1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Accessibility
; use Accessibility
;
27 with Aspects
; use Aspects
;
28 with Atree
; use Atree
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Einfo
.Entities
; use Einfo
.Entities
;
32 with Einfo
.Utils
; use Einfo
.Utils
;
33 with Elists
; use Elists
;
34 with Errout
; use Errout
;
35 with Exp_Util
; use Exp_Util
;
36 with Itypes
; use Itypes
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Namet
; use Namet
;
40 with Namet
.Sp
; use Namet
.Sp
;
41 with Nlists
; use Nlists
;
42 with Nmake
; use Nmake
;
44 with Output
; use Output
;
45 with Restrict
; use Restrict
;
46 with Rident
; use Rident
;
47 with Rtsfind
; use Rtsfind
;
49 with Sem_Aux
; use Sem_Aux
;
50 with Sem_Case
; use Sem_Case
;
51 with Sem_Cat
; use Sem_Cat
;
52 with Sem_Ch3
; use Sem_Ch3
;
53 with Sem_Ch6
; use Sem_Ch6
;
54 with Sem_Ch8
; use Sem_Ch8
;
55 with Sem_Dim
; use Sem_Dim
;
56 with Sem_Disp
; use Sem_Disp
;
57 with Sem_Dist
; use Sem_Dist
;
58 with Sem_Eval
; use Sem_Eval
;
59 with Sem_Res
; use Sem_Res
;
60 with Sem_Type
; use Sem_Type
;
61 with Sem_Util
; use Sem_Util
;
62 with Sem_Warn
; use Sem_Warn
;
63 with Stand
; use Stand
;
64 with Sinfo
; use Sinfo
;
65 with Sinfo
.Nodes
; use Sinfo
.Nodes
;
66 with Sinfo
.Utils
; use Sinfo
.Utils
;
67 with Snames
; use Snames
;
68 with Style
; use Style
;
69 with Tbuild
; use Tbuild
;
70 with Uintp
; use Uintp
;
71 with Warnsw
; use Warnsw
;
73 package body Sem_Ch4
is
75 -- Tables which speed up the identification of dangerous calls to Ada 2012
76 -- functions with writable actuals (AI05-0144).
78 -- The following table enumerates the Ada constructs which may evaluate in
79 -- arbitrary order. It does not cover all the language constructs which can
80 -- be evaluated in arbitrary order but the subset needed for AI05-0144.
82 Has_Arbitrary_Evaluation_Order
: constant array (Node_Kind
) of Boolean :=
84 N_Assignment_Statement
=> True,
85 N_Entry_Call_Statement
=> True,
86 N_Extension_Aggregate
=> True,
87 N_Full_Type_Declaration
=> True,
88 N_Indexed_Component
=> True,
89 N_Object_Declaration
=> True,
93 N_Array_Type_Definition
=> True,
94 N_Membership_Test
=> True,
96 N_Subprogram_Call
=> True,
99 -- The following table enumerates the nodes on which we stop climbing when
100 -- locating the outermost Ada construct that can be evaluated in arbitrary
103 Stop_Subtree_Climbing
: constant array (Node_Kind
) of Boolean :=
104 (N_Aggregate
=> True,
105 N_Assignment_Statement
=> True,
106 N_Entry_Call_Statement
=> True,
107 N_Extended_Return_Statement
=> True,
108 N_Extension_Aggregate
=> True,
109 N_Full_Type_Declaration
=> True,
110 N_Object_Declaration
=> True,
111 N_Object_Renaming_Declaration
=> True,
112 N_Package_Specification
=> True,
114 N_Procedure_Call_Statement
=> True,
115 N_Simple_Return_Statement
=> True,
116 N_Has_Condition
=> True,
119 -----------------------
120 -- Local Subprograms --
121 -----------------------
123 procedure Analyze_Concatenation_Rest
(N
: Node_Id
);
124 -- Does the "rest" of the work of Analyze_Concatenation, after the left
125 -- operand has been analyzed. See Analyze_Concatenation for details.
127 procedure Analyze_Expression
(N
: Node_Id
);
128 -- For expressions that are not names, this is just a call to analyze. If
129 -- the expression is a name, it may be a call to a parameterless function,
130 -- and if so must be converted into an explicit call node and analyzed as
131 -- such. This deproceduring must be done during the first pass of overload
132 -- resolution, because otherwise a procedure call with overloaded actuals
133 -- may fail to resolve.
135 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
);
136 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
137 -- operator name or an expanded name whose selector is an operator name,
138 -- and one possible interpretation is as a predefined operator.
140 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
);
141 -- If the prefix of a selected_component is overloaded, the proper
142 -- interpretation that yields a record type with the proper selector
143 -- name must be selected.
145 procedure Analyze_User_Defined_Binary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
146 -- Procedure to analyze a user defined binary operator, which is resolved
147 -- like a function, but instead of a list of actuals it is presented
148 -- with the left and right operands of an operator node.
150 procedure Analyze_User_Defined_Unary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
151 -- Procedure to analyze a user defined unary operator, which is resolved
152 -- like a function, but instead of a list of actuals, it is presented with
153 -- the operand of the operator node.
155 procedure Analyze_One_Call
159 Success
: out Boolean;
160 Skip_First
: Boolean := False);
161 -- Check one interpretation of an overloaded subprogram name for
162 -- compatibility with the types of the actuals in a call. If there is a
163 -- single interpretation which does not match, post error if Report is
166 -- Nam is the entity that provides the formals against which the actuals
167 -- are checked. Nam is either the name of a subprogram, or the internal
168 -- subprogram type constructed for an access_to_subprogram. If the actuals
169 -- are compatible with Nam, then Nam is added to the list of candidate
170 -- interpretations for N, and Success is set to True.
172 -- The flag Skip_First is used when analyzing a call that was rewritten
173 -- from object notation. In this case the first actual may have to receive
174 -- an explicit dereference, depending on the first formal of the operation
175 -- being called. The caller will have verified that the object is legal
176 -- for the call. If the remaining parameters match, the first parameter
177 -- will rewritten as a dereference if needed, prior to completing analysis.
179 procedure Check_Misspelled_Selector
182 -- Give possible misspelling message if Sel seems likely to be a mis-
183 -- spelling of one of the selectors of the Prefix. This is called by
184 -- Analyze_Selected_Component after producing an invalid selector error
187 procedure Find_Arithmetic_Types
191 -- L and R are the operands of an arithmetic operator. Find consistent
192 -- pairs of interpretations for L and R that have a numeric type consistent
193 -- with the semantics of the operator.
195 procedure Find_Comparison_Equality_Types
199 -- L and R are operands of a comparison or equality operator. Find valid
200 -- pairs of interpretations for L and R.
202 procedure Find_Concatenation_Types
206 -- For the four varieties of concatenation
208 procedure Find_Boolean_Types
212 -- Ditto for binary logical operations
214 procedure Find_Negation_Types
218 -- Find consistent interpretation for operand of negation operator
220 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean;
221 -- Find candidate interpretations for the name Obj.Proc when it appears in
222 -- a subprogram renaming declaration.
224 procedure Find_Unary_Types
228 -- Unary arithmetic types: plus, minus, abs
230 procedure Check_Arithmetic_Pair
234 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
235 -- for left and right operand. Determine whether they constitute a valid
236 -- pair for the given operator, and record the corresponding interpretation
237 -- of the operator node. The node N may be an operator node (the usual
238 -- case) or a function call whose prefix is an operator designator. In
239 -- both cases Op_Id is the operator name itself.
241 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
);
242 -- Give detailed information on overloaded call where none of the
243 -- interpretations match. N is the call node, Nam the designator for
244 -- the overloaded entity being called.
246 function Junk_Operand
(N
: Node_Id
) return Boolean;
247 -- Test for an operand that is an inappropriate entity (e.g. a package
248 -- name or a label). If so, issue an error message and return True. If
249 -- the operand is not an inappropriate entity kind, return False.
251 procedure Operator_Check
(N
: Node_Id
);
252 -- Verify that an operator has received some valid interpretation. If none
253 -- was found, determine whether a use clause would make the operation
254 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
255 -- every type compatible with the operator, even if the operator for the
256 -- type is not directly visible. The routine uses this type to emit a more
257 -- informative message.
259 function Has_Possible_User_Defined_Literal
(N
: Node_Id
) return Boolean;
260 -- Ada 2022: if an operand is a literal, it may be subject to an
261 -- implicit conversion to a type for which a user-defined literal
262 -- function exists. During the first pass of type resolution we do
263 -- not know the context imposed on the literal, so we assume that
264 -- the literal type is a valid candidate and rely on the second pass
265 -- of resolution to find the type with the proper aspect. We only
266 -- add this interpretation if no other one was found, which may be
267 -- too restrictive but seems sufficient to handle most proper uses
268 -- of the new aspect. It is unclear whether a full implementation of
269 -- these aspects can be achieved without larger modifications to the
270 -- two-pass resolution algorithm.
272 function Possible_Type_For_Conditional_Expression
273 (T1
, T2
: Entity_Id
) return Entity_Id
;
274 -- Given two types T1 and T2 that are _not_ compatible, return a type that
275 -- may still be used as the possible type of a conditional expression whose
276 -- dependent expressions, or part thereof, have type T1 and T2 respectively
277 -- during the first phase of type resolution, or Empty if such a type does
280 -- The typical example is an if_expression whose then_expression is of a
281 -- tagged type and whose else_expresssion is of an extension of this type:
282 -- the types are not compatible but such an if_expression can be legal if
283 -- its expected type is the 'Class of the tagged type, so the function will
284 -- return the tagged type in this case. If the expected type turns out to
285 -- be something else, including the tagged type itself, then an error will
286 -- be given during the second phase of type resolution.
288 procedure Remove_Abstract_Operations
(N
: Node_Id
);
289 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
290 -- operation is not a candidate interpretation.
292 function Try_Container_Indexing
295 Exprs
: List_Id
) return Boolean;
296 -- AI05-0139: Generalized indexing to support iterators over containers
297 -- ??? Need to provide a more detailed spec of what this function does
299 function Try_Indexed_Call
303 Skip_First
: Boolean) return Boolean;
304 -- If a function has defaults for all its actuals, a call to it may in fact
305 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
306 -- interpretation as an indexing, prior to analysis as a call. If both are
307 -- possible, the node is overloaded with both interpretations (same symbol
308 -- but two different types). If the call is written in prefix form, the
309 -- prefix becomes the first parameter in the call, and only the remaining
310 -- actuals must be checked for the presence of defaults.
312 function Try_Indirect_Call
315 Typ
: Entity_Id
) return Boolean;
316 -- Similarly, a function F that needs no actuals can return an access to a
317 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
318 -- the call may be overloaded with both interpretations.
320 procedure wpo
(T
: Entity_Id
);
321 pragma Warnings
(Off
, wpo
);
322 -- Used for debugging: obtain list of primitive operations even if
323 -- type is not frozen and dispatch table is not built yet.
325 ------------------------
326 -- Ambiguous_Operands --
327 ------------------------
329 procedure Ambiguous_Operands
(N
: Node_Id
) is
330 procedure List_Operand_Interps
(Opnd
: Node_Id
);
332 --------------------------
333 -- List_Operand_Interps --
334 --------------------------
336 procedure List_Operand_Interps
(Opnd
: Node_Id
) is
337 Nam
: Node_Id
:= Empty
;
341 if Is_Overloaded
(Opnd
) then
342 if Nkind
(Opnd
) in N_Op
then
345 elsif Nkind
(Opnd
) = N_Function_Call
then
348 elsif Ada_Version
>= Ada_2012
then
354 Get_First_Interp
(Opnd
, I
, It
);
355 while Present
(It
.Nam
) loop
356 if Has_Implicit_Dereference
(It
.Typ
) then
358 ("can be interpreted as implicit dereference", Opnd
);
362 Get_Next_Interp
(I
, It
);
373 if Opnd
= Left_Opnd
(N
) then
375 ("\left operand has the following interpretations", N
);
378 ("\right operand has the following interpretations", N
);
382 List_Interps
(Nam
, Err
);
383 end List_Operand_Interps
;
385 -- Start of processing for Ambiguous_Operands
388 if Nkind
(N
) in N_Membership_Test
then
389 Error_Msg_N
("ambiguous operands for membership", N
);
391 elsif Nkind
(N
) in N_Op_Eq | N_Op_Ne
then
392 Error_Msg_N
("ambiguous operands for equality", N
);
395 Error_Msg_N
("ambiguous operands for comparison", N
);
398 if All_Errors_Mode
then
399 List_Operand_Interps
(Left_Opnd
(N
));
400 List_Operand_Interps
(Right_Opnd
(N
));
402 Error_Msg_N
("\use -gnatf switch for details", N
);
404 end Ambiguous_Operands
;
406 -----------------------
407 -- Analyze_Aggregate --
408 -----------------------
410 -- Most of the analysis of Aggregates requires that the type be known, and
411 -- is therefore put off until resolution of the context. Delta aggregates
412 -- have a base component that determines the enclosing aggregate type so
413 -- its type can be ascertained earlier. This also allows delta aggregates
414 -- to appear in the context of a record type with a private extension, as
415 -- per the latest update of AI12-0127.
417 procedure Analyze_Aggregate
(N
: Node_Id
) is
419 if No
(Etype
(N
)) then
420 if Nkind
(N
) = N_Delta_Aggregate
then
422 Base
: constant Node_Id
:= Expression
(N
);
430 -- If the base is overloaded, propagate interpretations to the
431 -- enclosing aggregate.
433 if Is_Overloaded
(Base
) then
434 Get_First_Interp
(Base
, I
, It
);
435 Set_Etype
(N
, Any_Type
);
437 while Present
(It
.Nam
) loop
438 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
439 Get_Next_Interp
(I
, It
);
443 Set_Etype
(N
, Etype
(Base
));
448 Set_Etype
(N
, Any_Composite
);
451 end Analyze_Aggregate
;
453 -----------------------
454 -- Analyze_Allocator --
455 -----------------------
457 procedure Analyze_Allocator
(N
: Node_Id
) is
458 Loc
: constant Source_Ptr
:= Sloc
(N
);
459 Sav_Errs
: constant Nat
:= Serious_Errors_Detected
;
460 E
: Node_Id
:= Expression
(N
);
461 Acc_Type
: Entity_Id
;
468 -- Deal with allocator restrictions
470 -- In accordance with H.4(7), the No_Allocators restriction only applies
471 -- to user-written allocators. The same consideration applies to the
472 -- No_Standard_Allocators_Before_Elaboration restriction.
474 if Comes_From_Source
(N
) then
475 Check_Restriction
(No_Allocators
, N
);
477 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
478 -- look at enclosing context, checking task/main subprogram case.
482 while Present
(P
) loop
484 -- For the task case we need a handled sequence of statements,
485 -- where the occurrence of the allocator is within the statements
486 -- and the parent is a task body
488 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
489 and then Is_List_Member
(C
)
490 and then List_Containing
(C
) = Statements
(P
)
492 Onode
:= Original_Node
(Parent
(P
));
494 -- Check for allocator within task body, this is a definite
495 -- violation of No_Allocators_After_Elaboration we can detect
498 if Nkind
(Onode
) = N_Task_Body
then
500 (No_Standard_Allocators_After_Elaboration
, N
);
505 -- The other case is appearance in a subprogram body. This is
506 -- a violation if this is a library level subprogram with no
507 -- parameters. Note that this is now a static error even if the
508 -- subprogram is not the main program (this is a change, in an
509 -- earlier version only the main program was affected, and the
510 -- check had to be done in the binder).
512 if Nkind
(P
) = N_Subprogram_Body
513 and then Nkind
(Parent
(P
)) = N_Compilation_Unit
514 and then No
(Parameter_Specifications
(Specification
(P
)))
517 (No_Standard_Allocators_After_Elaboration
, N
);
525 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
526 -- any. The expected type for the name is any type. A non-overloading
527 -- rule then requires it to be of a type descended from
528 -- System.Storage_Pools.Subpools.Subpool_Handle.
530 -- This isn't exactly what the AI says, but it seems to be the right
531 -- rule. The AI should be fixed.???
534 Subpool
: constant Node_Id
:= Subpool_Handle_Name
(N
);
537 if Present
(Subpool
) then
540 if Is_Overloaded
(Subpool
) then
541 Error_Msg_N
("ambiguous subpool handle", Subpool
);
544 -- Check that Etype (Subpool) is descended from Subpool_Handle
550 -- Analyze the qualified expression or subtype indication
552 if Nkind
(E
) = N_Qualified_Expression
then
553 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
554 Set_Etype
(Acc_Type
, Acc_Type
);
555 Find_Type
(Subtype_Mark
(E
));
557 -- Analyze the qualified expression, and apply the name resolution
558 -- rule given in 4.7(3).
561 Type_Id
:= Etype
(E
);
562 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
564 -- A qualified expression requires an exact match of the type,
565 -- class-wide matching is not allowed.
567 -- if Is_Class_Wide_Type (Type_Id)
568 -- and then Base_Type
569 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
571 -- Wrong_Type (Expression (E), Type_Id);
574 -- We don't analyze the qualified expression itself because it's
575 -- part of the allocator. It is fully analyzed and resolved when
576 -- the allocator is resolved with the context type.
578 Set_Etype
(E
, Type_Id
);
580 -- Case where allocator has a subtype indication
583 -- If the allocator includes a N_Subtype_Indication then a
584 -- constraint is present, otherwise the node is a subtype mark.
585 -- Introduce an explicit subtype declaration into the tree
586 -- defining some anonymous subtype and rewrite the allocator to
587 -- use this subtype rather than the subtype indication.
589 -- It is important to introduce the explicit subtype declaration
590 -- so that the bounds of the subtype indication are attached to
591 -- the tree in case the allocator is inside a generic unit.
593 -- Finally, if there is no subtype indication and the type is
594 -- a tagged unconstrained type with discriminants, the designated
595 -- object is constrained by their default values, and it is
596 -- simplest to introduce an explicit constraint now. In some cases
597 -- this is done during expansion, but freeze actions are certain
598 -- to be emitted in the proper order if constraint is explicit.
600 if Is_Entity_Name
(E
) and then Expander_Active
then
602 Type_Id
:= Entity
(E
);
604 if Is_Tagged_Type
(Type_Id
)
605 and then Has_Defaulted_Discriminants
(Type_Id
)
606 and then not Is_Constrained
(Type_Id
)
609 Constr
: constant List_Id
:= New_List
;
610 Loc
: constant Source_Ptr
:= Sloc
(E
);
611 Discr
: Entity_Id
:= First_Discriminant
(Type_Id
);
614 while Present
(Discr
) loop
615 Append
(Discriminant_Default_Value
(Discr
), Constr
);
616 Next_Discriminant
(Discr
);
620 Make_Subtype_Indication
(Loc
,
621 Subtype_Mark
=> New_Occurrence_Of
(Type_Id
, Loc
),
623 Make_Index_Or_Discriminant_Constraint
(Loc
,
624 Constraints
=> Constr
)));
629 if Nkind
(E
) = N_Subtype_Indication
then
632 Base_Typ
: Entity_Id
;
635 -- A constraint is only allowed for a composite type in Ada
636 -- 95. In Ada 83, a constraint is also allowed for an
637 -- access-to-composite type, but the constraint is ignored.
639 Find_Type
(Subtype_Mark
(E
));
640 Base_Typ
:= Entity
(Subtype_Mark
(E
));
642 if Is_Elementary_Type
(Base_Typ
) then
643 if not (Ada_Version
= Ada_83
644 and then Is_Access_Type
(Base_Typ
))
646 Error_Msg_N
("constraint not allowed here", E
);
648 if Nkind
(Constraint
(E
)) =
649 N_Index_Or_Discriminant_Constraint
651 Error_Msg_N
-- CODEFIX
652 ("\if qualified expression was meant, " &
653 "use apostrophe", Constraint
(E
));
657 -- Get rid of the bogus constraint:
659 Rewrite
(E
, New_Copy_Tree
(Subtype_Mark
(E
)));
660 Analyze_Allocator
(N
);
664 -- In GNATprove mode we need to preserve the link between
665 -- the original subtype indication and the anonymous subtype,
666 -- to extend proofs to constrained access types. We only do
667 -- that outside of spec expressions, otherwise the declaration
668 -- cannot be inserted and analyzed. In such a case, GNATprove
669 -- later rejects the allocator as it is not used here in
670 -- a non-interfering context (SPARK 4.8(2) and 7.1.3(10)).
673 or else (GNATprove_Mode
and then not In_Spec_Expression
)
675 Def_Id
:= Make_Temporary
(Loc
, 'S');
678 Subtype_Decl
: constant Node_Id
:=
679 Make_Subtype_Declaration
(Loc
,
680 Defining_Identifier
=> Def_Id
,
681 Subtype_Indication
=> Relocate_Node
(E
));
683 Insert_Action
(E
, Subtype_Decl
);
685 -- Handle unusual case where Insert_Action does not
686 -- analyze the declaration. Subtype_Decl must be
687 -- preanalyzed before call to Process_Subtype below.
688 Preanalyze
(Subtype_Decl
);
691 if Sav_Errs
/= Serious_Errors_Detected
692 and then Nkind
(Constraint
(E
)) =
693 N_Index_Or_Discriminant_Constraint
695 Error_Msg_N
-- CODEFIX
696 ("if qualified expression was meant, use apostrophe!",
700 E
:= New_Occurrence_Of
(Def_Id
, Loc
);
701 Rewrite
(Expression
(N
), E
);
706 Type_Id
:= Process_Subtype
(E
, N
);
707 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
708 Set_Etype
(Acc_Type
, Acc_Type
);
709 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
710 Check_Fully_Declared
(Type_Id
, N
);
712 -- Ada 2005 (AI-231): If the designated type is itself an access
713 -- type that excludes null, its default initialization will
714 -- be a null object, and we can insert an unconditional raise
715 -- before the allocator.
717 -- Ada 2012 (AI-104): A not null indication here is altogether
720 if Can_Never_Be_Null
(Type_Id
) then
722 Not_Null_Check
: constant Node_Id
:=
723 Make_Raise_Constraint_Error
(Sloc
(E
),
724 Reason
=> CE_Null_Not_Allowed
);
727 if Expander_Active
then
728 Insert_Action
(N
, Not_Null_Check
);
729 Analyze
(Not_Null_Check
);
731 elsif Warn_On_Ada_2012_Compatibility
then
733 ("null value not allowed here in Ada 2012?y?", E
);
738 -- Check for missing initialization. Skip this check if the allocator
739 -- is made for a special return object or if we already had errors on
740 -- analyzing the allocator since, in that case, these are very likely
743 if not Is_Definite_Subtype
(Type_Id
)
744 and then not For_Special_Return_Object
(N
)
745 and then Serious_Errors_Detected
= Sav_Errs
747 if Is_Class_Wide_Type
(Type_Id
) then
749 ("initialization required in class-wide allocation", N
);
752 if Ada_Version
< Ada_2005
753 and then Is_Limited_Type
(Type_Id
)
755 Error_Msg_N
("unconstrained allocation not allowed", N
);
757 if Is_Array_Type
(Type_Id
) then
759 ("\constraint with array bounds required", N
);
761 elsif Has_Unknown_Discriminants
(Type_Id
) then
764 else pragma Assert
(Has_Discriminants
(Type_Id
));
766 ("\constraint with discriminant values required", N
);
769 -- Limited Ada 2005 and general nonlimited case.
770 -- This is an error, except in the case of an
771 -- uninitialized allocator that is generated
772 -- for a build-in-place function return of a
773 -- discriminated but compile-time-known-size
777 if Is_Rewrite_Substitution
(N
)
778 and then Nkind
(Original_Node
(N
)) = N_Allocator
781 Qual
: constant Node_Id
:=
782 Expression
(Original_Node
(N
));
784 (Nkind
(Qual
) = N_Qualified_Expression
);
785 Call
: constant Node_Id
:= Expression
(Qual
);
787 (Is_Expanded_Build_In_Place_Call
(Call
));
794 ("uninitialized unconstrained allocation not "
797 if Is_Array_Type
(Type_Id
) then
799 ("\qualified expression or constraint with "
800 & "array bounds required", N
);
802 elsif Has_Unknown_Discriminants
(Type_Id
) then
803 Error_Msg_N
("\qualified expression required", N
);
805 else pragma Assert
(Has_Discriminants
(Type_Id
));
807 ("\qualified expression or constraint with "
808 & "discriminant values required", N
);
816 if Is_Abstract_Type
(Type_Id
) then
817 Error_Msg_N
("cannot allocate abstract object", E
);
820 Set_Etype
(N
, Acc_Type
);
822 -- If this is an allocator for the return stack, then no restriction may
823 -- be violated since it's just a low-level access to the primary stack.
825 if Nkind
(Parent
(N
)) = N_Object_Declaration
826 and then Is_Entity_Name
(Object_Definition
(Parent
(N
)))
827 and then Is_Access_Type
(Entity
(Object_Definition
(Parent
(N
))))
830 Pool
: constant Entity_Id
:=
831 Associated_Storage_Pool
832 (Root_Type
(Entity
(Object_Definition
(Parent
(N
)))));
835 if Present
(Pool
) and then Is_RTE
(Pool
, RE_RS_Pool
) then
841 if Has_Task
(Designated_Type
(Acc_Type
)) then
842 Check_Restriction
(No_Tasking
, N
);
843 Check_Restriction
(Max_Tasks
, N
);
844 Check_Restriction
(No_Task_Allocators
, N
);
847 -- Check restriction against dynamically allocated protected objects
849 if Has_Protected
(Designated_Type
(Acc_Type
)) then
850 Check_Restriction
(No_Protected_Type_Allocators
, N
);
853 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
854 -- type is nested, and the designated type needs finalization. The rule
855 -- is conservative in that class-wide types need finalization.
857 if Needs_Finalization
(Designated_Type
(Acc_Type
))
858 and then not Is_Library_Level_Entity
(Acc_Type
)
860 Check_Restriction
(No_Nested_Finalization
, N
);
863 -- Check that an allocator of a nested access type doesn't create a
864 -- protected object when restriction No_Local_Protected_Objects applies.
866 if Has_Protected
(Designated_Type
(Acc_Type
))
867 and then not Is_Library_Level_Entity
(Acc_Type
)
869 Check_Restriction
(No_Local_Protected_Objects
, N
);
872 -- Likewise for No_Local_Timing_Events
874 if Has_Timing_Event
(Designated_Type
(Acc_Type
))
875 and then not Is_Library_Level_Entity
(Acc_Type
)
877 Check_Restriction
(No_Local_Timing_Events
, N
);
880 -- If the No_Streams restriction is set, check that the type of the
881 -- object is not, and does not contain, any subtype derived from
882 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
883 -- Has_Stream just for efficiency reasons. There is no point in
884 -- spending time on a Has_Stream check if the restriction is not set.
886 if Restriction_Check_Required
(No_Streams
) then
887 if Has_Stream
(Designated_Type
(Acc_Type
)) then
888 Check_Restriction
(No_Streams
, N
);
892 if not Is_Library_Level_Entity
(Acc_Type
) then
893 Check_Restriction
(No_Local_Allocators
, N
);
897 if Serious_Errors_Detected
> Sav_Errs
then
898 Set_Error_Posted
(N
);
899 Set_Etype
(N
, Any_Type
);
901 end Analyze_Allocator
;
903 ---------------------------
904 -- Analyze_Arithmetic_Op --
905 ---------------------------
907 procedure Analyze_Arithmetic_Op
(N
: Node_Id
) is
908 L
: constant Node_Id
:= Left_Opnd
(N
);
909 R
: constant Node_Id
:= Right_Opnd
(N
);
914 Set_Etype
(N
, Any_Type
);
915 Candidate_Type
:= Empty
;
917 Analyze_Expression
(L
);
918 Analyze_Expression
(R
);
920 -- If the entity is already set, the node is the instantiation of a
921 -- generic node with a non-local reference, or was manufactured by a
922 -- call to Make_Op_xxx. In either case the entity is known to be valid,
923 -- and we do not need to collect interpretations, instead we just get
924 -- the single possible interpretation.
926 if Present
(Entity
(N
)) then
929 if Ekind
(Op_Id
) = E_Operator
then
930 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
932 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
935 -- Entity is not already set, so we do need to collect interpretations
938 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
939 while Present
(Op_Id
) loop
940 if Ekind
(Op_Id
) = E_Operator
941 and then Present
(Next_Entity
(First_Entity
(Op_Id
)))
943 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
945 -- The following may seem superfluous, because an operator cannot
946 -- be generic, but this ignores the cleverness of the author of
949 elsif Is_Overloadable
(Op_Id
) then
950 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
953 Op_Id
:= Homonym
(Op_Id
);
958 Check_Function_Writable_Actuals
(N
);
959 end Analyze_Arithmetic_Op
;
965 -- Function, procedure, and entry calls are checked here. The Name in
966 -- the call may be overloaded. The actuals have been analyzed and may
967 -- themselves be overloaded. On exit from this procedure, the node N
968 -- may have zero, one or more interpretations. In the first case an
969 -- error message is produced. In the last case, the node is flagged
970 -- as overloaded and the interpretations are collected in All_Interp.
972 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
973 -- the type-checking is similar to that of other calls.
975 procedure Analyze_Call
(N
: Node_Id
) is
976 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
977 Loc
: constant Source_Ptr
:= Sloc
(N
);
981 Nam_Ent
: Entity_Id
:= Empty
;
982 Success
: Boolean := False;
984 Deref
: Boolean := False;
985 -- Flag indicates whether an interpretation of the prefix is a
986 -- parameterless call that returns an access_to_subprogram.
988 procedure Check_Writable_Actuals
(N
: Node_Id
);
989 -- If the call has out or in-out parameters then mark its outermost
990 -- enclosing construct as a node on which the writable actuals check
991 -- must be performed.
993 function Name_Denotes_Function
return Boolean;
994 -- If the type of the name is an access to subprogram, this may be the
995 -- type of a name, or the return type of the function being called. If
996 -- the name is not an entity then it can denote a protected function.
997 -- Until we distinguish Etype from Return_Type, we must use this routine
998 -- to resolve the meaning of the name in the call.
1000 procedure No_Interpretation
;
1001 -- Output error message when no valid interpretation exists
1003 ----------------------------
1004 -- Check_Writable_Actuals --
1005 ----------------------------
1007 -- The identification of conflicts in calls to functions with writable
1008 -- actuals is performed in the analysis phase of the front end to ensure
1009 -- that it reports exactly the same errors compiling with and without
1010 -- expansion enabled. It is performed in two stages:
1012 -- 1) When a call to a function with out-mode parameters is found,
1013 -- we climb to the outermost enclosing construct that can be
1014 -- evaluated in arbitrary order and we mark it with the flag
1017 -- 2) When the analysis of the marked node is complete, we traverse
1018 -- its decorated subtree searching for conflicts (see function
1019 -- Sem_Util.Check_Function_Writable_Actuals).
1021 -- The unique exception to this general rule is for aggregates, since
1022 -- their analysis is performed by the front end in the resolution
1023 -- phase. For aggregates we do not climb to their enclosing construct:
1024 -- we restrict the analysis to the subexpressions initializing the
1025 -- aggregate components.
1027 -- This implies that the analysis of expressions containing aggregates
1028 -- is not complete, since there may be conflicts on writable actuals
1029 -- involving subexpressions of the enclosing logical or arithmetic
1030 -- expressions. However, we cannot wait and perform the analysis when
1031 -- the whole subtree is resolved, since the subtrees may be transformed,
1032 -- thus adding extra complexity and computation cost to identify and
1033 -- report exactly the same errors compiling with and without expansion
1036 procedure Check_Writable_Actuals
(N
: Node_Id
) is
1038 if Comes_From_Source
(N
)
1039 and then Present
(Get_Subprogram_Entity
(N
))
1040 and then Has_Out_Or_In_Out_Parameter
(Get_Subprogram_Entity
(N
))
1042 -- For procedures and entries there is no need to climb since
1043 -- we only need to check if the actuals of this call invoke
1044 -- functions whose out-mode parameters overlap.
1046 if Nkind
(N
) /= N_Function_Call
then
1047 Set_Check_Actuals
(N
);
1049 -- For calls to functions we climb to the outermost enclosing
1050 -- construct where the out-mode actuals of this function may
1051 -- introduce conflicts.
1055 Outermost
: Node_Id
:= Empty
; -- init to avoid warning
1059 while Present
(P
) loop
1060 -- For object declarations we can climb to the node from
1061 -- its object definition branch or from its initializing
1062 -- expression. We prefer to mark the child node as the
1063 -- outermost construct to avoid adding further complexity
1064 -- to the routine that will later take care of
1065 -- performing the writable actuals check.
1067 if Has_Arbitrary_Evaluation_Order
(Nkind
(P
))
1068 and then Nkind
(P
) not in
1069 N_Assignment_Statement | N_Object_Declaration
1074 -- Avoid climbing more than needed
1076 exit when Stop_Subtree_Climbing
(Nkind
(P
))
1077 or else (Nkind
(P
) = N_Range
1079 Nkind
(Parent
(P
)) not in N_In | N_Not_In
);
1084 Set_Check_Actuals
(Outermost
);
1088 end Check_Writable_Actuals
;
1090 ---------------------------
1091 -- Name_Denotes_Function --
1092 ---------------------------
1094 function Name_Denotes_Function
return Boolean is
1096 if Is_Entity_Name
(Nam
) then
1097 return Ekind
(Entity
(Nam
)) = E_Function
;
1098 elsif Nkind
(Nam
) = N_Selected_Component
then
1099 return Ekind
(Entity
(Selector_Name
(Nam
))) = E_Function
;
1103 end Name_Denotes_Function
;
1105 -----------------------
1106 -- No_Interpretation --
1107 -----------------------
1109 procedure No_Interpretation
is
1110 L
: constant Boolean := Is_List_Member
(N
);
1111 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
1114 -- If the node is in a list whose parent is not an expression then it
1115 -- must be an attempted procedure call.
1117 if L
and then K
not in N_Subexpr
then
1118 if Ekind
(Entity
(Nam
)) = E_Generic_Procedure
then
1120 ("must instantiate generic procedure& before call",
1123 Error_Msg_N
("procedure or entry name expected", Nam
);
1126 -- Check for tasking cases where only an entry call will do
1129 and then K
in N_Entry_Call_Alternative | N_Triggering_Alternative
1131 Error_Msg_N
("entry name expected", Nam
);
1133 -- Otherwise give general error message
1136 Error_Msg_N
("invalid prefix in call", Nam
);
1138 end No_Interpretation
;
1140 -- Start of processing for Analyze_Call
1143 -- Initialize the type of the result of the call to the error type,
1144 -- which will be reset if the type is successfully resolved.
1146 Set_Etype
(N
, Any_Type
);
1150 if not Is_Overloaded
(Nam
) then
1152 -- Only one interpretation to check
1154 if Ekind
(Etype
(Nam
)) = E_Subprogram_Type
then
1155 Nam_Ent
:= Etype
(Nam
);
1157 -- If the prefix is an access_to_subprogram, this may be an indirect
1158 -- call. This is the case if the name in the call is not an entity
1159 -- name, or if it is a function name in the context of a procedure
1160 -- call. In this latter case, we have a call to a parameterless
1161 -- function that returns a pointer_to_procedure which is the entity
1162 -- being called. Finally, F (X) may be a call to a parameterless
1163 -- function that returns a pointer to a function with parameters.
1164 -- Note that if F returns an access-to-subprogram whose designated
1165 -- type is an array, F (X) cannot be interpreted as an indirect call
1166 -- through the result of the call to F.
1168 elsif Is_Access_Subprogram_Type
(Base_Type
(Etype
(Nam
)))
1170 (not Name_Denotes_Function
1171 or else Nkind
(N
) = N_Procedure_Call_Statement
1173 (Nkind
(Parent
(N
)) /= N_Explicit_Dereference
1174 and then Is_Entity_Name
(Nam
)
1175 and then No
(First_Formal
(Entity
(Nam
)))
1177 Is_Array_Type
(Etype
(Designated_Type
(Etype
(Nam
))))
1178 and then Present
(Actuals
)))
1180 Nam_Ent
:= Designated_Type
(Etype
(Nam
));
1181 Insert_Explicit_Dereference
(Nam
);
1183 -- Selected component case. Simple entry or protected operation,
1184 -- where the entry name is given by the selector name.
1186 elsif Nkind
(Nam
) = N_Selected_Component
then
1187 Nam_Ent
:= Entity
(Selector_Name
(Nam
));
1189 if Ekind
(Nam_Ent
) not in E_Entry
1194 Error_Msg_N
("name in call is not a callable entity", Nam
);
1195 Set_Etype
(N
, Any_Type
);
1199 -- If the name is an Indexed component, it can be a call to a member
1200 -- of an entry family. The prefix must be a selected component whose
1201 -- selector is the entry. Analyze_Procedure_Call normalizes several
1202 -- kinds of call into this form.
1204 elsif Nkind
(Nam
) = N_Indexed_Component
then
1205 if Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
1206 Nam_Ent
:= Entity
(Selector_Name
(Prefix
(Nam
)));
1208 Error_Msg_N
("name in call is not a callable entity", Nam
);
1209 Set_Etype
(N
, Any_Type
);
1213 elsif not Is_Entity_Name
(Nam
) then
1214 Error_Msg_N
("name in call is not a callable entity", Nam
);
1215 Set_Etype
(N
, Any_Type
);
1219 Nam_Ent
:= Entity
(Nam
);
1221 -- If not overloadable, this may be a generalized indexing
1222 -- operation with named associations. Rewrite again as an
1223 -- indexed component and analyze as container indexing.
1225 if not Is_Overloadable
(Nam_Ent
) then
1227 (Find_Value_Of_Aspect
1228 (Etype
(Nam_Ent
), Aspect_Constant_Indexing
))
1231 Make_Indexed_Component
(Sloc
(N
),
1233 Expressions
=> Parameter_Associations
(N
)));
1235 if Try_Container_Indexing
(N
, Nam
, Expressions
(N
)) then
1249 -- Operations generated for RACW stub types are called only through
1250 -- dispatching, and can never be the static interpretation of a call.
1252 if Is_RACW_Stub_Type_Operation
(Nam_Ent
) then
1257 Analyze_One_Call
(N
, Nam_Ent
, True, Success
);
1259 -- If the nonoverloaded interpretation is a call to an abstract
1260 -- nondispatching operation, then flag an error and return.
1262 if Is_Overloadable
(Nam_Ent
)
1263 and then Is_Abstract_Subprogram
(Nam_Ent
)
1264 and then not Is_Dispatching_Operation
(Nam_Ent
)
1266 Nondispatching_Call_To_Abstract_Operation
(N
, Nam_Ent
);
1270 -- If this is an indirect call, the return type of the access_to
1271 -- subprogram may be an incomplete type. At the point of the call,
1272 -- use the full type if available, and at the same time update the
1273 -- return type of the access_to_subprogram.
1276 and then Nkind
(Nam
) = N_Explicit_Dereference
1277 and then Ekind
(Etype
(N
)) = E_Incomplete_Type
1278 and then Present
(Full_View
(Etype
(N
)))
1280 Set_Etype
(N
, Full_View
(Etype
(N
)));
1281 Set_Etype
(Nam_Ent
, Etype
(N
));
1287 -- An overloaded selected component must denote overloaded operations
1288 -- of a concurrent type. The interpretations are attached to the
1289 -- simple name of those operations.
