1 /* If-conversion for vectorizer.
2 Copyright (C) 2004-2016 Free Software Foundation, Inc.
3 Contributed by Devang Patel <dpatel@apple.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass implements a tree level if-conversion of loops. Its
22 initial goal is to help the vectorizer to vectorize loops with
25 A short description of if-conversion:
27 o Decide if a loop is if-convertible or not.
28 o Walk all loop basic blocks in breadth first order (BFS order).
29 o Remove conditional statements (at the end of basic block)
30 and propagate condition into destination basic blocks'
32 o Replace modify expression with conditional modify expression
33 using current basic block's condition.
34 o Merge all basic blocks
35 o Replace phi nodes with conditional modify expr
36 o Merge all basic blocks into header
38 Sample transformation:
43 # i_23 = PHI <0(0), i_18(10)>;
46 if (j_15 > 41) goto <L1>; else goto <L17>;
53 # iftmp.2_4 = PHI <0(8), 42(2)>;
57 if (i_18 <= 15) goto <L19>; else goto <L18>;
67 # i_23 = PHI <0(0), i_18(10)>;
72 iftmp.2_4 = j_15 > 41 ? 42 : 0;
75 if (i_18 <= 15) goto <L19>; else goto <L18>;
85 #include "coretypes.h"
91 #include "tree-pass.h"
94 #include "optabs-query.h"
95 #include "gimple-pretty-print.h"
97 #include "fold-const.h"
98 #include "stor-layout.h"
99 #include "gimple-fold.h"
100 #include "gimplify.h"
101 #include "gimple-iterator.h"
102 #include "gimplify-me.h"
103 #include "tree-cfg.h"
104 #include "tree-into-ssa.h"
105 #include "tree-ssa.h"
107 #include "tree-data-ref.h"
108 #include "tree-scalar-evolution.h"
109 #include "tree-ssa-loop.h"
110 #include "tree-ssa-loop-niter.h"
111 #include "tree-ssa-loop-ivopts.h"
112 #include "tree-ssa-address.h"
114 #include "tree-hash-traits.h"
116 #include "builtins.h"
120 /* Only handle PHIs with no more arguments unless we are asked to by
122 #define MAX_PHI_ARG_NUM \
123 ((unsigned) PARAM_VALUE (PARAM_MAX_TREE_IF_CONVERSION_PHI_ARGS))
125 /* Indicate if new load/store that needs to be predicated is introduced
126 during if conversion. */
127 static bool any_pred_load_store
;
129 /* Indicate if there are any complicated PHIs that need to be handled in
130 if-conversion. Complicated PHI has more than two arguments and can't
131 be degenerated to two arguments PHI. See more information in comment
132 before phi_convertible_by_degenerating_args. */
133 static bool any_complicated_phi
;
135 /* Hash for struct innermost_loop_behavior. It depends on the user to
138 struct innermost_loop_behavior_hash
: nofree_ptr_hash
<innermost_loop_behavior
>
140 static inline hashval_t
hash (const value_type
&);
141 static inline bool equal (const value_type
&,
142 const compare_type
&);
146 innermost_loop_behavior_hash::hash (const value_type
&e
)
150 hash
= iterative_hash_expr (e
->base_address
, 0);
151 hash
= iterative_hash_expr (e
->offset
, hash
);
152 hash
= iterative_hash_expr (e
->init
, hash
);
153 return iterative_hash_expr (e
->step
, hash
);
157 innermost_loop_behavior_hash::equal (const value_type
&e1
,
158 const compare_type
&e2
)
160 if ((e1
->base_address
&& !e2
->base_address
)
161 || (!e1
->base_address
&& e2
->base_address
)
162 || (!e1
->offset
&& e2
->offset
)
163 || (e1
->offset
&& !e2
->offset
)
164 || (!e1
->init
&& e2
->init
)
165 || (e1
->init
&& !e2
->init
)
166 || (!e1
->step
&& e2
->step
)
167 || (e1
->step
&& !e2
->step
))
170 if (e1
->base_address
&& e2
->base_address
171 && !operand_equal_p (e1
->base_address
, e2
->base_address
, 0))
173 if (e1
->offset
&& e2
->offset
174 && !operand_equal_p (e1
->offset
, e2
->offset
, 0))
176 if (e1
->init
&& e2
->init
177 && !operand_equal_p (e1
->init
, e2
->init
, 0))
179 if (e1
->step
&& e2
->step
180 && !operand_equal_p (e1
->step
, e2
->step
, 0))
186 /* List of basic blocks in if-conversion-suitable order. */
187 static basic_block
*ifc_bbs
;
189 /* Hash table to store <DR's innermost loop behavior, DR> pairs. */
190 static hash_map
<innermost_loop_behavior_hash
,
191 data_reference_p
> *innermost_DR_map
;
193 /* Hash table to store <base reference, DR> pairs. */
194 static hash_map
<tree_operand_hash
, data_reference_p
> *baseref_DR_map
;
196 /* Structure used to predicate basic blocks. This is attached to the
197 ->aux field of the BBs in the loop to be if-converted. */
198 struct bb_predicate
{
200 /* The condition under which this basic block is executed. */
203 /* PREDICATE is gimplified, and the sequence of statements is
204 recorded here, in order to avoid the duplication of computations
205 that occur in previous conditions. See PR44483. */
206 gimple_seq predicate_gimplified_stmts
;
209 /* Returns true when the basic block BB has a predicate. */
212 bb_has_predicate (basic_block bb
)
214 return bb
->aux
!= NULL
;
217 /* Returns the gimplified predicate for basic block BB. */
220 bb_predicate (basic_block bb
)
222 return ((struct bb_predicate
*) bb
->aux
)->predicate
;
225 /* Sets the gimplified predicate COND for basic block BB. */
228 set_bb_predicate (basic_block bb
, tree cond
)
230 gcc_assert ((TREE_CODE (cond
) == TRUTH_NOT_EXPR
231 && is_gimple_condexpr (TREE_OPERAND (cond
, 0)))
232 || is_gimple_condexpr (cond
));
233 ((struct bb_predicate
*) bb
->aux
)->predicate
= cond
;
236 /* Returns the sequence of statements of the gimplification of the
237 predicate for basic block BB. */
239 static inline gimple_seq
240 bb_predicate_gimplified_stmts (basic_block bb
)
242 return ((struct bb_predicate
*) bb
->aux
)->predicate_gimplified_stmts
;
245 /* Sets the sequence of statements STMTS of the gimplification of the
246 predicate for basic block BB. */
249 set_bb_predicate_gimplified_stmts (basic_block bb
, gimple_seq stmts
)
251 ((struct bb_predicate
*) bb
->aux
)->predicate_gimplified_stmts
= stmts
;
254 /* Adds the sequence of statements STMTS to the sequence of statements
255 of the predicate for basic block BB. */
258 add_bb_predicate_gimplified_stmts (basic_block bb
, gimple_seq stmts
)
260 gimple_seq_add_seq_without_update
261 (&(((struct bb_predicate
*) bb
->aux
)->predicate_gimplified_stmts
), stmts
);
264 /* Initializes to TRUE the predicate of basic block BB. */
267 init_bb_predicate (basic_block bb
)
269 bb
->aux
= XNEW (struct bb_predicate
);
270 set_bb_predicate_gimplified_stmts (bb
, NULL
);
271 set_bb_predicate (bb
, boolean_true_node
);
274 /* Release the SSA_NAMEs associated with the predicate of basic block BB,
275 but don't actually free it. */
278 release_bb_predicate (basic_block bb
)
280 gimple_seq stmts
= bb_predicate_gimplified_stmts (bb
);
284 for (gimple_stmt_iterator i
= gsi_start (stmts
);
285 !gsi_end_p (i
); gsi_next (&i
))
286 gcc_assert (! gimple_use_ops (gsi_stmt (i
)));
288 set_bb_predicate_gimplified_stmts (bb
, NULL
);
292 /* Free the predicate of basic block BB. */
295 free_bb_predicate (basic_block bb
)
297 if (!bb_has_predicate (bb
))
300 release_bb_predicate (bb
);
305 /* Reinitialize predicate of BB with the true predicate. */
308 reset_bb_predicate (basic_block bb
)
310 if (!bb_has_predicate (bb
))
311 init_bb_predicate (bb
);
314 release_bb_predicate (bb
);
315 set_bb_predicate (bb
, boolean_true_node
);
319 /* Returns a new SSA_NAME of type TYPE that is assigned the value of
320 the expression EXPR. Inserts the statement created for this
321 computation before GSI and leaves the iterator GSI at the same
325 ifc_temp_var (tree type
, tree expr
, gimple_stmt_iterator
*gsi
)
327 tree new_name
= make_temp_ssa_name (type
, NULL
, "_ifc_");
328 gimple
*stmt
= gimple_build_assign (new_name
, expr
);
329 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
333 /* Return true when COND is a false predicate. */
336 is_false_predicate (tree cond
)
338 return (cond
!= NULL_TREE
339 && (cond
== boolean_false_node
340 || integer_zerop (cond
)));
343 /* Return true when COND is a true predicate. */
346 is_true_predicate (tree cond
)
348 return (cond
== NULL_TREE
349 || cond
== boolean_true_node
350 || integer_onep (cond
));
353 /* Returns true when BB has a predicate that is not trivial: true or
357 is_predicated (basic_block bb
)
359 return !is_true_predicate (bb_predicate (bb
));
362 /* Parses the predicate COND and returns its comparison code and
363 operands OP0 and OP1. */
365 static enum tree_code
