- Ada 2005 (AI-251): Handle interface type conversion
10533 if Is_Interface (Actual_Op_Typ) then
10534 Expand_Interface_Conversion (N);
10535 goto Done;
10536 end if;
10538 if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
10540 -- Create a runtime tag check for a downward class-wide type
10541 -- conversion.
10543 if Is_Class_Wide_Type (Actual_Op_Typ)
10544 and then Actual_Op_Typ /= Actual_Targ_Typ
10545 and then Root_Op_Typ /= Actual_Targ_Typ
10546 and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ,
10547 Use_Full_View => True)
10548 then
10549 Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
10550 Make_Conversion := True;
10551 end if;
10553 -- AI05-0073: If the result subtype of the function is defined
10554 -- by an access_definition designating a specific tagged type
10555 -- T, a check is made that the result value is null or the tag
10556 -- of the object designated by the result value identifies T.
10557 -- Constraint_Error is raised if this check fails.
10559 if Nkind (Parent (N)) = N_Simple_Return_Statement then
10560 declare
10561 Func : Entity_Id;
10562 Func_Typ : Entity_Id;
10564 begin
10565 -- Climb scope stack looking for the enclosing function
10567 Func := Current_Scope;
10568 while Present (Func)
10569 and then Ekind (Func) /= E_Function
10570 loop
10571 Func := Scope (Func);
10572 end loop;
10574 -- The function's return subtype must be defined using
10575 -- an access definition.
10577 if Nkind (Result_Definition (Parent (Func))) =
10578 N_Access_Definition
10579 then
10580 Func_Typ := Directly_Designated_Type (Etype (Func));
10582 -- The return subtype denotes a specific tagged type,
10583 -- in other words, a non class-wide type.
10585 if Is_Tagged_Type (Func_Typ)
10586 and then not Is_Class_Wide_Type (Func_Typ)
10587 then
10588 Make_Tag_Check (Actual_Targ_Typ);
10589 Make_Conversion := True;
10590 end if;
10591 end if;
10592 end;
10593 end if;
10595 -- We have generated a tag check for either a class-wide type
10596 -- conversion or for AI05-0073.
10598 if Make_Conversion then
10599 declare
10600 Conv : Node_Id;
10601 begin
10602 Conv :=
10603 Make_Unchecked_Type_Conversion (Loc,
10604 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
10605 Expression => Relocate_Node (Expression (N)));
10606 Rewrite (N, Conv);
10607 Analyze_And_Resolve (N, Target_Type);
10608 end;
10609 end if;
10610 end if;
10611 end Tagged_Conversion;
10613 -- Case of other access type conversions
10615 elsif Is_Access_Type (Target_Type) then
10616 Apply_Constraint_Check (Operand, Target_Type);
10618 -- Case of conversions from a fixed-point type
10620 -- These conversions require special expansion and processing, found in
10621 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
10622 -- since from a semantic point of view, these are simple integer
10623 -- conversions, which do not need further processing.
10625 elsif Is_Fixed_Point_Type (Operand_Type)
10626 and then not Conversion_OK (N)
10627 then
10628 -- We should never see universal fixed at this case, since the
10629 -- expansion of the constituent divide or multiply should have
10630 -- eliminated the explicit mention of universal fixed.
10632 pragma Assert (Operand_Type /= Universal_Fixed);
10634 -- Check for special case of the conversion to universal real that
10635 -- occurs as a result of the use of a round attribute. In this case,
10636 -- the real type for the conversion is taken from the target type of
10637 -- the Round attribute and the result must be marked as rounded.
10639 if Target_Type = Universal_Real
10640 and then Nkind (Parent (N)) = N_Attribute_Reference
10641 and then Attribute_Name (Parent (N)) = Name_Round
10642 then
10643 Set_Rounded_Result (N);
10644 Set_Etype (N, Etype (Parent (N)));
10645 end if;
10647 -- Otherwise do correct fixed-conversion, but skip these if the
10648 -- Conversion_OK flag is set, because from a semantic point of view
10649 -- these are simple integer conversions needing no further processing
10650 -- (the backend will simply treat them as integers).
10652 if not Conversion_OK (N) then
10653 if Is_Fixed_Point_Type (Etype (N)) then
10654 Expand_Convert_Fixed_To_Fixed (N);
10655 Real_Range_Check;
10657 elsif Is_Integer_Type (Etype (N)) then
10658 Expand_Convert_Fixed_To_Integer (N);
10660 else
10661 pragma Assert (Is_Floating_Point_Type (Etype (N)));
10662 Expand_Convert_Fixed_To_Float (N);
10663 Real_Range_Check;
10664 end if;
10665 end if;
10667 -- Case of conversions to a fixed-point type
10669 -- These conversions require special expansion and processing, found in
10670 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
10671 -- since from a semantic point of view, these are simple integer
10672 -- conversions, which do not need further processing.
10674 elsif Is_Fixed_Point_Type (Target_Type)
10675 and then not Conversion_OK (N)
10676 then
10677 if Is_Integer_Type (Operand_Type) then
10678 Expand_Convert_Integer_To_Fixed (N);
10679 Real_Range_Check;
10680 else
10681 pragma Assert (Is_Floating_Point_Type (Operand_Type));
10682 Expand_Convert_Float_To_Fixed (N);
10683 Real_Range_Check;
10684 end if;
10686 -- Case of float-to-integer conversions
10688 -- We also handle float-to-fixed conversions with Conversion_OK set
10689 -- since semantically the fixed-point target is treated as though it
10690 -- were an integer in such cases.
10692 elsif Is_Floating_Point_Type (Operand_Type)
10693 and then
10694 (Is_Integer_Type (Target_Type)
10695 or else
10696 (Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
10697 then
10698 -- One more check here, gcc is still not able to do conversions of
10699 -- this type with proper overflow checking, and so gigi is doing an
10700 -- approximation of what is required by doing floating-point compares
10701 -- with the end-point. But that can lose precision in some cases, and
10702 -- give a wrong result. Converting the operand to Universal_Real is
10703 -- helpful, but still does not catch all cases with 64-bit integers
10704 -- on targets with only 64-bit floats.
10706 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
10707 -- Can this code be removed ???
10709 if Do_Range_Check (Operand) then
10710 Rewrite (Operand,
10711 Make_Type_Conversion (Loc,
10712 Subtype_Mark =>
10713 New_Occurrence_Of (Universal_Real, Loc),
10714 Expression =>
10715 Relocate_Node (Operand)));
10717 Set_Etype (Operand, Universal_Real);
10718 Enable_Range_Check (Operand);
10719 Set_Do_Range_Check (Expression (Operand), False);
10720 end if;
10722 -- Case of array conversions
10724 -- Expansion of array conversions, add required length/range checks but
10725 -- only do this if there is no change of representation. For handling of
10726 -- this case, see Handle_Changed_Representation.
10728 elsif Is_Array_Type (Target_Type) then
10729 if Is_Constrained (Target_Type) then
10730 Apply_Length_Check (Operand, Target_Type);
10731 else
10732 Apply_Range_Check (Operand, Target_Type);
10733 end if;
10735 Handle_Changed_Representation;
10737 -- Case of conversions of discriminated types
10739 -- Add required discriminant checks if target is constrained. Again this
10740 -- change is skipped if we have a change of representation.
10742 elsif Has_Discriminants (Target_Type)
10743 and then Is_Constrained (Target_Type)
10744 then
10745 Apply_Discriminant_Check (Operand, Target_Type);
10746 Handle_Changed_Representation;
10748 -- Case of all other record conversions. The only processing required
10749 -- is to check for a change of representation requiring the special
10750 -- assignment processing.
10752 elsif Is_Record_Type (Target_Type) then
10754 -- Ada 2005 (AI-216): Program_Error is raised when converting from
10755 -- a derived Unchecked_Union type to an unconstrained type that is
10756 -- not Unchecked_Union if the operand lacks inferable discriminants.
10758 if Is_Derived_Type (Operand_Type)
10759 and then Is_Unchecked_Union (Base_Type (Operand_Type))
10760 and then not Is_Constrained (Target_Type)
10761 and then not Is_Unchecked_Union (Base_Type (Target_Type))
10762 and then not Has_Inferable_Discriminants (Operand)
10763 then
10764 -- To prevent Gigi from generating illegal code, we generate a
10765 -- Program_Error node, but we give it the target type of the
10766 -- conversion (is this requirement documented somewhere ???)
10768 declare
10769 PE : constant Node_Id := Make_Raise_Program_Error (Loc,
10770 Reason => PE_Unchecked_Union_Restriction);
10772 begin
10773 Set_Etype (PE, Target_Type);
10774 Rewrite (N, PE);
10776 end;
10777 else
10778 Handle_Changed_Representation;
10779 end if;
10781 -- Case of conversions of enumeration types
10783 elsif Is_Enumeration_Type (Target_Type) then
10785 -- Special processing is required if there is a change of
10786 -- representation (from enumeration representation clauses).
10788 if not Same_Representation (Target_Type, Operand_Type) then
10790 -- Convert: x(y) to x'val (ytyp'val (y))
10792 Rewrite (N,
10793 Make_Attribute_Reference (Loc,
10794 Prefix => New_Occurrence_Of (Target_Type, Loc),
10795 Attribute_Name => Name_Val,
10796 Expressions => New_List (
10797 Make_Attribute_Reference (Loc,
10798 Prefix => New_Occurrence_Of (Operand_Type, Loc),
10799 Attribute_Name => Name_Pos,
10800 Expressions => New_List (Operand)))));
10802 Analyze_And_Resolve (N, Target_Type);
10803 end if;
10805 -- Case of conversions to floating-point
10807 elsif Is_Floating_Point_Type (Target_Type) then
10808 Real_Range_Check;
10809 end if;
10811 -- At this stage, either the conversion node has been transformed into
10812 -- some other equivalent expression, or left as a conversion that can be
10813 -- handled by Gigi, in the following cases:
10815 -- Conversions with no change of representation or type
10817 -- Numeric conversions involving integer, floating- and fixed-point
10818 -- values. Fixed-point values are allowed only if Conversion_OK is
10819 -- set, i.e. if the fixed-point values are to be treated as integers.
10821 -- No other conversions should be passed to Gigi
10823 -- Check: are these rules stated in sinfo??? if so, why restate here???
10825 -- The only remaining step is to generate a range check if we still have
10826 -- a type conversion at this stage and Do_Range_Check is set. For now we
10827 -- do this only for conversions of discrete types.
10829 if Nkind (N) = N_Type_Conversion
10830 and then Is_Discrete_Type (Etype (N))
10831 then
10832 declare
10833 Expr : constant Node_Id := Expression (N);
10834 Ftyp : Entity_Id;
10835 Ityp : Entity_Id;
10837 begin
10838 if Do_Range_Check (Expr)
10839 and then Is_Discrete_Type (Etype (Expr))
10840 then
10841 Set_Do_Range_Check (Expr, False);
10843 -- Before we do a range check, we have to deal with treating a
10844 -- fixed-point operand as an integer. The way we do this is
10845 -- simply to do an unchecked conversion to an appropriate
10846 -- integer type large enough to hold the result.
10848 -- This code is not active yet, because we are only dealing
10849 -- with discrete types so far ???