1291 if Nkind
(Nam
) = N_Selected_Component
then
1292 Nam
:= Selector_Name
(Nam
);
1295 Get_First_Interp
(Nam
, X
, It
);
1296 while Present
(It
.Nam
) loop
1300 -- Name may be call that returns an access to subprogram, or more
1301 -- generally an overloaded expression one of whose interpretations
1302 -- yields an access to subprogram. If the name is an entity, we do
1303 -- not dereference, because the node is a call that returns the
1304 -- access type: note difference between f(x), where the call may
1305 -- return an access subprogram type, and f(x)(y), where the type
1306 -- returned by the call to f is implicitly dereferenced to analyze
1309 if Is_Access_Type
(Nam_Ent
) then
1310 Nam_Ent
:= Designated_Type
(Nam_Ent
);
1312 elsif Is_Access_Type
(Etype
(Nam_Ent
))
1314 (not Is_Entity_Name
(Nam
)
1315 or else Nkind
(N
) = N_Procedure_Call_Statement
)
1316 and then Ekind
(Designated_Type
(Etype
(Nam_Ent
)))
1319 Nam_Ent
:= Designated_Type
(Etype
(Nam_Ent
));
1321 if Is_Entity_Name
(Nam
) then
1326 -- If the call has been rewritten from a prefixed call, the first
1327 -- parameter has been analyzed, but may need a subsequent
1328 -- dereference, so skip its analysis now.
1330 if Is_Rewrite_Substitution
(N
)
1331 and then Nkind
(Original_Node
(N
)) = Nkind
(N
)
1332 and then Nkind
(Name
(N
)) /= Nkind
(Name
(Original_Node
(N
)))
1333 and then Present
(Parameter_Associations
(N
))
1334 and then Present
(Etype
(First
(Parameter_Associations
(N
))))
1337 (N
, Nam_Ent
, False, Success
, Skip_First
=> True);
1339 Analyze_One_Call
(N
, Nam_Ent
, False, Success
);
1342 -- If the interpretation succeeds, mark the proper type of the
1343 -- prefix (any valid candidate will do). If not, remove the
1344 -- candidate interpretation. If this is a parameterless call
1345 -- on an anonymous access to subprogram, X is a variable with
1346 -- an access discriminant D, the entity in the interpretation is
1347 -- D, so rewrite X as X.D.all.
1351 and then Nkind
(Parent
(N
)) /= N_Explicit_Dereference
1353 if Ekind
(It
.Nam
) = E_Discriminant
1354 and then Has_Implicit_Dereference
(It
.Nam
)
1357 Make_Explicit_Dereference
(Loc
,
1359 Make_Selected_Component
(Loc
,
1361 New_Occurrence_Of
(Entity
(Nam
), Loc
),
1363 New_Occurrence_Of
(It
.Nam
, Loc
))));
1369 Set_Entity
(Nam
, It
.Nam
);
1370 Insert_Explicit_Dereference
(Nam
);
1371 Set_Etype
(Nam
, Nam_Ent
);
1375 Set_Etype
(Nam
, It
.Typ
);
1378 elsif Nkind
(Name
(N
)) in N_Function_Call | N_Selected_Component
1383 Get_Next_Interp
(X
, It
);
1386 -- If the name is the result of a function call, it can only be a
1387 -- call to a function returning an access to subprogram. Insert
1388 -- explicit dereference.
1390 if Nkind
(Nam
) = N_Function_Call
then
1391 Insert_Explicit_Dereference
(Nam
);
1394 if Etype
(N
) = Any_Type
then
1396 -- None of the interpretations is compatible with the actuals
1398 Diagnose_Call
(N
, Nam
);
1400 -- Special checks for uninstantiated put routines
1402 if Nkind
(N
) = N_Procedure_Call_Statement
1403 and then Is_Entity_Name
(Nam
)
1404 and then Chars
(Nam
) = Name_Put
1405 and then List_Length
(Actuals
) = 1
1408 Arg
: constant Node_Id
:= First
(Actuals
);
1412 if Nkind
(Arg
) = N_Parameter_Association
then
1413 Typ
:= Etype
(Explicit_Actual_Parameter
(Arg
));
1418 if Is_Signed_Integer_Type
(Typ
) then
1420 ("possible missing instantiation of "
1421 & "'Text_'I'O.'Integer_'I'O!", Nam
);
1423 elsif Is_Modular_Integer_Type
(Typ
) then
1425 ("possible missing instantiation of "
1426 & "'Text_'I'O.'Modular_'I'O!", Nam
);
1428 elsif Is_Floating_Point_Type
(Typ
) then
1430 ("possible missing instantiation of "
1431 & "'Text_'I'O.'Float_'I'O!", Nam
);
1433 elsif Is_Ordinary_Fixed_Point_Type
(Typ
) then
1435 ("possible missing instantiation of "
1436 & "'Text_'I'O.'Fixed_'I'O!", Nam
);
1438 elsif Is_Decimal_Fixed_Point_Type
(Typ
) then
1440 ("possible missing instantiation of "
1441 & "'Text_'I'O.'Decimal_'I'O!", Nam
);
1443 elsif Is_Enumeration_Type
(Typ
) then
1445 ("possible missing instantiation of "
1446 & "'Text_'I'O.'Enumeration_'I'O!", Nam
);
1451 elsif not Is_Overloaded
(N
)
1452 and then Is_Entity_Name
(Nam
)
1454 -- Resolution yields a single interpretation. Verify that the
1455 -- reference has capitalization consistent with the declaration.
1457 Set_Entity_With_Checks
(Nam
, Entity
(Nam
));
1458 Generate_Reference
(Entity
(Nam
), Nam
);
1460 Set_Etype
(Nam
, Etype
(Entity
(Nam
)));
1462 Remove_Abstract_Operations
(N
);
1466 -- Check the accessibility level for actuals for explicitly aliased
1467 -- formals when a function call appears within a return statement.
1468 -- This is only checked if the enclosing subprogram Comes_From_Source,
1469 -- to avoid issuing errors on calls occurring in wrapper subprograms
1470 -- (for example, where the call is part of an expression of an aspect
1471 -- associated with a wrapper, such as Pre'Class).
1473 if Nkind
(N
) = N_Function_Call
1474 and then Comes_From_Source
(N
)
1475 and then Present
(Nam_Ent
)
1476 and then In_Return_Value
(N
)
1477 and then Comes_From_Source
(Current_Subprogram
)
1483 Act
:= First_Actual
(N
);
1484 Form
:= First_Formal
(Nam_Ent
);
1486 while Present
(Form
) and then Present
(Act
) loop
1487 -- Check whether the formal is aliased and if the accessibility
1488 -- level of the actual is deeper than the accessibility level
1489 -- of the enclosing subprogram to which the current return
1490 -- statement applies.
1492 -- Should we be checking Is_Entity_Name on Act? Won't this miss
1495 if Is_Explicitly_Aliased
(Form
)
1496 and then Is_Entity_Name
(Act
)
1497 and then Static_Accessibility_Level
1498 (Act
, Zero_On_Dynamic_Level
)
1499 > Subprogram_Access_Level
(Current_Subprogram
)
1501 Error_Msg_N
("actual for explicitly aliased formal is too"
1502 & " short lived", Act
);
1511 if Ada_Version
>= Ada_2012
then
1513 -- Check if the call contains a function with writable actuals
1515 Check_Writable_Actuals
(N
);
1517 -- If found and the outermost construct that can be evaluated in
1518 -- an arbitrary order is precisely this call, then check all its
1521 Check_Function_Writable_Actuals
(N
);
1523 -- The return type of the function may be incomplete. This can be
1524 -- the case if the type is a generic formal, or a limited view. It
1525 -- can also happen when the function declaration appears before the
1526 -- full view of the type (which is legal in Ada 2012) and the call
1527 -- appears in a different unit, in which case the incomplete view
1528 -- must be replaced with the full view (or the nonlimited view)
1529 -- to prevent subsequent type errors. Note that the usual install/
1530 -- removal of limited_with clauses is not sufficient to handle this
1531 -- case, because the limited view may have been captured in another
1532 -- compilation unit that defines the current function.
1534 if Is_Incomplete_Type
(Etype
(N
)) then
1535 if Present
(Full_View
(Etype
(N
))) then
1536 if Is_Entity_Name
(Nam
) then
1537 Set_Etype
(Nam
, Full_View
(Etype
(N
)));
1538 Set_Etype
(Entity
(Nam
), Full_View
(Etype
(N
)));
1541 Set_Etype
(N
, Full_View
(Etype
(N
)));
1543 -- If the call is within a thunk, the nonlimited view should be
1544 -- analyzed eventually (see also Analyze_Return_Type).
1546 elsif From_Limited_With
(Etype
(N
))
1547 and then Present
(Non_Limited_View
(Etype
(N
)))
1549 (Ekind
(Non_Limited_View
(Etype
(N
))) /= E_Incomplete_Type
1550 or else Is_Thunk
(Current_Scope
))
1552 Set_Etype
(N
, Non_Limited_View
(Etype
(N
)));
1554 -- If there is no completion for the type, this may be because
1555 -- there is only a limited view of it and there is nothing in
1556 -- the context of the current unit that has required a regular
1557 -- compilation of the unit containing the type. We recognize
1558 -- this unusual case by the fact that unit is not analyzed.
1559 -- Note that the call being analyzed is in a different unit from
1560 -- the function declaration, and nothing indicates that the type
1561 -- is a limited view.
1563 elsif Ekind
(Scope
(Etype
(N
))) = E_Package
1564 and then Present
(Limited_View
(Scope
(Etype
(N
))))
1565 and then not Analyzed
(Unit_Declaration_Node
(Scope
(Etype
(N
))))
1568 ("cannot call function that returns limited view of}",
1572 ("\there must be a regular with_clause for package & in the "
1573 & "current unit, or in some unit in its context",
1574 N
, Scope
(Etype
(N
)));
1576 Set_Etype
(N
, Any_Type
);
1582 -----------------------------
1583 -- Analyze_Case_Expression --
1584 -----------------------------
1586 procedure Analyze_Case_Expression
(N
: Node_Id
) is
1587 Expr
: constant Node_Id
:= Expression
(N
);
1588 First_Alt
: constant Node_Id
:= First
(Alternatives
(N
));
1590 First_Expr
: Node_Id
:= Empty
;
1591 -- First expression in the case where there is some type information
1592 -- available, i.e. there is not Any_Type everywhere, which can happen
1593 -- because of some error.
1595 Second_Expr
: Node_Id
:= Empty
;
1596 -- Second expression as above
1598 Wrong_Alt
: Node_Id
:= Empty
;
1599 -- For error reporting
1601 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
1602 -- Error routine invoked by the generic instantiation below when
1603 -- the case expression has a non static choice.
1605 procedure Check_Next_Expression
(T
: Entity_Id
; Alt
: Node_Id
);
1606 -- Check one interpretation of the next expression with type T
1608 procedure Check_Expression_Pair
(T1
, T2
: Entity_Id
; Alt
: Node_Id
);
1609 -- Check first expression with type T1 and next expression with type T2
1611 package Case_Choices_Analysis
is new
1612 Generic_Analyze_Choices
1613 (Process_Associated_Node
=> No_OP
);
1614 use Case_Choices_Analysis
;
1616 package Case_Choices_Checking
is new
1617 Generic_Check_Choices
1618 (Process_Empty_Choice
=> No_OP
,
1619 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
1620 Process_Associated_Node
=> No_OP
);
1621 use Case_Choices_Checking
;
1623 -----------------------------
1624 -- Non_Static_Choice_Error --
1625 -----------------------------
1627 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
1629 Flag_Non_Static_Expr
1630 ("choice given in case expression is not static!", Choice
);
1631 end Non_Static_Choice_Error
;
1633 ---------------------------
1634 -- Check_Next_Expression --
1635 ---------------------------
1637 procedure Check_Next_Expression
(T
: Entity_Id
; Alt
: Node_Id
) is
1638 Next_Expr
: constant Node_Id
:= Expression
(Alt
);
1644 if Next_Expr
= First_Expr
then
1645 Check_Next_Expression
(T
, Next
(Alt
));
1649 -- Loop through the interpretations of the next expression
1651 if not Is_Overloaded
(Next_Expr
) then
1652 Check_Expression_Pair
(T
, Etype
(Next_Expr
), Alt
);
1655 Get_First_Interp
(Next_Expr
, I
, It
);
1656 while Present
(It
.Typ
) loop
1657 Check_Expression_Pair
(T
, It
.Typ
, Alt
);
1658 Get_Next_Interp
(I
, It
);
1661 end Check_Next_Expression
;
1663 ---------------------------
1664 -- Check_Expression_Pair --
1665 ---------------------------
1667 procedure Check_Expression_Pair
(T1
, T2
: Entity_Id
; Alt
: Node_Id
) is
1668 Next_Expr
: constant Node_Id
:= Expression
(Alt
);
1673 if Covers
(T1
=> T1
, T2
=> T2
)
1674 or else Covers
(T1
=> T2
, T2
=> T1
)
1676 T
:= Specific_Type
(T1
, T2
);
1678 elsif Is_User_Defined_Literal
(First_Expr
, T2
) then
1681 elsif Is_User_Defined_Literal
(Next_Expr
, T1
) then
1685 T
:= Possible_Type_For_Conditional_Expression
(T1
, T2
);
1693 if Present
(Next
(Alt
)) then
1694 Check_Next_Expression
(T
, Next
(Alt
));
1696 Add_One_Interp
(N
, T
, T
);
1698 end Check_Expression_Pair
;
1703 Exp_Type
: Entity_Id
;
1704 Exp_Btype
: Entity_Id
;
1707 Others_Present
: Boolean;
1709 -- Start of processing for Analyze_Case_Expression
1712 Analyze_And_Resolve
(Expr
, Any_Discrete
);
1713 Check_Unset_Reference
(Expr
);
1714 Exp_Type
:= Etype
(Expr
);
1715 Exp_Btype
:= Base_Type
(Exp_Type
);
1717 Set_Etype
(N
, Any_Type
);
1720 while Present
(Alt
) loop
1721 if Error_Posted
(Expression
(Alt
)) then
1725 Analyze_Expression
(Expression
(Alt
));
1727 if Etype
(Expression
(Alt
)) /= Any_Type
then
1728 if No
(First_Expr
) then
1729 First_Expr
:= Expression
(Alt
);
1731 elsif No
(Second_Expr
) then
1732 Second_Expr
:= Expression
(Alt
);
1739 -- Get our initial type from the first expression for which we got some
1740 -- useful type information from the expression.
1742 if No
(First_Expr
) then
1746 -- The expression must be of a discrete type which must be determinable
1747 -- independently of the context in which the expression occurs, but
1748 -- using the fact that the expression must be of a discrete type.
1749 -- Moreover, the type this expression must not be a character literal
1750 -- (which is always ambiguous).
1752 -- If error already reported by Resolve, nothing more to do
1754 if Exp_Btype
= Any_Discrete
or else Exp_Btype
= Any_Type
then
1757 -- Special case message for character literal
1759 elsif Exp_Btype
= Any_Character
then
1761 ("character literal as case expression is ambiguous", Expr
);
1765 -- If the case expression is a formal object of mode in out, then
1766 -- treat it as having a nonstatic subtype by forcing use of the base
1767 -- type (which has to get passed to Check_Case_Choices below). Also
1768 -- use base type when the case expression is parenthesized.
1770 if Paren_Count
(Expr
) > 0
1771 or else (Is_Entity_Name
(Expr
)
1772 and then Ekind
(Entity
(Expr
)) = E_Generic_In_Out_Parameter
)
1774 Exp_Type
:= Exp_Btype
;
1777 -- The case expression alternatives cover the range of a static subtype
1778 -- subject to aspect Static_Predicate. Do not check the choices when the
1779 -- case expression has not been fully analyzed yet because this may lead
1782 if Is_OK_Static_Subtype
(Exp_Type
)
1783 and then Has_Static_Predicate_Aspect
(Exp_Type
)
1784 and then In_Spec_Expression
1788 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1791 Analyze_Choices
(Alternatives
(N
), Exp_Type
);
1792 Check_Choices
(N
, Alternatives
(N
), Exp_Type
, Others_Present
);
1794 if Exp_Type
= Universal_Integer
and then not Others_Present
then
1796 ("case on universal integer requires OTHERS choice", Expr
);
1801 -- RM 4.5.7(10/3): If the case_expression is the operand of a type
1802 -- conversion, the type of the case_expression is the target type
1803 -- of the conversion.
1805 if Nkind
(Parent
(N
)) = N_Type_Conversion
then
1806 Set_Etype
(N
, Etype
(Parent
(N
)));
1810 -- Loop through the interpretations of the first expression and check
1811 -- the other expressions if present.
1813 if not Is_Overloaded
(First_Expr
) then
1814 if Present
(Second_Expr
) then
1815 Check_Next_Expression
(Etype
(First_Expr
), First_Alt
);
1817 Set_Etype
(N
, Etype
(First_Expr
));
1821 Get_First_Interp
(First_Expr
, I
, It
);
1822 while Present
(It
.Typ
) loop
1823 if Present
(Second_Expr
) then
1824 Check_Next_Expression
(It
.Typ
, First_Alt
);
1826 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
1829 Get_Next_Interp
(I
, It
);
1833 -- If no possible interpretation has been found, the type of the wrong
1834 -- alternative doesn't match any interpretation of the FIRST expression.
1836 if Etype
(N
) = Any_Type
and then Present
(Wrong_Alt
) then
1837 Second_Expr
:= Expression
(Wrong_Alt
);
1839 if Is_Overloaded
(First_Expr
) then
1840 if Is_Overloaded
(Second_Expr
) then
1842 ("no interpretation compatible with those of previous "
1847 ("type incompatible with interpretations of previous "
1851 ("\this alternative has}!",
1853 Etype
(Second_Expr
));
1857 if Is_Overloaded
(Second_Expr
) then
1859 ("no interpretation compatible with type of previous "
1863 ("\previous alternative has}!",
1865 Etype
(First_Expr
));
1868 ("type incompatible with that of previous alternative",
1871 ("\previous alternative has}!",
1873 Etype
(First_Expr
));
1875 ("\this alternative has}!",
1877 Etype
(Second_Expr
));
1881 end Analyze_Case_Expression
;
1883 ---------------------------
1884 -- Analyze_Concatenation --
1885 ---------------------------
1887 procedure Analyze_Concatenation
(N
: Node_Id
) is
1889 -- We wish to avoid deep recursion, because concatenations are often
1890 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1891 -- operands nonrecursively until we find something that is not a
1892 -- concatenation (A in this case), or has already been analyzed. We
1893 -- analyze that, and then walk back up the tree following Parent
1894 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1895 -- work at each level. The Parent pointers allow us to avoid recursion,
1896 -- and thus avoid running out of memory.
1902 Candidate_Type
:= Empty
;
1904 -- The following code is equivalent to:
1906 -- Set_Etype (N, Any_Type);
1907 -- Analyze_Expression (Left_Opnd (N));
1908 -- Analyze_Concatenation_Rest (N);
1910 -- where the Analyze_Expression call recurses back here if the left
1911 -- operand is a concatenation.
1913 -- Walk down left operands
1916 Set_Etype
(NN
, Any_Type
);
1917 L
:= Left_Opnd
(NN
);
1918 exit when Nkind
(L
) /= N_Op_Concat
or else Analyzed
(L
);
1922 -- Now (given the above example) NN is A&B and L is A
1924 -- First analyze L ...
1926 Analyze_Expression
(L
);
1928 -- ... then walk NN back up until we reach N (where we started), calling
1929 -- Analyze_Concatenation_Rest along the way.
1932 Analyze_Concatenation_Rest
(NN
);
1936 end Analyze_Concatenation
;
1938 --------------------------------
1939 -- Analyze_Concatenation_Rest --
1940 --------------------------------
1942 -- If the only one-dimensional array type in scope is String,
1943 -- this is the resulting type of the operation. Otherwise there
1944 -- will be a concatenation operation defined for each user-defined
1945 -- one-dimensional array.
1947 procedure Analyze_Concatenation_Rest
(N
: Node_Id
) is
1948 L
: constant Node_Id
:= Left_Opnd
(N
);
1949 R
: constant Node_Id
:= Right_Opnd
(N
);
1950 Op_Id
: Entity_Id
:= Entity
(N
);
1955 Analyze_Expression
(R
);
1957 -- If the entity is present, the node appears in an instance, and
1958 -- denotes a predefined concatenation operation. The resulting type is
1959 -- obtained from the arguments when possible. If the arguments are
1960 -- aggregates, the array type and the concatenation type must be
1963 if Present
(Op_Id
) then
1964 if Ekind
(Op_Id
) = E_Operator
then
1965 LT
:= Base_Type
(Etype
(L
));
1966 RT
:= Base_Type
(Etype
(R
));
1968 if Is_Array_Type
(LT
)
1969 and then (RT
= LT
or else RT
= Base_Type
(Component_Type
(LT
)))
1971 Add_One_Interp
(N
, Op_Id
, LT
);
1973 elsif Is_Array_Type
(RT
)
1974 and then LT
= Base_Type
(Component_Type
(RT
))
1976 Add_One_Interp
(N
, Op_Id
, RT
);
1978 -- If one operand is a string type or a user-defined array type,
1979 -- and the other is a literal, result is of the specific type.
1982 (Root_Type
(LT
) = Standard_String
1983 or else Scope
(LT
) /= Standard_Standard
)
1984 and then Etype
(R
) = Any_String
1986 Add_One_Interp
(N
, Op_Id
, LT
);
1989 (Root_Type
(RT
) = Standard_String
1990 or else Scope
(RT
) /= Standard_Standard
)
1991 and then Etype
(L
) = Any_String
1993 Add_One_Interp
(N
, Op_Id
, RT
);
1995 elsif not Is_Generic_Type
(Etype
(Op_Id
)) then
1996 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1999 -- Type and its operations must be visible
2001 Set_Entity
(N
, Empty
);
2002 Analyze_Concatenation
(N
);
2006 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2010 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Concat
);
2011 while Present
(Op_Id
) loop
2012 if Ekind
(Op_Id
) = E_Operator
then
2014 -- Do not consider operators declared in dead code, they
2015 -- cannot be part of the resolution.
2017 if Is_Eliminated
(Op_Id
) then
2020 Find_Concatenation_Types
(L
, R
, Op_Id
, N
);
2024 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
2027 Op_Id
:= Homonym
(Op_Id
);
2032 end Analyze_Concatenation_Rest
;
2034 ------------------------------------
2035 -- Analyze_Comparison_Equality_Op --
2036 ------------------------------------
2038 procedure Analyze_Comparison_Equality_Op
(N
: Node_Id
) is
2039 Loc
: constant Source_Ptr
:= Sloc
(N
);
2040 L
: constant Node_Id
:= Left_Opnd
(N
);
2041 R
: constant Node_Id
:= Right_Opnd
(N
);
2046 Set_Etype
(N
, Any_Type
);
2047 Candidate_Type
:= Empty
;
2049 Analyze_Expression
(L
);
2050 Analyze_Expression
(R
);
2052 -- If the entity is set, the node is a generic instance with a non-local
2053 -- reference to the predefined operator or to a user-defined function.
2054 -- It can also be an inequality that is expanded into the negation of a
2055 -- call to a user-defined equality operator.
2057 -- For the predefined case, the result is Boolean, regardless of the
2058 -- type of the operands. The operands may even be limited, if they are
2059 -- generic actuals. If they are overloaded, label the operands with the
2060 -- common type that must be present, or with the type of the formal of
2061 -- the user-defined function.
2063 if Present
(Entity
(N
)) then
2064 Op_Id
:= Entity
(N
);
2066 if Ekind
(Op_Id
) = E_Operator
then
2067 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
);
2069 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2072 if Is_Overloaded
(L
) then
2073 if Ekind
(Op_Id
) = E_Operator
then
2074 Set_Etype
(L
, Intersect_Types
(L
, R
));
2076 Set_Etype
(L
, Etype
(First_Formal
(Op_Id
)));
2080 if Is_Overloaded
(R
) then
2081 if Ekind
(Op_Id
) = E_Operator
then
2082 Set_Etype
(R
, Intersect_Types
(L
, R
));
2084 Set_Etype
(R
, Etype
(Next_Formal
(First_Formal
(Op_Id
))));
2089 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
2091 while Present
(Op_Id
) loop
2092 if Ekind
(Op_Id
) = E_Operator
then
2093 Find_Comparison_Equality_Types
(L
, R
, Op_Id
, N
);
2095 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
2098 Op_Id
:= Homonym
(Op_Id
);
2102 -- If there was no match, and the operator is inequality, this may be
2103 -- a case where inequality has not been made explicit, as for tagged
2104 -- types. Analyze the node as the negation of an equality operation.
2105 -- This cannot be done earlier, because before analysis we cannot rule
2106 -- out the presence of an explicit inequality.
2108 if Etype
(N
) = Any_Type
2109 and then Nkind
(N
) = N_Op_Ne
2111 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Eq
);
2112 while Present
(Op_Id
) loop
2113 if Ekind
(Op_Id
) = E_Operator
then
2114 Find_Comparison_Equality_Types
(L
, R
, Op_Id
, N
);
2116 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
2119 Op_Id
:= Homonym
(Op_Id
);
2122 if Etype
(N
) /= Any_Type
then
2123 Op_Id
:= Entity
(N
);
2129 Left_Opnd
=> Left_Opnd
(N
),
2130 Right_Opnd
=> Right_Opnd
(N
))));
2132 Set_Entity
(Right_Opnd
(N
), Op_Id
);
2138 Check_Function_Writable_Actuals
(N
);
2139 end Analyze_Comparison_Equality_Op
;
2141 ----------------------------------
2142 -- Analyze_Explicit_Dereference --
2143 ----------------------------------
2145 procedure Analyze_Explicit_Dereference
(N
: Node_Id
) is
2146 Loc
: constant Source_Ptr
:= Sloc
(N
);
2147 P
: constant Node_Id
:= Prefix
(N
);
2153 function Is_Function_Type
return Boolean;
2154 -- Check whether node may be interpreted as an implicit function call
2156 ----------------------
2157 -- Is_Function_Type --
2158 ----------------------
2160 function Is_Function_Type
return Boolean is
2165 if not Is_Overloaded
(N
) then
2166 return Ekind
(Base_Type
(Etype
(N
))) = E_Subprogram_Type
2167 and then Etype
(Base_Type
(Etype
(N
))) /= Standard_Void_Type
;
2170 Get_First_Interp
(N
, I
, It
);
2171 while Present
(It
.Nam
) loop
2172 if Ekind
(Base_Type
(It
.Typ
)) /= E_Subprogram_Type
2173 or else Etype
(Base_Type
(It
.Typ
)) = Standard_Void_Type
2178 Get_Next_Interp
(I
, It
);
2183 end Is_Function_Type
;
2185 -- Start of processing for Analyze_Explicit_Dereference
2188 -- In formal verification mode, keep track of all reads and writes
2189 -- through explicit dereferences.
2191 if GNATprove_Mode
then
2192 SPARK_Specific
.Generate_Dereference
(N
);
2196 Set_Etype
(N
, Any_Type
);
2198 -- Test for remote access to subprogram type, and if so return
2199 -- after rewriting the original tree.
2201 if Remote_AST_E_Dereference
(P
) then
2205 -- Normal processing for other than remote access to subprogram type
2207 if not Is_Overloaded
(P
) then
2208 if Is_Access_Type
(Etype
(P
)) then
2213 DT
: constant Entity_Id
:= Designated_Type
(Etype
(P
));
2216 -- An explicit dereference is a legal occurrence of an
2217 -- incomplete type imported through a limited_with clause, if
2218 -- the full view is visible, or if we are within an instance
2219 -- body, where the enclosing body has a regular with_clause
2222 if From_Limited_With
(DT
)
2223 and then not From_Limited_With
(Scope
(DT
))
2225 (Is_Immediately_Visible
(Scope
(DT
))
2227 (Is_Child_Unit
(Scope
(DT
))
2228 and then Is_Visible_Lib_Unit
(Scope
(DT
)))
2229 or else In_Instance_Body
)
2231 Set_Etype
(N
, Available_View
(DT
));
2238 elsif Etype
(P
) /= Any_Type
then
2239 Error_Msg_N
("prefix of dereference must be an access type", N
);
2244 Get_First_Interp
(P
, I
, It
);
2245 while Present
(It
.Nam
) loop
2248 if Is_Access_Type
(T
) then
2249 Add_One_Interp
(N
, Designated_Type
(T
), Designated_Type
(T
));
2252 Get_Next_Interp
(I
, It
);
2255 -- Error if no interpretation of the prefix has an access type
2257 if Etype
(N
) = Any_Type
then
2259 ("access type required in prefix of explicit dereference", P
);
2260 Set_Etype
(N
, Any_Type
);
2266 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
2268 and then (Nkind
(Parent
(N
)) /= N_Function_Call
2269 or else N
/= Name
(Parent
(N
)))
2271 and then (Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
2272 or else N
/= Name
(Parent
(N
)))
2274 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
2275 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
2277 (Attribute_Name
(Parent
(N
)) /= Name_Address
2279 Attribute_Name
(Parent
(N
)) /= Name_Access
))
2281 -- Name is a function call with no actuals, in a context that
2282 -- requires deproceduring (including as an actual in an enclosing
2283 -- function or procedure call). There are some pathological cases
2284 -- where the prefix might include functions that return access to
2285 -- subprograms and others that return a regular type. Disambiguation
2286 -- of those has to take place in Resolve.
2289 Make_Function_Call
(Loc
,
2290 Name
=> Make_Explicit_Dereference
(Loc
, P
),
2291 Parameter_Associations
=> New_List
);
2293 -- If the prefix is overloaded, remove operations that have formals,
2294 -- we know that this is a parameterless call.
2296 if Is_Overloaded
(P
) then
2297 Get_First_Interp
(P
, I
, It
);
2298 while Present
(It
.Nam
) loop
2301 if No
(First_Formal
(Base_Type
(Designated_Type
(T
)))) then
2307 Get_Next_Interp
(I
, It
);
2314 elsif not Is_Function_Type
2315 and then Is_Overloaded
(N
)
2317 -- The prefix may include access to subprograms and other access
2318 -- types. If the context selects the interpretation that is a
2319 -- function call (not a procedure call) we cannot rewrite the node
2320 -- yet, but we include the result of the call interpretation.
2322 Get_First_Interp
(N
, I
, It
);
2323 while Present
(It
.Nam
) loop
2324 if Ekind
(Base_Type
(It
.Typ
)) = E_Subprogram_Type
2325 and then Etype
(Base_Type
(It
.Typ
)) /= Standard_Void_Type
2326 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
2328 Add_One_Interp
(N
, Etype
(It
.Typ
), Etype
(It
.Typ
));
2331 Get_Next_Interp
(I
, It
);
2335 -- A value of remote access-to-class-wide must not be dereferenced
2338 Validate_Remote_Access_To_Class_Wide_Type
(N
);
2339 end Analyze_Explicit_Dereference
;
2341 ------------------------
2342 -- Analyze_Expression --
2343 ------------------------
2345 procedure Analyze_Expression
(N
: Node_Id
) is
2347 -- If the expression is an indexed component that will be rewritten
2348 -- as a container indexing, it has already been analyzed.
2350 if Nkind
(N
) = N_Indexed_Component
2351 and then Present
(Generalized_Indexing
(N
))
2357 Check_Parameterless_Call
(N
);
2359 end Analyze_Expression
;
2361 -------------------------------------
2362 -- Analyze_Expression_With_Actions --
2363 -------------------------------------
2365 procedure Analyze_Expression_With_Actions
(N
: Node_Id
) is
2367 procedure Check_Action_OK
(A
: Node_Id
);
2368 -- Check that the action A is allowed as a declare_item of a declare
2369 -- expression if N and A come from source.
2371 ---------------------
2372 -- Check_Action_OK --
2373 ---------------------
2375 procedure Check_Action_OK
(A
: Node_Id
) is
2377 if not Comes_From_Source
(N
) or else not Comes_From_Source
(A
) then
2379 -- If, for example, an (illegal) expression function is
2380 -- transformed into a "vanilla" function then we don't want to
2381 -- allow it just because Comes_From_Source is now False. So look
2382 -- at the Original_Node.
2384 if Is_Rewrite_Substitution
(A
) then
2385 Check_Action_OK
(Original_Node
(A
));
2388 return; -- Allow anything in generated code
2392 when N_Object_Declaration
=>
2393 if Nkind
(Object_Definition
(A
)) = N_Access_Definition
then
2395 ("anonymous access type not allowed in declare_expression",
2396 Object_Definition
(A
));
2399 if Aliased_Present
(A
) then
2400 Error_Msg_N
("ALIASED not allowed in declare_expression", A
);
2403 if Constant_Present
(A
)
2404 and then not Is_Limited_Type
(Etype
(Defining_Identifier
(A
)))
2406 return; -- nonlimited constants are OK
2409 when N_Object_Renaming_Declaration
=>
2410 if Present
(Access_Definition
(A
)) then
2412 ("anonymous access type not allowed in declare_expression",
2413 Access_Definition
(A
));
2416 if not Is_Limited_Type
(Etype
(Defining_Identifier
(A
))) then
2417 return; -- ???For now; the RM rule is a bit more complicated
2422 -- See AI22-0045 pragma categorization.
2423 subtype Executable_Pragma_Id
is Pragma_Id
2424 with Predicate
=> Executable_Pragma_Id
in
2425 -- language-defined executable pragmas
2426 Pragma_Assert | Pragma_Inspection_Point
2428 -- GNAT-defined executable pragmas
2429 | Pragma_Assume | Pragma_Debug
;
2431 if Get_Pragma_Id
(A
) in Executable_Pragma_Id
then
2437 null; -- Nothing else allowed
2440 -- We could mention pragmas in the message text; let's not.
2441 Error_Msg_N
("object renaming or constant declaration expected", A
);
2442 end Check_Action_OK
;
2445 EWA_Scop
: Entity_Id
;
2447 -- Start of processing for Analyze_Expression_With_Actions
2450 -- Create a scope, which is needed to provide proper visibility of the
2453 EWA_Scop
:= New_Internal_Entity
(E_Block
, Current_Scope
, Sloc
(N
), 'B');
2454 Set_Etype
(EWA_Scop
, Standard_Void_Type
);
2455 Set_Scope
(EWA_Scop
, Current_Scope
);
2456 Set_Parent
(EWA_Scop
, N
);
2457 Push_Scope
(EWA_Scop
);
2459 -- If this Expression_With_Actions node comes from source, then it
2460 -- represents a declare_expression; increment the counter to take note
2463 if Comes_From_Source
(N
) then
2464 In_Declare_Expr
:= In_Declare_Expr
+ 1;
2467 A
:= First
(Actions
(N
));
2468 while Present
(A
) loop
2470 Check_Action_OK
(A
);
2474 Analyze_Expression
(Expression
(N
));
2475 Set_Etype
(N
, Etype
(Expression
(N
)));
2478 if Comes_From_Source
(N
) then
2479 In_Declare_Expr
:= In_Declare_Expr
- 1;
2481 end Analyze_Expression_With_Actions
;
2483 ---------------------------
2484 -- Analyze_If_Expression --
2485 ---------------------------
2487 procedure Analyze_If_Expression
(N
: Node_Id
) is
2488 Condition
: constant Node_Id
:= First
(Expressions
(N
));
2490 Then_Expr
: Node_Id
;
2491 Else_Expr
: Node_Id
;
2493 procedure Check_Else_Expression
(T
: Entity_Id
);
2494 -- Check one interpretation of the THEN expression with type T
2496 procedure Check_Expression_Pair
(T1
, T2
: Entity_Id
);
2497 -- Check THEN expression with type T1 and ELSE expression with type T2
2499 ---------------------------
2500 -- Check_Else_Expression --
2501 ---------------------------
2503 procedure Check_Else_Expression
(T
: Entity_Id
) is
2508 -- Loop through the interpretations of the ELSE expression
2510 if not Is_Overloaded
(Else_Expr
) then
2511 Check_Expression_Pair
(T
, Etype
(Else_Expr
));
2514 Get_First_Interp
(Else_Expr
, I
, It
);
2515 while Present
(It
.Typ
) loop
2516 Check_Expression_Pair
(T
, It
.Typ
);
2517 Get_Next_Interp
(I
, It
);
2520 end Check_Else_Expression
;
2522 ---------------------------
2523 -- Check_Expression_Pair --
2524 ---------------------------
2526 procedure Check_Expression_Pair
(T1
, T2
: Entity_Id
) is
2530 if Covers
(T1
=> T1
, T2
=> T2
)
2531 or else Covers
(T1
=> T2
, T2
=> T1
)
2533 T
:= Specific_Type
(T1
, T2
);
2535 elsif Is_User_Defined_Literal
(Then_Expr
, T2
) then
2538 elsif Is_User_Defined_Literal
(Else_Expr
, T1
) then
2542 T
:= Possible_Type_For_Conditional_Expression
(T1
, T2
);
2549 Add_One_Interp
(N
, T
, T
);
2550 end Check_Expression_Pair
;
2557 -- Start of processing for Analyze_If_Expression
2560 -- Defend against error of missing expressions from previous error
2562 if No
(Condition
) then
2563 Check_Error_Detected
;
2567 Set_Etype
(N
, Any_Type
);
2569 Then_Expr
:= Next
(Condition
);
2571 if No
(Then_Expr
) then
2572 Check_Error_Detected
;
2576 Else_Expr
:= Next
(Then_Expr
);
2578 -- Analyze and resolve the condition. We need to resolve this now so
2579 -- that it gets folded to True/False if possible, before we analyze
2580 -- the THEN/ELSE branches, because when analyzing these branches, we
2581 -- may call Is_Statically_Unevaluated, which expects the condition of
2582 -- an enclosing IF to have been analyze/resolved/evaluated.
2584 Analyze_Expression
(Condition
);
2585 Resolve
(Condition
, Any_Boolean
);
2587 -- Analyze the THEN expression and (if present) the ELSE expression. For
2588 -- them we delay resolution in the normal manner because of overloading.
2590 Analyze_Expression
(Then_Expr
);
2592 if Present
(Else_Expr
) then
2593 Analyze_Expression
(Else_Expr
);
2596 -- RM 4.5.7(10/3): If the if_expression is the operand of a type
2597 -- conversion, the type of the if_expression is the target type
2598 -- of the conversion.
2600 if Nkind
(Parent
(N
)) = N_Type_Conversion
then
2601 Set_Etype
(N
, Etype
(Parent
(N
)));
2605 -- Loop through the interpretations of the THEN expression and check the
2606 -- ELSE expression if present.
2608 if not Is_Overloaded
(Then_Expr
) then
2609 if Present
(Else_Expr
) then
2610 Check_Else_Expression
(Etype
(Then_Expr
));
2612 Set_Etype
(N
, Etype
(Then_Expr
));
2616 Get_First_Interp
(Then_Expr
, I
, It
);
2617 while Present
(It
.Typ
) loop
2618 if Present
(Else_Expr
) then
2619 Check_Else_Expression
(It
.Typ
);
2621 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
2624 Get_Next_Interp
(I
, It
);
2628 -- If no possible interpretation has been found, the type of the
2629 -- ELSE expression does not match any interpretation of the THEN
2632 if Etype
(N
) = Any_Type
then
2633 if Is_Overloaded
(Then_Expr
) then
2634 if Is_Overloaded
(Else_Expr
) then
2636 ("no interpretation compatible with those of THEN expression",
2640 ("type of ELSE incompatible with interpretations of THEN "
2644 ("\ELSE expression has}!", Else_Expr
, Etype
(Else_Expr
));
2648 if Is_Overloaded
(Else_Expr
) then
2650 ("no interpretation compatible with type of THEN expression",
2653 ("\THEN expression has}!", Else_Expr
, Etype
(Then_Expr
));
2656 ("type of ELSE incompatible with that of THEN expression",
2659 ("\THEN expression has}!", Else_Expr
, Etype
(Then_Expr
));
2661 ("\ELSE expression has}!", Else_Expr
, Etype
(Else_Expr
));
2665 end Analyze_If_Expression
;
2667 ------------------------------------
2668 -- Analyze_Indexed_Component_Form --
2669 ------------------------------------
2671 procedure Analyze_Indexed_Component_Form
(N
: Node_Id
) is
2672 P
: constant Node_Id
:= Prefix
(N
);
2673 Exprs
: constant List_Id
:= Expressions
(N
);
2679 procedure Process_Function_Call
;
2680 -- Prefix in indexed component form is an overloadable entity, so the
2681 -- node is very likely a function call; reformat it as such. The only
2682 -- exception is a call to a parameterless function that returns an
2683 -- array type, or an access type thereof, in which case this will be
2684 -- undone later by Resolve_Call or Resolve_Entry_Call.