366 parse_predicate (tree cond
, tree
*op0
, tree
*op1
)
370 if (TREE_CODE (cond
) == SSA_NAME
371 && is_gimple_assign (s
= SSA_NAME_DEF_STMT (cond
)))
373 if (TREE_CODE_CLASS (gimple_assign_rhs_code (s
)) == tcc_comparison
)
375 *op0
= gimple_assign_rhs1 (s
);
376 *op1
= gimple_assign_rhs2 (s
);
377 return gimple_assign_rhs_code (s
);
380 else if (gimple_assign_rhs_code (s
) == TRUTH_NOT_EXPR
)
382 tree op
= gimple_assign_rhs1 (s
);
383 tree type
= TREE_TYPE (op
);
384 enum tree_code code
= parse_predicate (op
, op0
, op1
);
386 return code
== ERROR_MARK
? ERROR_MARK
387 : invert_tree_comparison (code
, HONOR_NANS (type
));
393 if (COMPARISON_CLASS_P (cond
))
395 *op0
= TREE_OPERAND (cond
, 0);
396 *op1
= TREE_OPERAND (cond
, 1);
397 return TREE_CODE (cond
);
403 /* Returns the fold of predicate C1 OR C2 at location LOC. */
406 fold_or_predicates (location_t loc
, tree c1
, tree c2
)
408 tree op1a
, op1b
, op2a
, op2b
;
409 enum tree_code code1
= parse_predicate (c1
, &op1a
, &op1b
);
410 enum tree_code code2
= parse_predicate (c2
, &op2a
, &op2b
);
412 if (code1
!= ERROR_MARK
&& code2
!= ERROR_MARK
)
414 tree t
= maybe_fold_or_comparisons (code1
, op1a
, op1b
,
420 return fold_build2_loc (loc
, TRUTH_OR_EXPR
, boolean_type_node
, c1
, c2
);
423 /* Returns either a COND_EXPR or the folded expression if the folded
424 expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR,
425 a constant or a SSA_NAME. */
428 fold_build_cond_expr (tree type
, tree cond
, tree rhs
, tree lhs
)
430 tree rhs1
, lhs1
, cond_expr
;
432 /* If COND is comparison r != 0 and r has boolean type, convert COND
433 to SSA_NAME to accept by vect bool pattern. */
434 if (TREE_CODE (cond
) == NE_EXPR
)
436 tree op0
= TREE_OPERAND (cond
, 0);
437 tree op1
= TREE_OPERAND (cond
, 1);
438 if (TREE_CODE (op0
) == SSA_NAME
439 && TREE_CODE (TREE_TYPE (op0
)) == BOOLEAN_TYPE
440 && (integer_zerop (op1
)))
443 cond_expr
= fold_ternary (COND_EXPR
, type
, cond
, rhs
, lhs
);
445 if (cond_expr
== NULL_TREE
)
446 return build3 (COND_EXPR
, type
, cond
, rhs
, lhs
);
448 STRIP_USELESS_TYPE_CONVERSION (cond_expr
);
450 if (is_gimple_val (cond_expr
))
453 if (TREE_CODE (cond_expr
) == ABS_EXPR
)
455 rhs1
= TREE_OPERAND (cond_expr
, 1);
456 STRIP_USELESS_TYPE_CONVERSION (rhs1
);
457 if (is_gimple_val (rhs1
))
458 return build1 (ABS_EXPR
, type
, rhs1
);
461 if (TREE_CODE (cond_expr
) == MIN_EXPR
462 || TREE_CODE (cond_expr
) == MAX_EXPR
)
464 lhs1
= TREE_OPERAND (cond_expr
, 0);
465 STRIP_USELESS_TYPE_CONVERSION (lhs1
);
466 rhs1
= TREE_OPERAND (cond_expr
, 1);
467 STRIP_USELESS_TYPE_CONVERSION (rhs1
);
468 if (is_gimple_val (rhs1
) && is_gimple_val (lhs1
))
469 return build2 (TREE_CODE (cond_expr
), type
, lhs1
, rhs1
);
471 return build3 (COND_EXPR
, type
, cond
, rhs
, lhs
);
474 /* Add condition NC to the predicate list of basic block BB. LOOP is
475 the loop to be if-converted. Use predicate of cd-equivalent block
476 for join bb if it exists: we call basic blocks bb1 and bb2
477 cd-equivalent if they are executed under the same condition. */
480 add_to_predicate_list (struct loop
*loop
, basic_block bb
, tree nc
)
485 if (is_true_predicate (nc
))
488 /* If dominance tells us this basic block is always executed,
489 don't record any predicates for it. */
490 if (dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
493 dom_bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
494 /* We use notion of cd equivalence to get simpler predicate for
495 join block, e.g. if join block has 2 predecessors with predicates
496 p1 & p2 and p1 & !p2, we'd like to get p1 for it instead of
497 p1 & p2 | p1 & !p2. */
498 if (dom_bb
!= loop
->header
499 && get_immediate_dominator (CDI_POST_DOMINATORS
, dom_bb
) == bb
)
501 gcc_assert (flow_bb_inside_loop_p (loop
, dom_bb
));
502 bc
= bb_predicate (dom_bb
);
503 if (!is_true_predicate (bc
))
504 set_bb_predicate (bb
, bc
);
506 gcc_assert (is_true_predicate (bb_predicate (bb
)));
507 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
508 fprintf (dump_file
, "Use predicate of bb#%d for bb#%d\n",
509 dom_bb
->index
, bb
->index
);
513 if (!is_predicated (bb
))
517 bc
= bb_predicate (bb
);
518 bc
= fold_or_predicates (EXPR_LOCATION (bc
), nc
, bc
);
519 if (is_true_predicate (bc
))
521 reset_bb_predicate (bb
);
526 /* Allow a TRUTH_NOT_EXPR around the main predicate. */
527 if (TREE_CODE (bc
) == TRUTH_NOT_EXPR
)
528 tp
= &TREE_OPERAND (bc
, 0);
531 if (!is_gimple_condexpr (*tp
))
534 *tp
= force_gimple_operand_1 (*tp
, &stmts
, is_gimple_condexpr
, NULL_TREE
);
535 add_bb_predicate_gimplified_stmts (bb
, stmts
);
537 set_bb_predicate (bb
, bc
);
540 /* Add the condition COND to the previous condition PREV_COND, and add
541 this to the predicate list of the destination of edge E. LOOP is
542 the loop to be if-converted. */
545 add_to_dst_predicate_list (struct loop
*loop
, edge e
,
546 tree prev_cond
, tree cond
)
548 if (!flow_bb_inside_loop_p (loop
, e
->dest
))
551 if (!is_true_predicate (prev_cond
))
552 cond
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
555 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, e
->dest
))
556 add_to_predicate_list (loop
, e
->dest
, cond
);
559 /* Return true if one of the successor edges of BB exits LOOP. */
562 bb_with_exit_edge_p (struct loop
*loop
, basic_block bb
)
567 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
568 if (loop_exit_edge_p (loop
, e
))
574 /* Given PHI which has more than two arguments, this function checks if
575 it's if-convertible by degenerating its arguments. Specifically, if
576 below two conditions are satisfied:
578 1) Number of PHI arguments with different values equals to 2 and one
579 argument has the only occurrence.
580 2) The edge corresponding to the unique argument isn't critical edge.
582 Such PHI can be handled as PHIs have only two arguments. For example,
585 res = PHI <A_1(e1), A_1(e2), A_2(e3)>;
587 can be transformed into:
589 res = (predicate of e3) ? A_2 : A_1;
591 Return TRUE if it is the case, FALSE otherwise. */
594 phi_convertible_by_degenerating_args (gphi
*phi
)
597 tree arg
, t1
= NULL
, t2
= NULL
;
598 unsigned int i
, i1
= 0, i2
= 0, n1
= 0, n2
= 0;
599 unsigned int num_args
= gimple_phi_num_args (phi
);
601 gcc_assert (num_args
> 2);
603 for (i
= 0; i
< num_args
; i
++)
605 arg
= gimple_phi_arg_def (phi
, i
);
606 if (t1
== NULL
|| operand_equal_p (t1
, arg
, 0))
612 else if (t2
== NULL
|| operand_equal_p (t2
, arg
, 0))
622 if (n1
!= 1 && n2
!= 1)
625 /* Check if the edge corresponding to the unique arg is critical. */
626 e
= gimple_phi_arg_edge (phi
, (n1
== 1) ? i1
: i2
);
627 if (EDGE_COUNT (e
->src
->succs
) > 1)
633 /* Return true when PHI is if-convertible. PHI is part of loop LOOP
634 and it belongs to basic block BB. Note at this point, it is sure
635 that PHI is if-convertible. This function updates global variable
636 ANY_COMPLICATED_PHI if PHI is complicated. */
639 if_convertible_phi_p (struct loop
*loop
, basic_block bb
, gphi
*phi
)
641 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
643 fprintf (dump_file
, "-------------------------\n");
644 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
647 if (bb
!= loop
->header
648 && gimple_phi_num_args (phi
) > 2
649 && !phi_convertible_by_degenerating_args (phi
))
650 any_complicated_phi
= true;
655 /* Records the status of a data reference. This struct is attached to
656 each DR->aux field. */
659 bool rw_unconditionally
;
660 bool w_unconditionally
;
661 bool written_at_least_once
;
665 tree base_w_predicate
;
668 #define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
669 #define DR_BASE_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->written_at_least_once)
670 #define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
671 #define DR_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->w_unconditionally)
673 /* Iterates over DR's and stores refs, DR and base refs, DR pairs in
674 HASH tables. While storing them in HASH table, it checks if the
675 reference is unconditionally read or written and stores that as a flag
676 information. For base reference it checks if it is written atlest once
677 unconditionally and stores it as flag information along with DR.
