c-format.c: suggest the correct format string to use (PR c/64955)
[official-gcc.git] / gcc / stor-layout.c
blob62ab80457b6fd4f81b243300e5392b8d4f77a089
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "stringpool.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "cgraph.h"
33 #include "diagnostic-core.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "varasm.h"
37 #include "print-tree.h"
38 #include "langhooks.h"
39 #include "tree-inline.h"
40 #include "tree-dump.h"
41 #include "gimplify.h"
42 #include "debug.h"
44 /* Data type for the expressions representing sizes of data types.
45 It is the first integer type laid out. */
46 tree sizetype_tab[(int) stk_type_kind_last];
48 /* If nonzero, this is an upper limit on alignment of structure fields.
49 The value is measured in bits. */
50 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52 static tree self_referential_size (tree);
53 static void finalize_record_size (record_layout_info);
54 static void finalize_type_size (tree);
55 static void place_union_field (record_layout_info, tree);
56 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
57 HOST_WIDE_INT, tree);
58 extern void debug_rli (record_layout_info);
60 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
61 to serve as the actual size-expression for a type or decl. */
63 tree
64 variable_size (tree size)
66 /* Obviously. */
67 if (TREE_CONSTANT (size))
68 return size;
70 /* If the size is self-referential, we can't make a SAVE_EXPR (see
71 save_expr for the rationale). But we can do something else. */
72 if (CONTAINS_PLACEHOLDER_P (size))
73 return self_referential_size (size);
75 /* If we are in the global binding level, we can't make a SAVE_EXPR
76 since it may end up being shared across functions, so it is up
77 to the front-end to deal with this case. */
78 if (lang_hooks.decls.global_bindings_p ())
79 return size;
81 return save_expr (size);
84 /* An array of functions used for self-referential size computation. */
85 static GTY(()) vec<tree, va_gc> *size_functions;
87 /* Return true if T is a self-referential component reference. */
89 static bool
90 self_referential_component_ref_p (tree t)
92 if (TREE_CODE (t) != COMPONENT_REF)
93 return false;
95 while (REFERENCE_CLASS_P (t))
96 t = TREE_OPERAND (t, 0);
98 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
101 /* Similar to copy_tree_r but do not copy component references involving
102 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
103 and substituted in substitute_in_expr. */
105 static tree
106 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
108 enum tree_code code = TREE_CODE (*tp);
110 /* Stop at types, decls, constants like copy_tree_r. */
111 if (TREE_CODE_CLASS (code) == tcc_type
112 || TREE_CODE_CLASS (code) == tcc_declaration
113 || TREE_CODE_CLASS (code) == tcc_constant)
115 *walk_subtrees = 0;
116 return NULL_TREE;
119 /* This is the pattern built in ada/make_aligning_type. */
120 else if (code == ADDR_EXPR
121 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
123 *walk_subtrees = 0;
124 return NULL_TREE;
127 /* Default case: the component reference. */
128 else if (self_referential_component_ref_p (*tp))
130 *walk_subtrees = 0;
131 return NULL_TREE;
134 /* We're not supposed to have them in self-referential size trees
135 because we wouldn't properly control when they are evaluated.