10851 if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
10852 and then Treat_Fixed_As_Integer (Expr)
10853 then
10854 Ftyp := Base_Type (Etype (Expr));
10856 if Esize (Ftyp) >= Esize (Standard_Integer) then
10857 Ityp := Standard_Long_Long_Integer;
10858 else
10859 Ityp := Standard_Integer;
10860 end if;
10862 Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
10863 end if;
10865 -- Reset overflow flag, since the range check will include
10866 -- dealing with possible overflow, and generate the check. If
10867 -- Address is either a source type or target type, suppress
10868 -- range check to avoid typing anomalies when it is a visible
10869 -- integer type.
10871 Set_Do_Overflow_Check (N, False);
10872 if not Is_Descendent_Of_Address (Etype (Expr))
10873 and then not Is_Descendent_Of_Address (Target_Type)
10874 then
10875 Generate_Range_Check
10876 (Expr, Target_Type, CE_Range_Check_Failed);
10877 end if;
10878 end if;
10879 end;
10880 end if;
10882 -- Final step, if the result is a type conversion involving Vax_Float
10883 -- types, then it is subject for further special processing.
10885 if Nkind (N) = N_Type_Conversion
10886 and then (Vax_Float (Operand_Type) or else Vax_Float (Target_Type))
10887 then
10888 Expand_Vax_Conversion (N);
10889 goto Done;
10890 end if;
10892 -- Here at end of processing
10894 <<Done>>
10895 -- Apply predicate check if required. Note that we can't just call
10896 -- Apply_Predicate_Check here, because the type looks right after
10897 -- the conversion and it would omit the check. The Comes_From_Source
10898 -- guard is necessary to prevent infinite recursions when we generate
10899 -- internal conversions for the purpose of checking predicates.
10901 if Present (Predicate_Function (Target_Type))
10902 and then Target_Type /= Operand_Type
10903 and then Comes_From_Source (N)
10904 then
10905 declare
10906 New_Expr : constant Node_Id := Duplicate_Subexpr (N);
10908 begin
10909 -- Avoid infinite recursion on the subsequent expansion of
10910 -- of the copy of the original type conversion.
10912 Set_Comes_From_Source (New_Expr, False);
10913 Insert_Action (N, Make_Predicate_Check (Target_Type, New_Expr));
10914 end;
10915 end if;
10916 end Expand_N_Type_Conversion;
10918 -----------------------------------
10919 -- Expand_N_Unchecked_Expression --
10920 -----------------------------------
10922 -- Remove the unchecked expression node from the tree. Its job was simply
10923 -- to make sure that its constituent expression was handled with checks
10924 -- off, and now that that is done, we can remove it from the tree, and
10925 -- indeed must, since Gigi does not expect to see these nodes.
10927 procedure Expand_N_Unchecked_Expression (N : Node_Id) is
10928 Exp : constant Node_Id := Expression (N);
10929 begin
10930 Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
10931 Rewrite (N, Exp);
10932 end Expand_N_Unchecked_Expression;
10934 ----------------------------------------
10935 -- Expand_N_Unchecked_Type_Conversion --
10936 ----------------------------------------
10938 -- If this cannot be handled by Gigi and we haven't already made a
10939 -- temporary for it, do it now.
10941 procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
10942 Target_Type : constant Entity_Id := Etype (N);
10943 Operand : constant Node_Id := Expression (N);
10944 Operand_Type : constant Entity_Id := Etype (Operand);
10946 begin
10947 -- Nothing at all to do if conversion is to the identical type so remove
10948 -- the conversion completely, it is useless, except that it may carry
10949 -- an Assignment_OK indication which must be propagated to the operand.
10951 if Operand_Type = Target_Type then
10953 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
10955 if Assignment_OK (N) then
10956 Set_Assignment_OK (Operand);
10957 end if;
10959 Rewrite (N, Relocate_Node (Operand));
10960 return;
10961 end if;
10963 -- If we have a conversion of a compile time known value to a target
10964 -- type and the value is in range of the target type, then we can simply
10965 -- replace the construct by an integer literal of the correct type. We
10966 -- only apply this to integer types being converted. Possibly it may
10967 -- apply in other cases, but it is too much trouble to worry about.
10969 -- Note that we do not do this transformation if the Kill_Range_Check
10970 -- flag is set, since then the value may be outside the expected range.
10971 -- This happens in the Normalize_Scalars case.
10973 -- We also skip this if either the target or operand type is biased
10974 -- because in this case, the unchecked conversion is supposed to
10975 -- preserve the bit pattern, not the integer value.
10977 if Is_Integer_Type (Target_Type)
10978 and then not Has_Biased_Representation (Target_Type)
10979 and then Is_Integer_Type (Operand_Type)
10980 and then not Has_Biased_Representation (Operand_Type)
10981 and then Compile_Time_Known_Value (Operand)
10982 and then not Kill_Range_Check (N)
10983 then
10984 declare
10985 Val : constant Uint := Expr_Value (Operand);
10987 begin
10988 if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
10989 and then
10990 Compile_Time_Known_Value (Type_High_Bound (Target_Type))
10991 and then
10992 Val >= Expr_Value (Type_Low_Bound (Target_Type))
10993 and then
10994 Val <= Expr_Value (Type_High_Bound (Target_Type))
10995 then
10996 Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
10998 -- If Address is the target type, just set the type to avoid a
10999 -- spurious type error on the literal when Address is a visible
11000 -- integer type.
11002 if Is_Descendent_Of_Address (Target_Type) then
11003 Set_Etype (N, Target_Type);
11004 else
11005 Analyze_And_Resolve (N, Target_Type);
11006 end if;
11008 return;
11009 end if;
11010 end;
11011 end if;
11013 -- Nothing to do if conversion is safe
11015 if Safe_Unchecked_Type_Conversion (N) then
11016 return;
11017 end if;
11019 -- Otherwise force evaluation unless Assignment_OK flag is set (this
11020 -- flag indicates ??? More comments needed here)
11022 if Assignment_OK (N) then
11023 null;
11024 else
11025 Force_Evaluation (N);
11026 end if;
11027 end Expand_N_Unchecked_Type_Conversion;
11029 ----------------------------
11030 -- Expand_Record_Equality --
11031 ----------------------------
11033 -- For non-variant records, Equality is expanded when needed into:
11035 -- and then Lhs.Discr1 = Rhs.Discr1
11036 -- and then ...
11037 -- and then Lhs.Discrn = Rhs.Discrn
11038 -- and then Lhs.Cmp1 = Rhs.Cmp1
11039 -- and then ...
11040 -- and then Lhs.Cmpn = Rhs.Cmpn
11042 -- The expression is folded by the back-end for adjacent fields. This
11043 -- function is called for tagged record in only one occasion: for imple-
11044 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
11045 -- otherwise the primitive "=" is used directly.
11047 function Expand_Record_Equality
11048 (Nod : Node_Id;
11049 Typ : Entity_Id;
11050 Lhs : Node_Id;
11051 Rhs : Node_Id;
11052 Bodies : List_Id) return Node_Id
11054 Loc : constant Source_Ptr := Sloc (Nod);
11056 Result : Node_Id;
11057 C : Entity_Id;
11059 First_Time : Boolean := True;
11061 function Element_To_Compare (C : Entity_Id) return Entity_Id;
11062 -- Return the next discriminant or component to compare, starting with
11063 -- C, skipping inherited components.
11065 ------------------------
11066 -- Element_To_Compare --
11067 ------------------------
11069 function Element_To_Compare (C : Entity_Id) return Entity_Id is
11070 Comp : Entity_Id;
11072 begin
11073 Comp := C;
11074 loop
11075 -- Exit loop when the next element to be compared is found, or
11076 -- there is no more such element.
11078 exit when No (Comp);
11080 exit when Ekind_In (Comp, E_Discriminant, E_Component)
11081 and then not (
11083 -- Skip inherited components
11085 -- Note: for a tagged type, we always generate the "=" primitive
11086 -- for the base type (not on the first subtype), so the test for
11087 -- Comp /= Original_Record_Component (Comp) is True for
11088 -- inherited components only.
11090 (Is_Tagged_Type (Typ)
11091 and then Comp /= Original_Record_Component (Comp))
11093 -- Skip _Tag
11095 or else Chars (Comp) = Name_uTag
11097 -- The .NET/JVM version of type Root_Controlled contains two
11098 -- fields which should not be considered part of the object. To
11099 -- achieve proper equiality between two controlled objects on
11100 -- .NET/JVM, skip _Parent whenever it has type Root_Controlled.
11102 or else (Chars (Comp) = Name_uParent
11103 and then VM_Target /= No_VM
11104 and then Etype (Comp) = RTE (RE_Root_Controlled))
11106 -- Skip interface elements (secondary tags???)
11108 or else Is_Interface (Etype (Comp)));
11110 Next_Entity (Comp);
11111 end loop;
11113 return Comp;
11114 end Element_To_Compare;
11116 -- Start of processing for Expand_Record_Equality
11118 begin
11119 -- Generates the following code: (assuming that Typ has one Discr and
11120 -- component C2 is also a record)
11122 -- True
11123 -- and then Lhs.Discr1 = Rhs.Discr1
11124 -- and then Lhs.C1 = Rhs.C1
11125 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
11126 -- and then ...
11127 -- and then Lhs.Cmpn = Rhs.Cmpn
11129 Result := New_Occurrence_Of (Standard_True, Loc);
11130 C := Element_To_Compare (First_Entity (Typ));
11131 while Present (C) loop
11132 declare
11133 New_Lhs : Node_Id;
11134 New_Rhs : Node_Id;
11135 Check : Node_Id;
11137 begin
11138 if First_Time then
11139 First_Time := False;
11140 New_Lhs := Lhs;
11141 New_Rhs := Rhs;
11142 else
11143 New_Lhs := New_Copy_Tree (Lhs);
11144 New_Rhs := New_Copy_Tree (Rhs);
11145 end if;
11147 Check :=
11148 Expand_Composite_Equality (Nod, Etype (C),
11149 Lhs =>
11150 Make_Selected_Component (Loc,
11151 Prefix => New_Lhs,
11152 Selector_Name => New_Occurrence_Of (C, Loc)),
11153 Rhs =>
11154 Make_Selected_Component (Loc,
11155 Prefix => New_Rhs,
11156 Selector_Name => New_Occurrence_Of (C, Loc)),
11157 Bodies => Bodies);
11159 -- If some (sub)component is an unchecked_union, the whole
11160 -- operation will raise program error.
11162 if Nkind (Check) = N_Raise_Program_Error then
11163 Result := Check;
11164 Set_Etype (Result, Standard_Boolean);
11165 exit;
11166 else
11167 Result :=
11168 Make_And_Then (Loc,
11169 Left_Opnd => Result,
11170 Right_Opnd => Check);
11171 end if;
11172 end;
11174 C := Element_To_Compare (Next_Entity (C));
11175 end loop;
11177 return Result;
11178 end Expand_Record_Equality;
11180 ---------------------------
11181 -- Expand_Set_Membership --
11182 ---------------------------
11184 procedure Expand_Set_Membership (N : Node_Id) is
11185 Lop : constant Node_Id := Left_Opnd (N);
11186 Alt : Node_Id;
11187 Res : Node_Id;
11189 function Make_Cond (Alt : Node_Id) return Node_Id;
11190 -- If the alternative is a subtype mark, create a simple membership
11191 -- test. Otherwise create an equality test for it.