678 In other words for every data reference A in STMT there exist other
679 accesses to a data reference with the same base with predicates that
680 add up (OR-up) to the true predicate: this ensures that the data
681 reference A is touched (read or written) on every iteration of the
682 if-converted loop. */
684 hash_memrefs_baserefs_and_store_DRs_read_written_info (data_reference_p a
)
687 data_reference_p
*master_dr
, *base_master_dr
;
688 tree base_ref
= DR_BASE_OBJECT (a
);
689 innermost_loop_behavior
*innermost
= &DR_INNERMOST (a
);
690 tree ca
= bb_predicate (gimple_bb (DR_STMT (a
)));
693 master_dr
= &innermost_DR_map
->get_or_insert (innermost
, &exist1
);
699 IFC_DR (*master_dr
)->w_predicate
700 = fold_or_predicates (UNKNOWN_LOCATION
, ca
,
701 IFC_DR (*master_dr
)->w_predicate
);
702 if (is_true_predicate (IFC_DR (*master_dr
)->w_predicate
))
703 DR_W_UNCONDITIONALLY (*master_dr
) = true;
705 IFC_DR (*master_dr
)->rw_predicate
706 = fold_or_predicates (UNKNOWN_LOCATION
, ca
,
707 IFC_DR (*master_dr
)->rw_predicate
);
708 if (is_true_predicate (IFC_DR (*master_dr
)->rw_predicate
))
709 DR_RW_UNCONDITIONALLY (*master_dr
) = true;
713 base_master_dr
= &baseref_DR_map
->get_or_insert (base_ref
, &exist2
);
716 IFC_DR (*base_master_dr
)->base_w_predicate
717 = fold_or_predicates (UNKNOWN_LOCATION
, ca
,
718 IFC_DR (*base_master_dr
)->base_w_predicate
);
719 if (is_true_predicate (IFC_DR (*base_master_dr
)->base_w_predicate
))
720 DR_BASE_W_UNCONDITIONALLY (*base_master_dr
) = true;
724 /* Return TRUE if can prove the index IDX of an array reference REF is
725 within array bound. Return false otherwise. */
728 idx_within_array_bound (tree ref
, tree
*idx
, void *dta
)
731 widest_int niter
, valid_niter
, delta
, wi_step
;
734 struct loop
*loop
= (struct loop
*) dta
;
736 /* Only support within-bound access for array references. */
737 if (TREE_CODE (ref
) != ARRAY_REF
)
740 /* For arrays at the end of the structure, we are not guaranteed that they
741 do not really extend over their declared size. However, for arrays of
742 size greater than one, this is unlikely to be intended. */
743 if (array_at_struct_end_p (ref
))
746 ev
= analyze_scalar_evolution (loop
, *idx
);
747 ev
= instantiate_parameters (loop
, ev
);
748 init
= initial_condition (ev
);
749 step
= evolution_part_in_loop_num (ev
, loop
->num
);
751 if (!init
|| TREE_CODE (init
) != INTEGER_CST
752 || (step
&& TREE_CODE (step
) != INTEGER_CST
))
755 low
= array_ref_low_bound (ref
);
756 high
= array_ref_up_bound (ref
);
758 /* The case of nonconstant bounds could be handled, but it would be
760 if (TREE_CODE (low
) != INTEGER_CST
761 || !high
|| TREE_CODE (high
) != INTEGER_CST
)
764 /* Check if the intial idx is within bound. */
765 if (wi::to_widest (init
) < wi::to_widest (low
)
766 || wi::to_widest (init
) > wi::to_widest (high
))
769 /* The idx is always within bound. */
770 if (!step
|| integer_zerop (step
))
773 if (!max_loop_iterations (loop
, &niter
))
776 if (wi::to_widest (step
) < 0)
778 delta
= wi::to_widest (init
) - wi::to_widest (low
);
779 wi_step
= -wi::to_widest (step
);
783 delta
= wi::to_widest (high
) - wi::to_widest (init
);
784 wi_step
= wi::to_widest (step
);
787 valid_niter
= wi::div_floor (delta
, wi_step
, SIGNED
, &overflow
);
788 /* The iteration space of idx is within array bound. */
789 if (!overflow
&& niter
<= valid_niter
)
795 /* Return TRUE if ref is a within bound array reference. */
798 ref_within_array_bound (gimple
*stmt
, tree ref
)
800 struct loop
*loop
= loop_containing_stmt (stmt
);
802 gcc_assert (loop
!= NULL
);
803 return for_each_index (&ref
, idx_within_array_bound
, loop
);
807 /* Given a memory reference expression T, return TRUE if base object
808 it refers to is writable. The base object of a memory reference
809 is the main object being referenced, which is returned by function
813 base_object_writable (tree ref
)
815 tree base_tree
= get_base_address (ref
);
818 && DECL_P (base_tree
)
819 && decl_binds_to_current_def_p (base_tree
)
820 && !TREE_READONLY (base_tree
));
823 /* Return true when the memory references of STMT won't trap in the
824 if-converted code. There are two things that we have to check for:
826 - writes to memory occur to writable memory: if-conversion of
827 memory writes transforms the conditional memory writes into
828 unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
829 into "A[i] = cond ? foo : A[i]", and as the write to memory may not
830 be executed at all in the original code, it may be a readonly
831 memory. To check that A is not const-qualified, we check that
832 there exists at least an unconditional write to A in the current
835 - reads or writes to memory are valid memory accesses for every
836 iteration. To check that the memory accesses are correctly formed
837 and that we are allowed to read and write in these locations, we
838 check that the memory accesses to be if-converted occur at every
839 iteration unconditionally.
841 Returns true for the memory reference in STMT, same memory reference
842 is read or written unconditionally atleast once and the base memory
843 reference is written unconditionally once. This is to check reference
844 will not write fault. Also retuns true if the memory reference is
845 unconditionally read once then we are conditionally writing to memory
846 which is defined as read and write and is bound to the definition
849 ifcvt_memrefs_wont_trap (gimple
*stmt
, vec
<data_reference_p
> drs
)
851 data_reference_p
*master_dr
, *base_master_dr
;
852 data_reference_p a
= drs
[gimple_uid (stmt
) - 1];
854 tree base
= DR_BASE_OBJECT (a
);
855 innermost_loop_behavior
*innermost
= &DR_INNERMOST (a
);
857 gcc_assert (DR_STMT (a
) == stmt
);
858 gcc_assert (DR_BASE_ADDRESS (a
) || DR_OFFSET (a
)
859 || DR_INIT (a
) || DR_STEP (a
));
861 master_dr
= innermost_DR_map
->get (innermost
);
862 gcc_assert (master_dr
!= NULL
);
864 base_master_dr
= baseref_DR_map
->get (base
);
866 /* If a is unconditionally written to it doesn't trap. */
867 if (DR_W_UNCONDITIONALLY (*master_dr
))
870 /* If a is unconditionally accessed then ...
872 Even a is conditional access, we can treat it as an unconditional
873 one if it's an array reference and all its index are within array
875 if (DR_RW_UNCONDITIONALLY (*master_dr
)
876 || ref_within_array_bound (stmt
, DR_REF (a
)))
878 /* an unconditional read won't trap. */
882 /* an unconditionaly write won't trap if the base is written
883 to unconditionally. */
885 && DR_BASE_W_UNCONDITIONALLY (*base_master_dr
))
886 return PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES
);
887 /* or the base is known to be not readonly. */
888 else if (base_object_writable (DR_REF (a
)))
889 return PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES
);
895 /* Return true if STMT could be converted into a masked load or store
896 (conditional load or store based on a mask computed from bb predicate). */
899 ifcvt_can_use_mask_load_store (gimple
*stmt
)
903 basic_block bb
= gimple_bb (stmt
);
906 if (!(flag_tree_loop_vectorize
|| bb
->loop_father
->force_vectorize
)
907 || bb
->loop_father
->dont_vectorize
908 || !gimple_assign_single_p (stmt
)
909 || gimple_has_volatile_ops (stmt
))
912 /* Check whether this is a load or store. */
913 lhs
= gimple_assign_lhs (stmt
);
914 if (gimple_store_p (stmt
))
916 if (!is_gimple_val (gimple_assign_rhs1 (stmt
)))
921 else if (gimple_assign_load_p (stmt
))
924 ref
= gimple_assign_rhs1 (stmt
);
929 if (may_be_nonaddressable_p (ref
))
932 /* Mask should be integer mode of the same size as the load/store
934 mode
= TYPE_MODE (TREE_TYPE (lhs
));
935 if (int_mode_for_mode (mode
) == BLKmode
936 || VECTOR_MODE_P (mode
))
939 if (can_vec_mask_load_store_p (mode
, VOIDmode
, is_load
))
945 /* Return true when STMT is if-convertible.
947 GIMPLE_ASSIGN statement is not if-convertible if,
950 - LHS is not var decl. */
953 if_convertible_gimple_assign_stmt_p (gimple
*stmt
,
954 vec
<data_reference_p
> refs
)
956 tree lhs
= gimple_assign_lhs (stmt
);
958 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
960 fprintf (dump_file
, "-------------------------\n");
961 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
964 if (!is_gimple_reg_type (TREE_TYPE (lhs
)))
967 /* Some of these constrains might be too conservative. */
968 if (stmt_ends_bb_p (stmt
)
969 || gimple_has_volatile_ops (stmt
)
970 || (TREE_CODE (lhs
) == SSA_NAME
971 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
972 || gimple_has_side_effects (stmt
))
974 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
975 fprintf (dump_file
, "stmt not suitable for ifcvt\n");
979 /* tree-into-ssa.c uses GF_PLF_1, so avoid it, because
980 in between if_convertible_loop_p and combine_blocks
981 we can perform loop versioning. */
982 gimple_set_plf (stmt
, GF_PLF_2
, false);
984 if ((! gimple_vuse (stmt
)
985 || gimple_could_trap_p_1 (stmt
, false, false)
986 || ! ifcvt_memrefs_wont_trap (stmt
, refs
))
987 && gimple_could_trap_p (stmt
))
989 if (ifcvt_can_use_mask_load_store (stmt
))
991 gimple_set_plf (stmt
, GF_PLF_2
, true);
992 any_pred_load_store
= true;
995 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
996 fprintf (dump_file
, "tree could trap...\n");
1000 /* When if-converting stores force versioning, likewise if we
1001 ended up generating store data races. */
1002 if (gimple_vdef (stmt
))
1003 any_pred_load_store
= true;
1008 /* Return true when STMT is if-convertible.
1010 A statement is if-convertible if:
1011 - it is an if-convertible GIMPLE_ASSIGN,
1012 - it is a GIMPLE_LABEL or a GIMPLE_COND,
1013 - it is builtins call. */
1016 if_convertible_stmt_p (gimple
*stmt
, vec
<data_reference_p
> refs
)
1018 switch (gimple_code (stmt
))
1026 return if_convertible_gimple_assign_stmt_p (stmt
, refs
);
1030 tree fndecl
= gimple_call_fndecl (stmt
);
1033 int flags
= gimple_call_flags (stmt
);
1034 if ((flags
& ECF_CONST
)
1035 && !(flags
& ECF_LOOPING_CONST_OR_PURE
)
1036 /* We can only vectorize some builtins at the moment,
1037 so restrict if-conversion to those. */
1038 && DECL_BUILT_IN (fndecl
))
1045 /* Don't know what to do with 'em so don't do anything. */
1046 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1048 fprintf (dump_file
, "don't know what to do\n");
1049 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1058 /* Assumes that BB has more than 1 predecessors.