136 However, not creating superfluous SAVE_EXPRs requires accurate
137 tracking of readonly-ness all the way down to here, which we
138 cannot always guarantee in practice. So punt in this case. */
139 else if (code == SAVE_EXPR)
140 return error_mark_node;
142 else if (code == STATEMENT_LIST)
143 gcc_unreachable ();
145 return copy_tree_r (tp, walk_subtrees, data);
148 /* Given a SIZE expression that is self-referential, return an equivalent
149 expression to serve as the actual size expression for a type. */
151 static tree
152 self_referential_size (tree size)
154 static unsigned HOST_WIDE_INT fnno = 0;
155 vec<tree> self_refs = vNULL;
156 tree param_type_list = NULL, param_decl_list = NULL;
157 tree t, ref, return_type, fntype, fnname, fndecl;
158 unsigned int i;
159 char buf[128];
160 vec<tree, va_gc> *args = NULL;
162 /* Do not factor out simple operations. */
163 t = skip_simple_constant_arithmetic (size);
164 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
165 return size;
167 /* Collect the list of self-references in the expression. */
168 find_placeholder_in_expr (size, &self_refs);
169 gcc_assert (self_refs.length () > 0);
171 /* Obtain a private copy of the expression. */
172 t = size;
173 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
174 return size;
175 size = t;
177 /* Build the parameter and argument lists in parallel; also
178 substitute the former for the latter in the expression. */
179 vec_alloc (args, self_refs.length ());
180 FOR_EACH_VEC_ELT (self_refs, i, ref)
182 tree subst, param_name, param_type, param_decl;
184 if (DECL_P (ref))
186 /* We shouldn't have true variables here. */
187 gcc_assert (TREE_READONLY (ref));
188 subst = ref;
190 /* This is the pattern built in ada/make_aligning_type. */
191 else if (TREE_CODE (ref) == ADDR_EXPR)
192 subst = ref;
193 /* Default case: the component reference. */
194 else
195 subst = TREE_OPERAND (ref, 1);
197 sprintf (buf, "p%d", i);
198 param_name = get_identifier (buf);
199 param_type = TREE_TYPE (ref);
200 param_decl
201 = build_decl (input_location, PARM_DECL, param_name, param_type);
202 DECL_ARG_TYPE (param_decl) = param_type;
203 DECL_ARTIFICIAL (param_decl) = 1;
204 TREE_READONLY (param_decl) = 1;
206 size = substitute_in_expr (size, subst, param_decl);
208 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
209 param_decl_list = chainon (param_decl, param_decl_list);
210 args->quick_push (ref);
213 self_refs.release ();
215 /* Append 'void' to indicate that the number of parameters is fixed. */
216 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
218 /* The 3 lists have been created in reverse order. */
219 param_type_list = nreverse (param_type_list);
220 param_decl_list = nreverse (param_decl_list);
222 /* Build the function type. */
223 return_type = TREE_TYPE (size);
224 fntype = build_function_type (return_type, param_type_list);
226 /* Build the function declaration. */
227 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
228 fnname = get_file_function_name (buf);
229 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
230 for (t = param_decl_list; t; t = DECL_CHAIN (t))
231 DECL_CONTEXT (t) = fndecl;
232 DECL_ARGUMENTS (fndecl) = param_decl_list;
233 DECL_RESULT (fndecl)
234 = build_decl (input_location, RESULT_DECL, 0, return_type);
235 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
237 /* The function has been created by the compiler and we don't
238 want to emit debug info for it. */
239 DECL_ARTIFICIAL (fndecl) = 1;
240 DECL_IGNORED_P (fndecl) = 1;
242 /* It is supposed to be "const" and never throw. */
243 TREE_READONLY (fndecl) = 1;
244 TREE_NOTHROW (fndecl) = 1;
246 /* We want it to be inlined when this is deemed profitable, as
247 well as discarded if every call has been integrated. */
248 DECL_DECLARED_INLINE_P (fndecl) = 1;
250 /* It is made up of a unique return statement. */
251 DECL_INITIAL (fndecl) = make_node (BLOCK);
252 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
253 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
254 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
255 TREE_STATIC (fndecl) = 1;
257 /* Put it onto the list of size functions. */
258 vec_safe_push (size_functions, fndecl);
260 /* Replace the original expression with a call to the size function. */
261 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
264 /* Take, queue and compile all the size functions. It is essential that
265 the size functions be gimplified at the very end of the compilation
266 in order to guarantee transparent handling of self-referential sizes.