11193 ---------------
11194 -- Make_Cond --
11195 ---------------
11197 function Make_Cond (Alt : Node_Id) return Node_Id is
11198 Cond : Node_Id;
11199 L : constant Node_Id := New_Copy (Lop);
11200 R : constant Node_Id := Relocate_Node (Alt);
11202 begin
11203 if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
11204 or else Nkind (Alt) = N_Range
11205 then
11206 Cond :=
11207 Make_In (Sloc (Alt),
11208 Left_Opnd => L,
11209 Right_Opnd => R);
11210 else
11211 Cond :=
11212 Make_Op_Eq (Sloc (Alt),
11213 Left_Opnd => L,
11214 Right_Opnd => R);
11215 end if;
11217 return Cond;
11218 end Make_Cond;
11220 -- Start of processing for Expand_Set_Membership
11222 begin
11223 Remove_Side_Effects (Lop);
11225 Alt := Last (Alternatives (N));
11226 Res := Make_Cond (Alt);
11228 Prev (Alt);
11229 while Present (Alt) loop
11230 Res :=
11231 Make_Or_Else (Sloc (Alt),
11232 Left_Opnd => Make_Cond (Alt),
11233 Right_Opnd => Res);
11234 Prev (Alt);
11235 end loop;
11237 Rewrite (N, Res);
11238 Analyze_And_Resolve (N, Standard_Boolean);
11239 end Expand_Set_Membership;
11241 -----------------------------------
11242 -- Expand_Short_Circuit_Operator --
11243 -----------------------------------
11245 -- Deal with special expansion if actions are present for the right operand
11246 -- and deal with optimizing case of arguments being True or False. We also
11247 -- deal with the special case of non-standard boolean values.
11249 procedure Expand_Short_Circuit_Operator (N : Node_Id) is
11250 Loc : constant Source_Ptr := Sloc (N);
11251 Typ : constant Entity_Id := Etype (N);
11252 Left : constant Node_Id := Left_Opnd (N);
11253 Right : constant Node_Id := Right_Opnd (N);
11254 LocR : constant Source_Ptr := Sloc (Right);
11255 Actlist : List_Id;
11257 Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
11258 Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
11259 -- If Left = Shortcut_Value then Right need not be evaluated
11261 begin
11262 -- Deal with non-standard booleans
11264 if Is_Boolean_Type (Typ) then
11265 Adjust_Condition (Left);
11266 Adjust_Condition (Right);
11267 Set_Etype (N, Standard_Boolean);
11268 end if;
11270 -- Check for cases where left argument is known to be True or False
11272 if Compile_Time_Known_Value (Left) then
11274 -- Mark SCO for left condition as compile time known
11276 if Generate_SCO and then Comes_From_Source (Left) then
11277 Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
11278 end if;
11280 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
11281 -- Any actions associated with Right will be executed unconditionally
11282 -- and can thus be inserted into the tree unconditionally.
11284 if Expr_Value_E (Left) /= Shortcut_Ent then
11285 if Present (Actions (N)) then
11286 Insert_Actions (N, Actions (N));
11287 end if;
11289 Rewrite (N, Right);
11291 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
11292 -- In this case we can forget the actions associated with Right,
11293 -- since they will never be executed.
11295 else
11296 Kill_Dead_Code (Right);
11297 Kill_Dead_Code (Actions (N));
11298 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
11299 end if;
11301 Adjust_Result_Type (N, Typ);
11302 return;
11303 end if;
11305 -- If Actions are present for the right operand, we have to do some
11306 -- special processing. We can't just let these actions filter back into
11307 -- code preceding the short circuit (which is what would have happened
11308 -- if we had not trapped them in the short-circuit form), since they
11309 -- must only be executed if the right operand of the short circuit is
11310 -- executed and not otherwise.
11312 if Present (Actions (N)) then
11313 Actlist := Actions (N);
11315 -- We now use an Expression_With_Actions node for the right operand
11316 -- of the short-circuit form. Note that this solves the traceability
11317 -- problems for coverage analysis.
11319 Rewrite (Right,
11320 Make_Expression_With_Actions (LocR,
11321 Expression => Relocate_Node (Right),
11322 Actions => Actlist));
11323 Set_Actions (N, No_List);
11324 Analyze_And_Resolve (Right, Standard_Boolean);
11326 Adjust_Result_Type (N, Typ);
11327 return;
11328 end if;
11330 -- No actions present, check for cases of right argument True/False
11332 if Compile_Time_Known_Value (Right) then
11334 -- Mark SCO for left condition as compile time known
11336 if Generate_SCO and then Comes_From_Source (Right) then
11337 Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
11338 end if;
11340 -- Change (Left and then True), (Left or else False) to Left.
11341 -- Note that we know there are no actions associated with the right
11342 -- operand, since we just checked for this case above.
11344 if Expr_Value_E (Right) /= Shortcut_Ent then
11345 Rewrite (N, Left);
11347 -- Change (Left and then False), (Left or else True) to Right,
11348 -- making sure to preserve any side effects associated with the Left
11349 -- operand.
11351 else
11352 Remove_Side_Effects (Left);
11353 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
11354 end if;
11355 end if;
11357 Adjust_Result_Type (N, Typ);
11358 end Expand_Short_Circuit_Operator;
11360 -------------------------------------
11361 -- Fixup_Universal_Fixed_Operation --
11362 -------------------------------------
11364 procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
11365 Conv : constant Node_Id := Parent (N);
11367 begin
11368 -- We must have a type conversion immediately above us
11370 pragma Assert (Nkind (Conv) = N_Type_Conversion);
11372 -- Normally the type conversion gives our target type. The exception
11373 -- occurs in the case of the Round attribute, where the conversion
11374 -- will be to universal real, and our real type comes from the Round
11375 -- attribute (as well as an indication that we must round the result)
11377 if Nkind (Parent (Conv)) = N_Attribute_Reference
11378 and then Attribute_Name (Parent (Conv)) = Name_Round
11379 then
11380 Set_Etype (N, Etype (Parent (Conv)));
11381 Set_Rounded_Result (N);
11383 -- Normal case where type comes from conversion above us
11385 else
11386 Set_Etype (N, Etype (Conv));
11387 end if;
11388 end Fixup_Universal_Fixed_Operation;
11390 ---------------------------------
11391 -- Has_Inferable_Discriminants --
11392 ---------------------------------
11394 function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
11396 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
11397 -- Determines whether the left-most prefix of a selected component is a
11398 -- formal parameter in a subprogram. Assumes N is a selected component.
11400 --------------------------------
11401 -- Prefix_Is_Formal_Parameter --
11402 --------------------------------
11404 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
11405 Sel_Comp : Node_Id;
11407 begin
11408 -- Move to the left-most prefix by climbing up the tree
11410 Sel_Comp := N;
11411 while Present (Parent (Sel_Comp))
11412 and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
11413 loop
11414 Sel_Comp := Parent (Sel_Comp);
11415 end loop;
11417 return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
11418 end Prefix_Is_Formal_Parameter;
11420 -- Start of processing for Has_Inferable_Discriminants
11422 begin
11423 -- For selected components, the subtype of the selector must be a
11424 -- constrained Unchecked_Union. If the component is subject to a
11425 -- per-object constraint, then the enclosing object must have inferable
11426 -- discriminants.
11428 if Nkind (N) = N_Selected_Component then
11429 if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
11431 -- A small hack. If we have a per-object constrained selected
11432 -- component of a formal parameter, return True since we do not
11433 -- know the actual parameter association yet.
11435 if Prefix_Is_Formal_Parameter (N) then
11436 return True;
11438 -- Otherwise, check the enclosing object and the selector
11440 else
11441 return Has_Inferable_Discriminants (Prefix (N))
11442 and then Has_Inferable_Discriminants (Selector_Name (N));
11443 end if;
11445 -- The call to Has_Inferable_Discriminants will determine whether
11446 -- the selector has a constrained Unchecked_Union nominal type.
11448 else
11449 return Has_Inferable_Discriminants (Selector_Name (N));
11450 end if;
11452 -- A qualified expression has inferable discriminants if its subtype
11453 -- mark is a constrained Unchecked_Union subtype.
11455 elsif Nkind (N) = N_Qualified_Expression then
11456 return Is_Unchecked_Union (Etype (Subtype_Mark (N)))
11457 and then Is_Constrained (Etype (Subtype_Mark (N)));
11459 -- For all other names, it is sufficient to have a constrained
11460 -- Unchecked_Union nominal subtype.
11462 else
11463 return Is_Unchecked_Union (Base_Type (Etype (N)))
11464 and then Is_Constrained (Etype (N));
11465 end if;
11466 end Has_Inferable_Discriminants;
11468 -------------------------------
11469 -- Insert_Dereference_Action --
11470 -------------------------------
11472 procedure Insert_Dereference_Action (N : Node_Id) is
11474 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
11475 -- Return true if type of P is derived from Checked_Pool;
11477 -----------------------------
11478 -- Is_Checked_Storage_Pool --
11479 -----------------------------
11481 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
11482 T : Entity_Id;
11484 begin
11485 if No (P) then
11486 return False;
11487 end if;
11489 T := Etype (P);
11490 while T /= Etype (T) loop
11491 if Is_RTE (T, RE_Checked_Pool) then
11492 return True;
11493 else
11494 T := Etype (T);
11495 end if;
11496 end loop;
11498 return False;
11499 end Is_Checked_Storage_Pool;
11501 -- Local variables
11503 Typ : constant Entity_Id := Etype (N);
11504 Desig : constant Entity_Id := Available_View (Designated_Type (Typ));
11505 Loc : constant Source_Ptr := Sloc (N);
11506 Pool : constant Entity_Id := Associated_Storage_Pool (Typ);
11507 Pnod : constant Node_Id := Parent (N);
11509 Addr : Entity_Id;
11510 Alig : Entity_Id;
11511 Deref : Node_Id;
11512 Size : Entity_Id;
11513 Stmt : Node_Id;
11515 -- Start of processing for Insert_Dereference_Action
11517 begin
11518 pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
11520 -- Do not re-expand a dereference which has already been processed by
11521 -- this routine.
11523 if Has_Dereference_Action (Pnod) then
11524 return;
11526 -- Do not perform this type of expansion for internally-generated
11527 -- dereferences.
11529 elsif not Comes_From_Source (Original_Node (Pnod)) then
11530 return;
11532 -- A dereference action is only applicable to objects which have been
11533 -- allocated on a checked pool.