1059 Returns false if at least one successor is not on critical edge
1060 and true otherwise. */
1063 all_preds_critical_p (basic_block bb
)
1068 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1069 if (EDGE_COUNT (e
->src
->succs
) == 1)
1074 /* Returns true if at least one successor in on critical edge. */
1076 has_pred_critical_p (basic_block bb
)
1081 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1082 if (EDGE_COUNT (e
->src
->succs
) > 1)
1087 /* Return true when BB is if-convertible. This routine does not check
1088 basic block's statements and phis.
1090 A basic block is not if-convertible if:
1091 - it is non-empty and it is after the exit block (in BFS order),
1092 - it is after the exit block but before the latch,
1093 - its edges are not normal.
1095 EXIT_BB is the basic block containing the exit of the LOOP. BB is
1099 if_convertible_bb_p (struct loop
*loop
, basic_block bb
, basic_block exit_bb
)
1104 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1105 fprintf (dump_file
, "----------[%d]-------------\n", bb
->index
);
1107 if (EDGE_COUNT (bb
->succs
) > 2)
1112 if (bb
!= loop
->latch
)
1114 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1115 fprintf (dump_file
, "basic block after exit bb but before latch\n");
1118 else if (!empty_block_p (bb
))
1120 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1121 fprintf (dump_file
, "non empty basic block after exit bb\n");
1124 else if (bb
== loop
->latch
1126 && !dominated_by_p (CDI_DOMINATORS
, bb
, exit_bb
))
1128 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1129 fprintf (dump_file
, "latch is not dominated by exit_block\n");
1134 /* Be less adventurous and handle only normal edges. */
1135 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1136 if (e
->flags
& (EDGE_EH
| EDGE_ABNORMAL
| EDGE_IRREDUCIBLE_LOOP
))
1138 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1139 fprintf (dump_file
, "Difficult to handle edges\n");
1146 /* Return true when all predecessor blocks of BB are visited. The
1147 VISITED bitmap keeps track of the visited blocks. */
1150 pred_blocks_visited_p (basic_block bb
, bitmap
*visited
)
1154 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1155 if (!bitmap_bit_p (*visited
, e
->src
->index
))
1161 /* Get body of a LOOP in suitable order for if-conversion. It is
1162 caller's responsibility to deallocate basic block list.
1163 If-conversion suitable order is, breadth first sort (BFS) order
1164 with an additional constraint: select a block only if all its
1165 predecessors are already selected. */
1167 static basic_block
*
1168 get_loop_body_in_if_conv_order (const struct loop
*loop
)
1170 basic_block
*blocks
, *blocks_in_bfs_order
;
1173 unsigned int index
= 0;
1174 unsigned int visited_count
= 0;
1176 gcc_assert (loop
->num_nodes
);
1177 gcc_assert (loop
->latch
!= EXIT_BLOCK_PTR_FOR_FN (cfun
));
1179 blocks
= XCNEWVEC (basic_block
, loop
->num_nodes
);
1180 visited
= BITMAP_ALLOC (NULL
);
1182 blocks_in_bfs_order
= get_loop_body_in_bfs_order (loop
);
1185 while (index
< loop
->num_nodes
)
1187 bb
= blocks_in_bfs_order
[index
];
1189 if (bb
->flags
& BB_IRREDUCIBLE_LOOP
)
1191 free (blocks_in_bfs_order
);
1192 BITMAP_FREE (visited
);
1197 if (!bitmap_bit_p (visited
, bb
->index
))
1199 if (pred_blocks_visited_p (bb
, &visited
)
1200 || bb
== loop
->header
)
1202 /* This block is now visited. */
1203 bitmap_set_bit (visited
, bb
->index
);
1204 blocks
[visited_count
++] = bb
;
1210 if (index
== loop
->num_nodes
1211 && visited_count
!= loop
->num_nodes
)
1215 free (blocks_in_bfs_order
);
1216 BITMAP_FREE (visited
);
1220 /* Returns true when the analysis of the predicates for all the basic
1221 blocks in LOOP succeeded.
1223 predicate_bbs first allocates the predicates of the basic blocks.
1224 These fields are then initialized with the tree expressions
1225 representing the predicates under which a basic block is executed
1226 in the LOOP. As the loop->header is executed at each iteration, it
1227 has the "true" predicate. Other statements executed under a
1228 condition are predicated with that condition, for example
1235 S1 will be predicated with "x", and
1236 S2 will be predicated with "!x". */
1239 predicate_bbs (loop_p loop
)
1243 for (i
= 0; i
< loop
->num_nodes
; i
++)
1244 init_bb_predicate (ifc_bbs
[i
]);
1246 for (i
= 0; i
< loop
->num_nodes
; i
++)
1248 basic_block bb
= ifc_bbs
[i
];
1252 /* The loop latch and loop exit block are always executed and
1253 have no extra conditions to be processed: skip them. */
1254 if (bb
== loop
->latch
1255 || bb_with_exit_edge_p (loop
, bb
))
1257 reset_bb_predicate (bb
);
1261 cond
= bb_predicate (bb
);
1262 stmt
= last_stmt (bb
);
1263 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
1266 edge true_edge
, false_edge
;
1267 location_t loc
= gimple_location (stmt
);
1268 tree c
= build2_loc (loc
, gimple_cond_code (stmt
),
1270 gimple_cond_lhs (stmt
),
1271 gimple_cond_rhs (stmt
));
1273 /* Add new condition into destination's predicate list. */
1274 extract_true_false_edges_from_block (gimple_bb (stmt
),
1275 &true_edge
, &false_edge
);
1277 /* If C is true, then TRUE_EDGE is taken. */
1278 add_to_dst_predicate_list (loop
, true_edge
, unshare_expr (cond
),
1281 /* If C is false, then FALSE_EDGE is taken. */
1282 c2
= build1_loc (loc
, TRUTH_NOT_EXPR
, boolean_type_node
,
1284 add_to_dst_predicate_list (loop
, false_edge
,
1285 unshare_expr (cond
), c2
);
1290 /* If current bb has only one successor, then consider it as an
1291 unconditional goto. */
1292 if (single_succ_p (bb
))
1294 basic_block bb_n
= single_succ (bb
);
1296 /* The successor bb inherits the predicate of its
1297 predecessor. If there is no predicate in the predecessor
1298 bb, then consider the successor bb as always executed. */
1299 if (cond
== NULL_TREE
)
1300 cond
= boolean_true_node
;
1302 add_to_predicate_list (loop
, bb_n
, cond
);
1306 /* The loop header is always executed. */
1307 reset_bb_predicate (loop
->header
);
1308 gcc_assert (bb_predicate_gimplified_stmts (loop
->header
) == NULL
1309 && bb_predicate_gimplified_stmts (loop
->latch
) == NULL
);
1312 /* Return true when LOOP is if-convertible. This is a helper function
1313 for if_convertible_loop_p. REFS and DDRS are initialized and freed
1314 in if_convertible_loop_p. */
1317 if_convertible_loop_p_1 (struct loop
*loop
, vec
<data_reference_p
> *refs
)
1320 basic_block exit_bb
= NULL
;
1322 if (find_data_references_in_loop (loop
, refs
) == chrec_dont_know
)
1325 calculate_dominance_info (CDI_DOMINATORS
);
1327 /* Allow statements that can be handled during if-conversion. */
1328 ifc_bbs
= get_loop_body_in_if_conv_order (loop
);
1331 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1332 fprintf (dump_file
, "Irreducible loop\n");
1336 for (i
= 0; i
< loop
->num_nodes
; i
++)
1338 basic_block bb
= ifc_bbs
[i
];
1340 if (!if_convertible_bb_p (loop
, bb
, exit_bb
))
1343 if (bb_with_exit_edge_p (loop
, bb
))
1347 for (i
= 0; i
< loop
->num_nodes
; i
++)
1349 basic_block bb
= ifc_bbs
[i
];
1350 gimple_stmt_iterator gsi
;
1352 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1353 switch (gimple_code (gsi_stmt (gsi
)))
1360 gimple_set_uid (gsi_stmt (gsi
), 0);
1367 data_reference_p dr
;
1370 = new hash_map
<innermost_loop_behavior_hash
, data_reference_p
>;
1371 baseref_DR_map
= new hash_map
<tree_operand_hash
, data_reference_p
>;
1373 calculate_dominance_info (CDI_POST_DOMINATORS
);
1374 predicate_bbs (loop
);
1376 for (i
= 0; refs
->iterate (i
, &dr
); i
++)
1378 tree ref
= DR_REF (dr
);
1380 dr
->aux
= XNEW (struct ifc_dr
);
1381 DR_BASE_W_UNCONDITIONALLY (dr
) = false;
1382 DR_RW_UNCONDITIONALLY (dr
) = false;
1383 DR_W_UNCONDITIONALLY (dr
) = false;
1384 IFC_DR (dr
)->rw_predicate
= boolean_false_node
;
1385 IFC_DR (dr
)->w_predicate
= boolean_false_node
;
1386 IFC_DR (dr
)->base_w_predicate
= boolean_false_node
;
1387 if (gimple_uid (DR_STMT (dr
)) == 0)
1388 gimple_set_uid (DR_STMT (dr
), i
+ 1);
1390 /* If DR doesn't have innermost loop behavior or it's a compound
1391 memory reference, we synthesize its innermost loop behavior
1393 if (TREE_CODE (ref
) == COMPONENT_REF
1394 || TREE_CODE (ref
) == IMAGPART_EXPR
1395 || TREE_CODE (ref
) == REALPART_EXPR
1396 || !(DR_BASE_ADDRESS (dr
) || DR_OFFSET (dr
)
1397 || DR_INIT (dr
) || DR_STEP (dr
)))
1399 while (TREE_CODE (ref
) == COMPONENT_REF
1400 || TREE_CODE (ref
) == IMAGPART_EXPR
1401 || TREE_CODE (ref
) == REALPART_EXPR
)
1402 ref
= TREE_OPERAND (ref
, 0);
1404 DR_BASE_ADDRESS (dr
) = ref
;
1405 DR_OFFSET (dr
) = NULL
;
1406 DR_INIT (dr
) = NULL
;
1407 DR_STEP (dr
) = NULL
;
1408 DR_ALIGNED_TO (dr
) = NULL
;
1410 hash_memrefs_baserefs_and_store_DRs_read_written_info (dr
);
1413 for (i
= 0; i
< loop
->num_nodes
; i
++)
1415 basic_block bb
= ifc_bbs
[i
];
1416 gimple_stmt_iterator itr
;
1418 /* Check the if-convertibility of statements in predicated BBs. */
1419 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
1420 for (itr
= gsi_start_bb (bb
); !gsi_end_p (itr
); gsi_next (&itr
))
1421 if (!if_convertible_stmt_p (gsi_stmt (itr
), *refs
))
1425 /* Checking PHIs needs to be done after stmts, as the fact whether there
1426 are any masked loads or stores affects the tests. */
1427 for (i
= 0; i
< loop
->num_nodes
; i
++)
1429 basic_block bb
= ifc_bbs
[i
];
1432 for (itr
= gsi_start_phis (bb
); !gsi_end_p (itr
); gsi_next (&itr
))
1433 if (!if_convertible_phi_p (loop
, bb
, itr
.phi ()))
1438 fprintf (dump_file
, "Applying if-conversion\n");
1443 /* Return true when LOOP is if-convertible.