267 Otherwise the GENERIC inliner would not be able to inline them back
268 at each of their call sites, thus creating artificial non-constant
269 size expressions which would trigger nasty problems later on. */
271 void
272 finalize_size_functions (void)
274 unsigned int i;
275 tree fndecl;
277 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
279 allocate_struct_function (fndecl, false);
280 set_cfun (NULL);
281 dump_function (TDI_original, fndecl);
283 /* As these functions are used to describe the layout of variable-length
284 structures, debug info generation needs their implementation. */
285 debug_hooks->size_function (fndecl);
286 gimplify_function_tree (fndecl);
287 cgraph_node::finalize_function (fndecl, false);
290 vec_free (size_functions);
293 /* Return the machine mode to use for a nonscalar of SIZE bits. The
294 mode must be in class MCLASS, and have exactly that many value bits;
295 it may have padding as well. If LIMIT is nonzero, modes of wider
296 than MAX_FIXED_MODE_SIZE will not be used. */
298 machine_mode
299 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
301 machine_mode mode;
302 int i;
304 if (limit && size > MAX_FIXED_MODE_SIZE)
305 return BLKmode;
307 /* Get the first mode which has this size, in the specified class. */
308 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
309 mode = GET_MODE_WIDER_MODE (mode))
310 if (GET_MODE_PRECISION (mode) == size)
311 return mode;
313 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
314 for (i = 0; i < NUM_INT_N_ENTS; i ++)
315 if (int_n_data[i].bitsize == size
316 && int_n_enabled_p[i])
317 return int_n_data[i].m;
319 return BLKmode;
322 /* Similar, except passed a tree node. */
324 machine_mode
325 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
327 unsigned HOST_WIDE_INT uhwi;
328 unsigned int ui;
330 if (!tree_fits_uhwi_p (size))
331 return BLKmode;
332 uhwi = tree_to_uhwi (size);
333 ui = uhwi;
334 if (uhwi != ui)
335 return BLKmode;
336 return mode_for_size (ui, mclass, limit);
339 /* Similar, but never return BLKmode; return the narrowest mode that
340 contains at least the requested number of value bits. */
342 machine_mode
343 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
345 machine_mode mode = VOIDmode;
346 int i;
348 /* Get the first mode which has at least this size, in the
349 specified class. */
350 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
351 mode = GET_MODE_WIDER_MODE (mode))
352 if (GET_MODE_PRECISION (mode) >= size)
353 break;
355 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
356 for (i = 0; i < NUM_INT_N_ENTS; i ++)
357 if (int_n_data[i].bitsize >= size
358 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
359 && int_n_enabled_p[i])
360 mode = int_n_data[i].m;
362 if (mode == VOIDmode)
363 gcc_unreachable ();
365 return mode;
368 /* Find an integer mode of the exact same size, or BLKmode on failure. */
370 machine_mode
371 int_mode_for_mode (machine_mode mode)
373 switch (GET_MODE_CLASS (mode))
375 case MODE_INT:
376 case MODE_PARTIAL_INT:
377 break;
379 case MODE_COMPLEX_INT:
380 case MODE_COMPLEX_FLOAT:
381 case MODE_FLOAT:
382 case MODE_DECIMAL_FLOAT:
383 case MODE_VECTOR_INT:
384 case MODE_VECTOR_FLOAT:
385 case MODE_FRACT:
386 case MODE_ACCUM:
387 case MODE_UFRACT:
388 case MODE_UACCUM:
389 case MODE_VECTOR_FRACT:
390 case MODE_VECTOR_ACCUM:
391 case MODE_VECTOR_UFRACT:
392 case MODE_VECTOR_UACCUM:
393 case MODE_POINTER_BOUNDS:
394 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
395 break;
397 case MODE_RANDOM:
398 if (mode == BLKmode)
399 break;
401 /* ... fall through ... */
403 case MODE_CC:
404 default:
405 gcc_unreachable ();
408 return mode;
411 /* Find a mode that can be used for efficient bitwise operations on MODE.