11535 elsif not Is_Checked_Storage_Pool (Pool) then
11536 return;
11537 end if;
11539 -- Extract the address of the dereferenced object. Generate:
11541 -- Addr : System.Address := <N>'Pool_Address;
11543 Addr := Make_Temporary (Loc, 'P');
11545 Insert_Action (N,
11546 Make_Object_Declaration (Loc,
11547 Defining_Identifier => Addr,
11548 Object_Definition =>
11549 New_Occurrence_Of (RTE (RE_Address), Loc),
11550 Expression =>
11551 Make_Attribute_Reference (Loc,
11552 Prefix => Duplicate_Subexpr_Move_Checks (N),
11553 Attribute_Name => Name_Pool_Address)));
11555 -- Calculate the size of the dereferenced object. Generate:
11557 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
11559 Deref :=
11560 Make_Explicit_Dereference (Loc,
11561 Prefix => Duplicate_Subexpr_Move_Checks (N));
11562 Set_Has_Dereference_Action (Deref);
11564 Size := Make_Temporary (Loc, 'S');
11566 Insert_Action (N,
11567 Make_Object_Declaration (Loc,
11568 Defining_Identifier => Size,
11570 Object_Definition =>
11571 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
11573 Expression =>
11574 Make_Op_Divide (Loc,
11575 Left_Opnd =>
11576 Make_Attribute_Reference (Loc,
11577 Prefix => Deref,
11578 Attribute_Name => Name_Size),
11579 Right_Opnd =>
11580 Make_Integer_Literal (Loc, System_Storage_Unit))));
11582 -- Calculate the alignment of the dereferenced object. Generate:
11583 -- Alig : constant Storage_Count := <N>.all'Alignment;
11585 Deref :=
11586 Make_Explicit_Dereference (Loc,
11587 Prefix => Duplicate_Subexpr_Move_Checks (N));
11588 Set_Has_Dereference_Action (Deref);
11590 Alig := Make_Temporary (Loc, 'A');
11592 Insert_Action (N,
11593 Make_Object_Declaration (Loc,
11594 Defining_Identifier => Alig,
11595 Object_Definition =>
11596 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
11597 Expression =>
11598 Make_Attribute_Reference (Loc,
11599 Prefix => Deref,
11600 Attribute_Name => Name_Alignment)));
11602 -- A dereference of a controlled object requires special processing. The
11603 -- finalization machinery requests additional space from the underlying
11604 -- pool to allocate and hide two pointers. As a result, a checked pool
11605 -- may mark the wrong memory as valid. Since checked pools do not have
11606 -- knowledge of hidden pointers, we have to bring the two pointers back
11607 -- in view in order to restore the original state of the object.
11609 if Needs_Finalization (Desig) then
11611 -- Adjust the address and size of the dereferenced object. Generate:
11612 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
11614 Stmt :=
11615 Make_Procedure_Call_Statement (Loc,
11616 Name =>
11617 New_Occurrence_Of (RTE (RE_Adjust_Controlled_Dereference), Loc),
11618 Parameter_Associations => New_List (
11619 New_Occurrence_Of (Addr, Loc),
11620 New_Occurrence_Of (Size, Loc),
11621 New_Occurrence_Of (Alig, Loc)));
11623 -- Class-wide types complicate things because we cannot determine
11624 -- statically whether the actual object is truly controlled. We must
11625 -- generate a runtime check to detect this property. Generate:
11627 -- if Needs_Finalization (<N>.all'Tag) then
11628 -- <Stmt>;
11629 -- end if;
11631 if Is_Class_Wide_Type (Desig) then
11632 Deref :=
11633 Make_Explicit_Dereference (Loc,
11634 Prefix => Duplicate_Subexpr_Move_Checks (N));
11635 Set_Has_Dereference_Action (Deref);
11637 Stmt :=
11638 Make_Implicit_If_Statement (N,
11639 Condition =>
11640 Make_Function_Call (Loc,
11641 Name =>
11642 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
11643 Parameter_Associations => New_List (
11644 Make_Attribute_Reference (Loc,
11645 Prefix => Deref,
11646 Attribute_Name => Name_Tag))),
11647 Then_Statements => New_List (Stmt));
11648 end if;
11650 Insert_Action (N, Stmt);
11651 end if;
11653 -- Generate:
11654 -- Dereference (Pool, Addr, Size, Alig);
11656 Insert_Action (N,
11657 Make_Procedure_Call_Statement (Loc,
11658 Name =>
11659 New_Occurrence_Of
11660 (Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
11661 Parameter_Associations => New_List (
11662 New_Occurrence_Of (Pool, Loc),
11663 New_Occurrence_Of (Addr, Loc),
11664 New_Occurrence_Of (Size, Loc),
11665 New_Occurrence_Of (Alig, Loc))));
11667 -- Mark the explicit dereference as processed to avoid potential
11668 -- infinite expansion.
11670 Set_Has_Dereference_Action (Pnod);
11672 exception
11673 when RE_Not_Available =>
11674 return;
11675 end Insert_Dereference_Action;
11677 --------------------------------
11678 -- Integer_Promotion_Possible --
11679 --------------------------------
11681 function Integer_Promotion_Possible (N : Node_Id) return Boolean is
11682 Operand : constant Node_Id := Expression (N);
11683 Operand_Type : constant Entity_Id := Etype (Operand);
11684 Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
11686 begin
11687 pragma Assert (Nkind (N) = N_Type_Conversion);
11689 return
11691 -- We only do the transformation for source constructs. We assume
11692 -- that the expander knows what it is doing when it generates code.
11694 Comes_From_Source (N)
11696 -- If the operand type is Short_Integer or Short_Short_Integer,
11697 -- then we will promote to Integer, which is available on all
11698 -- targets, and is sufficient to ensure no intermediate overflow.
11699 -- Furthermore it is likely to be as efficient or more efficient
11700 -- than using the smaller type for the computation so we do this
11701 -- unconditionally.
11703 and then
11704 (Root_Operand_Type = Base_Type (Standard_Short_Integer)
11705 or else
11706 Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
11708 -- Test for interesting operation, which includes addition,
11709 -- division, exponentiation, multiplication, subtraction, absolute
11710 -- value and unary negation. Unary "+" is omitted since it is a
11711 -- no-op and thus can't overflow.
11713 and then Nkind_In (Operand, N_Op_Abs,
11714 N_Op_Add,
11715 N_Op_Divide,
11716 N_Op_Expon,
11717 N_Op_Minus,
11718 N_Op_Multiply,
11719 N_Op_Subtract);
11720 end Integer_Promotion_Possible;
11722 ------------------------------
11723 -- Make_Array_Comparison_Op --
11724 ------------------------------
11726 -- This is a hand-coded expansion of the following generic function:
11728 -- generic
11729 -- type elem is (<>);
11730 -- type index is (<>);
11731 -- type a is array (index range <>) of elem;
11733 -- function Gnnn (X : a; Y: a) return boolean is
11734 -- J : index := Y'first;
11736 -- begin
11737 -- if X'length = 0 then
11738 -- return false;
11740 -- elsif Y'length = 0 then
11741 -- return true;
11743 -- else
11744 -- for I in X'range loop
11745 -- if X (I) = Y (J) then
11746 -- if J = Y'last then
11747 -- exit;
11748 -- else
11749 -- J := index'succ (J);
11750 -- end if;
11752 -- else
11753 -- return X (I) > Y (J);
11754 -- end if;
11755 -- end loop;
11757 -- return X'length > Y'length;
11758 -- end if;
11759 -- end Gnnn;
11761 -- Note that since we are essentially doing this expansion by hand, we
11762 -- do not need to generate an actual or formal generic part, just the
11763 -- instantiated function itself.
11765 function Make_Array_Comparison_Op
11766 (Typ : Entity_Id;
11767 Nod : Node_Id) return Node_Id
11769 Loc : constant Source_Ptr := Sloc (Nod);
11771 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
11772 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
11773 I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
11774 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
11776 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
11778 Loop_Statement : Node_Id;
11779 Loop_Body : Node_Id;
11780 If_Stat : Node_Id;
11781 Inner_If : Node_Id;
11782 Final_Expr : Node_Id;
11783 Func_Body : Node_Id;
11784 Func_Name : Entity_Id;
11785 Formals : List_Id;
11786 Length1 : Node_Id;
11787 Length2 : Node_Id;
11789 begin
11790 -- if J = Y'last then
11791 -- exit;
11792 -- else
11793 -- J := index'succ (J);
11794 -- end if;
11796 Inner_If :=
11797 Make_Implicit_If_Statement (Nod,
11798 Condition =>
11799 Make_Op_Eq (Loc,
11800 Left_Opnd => New_Occurrence_Of (J, Loc),
11801 Right_Opnd =>
11802 Make_Attribute_Reference (Loc,
11803 Prefix => New_Occurrence_Of (Y, Loc),
11804 Attribute_Name => Name_Last)),
11806 Then_Statements => New_List (
11807 Make_Exit_Statement (Loc)),
11809 Else_Statements =>
11810 New_List (
11811 Make_Assignment_Statement (Loc,
11812 Name => New_Occurrence_Of (J, Loc),
11813 Expression =>
11814 Make_Attribute_Reference (Loc,
11815 Prefix => New_Occurrence_Of (Index, Loc),
11816 Attribute_Name => Name_Succ,
11817 Expressions => New_List (New_Occurrence_Of (J, Loc))))));
11819 -- if X (I) = Y (J) then
11820 -- if ... end if;
11821 -- else
11822 -- return X (I) > Y (J);
11823 -- end if;
11825 Loop_Body :=
11826 Make_Implicit_If_Statement (Nod,
11827 Condition =>
11828 Make_Op_Eq (Loc,
11829 Left_Opnd =>
11830 Make_Indexed_Component (Loc,
11831 Prefix => New_Occurrence_Of (X, Loc),
11832 Expressions => New_List (New_Occurrence_Of (I, Loc))),
11834 Right_Opnd =>
11835 Make_Indexed_Component (Loc,
11836 Prefix => New_Occurrence_Of (Y, Loc),
11837 Expressions => New_List (New_Occurrence_Of (J, Loc)))),
11839 Then_Statements => New_List (Inner_If),
11841 Else_Statements => New_List (
11842 Make_Simple_Return_Statement (Loc,
11843 Expression =>
11844 Make_Op_Gt (Loc,
11845 Left_Opnd =>
11846 Make_Indexed_Component (Loc,
11847 Prefix => New_Occurrence_Of (X, Loc),
11848 Expressions => New_List (New_Occurrence_Of (I, Loc))),
11850 Right_Opnd =>
11851 Make_Indexed_Component (Loc,
11852 Prefix => New_Occurrence_Of (Y, Loc),
11853 Expressions => New_List (
11854 New_Occurrence_Of (J, Loc)))))));
11856 -- for I in X'range loop
11857 -- if ... end if;
11858 -- end loop;
11860 Loop_Statement :=
11861 Make_Implicit_Loop_Statement (Nod,
11862 Identifier => Empty,
11864 Iteration_Scheme =>
11865 Make_Iteration_Scheme (Loc,
11866 Loop_Parameter_Specification =>
11867 Make_Loop_Parameter_Specification (Loc,
11868 Defining_Identifier => I,
11869 Discrete_Subtype_Definition =>
11870 Make_Attribute_Reference (Loc,
11871 Prefix => New_Occurrence_Of (X, Loc),
11872 Attribute_Name => Name_Range))),
11874 Statements => New_List (Loop_Body));
11876 -- if X'length = 0 then
11877 -- return false;
11878 -- elsif Y'length = 0 then
11879 -- return true;
11880 -- else
11881 -- for ... loop ... end loop;
11882 -- return X'length > Y'length;
11883 -- end if;
11885 Length1 :=
11886 Make_Attribute_Reference (Loc,
11887 Prefix => New_Occurrence_Of (X, Loc),