2686 procedure Process_Indexed_Component
;
2687 -- Prefix in indexed component form is actually an indexed component.
2688 -- This routine processes it, knowing that the prefix is already
2691 procedure Process_Indexed_Component_Or_Slice
;
2692 -- An indexed component with a single index may designate a slice if
2693 -- the index is a subtype mark. This routine disambiguates these two
2694 -- cases by resolving the prefix to see if it is a subtype mark.
2696 procedure Process_Overloaded_Indexed_Component
;
2697 -- If the prefix of an indexed component is overloaded, the proper
2698 -- interpretation is selected by the index types and the context.
2700 ---------------------------
2701 -- Process_Function_Call --
2702 ---------------------------
2704 procedure Process_Function_Call
is
2705 Loc
: constant Source_Ptr
:= Sloc
(N
);
2709 Change_Node
(N
, N_Function_Call
);
2711 Set_Parameter_Associations
(N
, Exprs
);
2713 -- Analyze actuals prior to analyzing the call itself
2715 Actual
:= First
(Parameter_Associations
(N
));
2716 while Present
(Actual
) loop
2718 Check_Parameterless_Call
(Actual
);
2720 -- Move to next actual. Note that we use Next, not Next_Actual
2721 -- here. The reason for this is a bit subtle. If a function call
2722 -- includes named associations, the parser recognizes the node
2723 -- as a call, and it is analyzed as such. If all associations are
2724 -- positional, the parser builds an indexed_component node, and
2725 -- it is only after analysis of the prefix that the construct
2726 -- is recognized as a call, in which case Process_Function_Call
2727 -- rewrites the node and analyzes the actuals. If the list of
2728 -- actuals is malformed, the parser may leave the node as an
2729 -- indexed component (despite the presence of named associations).
2730 -- The iterator Next_Actual is equivalent to Next if the list is
2731 -- positional, but follows the normalized chain of actuals when
2732 -- named associations are present. In this case normalization has
2733 -- not taken place, and actuals remain unanalyzed, which leads to
2734 -- subsequent crashes or loops if there is an attempt to continue
2735 -- analysis of the program.
2737 -- IF there is a single actual and it is a type name, the node
2738 -- can only be interpreted as a slice of a parameterless call.
2739 -- Rebuild the node as such and analyze.
2741 if No
(Next
(Actual
))
2742 and then Is_Entity_Name
(Actual
)
2743 and then Is_Type
(Entity
(Actual
))
2744 and then Is_Discrete_Type
(Entity
(Actual
))
2745 and then not Is_Current_Instance
(Actual
)
2751 New_Occurrence_Of
(Entity
(Actual
), Loc
)));
2761 end Process_Function_Call
;
2763 -------------------------------
2764 -- Process_Indexed_Component --
2765 -------------------------------
2767 procedure Process_Indexed_Component
is
2769 Array_Type
: Entity_Id
;
2771 Pent
: Entity_Id
:= Empty
;
2774 Exp
:= First
(Exprs
);
2776 if Is_Overloaded
(P
) then
2777 Process_Overloaded_Indexed_Component
;
2780 Array_Type
:= Etype
(P
);
2782 if Is_Entity_Name
(P
) then
2784 elsif Nkind
(P
) = N_Selected_Component
2785 and then Is_Entity_Name
(Selector_Name
(P
))
2787 Pent
:= Entity
(Selector_Name
(P
));
2790 -- Prefix must be appropriate for an array type, taking into
2791 -- account a possible implicit dereference.
2793 if Is_Access_Type
(Array_Type
) then
2795 (Warn_On_Dereference
, "?d?implicit dereference", N
);
2796 Array_Type
:= Implicitly_Designated_Type
(Array_Type
);
2799 if Is_Array_Type
(Array_Type
) then
2801 -- In order to correctly access First_Index component later,
2802 -- replace string literal subtype by its parent type.
2804 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
2805 Array_Type
:= Etype
(Array_Type
);
2808 elsif Present
(Pent
) and then Ekind
(Pent
) = E_Entry_Family
then
2810 Set_Etype
(N
, Any_Type
);
2812 if not Has_Compatible_Type
(Exp
, Entry_Index_Type
(Pent
)) then
2813 Error_Msg_N
("invalid index type in entry name", N
);
2815 elsif Present
(Next
(Exp
)) then
2816 Error_Msg_N
("too many subscripts in entry reference", N
);
2819 Set_Etype
(N
, Etype
(P
));
2824 elsif Is_Record_Type
(Array_Type
)
2825 and then Remote_AST_I_Dereference
(P
)
2829 elsif Try_Container_Indexing
(N
, P
, Exprs
) then
2832 elsif Array_Type
= Any_Type
then
2833 Set_Etype
(N
, Any_Type
);
2835 -- In most cases the analysis of the prefix will have emitted
2836 -- an error already, but if the prefix may be interpreted as a
2837 -- call in prefixed notation, the report is left to the caller.
2838 -- To prevent cascaded errors, report only if no previous ones.
2840 if Serious_Errors_Detected
= 0 then
2841 Error_Msg_N
("invalid prefix in indexed component", P
);
2843 if Nkind
(P
) = N_Expanded_Name
then
2844 Error_Msg_NE
("\& is not visible", P
, Selector_Name
(P
));
2850 -- Here we definitely have a bad indexing
2853 if Nkind
(Parent
(N
)) = N_Requeue_Statement
2854 and then Present
(Pent
) and then Ekind
(Pent
) = E_Entry
2857 ("REQUEUE does not permit parameters", First
(Exprs
));
2859 elsif Is_Entity_Name
(P
)
2860 and then Etype
(P
) = Standard_Void_Type
2862 Error_Msg_NE
("incorrect use of &", P
, Entity
(P
));
2865 Error_Msg_N
("array type required in indexed component", P
);
2868 Set_Etype
(N
, Any_Type
);
2872 Index
:= First_Index
(Array_Type
);
2873 while Present
(Index
) and then Present
(Exp
) loop
2874 if not Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2875 Wrong_Type
(Exp
, Etype
(Index
));
2876 Set_Etype
(N
, Any_Type
);
2884 Set_Etype
(N
, Component_Type
(Array_Type
));
2885 Check_Implicit_Dereference
(N
, Etype
(N
));
2887 if Present
(Index
) then
2889 ("too few subscripts in array reference", First
(Exprs
));
2891 elsif Present
(Exp
) then
2892 Error_Msg_N
("too many subscripts in array reference", Exp
);
2895 end Process_Indexed_Component
;
2897 ----------------------------------------
2898 -- Process_Indexed_Component_Or_Slice --
2899 ----------------------------------------
2901 procedure Process_Indexed_Component_Or_Slice
is
2903 Exp
:= First
(Exprs
);
2904 while Present
(Exp
) loop
2905 Analyze_Expression
(Exp
);
2909 Exp
:= First
(Exprs
);
2911 -- If one index is present, and it is a subtype name, then the node
2912 -- denotes a slice (note that the case of an explicit range for a
2913 -- slice was already built as an N_Slice node in the first place,
2914 -- so that case is not handled here).
2916 -- We use a replace rather than a rewrite here because this is one
2917 -- of the cases in which the tree built by the parser is plain wrong.
2920 and then Is_Entity_Name
(Exp
)
2921 and then Is_Type
(Entity
(Exp
))
2924 Make_Slice
(Sloc
(N
),
2926 Discrete_Range
=> New_Copy
(Exp
)));
2929 -- Otherwise (more than one index present, or single index is not
2930 -- a subtype name), then we have the indexed component case.
2933 Process_Indexed_Component
;
2935 end Process_Indexed_Component_Or_Slice
;
2937 ------------------------------------------
2938 -- Process_Overloaded_Indexed_Component --
2939 ------------------------------------------
2941 procedure Process_Overloaded_Indexed_Component
is
2950 Set_Etype
(N
, Any_Type
);
2952 Get_First_Interp
(P
, I
, It
);
2953 while Present
(It
.Nam
) loop
2956 if Is_Access_Type
(Typ
) then
2957 Typ
:= Designated_Type
(Typ
);
2959 (Warn_On_Dereference
, "?d?implicit dereference", N
);
2962 if Is_Array_Type
(Typ
) then
2964 -- Got a candidate: verify that index types are compatible
2966 Index
:= First_Index
(Typ
);
2968 Exp
:= First
(Exprs
);
2969 while Present
(Index
) and then Present
(Exp
) loop
2970 if Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2982 if Found
and then No
(Index
) and then No
(Exp
) then
2984 CT
: constant Entity_Id
:=
2985 Base_Type
(Component_Type
(Typ
));
2987 Add_One_Interp
(N
, CT
, CT
);
2988 Check_Implicit_Dereference
(N
, CT
);
2992 elsif Try_Container_Indexing
(N
, P
, Exprs
) then
2997 Get_Next_Interp
(I
, It
);
3000 if Etype
(N
) = Any_Type
then
3001 Error_Msg_N
("no legal interpretation for indexed component", N
);
3002 Set_Is_Overloaded
(N
, False);
3004 end Process_Overloaded_Indexed_Component
;
3006 -- Start of processing for Analyze_Indexed_Component_Form
3009 -- Get name of array, function or type
3013 -- If P is an explicit dereference whose prefix is of a remote access-
3014 -- to-subprogram type, then N has already been rewritten as a subprogram
3015 -- call and analyzed.
3017 if Nkind
(N
) in N_Subprogram_Call
then
3020 -- When the prefix is attribute 'Loop_Entry and the sole expression of
3021 -- the indexed component denotes a loop name, the indexed form is turned
3022 -- into an attribute reference.
3024 elsif Nkind
(N
) = N_Attribute_Reference
3025 and then Attribute_Name
(N
) = Name_Loop_Entry
3030 pragma Assert
(Nkind
(N
) = N_Indexed_Component
);
3032 P_T
:= Base_Type
(Etype
(P
));
3034 if Is_Entity_Name
(P
) and then Present
(Entity
(P
)) then
3037 if Is_Type
(U_N
) then
3039 -- Reformat node as a type conversion
3041 E
:= Remove_Head
(Exprs
);
3043 if Present
(First
(Exprs
)) then
3045 ("argument of type conversion must be single expression", N
);
3048 Change_Node
(N
, N_Type_Conversion
);
3049 Set_Subtype_Mark
(N
, P
);
3051 Set_Expression
(N
, E
);
3053 -- After changing the node, call for the specific Analysis
3054 -- routine directly, to avoid a double call to the expander.
3056 Analyze_Type_Conversion
(N
);
3060 if Is_Overloadable
(U_N
) then
3061 Process_Function_Call
;
3063 elsif Ekind
(Etype
(P
)) = E_Subprogram_Type
3064 or else (Is_Access_Type
(Etype
(P
))
3066 Ekind
(Designated_Type
(Etype
(P
))) =
3069 -- Call to access_to-subprogram with possible implicit dereference
3071 Process_Function_Call
;
3073 elsif Is_Generic_Subprogram
(U_N
) then
3075 -- A common beginner's (or C++ templates fan) error
3077 Error_Msg_N
("generic subprogram cannot be called", N
);
3078 Set_Etype
(N
, Any_Type
);
3082 Process_Indexed_Component_Or_Slice
;
3085 -- If not an entity name, prefix is an expression that may denote
3086 -- an array or an access-to-subprogram.
3089 if Ekind
(P_T
) = E_Subprogram_Type
3090 or else (Is_Access_Type
(P_T
)
3092 Ekind
(Designated_Type
(P_T
)) = E_Subprogram_Type
)
3094 Process_Function_Call
;
3096 elsif Nkind
(P
) = N_Selected_Component
3097 and then Present
(Entity
(Selector_Name
(P
)))
3098 and then Is_Overloadable
(Entity
(Selector_Name
(P
)))
3100 Process_Function_Call
;
3102 -- Indexed component, slice, or a call to a member of a family
3103 -- entry, which will be converted to an entry call later.
3105 Process_Indexed_Component_Or_Slice
;
3109 Analyze_Dimension
(N
);
3110 end Analyze_Indexed_Component_Form
;
3112 ------------------------
3113 -- Analyze_Logical_Op --
3114 ------------------------
3116 procedure Analyze_Logical_Op
(N
: Node_Id
) is
3117 L
: constant Node_Id
:= Left_Opnd
(N
);
3118 R
: constant Node_Id
:= Right_Opnd
(N
);
3123 Set_Etype
(N
, Any_Type
);
3124 Candidate_Type
:= Empty
;
3126 Analyze_Expression
(L
);
3127 Analyze_Expression
(R
);
3129 -- If the entity is already set, the node is the instantiation of a
3130 -- generic node with a non-local reference, or was manufactured by a
3131 -- call to Make_Op_xxx. In either case the entity is known to be valid,
3132 -- and we do not need to collect interpretations, instead we just get
3133 -- the single possible interpretation.
3135 if Present
(Entity
(N
)) then
3136 Op_Id
:= Entity
(N
);
3138 if Ekind
(Op_Id
) = E_Operator
then
3139 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
3141 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
3144 -- Entity is not already set, so we do need to collect interpretations
3147 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
3148 while Present
(Op_Id
) loop
3149 if Ekind
(Op_Id
) = E_Operator
then
3150 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
3152 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
3155 Op_Id
:= Homonym
(Op_Id
);
3160 Check_Function_Writable_Actuals
(N
);
3163 if Nkind
(L
) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
3164 and then Is_Boolean_Type
(Etype
(L
))
3166 Check_Xtra_Parens_Precedence
(L
);
3169 if Nkind
(R
) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
3170 and then Is_Boolean_Type
(Etype
(R
))
3172 Check_Xtra_Parens_Precedence
(R
);
3175 end Analyze_Logical_Op
;
3177 ---------------------------
3178 -- Analyze_Membership_Op --
3179 ---------------------------
3181 procedure Analyze_Membership_Op
(N
: Node_Id
) is
3182 Loc
: constant Source_Ptr
:= Sloc
(N
);
3183 L
: constant Node_Id
:= Left_Opnd
(N
);
3184 R
: constant Node_Id
:= Right_Opnd
(N
);
3186 procedure Analyze_Set_Membership
;
3187 -- If a set of alternatives is present, analyze each and find the
3188 -- common type to which they must all resolve.
3190 function Find_Interp
return Boolean;
3191 -- Find a valid interpretation of the test. Note that the context of the
3192 -- operation plays no role in resolving the operands, so that if there
3193 -- is more than one interpretation of the operands that is compatible
3194 -- with the test, the operation is ambiguous.
3196 function Try_Left_Interp
(T
: Entity_Id
) return Boolean;
3197 -- Try an interpretation of the left operand with type T. Return true if
3198 -- one interpretation (at least) of the right operand making up a valid
3199 -- operand pair exists, otherwise false if no such pair exists.
3201 function Is_Valid_Pair
(T1
, T2
: Entity_Id
) return Boolean;
3202 -- Return true if T1 and T2 constitute a valid pair of operand types for
3203 -- L and R respectively.
3205 ----------------------------
3206 -- Analyze_Set_Membership --
3207 ----------------------------
3209 procedure Analyze_Set_Membership
is
3211 Index
: Interp_Index
;
3213 Candidate_Interps
: Node_Id
;
3214 Common_Type
: Entity_Id
:= Empty
;
3218 Candidate_Interps
:= L
;
3220 if not Is_Overloaded
(L
) then
3221 Common_Type
:= Etype
(L
);
3223 Alt
:= First
(Alternatives
(N
));
3224 while Present
(Alt
) loop
3227 if not Has_Compatible_Type
(Alt
, Common_Type
) then
3228 Wrong_Type
(Alt
, Common_Type
);
3235 Alt
:= First
(Alternatives
(N
));
3236 while Present
(Alt
) loop
3238 if not Is_Overloaded
(Alt
) then
3239 Common_Type
:= Etype
(Alt
);
3242 Get_First_Interp
(Alt
, Index
, It
);
3243 while Present
(It
.Typ
) loop
3245 Has_Compatible_Type
(Candidate_Interps
, It
.Typ
)
3247 Remove_Interp
(Index
);
3250 Get_Next_Interp
(Index
, It
);
3253 Get_First_Interp
(Alt
, Index
, It
);
3256 Error_Msg_N
("alternative has no legal type", Alt
);
3260 -- If alternative is not overloaded, we have a unique type
3263 Set_Etype
(Alt
, It
.Typ
);
3265 -- If the alternative is an enumeration literal, use the one
3266 -- for this interpretation.
3268 if Is_Entity_Name
(Alt
) then
3269 Set_Entity
(Alt
, It
.Nam
);
3272 Get_Next_Interp
(Index
, It
);
3275 Set_Is_Overloaded
(Alt
, False);
3276 Common_Type
:= Etype
(Alt
);
3279 Candidate_Interps
:= Alt
;
3286 if Present
(Common_Type
) then
3287 Set_Etype
(L
, Common_Type
);
3289 -- The left operand may still be overloaded, to be resolved using
3293 Error_Msg_N
("cannot resolve membership operation", N
);
3295 end Analyze_Set_Membership
;
3301 function Find_Interp
return Boolean is
3306 Valid_I
: Interp_Index
;
3309 -- Loop through the interpretations of the left operand
3311 if not Is_Overloaded
(L
) then
3312 Found
:= Try_Left_Interp
(Etype
(L
));
3319 Get_First_Interp
(L
, I
, It
);
3320 while Present
(It
.Typ
) loop
3321 if Try_Left_Interp
(It
.Typ
) then
3322 -- If several interpretations are possible, disambiguate
3325 and then Base_Type
(It
.Typ
) /= Base_Type
(L_Typ
)
3327 It
:= Disambiguate
(L
, Valid_I
, I
, Any_Type
);
3329 if It
= No_Interp
then
3330 Ambiguous_Operands
(N
);
3331 Set_Etype
(L
, Any_Type
);
3340 Set_Etype
(L
, L_Typ
);
3344 Get_Next_Interp
(I
, It
);
3351 ---------------------
3352 -- Try_Left_Interp --
3353 ---------------------
3355 function Try_Left_Interp
(T
: Entity_Id
) return Boolean is
3360 Valid_I
: Interp_Index
;
3363 -- Defend against previous error
3365 if Nkind
(R
) = N_Error
then
3368 -- Loop through the interpretations of the right operand
3370 elsif not Is_Overloaded
(R
) then
3371 Found
:= Is_Valid_Pair
(T
, Etype
(R
));
3378 Get_First_Interp
(R
, I
, It
);
3379 while Present
(It
.Typ
) loop
3380 if Is_Valid_Pair
(T
, It
.Typ
) then
3381 -- If several interpretations are possible, disambiguate
3384 and then Base_Type
(It
.Typ
) /= Base_Type
(R_Typ
)
3386 It
:= Disambiguate
(R
, Valid_I
, I
, Any_Type
);
3388 if It
= No_Interp
then
3389 Ambiguous_Operands
(N
);
3390 Set_Etype
(R
, Any_Type
);
3402 Get_Next_Interp
(I
, It
);
3407 end Try_Left_Interp
;
3413 function Is_Valid_Pair
(T1
, T2
: Entity_Id
) return Boolean is
3415 return Covers
(T1
=> T1
, T2
=> T2
)
3416 or else Covers
(T1
=> T2
, T2
=> T1
)
3417 or else Is_User_Defined_Literal
(L
, T2
)
3418 or else Is_User_Defined_Literal
(R
, T1
);
3426 -- Start of processing for Analyze_Membership_Op
3429 Analyze_Expression
(L
);
3432 pragma Assert
(Ada_Version
>= Ada_2012
);
3434 Analyze_Set_Membership
;
3439 Alt
:= First
(Alternatives
(N
));
3440 while Present
(Alt
) loop
3441 if Is_Entity_Name
(Alt
) and then Is_Type
(Entity
(Alt
)) then
3442 Check_Fully_Declared
(Entity
(Alt
), Alt
);
3444 if Has_Ghost_Predicate_Aspect
(Entity
(Alt
)) then
3446 ("subtype& has ghost predicate, "
3447 & "not allowed in membership test",
3456 elsif Nkind
(R
) = N_Range
3457 or else (Nkind
(R
) = N_Attribute_Reference
3458 and then Attribute_Name
(R
) = Name_Range
)
3460 Analyze_Expression
(R
);
3462 Dummy
:= Find_Interp
;
3464 -- If not a range, it can be a subtype mark, or else it is a degenerate
3465 -- membership test with a singleton value, i.e. a test for equality,
3466 -- if the types are compatible.
3469 Analyze_Expression
(R
);
3471 if Is_Entity_Name
(R
) and then Is_Type
(Entity
(R
)) then
3473 Check_Fully_Declared
(Entity
(R
), R
);
3475 if Has_Ghost_Predicate_Aspect
(Entity
(R
)) then
3477 ("subtype& has ghost predicate, "
3478 & "not allowed in membership test",
3482 elsif Ada_Version
>= Ada_2012
and then Find_Interp
then
3483 Op
:= Make_Op_Eq
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
3484 Resolve_Membership_Equality
(Op
, Etype
(L
));
3486 if Nkind
(N
) = N_Not_In
then
3487 Op
:= Make_Op_Not
(Loc
, Op
);
3495 -- In all versions of the language, if we reach this point there
3496 -- is a previous error that will be diagnosed below.
3502 -- Compatibility between expression and subtype mark or range is
3503 -- checked during resolution. The result of the operation is Boolean
3506 Set_Etype
(N
, Standard_Boolean
);
3508 if Comes_From_Source
(N
)
3509 and then Present
(Right_Opnd
(N
))
3510 and then Is_CPP_Class
(Etype
(Etype
(Right_Opnd
(N
))))
3512 Error_Msg_N
("membership test not applicable to cpp-class types", N
);
3515 Check_Function_Writable_Actuals
(N
);
3516 end Analyze_Membership_Op
;
3522 procedure Analyze_Mod
(N
: Node_Id
) is
3524 -- A special warning check, if we have an expression of the form:
3525 -- expr mod 2 * literal
3526 -- where literal is 128 or less, then probably what was meant was
3527 -- expr mod 2 ** literal
3528 -- so issue an appropriate warning.
3530 if Warn_On_Suspicious_Modulus_Value
3531 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
3532 and then Intval
(Right_Opnd
(N
)) = Uint_2
3533 and then Nkind
(Parent
(N
)) = N_Op_Multiply
3534 and then Nkind
(Right_Opnd
(Parent
(N
))) = N_Integer_Literal
3535 and then Intval
(Right_Opnd
(Parent
(N
))) <= Uint_128
3538 ("suspicious MOD value, was '*'* intended'??.m?", Parent
(N
));
3541 -- Remaining processing is same as for other arithmetic operators
3543 Analyze_Arithmetic_Op
(N
);
3546 ----------------------
3547 -- Analyze_Negation --
3548 ----------------------
3550 procedure Analyze_Negation
(N
: Node_Id
) is
3551 R
: constant Node_Id
:= Right_Opnd
(N
);
3556 Set_Etype
(N
, Any_Type
);
3557 Candidate_Type
:= Empty
;
3559 Analyze_Expression
(R
);
3561 -- If the entity is already set, the node is the instantiation of a
3562 -- generic node with a non-local reference, or was manufactured by a
3563 -- call to Make_Op_xxx. In either case the entity is known to be valid,
3564 -- and we do not need to collect interpretations, instead we just get
3565 -- the single possible interpretation.
3567 if Present
(Entity
(N
)) then
3568 Op_Id
:= Entity
(N
);
3570 if Ekind
(Op_Id
) = E_Operator
then
3571 Find_Negation_Types
(R
, Op_Id
, N
);
3573 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
3577 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
3578 while Present
(Op_Id
) loop
3579 if Ekind
(Op_Id
) = E_Operator
then
3580 Find_Negation_Types
(R
, Op_Id
, N
);
3582 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
3585 Op_Id
:= Homonym
(Op_Id
);
3590 end Analyze_Negation
;
3596 procedure Analyze_Null
(N
: Node_Id
) is
3598 Set_Etype
(N
, Universal_Access
);
3601 ----------------------
3602 -- Analyze_One_Call --
3603 ----------------------
3605 procedure Analyze_One_Call
3609 Success
: out Boolean;
3610 Skip_First
: Boolean := False)
3612 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
3613 Prev_T
: constant Entity_Id
:= Etype
(N
);
3615 -- Recognize cases of prefixed calls that have been rewritten in
3616 -- various ways. The simplest case is a rewritten selected component,
3617 -- but it can also be an already-examined indexed component, or a
3618 -- prefix that is itself a rewritten prefixed call that is in turn
3619 -- an indexed call (the syntactic ambiguity involving the indexing of
3620 -- a function with defaulted parameters that returns an array).
3621 -- A flag Maybe_Indexed_Call might be useful here ???
3623 Must_Skip
: constant Boolean := Skip_First
3624 or else Nkind
(Original_Node
(N
)) = N_Selected_Component
3626 (Nkind
(Original_Node
(N
)) = N_Indexed_Component
3627 and then Nkind
(Prefix
(Original_Node
(N
))) =
3628 N_Selected_Component
)
3630 (Nkind
(Parent
(N
)) = N_Function_Call
3631 and then Is_Array_Type
(Etype
(Name
(N
)))
3632 and then Etype
(Original_Node
(N
)) =
3633 Component_Type
(Etype
(Name
(N
)))
3634 and then Nkind
(Original_Node
(Parent
(N
))) =
3635 N_Selected_Component
);
3637 -- The first formal must be omitted from the match when trying to find
3638 -- a primitive operation that is a possible interpretation, and also
3639 -- after the call has been rewritten, because the corresponding actual
3640 -- is already known to be compatible, and because this may be an
3641 -- indexing of a call with default parameters.
3643 First_Form
: Entity_Id
;
3646 Is_Indexed
: Boolean := False;
3647 Is_Indirect
: Boolean := False;
3648 Subp_Type
: constant Entity_Id
:= Etype
(Nam
);
3651 function Compatible_Types_In_Predicate
3653 T2
: Entity_Id
) return Boolean;
3654 -- For an Ada 2012 predicate or invariant, a call may mention an
3655 -- incomplete type, while resolution of the corresponding predicate
3656 -- function may see the full view, as a consequence of the delayed
3657 -- resolution of the corresponding expressions. This may occur in
3658 -- the body of a predicate function, or in a call to such. Anomalies
3659 -- involving private and full views can also happen. In each case,
3660 -- rewrite node or add conversions to remove spurious type errors.
3662 procedure Indicate_Name_And_Type
;
3663 -- If candidate interpretation matches, indicate name and type of result
3666 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean;
3667 -- There may be a user-defined operator that hides the current
3668 -- interpretation. We must check for this independently of the
3669 -- analysis of the call with the user-defined operation, because
3670 -- the parameter names may be wrong and yet the hiding takes place.
3671 -- This fixes a problem with ACATS test B34014O.
3673 -- When the type Address is a visible integer type, and the DEC
3674 -- system extension is visible, the predefined operator may be
3675 -- hidden as well, by one of the address operations in auxdec.
3676 -- Finally, the abstract operations on address do not hide the
3677 -- predefined operator (this is the purpose of making them abstract).
3679 -----------------------------------
3680 -- Compatible_Types_In_Predicate --
3681 -----------------------------------
3683 function Compatible_Types_In_Predicate
3685 T2
: Entity_Id
) return Boolean
3687 function Common_Type
(T
: Entity_Id
) return Entity_Id
;
3688 -- Find non-private underlying full view if any, without going to
3689 -- ancestor type (as opposed to Underlying_Type).
3695 function Common_Type
(T
: Entity_Id
) return Entity_Id
is
3701 if Is_Private_Type
(CT
) and then Present
(Full_View
(CT
)) then
3702 CT
:= Full_View
(CT
);
3705 if Is_Private_Type
(CT
)
3706 and then Present
(Underlying_Full_View
(CT
))
3708 CT
:= Underlying_Full_View
(CT
);
3711 return Base_Type
(CT
);
3714 -- Start of processing for Compatible_Types_In_Predicate
3717 if (Ekind
(Current_Scope
) = E_Function
3718 and then Is_Predicate_Function
(Current_Scope
))
3720 (Ekind
(Nam
) = E_Function
3721 and then Is_Predicate_Function
(Nam
))
3723 if Is_Incomplete_Type
(T1
)
3724 and then Present
(Full_View
(T1
))
3725 and then Full_View
(T1
) = T2
3727 Set_Etype
(Formal
, Etype
(Actual
));
3730 elsif Common_Type
(T1
) = Common_Type
(T2
) then
3731 Rewrite
(Actual
, Unchecked_Convert_To
(Etype
(Formal
), Actual
));
3741 end Compatible_Types_In_Predicate
;
3743 ----------------------------
3744 -- Indicate_Name_And_Type --
3745 ----------------------------
3747 procedure Indicate_Name_And_Type
is
3749 Add_One_Interp
(N
, Nam
, Etype
(Nam
));
3750 Check_Implicit_Dereference
(N
, Etype
(Nam
));
3753 -- If the prefix of the call is a name, indicate the entity
3754 -- being called. If it is not a name, it is an expression that
3755 -- denotes an access to subprogram or else an entry or family. In
3756 -- the latter case, the name is a selected component, and the entity
3757 -- being called is noted on the selector.
3759 if not Is_Type
(Nam
) then
3760 if Is_Entity_Name
(Name
(N
)) then
3761 Set_Entity
(Name
(N
), Nam
);
3762 Set_Etype
(Name
(N
), Etype
(Nam
));
3764 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
3765 Set_Entity
(Selector_Name
(Name
(N
)), Nam
);
3769 if Debug_Flag_E
and not Report
then
3770 Write_Str
(" Overloaded call ");
3771 Write_Int
(Int
(N
));
3772 Write_Str
(" compatible with ");
3773 Write_Int
(Int
(Nam
));
3776 end Indicate_Name_And_Type
;
3778 ------------------------
3779 -- Operator_Hidden_By --
3780 ------------------------
3782 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean is
3783 Act1
: constant Node_Id
:= First_Actual
(N
);
3784 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
3785 Form1
: constant Entity_Id
:= First_Formal
(Fun
);
3786 Form2
: constant Entity_Id
:= Next_Formal
(Form1
);
3789 if Ekind
(Fun
) /= E_Function
or else Is_Abstract_Subprogram
(Fun
) then
3792 elsif not Has_Compatible_Type
(Act1
, Etype
(Form1
)) then
3795 elsif Present
(Form2
) then
3797 or else not Has_Compatible_Type
(Act2
, Etype
(Form2
))
3802 elsif Present
(Act2
) then
3806 -- Now we know that the arity of the operator matches the function,
3807 -- and the function call is a valid interpretation. The function
3808 -- hides the operator if it has the right signature, or if one of
3809 -- its operands is a non-abstract operation on Address when this is
3810 -- a visible integer type.
3812 return Hides_Op
(Fun
, Nam
)
3813 or else Is_Descendant_Of_Address
(Etype
(Form1
))
3816 and then Is_Descendant_Of_Address
(Etype
(Form2
)));
3817 end Operator_Hidden_By
;
3819 -- Start of processing for Analyze_One_Call
3824 -- If the subprogram has no formals or if all the formals have defaults,
3825 -- and the return type is an array type, the node may denote an indexing
3826 -- of the result of a parameterless call. In Ada 2005, the subprogram
3827 -- may have one non-defaulted formal, and the call may have been written
3828 -- in prefix notation, so that the rebuilt parameter list has more than
3831 if not Is_Overloadable
(Nam
)
3832 and then Ekind
(Nam
) /= E_Subprogram_Type
3833 and then Ekind
(Nam
) /= E_Entry_Family
3838 -- An indexing requires at least one actual. The name of the call cannot
3839 -- be an implicit indirect call, so it cannot be a generated explicit
3842 if not Is_Empty_List
(Actuals
)
3844 (Needs_No_Actuals
(Nam
)
3846 (Needs_One_Actual
(Nam
)
3847 and then Present
(Next_Actual
(First
(Actuals
)))))
3849 if Is_Array_Type
(Subp_Type
)
3851 (Nkind
(Name
(N
)) /= N_Explicit_Dereference
3852 or else Comes_From_Source
(Name
(N
)))
3854 Is_Indexed
:= Try_Indexed_Call
(N
, Nam
, Subp_Type
, Must_Skip
);
3856 elsif Is_Access_Type
(Subp_Type
)
3857 and then Is_Array_Type
(Designated_Type
(Subp_Type
))
3861 (N
, Nam
, Designated_Type
(Subp_Type
), Must_Skip
);
3863 -- The prefix can also be a parameterless function that returns an
3864 -- access to subprogram, in which case this is an indirect call.
3865 -- If this succeeds, an explicit dereference is added later on,
3866 -- in Analyze_Call or Resolve_Call.
3868 elsif Is_Access_Type
(Subp_Type
)
3869 and then Ekind
(Designated_Type
(Subp_Type
)) = E_Subprogram_Type
3871 Is_Indirect
:= Try_Indirect_Call
(N
, Nam
, Subp_Type
);
3876 -- If the call has been transformed into a slice, it is of the form
3877 -- F (Subtype) where F is parameterless. The node has been rewritten in
3878 -- Try_Indexed_Call and there is nothing else to do.
3881 and then Nkind
(N
) = N_Slice
3887 (N
, Nam
, (Report
and not Is_Indexed
and not Is_Indirect
), Norm_OK
);
3891 -- If an indirect call is a possible interpretation, indicate
3892 -- success to the caller. This may be an indexing of an explicit
3893 -- dereference of a call that returns an access type (see above).
3897 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
3898 and then Comes_From_Source
(Name
(N
)))
3903 -- Mismatch in number or names of parameters
3905 elsif Debug_Flag_E
then
3906 Write_Str
(" normalization fails in call ");
3907 Write_Int
(Int
(N
));
3908 Write_Str
(" with subprogram ");
3909 Write_Int
(Int
(Nam
));
3913 -- If the context expects a function call, discard any interpretation
3914 -- that is a procedure. If the node is not overloaded, leave as is for
3915 -- better error reporting when type mismatch is found.
3917 elsif Nkind
(N
) = N_Function_Call
3918 and then Is_Overloaded
(Name
(N
))
3919 and then Ekind
(Nam
) = E_Procedure
3923 -- Ditto for function calls in a procedure context
3925 elsif Nkind
(N
) = N_Procedure_Call_Statement
3926 and then Is_Overloaded
(Name
(N
))
3927 and then Etype
(Nam
) /= Standard_Void_Type
3931 elsif No
(Actuals
) then
3933 -- If Normalize succeeds, then there are default parameters for
3936 Indicate_Name_And_Type
;
3938 elsif Ekind
(Nam
) = E_Operator
then
3939 if Nkind
(N
) = N_Procedure_Call_Statement
then
3943 -- This occurs when the prefix of the call is an operator name
3944 -- or an expanded name whose selector is an operator name.
3946 Analyze_Operator_Call
(N
, Nam
);
3948 if Etype
(N
) /= Prev_T
then
3950 -- Check that operator is not hidden by a function interpretation
3952 if Is_Overloaded
(Name
(N
)) then
3958 Get_First_Interp
(Name
(N
), I
, It
);
3959 while Present
(It
.Nam
) loop
3960 if Operator_Hidden_By
(It
.Nam
) then
3961 Set_Etype
(N
, Prev_T
);
3965 Get_Next_Interp
(I
, It
);
3970 -- If operator matches formals, record its name on the call.
3971 -- If the operator is overloaded, Resolve will select the
3972 -- correct one from the list of interpretations. The call
3973 -- node itself carries the first candidate.
3975 Set_Entity
(Name
(N
), Nam
);
3978 elsif Report
and then Etype
(N
) = Any_Type
then
3979 Error_Msg_N
("incompatible arguments for operator", N
);
3983 -- Normalize_Actuals has chained the named associations in the
3984 -- correct order of the formals.
3986 Actual
:= First_Actual
(N
);
3987 Formal
:= First_Formal
(Nam
);
3988 First_Form
:= Formal
;
3990 -- If we are analyzing a call rewritten from object notation, skip
3991 -- first actual, which may be rewritten later as an explicit
3995 Next_Actual
(Actual
);
3996 Next_Formal
(Formal
);
3999 while Present
(Actual
) and then Present
(Formal
) loop
4000 if Nkind
(Parent
(Actual
)) /= N_Parameter_Association
4001 or else Chars
(Selector_Name
(Parent
(Actual
))) = Chars
(Formal
)
4003 -- The actual can be compatible with the formal, but we must
4004 -- also check that the context is not an address type that is
4005 -- visibly an integer type. In this case the use of literals is
4006 -- illegal, except in the body of descendants of system, where
4007 -- arithmetic operations on address are of course used.
4009 if Has_Compatible_Type
(Actual
, Etype
(Formal
))
4011 (Etype
(Actual
) /= Universal_Integer
4012 or else not Is_Descendant_Of_Address
(Etype
(Formal
))
4013 or else In_Predefined_Unit
(N
))
4015 Next_Actual
(Actual
);
4016 Next_Formal
(Formal
);
4018 -- In Allow_Integer_Address mode, we allow an actual integer to
4019 -- match a formal address type and vice versa. We only do this
4020 -- if we are certain that an error will otherwise be issued
4022 elsif Address_Integer_Convert_OK
4023 (Etype
(Actual
), Etype
(Formal
))
4024 and then (Report
and not Is_Indexed
and not Is_Indirect
)
4026 -- Handle this case by introducing an unchecked conversion
4029 Unchecked_Convert_To
(Etype
(Formal
),
4030 Relocate_Node
(Actual
)));
4031 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
4032 Next_Actual
(Actual
);
4033 Next_Formal
(Formal
);
4035 -- Under relaxed RM semantics silently replace occurrences of
4036 -- null by System.Address_Null. We only do this if we know that
4037 -- an error will otherwise be issued.
4039 elsif Null_To_Null_Address_Convert_OK
(Actual
, Etype
(Formal
))
4040 and then (Report
and not Is_Indexed
and not Is_Indirect
)
4042 Replace_Null_By_Null_Address
(Actual
);
4043 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
4044 Next_Actual
(Actual
);
4045 Next_Formal
(Formal
);
4047 elsif Compatible_Types_In_Predicate
4048 (Etype
(Formal
), Etype
(Actual
))
4050 Next_Actual
(Actual
);
4051 Next_Formal
(Formal
);
4053 -- A current instance used as an actual of a function,
4054 -- whose body has not been seen, may include a formal
4055 -- whose type is an incomplete view of an enclosing
4056 -- type declaration containing the current call (e.g.
4057 -- in the Expression for a component declaration).
4059 -- In this case, update the signature of the subprogram
4060 -- so the formal has the type of the full view.
4062 elsif Inside_Init_Proc
4063 and then Nkind
(Actual
) = N_Identifier
4064 and then Ekind
(Etype
(Formal
)) = E_Incomplete_Type
4065 and then Etype
(Actual
) = Full_View
(Etype
(Formal
))
4067 Set_Etype
(Formal
, Etype
(Actual
));
4068 Next_Actual
(Actual
);
4069 Next_Formal
(Formal
);
4071 -- Handle failed type check
4074 if Debug_Flag_E
then
4075 Write_Str
(" type checking fails in call ");
4076 Write_Int
(Int
(N
));
4077 Write_Str
(" with formal ");
4078 Write_Int
(Int
(Formal
));
4079 Write_Str
(" in subprogram ");
4080 Write_Int
(Int
(Nam
));
4084 -- Comment needed on the following test???
4086 if Report
and not Is_Indexed
and not Is_Indirect
then
4088 -- Ada 2005 (AI-251): Complete the error notification
4089 -- to help new Ada 2005 users.