1444 LOOP is if-convertible if:
1446 - it has two or more basic blocks,
1447 - it has only one exit,
1448 - loop header is not the exit edge,
1449 - if its basic blocks and phi nodes are if convertible. */
1452 if_convertible_loop_p (struct loop
*loop
)
1457 vec
<data_reference_p
> refs
;
1459 /* Handle only innermost loop. */
1460 if (!loop
|| loop
->inner
)
1462 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1463 fprintf (dump_file
, "not innermost loop\n");
1467 /* If only one block, no need for if-conversion. */
1468 if (loop
->num_nodes
<= 2)
1470 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1471 fprintf (dump_file
, "less than 2 basic blocks\n");
1475 /* More than one loop exit is too much to handle. */
1476 if (!single_exit (loop
))
1478 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1479 fprintf (dump_file
, "multiple exits\n");
1483 /* If one of the loop header's edge is an exit edge then do not
1484 apply if-conversion. */
1485 FOR_EACH_EDGE (e
, ei
, loop
->header
->succs
)
1486 if (loop_exit_edge_p (loop
, e
))
1490 res
= if_convertible_loop_p_1 (loop
, &refs
);
1492 data_reference_p dr
;
1494 for (i
= 0; refs
.iterate (i
, &dr
); i
++)
1497 free_data_refs (refs
);
1499 delete innermost_DR_map
;
1500 innermost_DR_map
= NULL
;
1502 delete baseref_DR_map
;
1503 baseref_DR_map
= NULL
;
1508 /* Returns true if def-stmt for phi argument ARG is simple increment/decrement
1509 which is in predicated basic block.
1510 In fact, the following PHI pattern is searching:
1512 reduc_1 = PHI <..., reduc_2>
1516 reduc_2 = PHI <reduc_1, reduc_3>
1518 ARG_0 and ARG_1 are correspondent PHI arguments.
1519 REDUC, OP0 and OP1 contain reduction stmt and its operands.
1520 EXTENDED is true if PHI has > 2 arguments. */
1523 is_cond_scalar_reduction (gimple
*phi
, gimple
**reduc
, tree arg_0
, tree arg_1
,
1524 tree
*op0
, tree
*op1
, bool extended
)
1526 tree lhs
, r_op1
, r_op2
;
1528 gimple
*header_phi
= NULL
;
1529 enum tree_code reduction_op
;
1530 basic_block bb
= gimple_bb (phi
);
1531 struct loop
*loop
= bb
->loop_father
;
1532 edge latch_e
= loop_latch_edge (loop
);
1533 imm_use_iterator imm_iter
;
1534 use_operand_p use_p
;
1537 bool result
= false;
1538 if (TREE_CODE (arg_0
) != SSA_NAME
|| TREE_CODE (arg_1
) != SSA_NAME
)
1541 if (!extended
&& gimple_code (SSA_NAME_DEF_STMT (arg_0
)) == GIMPLE_PHI
)
1544 header_phi
= SSA_NAME_DEF_STMT (arg_0
);
1545 stmt
= SSA_NAME_DEF_STMT (arg_1
);
1547 else if (gimple_code (SSA_NAME_DEF_STMT (arg_1
)) == GIMPLE_PHI
)
1550 header_phi
= SSA_NAME_DEF_STMT (arg_1
);
1551 stmt
= SSA_NAME_DEF_STMT (arg_0
);
1555 if (gimple_bb (header_phi
) != loop
->header
)
1558 if (PHI_ARG_DEF_FROM_EDGE (header_phi
, latch_e
) != PHI_RESULT (phi
))
1561 if (gimple_code (stmt
) != GIMPLE_ASSIGN
1562 || gimple_has_volatile_ops (stmt
))
1565 if (!flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
1568 if (!is_predicated (gimple_bb (stmt
)))
1571 /* Check that stmt-block is predecessor of phi-block. */
1572 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
1581 if (!has_single_use (lhs
))
1584 reduction_op
= gimple_assign_rhs_code (stmt
);
1585 if (reduction_op
!= PLUS_EXPR
&& reduction_op
!= MINUS_EXPR
)
1587 r_op1
= gimple_assign_rhs1 (stmt
);
1588 r_op2
= gimple_assign_rhs2 (stmt
);
1590 /* Make R_OP1 to hold reduction variable. */
1591 if (r_op2
== PHI_RESULT (header_phi
)
1592 && reduction_op
== PLUS_EXPR
)
1593 std::swap (r_op1
, r_op2
);
1594 else if (r_op1
!= PHI_RESULT (header_phi
))
1597 /* Check that R_OP1 is used in reduction stmt or in PHI only. */
1598 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, r_op1
)
1600 gimple
*use_stmt
= USE_STMT (use_p
);
1601 if (is_gimple_debug (use_stmt
))
1603 if (use_stmt
== stmt
)
1605 if (gimple_code (use_stmt
) != GIMPLE_PHI
)
1609 *op0
= r_op1
; *op1
= r_op2
;
1614 /* Converts conditional scalar reduction into unconditional form, e.g.
1616 if (_5 != 0) goto bb_5 else goto bb_6
1622 # res_2 = PHI <res_13(4), res_6(5)>
1625 will be converted into sequence
1626 _ifc__1 = _5 != 0 ? 1 : 0;
1627 res_2 = res_13 + _ifc__1;
1628 Argument SWAP tells that arguments of conditional expression should be
1630 Returns rhs of resulting PHI assignment. */
1633 convert_scalar_cond_reduction (gimple
*reduc
, gimple_stmt_iterator
*gsi
,
1634 tree cond
, tree op0
, tree op1
, bool swap
)
1636 gimple_stmt_iterator stmt_it
;
1639 tree rhs1
= gimple_assign_rhs1 (reduc
);
1640 tree tmp
= make_temp_ssa_name (TREE_TYPE (rhs1
), NULL
, "_ifc_");
1642 tree zero
= build_zero_cst (TREE_TYPE (rhs1
));
1644 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1646 fprintf (dump_file
, "Found cond scalar reduction.\n");
1647 print_gimple_stmt (dump_file
, reduc
, 0, TDF_SLIM
);
1650 /* Build cond expression using COND and constant operand
1651 of reduction rhs. */
1652 c
= fold_build_cond_expr (TREE_TYPE (rhs1
),
1653 unshare_expr (cond
),
1657 /* Create assignment stmt and insert it at GSI. */
1658 new_assign
= gimple_build_assign (tmp
, c
);
1659 gsi_insert_before (gsi
, new_assign
, GSI_SAME_STMT
);
1660 /* Build rhs for unconditional increment/decrement. */
1661 rhs
= fold_build2 (gimple_assign_rhs_code (reduc
),
1662 TREE_TYPE (rhs1
), op0
, tmp
);
1664 /* Delete original reduction stmt. */
1665 stmt_it
= gsi_for_stmt (reduc
);
1666 gsi_remove (&stmt_it
, true);
1667 release_defs (reduc
);
1671 /* Produce condition for all occurrences of ARG in PHI node. */
1674 gen_phi_arg_condition (gphi
*phi
, vec
<int> *occur
,
1675 gimple_stmt_iterator
*gsi
)
1679 tree cond
= NULL_TREE
;
1683 len
= occur
->length ();
1684 gcc_assert (len
> 0);
1685 for (i
= 0; i
< len
; i
++)
1687 e
= gimple_phi_arg_edge (phi
, (*occur
)[i
]);
1688 c
= bb_predicate (e
->src
);
1689 if (is_true_predicate (c
))
1694 c
= force_gimple_operand_gsi_1 (gsi
, unshare_expr (c
),
1695 is_gimple_condexpr
, NULL_TREE
,
1696 true, GSI_SAME_STMT
);
1697 if (cond
!= NULL_TREE
)
1699 /* Must build OR expression. */
1700 cond
= fold_or_predicates (EXPR_LOCATION (c
), c
, cond
);
1701 cond
= force_gimple_operand_gsi_1 (gsi
, unshare_expr (cond
),
1702 is_gimple_condexpr
, NULL_TREE
,
1703 true, GSI_SAME_STMT
);
1708 gcc_assert (cond
!= NULL_TREE
);
1712 /* Replace a scalar PHI node with a COND_EXPR using COND as condition.
1713 This routine can handle PHI nodes with more than two arguments.
1716 S1: A = PHI <x1(1), x2(5)>
1718 S2: A = cond ? x1 : x2;
1720 The generated code is inserted at GSI that points to the top of
1721 basic block's statement list.