11888 Attribute_Name => Name_Length);
11890 Length2 :=
11891 Make_Attribute_Reference (Loc,
11892 Prefix => New_Occurrence_Of (Y, Loc),
11893 Attribute_Name => Name_Length);
11895 Final_Expr :=
11896 Make_Op_Gt (Loc,
11897 Left_Opnd => Length1,
11898 Right_Opnd => Length2);
11900 If_Stat :=
11901 Make_Implicit_If_Statement (Nod,
11902 Condition =>
11903 Make_Op_Eq (Loc,
11904 Left_Opnd =>
11905 Make_Attribute_Reference (Loc,
11906 Prefix => New_Occurrence_Of (X, Loc),
11907 Attribute_Name => Name_Length),
11908 Right_Opnd =>
11909 Make_Integer_Literal (Loc, 0)),
11911 Then_Statements =>
11912 New_List (
11913 Make_Simple_Return_Statement (Loc,
11914 Expression => New_Occurrence_Of (Standard_False, Loc))),
11916 Elsif_Parts => New_List (
11917 Make_Elsif_Part (Loc,
11918 Condition =>
11919 Make_Op_Eq (Loc,
11920 Left_Opnd =>
11921 Make_Attribute_Reference (Loc,
11922 Prefix => New_Occurrence_Of (Y, Loc),
11923 Attribute_Name => Name_Length),
11924 Right_Opnd =>
11925 Make_Integer_Literal (Loc, 0)),
11927 Then_Statements =>
11928 New_List (
11929 Make_Simple_Return_Statement (Loc,
11930 Expression => New_Occurrence_Of (Standard_True, Loc))))),
11932 Else_Statements => New_List (
11933 Loop_Statement,
11934 Make_Simple_Return_Statement (Loc,
11935 Expression => Final_Expr)));
11937 -- (X : a; Y: a)
11939 Formals := New_List (
11940 Make_Parameter_Specification (Loc,
11941 Defining_Identifier => X,
11942 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
11944 Make_Parameter_Specification (Loc,
11945 Defining_Identifier => Y,
11946 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
11948 -- function Gnnn (...) return boolean is
11949 -- J : index := Y'first;
11950 -- begin
11951 -- if ... end if;
11952 -- end Gnnn;
11954 Func_Name := Make_Temporary (Loc, 'G');
11956 Func_Body :=
11957 Make_Subprogram_Body (Loc,
11958 Specification =>
11959 Make_Function_Specification (Loc,
11960 Defining_Unit_Name => Func_Name,
11961 Parameter_Specifications => Formals,
11962 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
11964 Declarations => New_List (
11965 Make_Object_Declaration (Loc,
11966 Defining_Identifier => J,
11967 Object_Definition => New_Occurrence_Of (Index, Loc),
11968 Expression =>
11969 Make_Attribute_Reference (Loc,
11970 Prefix => New_Occurrence_Of (Y, Loc),
11971 Attribute_Name => Name_First))),
11973 Handled_Statement_Sequence =>
11974 Make_Handled_Sequence_Of_Statements (Loc,
11975 Statements => New_List (If_Stat)));
11977 return Func_Body;
11978 end Make_Array_Comparison_Op;
11980 ---------------------------
11981 -- Make_Boolean_Array_Op --
11982 ---------------------------
11984 -- For logical operations on boolean arrays, expand in line the following,
11985 -- replacing 'and' with 'or' or 'xor' where needed:
11987 -- function Annn (A : typ; B: typ) return typ is
11988 -- C : typ;
11989 -- begin
11990 -- for J in A'range loop
11991 -- C (J) := A (J) op B (J);
11992 -- end loop;
11993 -- return C;
11994 -- end Annn;
11996 -- Here typ is the boolean array type
11998 function Make_Boolean_Array_Op
11999 (Typ : Entity_Id;
12000 N : Node_Id) return Node_Id
12002 Loc : constant Source_Ptr := Sloc (N);
12004 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
12005 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
12006 C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
12007 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
12009 A_J : Node_Id;
12010 B_J : Node_Id;
12011 C_J : Node_Id;
12012 Op : Node_Id;
12014 Formals : List_Id;
12015 Func_Name : Entity_Id;
12016 Func_Body : Node_Id;
12017 Loop_Statement : Node_Id;
12019 begin
12020 A_J :=
12021 Make_Indexed_Component (Loc,
12022 Prefix => New_Occurrence_Of (A, Loc),
12023 Expressions => New_List (New_Occurrence_Of (J, Loc)));
12025 B_J :=
12026 Make_Indexed_Component (Loc,
12027 Prefix => New_Occurrence_Of (B, Loc),
12028 Expressions => New_List (New_Occurrence_Of (J, Loc)));
12030 C_J :=
12031 Make_Indexed_Component (Loc,
12032 Prefix => New_Occurrence_Of (C, Loc),
12033 Expressions => New_List (New_Occurrence_Of (J, Loc)));
12035 if Nkind (N) = N_Op_And then
12036 Op :=
12037 Make_Op_And (Loc,
12038 Left_Opnd => A_J,
12039 Right_Opnd => B_J);
12041 elsif Nkind (N) = N_Op_Or then
12042 Op :=
12043 Make_Op_Or (Loc,
12044 Left_Opnd => A_J,
12045 Right_Opnd => B_J);
12047 else
12048 Op :=
12049 Make_Op_Xor (Loc,
12050 Left_Opnd => A_J,
12051 Right_Opnd => B_J);
12052 end if;
12054 Loop_Statement :=
12055 Make_Implicit_Loop_Statement (N,
12056 Identifier => Empty,
12058 Iteration_Scheme =>
12059 Make_Iteration_Scheme (Loc,
12060 Loop_Parameter_Specification =>
12061 Make_Loop_Parameter_Specification (Loc,
12062 Defining_Identifier => J,
12063 Discrete_Subtype_Definition =>
12064 Make_Attribute_Reference (Loc,
12065 Prefix => New_Occurrence_Of (A, Loc),
12066 Attribute_Name => Name_Range))),
12068 Statements => New_List (
12069 Make_Assignment_Statement (Loc,
12070 Name => C_J,
12071 Expression => Op)));
12073 Formals := New_List (
12074 Make_Parameter_Specification (Loc,
12075 Defining_Identifier => A,
12076 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
12078 Make_Parameter_Specification (Loc,
12079 Defining_Identifier => B,
12080 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
12082 Func_Name := Make_Temporary (Loc, 'A');
12083 Set_Is_Inlined (Func_Name);
12085 Func_Body :=
12086 Make_Subprogram_Body (Loc,
12087 Specification =>
12088 Make_Function_Specification (Loc,
12089 Defining_Unit_Name => Func_Name,
12090 Parameter_Specifications => Formals,
12091 Result_Definition => New_Occurrence_Of (Typ, Loc)),
12093 Declarations => New_List (
12094 Make_Object_Declaration (Loc,
12095 Defining_Identifier => C,
12096 Object_Definition => New_Occurrence_Of (Typ, Loc))),
12098 Handled_Statement_Sequence =>
12099 Make_Handled_Sequence_Of_Statements (Loc,
12100 Statements => New_List (
12101 Loop_Statement,
12102 Make_Simple_Return_Statement (Loc,
12103 Expression => New_Occurrence_Of (C, Loc)))));
12105 return Func_Body;
12106 end Make_Boolean_Array_Op;
12108 -----------------------------------------
12109 -- Minimized_Eliminated_Overflow_Check --
12110 -----------------------------------------
12112 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean is
12113 begin
12114 return
12115 Is_Signed_Integer_Type (Etype (N))
12116 and then Overflow_Check_Mode in Minimized_Or_Eliminated;
12117 end Minimized_Eliminated_Overflow_Check;
12119 --------------------------------
12120 -- Optimize_Length_Comparison --
12121 --------------------------------
12123 procedure Optimize_Length_Comparison (N : Node_Id) is
12124 Loc : constant Source_Ptr := Sloc (N);
12125 Typ : constant Entity_Id := Etype (N);
12126 Result : Node_Id;
12128 Left : Node_Id;
12129 Right : Node_Id;
12130 -- First and Last attribute reference nodes, which end up as left and
12131 -- right operands of the optimized result.
12133 Is_Zero : Boolean;
12134 -- True for comparison operand of zero
12136 Comp : Node_Id;
12137 -- Comparison operand, set only if Is_Zero is false
12139 Ent : Entity_Id;
12140 -- Entity whose length is being compared
12142 Index : Node_Id;
12143 -- Integer_Literal node for length attribute expression, or Empty
12144 -- if there is no such expression present.
12146 Ityp : Entity_Id;
12147 -- Type of array index to which 'Length is applied
12149 Op : Node_Kind := Nkind (N);
12150 -- Kind of comparison operator, gets flipped if operands backwards
12152 function Is_Optimizable (N : Node_Id) return Boolean;
12153 -- Tests N to see if it is an optimizable comparison value (defined as
12154 -- constant zero or one, or something else where the value is known to
12155 -- be positive and in the range of 32-bits, and where the corresponding
12156 -- Length value is also known to be 32-bits. If result is true, sets
12157 -- Is_Zero, Ityp, and Comp accordingly.
12159 function Is_Entity_Length (N : Node_Id) return Boolean;
12160 -- Tests if N is a length attribute applied to a simple entity. If so,
12161 -- returns True, and sets Ent to the entity, and Index to the integer
12162 -- literal provided as an attribute expression, or to Empty if none.
12163 -- Also returns True if the expression is a generated type conversion
12164 -- whose expression is of the desired form. This latter case arises
12165 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
12166 -- to check for being in range, which is not needed in this context.
12167 -- Returns False if neither condition holds.
12169 function Prepare_64 (N : Node_Id) return Node_Id;
12170 -- Given a discrete expression, returns a Long_Long_Integer typed
12171 -- expression representing the underlying value of the expression.
12172 -- This is done with an unchecked conversion to the result type. We
12173 -- use unchecked conversion to handle the enumeration type case.
12175 ----------------------
12176 -- Is_Entity_Length --
12177 ----------------------
12179 function Is_Entity_Length (N : Node_Id) return Boolean is
12180 begin
12181 if Nkind (N) = N_Attribute_Reference
12182 and then Attribute_Name (N) = Name_Length
12183 and then Is_Entity_Name (Prefix (N))
12184 then
12185 Ent := Entity (Prefix (N));
12187 if Present (Expressions (N)) then
12188 Index := First (Expressions (N));
12189 else
12190 Index := Empty;
12191 end if;
12193 return True;
12195 elsif Nkind (N) = N_Type_Conversion
12196 and then not Comes_From_Source (N)
12197 then
12198 return Is_Entity_Length (Expression (N));
12200 else
12201 return False;
12202 end if;
12203 end Is_Entity_Length;
12205 --------------------
12206 -- Is_Optimizable --
12207 --------------------
12209 function Is_Optimizable (N : Node_Id) return Boolean is
12210 Val : Uint;
12211 OK : Boolean;
12212 Lo : Uint;
12213 Hi : Uint;
12214 Indx : Node_Id;
12216 begin
12217 if Compile_Time_Known_Value (N) then
12218 Val := Expr_Value (N);
12220 if Val = Uint_0 then
12221 Is_Zero := True;
12222 Comp := Empty;
12223 return True;
12225 elsif Val = Uint_1 then
12226 Is_Zero := False;
12227 Comp := Empty;
12228 return True;
12229 end if;
12230 end if;
12232 -- Here we have to make sure of being within 32-bits
12234 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
12236 if not OK
12237 or else Lo < Uint_1
12238 or else Hi > UI_From_Int (Int'Last)
12239 then
12240 return False;
12241 end if;
12243 -- Comparison value was within range, so now we must check the index
12244 -- value to make sure it is also within 32-bits.