4091 if Is_Class_Wide_Type
(Etype
(Formal
))
4092 and then Is_Interface
(Etype
(Etype
(Formal
)))
4093 and then not Interface_Present_In_Ancestor
4094 (Typ
=> Etype
(Actual
),
4095 Iface
=> Etype
(Etype
(Formal
)))
4098 ("(Ada 2005) does not implement interface }",
4099 Actual
, Etype
(Etype
(Formal
)));
4102 -- If we are going to output a secondary error message
4103 -- below, we need to have Wrong_Type output the main one.
4106 (Actual
, Etype
(Formal
), Multiple
=> All_Errors_Mode
);
4108 if Nkind
(Actual
) = N_Op_Eq
4109 and then Nkind
(Left_Opnd
(Actual
)) = N_Identifier
4111 Formal
:= First_Formal
(Nam
);
4112 while Present
(Formal
) loop
4113 if Chars
(Left_Opnd
(Actual
)) = Chars
(Formal
) then
4114 Error_Msg_N
-- CODEFIX
4115 ("possible misspelling of `='>`!", Actual
);
4119 Next_Formal
(Formal
);
4123 if All_Errors_Mode
then
4124 Error_Msg_Sloc
:= Sloc
(Nam
);
4126 if Etype
(Formal
) = Any_Type
then
4128 ("there is no legal actual parameter", Actual
);
4131 if Is_Overloadable
(Nam
)
4132 and then Present
(Alias
(Nam
))
4133 and then not Comes_From_Source
(Nam
)
4136 ("\\ =='> in call to inherited operation & #!",
4139 elsif Ekind
(Nam
) = E_Subprogram_Type
then
4141 Access_To_Subprogram_Typ
:
4142 constant Entity_Id
:=
4144 (Associated_Node_For_Itype
(Nam
));
4147 ("\\ =='> in call to dereference of &#!",
4148 Actual
, Access_To_Subprogram_Typ
);
4153 ("\\ =='> in call to &#!", Actual
, Nam
);
4163 -- Normalize_Actuals has verified that a default value exists
4164 -- for this formal. Current actual names a subsequent formal.
4166 Next_Formal
(Formal
);
4170 -- Due to our current model of controlled type expansion we may
4171 -- have resolved a user call to a non-visible controlled primitive
4172 -- since these inherited subprograms may be generated in the current
4173 -- scope. This is a side effect of the need for the expander to be
4174 -- able to resolve internally generated calls.
4176 -- Specifically, the issue appears when predefined controlled
4177 -- operations get called on a type extension whose parent is a
4178 -- private extension completed with a controlled extension - see
4182 -- type Par_Typ is tagged private;
4184 -- type Par_Typ is new Controlled with null record;
4187 -- procedure Main is
4188 -- type Ext_Typ is new Par_Typ with null record;
4191 -- Finalize (Obj); -- Will improperly resolve
4194 -- To avoid breaking privacy, Is_Hidden gets set elsewhere on such
4195 -- primitives, but we still need to verify that Nam is indeed a
4196 -- non-visible controlled subprogram. So, we do that here and issue
4197 -- the appropriate error.
4200 and then not In_Instance
4201 and then not Comes_From_Source
(Nam
)
4202 and then Comes_From_Source
(N
)
4204 -- Verify Nam is a non-visible controlled primitive
4206 and then Chars
(Nam
) in Name_Adjust
4209 and then Ekind
(Nam
) = E_Procedure
4210 and then Is_Controlled
(Etype
(First_Form
))
4211 and then No
(Next_Formal
(First_Form
))
4212 and then not Is_Visibly_Controlled
(Etype
(First_Form
))
4214 Error_Msg_Node_2
:= Etype
(First_Form
);
4215 Error_Msg_NE
("call to non-visible controlled primitive & on type"
4219 -- On exit, all actuals match
4221 Indicate_Name_And_Type
;
4223 end Analyze_One_Call
;
4225 ---------------------------
4226 -- Analyze_Operator_Call --
4227 ---------------------------
4229 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
) is
4230 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
4231 Act1
: constant Node_Id
:= First_Actual
(N
);
4232 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
4235 -- Binary operator case
4237 if Present
(Act2
) then
4239 -- If more than two operands, then not binary operator after all
4241 if Present
(Next_Actual
(Act2
)) then
4245 -- Otherwise action depends on operator
4256 Find_Arithmetic_Types
(Act1
, Act2
, Op_Id
, N
);
4262 Find_Boolean_Types
(Act1
, Act2
, Op_Id
, N
);
4271 Find_Comparison_Equality_Types
(Act1
, Act2
, Op_Id
, N
);
4273 when Name_Op_Concat
=>
4274 Find_Concatenation_Types
(Act1
, Act2
, Op_Id
, N
);
4276 -- Is this when others, or should it be an abort???
4282 -- Unary operator case
4290 Find_Unary_Types
(Act1
, Op_Id
, N
);
4293 Find_Negation_Types
(Act1
, Op_Id
, N
);
4295 -- Is this when others correct, or should it be an abort???
4301 end Analyze_Operator_Call
;
4303 -------------------------------------------
4304 -- Analyze_Overloaded_Selected_Component --
4305 -------------------------------------------
4307 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
) is
4308 Nam
: constant Node_Id
:= Prefix
(N
);
4309 Sel
: constant Node_Id
:= Selector_Name
(N
);
4316 Set_Etype
(Sel
, Any_Type
);
4318 Get_First_Interp
(Nam
, I
, It
);
4319 while Present
(It
.Typ
) loop
4320 if Is_Access_Type
(It
.Typ
) then
4321 T
:= Designated_Type
(It
.Typ
);
4322 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
4327 -- Locate the component. For a private prefix the selector can denote
4330 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
4332 -- If the prefix is a class-wide type, the visible components are
4333 -- those of the base type.
4335 if Is_Class_Wide_Type
(T
) then
4339 Comp
:= First_Entity
(T
);
4340 while Present
(Comp
) loop
4341 if Chars
(Comp
) = Chars
(Sel
)
4342 and then Is_Visible_Component
(Comp
, Sel
)
4345 -- AI05-105: if the context is an object renaming with
4346 -- an anonymous access type, the expected type of the
4347 -- object must be anonymous. This is a name resolution rule.
4349 if Nkind
(Parent
(N
)) /= N_Object_Renaming_Declaration
4350 or else No
(Access_Definition
(Parent
(N
)))
4351 or else Is_Anonymous_Access_Type
(Etype
(Comp
))
4353 Set_Entity
(Sel
, Comp
);
4354 Set_Etype
(Sel
, Etype
(Comp
));
4355 Add_One_Interp
(N
, Etype
(Comp
), Etype
(Comp
));
4356 Check_Implicit_Dereference
(N
, Etype
(Comp
));
4358 -- This also specifies a candidate to resolve the name.
4359 -- Further overloading will be resolved from context.
4360 -- The selector name itself does not carry overloading
4363 Set_Etype
(Nam
, It
.Typ
);
4366 -- Named access type in the context of a renaming
4367 -- declaration with an access definition. Remove
4368 -- inapplicable candidate.
4377 elsif Is_Concurrent_Type
(T
) then
4378 Comp
:= First_Entity
(T
);
4379 while Present
(Comp
)
4380 and then Comp
/= First_Private_Entity
(T
)
4382 if Chars
(Comp
) = Chars
(Sel
) then
4383 if Is_Overloadable
(Comp
) then
4384 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
4386 Set_Entity_With_Checks
(Sel
, Comp
);
4387 Generate_Reference
(Comp
, Sel
);
4390 Set_Etype
(Sel
, Etype
(Comp
));
4391 Set_Etype
(N
, Etype
(Comp
));
4392 Set_Etype
(Nam
, It
.Typ
);
4398 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
4401 Get_Next_Interp
(I
, It
);
4404 if Etype
(N
) = Any_Type
4405 and then not Try_Object_Operation
(N
)
4407 Error_Msg_NE
("undefined selector& for overloaded prefix", N
, Sel
);
4408 Set_Entity
(Sel
, Any_Id
);
4409 Set_Etype
(Sel
, Any_Type
);
4411 end Analyze_Overloaded_Selected_Component
;
4413 ----------------------------------
4414 -- Analyze_Qualified_Expression --
4415 ----------------------------------
4417 procedure Analyze_Qualified_Expression
(N
: Node_Id
) is
4418 Expr
: constant Node_Id
:= Expression
(N
);
4419 Mark
: constant Entity_Id
:= Subtype_Mark
(N
);
4429 if Nkind
(Enclosing_Declaration
(N
)) in
4430 N_Formal_Type_Declaration |
4431 N_Full_Type_Declaration |
4432 N_Incomplete_Type_Declaration |
4433 N_Protected_Type_Declaration |
4434 N_Private_Extension_Declaration |
4435 N_Private_Type_Declaration |
4436 N_Subtype_Declaration |
4437 N_Task_Type_Declaration
4438 and then T
= Defining_Identifier
(Enclosing_Declaration
(N
))
4440 Error_Msg_N
("current instance not allowed", Mark
);
4446 Analyze_Expression
(Expr
);
4448 if T
= Any_Type
then
4452 Check_Fully_Declared
(T
, N
);
4454 -- If expected type is class-wide, check for exact match before
4455 -- expansion, because if the expression is a dispatching call it
4456 -- may be rewritten as explicit dereference with class-wide result.
4457 -- If expression is overloaded, retain only interpretations that
4458 -- will yield exact matches.
4460 if Is_Class_Wide_Type
(T
) then
4461 if not Is_Overloaded
(Expr
) then
4462 if Base_Type
(Etype
(Expr
)) /= Base_Type
(T
)
4463 and then Etype
(Expr
) /= Raise_Type
4465 if Nkind
(Expr
) = N_Aggregate
then
4466 Error_Msg_N
("type of aggregate cannot be class-wide", Expr
);
4468 Wrong_Type
(Expr
, T
);
4473 Get_First_Interp
(Expr
, I
, It
);
4475 while Present
(It
.Nam
) loop
4476 if Base_Type
(It
.Typ
) /= Base_Type
(T
) then
4480 Get_Next_Interp
(I
, It
);
4484 end Analyze_Qualified_Expression
;
4486 -----------------------------------
4487 -- Analyze_Quantified_Expression --
4488 -----------------------------------
4490 procedure Analyze_Quantified_Expression
(N
: Node_Id
) is
4491 function Is_Empty_Range
(Typ
: Entity_Id
) return Boolean;
4492 -- Return True if the iterator is part of a quantified expression and
4493 -- the range is known to be statically empty.
4495 function No_Else_Or_Trivial_True
(If_Expr
: Node_Id
) return Boolean;
4496 -- Determine whether if expression If_Expr lacks an else part or if it
4497 -- has one, it evaluates to True.
4499 --------------------
4500 -- Is_Empty_Range --
4501 --------------------
4503 function Is_Empty_Range
(Typ
: Entity_Id
) return Boolean is
4505 return Is_Array_Type
(Typ
)
4506 and then Compile_Time_Known_Bounds
(Typ
)
4508 Expr_Value
(Type_Low_Bound
(Etype
(First_Index
(Typ
)))) >
4509 Expr_Value
(Type_High_Bound
(Etype
(First_Index
(Typ
))));
4512 -----------------------------
4513 -- No_Else_Or_Trivial_True --
4514 -----------------------------
4516 function No_Else_Or_Trivial_True
(If_Expr
: Node_Id
) return Boolean is
4517 Else_Expr
: constant Node_Id
:=
4518 Next
(Next
(First
(Expressions
(If_Expr
))));
4522 or else (Compile_Time_Known_Value
(Else_Expr
)
4523 and then Is_True
(Expr_Value
(Else_Expr
)));
4524 end No_Else_Or_Trivial_True
;
4528 Cond
: constant Node_Id
:= Condition
(N
);
4529 Loc
: constant Source_Ptr
:= Sloc
(N
);
4530 Loop_Id
: Entity_Id
;
4531 QE_Scop
: Entity_Id
;
4533 -- Start of processing for Analyze_Quantified_Expression
4536 -- Create a scope to emulate the loop-like behavior of the quantified
4537 -- expression. The scope is needed to provide proper visibility of the
4540 QE_Scop
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
4541 Set_Etype
(QE_Scop
, Standard_Void_Type
);
4542 Set_Scope
(QE_Scop
, Current_Scope
);
4543 Set_Parent
(QE_Scop
, N
);
4545 Push_Scope
(QE_Scop
);
4547 -- All constituents are preanalyzed and resolved to avoid untimely
4548 -- generation of various temporaries and types. Full analysis and
4549 -- expansion is carried out when the quantified expression is
4550 -- transformed into an expression with actions.
4552 if Present
(Iterator_Specification
(N
)) then
4553 Preanalyze
(Iterator_Specification
(N
));
4555 -- Do not proceed with the analysis when the range of iteration is
4558 if Is_Entity_Name
(Name
(Iterator_Specification
(N
)))
4559 and then Is_Empty_Range
(Etype
(Name
(Iterator_Specification
(N
))))
4561 Preanalyze_And_Resolve
(Condition
(N
), Standard_Boolean
);
4564 -- Emit a warning and replace expression with its static value
4566 if All_Present
(N
) then
4568 ("??quantified expression with ALL "
4569 & "over a null range has value True", N
);
4570 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
4574 ("??quantified expression with SOME "
4575 & "over a null range has value False", N
);
4576 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
4583 else pragma Assert
(Present
(Loop_Parameter_Specification
(N
)));
4585 Loop_Par
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
4588 Preanalyze
(Loop_Par
);
4590 if Nkind
(Discrete_Subtype_Definition
(Loop_Par
)) = N_Function_Call
4591 and then Parent
(Loop_Par
) /= N
4593 -- The parser cannot distinguish between a loop specification
4594 -- and an iterator specification. If after preanalysis the
4595 -- proper form has been recognized, rewrite the expression to
4596 -- reflect the right kind. This is needed for proper ASIS
4597 -- navigation. If expansion is enabled, the transformation is
4598 -- performed when the expression is rewritten as a loop.
4599 -- Is this still needed???
4601 Set_Iterator_Specification
(N
,
4602 New_Copy_Tree
(Iterator_Specification
(Parent
(Loop_Par
))));
4604 Set_Defining_Identifier
(Iterator_Specification
(N
),
4605 Relocate_Node
(Defining_Identifier
(Loop_Par
)));
4606 Set_Name
(Iterator_Specification
(N
),
4607 Relocate_Node
(Discrete_Subtype_Definition
(Loop_Par
)));
4608 Set_Comes_From_Source
(Iterator_Specification
(N
),
4609 Comes_From_Source
(Loop_Parameter_Specification
(N
)));
4610 Set_Loop_Parameter_Specification
(N
, Empty
);
4615 Preanalyze_And_Resolve
(Cond
, Standard_Boolean
);
4618 Set_Etype
(N
, Standard_Boolean
);
4620 -- Verify that the loop variable is used within the condition of the
4621 -- quantified expression.
4623 if Present
(Iterator_Specification
(N
)) then
4624 Loop_Id
:= Defining_Identifier
(Iterator_Specification
(N
));
4626 Loop_Id
:= Defining_Identifier
(Loop_Parameter_Specification
(N
));
4630 type Subexpr_Kind
is (Full
, Conjunct
, Disjunct
);
4632 procedure Check_Subexpr
(Expr
: Node_Id
; Kind
: Subexpr_Kind
);
4633 -- Check that the quantified variable appears in every sub-expression
4634 -- of the quantified expression. If Kind is Full, Expr is the full
4635 -- expression. If Kind is Conjunct (resp. Disjunct), Expr is a
4636 -- conjunct (resp. disjunct) of the full expression.
4642 procedure Check_Subexpr
(Expr
: Node_Id
; Kind
: Subexpr_Kind
) is
4644 if Nkind
(Expr
) in N_Op_And | N_And_Then
4645 and then Kind
/= Disjunct
4647 Check_Subexpr
(Left_Opnd
(Expr
), Conjunct
);
4648 Check_Subexpr
(Right_Opnd
(Expr
), Conjunct
);
4650 elsif Nkind
(Expr
) in N_Op_Or | N_Or_Else
4651 and then Kind
/= Conjunct
4653 Check_Subexpr
(Left_Opnd
(Expr
), Disjunct
);
4654 Check_Subexpr
(Right_Opnd
(Expr
), Disjunct
);
4657 and then not Referenced
(Loop_Id
, Expr
)
4660 Sub
: constant String :=
4661 (if Kind
= Conjunct
then "conjunct" else "disjunct");
4664 ("?.t?unused variable & in " & Sub
, Expr
, Loop_Id
);
4666 ("\consider extracting " & Sub
& " from quantified "
4667 & "expression", Expr
, Loop_Id
);
4673 if Warn_On_Suspicious_Contract
4674 and then not Is_Internal_Name
(Chars
(Loop_Id
))
4676 -- Generating C, this check causes spurious warnings on inlined
4677 -- postconditions; we can safely disable it because this check
4678 -- was previously performed when analyzing the internally built
4679 -- postconditions procedure.
4681 and then not (Modify_Tree_For_C
and In_Inlined_Body
)
4683 if not Referenced
(Loop_Id
, Cond
) then
4684 Error_Msg_N
("?.t?unused variable &", Loop_Id
);
4686 Check_Subexpr
(Cond
, Kind
=> Full
);
4691 -- Diagnose a possible misuse of the SOME existential quantifier. When
4692 -- we have a quantified expression of the form:
4694 -- for some X => (if P then Q [else True])
4696 -- any value for X that makes P False results in the if expression being
4697 -- trivially True, and so also results in the quantified expression
4698 -- being trivially True.
4700 if Warn_On_Suspicious_Contract
4701 and then not All_Present
(N
)
4702 and then Nkind
(Cond
) = N_If_Expression
4703 and then No_Else_Or_Trivial_True
(Cond
)
4705 Error_Msg_N
("?.t?suspicious expression", N
);
4706 Error_Msg_N
("\\did you mean (for all X ='> (if P then Q))", N
);
4707 Error_Msg_N
("\\or (for some X ='> P and then Q) instead'?", N
);
4709 end Analyze_Quantified_Expression
;
4715 procedure Analyze_Range
(N
: Node_Id
) is
4716 L
: constant Node_Id
:= Low_Bound
(N
);
4717 H
: constant Node_Id
:= High_Bound
(N
);
4718 I1
, I2
: Interp_Index
;
4721 procedure Check_Common_Type
(T1
, T2
: Entity_Id
);
4722 -- Verify the compatibility of two types, and choose the
4723 -- non universal one if the other is universal.
4725 procedure Check_High_Bound
(T
: Entity_Id
);
4726 -- Test one interpretation of the low bound against all those
4727 -- of the high bound.
4729 procedure Check_Universal_Expression
(N
: Node_Id
);
4730 -- In Ada 83, reject bounds of a universal range that are not literals
4733 -----------------------
4734 -- Check_Common_Type --
4735 -----------------------
4737 procedure Check_Common_Type
(T1
, T2
: Entity_Id
) is
4739 if Covers
(T1
=> T1
, T2
=> T2
)
4741 Covers
(T1
=> T2
, T2
=> T1
)
4743 if Is_Universal_Numeric_Type
(T1
)
4744 or else T1
= Any_Character
4746 Add_One_Interp
(N
, Base_Type
(T2
), Base_Type
(T2
));
4749 Add_One_Interp
(N
, T1
, T1
);
4752 Add_One_Interp
(N
, Base_Type
(T1
), Base_Type
(T1
));
4755 end Check_Common_Type
;
4757 ----------------------
4758 -- Check_High_Bound --
4759 ----------------------
4761 procedure Check_High_Bound
(T
: Entity_Id
) is
4763 if not Is_Overloaded
(H
) then
4764 Check_Common_Type
(T
, Etype
(H
));
4766 Get_First_Interp
(H
, I2
, It2
);
4767 while Present
(It2
.Typ
) loop
4768 Check_Common_Type
(T
, It2
.Typ
);
4769 Get_Next_Interp
(I2
, It2
);
4772 end Check_High_Bound
;
4774 --------------------------------
4775 -- Check_Universal_Expression --
4776 --------------------------------
4778 procedure Check_Universal_Expression
(N
: Node_Id
) is
4780 if Etype
(N
) = Universal_Integer
4781 and then Nkind
(N
) /= N_Integer_Literal
4782 and then not Is_Entity_Name
(N
)
4783 and then Nkind
(N
) /= N_Attribute_Reference
4785 Error_Msg_N
("illegal bound in discrete range", N
);
4787 end Check_Universal_Expression
;
4789 -- Start of processing for Analyze_Range
4792 Set_Etype
(N
, Any_Type
);
4793 Analyze_Expression
(L
);
4794 Analyze_Expression
(H
);
4796 if Etype
(L
) = Any_Type
or else Etype
(H
) = Any_Type
then
4800 if not Is_Overloaded
(L
) then
4801 Check_High_Bound
(Etype
(L
));
4803 Get_First_Interp
(L
, I1
, It1
);
4804 while Present
(It1
.Typ
) loop
4805 Check_High_Bound
(It1
.Typ
);
4806 Get_Next_Interp
(I1
, It1
);
4810 -- If result is Any_Type, then we did not find a compatible pair
4812 if Etype
(N
) = Any_Type
then
4813 Error_Msg_N
("incompatible types in range", N
);
4817 if Ada_Version
= Ada_83
4819 (Nkind
(Parent
(N
)) = N_Loop_Parameter_Specification
4820 or else Nkind
(Parent
(N
)) = N_Constrained_Array_Definition
)
4822 Check_Universal_Expression
(L
);
4823 Check_Universal_Expression
(H
);
4826 Check_Function_Writable_Actuals
(N
);
4829 -----------------------
4830 -- Analyze_Reference --
4831 -----------------------
4833 procedure Analyze_Reference
(N
: Node_Id
) is
4834 P
: constant Node_Id
:= Prefix
(N
);
4837 Acc_Type
: Entity_Id
;
4842 -- An interesting error check, if we take the 'Ref of an object for
4843 -- which a pragma Atomic or Volatile has been given, and the type of the
4844 -- object is not Atomic or Volatile, then we are in trouble. The problem
4845 -- is that no trace of the atomic/volatile status will remain for the
4846 -- backend to respect when it deals with the resulting pointer, since
4847 -- the pointer type will not be marked atomic (it is a pointer to the
4848 -- base type of the object).
4850 -- It is not clear if that can ever occur, but in case it does, we will
4851 -- generate an error message. Not clear if this message can ever be
4852 -- generated, and pretty clear that it represents a bug if it is, still
4853 -- seems worth checking, except in CodePeer mode where we do not really
4854 -- care and don't want to bother the user.
4858 if Is_Entity_Name
(P
)
4859 and then Is_Object_Reference
(P
)
4860 and then not CodePeer_Mode
4865 if (Has_Atomic_Components
(E
)
4866 and then not Has_Atomic_Components
(T
))
4868 (Has_Volatile_Components
(E
)
4869 and then not Has_Volatile_Components
(T
))
4870 or else (Is_Atomic
(E
) and then not Is_Atomic
(T
))
4871 or else (Is_Volatile
(E
) and then not Is_Volatile
(T
))
4873 Error_Msg_N
("cannot take reference to Atomic/Volatile object", N
);
4877 -- Carry on with normal processing
4879 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
4880 Set_Etype
(Acc_Type
, Acc_Type
);
4881 Set_Directly_Designated_Type
(Acc_Type
, Etype
(P
));
4882 Set_Etype
(N
, Acc_Type
);
4883 end Analyze_Reference
;
4885 --------------------------------
4886 -- Analyze_Selected_Component --
4887 --------------------------------
4889 -- Prefix is a record type or a task or protected type. In the latter case,
4890 -- the selector must denote a visible entry.
4892 procedure Analyze_Selected_Component
(N
: Node_Id
) is
4893 Name
: constant Node_Id
:= Prefix
(N
);
4894 Sel
: constant Node_Id
:= Selector_Name
(N
);
4896 Comp
: Entity_Id
:= Empty
;
4897 Has_Candidate
: Boolean := False;
4898 Hidden_Comp
: Entity_Id
;
4900 Is_Private_Op
: Boolean;
4902 Prefix_Type
: Entity_Id
;
4904 Type_To_Use
: Entity_Id
;
4905 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
4906 -- a class-wide type, we use its root type, whose components are
4907 -- present in the class-wide type.
4909 Is_Single_Concurrent_Object
: Boolean;
4910 -- Set True if the prefix is a single task or a single protected object
4912 function Constraint_Has_Unprefixed_Discriminant_Reference
4913 (Typ
: Entity_Id
) return Boolean;
4914 -- Given a subtype that is subject to a discriminant-dependent
4915 -- constraint, returns True if any of the values of the constraint
4916 -- (i.e., any of the index values for an index constraint, any of
4917 -- the discriminant values for a discriminant constraint)
4918 -- are unprefixed discriminant names.
4920 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean;
4921 -- It is known that the parent of N denotes a subprogram call. Comp
4922 -- is an overloadable component of the concurrent type of the prefix.
4923 -- Determine whether all formals of the parent of N and Comp are mode
4924 -- conformant. If the parent node is not analyzed yet it may be an
4925 -- indexed component rather than a function call.
4927 function Has_Dereference
(Nod
: Node_Id
) return Boolean;
4928 -- Check whether prefix includes a dereference, explicit or implicit,
4929 -- at any recursive level.
4931 function Try_By_Protected_Procedure_Prefixed_View
return Boolean;
4932 -- Return True if N is an access attribute whose prefix is a prefixed
4933 -- class-wide (synchronized or protected) interface view for which some
4934 -- interpretation is a procedure with synchronization kind By_Protected
4935 -- _Procedure, and collect all its interpretations (since it may be an
4936 -- overloaded interface primitive); otherwise return False.
4938 function Try_Selected_Component_In_Instance
4939 (Typ
: Entity_Id
) return Boolean;
4940 -- If Typ is the actual for a formal derived type, or a derived type
4941 -- thereof, the component inherited from the generic parent may not
4942 -- be visible in the actual, but the selected component is legal. Climb
4943 -- up the derivation chain of the generic parent type and return True if
4944 -- we find the proper ancestor type; otherwise return False.
4946 ------------------------------------------------------
4947 -- Constraint_Has_Unprefixed_Discriminant_Reference --
4948 ------------------------------------------------------
4950 function Constraint_Has_Unprefixed_Discriminant_Reference
4951 (Typ
: Entity_Id
) return Boolean
4953 function Is_Discriminant_Name
(N
: Node_Id
) return Boolean is
4954 (Nkind
(N
) = N_Identifier
4955 and then Ekind
(Entity
(N
)) = E_Discriminant
);
4957 if Is_Array_Type
(Typ
) then
4959 Index
: Node_Id
:= First_Index
(Typ
);
4962 while Present
(Index
) loop
4964 if Nkind
(Rng
) = N_Subtype_Indication
then
4965 Rng
:= Range_Expression
(Constraint
(Rng
));
4968 if Nkind
(Rng
) = N_Range
then
4969 if Is_Discriminant_Name
(Low_Bound
(Rng
))
4970 or else Is_Discriminant_Name
(High_Bound
(Rng
))
4981 Elmt
: Elmt_Id
:= First_Elmt
(Discriminant_Constraint
(Typ
));
4983 while Present
(Elmt
) loop
4984 if Is_Discriminant_Name
(Node
(Elmt
)) then
4993 end Constraint_Has_Unprefixed_Discriminant_Reference
;
4995 ------------------------------
4996 -- Has_Mode_Conformant_Spec --
4997 ------------------------------
4999 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean is
5000 Comp_Param
: Entity_Id
;
5002 Param_Typ
: Entity_Id
;
5005 Comp_Param
:= First_Formal
(Comp
);
5007 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
5008 Param
:= First
(Expressions
(Parent
(N
)));
5010 Param
:= First
(Parameter_Associations
(Parent
(N
)));
5013 while Present
(Comp_Param
)
5014 and then Present
(Param
)
5016 Param_Typ
:= Find_Parameter_Type
(Param
);
5018 if Present
(Param_Typ
)
5020 not Conforming_Types
5021 (Etype
(Comp_Param
), Param_Typ
, Mode_Conformant
)
5026 Next_Formal
(Comp_Param
);
5030 -- One of the specs has additional formals; there is no match, unless
5031 -- this may be an indexing of a parameterless call.
5033 -- Note that when expansion is disabled, the corresponding record
5034 -- type of synchronized types is not constructed, so that there is
5035 -- no point is attempting an interpretation as a prefixed call, as
5036 -- this is bound to fail because the primitive operations will not
5037 -- be properly located.
5039 if Present
(Comp_Param
) or else Present
(Param
) then
5040 if Needs_No_Actuals
(Comp
)
5041 and then Is_Array_Type
(Etype
(Comp
))
5042 and then not Expander_Active
5051 end Has_Mode_Conformant_Spec
;
5053 ---------------------
5054 -- Has_Dereference --
5055 ---------------------
5057 function Has_Dereference
(Nod
: Node_Id
) return Boolean is
5059 if Nkind
(Nod
) = N_Explicit_Dereference
then
5062 elsif Is_Access_Type
(Etype
(Nod
)) then
5065 elsif Nkind
(Nod
) in N_Indexed_Component | N_Selected_Component
then
5066 return Has_Dereference
(Prefix
(Nod
));
5071 end Has_Dereference
;
5073 ----------------------------------------------
5074 -- Try_By_Protected_Procedure_Prefixed_View --
5075 ----------------------------------------------
5077 function Try_By_Protected_Procedure_Prefixed_View
return Boolean is
5078 Candidate
: Node_Id
:= Empty
;
5083 if Nkind
(Parent
(N
)) = N_Attribute_Reference
5084 and then Attribute_Name
(Parent
(N
)) in
5086 | Name_Unchecked_Access
5087 | Name_Unrestricted_Access
5088 and then Is_Class_Wide_Type
(Prefix_Type
)
5089 and then (Is_Synchronized_Interface
(Prefix_Type
)
5090 or else Is_Protected_Interface
(Prefix_Type
))
5092 -- If we have not found yet any interpretation then mark this
5093 -- one as the first interpretation (cf. Add_One_Interp).
5095 if No
(Etype
(Sel
)) then
5096 Set_Etype
(Sel
, Any_Type
);
5099 Elmt
:= First_Elmt
(Primitive_Operations
(Etype
(Prefix_Type
)));
5100 while Present
(Elmt
) loop
5101 Prim
:= Node
(Elmt
);
5103 if Chars
(Prim
) = Chars
(Sel
)
5104 and then Is_By_Protected_Procedure
(Prim
)
5106 Candidate
:= New_Copy
(Prim
);
5108 -- Skip the controlling formal; required to check type
5109 -- conformance of the target access to protected type
5110 -- (see Conforming_Types).
5112 Set_First_Entity
(Candidate
,
5113 Next_Entity
(First_Entity
(Prim
)));
5115 Add_One_Interp
(Sel
, Candidate
, Etype
(Prim
));
5116 Set_Etype
(N
, Etype
(Prim
));
5123 -- Propagate overloaded attribute
5125 if Present
(Candidate
) and then Is_Overloaded
(Sel
) then
5126 Set_Is_Overloaded
(N
);
5129 return Present
(Candidate
);
5130 end Try_By_Protected_Procedure_Prefixed_View
;
5132 ----------------------------------------
5133 -- Try_Selected_Component_In_Instance --
5134 ----------------------------------------
5136 function Try_Selected_Component_In_Instance
5137 (Typ
: Entity_Id
) return Boolean
5139 procedure Find_Component_In_Instance
(Rec
: Entity_Id
);
5140 -- In an instance, a component of a private extension may not be
5141 -- visible while it was visible in the generic. Search candidate
5142 -- scope for a component with the proper identifier. If a match is
5143 -- found, the Etype of both N and Sel are set from this component,
5144 -- and the entity of Sel is set to reference this component. If no
5145 -- match is found, Entity (Sel) remains unset. For a derived type
5146 -- that is an actual of the instance, the desired component may be
5147 -- found in any ancestor.
5149 --------------------------------
5150 -- Find_Component_In_Instance --
5151 --------------------------------
5153 procedure Find_Component_In_Instance
(Rec
: Entity_Id
) is
5159 while Present
(Typ
) loop
5160 Comp
:= First_Component
(Typ
);
5161 while Present
(Comp
) loop
5162 if Chars
(Comp
) = Chars
(Sel
) then
5163 Set_Entity_With_Checks
(Sel
, Comp
);
5164 Set_Etype
(Sel
, Etype
(Comp
));
5165 Set_Etype
(N
, Etype
(Comp
));
5169 Next_Component
(Comp
);
5172 -- If not found, the component may be declared in the parent
5173 -- type or its full view, if any.
5175 if Is_Derived_Type
(Typ
) then
5178 if Is_Private_Type
(Typ
) then
5179 Typ
:= Full_View
(Typ
);
5187 -- If we fall through, no match, so no changes made
5190 end Find_Component_In_Instance
;
5196 -- Start of processing for Try_Selected_Component_In_Instance
5199 pragma Assert
(In_Instance
and then Is_Tagged_Type
(Typ
));
5200 pragma Assert
(Etype
(N
) = Any_Type
);
5202 -- Climb up derivation chain to generic actual subtype
5205 while not Is_Generic_Actual_Type
(Par
) loop
5206 if Ekind
(Par
) = E_Record_Type
then
5207 Par
:= Parent_Subtype
(Par
);
5210 exit when Par
= Etype
(Par
);
5215 -- If Par is a generic actual, look for component in ancestor types.
5216 -- Skip this if we have no Declaration_Node, as is the case for
5220 and then Is_Generic_Actual_Type
(Par
)
5221 and then Present
(Declaration_Node
(Par
))
5223 Par
:= Generic_Parent_Type
(Declaration_Node
(Par
));
5225 Find_Component_In_Instance
(Par
);
5226 exit when Present
(Entity
(Sel
))
5227 or else Par
= Etype
(Par
);
5231 -- Another special case: the type is an extension of a private
5232 -- type T, either is an actual in an instance or is immediately
5233 -- visible, and we are in the body of the instance, which means
5234 -- the generic body had a full view of the type declaration for
5235 -- T or some ancestor that defines the component in question.
5236 -- This happens because Is_Visible_Component returned False on
5237 -- this component, as T or the ancestor is still private since
5238 -- the Has_Private_View mechanism is bypassed because T or the
5239 -- ancestor is not directly referenced in the generic body.
5241 elsif Is_Derived_Type
(Typ
)
5242 and then (Used_As_Generic_Actual
(Typ
)
5243 or else Is_Immediately_Visible
(Typ
))
5244 and then In_Instance_Body
5246 Find_Component_In_Instance
(Parent_Subtype
(Typ
));
5249 return Etype
(N
) /= Any_Type
;
5250 end Try_Selected_Component_In_Instance
;
5252 -- Start of processing for Analyze_Selected_Component
5255 Set_Etype
(N
, Any_Type
);
5257 if Is_Overloaded
(Name
) then
5258 Analyze_Overloaded_Selected_Component
(N
);
5261 elsif Etype
(Name
) = Any_Type
then
5262 Set_Entity
(Sel
, Any_Id
);
5263 Set_Etype
(Sel
, Any_Type
);
5267 Prefix_Type
:= Etype
(Name
);
5270 if Is_Access_Type
(Prefix_Type
) then
5272 -- A RACW object can never be used as prefix of a selected component
5273 -- since that means it is dereferenced without being a controlling
5274 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
5275 -- reporting an error, we must check whether this is actually a
5276 -- dispatching call in prefix form.
5278 if Is_Remote_Access_To_Class_Wide_Type
(Prefix_Type
)
5279 and then Comes_From_Source
(N
)
5281 if Try_Object_Operation
(N
) then
5285 ("invalid dereference of a remote access-to-class-wide value",
5289 -- Normal case of selected component applied to access type
5292 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
5293 Prefix_Type
:= Implicitly_Designated_Type
(Prefix_Type
);
5296 -- If we have an explicit dereference of a remote access-to-class-wide
5297 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
5298 -- have to check for the case of a prefix that is a controlling operand
5299 -- of a prefixed dispatching call, as the dereference is legal in that
5300 -- case. Normally this condition is checked in Validate_Remote_Access_
5301 -- To_Class_Wide_Type, but we have to defer the checking for selected
5302 -- component prefixes because of the prefixed dispatching call case.
5303 -- Note that implicit dereferences are checked for this just above.
5305 elsif Nkind
(Name
) = N_Explicit_Dereference
5306 and then Is_Remote_Access_To_Class_Wide_Type
(Etype
(Prefix
(Name
)))
5307 and then Comes_From_Source
(N
)
5309 if Try_Object_Operation
(N
) then
5313 ("invalid dereference of a remote access-to-class-wide value",
5318 -- (Ada 2005): if the prefix is the limited view of a type, and
5319 -- the context already includes the full view, use the full view
5320 -- in what follows, either to retrieve a component of to find
5321 -- a primitive operation. If the prefix is an explicit dereference,
5322 -- set the type of the prefix to reflect this transformation.
5323 -- If the nonlimited view is itself an incomplete type, get the
5324 -- full view if available.
5326 if From_Limited_With
(Prefix_Type
)
5327 and then Has_Non_Limited_View
(Prefix_Type
)
5329 Prefix_Type
:= Get_Full_View
(Non_Limited_View
(Prefix_Type
));
5331 if Nkind
(N
) = N_Explicit_Dereference
then
5332 Set_Etype
(Prefix
(N
), Prefix_Type
);
5336 if Ekind
(Prefix_Type
) = E_Private_Subtype
then
5337 Prefix_Type
:= Base_Type
(Prefix_Type
);
5340 Type_To_Use
:= Prefix_Type
;
5342 -- For class-wide types, use the entity list of the root type. This
5343 -- indirection is specially important for private extensions because
5344 -- only the root type get switched (not the class-wide type).
5346 if Is_Class_Wide_Type
(Prefix_Type
) then
5347 Type_To_Use
:= Root_Type
(Prefix_Type
);
5350 -- If the prefix is a single concurrent object, use its name in error
5351 -- messages, rather than that of its anonymous type.
5353 Is_Single_Concurrent_Object
:=
5354 Is_Concurrent_Type
(Prefix_Type
)
5355 and then Is_Internal_Name
(Chars
(Prefix_Type
))
5356 and then not Is_Derived_Type
(Prefix_Type
)
5357 and then Is_Entity_Name
(Name
);
5359 -- Avoid initializing Comp if that initialization is not needed
5360 -- (and, more importantly, if the call to First_Entity could fail).
5362 if Has_Discriminants
(Type_To_Use
)
5363 or else Is_Record_Type
(Type_To_Use
)
5364 or else Is_Private_Type
(Type_To_Use
)
5365 or else Is_Concurrent_Type
(Type_To_Use
)
5367 Comp
:= First_Entity
(Type_To_Use
);
5370 -- If the selector has an original discriminant, the node appears in
5371 -- an instance. Replace the discriminant with the corresponding one
5372 -- in the current discriminated type. For nested generics, this must
5373 -- be done transitively, so note the new original discriminant.
5375 if Nkind
(Sel
) = N_Identifier
5376 and then In_Instance
5377 and then Present
(Original_Discriminant
(Sel
))
5379 Comp
:= Find_Corresponding_Discriminant
(Sel
, Prefix_Type
);
5381 -- Mark entity before rewriting, for completeness and because
5382 -- subsequent semantic checks might examine the original node.
5384 Set_Entity
(Sel
, Comp
);
5385 Rewrite
(Selector_Name
(N
), New_Occurrence_Of
(Comp
, Sloc
(N
)));
5386 Set_Original_Discriminant
(Selector_Name
(N
), Comp
);
5387 Set_Etype
(N
, Etype
(Comp
));
5388 Check_Implicit_Dereference
(N
, Etype
(Comp
));
5390 elsif Is_Record_Type
(Prefix_Type
) then
5392 -- Find a component with the given name. If the node is a prefixed
5393 -- call, do not examine components whose visibility may be
5396 while Present
(Comp
)
5397 and then not Is_Prefixed_Call
(N
)
5399 -- When the selector has been resolved to a function then we may be
5400 -- looking at a prefixed call which has been preanalyzed already as
5401 -- part of a class condition. In such cases it is possible for a
5402 -- derived type to declare a component which has the same name as
5403 -- a primitive used in a parent's class condition.