1722 If PHI node has more than two arguments a chain of conditional
1723 expression is produced. */
1727 predicate_scalar_phi (gphi
*phi
, gimple_stmt_iterator
*gsi
)
1729 gimple
*new_stmt
= NULL
, *reduc
;
1730 tree rhs
, res
, arg0
, arg1
, op0
, op1
, scev
;
1732 unsigned int index0
;
1733 unsigned int max
, args_len
;
1738 res
= gimple_phi_result (phi
);
1739 if (virtual_operand_p (res
))
1742 if ((rhs
= degenerate_phi_result (phi
))
1743 || ((scev
= analyze_scalar_evolution (gimple_bb (phi
)->loop_father
,
1745 && !chrec_contains_undetermined (scev
)
1747 && (rhs
= gimple_phi_arg_def (phi
, 0))))
1749 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1751 fprintf (dump_file
, "Degenerate phi!\n");
1752 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
1754 new_stmt
= gimple_build_assign (res
, rhs
);
1755 gsi_insert_before (gsi
, new_stmt
, GSI_SAME_STMT
);
1756 update_stmt (new_stmt
);
1760 bb
= gimple_bb (phi
);
1761 if (EDGE_COUNT (bb
->preds
) == 2)
1763 /* Predicate ordinary PHI node with 2 arguments. */
1764 edge first_edge
, second_edge
;
1765 basic_block true_bb
;
1766 first_edge
= EDGE_PRED (bb
, 0);
1767 second_edge
= EDGE_PRED (bb
, 1);
1768 cond
= bb_predicate (first_edge
->src
);
1769 if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
1770 std::swap (first_edge
, second_edge
);
1771 if (EDGE_COUNT (first_edge
->src
->succs
) > 1)
1773 cond
= bb_predicate (second_edge
->src
);
1774 if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
1775 cond
= TREE_OPERAND (cond
, 0);
1777 first_edge
= second_edge
;
1780 cond
= bb_predicate (first_edge
->src
);
1781 /* Gimplify the condition to a valid cond-expr conditonal operand. */
1782 cond
= force_gimple_operand_gsi_1 (gsi
, unshare_expr (cond
),
1783 is_gimple_condexpr
, NULL_TREE
,
1784 true, GSI_SAME_STMT
);
1785 true_bb
= first_edge
->src
;
1786 if (EDGE_PRED (bb
, 1)->src
== true_bb
)
1788 arg0
= gimple_phi_arg_def (phi
, 1);
1789 arg1
= gimple_phi_arg_def (phi
, 0);
1793 arg0
= gimple_phi_arg_def (phi
, 0);
1794 arg1
= gimple_phi_arg_def (phi
, 1);
1796 if (is_cond_scalar_reduction (phi
, &reduc
, arg0
, arg1
,
1798 /* Convert reduction stmt into vectorizable form. */
1799 rhs
= convert_scalar_cond_reduction (reduc
, gsi
, cond
, op0
, op1
,
1800 true_bb
!= gimple_bb (reduc
));
1802 /* Build new RHS using selected condition and arguments. */
1803 rhs
= fold_build_cond_expr (TREE_TYPE (res
), unshare_expr (cond
),
1805 new_stmt
= gimple_build_assign (res
, rhs
);
1806 gsi_insert_before (gsi
, new_stmt
, GSI_SAME_STMT
);
1807 update_stmt (new_stmt
);
1809 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1811 fprintf (dump_file
, "new phi replacement stmt\n");
1812 print_gimple_stmt (dump_file
, new_stmt
, 0, TDF_SLIM
);
1817 /* Create hashmap for PHI node which contain vector of argument indexes
1818 having the same value. */
1820 hash_map
<tree_operand_hash
, auto_vec
<int> > phi_arg_map
;
1821 unsigned int num_args
= gimple_phi_num_args (phi
);
1823 /* Vector of different PHI argument values. */
1824 auto_vec
<tree
> args (num_args
);
1826 /* Compute phi_arg_map. */
1827 for (i
= 0; i
< num_args
; i
++)
1831 arg
= gimple_phi_arg_def (phi
, i
);
1832 if (!phi_arg_map
.get (arg
))
1833 args
.quick_push (arg
);
1834 phi_arg_map
.get_or_insert (arg
).safe_push (i
);
1837 /* Determine element with max number of occurrences. */
1840 args_len
= args
.length ();
1841 for (i
= 0; i
< args_len
; i
++)
1844 if ((len
= phi_arg_map
.get (args
[i
])->length ()) > max
)
1851 /* Put element with max number of occurences to the end of ARGS. */
1852 if (max_ind
!= -1 && max_ind
+1 != (int) args_len
)
1853 std::swap (args
[args_len
- 1], args
[max_ind
]);
1855 /* Handle one special case when number of arguments with different values
1856 is equal 2 and one argument has the only occurrence. Such PHI can be
1857 handled as if would have only 2 arguments. */
1858 if (args_len
== 2 && phi_arg_map
.get (args
[0])->length () == 1)
1861 indexes
= phi_arg_map
.get (args
[0]);
1862 index0
= (*indexes
)[0];
1865 e
= gimple_phi_arg_edge (phi
, index0
);
1866 cond
= bb_predicate (e
->src
);
1867 if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
1870 cond
= TREE_OPERAND (cond
, 0);
1872 /* Gimplify the condition to a valid cond-expr conditonal operand. */
1873 cond
= force_gimple_operand_gsi_1 (gsi
, unshare_expr (cond
),
1874 is_gimple_condexpr
, NULL_TREE
,
1875 true, GSI_SAME_STMT
);
1876 if (!(is_cond_scalar_reduction (phi
, &reduc
, arg0
, arg1
,
1878 rhs
= fold_build_cond_expr (TREE_TYPE (res
), unshare_expr (cond
),
1882 /* Convert reduction stmt into vectorizable form. */
1883 rhs
= convert_scalar_cond_reduction (reduc
, gsi
, cond
, op0
, op1
,
1885 new_stmt
= gimple_build_assign (res
, rhs
);
1886 gsi_insert_before (gsi
, new_stmt
, GSI_SAME_STMT
);
1887 update_stmt (new_stmt
);
1893 tree type
= TREE_TYPE (gimple_phi_result (phi
));
1896 for (i
= 0; i
< args_len
; i
++)
1899 indexes
= phi_arg_map
.get (args
[i
]);
1900 if (i
!= args_len
- 1)
1901 lhs
= make_temp_ssa_name (type
, NULL
, "_ifc_");
1904 cond
= gen_phi_arg_condition (phi
, indexes
, gsi
);
1905 rhs
= fold_build_cond_expr (type
, unshare_expr (cond
),
1907 new_stmt
= gimple_build_assign (lhs
, rhs
);
1908 gsi_insert_before (gsi
, new_stmt
, GSI_SAME_STMT
);
1909 update_stmt (new_stmt
);
1914 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1916 fprintf (dump_file
, "new extended phi replacement stmt\n");
1917 print_gimple_stmt (dump_file
, new_stmt
, 0, TDF_SLIM
);
1921 /* Replaces in LOOP all the scalar phi nodes other than those in the
1922 LOOP->header block with conditional modify expressions. */
1925 predicate_all_scalar_phis (struct loop
*loop
)
1928 unsigned int orig_loop_num_nodes
= loop
->num_nodes
;
1931 for (i
= 1; i
< orig_loop_num_nodes
; i
++)
1934 gimple_stmt_iterator gsi
;
1935 gphi_iterator phi_gsi
;
1938 if (bb
== loop
->header
)
1941 phi_gsi
= gsi_start_phis (bb
);
1942 if (gsi_end_p (phi_gsi
))
1945 gsi
= gsi_after_labels (bb
);
1946 while (!gsi_end_p (phi_gsi
))
1948 phi
= phi_gsi
.phi ();
1949 predicate_scalar_phi (phi
, &gsi
);
1950 release_phi_node (phi
);
1951 gsi_next (&phi_gsi
);
1954 set_phi_nodes (bb
, NULL
);
1958 /* Insert in each basic block of LOOP the statements produced by the
1959 gimplification of the predicates. */
1962 insert_gimplified_predicates (loop_p loop
)
1966 for (i
= 0; i
< loop
->num_nodes
; i
++)
1968 basic_block bb
= ifc_bbs
[i
];
1970 if (!is_predicated (bb
))
1971 gcc_assert (bb_predicate_gimplified_stmts (bb
) == NULL
);
1972 if (!is_predicated (bb
))
1974 /* Do not insert statements for a basic block that is not
1975 predicated. Also make sure that the predicate of the
1976 basic block is set to true. */
1977 reset_bb_predicate (bb
);
1981 stmts
= bb_predicate_gimplified_stmts (bb
);
1984 if (any_pred_load_store
)
1986 /* Insert the predicate of the BB just after the label,
1987 as the if-conversion of memory writes will use this
1989 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
1990 gsi_insert_seq_before (&gsi
, stmts
, GSI_SAME_STMT
);
1994 /* Insert the predicate of the BB at the end of the BB
1995 as this would reduce the register pressure: the only
1996 use of this predicate will be in successor BBs. */
1997 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
2000 || stmt_ends_bb_p (gsi_stmt (gsi
)))
2001 gsi_insert_seq_before (&gsi
, stmts
, GSI_SAME_STMT
);
2003 gsi_insert_seq_after (&gsi
, stmts
, GSI_SAME_STMT
);
2006 /* Once the sequence is code generated, set it to NULL. */
2007 set_bb_predicate_gimplified_stmts (bb
, NULL
);
2012 /* Helper function for predicate_mem_writes. Returns index of existent
2013 mask if it was created for given SIZE and -1 otherwise. */
2016 mask_exists (int size
, vec
<int> vec
)
2020 FOR_EACH_VEC_ELT (vec
, ix
, v
)
2026 /* Predicate each write to memory in LOOP.