12246 Indx := First_Index (Etype (Ent));
12248 if Present (Index) then
12249 for J in 2 .. UI_To_Int (Intval (Index)) loop
12250 Next_Index (Indx);
12251 end loop;
12252 end if;
12254 Ityp := Etype (Indx);
12256 if Esize (Ityp) > 32 then
12257 return False;
12258 end if;
12260 Is_Zero := False;
12261 Comp := N;
12262 return True;
12263 end Is_Optimizable;
12265 ----------------
12266 -- Prepare_64 --
12267 ----------------
12269 function Prepare_64 (N : Node_Id) return Node_Id is
12270 begin
12271 return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
12272 end Prepare_64;
12274 -- Start of processing for Optimize_Length_Comparison
12276 begin
12277 -- Nothing to do if not a comparison
12279 if Op not in N_Op_Compare then
12280 return;
12281 end if;
12283 -- Nothing to do if special -gnatd.P debug flag set
12285 if Debug_Flag_Dot_PP then
12286 return;
12287 end if;
12289 -- Ent'Length op 0/1
12291 if Is_Entity_Length (Left_Opnd (N))
12292 and then Is_Optimizable (Right_Opnd (N))
12293 then
12294 null;
12296 -- 0/1 op Ent'Length
12298 elsif Is_Entity_Length (Right_Opnd (N))
12299 and then Is_Optimizable (Left_Opnd (N))
12300 then
12301 -- Flip comparison to opposite sense
12303 case Op is
12304 when N_Op_Lt => Op := N_Op_Gt;
12305 when N_Op_Le => Op := N_Op_Ge;
12306 when N_Op_Gt => Op := N_Op_Lt;
12307 when N_Op_Ge => Op := N_Op_Le;
12308 when others => null;
12309 end case;
12311 -- Else optimization not possible
12313 else
12314 return;
12315 end if;
12317 -- Fall through if we will do the optimization
12319 -- Cases to handle:
12321 -- X'Length = 0 => X'First > X'Last
12322 -- X'Length = 1 => X'First = X'Last
12323 -- X'Length = n => X'First + (n - 1) = X'Last
12325 -- X'Length /= 0 => X'First <= X'Last
12326 -- X'Length /= 1 => X'First /= X'Last
12327 -- X'Length /= n => X'First + (n - 1) /= X'Last
12329 -- X'Length >= 0 => always true, warn
12330 -- X'Length >= 1 => X'First <= X'Last
12331 -- X'Length >= n => X'First + (n - 1) <= X'Last
12333 -- X'Length > 0 => X'First <= X'Last
12334 -- X'Length > 1 => X'First < X'Last
12335 -- X'Length > n => X'First + (n - 1) < X'Last
12337 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
12338 -- X'Length <= 1 => X'First >= X'Last
12339 -- X'Length <= n => X'First + (n - 1) >= X'Last
12341 -- X'Length < 0 => always false (warn)
12342 -- X'Length < 1 => X'First > X'Last
12343 -- X'Length < n => X'First + (n - 1) > X'Last
12345 -- Note: for the cases of n (not constant 0,1), we require that the
12346 -- corresponding index type be integer or shorter (i.e. not 64-bit),
12347 -- and the same for the comparison value. Then we do the comparison
12348 -- using 64-bit arithmetic (actually long long integer), so that we
12349 -- cannot have overflow intefering with the result.
12351 -- First deal with warning cases
12353 if Is_Zero then
12354 case Op is
12356 -- X'Length >= 0
12358 when N_Op_Ge =>
12359 Rewrite (N,
12360 Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
12361 Analyze_And_Resolve (N, Typ);
12362 Warn_On_Known_Condition (N);
12363 return;
12365 -- X'Length < 0
12367 when N_Op_Lt =>
12368 Rewrite (N,
12369 Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
12370 Analyze_And_Resolve (N, Typ);
12371 Warn_On_Known_Condition (N);
12372 return;
12374 when N_Op_Le =>
12375 if Constant_Condition_Warnings
12376 and then Comes_From_Source (Original_Node (N))
12377 then
12378 Error_Msg_N ("could replace by ""'=""?c?", N);
12379 end if;
12381 Op := N_Op_Eq;
12383 when others =>
12384 null;
12385 end case;
12386 end if;
12388 -- Build the First reference we will use
12390 Left :=
12391 Make_Attribute_Reference (Loc,
12392 Prefix => New_Occurrence_Of (Ent, Loc),
12393 Attribute_Name => Name_First);
12395 if Present (Index) then
12396 Set_Expressions (Left, New_List (New_Copy (Index)));
12397 end if;
12399 -- If general value case, then do the addition of (n - 1), and
12400 -- also add the needed conversions to type Long_Long_Integer.
12402 if Present (Comp) then
12403 Left :=
12404 Make_Op_Add (Loc,
12405 Left_Opnd => Prepare_64 (Left),
12406 Right_Opnd =>
12407 Make_Op_Subtract (Loc,
12408 Left_Opnd => Prepare_64 (Comp),
12409 Right_Opnd => Make_Integer_Literal (Loc, 1)));
12410 end if;
12412 -- Build the Last reference we will use
12414 Right :=
12415 Make_Attribute_Reference (Loc,
12416 Prefix => New_Occurrence_Of (Ent, Loc),
12417 Attribute_Name => Name_Last);
12419 if Present (Index) then
12420 Set_Expressions (Right, New_List (New_Copy (Index)));
12421 end if;
12423 -- If general operand, convert Last reference to Long_Long_Integer
12425 if Present (Comp) then
12426 Right := Prepare_64 (Right);
12427 end if;
12429 -- Check for cases to optimize
12431 -- X'Length = 0 => X'First > X'Last
12432 -- X'Length < 1 => X'First > X'Last
12433 -- X'Length < n => X'First + (n - 1) > X'Last
12435 if (Is_Zero and then Op = N_Op_Eq)
12436 or else (not Is_Zero and then Op = N_Op_Lt)
12437 then
12438 Result :=
12439 Make_Op_Gt (Loc,
12440 Left_Opnd => Left,
12441 Right_Opnd => Right);
12443 -- X'Length = 1 => X'First = X'Last
12444 -- X'Length = n => X'First + (n - 1) = X'Last
12446 elsif not Is_Zero and then Op = N_Op_Eq then
12447 Result :=
12448 Make_Op_Eq (Loc,
12449 Left_Opnd => Left,
12450 Right_Opnd => Right);
12452 -- X'Length /= 0 => X'First <= X'Last
12453 -- X'Length > 0 => X'First <= X'Last
12455 elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
12456 Result :=
12457 Make_Op_Le (Loc,
12458 Left_Opnd => Left,
12459 Right_Opnd => Right);
12461 -- X'Length /= 1 => X'First /= X'Last
12462 -- X'Length /= n => X'First + (n - 1) /= X'Last
12464 elsif not Is_Zero and then Op = N_Op_Ne then
12465 Result :=
12466 Make_Op_Ne (Loc,
12467 Left_Opnd => Left,
12468 Right_Opnd => Right);
12470 -- X'Length >= 1 => X'First <= X'Last
12471 -- X'Length >= n => X'First + (n - 1) <= X'Last
12473 elsif not Is_Zero and then Op = N_Op_Ge then
12474 Result :=
12475 Make_Op_Le (Loc,
12476 Left_Opnd => Left,
12477 Right_Opnd => Right);
12479 -- X'Length > 1 => X'First < X'Last
12480 -- X'Length > n => X'First + (n = 1) < X'Last
12482 elsif not Is_Zero and then Op = N_Op_Gt then
12483 Result :=
12484 Make_Op_Lt (Loc,
12485 Left_Opnd => Left,
12486 Right_Opnd => Right);
12488 -- X'Length <= 1 => X'First >= X'Last
12489 -- X'Length <= n => X'First + (n - 1) >= X'Last
12491 elsif not Is_Zero and then Op = N_Op_Le then
12492 Result :=
12493 Make_Op_Ge (Loc,
12494 Left_Opnd => Left,
12495 Right_Opnd => Right);
12497 -- Should not happen at this stage
12499 else
12500 raise Program_Error;
12501 end if;
12503 -- Rewrite and finish up
12505 Rewrite (N, Result);
12506 Analyze_And_Resolve (N, Typ);
12507 return;
12508 end Optimize_Length_Comparison;
12510 ------------------------------
12511 -- Process_Transient_Object --
12512 ------------------------------
12514 procedure Process_Transient_Object
12515 (Decl : Node_Id;
12516 Rel_Node : Node_Id)
12518 Hook_Context : Node_Id;
12519 -- Node on which to insert the hook pointer (as an action)
12521 Finalization_Context : Node_Id;
12522 -- Node after which to insert finalization actions
12524 Finalize_Always : Boolean;
12525 -- If False, call to finalizer includes a test of whether the
12526 -- hook pointer is null.
12528 procedure Find_Enclosing_Contexts (N : Node_Id);
12529 -- Find the logical context where N appears, and initializae
12530 -- Hook_Context and Finalization_Context accordingly. Also
12531 -- sets Finalize_Always.
12533 -----------------------------
12534 -- Find_Enclosing_Contexts --
12535 -----------------------------
12537 procedure Find_Enclosing_Contexts (N : Node_Id) is
12538 Par : Node_Id;
12539 Top : Node_Id;
12541 Wrapped_Node : Node_Id;
12542 -- Note: if we are in a transient scope, we want to reuse it as
12543 -- the context for actions insertion, if possible. But if N is itself
12544 -- part of the stored actions for the current transient scope,
12545 -- then we need to insert at the appropriate (inner) location in
12546 -- the not as an action on Node_To_Be_Wrapped.
12548 In_Cond_Expr : constant Boolean := Within_Case_Or_If_Expression (N);
12550 begin
12551 -- When the node is inside a case/if expression, the lifetime of any
12552 -- temporary controlled object is extended. Find a suitable insertion
12553 -- node by locating the topmost case or if expressions.
12555 if In_Cond_Expr then
12556 Par := N;
12557 Top := N;
12558 while Present (Par) loop
12559 if Nkind_In (Original_Node (Par), N_Case_Expression,
12560 N_If_Expression)
12561 then
12562 Top := Par;
12564 -- Prevent the search from going too far
12566 elsif Is_Body_Or_Package_Declaration (Par) then
12567 exit;
12568 end if;
12570 Par := Parent (Par);
12571 end loop;
12573 -- The topmost case or if expression is now recovered, but it may
12574 -- still not be the correct place to add generated code. Climb to
12575 -- find a parent that is part of a declarative or statement list,
12576 -- and is not a list of actuals in a call.