5405 -- Avoid seeing components as possible interpretations of the
5406 -- selected component when this is true.
5408 and then not (Inside_Class_Condition_Preanalysis
5409 and then Present
(Entity
(Sel
))
5410 and then Ekind
(Entity
(Sel
)) = E_Function
)
5412 if Chars
(Comp
) = Chars
(Sel
)
5413 and then Is_Visible_Component
(Comp
, N
)
5415 Set_Entity_With_Checks
(Sel
, Comp
);
5416 Set_Etype
(Sel
, Etype
(Comp
));
5418 if Ekind
(Comp
) = E_Discriminant
then
5419 if Is_Unchecked_Union
(Base_Type
(Prefix_Type
)) then
5421 ("cannot reference discriminant of unchecked union",
5425 if Is_Generic_Type
(Prefix_Type
)
5427 Is_Generic_Type
(Root_Type
(Prefix_Type
))
5429 Set_Original_Discriminant
(Sel
, Comp
);
5433 -- Resolve the prefix early otherwise it is not possible to
5434 -- build the actual subtype of the component: it may need
5435 -- to duplicate this prefix and duplication is only allowed
5436 -- on fully resolved expressions.
5440 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
5441 -- subtypes in a package specification.
5444 -- limited with Pkg;
5446 -- type Acc_Inc is access Pkg.T;
5448 -- N : Natural := X.all.Comp; -- ERROR, limited view
5449 -- end Pkg; -- Comp is not visible
5451 if Nkind
(Name
) = N_Explicit_Dereference
5452 and then From_Limited_With
(Etype
(Prefix
(Name
)))
5453 and then not Is_Potentially_Use_Visible
(Etype
(Name
))
5454 and then Nkind
(Parent
(Cunit_Entity
(Current_Sem_Unit
))) =
5455 N_Package_Specification
5458 ("premature usage of incomplete}", Prefix
(Name
),
5459 Etype
(Prefix
(Name
)));
5462 -- We never need an actual subtype for the case of a selection
5463 -- for a indexed component of a non-packed array, since in
5464 -- this case gigi generates all the checks and can find the
5465 -- necessary bounds information.
5467 -- We also do not need an actual subtype for the case of a
5468 -- first, last, length, or range attribute applied to a
5469 -- non-packed array, since gigi can again get the bounds in
5470 -- these cases (gigi cannot handle the packed case, since it
5471 -- has the bounds of the packed array type, not the original
5472 -- bounds of the type). However, if the prefix is itself a
5473 -- selected component, as in a.b.c (i), gigi may regard a.b.c
5474 -- as a dynamic-sized temporary, so we do generate an actual
5475 -- subtype for this case.
5477 Parent_N
:= Parent
(N
);
5479 if not Is_Packed
(Etype
(Comp
))
5481 ((Nkind
(Parent_N
) = N_Indexed_Component
5482 and then Nkind
(Name
) /= N_Selected_Component
)
5484 (Nkind
(Parent_N
) = N_Attribute_Reference
5486 Attribute_Name
(Parent_N
) in Name_First
5491 Set_Etype
(N
, Etype
(Comp
));
5493 -- If full analysis is not enabled, we do not generate an
5494 -- actual subtype, because in the absence of expansion
5495 -- reference to a formal of a protected type, for example,
5496 -- will not be properly transformed, and will lead to
5497 -- out-of-scope references in gigi.
5499 -- In all other cases, we currently build an actual subtype.
5500 -- It seems likely that many of these cases can be avoided,
5501 -- but right now, the front end makes direct references to the
5502 -- bounds (e.g. in generating a length check), and if we do
5503 -- not make an actual subtype, we end up getting a direct
5504 -- reference to a discriminant, which will not do.
5506 elsif Full_Analysis
then
5508 Build_Actual_Subtype_Of_Component
(Etype
(Comp
), N
);
5509 Insert_Action
(N
, Act_Decl
);
5511 if No
(Act_Decl
) then
5512 Set_Etype
(N
, Etype
(Comp
));
5515 -- If discriminants were present in the component
5516 -- declaration, they have been replaced by the
5517 -- actual values in the prefix object.
5520 Subt
: constant Entity_Id
:=
5521 Defining_Identifier
(Act_Decl
);
5523 Set_Etype
(Subt
, Base_Type
(Etype
(Comp
)));
5524 Set_Etype
(N
, Subt
);
5528 -- If Etype (Comp) is an access type whose designated subtype
5529 -- is constrained by an unprefixed discriminant value,
5530 -- then ideally we would build a new subtype with an
5531 -- appropriately prefixed discriminant value and use that
5532 -- instead, as is done in Build_Actual_Subtype_Of_Component.
5533 -- That turns out to be difficult in this context (with
5534 -- Full_Analysis = False, we could be processing a selected
5535 -- component that occurs in a Postcondition pragma;
5536 -- PPC pragmas are odd because they can contain references
5537 -- to formal parameters that occur outside the subprogram).
5538 -- So instead we punt on building a new subtype and we
5539 -- use the base type instead. This might introduce
5540 -- correctness problems if N were the target of an
5541 -- assignment (because a required check might be omitted);
5542 -- fortunately, that's impossible because a reference to the
5543 -- current instance of a type does not denote a variable view
5544 -- when the reference occurs within an aspect_specification.
5545 -- GNAT's Precondition and Postcondition pragmas follow the
5546 -- same rules as a Pre or Post aspect_specification.
5548 elsif Has_Discriminant_Dependent_Constraint
(Comp
)
5549 and then Ekind
(Etype
(Comp
)) = E_Access_Subtype
5550 and then Constraint_Has_Unprefixed_Discriminant_Reference
5551 (Designated_Type
(Etype
(Comp
)))
5553 Set_Etype
(N
, Base_Type
(Etype
(Comp
)));
5555 -- If Full_Analysis not enabled, just set the Etype
5558 Set_Etype
(N
, Etype
(Comp
));
5561 Check_Implicit_Dereference
(N
, Etype
(N
));
5565 -- If the prefix is a private extension, check only the visible
5566 -- components of the partial view. This must include the tag,
5567 -- which can appear in expanded code in a tag check.
5569 if Ekind
(Type_To_Use
) = E_Record_Type_With_Private
5570 and then Chars
(Selector_Name
(N
)) /= Name_uTag
5572 exit when Comp
= Last_Entity
(Type_To_Use
);
5578 -- Ada 2005 (AI-252): The selected component can be interpreted as
5579 -- a prefixed view of a subprogram. Depending on the context, this is
5580 -- either a name that can appear in a renaming declaration, or part
5581 -- of an enclosing call given in prefix form.
5583 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
5584 -- selected component should resolve to a name.
5586 -- Extension feature: Also support calls with prefixed views for
5587 -- untagged record types.
5589 if Ada_Version
>= Ada_2005
5590 and then (Is_Tagged_Type
(Prefix_Type
)
5591 or else Core_Extensions_Allowed
)
5592 and then not Is_Concurrent_Type
(Prefix_Type
)
5594 if Nkind
(Parent
(N
)) = N_Generic_Association
5595 or else Nkind
(Parent
(N
)) = N_Requeue_Statement
5596 or else Nkind
(Parent
(N
)) = N_Subprogram_Renaming_Declaration
5598 if Find_Primitive_Operation
(N
) then
5602 elsif Try_By_Protected_Procedure_Prefixed_View
then
5605 -- If the prefix type is the actual for a formal derived type,
5606 -- or a derived type thereof, the component inherited from the
5607 -- generic parent may not be visible in the actual, but the
5608 -- selected component is legal. This case must be handled before
5609 -- trying the object.operation notation to avoid reporting
5610 -- spurious errors, but must be skipped when Is_Prefixed_Call has
5611 -- been set (because that means that this node was resolved to an
5612 -- Object.Operation call when the generic unit was analyzed).
5615 and then not Is_Prefixed_Call
(N
)
5616 and then Is_Tagged_Type
(Prefix_Type
)
5617 and then Try_Selected_Component_In_Instance
(Type_To_Use
)
5621 elsif Try_Object_Operation
(N
) then
5625 -- If the transformation fails, it will be necessary to redo the
5626 -- analysis with all errors enabled, to indicate candidate
5627 -- interpretations and reasons for each failure ???
5631 elsif Is_Private_Type
(Prefix_Type
) then
5633 -- Allow access only to discriminants of the type. If the type has
5634 -- no full view, gigi uses the parent type for the components, so we
5635 -- do the same here.
5637 if No
(Full_View
(Prefix_Type
)) then
5638 Type_To_Use
:= Root_Type
(Base_Type
(Prefix_Type
));
5639 Comp
:= First_Entity
(Type_To_Use
);
5642 while Present
(Comp
) loop
5643 if Chars
(Comp
) = Chars
(Sel
) then
5644 if Ekind
(Comp
) = E_Discriminant
then
5645 Set_Entity_With_Checks
(Sel
, Comp
);
5646 Generate_Reference
(Comp
, Sel
);
5648 Set_Etype
(Sel
, Etype
(Comp
));
5649 Set_Etype
(N
, Etype
(Comp
));
5650 Check_Implicit_Dereference
(N
, Etype
(N
));
5652 if Is_Generic_Type
(Prefix_Type
)
5653 or else Is_Generic_Type
(Root_Type
(Prefix_Type
))
5655 Set_Original_Discriminant
(Sel
, Comp
);
5658 -- Before declaring an error, check whether this is tagged
5659 -- private type and a call to a primitive operation.
5661 elsif Ada_Version
>= Ada_2005
5662 and then Is_Tagged_Type
(Prefix_Type
)
5663 and then Try_Object_Operation
(N
)
5668 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
5669 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
5670 Set_Entity
(Sel
, Any_Id
);
5671 Set_Etype
(N
, Any_Type
);
5680 -- Extension feature: Also support calls with prefixed views for
5681 -- untagged private types.
5683 if Core_Extensions_Allowed
then
5684 if Try_Object_Operation
(N
) then
5689 elsif Is_Concurrent_Type
(Prefix_Type
) then
5691 -- Find visible operation with given name. For a protected type,
5692 -- the possible candidates are discriminants, entries or protected
5693 -- subprograms. For a task type, the set can only include entries or
5694 -- discriminants if the task type is not an enclosing scope. If it
5695 -- is an enclosing scope (e.g. in an inner task) then all entities
5696 -- are visible, but the prefix must denote the enclosing scope, i.e.
5697 -- can only be a direct name or an expanded name.
5699 Set_Etype
(Sel
, Any_Type
);
5700 Hidden_Comp
:= Empty
;
5701 In_Scope
:= In_Open_Scopes
(Prefix_Type
);
5702 Is_Private_Op
:= False;
5704 while Present
(Comp
) loop
5706 -- Do not examine private operations of the type if not within
5709 if Chars
(Comp
) = Chars
(Sel
) then
5710 if Is_Overloadable
(Comp
)
5712 or else Comp
/= First_Private_Entity
(Type_To_Use
))
5714 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
5715 if Comp
= First_Private_Entity
(Type_To_Use
) then
5716 Is_Private_Op
:= True;
5719 -- If the prefix is tagged, the correct interpretation may
5720 -- lie in the primitive or class-wide operations of the
5721 -- type. Perform a simple conformance check to determine
5722 -- whether Try_Object_Operation should be invoked even if
5723 -- a visible entity is found.
5725 if Is_Tagged_Type
(Prefix_Type
)
5726 and then Nkind
(Parent
(N
)) in N_Function_Call
5727 | N_Indexed_Component
5728 | N_Procedure_Call_Statement
5729 and then Has_Mode_Conformant_Spec
(Comp
)
5731 Has_Candidate
:= True;
5734 -- Note: a selected component may not denote a component of a
5735 -- protected type (4.1.3(7)).
5737 elsif Ekind
(Comp
) in E_Discriminant | E_Entry_Family
5739 and then not Is_Protected_Type
(Prefix_Type
)
5740 and then Is_Entity_Name
(Name
))
5742 Set_Entity_With_Checks
(Sel
, Comp
);
5743 Generate_Reference
(Comp
, Sel
);
5745 -- The selector is not overloadable, so we have a candidate
5748 Has_Candidate
:= True;
5751 if Ekind
(Comp
) = E_Component
then
5752 Hidden_Comp
:= Comp
;
5758 Set_Etype
(Sel
, Etype
(Comp
));
5759 Set_Etype
(N
, Etype
(Comp
));
5761 if Ekind
(Comp
) = E_Discriminant
then
5762 Set_Original_Discriminant
(Sel
, Comp
);
5767 if Comp
= First_Private_Entity
(Type_To_Use
) then
5768 if Etype
(Sel
) /= Any_Type
then
5770 -- If the first private entity's name matches, then treat
5771 -- it as a private op: needed for the error check for
5772 -- illegal selection of private entities further below.
5774 if Chars
(Comp
) = Chars
(Sel
) then
5775 Is_Private_Op
:= True;
5778 -- We have a candidate, so exit the loop
5783 -- Indicate that subsequent operations are private,
5784 -- for better error reporting.
5786 Is_Private_Op
:= True;
5790 -- Do not examine private operations if not within scope of
5791 -- the synchronized type.
5793 exit when not In_Scope
5795 Comp
= First_Private_Entity
(Base_Type
(Prefix_Type
));
5799 -- If the scope is a current instance, the prefix cannot be an
5800 -- expression of the same type, unless the selector designates a
5801 -- public operation (otherwise that would represent an attempt to
5802 -- reach an internal entity of another synchronized object).
5804 -- This is legal if prefix is an access to such type and there is
5805 -- a dereference, or is a component with a dereferenced prefix.
5806 -- It is also legal if the prefix is a component of a task type,
5807 -- and the selector is one of the task operations.
5810 and then not Is_Entity_Name
(Name
)
5811 and then not Has_Dereference
(Name
)
5813 if Is_Task_Type
(Prefix_Type
)
5814 and then Present
(Entity
(Sel
))
5815 and then Is_Entry
(Entity
(Sel
))
5819 elsif Is_Protected_Type
(Prefix_Type
)
5820 and then Is_Overloadable
(Entity
(Sel
))
5821 and then not Is_Private_Op
5827 ("invalid reference to internal operation of some object of "
5828 & "type &", N
, Type_To_Use
);
5829 Set_Entity
(Sel
, Any_Id
);
5830 Set_Etype
(Sel
, Any_Type
);
5834 -- Another special case: the prefix may denote an object of the type
5835 -- (but not a type) in which case this is an external call and the
5836 -- operation must be public.
5839 and then Is_Object_Reference
(Original_Node
(Prefix
(N
)))
5840 and then Comes_From_Source
(N
)
5841 and then Is_Private_Op
5843 if Present
(Hidden_Comp
) then
5845 ("invalid reference to private component of object of type "
5846 & "&", N
, Type_To_Use
);
5850 ("invalid reference to private operation of some object of "
5851 & "type &", N
, Type_To_Use
);
5854 Set_Entity
(Sel
, Any_Id
);
5855 Set_Etype
(Sel
, Any_Type
);
5859 -- If there is no visible entity with the given name or none of the
5860 -- visible entities are plausible interpretations, check whether
5861 -- there is some other primitive operation with that name.
5863 if Ada_Version
>= Ada_2005
and then Is_Tagged_Type
(Prefix_Type
) then
5864 if (Etype
(N
) = Any_Type
5865 or else not Has_Candidate
)
5866 and then Try_Object_Operation
(N
)
5870 -- If the context is not syntactically a procedure call, it
5871 -- may be a call to a primitive function declared outside of
5872 -- the synchronized type.
5874 -- If the context is a procedure call, there might still be
5875 -- an overloading between an entry and a primitive procedure
5876 -- declared outside of the synchronized type, called in prefix
5877 -- notation. This is harder to disambiguate because in one case
5878 -- the controlling formal is implicit ???
5880 elsif Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
5881 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
5882 and then Try_Object_Operation
(N
)
5887 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
5888 -- entry or procedure of a tagged concurrent type we must check
5889 -- if there are class-wide subprograms covering the primitive. If
5890 -- true then Try_Object_Operation reports the error.
5893 and then Is_Concurrent_Type
(Prefix_Type
)
5894 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
5896 -- Duplicate the call. This is required to avoid problems with
5897 -- the tree transformations performed by Try_Object_Operation.
5898 -- Set properly the parent of the copied call, because it is
5899 -- about to be reanalyzed.
5902 Par
: constant Node_Id
:= New_Copy_Tree
(Parent
(N
));
5905 Set_Parent
(Par
, Parent
(Parent
(N
)));
5907 if Try_Object_Operation
5908 (Sinfo
.Nodes
.Name
(Par
), CW_Test_Only
=> True)
5916 if Etype
(N
) = Any_Type
and then Is_Protected_Type
(Prefix_Type
) then
5918 -- Case of a prefix of a protected type: selector might denote
5919 -- an invisible private component.
5921 Comp
:= First_Private_Entity
(Base_Type
(Prefix_Type
));
5922 while Present
(Comp
) and then Chars
(Comp
) /= Chars
(Sel
) loop
5926 if Present
(Comp
) then
5927 if Is_Single_Concurrent_Object
then
5928 Error_Msg_Node_2
:= Entity
(Name
);
5929 Error_Msg_NE
("invisible selector& for &", N
, Sel
);
5932 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
5933 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
5939 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
5941 -- Extension feature: Also support calls with prefixed views for
5944 elsif Core_Extensions_Allowed
5945 and then Try_Object_Operation
(N
)
5952 Error_Msg_NE
("invalid prefix in selected component&", N
, Sel
);
5955 -- If N still has no type, the component is not defined in the prefix
5957 if Etype
(N
) = Any_Type
then
5959 if Is_Single_Concurrent_Object
then
5960 Error_Msg_Node_2
:= Entity
(Name
);
5961 Error_Msg_NE
("no selector& for&", N
, Sel
);
5963 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
5965 -- If this is a derived formal type, the parent may have different
5966 -- visibility at this point. Try for an inherited component before
5967 -- reporting an error.
5969 elsif Is_Generic_Type
(Prefix_Type
)
5970 and then Ekind
(Prefix_Type
) = E_Record_Type_With_Private
5971 and then Prefix_Type
/= Etype
(Prefix_Type
)
5972 and then Is_Record_Type
(Etype
(Prefix_Type
))
5974 Set_Etype
(Prefix
(N
), Etype
(Prefix_Type
));
5975 Analyze_Selected_Component
(N
);
5978 -- Similarly, if this is the actual for a formal derived type, or
5979 -- a derived type thereof, the component inherited from the generic
5980 -- parent may not be visible in the actual, but the selected
5981 -- component is legal.
5983 elsif In_Instance
and then Is_Tagged_Type
(Prefix_Type
) then
5985 -- Climb up the derivation chain of the generic parent type until
5986 -- we find the proper ancestor type.
5988 if Try_Selected_Component_In_Instance
(Type_To_Use
) then
5991 -- The search above must have eventually succeeded, since the
5992 -- selected component was legal in the generic.
5995 raise Program_Error
;
5998 -- Component not found, specialize error message when appropriate
6001 if Ekind
(Prefix_Type
) = E_Record_Subtype
then
6003 -- Check whether this is a component of the base type which
6004 -- is absent from a statically constrained subtype. This will
6005 -- raise constraint error at run time, but is not a compile-
6006 -- time error. When the selector is illegal for base type as
6007 -- well fall through and generate a compilation error anyway.
6009 Comp
:= First_Component
(Base_Type
(Prefix_Type
));
6010 while Present
(Comp
) loop
6011 if Chars
(Comp
) = Chars
(Sel
)
6012 and then Is_Visible_Component
(Comp
, Sel
)
6014 Set_Entity_With_Checks
(Sel
, Comp
);
6015 Generate_Reference
(Comp
, Sel
);
6016 Set_Etype
(Sel
, Etype
(Comp
));
6017 Set_Etype
(N
, Etype
(Comp
));
6019 -- Emit appropriate message. The node will be replaced
6020 -- by an appropriate raise statement.
6022 -- Note that in SPARK mode, as with all calls to apply a
6023 -- compile time constraint error, this will be made into
6024 -- an error to simplify the processing of the formal
6025 -- verification backend.
6027 Apply_Compile_Time_Constraint_Error
6028 (N
, "component not present in }??",
6029 CE_Discriminant_Check_Failed
,
6032 SPARK_Mode
= On
or not In_Instance_Not_Visible
);
6036 Next_Component
(Comp
);
6041 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
6042 Error_Msg_NE
("no selector& for}", N
, Sel
);
6044 -- Add information in the case of an incomplete prefix
6046 if Is_Incomplete_Type
(Type_To_Use
) then
6048 Inc
: constant Entity_Id
:= First_Subtype
(Type_To_Use
);
6051 if From_Limited_With
(Scope
(Type_To_Use
)) then
6053 ("\limited view of& has no components", N
, Inc
);
6057 ("\premature usage of incomplete type&", N
, Inc
);
6059 if Nkind
(Parent
(Inc
)) =
6060 N_Incomplete_Type_Declaration
6062 -- Record location of premature use in entity so that
6063 -- a continuation message is generated when the
6064 -- completion is seen.
6066 Set_Premature_Use
(Parent
(Inc
), N
);
6072 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
6075 Set_Entity
(Sel
, Any_Id
);
6076 Set_Etype
(Sel
, Any_Type
);
6078 end Analyze_Selected_Component
;
6080 ---------------------------
6081 -- Analyze_Short_Circuit --
6082 ---------------------------
6084 procedure Analyze_Short_Circuit
(N
: Node_Id
) is
6085 L
: constant Node_Id
:= Left_Opnd
(N
);
6086 R
: constant Node_Id
:= Right_Opnd
(N
);
6091 Set_Etype
(N
, Any_Type
);
6092 Analyze_Expression
(L
);
6093 Analyze_Expression
(R
);
6095 if not Is_Overloaded
(L
) then
6096 if Root_Type
(Etype
(L
)) = Standard_Boolean
6097 and then Has_Compatible_Type
(R
, Etype
(L
))
6099 Add_One_Interp
(N
, Etype
(L
), Etype
(L
));
6103 Get_First_Interp
(L
, Ind
, It
);
6104 while Present
(It
.Typ
) loop
6105 if Root_Type
(It
.Typ
) = Standard_Boolean
6106 and then Has_Compatible_Type
(R
, It
.Typ
)
6108 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
6111 Get_Next_Interp
(Ind
, It
);
6115 -- Here we have failed to find an interpretation. Clearly we know that
6116 -- it is not the case that both operands can have an interpretation of
6117 -- Boolean, but this is by far the most likely intended interpretation.
6118 -- So we simply resolve both operands as Booleans, and at least one of
6119 -- these resolutions will generate an error message, and we do not need
6120 -- to give another error message on the short circuit operation itself.
6122 if Etype
(N
) = Any_Type
then
6123 Resolve
(L
, Standard_Boolean
);
6124 Resolve
(R
, Standard_Boolean
);
6125 Set_Etype
(N
, Standard_Boolean
);
6129 if Nkind
(L
) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
6131 Check_Xtra_Parens_Precedence
(L
);
6134 if Nkind
(R
) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
6136 Check_Xtra_Parens_Precedence
(R
);
6139 end Analyze_Short_Circuit
;
6145 procedure Analyze_Slice
(N
: Node_Id
) is
6146 D
: constant Node_Id
:= Discrete_Range
(N
);
6147 P
: constant Node_Id
:= Prefix
(N
);
6148 Array_Type
: Entity_Id
;
6149 Index_Type
: Entity_Id
;
6151 procedure Analyze_Overloaded_Slice
;
6152 -- If the prefix is overloaded, select those interpretations that
6153 -- yield a one-dimensional array type.
6155 ------------------------------
6156 -- Analyze_Overloaded_Slice --
6157 ------------------------------
6159 procedure Analyze_Overloaded_Slice
is
6165 Set_Etype
(N
, Any_Type
);
6167 Get_First_Interp
(P
, I
, It
);
6168 while Present
(It
.Nam
) loop
6171 if Is_Access_Type
(Typ
) then
6172 Typ
:= Designated_Type
(Typ
);
6174 (Warn_On_Dereference
, "?d?implicit dereference", N
);
6177 if Is_Array_Type
(Typ
)
6178 and then Number_Dimensions
(Typ
) = 1
6179 and then Has_Compatible_Type
(D
, Etype
(First_Index
(Typ
)))
6181 Add_One_Interp
(N
, Typ
, Typ
);
6184 Get_Next_Interp
(I
, It
);
6187 if Etype
(N
) = Any_Type
then
6188 Error_Msg_N
("expect array type in prefix of slice", N
);
6190 end Analyze_Overloaded_Slice
;
6192 -- Start of processing for Analyze_Slice
6198 if Is_Overloaded
(P
) then
6199 Analyze_Overloaded_Slice
;
6202 Array_Type
:= Etype
(P
);
6203 Set_Etype
(N
, Any_Type
);
6205 if Is_Access_Type
(Array_Type
) then
6206 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
6207 Array_Type
:= Implicitly_Designated_Type
(Array_Type
);
6210 if not Is_Array_Type
(Array_Type
) then
6211 Wrong_Type
(P
, Any_Array
);
6213 elsif Number_Dimensions
(Array_Type
) > 1 then
6215 ("type is not one-dimensional array in slice prefix", N
);
6218 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
6219 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
6221 Index_Type
:= Etype
(First_Index
(Array_Type
));
6224 if not Has_Compatible_Type
(D
, Index_Type
) then
6225 Wrong_Type
(D
, Index_Type
);
6227 Set_Etype
(N
, Array_Type
);
6233 -----------------------------
6234 -- Analyze_Type_Conversion --
6235 -----------------------------
6237 procedure Analyze_Type_Conversion
(N
: Node_Id
) is
6238 Expr
: constant Node_Id
:= Expression
(N
);
6239 Mark
: constant Entity_Id
:= Subtype_Mark
(N
);
6244 -- If Conversion_OK is set, then the Etype is already set, and the only
6245 -- processing required is to analyze the expression. This is used to
6246 -- construct certain "illegal" conversions which are not allowed by Ada
6247 -- semantics, but can be handled by Gigi, see Sinfo for further details.
6249 if Conversion_OK
(N
) then
6254 -- Otherwise full type analysis is required, as well as some semantic
6255 -- checks to make sure the argument of the conversion is appropriate.
6258 Typ
:= Entity
(Mark
);
6261 Analyze_Expression
(Expr
);
6263 Check_Fully_Declared
(Typ
, N
);
6264 Validate_Remote_Type_Type_Conversion
(N
);
6266 -- Only remaining step is validity checks on the argument. These
6267 -- are skipped if the conversion does not come from the source.
6269 if not Comes_From_Source
(N
) then
6272 -- If there was an error in a generic unit, no need to replicate the
6273 -- error message. Conversely, constant-folding in the generic may
6274 -- transform the argument of a conversion into a string literal, which
6275 -- is legal. Therefore the following tests are not performed in an
6276 -- instance. The same applies to an inlined body.
6278 elsif In_Instance
or In_Inlined_Body
then
6281 elsif Nkind
(Expr
) = N_Null
then
6282 Error_Msg_N
("argument of conversion cannot be null", N
);
6283 Error_Msg_N
("\use qualified expression instead", N
);
6284 Set_Etype
(N
, Any_Type
);
6286 elsif Nkind
(Expr
) = N_Aggregate
then
6287 Error_Msg_N
("argument of conversion cannot be aggregate", N
);
6288 Error_Msg_N
("\use qualified expression instead", N
);
6290 elsif Nkind
(Expr
) = N_Allocator
then
6291 Error_Msg_N
("argument of conversion cannot be allocator", N
);
6292 Error_Msg_N
("\use qualified expression instead", N
);
6294 elsif Nkind
(Expr
) = N_String_Literal
then
6295 Error_Msg_N
("argument of conversion cannot be string literal", N
);
6296 Error_Msg_N
("\use qualified expression instead", N
);
6298 elsif Nkind
(Expr
) = N_Character_Literal
then
6299 if Ada_Version
= Ada_83
then
6300 Resolve
(Expr
, Typ
);
6303 ("argument of conversion cannot be character literal", N
);
6304 Error_Msg_N
("\use qualified expression instead", N
);
6307 elsif Nkind
(Expr
) = N_Attribute_Reference
6308 and then Attribute_Name
(Expr
) in Name_Access
6309 | Name_Unchecked_Access
6310 | Name_Unrestricted_Access
6313 ("argument of conversion cannot be access attribute", N
);
6314 Error_Msg_N
("\use qualified expression instead", N
);
6317 -- A formal parameter of a specific tagged type whose related subprogram
6318 -- is subject to pragma Extensions_Visible with value "False" cannot
6319 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)). Do not check
6320 -- internally generated expressions.
6322 if Is_Class_Wide_Type
(Typ
)
6323 and then Comes_From_Source
(Expr
)
6324 and then Is_EVF_Expression
(Expr
)
6327 ("formal parameter cannot be converted to class-wide type when "
6328 & "Extensions_Visible is False", Expr
);
6330 end Analyze_Type_Conversion
;
6332 ----------------------
6333 -- Analyze_Unary_Op --
6334 ----------------------
6336 procedure Analyze_Unary_Op
(N
: Node_Id
) is
6337 R
: constant Node_Id
:= Right_Opnd
(N
);
6342 Set_Etype
(N
, Any_Type
);
6343 Candidate_Type
:= Empty
;
6345 Analyze_Expression
(R
);
6347 -- If the entity is already set, the node is the instantiation of a
6348 -- generic node with a non-local reference, or was manufactured by a
6349 -- call to Make_Op_xxx. In either case the entity is known to be valid,
6350 -- and we do not need to collect interpretations, instead we just get
6351 -- the single possible interpretation.
6353 if Present
(Entity
(N
)) then
6354 Op_Id
:= Entity
(N
);
6356 if Ekind
(Op_Id
) = E_Operator
then
6357 Find_Unary_Types
(R
, Op_Id
, N
);
6359 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
6363 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
6364 while Present
(Op_Id
) loop
6365 if Ekind
(Op_Id
) = E_Operator
then
6366 if No
(Next_Entity
(First_Entity
(Op_Id
))) then
6367 Find_Unary_Types
(R
, Op_Id
, N
);
6370 elsif Is_Overloadable
(Op_Id
) then
6371 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
6374 Op_Id
:= Homonym
(Op_Id
);
6379 end Analyze_Unary_Op
;
6381 ----------------------------------
6382 -- Analyze_Unchecked_Expression --
6383 ----------------------------------
6385 procedure Analyze_Unchecked_Expression
(N
: Node_Id
) is
6386 Expr
: constant Node_Id
:= Expression
(N
);
6389 Analyze
(Expr
, Suppress
=> All_Checks
);
6390 Set_Etype
(N
, Etype
(Expr
));
6391 Save_Interps
(Expr
, N
);
6392 end Analyze_Unchecked_Expression
;
6394 ---------------------------------------
6395 -- Analyze_Unchecked_Type_Conversion --
6396 ---------------------------------------
6398 procedure Analyze_Unchecked_Type_Conversion
(N
: Node_Id
) is
6399 Expr
: constant Node_Id
:= Expression
(N
);
6400 Mark
: constant Entity_Id
:= Subtype_Mark
(N
);
6404 Set_Etype
(N
, Entity
(Mark
));
6405 Analyze_Expression
(Expr
);
6406 end Analyze_Unchecked_Type_Conversion
;
6408 ------------------------------------
6409 -- Analyze_User_Defined_Binary_Op --
6410 ------------------------------------
6412 procedure Analyze_User_Defined_Binary_Op
6414 Op_Id
: Entity_Id
) is
6417 F1
: constant Entity_Id
:= First_Formal
(Op_Id
);
6418 F2
: constant Entity_Id
:= Next_Formal
(F1
);
6421 -- Verify that Op_Id is a visible binary function. Note that since
6422 -- we know Op_Id is overloaded, potentially use visible means use
6423 -- visible for sure (RM 9.4(11)). Be prepared for previous errors.
6425 if Ekind
(Op_Id
) = E_Function
6426 and then Present
(F2
)
6427 and then (Is_Immediately_Visible
(Op_Id
)
6428 or else Is_Potentially_Use_Visible
(Op_Id
))
6429 and then (Has_Compatible_Type
(Left_Opnd
(N
), Etype
(F1
))
6430 or else Etype
(F1
) = Any_Type
)
6431 and then (Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F2
))
6432 or else Etype
(F2
) = Any_Type
)
6434 Add_One_Interp
(N
, Op_Id
, Base_Type
(Etype
(Op_Id
)));
6436 -- If the operands are overloaded, indicate that the current
6437 -- type is a viable candidate. This is redundant in most cases,
6438 -- but for equality and comparison operators where the context
6439 -- does not impose a type on the operands, setting the proper
6440 -- type is necessary to avoid subsequent ambiguities during
6441 -- resolution, when both user-defined and predefined operators
6442 -- may be candidates.
6444 if Is_Overloaded
(Left_Opnd
(N
)) then
6445 Set_Etype
(Left_Opnd
(N
), Etype
(F1
));
6448 if Is_Overloaded
(Right_Opnd
(N
)) then
6449 Set_Etype
(Right_Opnd
(N
), Etype
(F2
));
6452 if Debug_Flag_E
then
6453 Write_Str
("user defined operator ");
6454 Write_Name
(Chars
(Op_Id
));
6455 Write_Str
(" on node ");
6456 Write_Int
(Int
(N
));
6461 end Analyze_User_Defined_Binary_Op
;
6463 -----------------------------------
6464 -- Analyze_User_Defined_Unary_Op --
6465 -----------------------------------
6467 procedure Analyze_User_Defined_Unary_Op
6472 -- Only do analysis if the operator Comes_From_Source, since otherwise
6473 -- the operator was generated by the expander, and all such operators
6474 -- always refer to the operators in package Standard.
6476 if Comes_From_Source
(N
) then
6478 F
: constant Entity_Id
:= First_Formal
(Op_Id
);
6481 -- Verify that Op_Id is a visible unary function. Note that since
6482 -- we know Op_Id is overloaded, potentially use visible means use
6483 -- visible for sure (RM 9.4(11)).
6485 if Ekind
(Op_Id
) = E_Function
6486 and then No
(Next_Formal
(F
))
6487 and then (Is_Immediately_Visible
(Op_Id
)
6488 or else Is_Potentially_Use_Visible
(Op_Id
))
6489 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F
))
6491 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
6495 end Analyze_User_Defined_Unary_Op
;
6497 ---------------------------
6498 -- Check_Arithmetic_Pair --
6499 ---------------------------
6501 procedure Check_Arithmetic_Pair
6502 (T1
, T2
: Entity_Id
;
6506 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
6508 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean;
6509 -- Check whether the fixed-point type Typ has a user-defined operator
6510 -- (multiplication or division) that should hide the corresponding
6511 -- predefined operator. Used to implement Ada 2005 AI-264, to make
6512 -- such operators more visible and therefore useful.
6514 -- If the name of the operation is an expanded name with prefix
6515 -- Standard, the predefined universal fixed operator is available,
6516 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
6522 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean is
6523 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
6529 -- If the universal_fixed operation is given explicitly the rule
6530 -- concerning primitive operations of the type do not apply.
6532 if Nkind
(N
) = N_Function_Call
6533 and then Nkind
(Name
(N
)) = N_Expanded_Name
6534 and then Entity
(Prefix
(Name
(N
))) = Standard_Standard
6539 -- The operation is treated as primitive if it is declared in the
6540 -- same scope as the type, and therefore on the same entity chain.
6542 Ent
:= Next_Entity
(Typ
);
6543 while Present
(Ent
) loop
6544 if Chars
(Ent
) = Chars
(Op
) then
6545 F1
:= First_Formal
(Ent
);
6546 F2
:= Next_Formal
(F1
);
6548 -- The operation counts as primitive if either operand or
6549 -- result are of the given base type, and both operands are
6550 -- fixed point types.
6552 if (Base_Type
(Etype
(F1
)) = Bas
6553 and then Is_Fixed_Point_Type
(Etype
(F2
)))
6556 (Base_Type
(Etype
(F2
)) = Bas
6557 and then Is_Fixed_Point_Type
(Etype
(F1
)))
6560 (Base_Type
(Etype
(Ent
)) = Bas
6561 and then Is_Fixed_Point_Type
(Etype
(F1
))
6562 and then Is_Fixed_Point_Type
(Etype
(F2
)))
6574 -- Start of processing for Check_Arithmetic_Pair
6577 if Op_Name
in Name_Op_Add | Name_Op_Subtract
then
6578 if Is_Numeric_Type
(T1
)
6579 and then Is_Numeric_Type
(T2
)
6580 and then (Covers
(T1
=> T1
, T2
=> T2
)
6582 Covers
(T1
=> T2
, T2
=> T1
))
6584 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
6587 elsif Op_Name
in Name_Op_Multiply | Name_Op_Divide
then
6588 if Is_Fixed_Point_Type
(T1
)
6589 and then (Is_Fixed_Point_Type
(T2
) or else T2
= Universal_Real
)
6591 -- Add one interpretation with universal fixed result
6593 if not Has_Fixed_Op
(T1
, Op_Id
)
6594 or else Nkind
(Parent
(N
)) = N_Type_Conversion
6596 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
6599 elsif Is_Fixed_Point_Type
(T2
)
6600 and then T1
= Universal_Real
6602 (not Has_Fixed_Op
(T1
, Op_Id
)
6603 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
6605 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
6607 elsif Is_Numeric_Type
(T1
)
6608 and then Is_Numeric_Type
(T2
)
6609 and then (Covers
(T1
=> T1
, T2
=> T2
)
6611 Covers
(T1
=> T2
, T2
=> T1
))
6613 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
6615 elsif Is_Fixed_Point_Type
(T1
)
6616 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
6617 or else T2
= Universal_Integer
)
6619 Add_One_Interp
(N
, Op_Id
, T1
);
6621 elsif T2
= Universal_Real
6622 and then Base_Type
(T1
) = Base_Type
(Standard_Integer
)
6623 and then Op_Name
= Name_Op_Multiply
6625 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
6627 elsif T1
= Universal_Real
6628 and then Base_Type
(T2
) = Base_Type
(Standard_Integer
)
6630 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
6632 elsif Is_Fixed_Point_Type
(T2
)
6633 and then (Base_Type
(T1
) = Base_Type
(Standard_Integer
)
6634 or else T1
= Universal_Integer
)
6635 and then Op_Name
= Name_Op_Multiply
6637 Add_One_Interp
(N
, Op_Id
, T2
);
6639 elsif T1
= Universal_Real
and then T2
= Universal_Integer
then
6640 Add_One_Interp
(N
, Op_Id
, T1
);
6642 elsif T2
= Universal_Real
6643 and then T1
= Universal_Integer
6644 and then Op_Name
= Name_Op_Multiply
6646 Add_One_Interp
(N
, Op_Id
, T2
);
6649 elsif Op_Name
= Name_Op_Mod
or else Op_Name
= Name_Op_Rem
then
6651 if Is_Integer_Type
(T1
)
6652 and then (Covers
(T1
=> T1
, T2
=> T2
)
6654 Covers
(T1
=> T2
, T2
=> T1
))
6656 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
6659 elsif Op_Name
= Name_Op_Expon
then
6660 if Is_Numeric_Type
(T1
)
6661 and then not Is_Fixed_Point_Type
(T1
)
6662 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
6663 or else T2
= Universal_Integer
)
6665 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
6668 else pragma Assert
(Nkind
(N
) in N_Op_Shift
);
6670 -- If not one of the predefined operators, the node may be one
6671 -- of the intrinsic functions. Its kind is always specific, and
6672 -- we can use it directly, rather than the name of the operation.