2028 This function transforms control flow constructs containing memory
2031 | for (i = 0; i < N; i++)
2035 into the following form that does not contain control flow:
2037 | for (i = 0; i < N; i++)
2038 | A[i] = cond ? expr : A[i];
2040 The original CFG looks like this:
2047 | if (i < N) goto bb_5 else goto bb_2
2051 | cond = some_computation;
2052 | if (cond) goto bb_3 else goto bb_4
2064 insert_gimplified_predicates inserts the computation of the COND
2065 expression at the beginning of the destination basic block:
2072 | if (i < N) goto bb_5 else goto bb_2
2076 | cond = some_computation;
2077 | if (cond) goto bb_3 else goto bb_4
2081 | cond = some_computation;
2090 predicate_mem_writes is then predicating the memory write as follows:
2097 | if (i < N) goto bb_5 else goto bb_2
2101 | if (cond) goto bb_3 else goto bb_4
2105 | cond = some_computation;
2106 | A[i] = cond ? expr : A[i];
2114 and finally combine_blocks removes the basic block boundaries making
2115 the loop vectorizable:
2119 | if (i < N) goto bb_5 else goto bb_1
2123 | cond = some_computation;
2124 | A[i] = cond ? expr : A[i];
2125 | if (i < N) goto bb_5 else goto bb_4
2134 predicate_mem_writes (loop_p loop
)
2136 unsigned int i
, orig_loop_num_nodes
= loop
->num_nodes
;
2137 auto_vec
<int, 1> vect_sizes
;
2138 auto_vec
<tree
, 1> vect_masks
;
2140 for (i
= 1; i
< orig_loop_num_nodes
; i
++)
2142 gimple_stmt_iterator gsi
;
2143 basic_block bb
= ifc_bbs
[i
];
2144 tree cond
= bb_predicate (bb
);
2149 if (is_true_predicate (cond
) || is_false_predicate (cond
))
2153 if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
2156 cond
= TREE_OPERAND (cond
, 0);
2159 vect_sizes
.truncate (0);
2160 vect_masks
.truncate (0);
2162 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2163 if (!gimple_assign_single_p (stmt
= gsi_stmt (gsi
)))
2165 else if (gimple_plf (stmt
, GF_PLF_2
))
2167 tree lhs
= gimple_assign_lhs (stmt
);
2168 tree rhs
= gimple_assign_rhs1 (stmt
);
2169 tree ref
, addr
, ptr
, mask
;
2171 gimple_seq stmts
= NULL
;
2172 int bitsize
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (lhs
)));
2173 ref
= TREE_CODE (lhs
) == SSA_NAME
? rhs
: lhs
;
2174 mark_addressable (ref
);
2175 addr
= force_gimple_operand_gsi (&gsi
, build_fold_addr_expr (ref
),
2176 true, NULL_TREE
, true,
2178 if (!vect_sizes
.is_empty ()
2179 && (index
= mask_exists (bitsize
, vect_sizes
)) != -1)
2180 /* Use created mask. */
2181 mask
= vect_masks
[index
];
2184 if (COMPARISON_CLASS_P (cond
))
2185 mask
= gimple_build (&stmts
, TREE_CODE (cond
),
2187 TREE_OPERAND (cond
, 0),
2188 TREE_OPERAND (cond
, 1));
2191 gcc_assert (TREE_CODE (cond
) == SSA_NAME
);
2198 = constant_boolean_node (true, TREE_TYPE (mask
));
2199 mask
= gimple_build (&stmts
, BIT_XOR_EXPR
,
2200 TREE_TYPE (mask
), mask
, true_val
);
2202 gsi_insert_seq_before (&gsi
, stmts
, GSI_SAME_STMT
);
2204 mask
= ifc_temp_var (TREE_TYPE (mask
), mask
, &gsi
);
2205 /* Save mask and its size for further use. */
2206 vect_sizes
.safe_push (bitsize
);
2207 vect_masks
.safe_push (mask
);
2209 ptr
= build_int_cst (reference_alias_ptr_type (ref
),
2210 get_object_alignment (ref
));
2211 /* Copy points-to info if possible. */
2212 if (TREE_CODE (addr
) == SSA_NAME
&& !SSA_NAME_PTR_INFO (addr
))
2213 copy_ref_info (build2 (MEM_REF
, TREE_TYPE (ref
), addr
, ptr
),
2215 if (TREE_CODE (lhs
) == SSA_NAME
)
2218 = gimple_build_call_internal (IFN_MASK_LOAD
, 3, addr
,
2220 gimple_call_set_lhs (new_stmt
, lhs
);
2224 = gimple_build_call_internal (IFN_MASK_STORE
, 4, addr
, ptr
,
2226 gsi_replace (&gsi
, new_stmt
, true);
2228 else if (gimple_vdef (stmt
))
2230 tree lhs
= gimple_assign_lhs (stmt
);
2231 tree rhs
= gimple_assign_rhs1 (stmt
);
2232 tree type
= TREE_TYPE (lhs
);
2234 lhs
= ifc_temp_var (type
, unshare_expr (lhs
), &gsi
);
2235 rhs
= ifc_temp_var (type
, unshare_expr (rhs
), &gsi
);
2237 std::swap (lhs
, rhs
);
2238 cond
= force_gimple_operand_gsi_1 (&gsi
, unshare_expr (cond
),
2239 is_gimple_condexpr
, NULL_TREE
,
2240 true, GSI_SAME_STMT
);
2241 rhs
= fold_build_cond_expr (type
, unshare_expr (cond
), rhs
, lhs
);
2242 gimple_assign_set_rhs1 (stmt
, ifc_temp_var (type
, rhs
, &gsi
));
2248 /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
2249 other than the exit and latch of the LOOP. Also resets the
2250 GIMPLE_DEBUG information. */
2253 remove_conditions_and_labels (loop_p loop
)
2255 gimple_stmt_iterator gsi
;
2258 for (i
= 0; i
< loop
->num_nodes
; i
++)
2260 basic_block bb
= ifc_bbs
[i
];
2262 if (bb_with_exit_edge_p (loop
, bb
)
2263 || bb
== loop
->latch
)
2266 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); )
2267 switch (gimple_code (gsi_stmt (gsi
)))
2271 gsi_remove (&gsi
, true);
2275 /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
2276 if (gimple_debug_bind_p (gsi_stmt (gsi
)))
2278 gimple_debug_bind_reset_value (gsi_stmt (gsi
));
2279 update_stmt (gsi_stmt (gsi
));
2290 /* Combine all the basic blocks from LOOP into one or two super basic
2291 blocks. Replace PHI nodes with conditional modify expressions. */
2294 combine_blocks (struct loop
*loop
)
2296 basic_block bb
, exit_bb
, merge_target_bb
;
2297 unsigned int orig_loop_num_nodes
= loop
->num_nodes
;
2302 remove_conditions_and_labels (loop
);
2303 insert_gimplified_predicates (loop
);
2304 predicate_all_scalar_phis (loop
);
2306 if (any_pred_load_store
)
2307 predicate_mem_writes (loop
);
2309 /* Merge basic blocks: first remove all the edges in the loop,
2310 except for those from the exit block. */
2312 bool *predicated
= XNEWVEC (bool, orig_loop_num_nodes
);
2313 for (i
= 0; i
< orig_loop_num_nodes
; i
++)
2316 predicated
[i
] = !is_true_predicate (bb_predicate (bb
));
2317 free_bb_predicate (bb
);
2318 if (bb_with_exit_edge_p (loop
, bb
))
2320 gcc_assert (exit_bb
== NULL
);
2324 gcc_assert (exit_bb
!= loop
->latch
);
2326 for (i
= 1; i
< orig_loop_num_nodes
; i
++)
2330 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
));)
2332 if (e
->src
== exit_bb
)
2339 if (exit_bb
!= NULL
)
2341 if (exit_bb
!= loop
->header
)
2343 /* Connect this node to loop header. */
2344 make_edge (loop
->header
, exit_bb
, EDGE_FALLTHRU
);
2345 set_immediate_dominator (CDI_DOMINATORS
, exit_bb
, loop
->header
);
2348 /* Redirect non-exit edges to loop->latch. */
2349 FOR_EACH_EDGE (e
, ei
, exit_bb
->succs
)
2351 if (!loop_exit_edge_p (loop
, e
))
2352 redirect_edge_and_branch (e
, loop
->latch
);
2354 set_immediate_dominator (CDI_DOMINATORS
, loop
->latch
, exit_bb
);
2358 /* If the loop does not have an exit, reconnect header and latch. */
2359 make_edge (loop
->header
, loop
->latch
, EDGE_FALLTHRU
);
2360 set_immediate_dominator (CDI_DOMINATORS
, loop
->latch
, loop
->header
);
2363 merge_target_bb
= loop
->header
;
2364 for (i
= 1; i
< orig_loop_num_nodes
; i
++)
2366 gimple_stmt_iterator gsi
;
2367 gimple_stmt_iterator last
;
2371 if (bb
== exit_bb
|| bb
== loop
->latch
)
2374 /* Make stmts member of loop->header and clear range info from all stmts
2375 in BB which is now no longer executed conditional on a predicate we
2376 could have derived it from. */
2377 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2379 gimple
*stmt
= gsi_stmt (gsi
);
2380 gimple_set_bb (stmt
, merge_target_bb
);
2385 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_DEF
)
2386 reset_flow_sensitive_info (op
);
2390 /* Update stmt list. */
2391 last
= gsi_last_bb (merge_target_bb
);
2392 gsi_insert_seq_after (&last
, bb_seq (bb
), GSI_NEW_STMT
);
2393 set_bb_seq (bb
, NULL
);
2395 delete_basic_block (bb
);
2398 /* If possible, merge loop header to the block with the exit edge.