12578 Par := Top;
12579 while Present (Par) loop
12580 if Is_List_Member (Par)
12581 and then not Nkind_In (Par, N_Component_Association,
12582 N_Discriminant_Association,
12583 N_Parameter_Association,
12584 N_Pragma_Argument_Association)
12585 and then not Nkind_In
12586 (Parent (Par), N_Function_Call,
12587 N_Procedure_Call_Statement,
12588 N_Entry_Call_Statement)
12590 then
12591 Hook_Context := Par;
12592 goto Hook_Context_Found;
12594 -- Prevent the search from going too far
12596 elsif Is_Body_Or_Package_Declaration (Par) then
12597 exit;
12598 end if;
12600 Par := Parent (Par);
12601 end loop;
12603 Hook_Context := Par;
12604 goto Hook_Context_Found;
12606 else
12607 Par := N;
12608 while Present (Par) loop
12610 -- Keep climbing past various operators
12612 if Nkind (Parent (Par)) in N_Op
12613 or else Nkind_In (Parent (Par), N_And_Then, N_Or_Else)
12614 then
12615 Par := Parent (Par);
12616 else
12617 exit;
12618 end if;
12619 end loop;
12621 Top := Par;
12623 -- The node may be located in a pragma in which case return the
12624 -- pragma itself:
12626 -- pragma Precondition (... and then Ctrl_Func_Call ...);
12628 -- Similar case occurs when the node is related to an object
12629 -- declaration or assignment:
12631 -- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
12633 -- Another case to consider is when the node is part of a return
12634 -- statement:
12636 -- return ... and then Ctrl_Func_Call ...;
12638 -- Another case is when the node acts as a formal in a procedure
12639 -- call statement:
12641 -- Proc (... and then Ctrl_Func_Call ...);
12643 if Scope_Is_Transient then
12644 Wrapped_Node := Node_To_Be_Wrapped;
12645 else
12646 Wrapped_Node := Empty;
12647 end if;
12649 while Present (Par) loop
12650 if Par = Wrapped_Node
12651 or else Nkind_In (Par, N_Assignment_Statement,
12652 N_Object_Declaration,
12653 N_Pragma,
12654 N_Procedure_Call_Statement,
12655 N_Simple_Return_Statement)
12656 then
12657 Hook_Context := Par;
12658 goto Hook_Context_Found;
12660 -- Prevent the search from going too far
12662 elsif Is_Body_Or_Package_Declaration (Par) then
12663 exit;
12664 end if;
12666 Par := Parent (Par);
12667 end loop;
12669 -- Return the topmost short circuit operator
12671 Hook_Context := Top;
12672 end if;
12674 <<Hook_Context_Found>>
12676 -- Special case for Boolean EWAs: capture expression in a temporary,
12677 -- whose declaration will serve as the context around which to insert
12678 -- finalization code. The finalization thus remains local to the
12679 -- specific condition being evaluated.
12681 if Is_Boolean_Type (Etype (N)) then
12683 -- In this case, the finalization context is chosen so that
12684 -- we know at finalization point that the hook pointer is
12685 -- never null, so no need for a test, we can call the finalizer
12686 -- unconditionally, except in the case where the object is
12687 -- created in a specific branch of a conditional expression.
12689 Finalize_Always :=
12690 not (In_Cond_Expr
12691 or else
12692 Nkind_In (Original_Node (N), N_Case_Expression,
12693 N_If_Expression));
12695 declare
12696 Loc : constant Source_Ptr := Sloc (N);
12697 Temp : constant Entity_Id := Make_Temporary (Loc, 'E', N);
12699 begin
12700 Append_To (Actions (N),
12701 Make_Object_Declaration (Loc,
12702 Defining_Identifier => Temp,
12703 Constant_Present => True,
12704 Object_Definition =>
12705 New_Occurrence_Of (Etype (N), Loc),
12706 Expression => Expression (N)));
12707 Finalization_Context := Last (Actions (N));
12709 Analyze (Last (Actions (N)));
12711 Set_Expression (N, New_Occurrence_Of (Temp, Loc));
12712 Analyze (Expression (N));
12713 end;
12715 else
12716 Finalize_Always := False;
12717 Finalization_Context := Hook_Context;
12718 end if;
12719 end Find_Enclosing_Contexts;
12721 -- Local variables
12723 Loc : constant Source_Ptr := Sloc (Decl);
12724 Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
12725 Obj_Typ : constant Node_Id := Etype (Obj_Id);
12726 Desig_Typ : Entity_Id;
12727 Expr : Node_Id;
12728 Fin_Stmts : List_Id;
12729 Ptr_Id : Entity_Id;
12730 Temp_Id : Entity_Id;
12731 Temp_Ins : Node_Id;
12733 -- Start of processing for Process_Transient_Object
12735 begin
12736 Find_Enclosing_Contexts (Rel_Node);
12738 -- Step 1: Create the access type which provides a reference to the
12739 -- transient controlled object.
12741 if Is_Access_Type (Obj_Typ) then
12742 Desig_Typ := Directly_Designated_Type (Obj_Typ);
12743 else
12744 Desig_Typ := Obj_Typ;
12745 end if;
12747 Desig_Typ := Base_Type (Desig_Typ);
12749 -- Generate:
12750 -- Ann : access [all] <Desig_Typ>;
12752 Ptr_Id := Make_Temporary (Loc, 'A');
12754 Insert_Action (Hook_Context,
12755 Make_Full_Type_Declaration (Loc,
12756 Defining_Identifier => Ptr_Id,
12757 Type_Definition =>
12758 Make_Access_To_Object_Definition (Loc,
12759 All_Present => Ekind (Obj_Typ) = E_General_Access_Type,
12760 Subtype_Indication => New_Occurrence_Of (Desig_Typ, Loc))));
12762 -- Step 2: Create a temporary which acts as a hook to the transient
12763 -- controlled object. Generate:
12765 -- Temp : Ptr_Id := null;
12767 Temp_Id := Make_Temporary (Loc, 'T');
12769 Insert_Action (Hook_Context,
12770 Make_Object_Declaration (Loc,
12771 Defining_Identifier => Temp_Id,
12772 Object_Definition => New_Occurrence_Of (Ptr_Id, Loc)));
12774 -- Mark the temporary as created for the purposes of exporting the
12775 -- transient controlled object out of the expression_with_action or if
12776 -- expression. This signals the machinery in Build_Finalizer to treat
12777 -- this case specially.
12779 Set_Status_Flag_Or_Transient_Decl (Temp_Id, Decl);
12781 -- Step 3: Hook the transient object to the temporary
12783 -- This must be inserted right after the object declaration, so that
12784 -- the assignment is executed if, and only if, the object is actually
12785 -- created (whereas the declaration of the hook pointer, and the
12786 -- finalization call, may be inserted at an outer level, and may
12787 -- remain unused for some executions, if the actual creation of
12788 -- the object is conditional).
12790 -- The use of unchecked conversion / unrestricted access is needed to
12791 -- avoid an accessibility violation. Note that the finalization code is
12792 -- structured in such a way that the "hook" is processed only when it
12793 -- points to an existing object.
12795 if Is_Access_Type (Obj_Typ) then
12796 Expr :=
12797 Unchecked_Convert_To (Ptr_Id, New_Occurrence_Of (Obj_Id, Loc));
12798 else
12799 Expr :=
12800 Make_Attribute_Reference (Loc,
12801 Prefix => New_Occurrence_Of (Obj_Id, Loc),
12802 Attribute_Name => Name_Unrestricted_Access);
12803 end if;
12805 -- Generate:
12806 -- Temp := Ptr_Id (Obj_Id);
12807 -- <or>
12808 -- Temp := Obj_Id'Unrestricted_Access;
12810 -- When the transient object is initialized by an aggregate, the hook
12811 -- must capture the object after the last component assignment takes
12812 -- place. Only then is the object fully initialized.
12814 if Ekind (Obj_Id) = E_Variable
12815 and then Present (Last_Aggregate_Assignment (Obj_Id))
12816 then
12817 Temp_Ins := Last_Aggregate_Assignment (Obj_Id);
12819 -- Otherwise the hook seizes the related object immediately
12821 else
12822 Temp_Ins := Decl;
12823 end if;
12825 Insert_After_And_Analyze (Temp_Ins,
12826 Make_Assignment_Statement (Loc,
12827 Name => New_Occurrence_Of (Temp_Id, Loc),
12828 Expression => Expr));
12830 -- Step 4: Finalize the transient controlled object after the context
12831 -- has been evaluated/elaborated. Generate:
12833 -- if Temp /= null then
12834 -- [Deep_]Finalize (Temp.all);
12835 -- Temp := null;
12836 -- end if;
12838 -- When the node is part of a return statement, there is no need to
12839 -- insert a finalization call, as the general finalization mechanism
12840 -- (see Build_Finalizer) would take care of the transient controlled
12841 -- object on subprogram exit. Note that it would also be impossible to
12842 -- insert the finalization code after the return statement as this will
12843 -- render it unreachable.
12845 if Nkind (Finalization_Context) /= N_Simple_Return_Statement then
12846 Fin_Stmts := New_List (
12847 Make_Final_Call
12848 (Obj_Ref =>
12849 Make_Explicit_Dereference (Loc,
12850 Prefix => New_Occurrence_Of (Temp_Id, Loc)),
12851 Typ => Desig_Typ),
12853 Make_Assignment_Statement (Loc,
12854 Name => New_Occurrence_Of (Temp_Id, Loc),
12855 Expression => Make_Null (Loc)));
12857 if not Finalize_Always then
12858 Fin_Stmts := New_List (
12859 Make_Implicit_If_Statement (Decl,
12860 Condition =>
12861 Make_Op_Ne (Loc,
12862 Left_Opnd => New_Occurrence_Of (Temp_Id, Loc),
12863 Right_Opnd => Make_Null (Loc)),
12864 Then_Statements => Fin_Stmts));
12865 end if;
12867 Insert_Actions_After (Finalization_Context, Fin_Stmts);
12868 end if;
12869 end Process_Transient_Object;
12871 ------------------------
12872 -- Rewrite_Comparison --
12873 ------------------------
12875 procedure Rewrite_Comparison (N : Node_Id) is
12876 Warning_Generated : Boolean := False;
12877 -- Set to True if first pass with Assume_Valid generates a warning in
12878 -- which case we skip the second pass to avoid warning overloaded.
12880 Result : Node_Id;
12881 -- Set to Standard_True or Standard_False
12883 begin
12884 if Nkind (N) = N_Type_Conversion then
12885 Rewrite_Comparison (Expression (N));
12886 return;
12888 elsif Nkind (N) not in N_Op_Compare then
12889 return;
12890 end if;
12892 -- Now start looking at the comparison in detail. We potentially go
12893 -- through this loop twice. The first time, Assume_Valid is set False
12894 -- in the call to Compile_Time_Compare. If this call results in a
12895 -- clear result of always True or Always False, that's decisive and
12896 -- we are done. Otherwise we repeat the processing with Assume_Valid
12897 -- set to True to generate additional warnings. We can skip that step
12898 -- if Constant_Condition_Warnings is False.