6674 if Is_Integer_Type
(T1
)
6675 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
6676 or else T2
= Universal_Integer
)
6678 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
6681 end Check_Arithmetic_Pair
;
6683 -------------------------------
6684 -- Check_Misspelled_Selector --
6685 -------------------------------
6687 procedure Check_Misspelled_Selector
6688 (Prefix
: Entity_Id
;
6691 Max_Suggestions
: constant := 2;
6692 Nr_Of_Suggestions
: Natural := 0;
6694 Suggestion_1
: Entity_Id
:= Empty
;
6695 Suggestion_2
: Entity_Id
:= Empty
;
6700 -- All the components of the prefix of selector Sel are matched against
6701 -- Sel and a count is maintained of possible misspellings. When at
6702 -- the end of the analysis there are one or two (not more) possible
6703 -- misspellings, these misspellings will be suggested as possible
6706 if not (Is_Private_Type
(Prefix
) or else Is_Record_Type
(Prefix
)) then
6708 -- Concurrent types should be handled as well ???
6713 Comp
:= First_Entity
(Prefix
);
6714 while Nr_Of_Suggestions
<= Max_Suggestions
and then Present
(Comp
) loop
6715 if Is_Visible_Component
(Comp
, Sel
) then
6716 if Is_Bad_Spelling_Of
(Chars
(Comp
), Chars
(Sel
)) then
6717 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
6719 case Nr_Of_Suggestions
is
6720 when 1 => Suggestion_1
:= Comp
;
6721 when 2 => Suggestion_2
:= Comp
;
6722 when others => null;
6730 -- Report at most two suggestions
6732 if Nr_Of_Suggestions
= 1 then
6733 Error_Msg_NE
-- CODEFIX
6734 ("\possible misspelling of&", Sel
, Suggestion_1
);
6736 elsif Nr_Of_Suggestions
= 2 then
6737 Error_Msg_Node_2
:= Suggestion_2
;
6738 Error_Msg_NE
-- CODEFIX
6739 ("\possible misspelling of& or&", Sel
, Suggestion_1
);
6741 end Check_Misspelled_Selector
;
6747 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
) is
6753 Num_Actuals
: Natural;
6754 Num_Interps
: Natural;
6755 Void_Interp_Seen
: Boolean := False;
6758 pragma Warnings
(Off
, Boolean);
6762 Actual
:= First_Actual
(N
);
6764 while Present
(Actual
) loop
6765 -- Ada 2005 (AI-50217): Post an error in case of premature
6766 -- usage of an entity from the limited view.
6768 if not Analyzed
(Etype
(Actual
))
6769 and then From_Limited_With
(Etype
(Actual
))
6770 and then Ada_Version
>= Ada_2005
6772 Error_Msg_Qual_Level
:= 1;
6774 ("missing with_clause for scope of imported type&",
6775 Actual
, Etype
(Actual
));
6776 Error_Msg_Qual_Level
:= 0;
6779 Num_Actuals
:= Num_Actuals
+ 1;
6780 Next_Actual
(Actual
);
6783 -- Before listing the possible candidates, check whether this is
6784 -- a prefix of a selected component that has been rewritten as a
6785 -- parameterless function call because there is a callable candidate
6786 -- interpretation. If there is a hidden package in the list of homonyms
6787 -- of the function name (bad programming style in any case) suggest that
6788 -- this is the intended entity.
6790 if No
(Parameter_Associations
(N
))
6791 and then Nkind
(Parent
(N
)) = N_Selected_Component
6792 and then Nkind
(Parent
(Parent
(N
))) in N_Declaration
6793 and then Is_Overloaded
(Nam
)
6799 Ent
:= Current_Entity
(Nam
);
6800 while Present
(Ent
) loop
6801 if Ekind
(Ent
) = E_Package
then
6803 ("no legal interpretations as function call,!", Nam
);
6804 Error_Msg_NE
("\package& is not visible", N
, Ent
);
6806 Rewrite
(Parent
(N
),
6807 New_Occurrence_Of
(Any_Type
, Sloc
(N
)));
6811 Ent
:= Homonym
(Ent
);
6816 -- If this is a call to an operation of a concurrent type, the failed
6817 -- interpretations have been removed from the name. Recover them now
6818 -- in order to provide full diagnostics.
6820 if Nkind
(Parent
(Nam
)) = N_Selected_Component
then
6821 Set_Entity
(Nam
, Empty
);
6822 New_Nam
:= New_Copy_Tree
(Parent
(Nam
));
6823 Set_Is_Overloaded
(New_Nam
, False);
6824 Set_Is_Overloaded
(Selector_Name
(New_Nam
), False);
6825 Set_Parent
(New_Nam
, Parent
(Parent
(Nam
)));
6826 Analyze_Selected_Component
(New_Nam
);
6827 Get_First_Interp
(Selector_Name
(New_Nam
), X
, It
);
6829 Get_First_Interp
(Nam
, X
, It
);
6832 -- If the number of actuals is 2, then remove interpretations involving
6833 -- a unary "+" operator as they might yield confusing errors downstream.
6836 and then Nkind
(Parent
(Nam
)) /= N_Selected_Component
6840 while Present
(It
.Nam
) loop
6841 if Ekind
(It
.Nam
) = E_Operator
6842 and then Chars
(It
.Nam
) = Name_Op_Add
6843 and then (No
(First_Formal
(It
.Nam
))
6844 or else No
(Next_Formal
(First_Formal
(It
.Nam
))))
6848 Num_Interps
:= Num_Interps
+ 1;
6851 Get_Next_Interp
(X
, It
);
6854 if Num_Interps
= 0 then
6855 Error_Msg_N
("!too many arguments in call to&", Nam
);
6859 Get_First_Interp
(Nam
, X
, It
);
6862 Num_Interps
:= 2; -- at least
6865 -- Analyze each candidate call again with full error reporting for each
6867 if Num_Interps
> 1 then
6868 Error_Msg_N
("!no candidate interpretations match the actuals:", Nam
);
6871 Err_Mode
:= All_Errors_Mode
;
6872 All_Errors_Mode
:= True;
6874 while Present
(It
.Nam
) loop
6875 if Etype
(It
.Nam
) = Standard_Void_Type
then
6876 Void_Interp_Seen
:= True;
6879 Analyze_One_Call
(N
, It
.Nam
, True, Success
);
6880 Get_Next_Interp
(X
, It
);
6883 if Nkind
(N
) = N_Function_Call
then
6884 Get_First_Interp
(Nam
, X
, It
);
6887 and then Ekind
(Entity
(Name
(N
))) = E_Function
6888 and then Present
(Homonym
(Entity
(Name
(N
))))
6890 -- A name may appear overloaded if it has a homonym, even if that
6891 -- homonym is non-overloadable, in which case the overload list is
6892 -- in fact empty. This specialized case deserves a special message
6893 -- if the homonym is a child package.
6896 Nam
: constant Node_Id
:= Name
(N
);
6897 H
: constant Entity_Id
:= Homonym
(Entity
(Nam
));
6900 if Ekind
(H
) = E_Package
and then Is_Child_Unit
(H
) then
6901 Error_Msg_Qual_Level
:= 2;
6902 Error_Msg_NE
("if an entity in package& is meant, ", Nam
, H
);
6903 Error_Msg_NE
("\use a fully qualified name", Nam
, H
);
6904 Error_Msg_Qual_Level
:= 0;
6909 while Present
(It
.Nam
) loop
6910 if Ekind
(It
.Nam
) in E_Function | E_Operator
then
6913 Get_Next_Interp
(X
, It
);
6917 -- If all interpretations are procedures, this deserves a more
6918 -- precise message. Ditto if this appears as the prefix of a
6919 -- selected component, which may be a lexical error.
6922 ("\context requires function call, found procedure name", Nam
);
6924 if Nkind
(Parent
(N
)) = N_Selected_Component
6925 and then N
= Prefix
(Parent
(N
))
6927 Error_Msg_N
-- CODEFIX
6928 ("\period should probably be semicolon", Parent
(N
));
6932 elsif Nkind
(N
) = N_Procedure_Call_Statement
6933 and then not Void_Interp_Seen
6935 Error_Msg_N
("\function name found in procedure call", Nam
);
6938 All_Errors_Mode
:= Err_Mode
;
6941 ---------------------------
6942 -- Find_Arithmetic_Types --
6943 ---------------------------
6945 procedure Find_Arithmetic_Types
6950 procedure Check_Right_Argument
(T
: Entity_Id
);
6951 -- Check right operand of operator
6953 --------------------------
6954 -- Check_Right_Argument --
6955 --------------------------
6957 procedure Check_Right_Argument
(T
: Entity_Id
) is
6962 if not Is_Overloaded
(R
) then
6963 Check_Arithmetic_Pair
(T
, Etype
(R
), Op_Id
, N
);
6966 Get_First_Interp
(R
, I
, It
);
6967 while Present
(It
.Typ
) loop
6968 Check_Arithmetic_Pair
(T
, It
.Typ
, Op_Id
, N
);
6969 Get_Next_Interp
(I
, It
);
6972 end Check_Right_Argument
;
6979 -- Start of processing for Find_Arithmetic_Types
6982 if not Is_Overloaded
(L
) then
6983 Check_Right_Argument
(Etype
(L
));
6986 Get_First_Interp
(L
, I
, It
);
6987 while Present
(It
.Typ
) loop
6988 Check_Right_Argument
(It
.Typ
);
6989 Get_Next_Interp
(I
, It
);
6992 end Find_Arithmetic_Types
;
6994 ------------------------
6995 -- Find_Boolean_Types --
6996 ------------------------
6998 procedure Find_Boolean_Types
7003 procedure Check_Boolean_Pair
(T1
, T2
: Entity_Id
);
7004 -- Check operand pair of operator
7006 procedure Check_Right_Argument
(T
: Entity_Id
);
7007 -- Check right operand of operator
7009 ------------------------
7010 -- Check_Boolean_Pair --
7011 ------------------------
7013 procedure Check_Boolean_Pair
(T1
, T2
: Entity_Id
) is
7017 if Valid_Boolean_Arg
(T1
)
7018 and then Valid_Boolean_Arg
(T2
)
7019 and then (Covers
(T1
=> T1
, T2
=> T2
)
7020 or else Covers
(T1
=> T2
, T2
=> T1
))
7022 T
:= Specific_Type
(T1
, T2
);
7024 if T
= Universal_Integer
then
7028 Add_One_Interp
(N
, Op_Id
, T
);
7030 end Check_Boolean_Pair
;
7032 --------------------------
7033 -- Check_Right_Argument --
7034 --------------------------
7036 procedure Check_Right_Argument
(T
: Entity_Id
) is
7041 -- Defend against previous error
7043 if Nkind
(R
) = N_Error
then
7046 elsif not Is_Overloaded
(R
) then
7047 Check_Boolean_Pair
(T
, Etype
(R
));
7050 Get_First_Interp
(R
, I
, It
);
7051 while Present
(It
.Typ
) loop
7052 Check_Boolean_Pair
(T
, It
.Typ
);
7053 Get_Next_Interp
(I
, It
);
7056 end Check_Right_Argument
;
7063 -- Start of processing for Find_Boolean_Types
7066 if not Is_Overloaded
(L
) then
7067 Check_Right_Argument
(Etype
(L
));
7070 Get_First_Interp
(L
, I
, It
);
7071 while Present
(It
.Typ
) loop
7072 Check_Right_Argument
(It
.Typ
);
7073 Get_Next_Interp
(I
, It
);
7076 end Find_Boolean_Types
;
7078 ------------------------------------
7079 -- Find_Comparison_Equality_Types --
7080 ------------------------------------
7082 -- The context of the operator plays no role in resolving the operands,
7083 -- so that if there is more than one interpretation of the operands that
7084 -- is compatible with the comparison or equality, then the operation is
7085 -- ambiguous, but this cannot be reported at this point because there is
7086 -- no guarantee that the operation will be resolved to this operator yet.
7088 procedure Find_Comparison_Equality_Types
7093 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
7094 Op_Typ
: Entity_Id
renames Standard_Boolean
;
7096 function Try_Left_Interp
(T
: Entity_Id
) return Entity_Id
;
7097 -- Try an interpretation of the left operand with type T. Return the
7098 -- type of the interpretation of the right operand making up a valid
7099 -- operand pair, or else Any_Type if the right operand is ambiguous,
7100 -- otherwise Empty if no such pair exists.
7102 function Is_Valid_Comparison_Type
(T
: Entity_Id
) return Boolean;
7103 -- Return true if T is a valid comparison type
7105 function Is_Valid_Equality_Type
7107 Anon_Access
: Boolean) return Boolean;
7108 -- Return true if T is a valid equality type
7110 function Is_Valid_Pair
(T1
, T2
: Entity_Id
) return Boolean;
7111 -- Return true if T1 and T2 constitute a valid pair of operand types for
7112 -- L and R respectively.
7114 ---------------------
7115 -- Try_Left_Interp --
7116 ---------------------
7118 function Try_Left_Interp
(T
: Entity_Id
) return Entity_Id
is
7122 Valid_I
: Interp_Index
;
7125 -- Defend against previous error
7127 if Nkind
(R
) = N_Error
then
7130 -- Loop through the interpretations of the right operand
7132 elsif not Is_Overloaded
(R
) then
7133 if Is_Valid_Pair
(T
, Etype
(R
)) then
7141 Get_First_Interp
(R
, I
, It
);
7142 while Present
(It
.Typ
) loop
7143 if Is_Valid_Pair
(T
, It
.Typ
) then
7144 -- If several interpretations are possible, disambiguate
7147 and then Base_Type
(It
.Typ
) /= Base_Type
(R_Typ
)
7149 It
:= Disambiguate
(R
, Valid_I
, I
, Any_Type
);
7151 if It
= No_Interp
then
7163 Get_Next_Interp
(I
, It
);
7166 if Present
(R_Typ
) then
7172 end Try_Left_Interp
;
7174 ------------------------------
7175 -- Is_Valid_Comparison_Type --
7176 ------------------------------
7178 function Is_Valid_Comparison_Type
(T
: Entity_Id
) return Boolean is
7180 -- The operation must be performed in a context where the operators
7181 -- of the base type are visible.
7183 if Is_Visible_Operator
(N
, Base_Type
(T
)) then
7186 -- Save candidate type for subsequent error message, if any
7189 if Valid_Comparison_Arg
(T
) then
7190 Candidate_Type
:= T
;
7196 -- Defer to the common implementation for the rest
7198 return Valid_Comparison_Arg
(T
);
7199 end Is_Valid_Comparison_Type
;
7201 ----------------------------
7202 -- Is_Valid_Equality_Type --
7203 ----------------------------
7205 function Is_Valid_Equality_Type
7207 Anon_Access
: Boolean) return Boolean
7210 -- The operation must be performed in a context where the operators
7211 -- of the base type are visible. Deal with special types used with
7212 -- access types before type resolution is done.
7214 if Ekind
(T
) = E_Access_Attribute_Type
7215 or else (Ekind
(T
) in E_Access_Subprogram_Type
7216 | E_Access_Protected_Subprogram_Type
7218 Ekind
(Designated_Type
(T
)) /= E_Subprogram_Type
)
7219 or else Is_Visible_Operator
(N
, Base_Type
(T
))
7223 -- AI95-0230: Keep restriction imposed by Ada 83 and 95, do not allow
7224 -- anonymous access types in universal_access equality operators.
7226 elsif Anon_Access
then
7227 if Ada_Version
< Ada_2005
then
7231 -- Save candidate type for subsequent error message, if any
7234 if Valid_Equality_Arg
(T
) then
7235 Candidate_Type
:= T
;
7241 -- For the use of a "/=" operator on a tagged type, several possible
7242 -- interpretations of equality need to be considered, we don't want
7243 -- the default inequality declared in Standard to be chosen, and the
7244 -- "/=" operator will be rewritten as a negation of "=" (see the end
7245 -- of Analyze_Comparison_Equality_Op). This ensures the rewriting
7246 -- occurs during analysis rather than being delayed until expansion.
7247 -- Note that, if the node is N_Op_Ne but Op_Id is Name_Op_Eq, then we
7248 -- still proceed with the interpretation, because this indicates
7249 -- the aforementioned rewriting case where the interpretation to be
7250 -- considered is actually that of the "=" operator.
7252 if Nkind
(N
) = N_Op_Ne
7253 and then Op_Name
/= Name_Op_Eq
7254 and then Is_Tagged_Type
(T
)
7258 -- Defer to the common implementation for the rest
7261 return Valid_Equality_Arg
(T
);
7263 end Is_Valid_Equality_Type
;
7269 function Is_Valid_Pair
(T1
, T2
: Entity_Id
) return Boolean is
7271 if Op_Name
= Name_Op_Eq
or else Op_Name
= Name_Op_Ne
then
7273 Anon_Access
: constant Boolean :=
7274 Is_Anonymous_Access_Type
(T1
)
7275 or else Is_Anonymous_Access_Type
(T2
);
7276 -- RM 4.5.2(9.1/2): At least one of the operands of an equality
7277 -- operator for universal_access shall be of specific anonymous
7281 if not Is_Valid_Equality_Type
(T1
, Anon_Access
)
7282 or else not Is_Valid_Equality_Type
(T2
, Anon_Access
)
7289 if not Is_Valid_Comparison_Type
(T1
)
7290 or else not Is_Valid_Comparison_Type
(T2
)
7296 return Covers
(T1
=> T1
, T2
=> T2
)
7297 or else Covers
(T1
=> T2
, T2
=> T1
)
7298 or else Is_User_Defined_Literal
(L
, T2
)
7299 or else Is_User_Defined_Literal
(R
, T1
);
7309 Valid_I
: Interp_Index
;
7311 -- Start of processing for Find_Comparison_Equality_Types
7314 -- Loop through the interpretations of the left operand
7316 if not Is_Overloaded
(L
) then
7317 T
:= Try_Left_Interp
(Etype
(L
));
7321 Add_One_Interp
(N
, Op_Id
, Op_Typ
, Find_Unique_Type
(L
, R
));
7329 Get_First_Interp
(L
, I
, It
);
7330 while Present
(It
.Typ
) loop
7331 T
:= Try_Left_Interp
(It
.Typ
);
7334 -- If several interpretations are possible, disambiguate
7337 and then Base_Type
(It
.Typ
) /= Base_Type
(L_Typ
)
7339 It
:= Disambiguate
(L
, Valid_I
, I
, Any_Type
);
7341 if It
= No_Interp
then
7355 Get_Next_Interp
(I
, It
);
7358 if Present
(L_Typ
) then
7359 Set_Etype
(L
, L_Typ
);
7360 Set_Etype
(R
, R_Typ
);
7361 Add_One_Interp
(N
, Op_Id
, Op_Typ
, Find_Unique_Type
(L
, R
));
7364 end Find_Comparison_Equality_Types
;
7366 ------------------------------
7367 -- Find_Concatenation_Types --
7368 ------------------------------
7370 procedure Find_Concatenation_Types
7375 Is_String
: constant Boolean := Nkind
(L
) = N_String_Literal
7377 Nkind
(R
) = N_String_Literal
;
7378 Op_Type
: constant Entity_Id
:= Etype
(Op_Id
);
7381 if Is_Array_Type
(Op_Type
)
7383 -- Small but very effective optimization: if at least one operand is a
7384 -- string literal, then the type of the operator must be either array
7385 -- of characters or array of strings.
7387 and then (not Is_String
7389 Is_Character_Type
(Component_Type
(Op_Type
))
7391 Is_String_Type
(Component_Type
(Op_Type
)))
7393 and then not Is_Limited_Type
(Op_Type
)
7395 and then (Has_Compatible_Type
(L
, Op_Type
)
7397 Has_Compatible_Type
(L
, Component_Type
(Op_Type
)))
7399 and then (Has_Compatible_Type
(R
, Op_Type
)
7401 Has_Compatible_Type
(R
, Component_Type
(Op_Type
)))
7403 Add_One_Interp
(N
, Op_Id
, Op_Type
);
7405 end Find_Concatenation_Types
;
7407 -------------------------
7408 -- Find_Negation_Types --
7409 -------------------------
7411 procedure Find_Negation_Types
7416 Index
: Interp_Index
;
7420 if not Is_Overloaded
(R
) then
7421 if Etype
(R
) = Universal_Integer
then
7422 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
7423 elsif Valid_Boolean_Arg
(Etype
(R
)) then
7424 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
7428 Get_First_Interp
(R
, Index
, It
);
7429 while Present
(It
.Typ
) loop
7430 if Valid_Boolean_Arg
(It
.Typ
) then
7431 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
7434 Get_Next_Interp
(Index
, It
);
7437 end Find_Negation_Types
;
7439 ------------------------------
7440 -- Find_Primitive_Operation --
7441 ------------------------------
7443 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean is
7444 Obj
: constant Node_Id
:= Prefix
(N
);
7445 Op
: constant Node_Id
:= Selector_Name
(N
);
7452 Set_Etype
(Op
, Any_Type
);
7454 if Is_Access_Type
(Etype
(Obj
)) then
7455 Typ
:= Designated_Type
(Etype
(Obj
));
7460 if Is_Class_Wide_Type
(Typ
) then
7461 Typ
:= Root_Type
(Typ
);
7464 Prims
:= Primitive_Operations
(Typ
);
7466 Prim
:= First_Elmt
(Prims
);
7467 while Present
(Prim
) loop
7468 if Chars
(Node
(Prim
)) = Chars
(Op
) then
7469 Add_One_Interp
(Op
, Node
(Prim
), Etype
(Node
(Prim
)));
7470 Set_Etype
(N
, Etype
(Node
(Prim
)));
7476 -- Now look for class-wide operations of the type or any of its
7477 -- ancestors by iterating over the homonyms of the selector.
7480 Cls_Type
: constant Entity_Id
:= Class_Wide_Type
(Typ
);
7484 Hom
:= Current_Entity
(Op
);
7485 while Present
(Hom
) loop
7486 if (Ekind
(Hom
) = E_Procedure
7488 Ekind
(Hom
) = E_Function
)
7489 and then Scope
(Hom
) = Scope
(Typ
)
7490 and then Present
(First_Formal
(Hom
))
7492 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
7494 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
7496 Ekind
(Etype
(First_Formal
(Hom
))) =
7497 E_Anonymous_Access_Type
7500 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
7503 Add_One_Interp
(Op
, Hom
, Etype
(Hom
));
7504 Set_Etype
(N
, Etype
(Hom
));
7507 Hom
:= Homonym
(Hom
);
7511 return Etype
(Op
) /= Any_Type
;
7512 end Find_Primitive_Operation
;
7514 ----------------------
7515 -- Find_Unary_Types --
7516 ----------------------
7518 procedure Find_Unary_Types
7523 Index
: Interp_Index
;
7527 if not Is_Overloaded
(R
) then
7528 if Is_Numeric_Type
(Etype
(R
)) then
7530 -- In an instance a generic actual may be a numeric type even if
7531 -- the formal in the generic unit was not. In that case, the
7532 -- predefined operator was not a possible interpretation in the
7533 -- generic, and cannot be one in the instance, unless the operator
7534 -- is an actual of an instance.
7538 not Is_Numeric_Type
(Corresponding_Generic_Type
(Etype
(R
)))
7542 Add_One_Interp
(N
, Op_Id
, Base_Type
(Etype
(R
)));
7547 Get_First_Interp
(R
, Index
, It
);
7548 while Present
(It
.Typ
) loop
7549 if Is_Numeric_Type
(It
.Typ
) then
7553 (Corresponding_Generic_Type
(Etype
(It
.Typ
)))
7558 Add_One_Interp
(N
, Op_Id
, Base_Type
(It
.Typ
));
7562 Get_Next_Interp
(Index
, It
);
7565 end Find_Unary_Types
;
7571 function Junk_Operand
(N
: Node_Id
) return Boolean is
7575 if Error_Posted
(N
) then
7579 -- Get entity to be tested
7581 if Is_Entity_Name
(N
)
7582 and then Present
(Entity
(N
))
7586 -- An odd case, a procedure name gets converted to a very peculiar
7587 -- function call, and here is where we detect this happening.
7589 elsif Nkind
(N
) = N_Function_Call
7590 and then Is_Entity_Name
(Name
(N
))
7591 and then Present
(Entity
(Name
(N
)))
7595 -- Another odd case, there are at least some cases of selected
7596 -- components where the selected component is not marked as having
7597 -- an entity, even though the selector does have an entity
7599 elsif Nkind
(N
) = N_Selected_Component
7600 and then Present
(Entity
(Selector_Name
(N
)))
7602 Enode
:= Selector_Name
(N
);
7608 -- Now test the entity we got to see if it is a bad case
7610 case Ekind
(Entity
(Enode
)) is
7613 ("package name cannot be used as operand", Enode
);
7615 when Generic_Unit_Kind
=>
7617 ("generic unit name cannot be used as operand", Enode
);
7621 ("subtype name cannot be used as operand", Enode
);
7625 ("entry name cannot be used as operand", Enode
);
7629 ("procedure name cannot be used as operand", Enode
);
7633 ("exception name cannot be used as operand", Enode
);
7640 ("label name cannot be used as operand", Enode
);
7649 --------------------
7650 -- Operator_Check --
7651 --------------------
7653 procedure Operator_Check
(N
: Node_Id
) is
7655 Remove_Abstract_Operations
(N
);
7657 -- Test for case of no interpretation found for operator
7659 if Etype
(N
) = Any_Type
then
7661 L
: constant Node_Id
:=
7662 (if Nkind
(N
) in N_Binary_Op
then Left_Opnd
(N
) else Empty
);
7663 R
: constant Node_Id
:= Right_Opnd
(N
);
7666 -- If either operand has no type, then don't complain further,
7667 -- since this simply means that we have a propagated error.
7670 or else Etype
(R
) = Any_Type
7671 or else (Nkind
(N
) in N_Binary_Op
and then Etype
(L
) = Any_Type
)
7673 -- For the rather unusual case where one of the operands is
7674 -- a Raise_Expression, whose initial type is Any_Type, use
7675 -- the type of the other operand.
7677 if Nkind
(L
) = N_Raise_Expression
then
7678 Set_Etype
(L
, Etype
(R
));
7679 Set_Etype
(N
, Etype
(R
));
7681 elsif Nkind
(R
) = N_Raise_Expression
then
7682 Set_Etype
(R
, Etype
(L
));
7683 Set_Etype
(N
, Etype
(L
));
7688 -- We explicitly check for the case of concatenation of component
7689 -- with component to avoid reporting spurious matching array types
7690 -- that might happen to be lurking in distant packages (such as
7691 -- run-time packages). This also prevents inconsistencies in the
7692 -- messages for certain ACVC B tests, which can vary depending on
7693 -- types declared in run-time interfaces. Another improvement when
7694 -- aggregates are present is to look for a well-typed operand.
7696 elsif Present
(Candidate_Type
)
7697 and then (Nkind
(N
) /= N_Op_Concat
7698 or else Is_Array_Type
(Etype
(L
))
7699 or else Is_Array_Type
(Etype
(R
)))
7701 if Nkind
(N
) = N_Op_Concat
then
7702 if Etype
(L
) /= Any_Composite
7703 and then Is_Array_Type
(Etype
(L
))
7705 Candidate_Type
:= Etype
(L
);
7707 elsif Etype
(R
) /= Any_Composite
7708 and then Is_Array_Type
(Etype
(R
))
7710 Candidate_Type
:= Etype
(R
);
7714 Error_Msg_NE
-- CODEFIX
7715 ("operator for} is not directly visible!",
7716 N
, First_Subtype
(Candidate_Type
));
7719 U
: constant Node_Id
:=
7720 Cunit
(Get_Source_Unit
(Candidate_Type
));
7722 if Unit_Is_Visible
(U
) then
7723 Error_Msg_N
-- CODEFIX
7724 ("use clause would make operation legal!", N
);
7726 Error_Msg_NE
-- CODEFIX
7727 ("add with_clause and use_clause for&!",
7728 N
, Defining_Entity
(Unit
(U
)));
7733 -- If either operand is a junk operand (e.g. package name), then
7734 -- post appropriate error messages, but do not complain further.
7736 -- Note that the use of OR in this test instead of OR ELSE is
7737 -- quite deliberate, we may as well check both operands in the
7738 -- binary operator case.
7740 elsif Junk_Operand
(R
)
7741 or -- really mean OR here and not OR ELSE, see above
7742 (Nkind
(N
) in N_Binary_Op
and then Junk_Operand
(L
))
7746 -- The handling of user-defined literals is deferred to the second
7747 -- pass of resolution.
7749 elsif Has_Possible_User_Defined_Literal
(N
) then
7752 -- If we have a logical operator, one of whose operands is
7753 -- Boolean, then we know that the other operand cannot resolve to
7754 -- Boolean (since we got no interpretations), but in that case we
7755 -- pretty much know that the other operand should be Boolean, so
7756 -- resolve it that way (generating an error).
7758 elsif Nkind
(N
) in N_Op_And | N_Op_Or | N_Op_Xor
then
7759 if Etype
(L
) = Standard_Boolean
then
7760 Resolve
(R
, Standard_Boolean
);
7762 elsif Etype
(R
) = Standard_Boolean
then
7763 Resolve
(L
, Standard_Boolean
);
7767 -- For an arithmetic operator or comparison operator, if one
7768 -- of the operands is numeric, then we know the other operand
7769 -- is not the same numeric type. If it is a non-numeric type,
7770 -- then probably it is intended to match the other operand.
7772 elsif Nkind
(N
) in N_Op_Add
7783 -- If Allow_Integer_Address is active, check whether the
7784 -- operation becomes legal after converting an operand.
7786 if Is_Numeric_Type
(Etype
(L
))
7787 and then not Is_Numeric_Type
(Etype
(R
))
7789 if Address_Integer_Convert_OK
(Etype
(R
), Etype
(L
)) then
7791 Unchecked_Convert_To
(
7792 Standard_Address
, Relocate_Node
(L
)));
7794 Unchecked_Convert_To
(
7795 Standard_Address
, Relocate_Node
(R
)));
7797 if Nkind
(N
) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt
then
7798 Analyze_Comparison_Equality_Op
(N
);
7800 Analyze_Arithmetic_Op
(N
);
7803 Resolve
(R
, Etype
(L
));
7808 elsif Is_Numeric_Type
(Etype
(R
))
7809 and then not Is_Numeric_Type
(Etype
(L
))
7811 if Address_Integer_Convert_OK
(Etype
(L
), Etype
(R
)) then
7813 Unchecked_Convert_To
(
7814 Standard_Address
, Relocate_Node
(L
)));
7816 Unchecked_Convert_To
(
7817 Standard_Address
, Relocate_Node
(R
)));
7819 if Nkind
(N
) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt
then
7820 Analyze_Comparison_Equality_Op
(N
);
7822 Analyze_Arithmetic_Op
(N
);
7828 Resolve
(L
, Etype
(R
));
7833 elsif Allow_Integer_Address
7834 and then Is_Descendant_Of_Address
(Etype
(L
))
7835 and then Is_Descendant_Of_Address
(Etype
(R
))
7836 and then not Error_Posted
(N
)
7839 Addr_Type
: constant Entity_Id
:= Etype
(L
);
7843 Unchecked_Convert_To
(
7844 Standard_Address
, Relocate_Node
(L
)));
7846 Unchecked_Convert_To
(
7847 Standard_Address
, Relocate_Node
(R
)));
7849 if Nkind
(N
) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt
then
7850 Analyze_Comparison_Equality_Op
(N
);
7852 Analyze_Arithmetic_Op
(N
);
7855 -- If this is an operand in an enclosing arithmetic
7856 -- operation, Convert the result as an address so that
7857 -- arithmetic folding of address can continue.
7859 if Nkind
(Parent
(N
)) in N_Op
then
7861 Unchecked_Convert_To
(Addr_Type
, Relocate_Node
(N
)));
7867 -- Under relaxed RM semantics silently replace occurrences of
7868 -- null by System.Address_Null.
7870 elsif Null_To_Null_Address_Convert_OK
(N
) then
7871 Replace_Null_By_Null_Address
(N
);
7873 if Nkind
(N
) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt
then
7874 Analyze_Comparison_Equality_Op
(N
);
7876 Analyze_Arithmetic_Op
(N
);
7882 -- Comparisons on A'Access are common enough to deserve a
7885 elsif Nkind
(N
) in N_Op_Eq | N_Op_Ne
7886 and then Ekind
(Etype
(L
)) = E_Access_Attribute_Type
7887 and then Ekind
(Etype
(R
)) = E_Access_Attribute_Type
7890 ("two access attributes cannot be compared directly", N
);
7892 ("\use qualified expression for one of the operands",
7896 -- Another one for C programmers
7898 elsif Nkind
(N
) = N_Op_Concat
7899 and then Valid_Boolean_Arg
(Etype
(L
))
7900 and then Valid_Boolean_Arg
(Etype
(R
))
7902 Error_Msg_N
("invalid operands for concatenation", N
);
7903 Error_Msg_N
-- CODEFIX
7904 ("\maybe AND was meant", N
);
7907 -- A special case for comparison of access parameter with null
7909 elsif Nkind
(N
) = N_Op_Eq
7910 and then Is_Entity_Name
(L
)
7911 and then Nkind
(Parent
(Entity
(L
))) = N_Parameter_Specification
7912 and then Nkind
(Parameter_Type
(Parent
(Entity
(L
)))) =
7914 and then Nkind
(R
) = N_Null
7916 Error_Msg_N
("access parameter is not allowed to be null", L
);
7917 Error_Msg_N
("\(call would raise Constraint_Error)", L
);
7920 -- Another special case for exponentiation, where the right
7921 -- operand must be Natural, independently of the base.
7923 elsif Nkind
(N
) = N_Op_Expon
7924 and then Is_Numeric_Type
(Etype
(L
))
7925 and then not Is_Overloaded
(R
)
7927 First_Subtype
(Base_Type
(Etype
(R
))) /= Standard_Integer
7928 and then Base_Type
(Etype
(R
)) /= Universal_Integer
7930 if Ada_Version
>= Ada_2012
7931 and then Has_Dimension_System
(Etype
(L
))
7934 ("exponent for dimensioned type must be a rational" &
7935 ", found}", R
, Etype
(R
));
7938 ("exponent must be of type Natural, found}", R
, Etype
(R
));
7943 elsif Nkind
(N
) in N_Op_Eq | N_Op_Ne
then
7944 if Address_Integer_Convert_OK
(Etype
(R
), Etype
(L
)) then
7946 Unchecked_Convert_To
(
7947 Standard_Address
, Relocate_Node
(L
)));
7949 Unchecked_Convert_To
(
7950 Standard_Address
, Relocate_Node
(R
)));
7951 Analyze_Comparison_Equality_Op
(N
);
7954 -- Under relaxed RM semantics silently replace occurrences of
7955 -- null by System.Address_Null.
7957 elsif Null_To_Null_Address_Convert_OK
(N
) then
7958 Replace_Null_By_Null_Address
(N
);
7959 Analyze_Comparison_Equality_Op
(N
);
7964 -- If we fall through then just give general message
7966 Unresolved_Operator
(N
);
7971 ---------------------------------------
7972 -- Has_Possible_User_Defined_Literal --
7973 ---------------------------------------
7975 function Has_Possible_User_Defined_Literal
(N
: Node_Id
) return Boolean is
7976 R
: constant Node_Id
:= Right_Opnd
(N
);
7978 procedure Check_Literal_Opnd
(Opnd
: Node_Id
);
7979 -- If an operand is a literal to which an aspect may apply,
7980 -- add the corresponding type to operator node.
7982 ------------------------
7983 -- Check_Literal_Opnd --
7984 ------------------------
7986 procedure Check_Literal_Opnd
(Opnd
: Node_Id
) is
7988 if Nkind
(Opnd
) in N_Numeric_Or_String_Literal
7989 or else (Is_Entity_Name
(Opnd
)
7990 and then Present
(Entity
(Opnd
))
7991 and then Is_Named_Number
(Entity
(Opnd
)))
7993 Add_One_Interp
(N
, Etype
(Opnd
), Etype
(Opnd
));
7995 end Check_Literal_Opnd
;
7997 -- Start of processing for Has_Possible_User_Defined_Literal
8000 if Ada_Version
< Ada_2022
then
8004 Check_Literal_Opnd
(R
);
8006 -- Check left operand only if right one did not provide a
8007 -- possible interpretation. Note that literal types are not
8008 -- overloadable, in the sense that there is no overloadable
8009 -- entity name whose several interpretations can be used to
8010 -- indicate possible resulting types, so there is no way to
8011 -- provide more than one interpretation to the operator node.
8012 -- The choice of one operand over the other is arbitrary at
8013 -- this point, and may lead to spurious resolution when both
8014 -- operands are literals of different kinds, but the second
8015 -- pass of resolution will examine anew both operands to
8016 -- determine whether a user-defined literal may apply to
8019 if Nkind
(N
) in N_Binary_Op
and then Etype
(N
) = Any_Type
then
8020 Check_Literal_Opnd
(Left_Opnd
(N
));
8023 return Etype
(N
) /= Any_Type
;
8024 end Has_Possible_User_Defined_Literal
;
8026 -----------------------------------------------
8027 -- Nondispatching_Call_To_Abstract_Operation --
8028 -----------------------------------------------
8030 procedure Nondispatching_Call_To_Abstract_Operation
8032 Abstract_Op
: Entity_Id
)
8034 Typ
: constant Entity_Id
:= Etype
(N
);
8037 -- In an instance body, this is a runtime check, but one we know will
8038 -- fail, so give an appropriate warning. As usual this kind of warning
8039 -- is an error in SPARK mode.
8041 Error_Msg_Sloc
:= Sloc
(Abstract_Op
);
8043 if In_Instance_Body
and then SPARK_Mode
/= On
then
8045 ("??cannot call abstract operation& declared#",
8047 Error_Msg_N
("\Program_Error [??", N
);
8049 Make_Raise_Program_Error
(Sloc
(N
),
8050 Reason
=> PE_Explicit_Raise
));
8056 ("cannot call abstract operation& declared#",
8058 Set_Etype
(N
, Any_Type
);
8060 end Nondispatching_Call_To_Abstract_Operation
;
8062 ----------------------------------------------
8063 -- Possible_Type_For_Conditional_Expression --
8064 ----------------------------------------------
8066 function Possible_Type_For_Conditional_Expression
8067 (T1
, T2
: Entity_Id
) return Entity_Id
8069 function Is_Access_Protected_Subprogram_Attribute
8070 (T
: Entity_Id
) return Boolean;
8071 -- Return true if T is the type of an access-to-protected-subprogram
8074 function Is_Access_Subprogram_Attribute
(T
: Entity_Id
) return Boolean;
8075 -- Return true if T is the type of an access-to-subprogram attribute
8077 ----------------------------------------------
8078 -- Is_Access_Protected_Subprogram_Attribute --
8079 ----------------------------------------------
8081 function Is_Access_Protected_Subprogram_Attribute
8082 (T
: Entity_Id
) return Boolean
8085 return Ekind
(T
) = E_Access_Protected_Subprogram_Type
8086 and then Ekind
(Designated_Type
(T
)) /= E_Subprogram_Type
;
8087 end Is_Access_Protected_Subprogram_Attribute
;
8089 ------------------------------------
8090 -- Is_Access_Subprogram_Attribute --
8091 ------------------------------------
8093 function Is_Access_Subprogram_Attribute
(T
: Entity_Id
) return Boolean is
8095 return Ekind
(T
) = E_Access_Subprogram_Type
8096 and then Ekind
(Designated_Type
(T
)) /= E_Subprogram_Type
;
8097 end Is_Access_Subprogram_Attribute
;
8099 -- Start of processing for Possible_Type_For_Conditional_Expression
8102 -- If both types are those of similar access attributes or allocators,
8103 -- pick one of them, for example the first.