2399 This reduces the number of basic blocks to two, to please the
2400 vectorizer that handles only loops with two nodes. */
2402 && exit_bb
!= loop
->header
2403 && can_merge_blocks_p (loop
->header
, exit_bb
))
2404 merge_blocks (loop
->header
, exit_bb
);
2411 /* Version LOOP before if-converting it; the original loop
2412 will be if-converted, the new copy of the loop will not,
2413 and the LOOP_VECTORIZED internal call will be guarding which
2414 loop to execute. The vectorizer pass will fold this
2415 internal call into either true or false. */
2418 version_loop_for_if_conversion (struct loop
*loop
)
2420 basic_block cond_bb
;
2421 tree cond
= make_ssa_name (boolean_type_node
);
2422 struct loop
*new_loop
;
2424 gimple_stmt_iterator gsi
;
2426 g
= gimple_build_call_internal (IFN_LOOP_VECTORIZED
, 2,
2427 build_int_cst (integer_type_node
, loop
->num
),
2429 gimple_call_set_lhs (g
, cond
);
2431 /* Save BB->aux around loop_version as that uses the same field. */
2432 void **saved_preds
= XALLOCAVEC (void *, loop
->num_nodes
);
2433 for (unsigned i
= 0; i
< loop
->num_nodes
; i
++)
2434 saved_preds
[i
] = ifc_bbs
[i
]->aux
;
2436 initialize_original_copy_tables ();
2437 new_loop
= loop_version (loop
, cond
, &cond_bb
,
2438 REG_BR_PROB_BASE
, REG_BR_PROB_BASE
,
2439 REG_BR_PROB_BASE
, true);
2440 free_original_copy_tables ();
2442 for (unsigned i
= 0; i
< loop
->num_nodes
; i
++)
2443 ifc_bbs
[i
]->aux
= saved_preds
[i
];
2445 if (new_loop
== NULL
)
2448 new_loop
->dont_vectorize
= true;
2449 new_loop
->force_vectorize
= false;
2450 gsi
= gsi_last_bb (cond_bb
);
2451 gimple_call_set_arg (g
, 1, build_int_cst (integer_type_node
, new_loop
->num
));
2452 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
2453 update_ssa (TODO_update_ssa
);
2457 /* Performs splitting of critical edges. Skip splitting and return false
2458 if LOOP will not be converted because:
2460 - LOOP is not well formed.
2461 - LOOP has PHI with more than MAX_PHI_ARG_NUM arguments.
2463 Last restriction is valid only if AGGRESSIVE_IF_CONV is false. */
2466 ifcvt_split_critical_edges (struct loop
*loop
, bool aggressive_if_conv
)
2470 unsigned int num
= loop
->num_nodes
;
2475 auto_vec
<edge
> critical_edges
;
2477 /* Loop is not well formed. */
2478 if (num
<= 2 || loop
->inner
|| !single_exit (loop
))
2481 body
= get_loop_body (loop
);
2482 for (i
= 0; i
< num
; i
++)
2485 if (!aggressive_if_conv
2487 && EDGE_COUNT (bb
->preds
) > MAX_PHI_ARG_NUM
)
2489 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2491 "BB %d has complicated PHI with more than %u args.\n",
2492 bb
->index
, MAX_PHI_ARG_NUM
);
2497 if (bb
== loop
->latch
|| bb_with_exit_edge_p (loop
, bb
))
2500 stmt
= last_stmt (bb
);
2501 /* Skip basic blocks not ending with conditional branch. */
2502 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
2505 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2506 if (EDGE_CRITICAL_P (e
) && e
->dest
->loop_father
== loop
)
2507 critical_edges
.safe_push (e
);
2511 while (critical_edges
.length () > 0)
2513 e
= critical_edges
.pop ();
2514 /* Don't split if bb can be predicated along non-critical edge. */
2515 if (EDGE_COUNT (e
->dest
->preds
) > 2 || all_preds_critical_p (e
->dest
))
2522 /* Delete redundant statements produced by predication which prevents
2523 loop vectorization. */
2526 ifcvt_local_dce (basic_block bb
)
2531 gimple_stmt_iterator gsi
;
2532 auto_vec
<gimple
*> worklist
;
2533 enum gimple_code code
;
2534 use_operand_p use_p
;
2535 imm_use_iterator imm_iter
;
2537 worklist
.create (64);
2538 /* Consider all phi as live statements. */
2539 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2541 phi
= gsi_stmt (gsi
);
2542 gimple_set_plf (phi
, GF_PLF_2
, true);
2543 worklist
.safe_push (phi
);
2545 /* Consider load/store statements, CALL and COND as live. */
2546 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2548 stmt
= gsi_stmt (gsi
);
2549 if (gimple_store_p (stmt
)
2550 || gimple_assign_load_p (stmt
)
2551 || is_gimple_debug (stmt
))
2553 gimple_set_plf (stmt
, GF_PLF_2
, true);
2554 worklist
.safe_push (stmt
);
2557 code
= gimple_code (stmt
);
2558 if (code
== GIMPLE_COND
|| code
== GIMPLE_CALL
)
2560 gimple_set_plf (stmt
, GF_PLF_2
, true);
2561 worklist
.safe_push (stmt
);
2564 gimple_set_plf (stmt
, GF_PLF_2
, false);
2566 if (code
== GIMPLE_ASSIGN
)
2568 tree lhs
= gimple_assign_lhs (stmt
);
2569 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, lhs
)
2571 stmt1
= USE_STMT (use_p
);
2572 if (gimple_bb (stmt1
) != bb
)
2574 gimple_set_plf (stmt
, GF_PLF_2
, true);
2575 worklist
.safe_push (stmt
);
2581 /* Propagate liveness through arguments of live stmt. */
2582 while (worklist
.length () > 0)
2585 use_operand_p use_p
;
2588 stmt
= worklist
.pop ();
2589 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
2591 use
= USE_FROM_PTR (use_p
);
2592 if (TREE_CODE (use
) != SSA_NAME
)
2594 stmt1
= SSA_NAME_DEF_STMT (use
);
2595 if (gimple_bb (stmt1
) != bb
2596 || gimple_plf (stmt1
, GF_PLF_2
))
2598 gimple_set_plf (stmt1
, GF_PLF_2
, true);
2599 worklist
.safe_push (stmt1
);
2602 /* Delete dead statements. */
2603 gsi
= gsi_start_bb (bb
);
2604 while (!gsi_end_p (gsi
))
2606 stmt
= gsi_stmt (gsi
);
2607 if (gimple_plf (stmt
, GF_PLF_2
))
2612 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2614 fprintf (dump_file
, "Delete dead stmt in bb#%d\n", bb
->index
);
2615 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
2617 gsi_remove (&gsi
, true);
2618 release_defs (stmt
);
2622 /* If-convert LOOP when it is legal. For the moment this pass has no
2623 profitability analysis. Returns non-zero todo flags when something
2627 tree_if_conversion (struct loop
*loop
)
2629 unsigned int todo
= 0;
2630 bool aggressive_if_conv
;
2633 any_pred_load_store
= false;
2634 any_complicated_phi
= false;
2636 /* Apply more aggressive if-conversion when loop or its outer loop were
2637 marked with simd pragma. When that's the case, we try to if-convert
2638 loop containing PHIs with more than MAX_PHI_ARG_NUM arguments. */
2639 aggressive_if_conv
= loop
->force_vectorize
;
2640 if (!aggressive_if_conv
)
2642 struct loop
*outer_loop
= loop_outer (loop
);
2643 if (outer_loop
&& outer_loop
->force_vectorize
)
2644 aggressive_if_conv
= true;
2647 if (!ifcvt_split_critical_edges (loop
, aggressive_if_conv
))
2650 if (!if_convertible_loop_p (loop
)
2651 || !dbg_cnt (if_conversion_tree
))
2654 if ((any_pred_load_store
|| any_complicated_phi
)
2655 && ((!flag_tree_loop_vectorize
&& !loop
->force_vectorize
)
2656 || loop
->dont_vectorize
))
2659 if ((any_pred_load_store
|| any_complicated_phi
)
2660 && !version_loop_for_if_conversion (loop
))
2663 /* Now all statements are if-convertible. Combine all the basic
2664 blocks into one huge basic block doing the if-conversion
2666 combine_blocks (loop
);
2668 /* Delete dead predicate computations. */
2669 ifcvt_local_dce (loop
->header
);
2671 todo
|= TODO_cleanup_cfg
;
2672 mark_virtual_operands_for_renaming (cfun
);
2673 todo
|= TODO_update_ssa_only_virtuals
;
2680 for (i
= 0; i
< loop
->num_nodes
; i
++)
2681 free_bb_predicate (ifc_bbs
[i
]);
2686 free_dominance_info (CDI_POST_DOMINATORS
);
2691 /* Tree if-conversion pass management. */
2695 const pass_data pass_data_if_conversion
=
2697 GIMPLE_PASS
, /* type */
2699 OPTGROUP_NONE
, /* optinfo_flags */
2700 TV_TREE_LOOP_IFCVT
, /* tv_id */
2701 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2702 0, /* properties_provided */
2703 0, /* properties_destroyed */
2704 0, /* todo_flags_start */
2705 0, /* todo_flags_finish */
2708 class pass_if_conversion
: public gimple_opt_pass
2711 pass_if_conversion (gcc::context
*ctxt
)
2712 : gimple_opt_pass (pass_data_if_conversion
, ctxt
)
2715 /* opt_pass methods: */
2716 virtual bool gate (function
*);
2717 virtual unsigned int execute (function
*);
2719 }; // class pass_if_conversion
2722 pass_if_conversion::gate (function
*fun
)
2724 return (((flag_tree_loop_vectorize
|| fun
->has_force_vectorize_loops
)
2725 && flag_tree_loop_if_convert
!= 0)
2726 || flag_tree_loop_if_convert
== 1
2727 || flag_tree_loop_if_convert_stores
== 1);
2731 pass_if_conversion::execute (function
*fun
)
2736 if (number_of_loops (fun
) <= 1)
2739 /* If there are infinite loops, during CDI_POST_DOMINATORS computation
2740 we can pick pretty much random bb inside of the infinite loop that
2741 has the fake edge. If we are unlucky enough, this can confuse the
2742 add_to_predicate_list post-dominator check to optimize as if that
2743 bb or some other one is a join block when it actually is not.
2745 connect_infinite_loops_to_exit ();
2747 FOR_EACH_LOOP (loop
, 0)
2748 if (flag_tree_loop_if_convert
== 1
2749 || flag_tree_loop_if_convert_stores
== 1
2750 || ((flag_tree_loop_vectorize
|| loop
->force_vectorize
)
2751 && !loop
->dont_vectorize
))
2752 todo
|= tree_if_conversion (loop
);
2754 remove_fake_exit_edges ();
2759 FOR_EACH_BB_FN (bb
, fun
)
2760 gcc_assert (!bb
->aux
);
2769 make_pass_if_conversion (gcc::context
*ctxt
)
2771 return new pass_if_conversion (ctxt
);