12900 for AV in False .. True loop
12901 declare
12902 Typ : constant Entity_Id := Etype (N);
12903 Op1 : constant Node_Id := Left_Opnd (N);
12904 Op2 : constant Node_Id := Right_Opnd (N);
12906 Res : constant Compare_Result :=
12907 Compile_Time_Compare (Op1, Op2, Assume_Valid => AV);
12908 -- Res indicates if compare outcome can be compile time determined
12910 True_Result : Boolean;
12911 False_Result : Boolean;
12913 begin
12914 case N_Op_Compare (Nkind (N)) is
12915 when N_Op_Eq =>
12916 True_Result := Res = EQ;
12917 False_Result := Res = LT or else Res = GT or else Res = NE;
12919 when N_Op_Ge =>
12920 True_Result := Res in Compare_GE;
12921 False_Result := Res = LT;
12923 if Res = LE
12924 and then Constant_Condition_Warnings
12925 and then Comes_From_Source (Original_Node (N))
12926 and then Nkind (Original_Node (N)) = N_Op_Ge
12927 and then not In_Instance
12928 and then Is_Integer_Type (Etype (Left_Opnd (N)))
12929 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
12930 then
12931 Error_Msg_N
12932 ("can never be greater than, could replace by ""'=""?c?",
12934 Warning_Generated := True;
12935 end if;
12937 when N_Op_Gt =>
12938 True_Result := Res = GT;
12939 False_Result := Res in Compare_LE;
12941 when N_Op_Lt =>
12942 True_Result := Res = LT;
12943 False_Result := Res in Compare_GE;
12945 when N_Op_Le =>
12946 True_Result := Res in Compare_LE;
12947 False_Result := Res = GT;
12949 if Res = GE
12950 and then Constant_Condition_Warnings
12951 and then Comes_From_Source (Original_Node (N))
12952 and then Nkind (Original_Node (N)) = N_Op_Le
12953 and then not In_Instance
12954 and then Is_Integer_Type (Etype (Left_Opnd (N)))
12955 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
12956 then
12957 Error_Msg_N
12958 ("can never be less than, could replace by ""'=""?c?", N);
12959 Warning_Generated := True;
12960 end if;
12962 when N_Op_Ne =>
12963 True_Result := Res = NE or else Res = GT or else Res = LT;
12964 False_Result := Res = EQ;
12965 end case;
12967 -- If this is the first iteration, then we actually convert the
12968 -- comparison into True or False, if the result is certain.
12970 if AV = False then
12971 if True_Result or False_Result then
12972 Result := Boolean_Literals (True_Result);
12973 Rewrite (N,
12974 Convert_To (Typ,
12975 New_Occurrence_Of (Result, Sloc (N))));
12976 Analyze_And_Resolve (N, Typ);
12977 Warn_On_Known_Condition (N);
12978 return;
12979 end if;
12981 -- If this is the second iteration (AV = True), and the original
12982 -- node comes from source and we are not in an instance, then give
12983 -- a warning if we know result would be True or False. Note: we
12984 -- know Constant_Condition_Warnings is set if we get here.
12986 elsif Comes_From_Source (Original_Node (N))
12987 and then not In_Instance
12988 then
12989 if True_Result then
12990 Error_Msg_N
12991 ("condition can only be False if invalid values present??",
12993 elsif False_Result then
12994 Error_Msg_N
12995 ("condition can only be True if invalid values present??",
12997 end if;
12998 end if;
12999 end;
13001 -- Skip second iteration if not warning on constant conditions or
13002 -- if the first iteration already generated a warning of some kind or
13003 -- if we are in any case assuming all values are valid (so that the
13004 -- first iteration took care of the valid case).
13006 exit when not Constant_Condition_Warnings;
13007 exit when Warning_Generated;
13008 exit when Assume_No_Invalid_Values;
13009 end loop;
13010 end Rewrite_Comparison;
13012 ----------------------------
13013 -- Safe_In_Place_Array_Op --
13014 ----------------------------
13016 function Safe_In_Place_Array_Op
13017 (Lhs : Node_Id;
13018 Op1 : Node_Id;
13019 Op2 : Node_Id) return Boolean
13021 Target : Entity_Id;
13023 function Is_Safe_Operand (Op : Node_Id) return Boolean;
13024 -- Operand is safe if it cannot overlap part of the target of the
13025 -- operation. If the operand and the target are identical, the operand
13026 -- is safe. The operand can be empty in the case of negation.
13028 function Is_Unaliased (N : Node_Id) return Boolean;
13029 -- Check that N is a stand-alone entity
13031 ------------------
13032 -- Is_Unaliased --
13033 ------------------
13035 function Is_Unaliased (N : Node_Id) return Boolean is
13036 begin
13037 return
13038 Is_Entity_Name (N)
13039 and then No (Address_Clause (Entity (N)))
13040 and then No (Renamed_Object (Entity (N)));
13041 end Is_Unaliased;
13043 ---------------------
13044 -- Is_Safe_Operand --
13045 ---------------------
13047 function Is_Safe_Operand (Op : Node_Id) return Boolean is
13048 begin
13049 if No (Op) then
13050 return True;
13052 elsif Is_Entity_Name (Op) then
13053 return Is_Unaliased (Op);
13055 elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
13056 return Is_Unaliased (Prefix (Op));
13058 elsif Nkind (Op) = N_Slice then
13059 return
13060 Is_Unaliased (Prefix (Op))
13061 and then Entity (Prefix (Op)) /= Target;
13063 elsif Nkind (Op) = N_Op_Not then
13064 return Is_Safe_Operand (Right_Opnd (Op));
13066 else
13067 return False;
13068 end if;
13069 end Is_Safe_Operand;
13071 -- Start of processing for Safe_In_Place_Array_Op
13073 begin
13074 -- Skip this processing if the component size is different from system
13075 -- storage unit (since at least for NOT this would cause problems).
13077 if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
13078 return False;
13080 -- Cannot do in place stuff on VM_Target since cannot pass addresses
13082 elsif VM_Target /= No_VM then
13083 return False;
13085 -- Cannot do in place stuff if non-standard Boolean representation
13087 elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
13088 return False;
13090 elsif not Is_Unaliased (Lhs) then
13091 return False;
13093 else
13094 Target := Entity (Lhs);
13095 return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
13096 end if;
13097 end Safe_In_Place_Array_Op;
13099 -----------------------
13100 -- Tagged_Membership --
13101 -----------------------
13103 -- There are two different cases to consider depending on whether the right
13104 -- operand is a class-wide type or not. If not we just compare the actual
13105 -- tag of the left expr to the target type tag:
13107 -- Left_Expr.Tag = Right_Type'Tag;
13109 -- If it is a class-wide type we use the RT function CW_Membership which is
13110 -- usually implemented by looking in the ancestor tables contained in the
13111 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
13113 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
13114 -- function IW_Membership which is usually implemented by looking in the
13115 -- table of abstract interface types plus the ancestor table contained in
13116 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
13118 procedure Tagged_Membership
13119 (N : Node_Id;
13120 SCIL_Node : out Node_Id;
13121 Result : out Node_Id)
13123 Left : constant Node_Id := Left_Opnd (N);
13124 Right : constant Node_Id := Right_Opnd (N);
13125 Loc : constant Source_Ptr := Sloc (N);
13127 Full_R_Typ : Entity_Id;
13128 Left_Type : Entity_Id;
13129 New_Node : Node_Id;
13130 Right_Type : Entity_Id;
13131 Obj_Tag : Node_Id;
13133 begin
13134 SCIL_Node := Empty;
13136 -- Handle entities from the limited view
13138 Left_Type := Available_View (Etype (Left));
13139 Right_Type := Available_View (Etype (Right));
13141 -- In the case where the type is an access type, the test is applied
13142 -- using the designated types (needed in Ada 2012 for implicit anonymous
13143 -- access conversions, for AI05-0149).
13145 if Is_Access_Type (Right_Type) then
13146 Left_Type := Designated_Type (Left_Type);
13147 Right_Type := Designated_Type (Right_Type);
13148 end if;
13150 if Is_Class_Wide_Type (Left_Type) then
13151 Left_Type := Root_Type (Left_Type);
13152 end if;
13154 if Is_Class_Wide_Type (Right_Type) then
13155 Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
13156 else
13157 Full_R_Typ := Underlying_Type (Right_Type);
13158 end if;
13160 Obj_Tag :=
13161 Make_Selected_Component (Loc,
13162 Prefix => Relocate_Node (Left),
13163 Selector_Name =>
13164 New_Occurrence_Of (First_Tag_Component (Left_Type), Loc));
13166 if Is_Class_Wide_Type (Right_Type) then
13168 -- No need to issue a run-time check if we statically know that the
13169 -- result of this membership test is always true. For example,
13170 -- considering the following declarations:
13172 -- type Iface is interface;
13173 -- type T is tagged null record;
13174 -- type DT is new T and Iface with null record;
13176 -- Obj1 : T;
13177 -- Obj2 : DT;
13179 -- These membership tests are always true:
13181 -- Obj1 in T'Class
13182 -- Obj2 in T'Class;
13183 -- Obj2 in Iface'Class;
13185 -- We do not need to handle cases where the membership is illegal.
13186 -- For example:
13188 -- Obj1 in DT'Class; -- Compile time error
13189 -- Obj1 in Iface'Class; -- Compile time error
13191 if not Is_Class_Wide_Type (Left_Type)
13192 and then (Is_Ancestor (Etype (Right_Type), Left_Type,
13193 Use_Full_View => True)
13194 or else (Is_Interface (Etype (Right_Type))
13195 and then Interface_Present_In_Ancestor
13196 (Typ => Left_Type,
13197 Iface => Etype (Right_Type))))
13198 then
13199 Result := New_Occurrence_Of (Standard_True, Loc);
13200 return;
13201 end if;
13203 -- Ada 2005 (AI-251): Class-wide applied to interfaces
13205 if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
13207 -- Support to: "Iface_CW_Typ in Typ'Class"
13209 or else Is_Interface (Left_Type)
13210 then
13211 -- Issue error if IW_Membership operation not available in a
13212 -- configurable run time setting.
13214 if not RTE_Available (RE_IW_Membership) then
13215 Error_Msg_CRT
13216 ("dynamic membership test on interface types", N);
13217 Result := Empty;
13218 return;
13219 end if;
13221 Result :=
13222 Make_Function_Call (Loc,
13223 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
13224 Parameter_Associations => New_List (
13225 Make_Attribute_Reference (Loc,
13226 Prefix => Obj_Tag,
13227 Attribute_Name => Name_Address),
13228 New_Occurrence_Of (
13229 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
13230 Loc)));
13232 -- Ada 95: Normal case
13234 else
13235 Build_CW_Membership (Loc,
13236 Obj_Tag_Node => Obj_Tag,
13237 Typ_Tag_Node =>
13238 New_Occurrence_Of (
13239 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc),
13240 Related_Nod => N,
13241 New_Node => New_Node);
13243 -- Generate the SCIL node for this class-wide membership test.
13244 -- Done here because the previous call to Build_CW_Membership
13245 -- relocates Obj_Tag.
13247 if Generate_SCIL then
13248 SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
13249 Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
13250 Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
13251 end if;
13253 Result := New_Node;
13254 end if;
13256 -- Right_Type is not a class-wide type
13258 else
13259 -- No need to check the tag of the object if Right_Typ is abstract
13261 if Is_Abstract_Type (Right_Type) then
13262 Result := New_Occurrence_Of (Standard_False, Loc);
13264 else
13265 Result :=
13266 Make_Op_Eq (Loc,
13267 Left_Opnd => Obj_Tag,
13268 Right_Opnd =>
13269 New_Occurrence_Of
13270 (Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
13271 end if;
13272 end if;
13273 end Tagged_Membership;
13275 ------------------------------
13276 -- Unary_Op_Validity_Checks --
13277 ------------------------------
13279 procedure Unary_Op_Validity_Checks (N : Node_Id) is
13280 begin
13281 if Validity_Checks_On and Validity_Check_Operands then
13282 Ensure_Valid (Right_Opnd (N));
13283 end if;
13284 end Unary_Op_Validity_Checks;
13286 end Exp_Ch4;