8105 if Ekind
(T1
) in E_Access_Attribute_Type | E_Allocator_Type
8106 and then Ekind
(T2
) in E_Access_Attribute_Type | E_Allocator_Type
8110 elsif Is_Access_Subprogram_Attribute
(T1
)
8111 and then Is_Access_Subprogram_Attribute
(T2
)
8113 Subtype_Conformant
(Designated_Type
(T1
), Designated_Type
(T2
))
8117 elsif Is_Access_Protected_Subprogram_Attribute
(T1
)
8118 and then Is_Access_Protected_Subprogram_Attribute
(T2
)
8120 Subtype_Conformant
(Designated_Type
(T1
), Designated_Type
(T2
))
8124 -- The other case to be considered is a pair of tagged types
8126 elsif Is_Tagged_Type
(T1
) and then Is_Tagged_Type
(T2
) then
8127 -- Covers performs the same checks when T1 or T2 are a CW type, so
8128 -- we don't need to do them again here.
8130 if not Is_Class_Wide_Type
(T1
) and then Is_Ancestor
(T1
, T2
) then
8133 elsif not Is_Class_Wide_Type
(T2
) and then Is_Ancestor
(T2
, T1
) then
8136 -- Neither type is an ancestor of the other, but they may have one in
8137 -- common, so we pick the first type as above. We could perform here
8138 -- the computation of the nearest common ancestors of T1 and T2, but
8139 -- this would require a significant amount of work and the practical
8140 -- benefit would very likely be negligible.
8146 -- Otherwise no type is possible
8151 end Possible_Type_For_Conditional_Expression
;
8153 --------------------------------
8154 -- Remove_Abstract_Operations --
8155 --------------------------------
8157 procedure Remove_Abstract_Operations
(N
: Node_Id
) is
8158 Abstract_Op
: Entity_Id
:= Empty
;
8159 Address_Descendant
: Boolean := False;
8163 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
8164 -- activate this if either extensions are enabled, or if the abstract
8165 -- operation in question comes from a predefined file. This latter test
8166 -- allows us to use abstract to make operations invisible to users. In
8167 -- particular, if type Address is non-private and abstract subprograms
8168 -- are used to hide its operators, they will be truly hidden.
8170 type Operand_Position
is (First_Op
, Second_Op
);
8171 Univ_Type
: constant Entity_Id
:= Universal_Interpretation
(N
);
8173 procedure Remove_Address_Interpretations
(Op
: Operand_Position
);
8174 -- Ambiguities may arise when the operands are literal and the address
8175 -- operations in s-auxdec are visible. In that case, remove the
8176 -- interpretation of a literal as Address, to retain the semantics
8177 -- of Address as a private type.
8179 ------------------------------------
8180 -- Remove_Address_Interpretations --
8181 ------------------------------------
8183 procedure Remove_Address_Interpretations
(Op
: Operand_Position
) is
8187 if Is_Overloaded
(N
) then
8188 Get_First_Interp
(N
, I
, It
);
8189 while Present
(It
.Nam
) loop
8190 Formal
:= First_Entity
(It
.Nam
);
8192 if Op
= Second_Op
then
8193 Next_Entity
(Formal
);
8196 if Is_Descendant_Of_Address
(Etype
(Formal
)) then
8197 Address_Descendant
:= True;
8201 Get_Next_Interp
(I
, It
);
8204 end Remove_Address_Interpretations
;
8206 -- Start of processing for Remove_Abstract_Operations
8209 if Is_Overloaded
(N
) then
8210 if Debug_Flag_V
then
8211 Write_Line
("Remove_Abstract_Operations: ");
8212 Write_Overloads
(N
);
8215 Get_First_Interp
(N
, I
, It
);
8217 while Present
(It
.Nam
) loop
8218 if Is_Overloadable
(It
.Nam
)
8219 and then Is_Abstract_Subprogram
(It
.Nam
)
8220 and then not Is_Dispatching_Operation
(It
.Nam
)
8222 Abstract_Op
:= It
.Nam
;
8224 if Is_Descendant_Of_Address
(It
.Typ
) then
8225 Address_Descendant
:= True;
8229 -- In Ada 2005, this operation does not participate in overload
8230 -- resolution. If the operation is defined in a predefined
8231 -- unit, it is one of the operations declared abstract in some
8232 -- variants of System, and it must be removed as well.
8234 elsif Ada_Version
>= Ada_2005
8235 or else In_Predefined_Unit
(It
.Nam
)
8242 Get_Next_Interp
(I
, It
);
8245 if No
(Abstract_Op
) then
8247 -- If some interpretation yields an integer type, it is still
8248 -- possible that there are address interpretations. Remove them
8249 -- if one operand is a literal, to avoid spurious ambiguities
8250 -- on systems where Address is a visible integer type.
8252 if Is_Overloaded
(N
)
8253 and then Nkind
(N
) in N_Op
8254 and then Is_Integer_Type
(Etype
(N
))
8256 if Nkind
(N
) in N_Binary_Op
then
8257 if Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
8258 Remove_Address_Interpretations
(Second_Op
);
8260 elsif Nkind
(Left_Opnd
(N
)) = N_Integer_Literal
then
8261 Remove_Address_Interpretations
(First_Op
);
8266 elsif Nkind
(N
) in N_Op
then
8268 -- Remove interpretations that treat literals as addresses. This
8269 -- is never appropriate, even when Address is defined as a visible
8270 -- Integer type. The reason is that we would really prefer Address
8271 -- to behave as a private type, even in this case. If Address is a
8272 -- visible integer type, we get lots of overload ambiguities.
8274 if Nkind
(N
) in N_Binary_Op
then
8276 U1
: constant Boolean :=
8277 Present
(Universal_Interpretation
(Right_Opnd
(N
)));
8278 U2
: constant Boolean :=
8279 Present
(Universal_Interpretation
(Left_Opnd
(N
)));
8283 Remove_Address_Interpretations
(Second_Op
);
8287 Remove_Address_Interpretations
(First_Op
);
8290 if not (U1
and U2
) then
8292 -- Remove corresponding predefined operator, which is
8293 -- always added to the overload set.
8295 Get_First_Interp
(N
, I
, It
);
8296 while Present
(It
.Nam
) loop
8297 if Scope
(It
.Nam
) = Standard_Standard
8298 and then Base_Type
(It
.Typ
) =
8299 Base_Type
(Etype
(Abstract_Op
))
8304 Get_Next_Interp
(I
, It
);
8307 elsif Is_Overloaded
(N
)
8308 and then Present
(Univ_Type
)
8310 -- If both operands have a universal interpretation,
8311 -- it is still necessary to remove interpretations that
8312 -- yield Address. Any remaining ambiguities will be
8313 -- removed in Disambiguate.
8315 Get_First_Interp
(N
, I
, It
);
8316 while Present
(It
.Nam
) loop
8317 if Is_Descendant_Of_Address
(It
.Typ
) then
8320 elsif not Is_Type
(It
.Nam
) then
8321 Set_Entity
(N
, It
.Nam
);
8324 Get_Next_Interp
(I
, It
);
8330 elsif Nkind
(N
) = N_Function_Call
8332 (Nkind
(Name
(N
)) = N_Operator_Symbol
8334 (Nkind
(Name
(N
)) = N_Expanded_Name
8336 Nkind
(Selector_Name
(Name
(N
))) = N_Operator_Symbol
))
8340 Arg1
: constant Node_Id
:= First
(Parameter_Associations
(N
));
8341 U1
: constant Boolean :=
8342 Present
(Universal_Interpretation
(Arg1
));
8343 U2
: constant Boolean :=
8344 Present
(Next
(Arg1
)) and then
8345 Present
(Universal_Interpretation
(Next
(Arg1
)));
8349 Remove_Address_Interpretations
(First_Op
);
8353 Remove_Address_Interpretations
(Second_Op
);
8356 if not (U1
and U2
) then
8357 Get_First_Interp
(N
, I
, It
);
8358 while Present
(It
.Nam
) loop
8359 if Scope
(It
.Nam
) = Standard_Standard
8360 and then It
.Typ
= Base_Type
(Etype
(Abstract_Op
))
8365 Get_Next_Interp
(I
, It
);
8371 -- If the removal has left no valid interpretations, emit an error
8372 -- message now and label node as illegal.
8374 if Present
(Abstract_Op
) then
8375 Get_First_Interp
(N
, I
, It
);
8379 -- Removal of abstract operation left no viable candidate
8381 Nondispatching_Call_To_Abstract_Operation
(N
, Abstract_Op
);
8383 -- In Ada 2005, an abstract operation may disable predefined
8384 -- operators. Since the context is not yet known, we mark the
8385 -- predefined operators as potentially hidden. Do not include
8386 -- predefined operators when addresses are involved since this
8387 -- case is handled separately.
8389 elsif Ada_Version
>= Ada_2005
and then not Address_Descendant
then
8390 while Present
(It
.Nam
) loop
8391 if Is_Numeric_Type
(It
.Typ
)
8392 and then Scope
(It
.Typ
) = Standard_Standard
8393 and then Ekind
(It
.Nam
) = E_Operator
8395 Set_Abstract_Op
(I
, Abstract_Op
);
8398 Get_Next_Interp
(I
, It
);
8403 if Debug_Flag_V
then
8404 Write_Line
("Remove_Abstract_Operations done: ");
8405 Write_Overloads
(N
);
8408 end Remove_Abstract_Operations
;
8410 ----------------------------
8411 -- Try_Container_Indexing --
8412 ----------------------------
8414 function Try_Container_Indexing
8417 Exprs
: List_Id
) return Boolean
8419 Pref_Typ
: Entity_Id
:= Etype
(Prefix
);
8421 function Constant_Indexing_OK
return Boolean;
8422 -- Constant_Indexing is legal if there is no Variable_Indexing defined
8423 -- for the type, or else node not a target of assignment, or an actual
8424 -- for an IN OUT or OUT formal (RM 4.1.6 (11)).
8426 function Expr_Matches_In_Formal
8428 Par
: Node_Id
) return Boolean;
8429 -- Find formal corresponding to given indexed component that is an
8430 -- actual in a call. Note that the enclosing subprogram call has not
8431 -- been analyzed yet, and the parameter list is not normalized, so
8432 -- that if the argument is a parameter association we must match it
8433 -- by name and not by position.
8435 function Find_Indexing_Operations
8438 Is_Constant
: Boolean) return Node_Id
;
8439 -- Return a reference to the primitive operation of type T denoted by
8440 -- name Nam. If the operation is overloaded, the reference carries all
8441 -- interpretations. Flag Is_Constant should be set when the context is
8442 -- constant indexing.
8444 --------------------------
8445 -- Constant_Indexing_OK --
8446 --------------------------
8448 function Constant_Indexing_OK
return Boolean is
8452 if No
(Find_Value_Of_Aspect
(Pref_Typ
, Aspect_Variable_Indexing
)) then
8455 elsif not Is_Variable
(Prefix
) then
8460 while Present
(Par
) loop
8461 if Nkind
(Parent
(Par
)) = N_Assignment_Statement
8462 and then Par
= Name
(Parent
(Par
))
8466 -- The call may be overloaded, in which case we assume that its
8467 -- resolution does not depend on the type of the parameter that
8468 -- includes the indexing operation.
8470 elsif Nkind
(Parent
(Par
)) in N_Subprogram_Call
8471 and then Is_Entity_Name
(Name
(Parent
(Par
)))
8477 -- We should look for an interpretation with the proper
8478 -- number of formals, and determine whether it is an
8479 -- In_Parameter, but for now we examine the formal that
8480 -- corresponds to the indexing, and assume that variable
8481 -- indexing is required if some interpretation has an
8482 -- assignable formal at that position. Still does not
8483 -- cover the most complex cases ???
8485 if Is_Overloaded
(Name
(Parent
(Par
))) then
8487 Proc
: constant Node_Id
:= Name
(Parent
(Par
));
8492 Get_First_Interp
(Proc
, I
, It
);
8493 while Present
(It
.Nam
) loop
8494 if not Expr_Matches_In_Formal
(It
.Nam
, Par
) then
8498 Get_Next_Interp
(I
, It
);
8502 -- All interpretations have a matching in-mode formal
8507 Proc
:= Entity
(Name
(Parent
(Par
)));
8509 -- If this is an indirect call, get formals from
8512 if Is_Access_Subprogram_Type
(Etype
(Proc
)) then
8513 Proc
:= Designated_Type
(Etype
(Proc
));
8517 return Expr_Matches_In_Formal
(Proc
, Par
);
8520 elsif Nkind
(Parent
(Par
)) = N_Object_Renaming_Declaration
then
8523 -- If the indexed component is a prefix it may be the first actual
8524 -- of a prefixed call. Retrieve the called entity, if any, and
8525 -- check its first formal. Determine if the context is a procedure
8526 -- or function call.
8528 elsif Nkind
(Parent
(Par
)) = N_Selected_Component
then
8530 Sel
: constant Node_Id
:= Selector_Name
(Parent
(Par
));
8531 Nam
: constant Entity_Id
:= Current_Entity
(Sel
);
8534 if Present
(Nam
) and then Is_Overloadable
(Nam
) then
8535 if Nkind
(Parent
(Parent
(Par
))) =
8536 N_Procedure_Call_Statement
8540 elsif Ekind
(Nam
) = E_Function
8541 and then Present
(First_Formal
(Nam
))
8543 return Ekind
(First_Formal
(Nam
)) = E_In_Parameter
;
8548 elsif Nkind
(Par
) in N_Op
then
8552 Par
:= Parent
(Par
);
8555 -- In all other cases, constant indexing is legal
8558 end Constant_Indexing_OK
;
8560 ----------------------------
8561 -- Expr_Matches_In_Formal --
8562 ----------------------------
8564 function Expr_Matches_In_Formal
8566 Par
: Node_Id
) return Boolean
8572 Formal
:= First_Formal
(Subp
);
8573 Actual
:= First
(Parameter_Associations
((Parent
(Par
))));
8575 if Nkind
(Par
) /= N_Parameter_Association
then
8577 -- Match by position
8579 while Present
(Actual
) and then Present
(Formal
) loop
8580 exit when Actual
= Par
;
8583 if Present
(Formal
) then
8584 Next_Formal
(Formal
);
8586 -- Otherwise this is a parameter mismatch, the error is
8587 -- reported elsewhere, or else variable indexing is implied.
8597 while Present
(Formal
) loop
8598 exit when Chars
(Formal
) = Chars
(Selector_Name
(Par
));
8599 Next_Formal
(Formal
);
8607 return Present
(Formal
) and then Ekind
(Formal
) = E_In_Parameter
;
8608 end Expr_Matches_In_Formal
;
8610 ------------------------------
8611 -- Find_Indexing_Operations --
8612 ------------------------------
8614 function Find_Indexing_Operations
8617 Is_Constant
: Boolean) return Node_Id
8619 procedure Inspect_Declarations
8621 Ref
: in out Node_Id
);
8622 -- Traverse the declarative list where type Typ resides and collect
8623 -- all suitable interpretations in node Ref.
8625 procedure Inspect_Primitives
8627 Ref
: in out Node_Id
);
8628 -- Traverse the list of primitive operations of type Typ and collect
8629 -- all suitable interpretations in node Ref.
8631 function Is_OK_Candidate
8632 (Subp_Id
: Entity_Id
;
8633 Typ
: Entity_Id
) return Boolean;
8634 -- Determine whether subprogram Subp_Id is a suitable indexing
8635 -- operation for type Typ. To qualify as such, the subprogram must
8636 -- be a function, have at least two parameters, and the type of the
8637 -- first parameter must be either Typ, or Typ'Class, or access [to
8638 -- constant] with designated type Typ or Typ'Class.
8640 procedure Record_Interp
(Subp_Id
: Entity_Id
; Ref
: in out Node_Id
);
8641 -- Store subprogram Subp_Id as an interpretation in node Ref
8643 --------------------------
8644 -- Inspect_Declarations --
8645 --------------------------
8647 procedure Inspect_Declarations
8649 Ref
: in out Node_Id
)
8651 Typ_Decl
: constant Node_Id
:= Declaration_Node
(Typ
);
8653 Subp_Id
: Entity_Id
;
8656 -- Ensure that the routine is not called with itypes, which lack a
8657 -- declarative node.
8659 pragma Assert
(Present
(Typ_Decl
));
8660 pragma Assert
(Is_List_Member
(Typ_Decl
));
8662 Decl
:= First
(List_Containing
(Typ_Decl
));
8663 while Present
(Decl
) loop
8664 if Nkind
(Decl
) = N_Subprogram_Declaration
then
8665 Subp_Id
:= Defining_Entity
(Decl
);
8667 if Is_OK_Candidate
(Subp_Id
, Typ
) then
8668 Record_Interp
(Subp_Id
, Ref
);
8674 end Inspect_Declarations
;
8676 ------------------------
8677 -- Inspect_Primitives --
8678 ------------------------
8680 procedure Inspect_Primitives
8682 Ref
: in out Node_Id
)
8684 Prim_Elmt
: Elmt_Id
;
8685 Prim_Id
: Entity_Id
;
8688 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
8689 while Present
(Prim_Elmt
) loop
8690 Prim_Id
:= Node
(Prim_Elmt
);
8692 if Is_OK_Candidate
(Prim_Id
, Typ
) then
8693 Record_Interp
(Prim_Id
, Ref
);
8696 Next_Elmt
(Prim_Elmt
);
8698 end Inspect_Primitives
;
8700 ---------------------
8701 -- Is_OK_Candidate --
8702 ---------------------
8704 function Is_OK_Candidate
8705 (Subp_Id
: Entity_Id
;
8706 Typ
: Entity_Id
) return Boolean
8709 Formal_Typ
: Entity_Id
;
8710 Param_Typ
: Node_Id
;
8713 -- To classify as a suitable candidate, the subprogram must be a
8714 -- function whose name matches the argument of aspect Constant or
8715 -- Variable_Indexing.
8717 if Ekind
(Subp_Id
) = E_Function
and then Chars
(Subp_Id
) = Nam
then
8718 Formal
:= First_Formal
(Subp_Id
);
8720 -- The candidate requires at least two parameters
8722 if Present
(Formal
) and then Present
(Next_Formal
(Formal
)) then
8723 Formal_Typ
:= Empty
;
8724 Param_Typ
:= Parameter_Type
(Parent
(Formal
));
8726 -- Use the designated type when the first parameter is of an
8729 if Nkind
(Param_Typ
) = N_Access_Definition
8730 and then Present
(Subtype_Mark
(Param_Typ
))
8732 -- When the context is a constant indexing, the access
8733 -- definition must be access-to-constant. This does not
8734 -- apply to variable indexing.
8737 or else Constant_Present
(Param_Typ
)
8739 Formal_Typ
:= Etype
(Subtype_Mark
(Param_Typ
));
8742 -- Otherwise use the parameter type
8745 Formal_Typ
:= Etype
(Param_Typ
);
8748 if Present
(Formal_Typ
) then
8750 -- Use the specific type when the parameter type is
8753 if Is_Class_Wide_Type
(Formal_Typ
) then
8754 Formal_Typ
:= Etype
(Base_Type
(Formal_Typ
));
8757 -- Use the full view when the parameter type is private
8760 if Is_Incomplete_Or_Private_Type
(Formal_Typ
)
8761 and then Present
(Full_View
(Formal_Typ
))
8763 Formal_Typ
:= Full_View
(Formal_Typ
);
8766 -- The type of the first parameter must denote the type
8767 -- of the container or acts as its ancestor type.
8771 or else Is_Ancestor
(Formal_Typ
, Typ
);
8777 end Is_OK_Candidate
;
8783 procedure Record_Interp
(Subp_Id
: Entity_Id
; Ref
: in out Node_Id
) is
8785 if Present
(Ref
) then
8786 Add_One_Interp
(Ref
, Subp_Id
, Etype
(Subp_Id
));
8788 -- Otherwise this is the first interpretation. Create a reference
8789 -- where all remaining interpretations will be collected.
8792 Ref
:= New_Occurrence_Of
(Subp_Id
, Sloc
(T
));
8801 -- Start of processing for Find_Indexing_Operations
8806 -- Use the specific type when the parameter type is class-wide
8808 if Is_Class_Wide_Type
(Typ
) then
8809 Typ
:= Root_Type
(Typ
);
8813 Typ
:= Underlying_Type
(Base_Type
(Typ
));
8815 Inspect_Primitives
(Typ
, Ref
);
8817 -- Now look for explicit declarations of an indexing operation.
8818 -- If the type is private the operation may be declared in the
8819 -- visible part that contains the partial view.
8821 if Is_Private_Type
(T
) then
8822 Inspect_Declarations
(T
, Ref
);
8825 Inspect_Declarations
(Typ
, Ref
);
8828 end Find_Indexing_Operations
;
8832 Loc
: constant Source_Ptr
:= Sloc
(N
);
8836 Func_Name
: Node_Id
;
8839 Is_Constant_Indexing
: Boolean := False;
8840 -- This flag reflects the nature of the container indexing. Note that
8841 -- the context may be suited for constant indexing, but the type may
8842 -- lack a Constant_Indexing annotation.
8844 -- Start of processing for Try_Container_Indexing
8847 -- Node may have been analyzed already when testing for a prefixed
8848 -- call, in which case do not redo analysis.
8850 if Present
(Generalized_Indexing
(N
)) then
8854 -- An explicit dereference needs to be created in the case of a prefix
8855 -- that's an access.
8857 -- It seems that this should be done elsewhere, but not clear where that
8858 -- should happen. Normally Insert_Explicit_Dereference is called via
8859 -- Resolve_Implicit_Dereference, called from Resolve_Indexed_Component,
8860 -- but that won't be called in this case because we transform the
8861 -- indexing to a call. Resolve_Call.Check_Prefixed_Call takes care of
8862 -- implicit dereferencing and referencing on prefixed calls, but that
8863 -- would be too late, even if we expanded to a prefix call, because
8864 -- Process_Indexed_Component will flag an error before the resolution
8867 if Is_Access_Type
(Pref_Typ
) then
8868 Pref_Typ
:= Implicitly_Designated_Type
(Pref_Typ
);
8869 Insert_Explicit_Dereference
(Prefix
);
8870 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
8875 -- If indexing a class-wide container, obtain indexing primitive from
8878 if Is_Class_Wide_Type
(C_Type
) then
8879 C_Type
:= Etype
(Base_Type
(C_Type
));
8882 -- Check whether the type has a specified indexing aspect
8886 -- The context is suitable for constant indexing, so obtain the name of
8887 -- the indexing function from aspect Constant_Indexing.
8889 if Constant_Indexing_OK
then
8891 Find_Value_Of_Aspect
(Pref_Typ
, Aspect_Constant_Indexing
);
8894 if Present
(Func_Name
) then
8895 Is_Constant_Indexing
:= True;
8897 -- Otherwise attempt variable indexing
8901 Find_Value_Of_Aspect
(Pref_Typ
, Aspect_Variable_Indexing
);
8904 -- The type is not subject to either form of indexing, therefore the
8905 -- indexed component does not denote container indexing. If this is a
8906 -- true error, it is diagnosed by the caller.
8908 if No
(Func_Name
) then
8910 -- The prefix itself may be an indexing of a container. Rewrite it
8911 -- as such and retry.
8913 if Has_Implicit_Dereference
(Pref_Typ
) then
8914 Build_Explicit_Dereference
8915 (Prefix
, Get_Reference_Discriminant
(Pref_Typ
));
8916 return Try_Container_Indexing
(N
, Prefix
, Exprs
);
8918 -- Otherwise this is definitely not container indexing
8924 -- If the container type is derived from another container type, the
8925 -- value of the inherited aspect is the Reference operation declared
8926 -- for the parent type.
8928 -- However, Reference is also a primitive operation of the type, and the
8929 -- inherited operation has a different signature. We retrieve the right
8930 -- ones (the function may be overloaded) from the list of primitive
8931 -- operations of the derived type.
8933 -- Note that predefined containers are typically all derived from one of
8934 -- the Controlled types. The code below is motivated by containers that
8935 -- are derived from other types with a Reference aspect.
8936 -- Note as well that we need to examine the base type, given that
8937 -- the container object may be a constrained subtype or itype that
8938 -- does not have an explicit declaration.
8940 elsif Is_Derived_Type
(C_Type
)
8941 and then Etype
(First_Formal
(Entity
(Func_Name
))) /= Pref_Typ
8944 Find_Indexing_Operations
8945 (T
=> Base_Type
(C_Type
),
8946 Nam
=> Chars
(Func_Name
),
8947 Is_Constant
=> Is_Constant_Indexing
);
8950 Assoc
:= New_List
(Relocate_Node
(Prefix
));
8952 -- A generalized indexing may have nore than one index expression, so
8953 -- transfer all of them to the argument list to be used in the call.
8954 -- Note that there may be named associations, in which case the node
8955 -- was rewritten earlier as a call, and has been transformed back into
8956 -- an indexed expression to share the following processing.
8958 -- The generalized indexing node is the one on which analysis and
8959 -- resolution take place. Before expansion the original node is replaced
8960 -- with the generalized indexing node, which is a call, possibly with a
8961 -- dereference operation.
8963 -- Create argument list for function call that represents generalized
8964 -- indexing. Note that indices (i.e. actuals) may themselves be
8972 Arg
:= First
(Exprs
);
8973 while Present
(Arg
) loop
8974 New_Arg
:= Relocate_Node
(Arg
);
8976 -- The arguments can be parameter associations, in which case the
8977 -- explicit actual parameter carries the overloadings.
8979 if Nkind
(New_Arg
) /= N_Parameter_Association
then
8980 Save_Interps
(Arg
, New_Arg
);
8983 Append
(New_Arg
, Assoc
);
8988 if not Is_Overloaded
(Func_Name
) then
8989 Func
:= Entity
(Func_Name
);
8991 -- Can happen in case of e.g. cascaded errors
8998 Make_Function_Call
(Loc
,
8999 Name
=> New_Occurrence_Of
(Func
, Loc
),
9000 Parameter_Associations
=> Assoc
);
9002 Set_Parent
(Indexing
, Parent
(N
));
9003 Set_Generalized_Indexing
(N
, Indexing
);
9005 Set_Etype
(N
, Etype
(Indexing
));
9007 -- If the return type of the indexing function is a reference type,
9008 -- add the dereference as a possible interpretation. Note that the
9009 -- indexing aspect may be a function that returns the element type
9010 -- with no intervening implicit dereference, and that the reference
9011 -- discriminant is not the first discriminant.
9013 if Has_Discriminants
(Etype
(Func
)) then
9014 Check_Implicit_Dereference
(N
, Etype
(Func
));
9018 -- If there are multiple indexing functions, build a function call
9019 -- and analyze it for each of the possible interpretations.
9022 Make_Function_Call
(Loc
,
9024 Make_Identifier
(Loc
, Chars
(Func_Name
)),
9025 Parameter_Associations
=> Assoc
);
9026 Set_Parent
(Indexing
, Parent
(N
));
9027 Set_Generalized_Indexing
(N
, Indexing
);
9028 Set_Etype
(N
, Any_Type
);
9029 Set_Etype
(Name
(Indexing
), Any_Type
);
9037 Get_First_Interp
(Func_Name
, I
, It
);
9038 Set_Etype
(Indexing
, Any_Type
);
9040 -- Analyze each candidate function with the given actuals
9042 while Present
(It
.Nam
) loop
9043 Analyze_One_Call
(Indexing
, It
.Nam
, False, Success
);
9044 Get_Next_Interp
(I
, It
);
9047 -- If there are several successful candidates, resolution will
9048 -- be by result. Mark the interpretations of the function name
9051 if Is_Overloaded
(Indexing
) then
9052 Get_First_Interp
(Indexing
, I
, It
);
9054 while Present
(It
.Nam
) loop
9055 Add_One_Interp
(Name
(Indexing
), It
.Nam
, It
.Typ
);
9056 Get_Next_Interp
(I
, It
);
9060 Set_Etype
(Name
(Indexing
), Etype
(Indexing
));
9063 -- Now add the candidate interpretations to the indexing node
9064 -- itself, to be replaced later by the function call.
9066 if Is_Overloaded
(Name
(Indexing
)) then
9067 Get_First_Interp
(Name
(Indexing
), I
, It
);
9069 while Present
(It
.Nam
) loop
9070 Add_One_Interp
(N
, It
.Nam
, It
.Typ
);
9072 -- Add dereference interpretation if the result type has
9073 -- implicit reference discriminants.
9075 if Has_Discriminants
(Etype
(It
.Nam
)) then
9076 Check_Implicit_Dereference
(N
, Etype
(It
.Nam
));
9079 Get_Next_Interp
(I
, It
);
9083 Set_Etype
(N
, Etype
(Name
(Indexing
)));
9084 if Has_Discriminants
(Etype
(N
)) then
9085 Check_Implicit_Dereference
(N
, Etype
(N
));
9091 if Etype
(Indexing
) = Any_Type
then
9093 ("container cannot be indexed with&", N
, Etype
(First
(Exprs
)));
9094 Rewrite
(N
, New_Occurrence_Of
(Any_Id
, Loc
));
9098 end Try_Container_Indexing
;
9100 -----------------------
9101 -- Try_Indirect_Call --
9102 -----------------------
9104 function Try_Indirect_Call
9107 Typ
: Entity_Id
) return Boolean
9113 pragma Warnings
(Off
, Call_OK
);
9116 Normalize_Actuals
(N
, Designated_Type
(Typ
), False, Call_OK
);
9118 Actual
:= First_Actual
(N
);
9119 Formal
:= First_Formal
(Designated_Type
(Typ
));
9120 while Present
(Actual
) and then Present
(Formal
) loop
9121 if not Has_Compatible_Type
(Actual
, Etype
(Formal
)) then
9126 Next_Formal
(Formal
);
9129 if No
(Actual
) and then No
(Formal
) then
9130 Add_One_Interp
(N
, Nam
, Etype
(Designated_Type
(Typ
)));
9132 -- Nam is a candidate interpretation for the name in the call,
9133 -- if it is not an indirect call.
9135 if not Is_Type
(Nam
)
9136 and then Is_Entity_Name
(Name
(N
))
9138 Set_Entity
(Name
(N
), Nam
);
9146 end Try_Indirect_Call
;
9148 ----------------------
9149 -- Try_Indexed_Call --
9150 ----------------------
9152 function Try_Indexed_Call
9156 Skip_First
: Boolean) return Boolean
9158 Loc
: constant Source_Ptr
:= Sloc
(N
);
9159 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
9164 Actual
:= First
(Actuals
);
9166 -- If the call was originally written in prefix form, skip the first
9167 -- actual, which is obviously not defaulted.
9173 Index
:= First_Index
(Typ
);
9174 while Present
(Actual
) and then Present
(Index
) loop
9176 -- If the parameter list has a named association, the expression
9177 -- is definitely a call and not an indexed component.
9179 if Nkind
(Actual
) = N_Parameter_Association
then
9183 if Is_Entity_Name
(Actual
)
9184 and then Is_Type
(Entity
(Actual
))
9185 and then No
(Next
(Actual
))
9187 -- A single actual that is a type name indicates a slice if the
9188 -- type is discrete, and an error otherwise.
9190 if Is_Discrete_Type
(Entity
(Actual
)) then
9194 Make_Function_Call
(Loc
,
9195 Name
=> Relocate_Node
(Name
(N
))),
9197 New_Occurrence_Of
(Entity
(Actual
), Sloc
(Actual
))));
9202 Error_Msg_N
("invalid use of type in expression", Actual
);
9203 Set_Etype
(N
, Any_Type
);
9208 elsif not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
9216 if No
(Actual
) and then No
(Index
) then
9217 Add_One_Interp
(N
, Nam
, Component_Type
(Typ
));
9219 -- Nam is a candidate interpretation for the name in the call,
9220 -- if it is not an indirect call.
9222 if not Is_Type
(Nam
)
9223 and then Is_Entity_Name
(Name
(N
))
9225 Set_Entity
(Name
(N
), Nam
);
9232 end Try_Indexed_Call
;
9234 --------------------------
9235 -- Try_Object_Operation --
9236 --------------------------
9238 function Try_Object_Operation
9240 CW_Test_Only
: Boolean := False;
9241 Allow_Extensions
: Boolean := False) return Boolean
9243 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
9244 Is_Subprg_Call
: constant Boolean := K
in N_Subprogram_Call
;
9245 Loc
: constant Source_Ptr
:= Sloc
(N
);
9246 Obj
: constant Node_Id
:= Prefix
(N
);
9248 Subprog
: constant Node_Id
:=
9249 Make_Identifier
(Sloc
(Selector_Name
(N
)),
9250 Chars
=> Chars
(Selector_Name
(N
)));
9251 -- Identifier on which possible interpretations will be collected
9253 Report_Error
: Boolean := False;
9254 -- If no candidate interpretation matches the context, redo analysis
9255 -- with Report_Error True to provide additional information.
9258 Candidate
: Entity_Id
:= Empty
;
9259 New_Call_Node
: Node_Id
:= Empty
;
9260 Node_To_Replace
: Node_Id
;
9261 Obj_Type
: Entity_Id
:= Etype
(Obj
);
9262 Success
: Boolean := False;
9264 procedure Complete_Object_Operation
9265 (Call_Node
: Node_Id
;
9266 Node_To_Replace
: Node_Id
);
9267 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
9268 -- Call_Node, insert the object (or its dereference) as the first actual
9269 -- in the call, and complete the analysis of the call.
9271 procedure Report_Ambiguity
(Op
: Entity_Id
);
9272 -- If a prefixed procedure call is ambiguous, indicate whether the call
9273 -- includes an implicit dereference or an implicit 'Access.
9275 procedure Transform_Object_Operation
9276 (Call_Node
: out Node_Id
;
9277 Node_To_Replace
: out Node_Id
);
9278 -- Transform Obj.Operation (X, Y, ...) into Operation (Obj, X, Y ...).
9279 -- Call_Node is the resulting subprogram call, Node_To_Replace is
9280 -- either N or the parent of N, and Subprog is a reference to the
9281 -- subprogram we are trying to match. Note that the transformation
9282 -- may be partially destructive for the parent of N, so it needs to
9283 -- be undone in the case where Try_Object_Operation returns false.
9285 function Try_Class_Wide_Operation
9286 (Call_Node
: Node_Id
;
9287 Node_To_Replace
: Node_Id
) return Boolean;
9288 -- Traverse all ancestor types looking for a class-wide subprogram for
9289 -- which the current operation is a valid non-dispatching call.
9291 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
);
9292 -- If prefix is overloaded, its interpretation may include different
9293 -- tagged types, and we must examine the primitive operations and the
9294 -- class-wide operations of each in order to find candidate
9295 -- interpretations for the call as a whole.
9297 function Try_Primitive_Operation
9298 (Call_Node
: Node_Id
;
9299 Node_To_Replace
: Node_Id
) return Boolean;
9300 -- Traverse the list of primitive subprograms looking for a dispatching
9301 -- operation for which the current node is a valid call.
9303 function Valid_Candidate
9306 Subp
: Entity_Id
) return Entity_Id
;
9307 -- If the subprogram is a valid interpretation, record it, and add to
9308 -- the list of interpretations of Subprog. Otherwise return Empty.
9310 -------------------------------
9311 -- Complete_Object_Operation --
9312 -------------------------------
9314 procedure Complete_Object_Operation
9315 (Call_Node
: Node_Id
;
9316 Node_To_Replace
: Node_Id
)
9318 Control
: constant Entity_Id
:= First_Formal
(Entity
(Subprog
));
9319 Formal_Type
: constant Entity_Id
:= Etype
(Control
);
9320 First_Actual
: Node_Id
;
9323 -- Place the name of the operation, with its interpretations,
9324 -- on the rewritten call.
9326 Set_Name
(Call_Node
, Subprog
);
9328 First_Actual
:= First
(Parameter_Associations
(Call_Node
));
9330 -- For cross-reference purposes, treat the new node as being in the
9331 -- source if the original one is. Set entity and type, even though
9332 -- they may be overwritten during resolution if overloaded.
9334 Set_Comes_From_Source
(Subprog
, Comes_From_Source
(N
));
9335 Set_Comes_From_Source
(Call_Node
, Comes_From_Source
(N
));
9337 if Nkind
(N
) = N_Selected_Component
9338 and then not Inside_A_Generic
9340 Set_Entity
(Selector_Name
(N
), Entity
(Subprog
));
9341 Set_Etype
(Selector_Name
(N
), Etype
(Entity
(Subprog
)));
9344 -- If need be, rewrite first actual as an explicit dereference. If
9345 -- the call is overloaded, the rewriting can only be done once the
9346 -- primitive operation is identified.
9348 if Is_Overloaded
(Subprog
) then
9350 -- The prefix itself may be overloaded, and its interpretations
9351 -- must be propagated to the new actual in the call.
9353 if Is_Overloaded
(Obj
) then
9354 Save_Interps
(Obj
, First_Actual
);
9357 Rewrite
(First_Actual
, Obj
);
9359 elsif not Is_Access_Type
(Formal_Type
)
9360 and then Is_Access_Type
(Etype
(Obj
))
9362 Rewrite
(First_Actual
,
9363 Make_Explicit_Dereference
(Sloc
(Obj
), Obj
));
9364 Analyze
(First_Actual
);
9366 -- If we need to introduce an explicit dereference, verify that
9367 -- the resulting actual is compatible with the mode of the formal.
9369 if Ekind
(First_Formal
(Entity
(Subprog
))) /= E_In_Parameter
9370 and then Is_Access_Constant
(Etype
(Obj
))
9373 ("expect variable in call to&", Prefix
(N
), Entity
(Subprog
));
9376 -- Conversely, if the formal is an access parameter and the object is
9377 -- not an access type or a reference type (i.e. a type with the
9378 -- Implicit_Dereference aspect specified), replace the actual with a
9379 -- 'Access reference. Its analysis will check that the object is
9382 elsif Is_Access_Type
(Formal_Type
)
9383 and then not Is_Access_Type
(Etype
(Obj
))
9385 (not Has_Implicit_Dereference
(Etype
(Obj
))
9387 not Is_Access_Type
(Designated_Type
(Etype
9388 (Get_Reference_Discriminant
(Etype
(Obj
))))))
9390 -- A special case: A.all'Access is illegal if A is an access to a
9391 -- constant and the context requires an access to a variable.
9393 if not Is_Access_Constant
(Formal_Type
) then
9394 if (Nkind
(Obj
) = N_Explicit_Dereference
9395 and then Is_Access_Constant
(Etype
(Prefix
(Obj
))))
9396 or else not Is_Variable
(Obj
)
9399 ("actual for & must be a variable", Obj
, Control
);
9403 Rewrite
(First_Actual
,
9404 Make_Attribute_Reference
(Loc
,
9405 Attribute_Name
=> Name_Access
,
9406 Prefix
=> Relocate_Node
(Obj
)));
9408 -- If the object is not overloaded verify that taking access of
9409 -- it is legal. Otherwise check is made during resolution.
9411 if not Is_Overloaded
(Obj
)
9412 and then not Is_Aliased_View
(Obj
)
9415 ("object in prefixed call to & must be aliased "
9416 & "(RM 4.1.3 (13 1/2))", Prefix
(First_Actual
), Subprog
);
9419 Analyze
(First_Actual
);
9422 if Is_Overloaded
(Obj
) then
9423 Save_Interps
(Obj
, First_Actual
);
9426 Rewrite
(First_Actual
, Obj
);
9429 if In_Extended_Main_Source_Unit
(Current_Scope
) then
9430 -- The operation is obtained from the dispatch table and not by
9431 -- visibility, and may be declared in a unit that is not
9432 -- explicitly referenced in the source, but is nevertheless
9433 -- required in the context of the current unit. Indicate that
9434 -- operation and its scope are referenced, to prevent spurious and
9435 -- misleading warnings. If the operation is overloaded, all
9436 -- primitives are in the same scope and we can use any of them.
9437 -- Don't do that outside the main unit since otherwise this will
9438 -- e.g. prevent the detection of some unused with clauses.