412 Return BLKmode if no such mode exists. */
414 machine_mode
415 bitwise_mode_for_mode (machine_mode mode)
417 /* Quick exit if we already have a suitable mode. */
418 unsigned int bitsize = GET_MODE_BITSIZE (mode);
419 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
420 return mode;
422 /* Reuse the sanity checks from int_mode_for_mode. */
423 gcc_checking_assert ((int_mode_for_mode (mode), true));
425 /* Try to replace complex modes with complex modes. In general we
426 expect both components to be processed independently, so we only
427 care whether there is a register for the inner mode. */
428 if (COMPLEX_MODE_P (mode))
430 machine_mode trial = mode;
431 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
432 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
433 if (trial != BLKmode
434 && have_regs_of_mode[GET_MODE_INNER (trial)])
435 return trial;
438 /* Try to replace vector modes with vector modes. Also try using vector
439 modes if an integer mode would be too big. */
440 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
442 machine_mode trial = mode;
443 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
444 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
445 if (trial != BLKmode
446 && have_regs_of_mode[trial]
447 && targetm.vector_mode_supported_p (trial))
448 return trial;
451 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
452 return mode_for_size (bitsize, MODE_INT, true);
455 /* Find a type that can be used for efficient bitwise operations on MODE.
456 Return null if no such mode exists. */
458 tree
459 bitwise_type_for_mode (machine_mode mode)
461 mode = bitwise_mode_for_mode (mode);
462 if (mode == BLKmode)
463 return NULL_TREE;
465 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
466 tree inner_type = build_nonstandard_integer_type (inner_size, true);
468 if (VECTOR_MODE_P (mode))
469 return build_vector_type_for_mode (inner_type, mode);
471 if (COMPLEX_MODE_P (mode))
472 return build_complex_type (inner_type);
474 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
475 return inner_type;
478 /* Find a mode that is suitable for representing a vector with
479 NUNITS elements of mode INNERMODE. Returns BLKmode if there
480 is no suitable mode. */
482 machine_mode
483 mode_for_vector (machine_mode innermode, unsigned nunits)
485 machine_mode mode;
487 /* First, look for a supported vector type. */
488 if (SCALAR_FLOAT_MODE_P (innermode))
489 mode = MIN_MODE_VECTOR_FLOAT;
490 else if (SCALAR_FRACT_MODE_P (innermode))
491 mode = MIN_MODE_VECTOR_FRACT;
492 else if (SCALAR_UFRACT_MODE_P (innermode))
493 mode = MIN_MODE_VECTOR_UFRACT;
494 else if (SCALAR_ACCUM_MODE_P (innermode))
495 mode = MIN_MODE_VECTOR_ACCUM;
496 else if (SCALAR_UACCUM_MODE_P (innermode))
497 mode = MIN_MODE_VECTOR_UACCUM;
498 else
499 mode = MIN_MODE_VECTOR_INT;
501 /* Do not check vector_mode_supported_p here. We'll do that
502 later in vector_type_mode. */
503 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
504 if (GET_MODE_NUNITS (mode) == nunits
505 && GET_MODE_INNER (mode) == innermode)
506 break;
508 /* For integers, try mapping it to a same-sized scalar mode. */
509 if (mode == VOIDmode
510 && GET_MODE_CLASS (innermode) == MODE_INT)
511 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
512 MODE_INT, 0);
514 if (mode == VOIDmode
515 || (GET_MODE_CLASS (mode) == MODE_INT
516 && !have_regs_of_mode[mode]))
517 return BLKmode;
519 return mode;
522 /* Return the alignment of MODE. This will be bounded by 1 and
523 BIGGEST_ALIGNMENT. */
525 unsigned int
526 get_mode_alignment (machine_mode mode)
528 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
531 /* Return the natural mode of an array, given that it is SIZE bytes in
532 total and has elements of type ELEM_TYPE. */
534 static machine_mode
535 mode_for_array (tree elem_type, tree size)
537 tree elem_size;
538 unsigned HOST_WIDE_INT int_size, int_elem_size;
539 bool limit_p;
541 /* One-element arrays get the component type's mode. */
542 elem_size = TYPE_SIZE (elem_type);
543 if (simple_cst_equal (size, elem_size))
544 return TYPE_MODE (elem_type);
546 limit_p = true;
547 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
549 int_size = tree_to_uhwi (size);
550 int_elem_size = tree_to_uhwi (elem_size);
551 if (int_elem_size > 0
552 && int_size % int_elem_size == 0
553 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
554 int_size / int_elem_size))
555 limit_p = false;
557 return mode_for_size_tree (size, MODE_INT, limit_p);
560 /* Subroutine of layout_decl: Force alignment required for the data type.