9440 Set_Referenced
(Entity
(Subprog
), True);
9441 Set_Referenced
(Scope
(Entity
(Subprog
)), True);
9444 Rewrite
(Node_To_Replace
, Call_Node
);
9446 -- Propagate the interpretations collected in subprog to the new
9447 -- function call node, to be resolved from context.
9449 if Is_Overloaded
(Subprog
) then
9450 Save_Interps
(Subprog
, Node_To_Replace
);
9453 Analyze
(Node_To_Replace
);
9455 -- If the operation has been rewritten into a call, which may get
9456 -- subsequently an explicit dereference, preserve the type on the
9457 -- original node (selected component or indexed component) for
9458 -- subsequent legality tests, e.g. Is_Variable. which examines
9459 -- the original node.
9461 if Nkind
(Node_To_Replace
) = N_Function_Call
then
9463 (Original_Node
(Node_To_Replace
), Etype
(Node_To_Replace
));
9466 end Complete_Object_Operation
;
9468 ----------------------
9469 -- Report_Ambiguity --
9470 ----------------------
9472 procedure Report_Ambiguity
(Op
: Entity_Id
) is
9473 Access_Actual
: constant Boolean :=
9474 Is_Access_Type
(Etype
(Prefix
(N
)));
9475 Access_Formal
: Boolean := False;
9478 Error_Msg_Sloc
:= Sloc
(Op
);
9480 if Present
(First_Formal
(Op
)) then
9481 Access_Formal
:= Is_Access_Type
(Etype
(First_Formal
(Op
)));
9484 if Access_Formal
and then not Access_Actual
then
9485 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
9487 ("\possible interpretation "
9488 & "(inherited, with implicit 'Access) #", N
);
9491 ("\possible interpretation (with implicit 'Access) #", N
);
9494 elsif not Access_Formal
and then Access_Actual
then
9495 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
9497 ("\possible interpretation "
9498 & "(inherited, with implicit dereference) #", N
);
9501 ("\possible interpretation (with implicit dereference) #", N
);
9505 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
9506 Error_Msg_N
("\possible interpretation (inherited)#", N
);
9508 Error_Msg_N
-- CODEFIX
9509 ("\possible interpretation#", N
);
9512 end Report_Ambiguity
;
9514 --------------------------------
9515 -- Transform_Object_Operation --
9516 --------------------------------
9518 procedure Transform_Object_Operation
9519 (Call_Node
: out Node_Id
;
9520 Node_To_Replace
: out Node_Id
)
9522 Dummy
: constant Node_Id
:= New_Copy
(Obj
);
9523 -- Placeholder used as a first parameter in the call, replaced
9524 -- eventually by the proper object.
9526 Parent_Node
: constant Node_Id
:= Parent
(N
);
9532 -- Common case covering 1) Call to a procedure and 2) Call to a
9533 -- function that has some additional actuals.
9535 if Nkind
(Parent_Node
) in N_Subprogram_Call
9537 -- N is a selected component node containing the name of the
9538 -- subprogram. If N is not the name of the parent node we must
9539 -- not replace the parent node by the new construct. This case
9540 -- occurs when N is a parameterless call to a subprogram that
9541 -- is an actual parameter of a call to another subprogram. For
9543 -- Some_Subprogram (..., Obj.Operation, ...)
9545 and then N
= Name
(Parent_Node
)
9547 Node_To_Replace
:= Parent_Node
;
9549 Actuals
:= Parameter_Associations
(Parent_Node
);
9551 if Present
(Actuals
) then
9552 Prepend
(Dummy
, Actuals
);
9554 Actuals
:= New_List
(Dummy
);
9557 if Nkind
(Parent_Node
) = N_Procedure_Call_Statement
then
9559 Make_Procedure_Call_Statement
(Loc
,
9560 Name
=> New_Copy
(Subprog
),
9561 Parameter_Associations
=> Actuals
);
9565 Make_Function_Call
(Loc
,
9566 Name
=> New_Copy
(Subprog
),
9567 Parameter_Associations
=> Actuals
);
9570 -- Before analysis, a function call appears as an indexed component
9571 -- if there are no named associations.
9573 elsif Nkind
(Parent_Node
) = N_Indexed_Component
9574 and then N
= Prefix
(Parent_Node
)
9576 Node_To_Replace
:= Parent_Node
;
9577 Actuals
:= Expressions
(Parent_Node
);
9579 Actual
:= First
(Actuals
);
9580 while Present
(Actual
) loop
9585 Prepend
(Dummy
, Actuals
);
9588 Make_Function_Call
(Loc
,
9589 Name
=> New_Copy
(Subprog
),
9590 Parameter_Associations
=> Actuals
);
9592 -- Parameterless call: Obj.F is rewritten as F (Obj)
9595 Node_To_Replace
:= N
;
9598 Make_Function_Call
(Loc
,
9599 Name
=> New_Copy
(Subprog
),
9600 Parameter_Associations
=> New_List
(Dummy
));
9602 end Transform_Object_Operation
;
9604 ------------------------------
9605 -- Try_Class_Wide_Operation --
9606 ------------------------------
9608 function Try_Class_Wide_Operation
9609 (Call_Node
: Node_Id
;
9610 Node_To_Replace
: Node_Id
) return Boolean
9612 Anc_Type
: Entity_Id
;
9613 Matching_Op
: Entity_Id
:= Empty
;
9616 procedure Traverse_Homonyms
9617 (Anc_Type
: Entity_Id
;
9618 Error
: out Boolean);
9619 -- Traverse the homonym chain of the subprogram searching for those
9620 -- homonyms whose first formal has the Anc_Type's class-wide type,
9621 -- or an anonymous access type designating the class-wide type. If
9622 -- an ambiguity is detected, then Error is set to True.
9624 procedure Traverse_Interfaces
9625 (Anc_Type
: Entity_Id
;
9626 Error
: out Boolean);
9627 -- Traverse the list of interfaces, if any, associated with Anc_Type
9628 -- and search for acceptable class-wide homonyms associated with each
9629 -- interface. If an ambiguity is detected, then Error is set to True.
9631 -----------------------
9632 -- Traverse_Homonyms --
9633 -----------------------
9635 procedure Traverse_Homonyms
9636 (Anc_Type
: Entity_Id
;
9637 Error
: out Boolean)
9639 function First_Formal_Match
9640 (Subp_Id
: Entity_Id
;
9641 Typ
: Entity_Id
) return Boolean;
9642 -- Predicate to verify that the first foramal of class-wide
9643 -- subprogram Subp_Id matches type Typ of the prefix.
9645 ------------------------
9646 -- First_Formal_Match --
9647 ------------------------
9649 function First_Formal_Match
9650 (Subp_Id
: Entity_Id
;
9651 Typ
: Entity_Id
) return Boolean
9653 Ctrl
: constant Entity_Id
:= First_Formal
(Subp_Id
);
9659 (Base_Type
(Etype
(Ctrl
)) = Typ
9661 (Ekind
(Etype
(Ctrl
)) = E_Anonymous_Access_Type
9663 Base_Type
(Designated_Type
(Etype
(Ctrl
))) =
9665 end First_Formal_Match
;
9669 CW_Typ
: constant Entity_Id
:= Class_Wide_Type
(Anc_Type
);
9671 Candidate
: Entity_Id
;
9672 -- If homonym is a renaming, examine the renamed program
9678 -- Start of processing for Traverse_Homonyms
9683 -- Find a non-hidden operation whose first parameter is of the
9684 -- class-wide type, a subtype thereof, or an anonymous access
9685 -- to same. If in an instance, the operation can be considered
9686 -- even if hidden (it may be hidden because the instantiation
9687 -- is expanded after the containing package has been analyzed).
9688 -- If the subprogram is a generic actual in an enclosing instance,
9689 -- it appears as a renaming that is a candidate interpretation as
9692 Hom
:= Current_Entity
(Subprog
);
9693 while Present
(Hom
) loop
9694 if Ekind
(Hom
) in E_Procedure | E_Function
9695 and then Present
(Renamed_Entity
(Hom
))
9696 and then Is_Generic_Actual_Subprogram
(Hom
)
9697 and then In_Open_Scopes
(Scope
(Hom
))
9699 Candidate
:= Renamed_Entity
(Hom
);
9704 if Ekind
(Candidate
) in E_Function | E_Procedure
9705 and then (not Is_Hidden
(Candidate
) or else In_Instance
)
9706 and then Scope
(Candidate
) = Scope
(Base_Type
(Anc_Type
))
9707 and then First_Formal_Match
(Candidate
, CW_Typ
)
9709 -- If the context is a procedure call, ignore functions
9710 -- in the name of the call.
9712 if Ekind
(Candidate
) = E_Function
9713 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
9714 and then N
= Name
(Parent
(N
))
9718 -- If the context is a function call, ignore procedures
9719 -- in the name of the call.
9721 elsif Ekind
(Candidate
) = E_Procedure
9722 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
9727 Set_Etype
(Call_Node
, Any_Type
);
9728 Set_Is_Overloaded
(Call_Node
, False);
9731 if No
(Matching_Op
) then
9732 Hom_Ref
:= New_Occurrence_Of
(Candidate
, Sloc
(Subprog
));
9734 Set_Etype
(Call_Node
, Any_Type
);
9735 Set_Name
(Call_Node
, Hom_Ref
);
9736 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
9741 Report
=> Report_Error
,
9743 Skip_First
=> True);
9746 Valid_Candidate
(Success
, Call_Node
, Candidate
);
9752 Report
=> Report_Error
,
9754 Skip_First
=> True);
9756 -- The same operation may be encountered on two homonym
9757 -- traversals, before and after looking at interfaces.
9758 -- Check for this case before reporting a real ambiguity.
9761 (Valid_Candidate
(Success
, Call_Node
, Candidate
))
9762 and then Nkind
(Call_Node
) /= N_Function_Call
9763 and then Candidate
/= Matching_Op
9765 Error_Msg_NE
("ambiguous call to&", N
, Hom
);
9766 Report_Ambiguity
(Matching_Op
);
9767 Report_Ambiguity
(Hom
);
9768 Check_Ambiguous_Aggregate
(New_Call_Node
);
9776 Hom
:= Homonym
(Hom
);
9778 end Traverse_Homonyms
;
9780 -------------------------
9781 -- Traverse_Interfaces --
9782 -------------------------
9784 procedure Traverse_Interfaces
9785 (Anc_Type
: Entity_Id
;
9786 Error
: out Boolean)
9788 Intface_List
: constant List_Id
:=
9789 Abstract_Interface_List
(Anc_Type
);
9795 Intface
:= First
(Intface_List
);
9796 while Present
(Intface
) loop
9798 -- Look for acceptable class-wide homonyms associated with the
9801 Traverse_Homonyms
(Etype
(Intface
), Error
);
9807 -- Continue the search by looking at each of the interface's
9808 -- associated interface ancestors.
9810 Traverse_Interfaces
(Etype
(Intface
), Error
);
9818 end Traverse_Interfaces
;
9820 -- Start of processing for Try_Class_Wide_Operation
9823 -- If we are searching only for conflicting class-wide subprograms
9824 -- then initialize directly Matching_Op with the target entity.
9826 if CW_Test_Only
then
9827 Matching_Op
:= Entity
(Selector_Name
(N
));
9830 -- Loop through ancestor types (including interfaces), traversing
9831 -- the homonym chain of the subprogram, trying out those homonyms
9832 -- whose first formal has the class-wide type of the ancestor, or
9833 -- an anonymous access type designating the class-wide type.
9835 Anc_Type
:= Obj_Type
;
9837 -- Look for a match among homonyms associated with the ancestor
9839 Traverse_Homonyms
(Anc_Type
, Error
);
9845 -- Continue the search for matches among homonyms associated with
9846 -- any interfaces implemented by the ancestor.
9848 Traverse_Interfaces
(Anc_Type
, Error
);
9854 exit when Etype
(Anc_Type
) = Anc_Type
;
9855 Anc_Type
:= Etype
(Anc_Type
);
9858 if Present
(Matching_Op
) then
9859 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
9862 return Present
(Matching_Op
);
9863 end Try_Class_Wide_Operation
;
9865 -----------------------------------
9866 -- Try_One_Prefix_Interpretation --
9867 -----------------------------------
9869 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
) is
9870 Prev_Obj_Type
: constant Entity_Id
:= Obj_Type
;
9871 -- If the interpretation does not have a valid candidate type,
9872 -- preserve current value of Obj_Type for subsequent errors.
9877 if Is_Access_Type
(Obj_Type
) then
9878 Obj_Type
:= Designated_Type
(Obj_Type
);
9882 in E_Private_Subtype | E_Record_Subtype_With_Private
9884 Obj_Type
:= Base_Type
(Obj_Type
);
9887 if Is_Class_Wide_Type
(Obj_Type
) then
9888 Obj_Type
:= Etype
(Class_Wide_Type
(Obj_Type
));
9891 -- The type may have be obtained through a limited_with clause,
9892 -- in which case the primitive operations are available on its
9893 -- nonlimited view. If still incomplete, retrieve full view.
9895 if Ekind
(Obj_Type
) = E_Incomplete_Type
9896 and then From_Limited_With
(Obj_Type
)
9897 and then Has_Non_Limited_View
(Obj_Type
)
9899 Obj_Type
:= Get_Full_View
(Non_Limited_View
(Obj_Type
));
9902 -- If the object is not tagged, or the type is still an incomplete
9903 -- type, this is not a prefixed call. Restore the previous type as
9904 -- the current one is not a legal candidate.
9906 -- Extension feature: Calls with prefixed views are also supported
9907 -- for untagged types, so skip the early return when extensions are
9908 -- enabled, unless the type doesn't have a primitive operations list
9909 -- (such as in the case of predefined types).
9911 if (not Is_Tagged_Type
(Obj_Type
)
9913 (not (Core_Extensions_Allowed
or Allow_Extensions
)
9914 or else not Present
(Primitive_Operations
(Obj_Type
))))
9915 or else Is_Incomplete_Type
(Obj_Type
)
9917 Obj_Type
:= Prev_Obj_Type
;
9922 Dup_Call_Node
: constant Node_Id
:= New_Copy
(New_Call_Node
);
9924 Prim_Result
: Boolean := False;
9927 if not CW_Test_Only
then
9929 Try_Primitive_Operation
9930 (Call_Node
=> New_Call_Node
,
9931 Node_To_Replace
=> Node_To_Replace
);
9933 -- Extension feature: In the case where the prefix is of an
9934 -- access type, and a primitive wasn't found for the designated
9935 -- type, then if the access type has primitives we attempt a
9936 -- prefixed call using one of its primitives. (It seems that
9937 -- this isn't quite right to give preference to the designated
9938 -- type in the case where both the access and designated types
9939 -- have homographic prefixed-view operations that could result
9940 -- in an ambiguity, but handling properly may be tricky. ???)
9942 if (Core_Extensions_Allowed
or Allow_Extensions
)
9943 and then not Prim_Result
9944 and then Is_Named_Access_Type
(Prev_Obj_Type
)
9945 and then Present
(Direct_Primitive_Operations
(Prev_Obj_Type
))
9947 -- Temporarily reset Obj_Type to the original access type
9949 Obj_Type
:= Prev_Obj_Type
;
9952 Try_Primitive_Operation
9953 (Call_Node
=> New_Call_Node
,
9954 Node_To_Replace
=> Node_To_Replace
);
9956 -- Restore Obj_Type to the designated type (is this really
9957 -- necessary, or should it only be done when Prim_Result is
9960 Obj_Type
:= Designated_Type
(Obj_Type
);
9964 -- Check if there is a class-wide subprogram covering the
9965 -- primitive. This check must be done even if a candidate
9966 -- was found in order to report ambiguous calls.
9968 if not Prim_Result
then
9970 Try_Class_Wide_Operation
9971 (Call_Node
=> New_Call_Node
,
9972 Node_To_Replace
=> Node_To_Replace
);
9974 -- If we found a primitive we search for class-wide subprograms
9975 -- using a duplicate of the call node (done to avoid missing its
9976 -- decoration if there is no ambiguity).
9980 Try_Class_Wide_Operation
9981 (Call_Node
=> Dup_Call_Node
,
9982 Node_To_Replace
=> Node_To_Replace
);
9985 end Try_One_Prefix_Interpretation
;
9987 -----------------------------
9988 -- Try_Primitive_Operation --
9989 -----------------------------
9991 function Try_Primitive_Operation
9992 (Call_Node
: Node_Id
;
9993 Node_To_Replace
: Node_Id
) return Boolean
9996 Prim_Op
: Entity_Id
;
9997 Matching_Op
: Entity_Id
:= Empty
;
9998 Prim_Op_Ref
: Node_Id
:= Empty
;
10000 Corr_Type
: Entity_Id
:= Empty
;
10001 -- If the prefix is a synchronized type, the controlling type of
10002 -- the primitive operation is the corresponding record type, else
10003 -- this is the object type itself.
10005 Success
: Boolean := False;
10007 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
;
10008 -- For tagged types the candidate interpretations are found in
10009 -- the list of primitive operations of the type and its ancestors.
10010 -- For formal tagged types we have to find the operations declared
10011 -- in the same scope as the type (including in the generic formal
10012 -- part) because the type itself carries no primitive operations,
10013 -- except for formal derived types that inherit the operations of
10014 -- the parent and progenitors.
10016 -- If the context is a generic subprogram body, the generic formals
10017 -- are visible by name, but are not in the entity list of the
10018 -- subprogram because that list starts with the subprogram formals.
10019 -- We retrieve the candidate operations from the generic declaration.
10021 function Extended_Primitive_Ops
(T
: Entity_Id
) return Elist_Id
;
10022 -- Prefix notation can also be used on operations that are not
10023 -- primitives of the type, but are declared in the same immediate
10024 -- declarative part, which can only mean the corresponding package
10025 -- body (see RM 4.1.3 (9.2/3)). If we are in that body we extend the
10026 -- list of primitives with body operations with the same name that
10027 -- may be candidates, so that Try_Primitive_Operations can examine
10028 -- them if no real primitive is found.
10030 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean;
10031 -- An operation that overrides an inherited operation in the private
10032 -- part of its package may be hidden, but if the inherited operation
10033 -- is visible a direct call to it will dispatch to the private one,
10034 -- which is therefore a valid candidate.
10036 function Names_Match
10037 (Obj_Type
: Entity_Id
;
10038 Prim_Op
: Entity_Id
;
10039 Subprog
: Entity_Id
) return Boolean;
10040 -- Return True if the names of Prim_Op and Subprog match. If Obj_Type
10041 -- is a protected type then compare also the original name of Prim_Op
10042 -- with the name of Subprog (since the expander may have added a
10043 -- prefix to its original name --see Exp_Ch9.Build_Selected_Name).
10045 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean;
10046 -- Verify that the prefix, dereferenced if need be, is a valid
10047 -- controlling argument in a call to Op. The remaining actuals
10048 -- are checked in the subsequent call to Analyze_One_Call.
10050 ------------------------------
10051 -- Collect_Generic_Type_Ops --
10052 ------------------------------
10054 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
is
10055 Bas
: constant Entity_Id
:= Base_Type
(T
);
10056 Candidates
: constant Elist_Id
:= New_Elmt_List
;
10058 Formal
: Entity_Id
;
10060 procedure Check_Candidate
;
10061 -- The operation is a candidate if its first parameter is a
10062 -- controlling operand of the desired type.
10064 -----------------------
10065 -- Check_Candidate; --
10066 -----------------------
10068 procedure Check_Candidate
is
10070 Formal
:= First_Formal
(Subp
);
10072 if Present
(Formal
)
10073 and then Is_Controlling_Formal
(Formal
)
10075 (Base_Type
(Etype
(Formal
)) = Bas
10077 (Is_Access_Type
(Etype
(Formal
))
10078 and then Designated_Type
(Etype
(Formal
)) = Bas
))
10080 Append_Elmt
(Subp
, Candidates
);
10082 end Check_Candidate
;
10084 -- Start of processing for Collect_Generic_Type_Ops
10087 if Is_Derived_Type
(T
) then
10088 return Primitive_Operations
(T
);
10090 elsif Ekind
(Scope
(T
)) in E_Procedure | E_Function
then
10092 -- Scan the list of generic formals to find subprograms
10093 -- that may have a first controlling formal of the type.
10095 if Nkind
(Unit_Declaration_Node
(Scope
(T
))) =
10096 N_Generic_Subprogram_Declaration
10103 First
(Generic_Formal_Declarations
10104 (Unit_Declaration_Node
(Scope
(T
))));
10105 while Present
(Decl
) loop
10106 if Nkind
(Decl
) in N_Formal_Subprogram_Declaration
then
10107 Subp
:= Defining_Entity
(Decl
);
10118 -- Scan the list of entities declared in the same scope as
10119 -- the type. In general this will be an open scope, given that
10120 -- the call we are analyzing can only appear within a generic
10121 -- declaration or body (either the one that declares T, or a
10124 -- For a subtype representing a generic actual type, go to the
10127 if Is_Generic_Actual_Type
(T
) then
10128 Subp
:= First_Entity
(Scope
(Base_Type
(T
)));
10130 Subp
:= First_Entity
(Scope
(T
));
10133 while Present
(Subp
) loop
10134 if Is_Overloadable
(Subp
) then
10138 Next_Entity
(Subp
);
10143 end Collect_Generic_Type_Ops
;
10145 ----------------------------
10146 -- Extended_Primitive_Ops --
10147 ----------------------------
10149 function Extended_Primitive_Ops
(T
: Entity_Id
) return Elist_Id
is
10150 Type_Scope
: constant Entity_Id
:= Scope
(T
);
10151 Op_List
: Elist_Id
:= Primitive_Operations
(T
);
10153 if Is_Package_Or_Generic_Package
(Type_Scope
)
10154 and then ((In_Package_Body
(Type_Scope
)
10155 and then In_Open_Scopes
(Type_Scope
)) or else In_Instance_Body
)
10157 -- Retrieve list of declarations of package body if possible
10160 The_Body
: constant Node_Id
:=
10161 Corresponding_Body
(Unit_Declaration_Node
(Type_Scope
));
10163 if Present
(The_Body
) then
10165 Body_Decls
: constant List_Id
:=
10166 Declarations
(Unit_Declaration_Node
(The_Body
));
10167 Op_Found
: Boolean := False;
10168 Op
: Entity_Id
:= Current_Entity
(Subprog
);
10170 while Present
(Op
) loop
10171 if Comes_From_Source
(Op
)
10172 and then Is_Overloadable
(Op
)
10174 -- Exclude overriding primitive operations of a
10175 -- type extension declared in the package body,
10176 -- to prevent duplicates in extended list.
10178 and then not Is_Primitive
(Op
)
10179 and then Is_List_Member
10180 (Unit_Declaration_Node
(Op
))
10181 and then List_Containing
10182 (Unit_Declaration_Node
(Op
)) = Body_Decls
10184 if not Op_Found
then
10185 -- Copy list of primitives so it is not
10186 -- affected for other uses.
10188 Op_List
:= New_Copy_Elist
(Op_List
);
10192 Append_Elmt
(Op
, Op_List
);
10195 Op
:= Homonym
(Op
);
10203 end Extended_Primitive_Ops
;
10205 ---------------------------
10206 -- Is_Private_Overriding --
10207 ---------------------------
10209 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean is
10210 Visible_Op
: Entity_Id
;
10213 -- The subprogram may be overloaded with both visible and private
10214 -- entities with the same name. We have to scan the chain of
10215 -- homonyms to determine whether there is a previous implicit
10216 -- declaration in the same scope that is overridden by the
10217 -- private candidate.
10219 Visible_Op
:= Homonym
(Op
);
10220 while Present
(Visible_Op
) loop
10221 if Scope
(Op
) /= Scope
(Visible_Op
) then
10224 elsif not Comes_From_Source
(Visible_Op
)
10225 and then Alias
(Visible_Op
) = Op
10226 and then not Is_Hidden
(Visible_Op
)
10231 Visible_Op
:= Homonym
(Visible_Op
);
10235 end Is_Private_Overriding
;
10241 function Names_Match
10242 (Obj_Type
: Entity_Id
;
10243 Prim_Op
: Entity_Id
;
10244 Subprog
: Entity_Id
) return Boolean is
10246 -- Common case: exact match
10248 if Chars
(Prim_Op
) = Chars
(Subprog
) then
10251 -- For protected type primitives the expander may have built the
10252 -- name of the dispatching primitive prepending the type name to
10253 -- avoid conflicts with the name of the protected subprogram (see
10254 -- Exp_Ch9.Build_Selected_Name).
10256 elsif Is_Protected_Type
(Obj_Type
) then
10258 Present
(Original_Protected_Subprogram
(Prim_Op
))
10259 and then Chars
(Original_Protected_Subprogram
(Prim_Op
)) =
10262 -- In an instance, the selector name may be a generic actual that
10263 -- renames a primitive operation of the type of the prefix.
10265 elsif In_Instance
and then Present
(Current_Entity
(Subprog
)) then
10267 Subp
: constant Entity_Id
:= Current_Entity
(Subprog
);
10270 and then Is_Subprogram
(Subp
)
10271 and then Present
(Renamed_Entity
(Subp
))
10272 and then Is_Generic_Actual_Subprogram
(Subp
)
10273 and then Chars
(Renamed_Entity
(Subp
)) = Chars
(Prim_Op
)
10283 -----------------------------
10284 -- Valid_First_Argument_Of --
10285 -----------------------------
10287 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean is
10288 Typ
: Entity_Id
:= Etype
(First_Formal
(Op
));
10291 if Is_Concurrent_Type
(Typ
)
10292 and then Present
(Corresponding_Record_Type
(Typ
))
10294 Typ
:= Corresponding_Record_Type
(Typ
);
10297 -- Simple case. Object may be a subtype of the tagged type or may
10298 -- be the corresponding record of a synchronized type.
10300 return Obj_Type
= Typ
10301 or else Base_Type
(Obj_Type
) = Base_Type
(Typ
)
10302 or else Corr_Type
= Typ
10304 -- Object may be of a derived type whose parent has unknown
10305 -- discriminants, in which case the type matches the underlying
10306 -- record view of its base.
10309 (Has_Unknown_Discriminants
(Typ
)
10310 and then Typ
= Underlying_Record_View
(Base_Type
(Obj_Type
)))
10312 -- Prefix can be dereferenced
10315 (Is_Access_Type
(Corr_Type
)
10316 and then Designated_Type
(Corr_Type
) = Typ
)
10318 -- Formal is an access parameter, for which the object can
10319 -- provide an access.
10322 (Ekind
(Typ
) = E_Anonymous_Access_Type
10324 Base_Type
(Designated_Type
(Typ
)) = Base_Type
(Corr_Type
));
10325 end Valid_First_Argument_Of
;
10327 -- Start of processing for Try_Primitive_Operation
10330 -- Look for subprograms in the list of primitive operations. The name
10331 -- must be identical, and the kind of call indicates the expected
10332 -- kind of operation (function or procedure). If the type is a
10333 -- (tagged) synchronized type, the primitive ops are attached to the
10334 -- corresponding record (base) type.
10336 if Is_Concurrent_Type
(Obj_Type
) then
10337 if Present
(Corresponding_Record_Type
(Obj_Type
)) then
10338 Corr_Type
:= Base_Type
(Corresponding_Record_Type
(Obj_Type
));
10339 Elmt
:= First_Elmt
(Primitive_Operations
(Corr_Type
));
10341 Corr_Type
:= Obj_Type
;
10342 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
10345 elsif not Is_Generic_Type
(Obj_Type
) then
10346 Corr_Type
:= Obj_Type
;
10347 Elmt
:= First_Elmt
(Extended_Primitive_Ops
(Obj_Type
));
10350 Corr_Type
:= Obj_Type
;
10351 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
10354 while Present
(Elmt
) loop
10355 Prim_Op
:= Node
(Elmt
);
10357 if Names_Match
(Obj_Type
, Prim_Op
, Subprog
)
10358 and then Present
(First_Formal
(Prim_Op
))
10359 and then Valid_First_Argument_Of
(Prim_Op
)
10361 (Nkind
(Call_Node
) = N_Function_Call
)
10363 (Ekind
(Prim_Op
) = E_Function
)
10365 -- Ada 2005 (AI-251): If this primitive operation corresponds
10366 -- to an immediate ancestor interface there is no need to add
10367 -- it to the list of interpretations; the corresponding aliased
10368 -- primitive is also in this list of primitive operations and
10369 -- will be used instead.
10371 if (Present
(Interface_Alias
(Prim_Op
))
10372 and then Is_Ancestor
(Find_Dispatching_Type
10373 (Alias
(Prim_Op
)), Corr_Type
))
10375 -- Do not consider hidden primitives unless the type is in an
10376 -- open scope or we are within an instance, where visibility
10377 -- is known to be correct, or else if this is an overriding
10378 -- operation in the private part for an inherited operation.
10380 or else (Is_Hidden
(Prim_Op
)
10381 and then not Is_Immediately_Visible
(Obj_Type
)
10382 and then not In_Instance
10383 and then not Is_Private_Overriding
(Prim_Op
))
10388 Set_Etype
(Call_Node
, Any_Type
);
10389 Set_Is_Overloaded
(Call_Node
, False);
10391 if No
(Matching_Op
) then
10392 Prim_Op_Ref
:= New_Occurrence_Of
(Prim_Op
, Sloc
(Subprog
));
10393 Candidate
:= Prim_Op
;
10395 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
10397 Set_Name
(Call_Node
, Prim_Op_Ref
);
10403 Report
=> Report_Error
,
10404 Success
=> Success
,
10405 Skip_First
=> True);
10407 Matching_Op
:= Valid_Candidate
(Success
, Call_Node
, Prim_Op
);
10409 -- More than one interpretation, collect for subsequent
10410 -- disambiguation. If this is a procedure call and there
10411 -- is another match, report ambiguity now.
10417 Report
=> Report_Error
,
10418 Success
=> Success
,
10419 Skip_First
=> True);
10421 if Present
(Valid_Candidate
(Success
, Call_Node
, Prim_Op
))
10422 and then Nkind
(Call_Node
) /= N_Function_Call
10424 Error_Msg_NE
("ambiguous call to&", N
, Prim_Op
);
10425 Report_Ambiguity
(Matching_Op
);
10426 Report_Ambiguity
(Prim_Op
);
10427 Check_Ambiguous_Aggregate
(Call_Node
);
10437 if Present
(Matching_Op
) then
10438 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
10441 return Present
(Matching_Op
);
10442 end Try_Primitive_Operation
;
10444 ---------------------
10445 -- Valid_Candidate --
10446 ---------------------
10448 function Valid_Candidate
10449 (Success
: Boolean;
10451 Subp
: Entity_Id
) return Entity_Id
10453 Arr_Type
: Entity_Id
;
10454 Comp_Type
: Entity_Id
;
10457 -- If the subprogram is a valid interpretation, record it in global
10458 -- variable Subprog, to collect all possible overloadings.
10461 if Subp
/= Entity
(Subprog
) then
10462 Add_One_Interp
(Subprog
, Subp
, Etype
(Subp
));
10466 -- If the call may be an indexed call, retrieve component type of
10467 -- resulting expression, and add possible interpretation.
10470 Comp_Type
:= Empty
;
10472 if Nkind
(Call
) = N_Function_Call
10473 and then Nkind
(Parent
(N
)) = N_Indexed_Component
10474 and then Needs_One_Actual
(Subp
)
10476 if Is_Array_Type
(Etype
(Subp
)) then
10477 Arr_Type
:= Etype
(Subp
);
10479 elsif Is_Access_Type
(Etype
(Subp
))
10480 and then Is_Array_Type
(Designated_Type
(Etype
(Subp
)))
10482 Arr_Type
:= Designated_Type
(Etype
(Subp
));
10486 if Present
(Arr_Type
) then
10488 -- Verify that the actuals (excluding the object) match the types
10496 Actual
:= Next
(First_Actual
(Call
));
10497 Index
:= First_Index
(Arr_Type
);
10498 while Present
(Actual
) and then Present
(Index
) loop
10499 if not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
10504 Next_Actual
(Actual
);
10505 Next_Index
(Index
);
10509 and then No
(Index
)
10510 and then Present
(Arr_Type
)
10512 Comp_Type
:= Component_Type
(Arr_Type
);
10516 if Present
(Comp_Type
)
10517 and then Etype
(Subprog
) /= Comp_Type
10519 Add_One_Interp
(Subprog
, Subp
, Comp_Type
);
10523 if Etype
(Call
) /= Any_Type
then
10528 end Valid_Candidate
;
10530 -- Start of processing for Try_Object_Operation
10533 Analyze_Expression
(Obj
);
10535 -- Analyze the actuals if node is known to be a subprogram call
10537 if Is_Subprg_Call
and then N
= Name
(Parent
(N
)) then
10538 Actual
:= First
(Parameter_Associations
(Parent
(N
)));
10539 while Present
(Actual
) loop
10540 Analyze_Expression
(Actual
);
10545 -- Build a subprogram call node, using a copy of Obj as its first
10546 -- actual. This is a placeholder, to be replaced by an explicit
10547 -- dereference when needed.
10549 Transform_Object_Operation
10550 (Call_Node
=> New_Call_Node
,
10551 Node_To_Replace
=> Node_To_Replace
);
10553 Set_Etype
(New_Call_Node
, Any_Type
);
10554 Set_Etype
(Subprog
, Any_Type
);
10555 Set_Parent
(New_Call_Node
, Parent
(Node_To_Replace
));
10557 if not Is_Overloaded
(Obj
) then
10558 Try_One_Prefix_Interpretation
(Obj_Type
);
10565 Get_First_Interp
(Obj
, I
, It
);
10566 while Present
(It
.Nam
) loop
10567 Try_One_Prefix_Interpretation
(It
.Typ
);
10568 Get_Next_Interp
(I
, It
);
10573 if Etype
(New_Call_Node
) /= Any_Type
then
10575 -- No need to complete the tree transformations if we are only
10576 -- searching for conflicting class-wide subprograms
10578 if CW_Test_Only
then
10581 Complete_Object_Operation
10582 (Call_Node
=> New_Call_Node
,
10583 Node_To_Replace
=> Node_To_Replace
);
10587 elsif Present
(Candidate
) then
10589 -- The argument list is not type correct. Re-analyze with error
10590 -- reporting enabled, and use one of the possible candidates.
10591 -- In All_Errors_Mode, re-analyze all failed interpretations.
10593 if All_Errors_Mode
then
10594 Report_Error
:= True;
10595 if Try_Primitive_Operation
10596 (Call_Node
=> New_Call_Node
,
10597 Node_To_Replace
=> Node_To_Replace
)
10600 Try_Class_Wide_Operation
10601 (Call_Node
=> New_Call_Node
,
10602 Node_To_Replace
=> Node_To_Replace
)
10609 (N
=> New_Call_Node
,
10612 Success
=> Success
,
10613 Skip_First
=> True);
10615 -- The error may hot have been reported yet for overloaded
10616 -- prefixed calls, depending on the non-matching candidate,
10617 -- in which case provide a concise error now.
10619 if Serious_Errors_Detected
= 0 then
10621 ("cannot resolve prefixed call to primitive operation of&",
10626 -- No need for further errors
10631 -- There was no candidate operation, but Analyze_Selected_Component
10632 -- may continue the analysis so we need to undo the change possibly
10633 -- made to the Parent of N earlier by Transform_Object_Operation.
10636 Parent_Node
: constant Node_Id
:= Parent
(N
);
10639 if Node_To_Replace
= Parent_Node
then
10640 Remove
(First
(Parameter_Associations
(New_Call_Node
)));
10642 (Parameter_Associations
(New_Call_Node
), Parent_Node
);
10648 end Try_Object_Operation
;
10650 -------------------------
10651 -- Unresolved_Operator --
10652 -------------------------
10654 procedure Unresolved_Operator
(N
: Node_Id
) is
10655 L
: constant Node_Id
:=
10656 (if Nkind
(N
) in N_Binary_Op
then Left_Opnd
(N
) else Empty
);
10657 R
: constant Node_Id
:= Right_Opnd
(N
);
10662 -- Note that in the following messages, if the operand is overloaded we
10663 -- choose an arbitrary type to complain about, but that is probably more
10664 -- useful than not giving a type at all.
10666 if Nkind
(N
) in N_Unary_Op
then
10667 Error_Msg_Node_2
:= Etype
(R
);
10668 Error_Msg_N
("operator& not defined for}", N
);
10670 elsif Nkind
(N
) in N_Binary_Op
then
10671 if not Is_Overloaded
(L
)
10672 and then not Is_Overloaded
(R
)
10673 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
10675 Error_Msg_Node_2
:= First_Subtype
(Etype
(R
));
10676 Error_Msg_N
("there is no applicable operator& for}", N
);
10679 -- Another attempt to find a fix: one of the candidate
10680 -- interpretations may not be use-visible. This has
10681 -- already been checked for predefined operators, so
10682 -- we examine only user-defined functions.
10684 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
10686 while Present
(Op_Id
) loop
10687 if Ekind
(Op_Id
) /= E_Operator
10688 and then Is_Overloadable
(Op_Id
)
10689 and then not Is_Immediately_Visible
(Op_Id
)
10690 and then not In_Use
(Scope
(Op_Id
))
10691 and then not Is_Abstract_Subprogram
(Op_Id
)
10692 and then not Is_Hidden
(Op_Id
)
10693 and then Ekind
(Scope
(Op_Id
)) = E_Package
10694 and then Has_Compatible_Type
(L
, Etype
(First_Formal
(Op_Id
)))
10695 and then Present
(Next_Formal
(First_Formal
(Op_Id
)))
10697 Has_Compatible_Type
10698 (R
, Etype
(Next_Formal
(First_Formal
(Op_Id
))))
10700 Error_Msg_N
("no legal interpretation for operator&", N
);
10701 Error_Msg_NE
("\use clause on& would make operation legal",
10706 Op_Id
:= Homonym
(Op_Id
);
10710 Error_Msg_N
("invalid operand types for operator&", N
);
10712 if Nkind
(N
) /= N_Op_Concat
then
10713 Error_Msg_NE
("\left operand has}!", N
, Etype
(L
));
10714 Error_Msg_NE
("\right operand has}!", N
, Etype
(R
));
10716 -- For multiplication and division operators with
10717 -- a fixed-point operand and an integer operand,
10718 -- indicate that the integer operand should be of
10721 if Nkind
(N
) in N_Op_Multiply | N_Op_Divide
10722 and then Is_Fixed_Point_Type
(Etype
(L
))
10723 and then Is_Integer_Type
(Etype
(R
))
10725 Error_Msg_N
("\convert right operand to `Integer`", N
);
10727 elsif Nkind
(N
) = N_Op_Multiply
10728 and then Is_Fixed_Point_Type
(Etype
(R
))
10729 and then Is_Integer_Type
(Etype
(L
))
10731 Error_Msg_N
("\convert left operand to `Integer`", N
);
10734 -- For concatenation operators it is more difficult to
10735 -- determine which is the wrong operand. It is worth
10736 -- flagging explicitly an access type, for those who
10737 -- might think that a dereference happens here.
10739 elsif Is_Access_Type
(Etype
(L
)) then
10740 Error_Msg_N
("\left operand is access type", N
);
10742 elsif Is_Access_Type
(Etype
(R
)) then
10743 Error_Msg_N
("\right operand is access type", N
);
10748 end Unresolved_Operator
;
10754 procedure wpo
(T
: Entity_Id
) is
10759 if not Is_Tagged_Type
(T
) then
10763 E
:= First_Elmt
(Primitive_Operations
(Base_Type
(T
)));
10764 while Present
(E
) loop
10766 Write_Int
(Int
(Op
));
10767 Write_Str
(" === ");
10768 Write_Name
(Chars
(Op
));
10769 Write_Str
(" in ");
10770 Write_Name
(Chars
(Scope
(Op
)));