561 But if the decl itself wants greater alignment, don't override that. */
563 static inline void
564 do_type_align (tree type, tree decl)
566 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
568 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
569 if (TREE_CODE (decl) == FIELD_DECL)
570 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
574 /* Set the size, mode and alignment of a ..._DECL node.
575 TYPE_DECL does need this for C++.
576 Note that LABEL_DECL and CONST_DECL nodes do not need this,
577 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
578 Don't call layout_decl for them.
580 KNOWN_ALIGN is the amount of alignment we can assume this
581 decl has with no special effort. It is relevant only for FIELD_DECLs
582 and depends on the previous fields.
583 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
584 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
585 the record will be aligned to suit. */
587 void
588 layout_decl (tree decl, unsigned int known_align)
590 tree type = TREE_TYPE (decl);
591 enum tree_code code = TREE_CODE (decl);
592 rtx rtl = NULL_RTX;
593 location_t loc = DECL_SOURCE_LOCATION (decl);
595 if (code == CONST_DECL)
596 return;
598 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
599 || code == TYPE_DECL || code == FIELD_DECL);
601 rtl = DECL_RTL_IF_SET (decl);
603 if (type == error_mark_node)
604 type = void_type_node;
606 /* Usually the size and mode come from the data type without change,
607 however, the front-end may set the explicit width of the field, so its
608 size may not be the same as the size of its type. This happens with
609 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
610 also happens with other fields. For example, the C++ front-end creates
611 zero-sized fields corresponding to empty base classes, and depends on
612 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
613 size in bytes from the size in bits. If we have already set the mode,
614 don't set it again since we can be called twice for FIELD_DECLs. */
616 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
617 if (DECL_MODE (decl) == VOIDmode)
618 DECL_MODE (decl) = TYPE_MODE (type);
620 if (DECL_SIZE (decl) == 0)
622 DECL_SIZE (decl) = TYPE_SIZE (type);
623 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
625 else if (DECL_SIZE_UNIT (decl) == 0)
626 DECL_SIZE_UNIT (decl)
627 = fold_convert_loc (loc, sizetype,
628 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
629 bitsize_unit_node));
631 if (code != FIELD_DECL)
632 /* For non-fields, update the alignment from the type. */
633 do_type_align (type, decl);
634 else
635 /* For fields, it's a bit more complicated... */
637 bool old_user_align = DECL_USER_ALIGN (decl);
638 bool zero_bitfield = false;
639 bool packed_p = DECL_PACKED (decl);
640 unsigned int mfa;
642 if (DECL_BIT_FIELD (decl))
644 DECL_BIT_FIELD_TYPE (decl) = type;
646 /* A zero-length bit-field affects the alignment of the next
647 field. In essence such bit-fields are not influenced by
648 any packing due to #pragma pack or attribute packed. */
649 if (integer_zerop (DECL_SIZE (decl))
650 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
652 zero_bitfield = true;
653 packed_p = false;
654 if (PCC_BITFIELD_TYPE_MATTERS)
655 do_type_align (type, decl);
656 else
658 #ifdef EMPTY_FIELD_BOUNDARY
659 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
661 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
662 DECL_USER_ALIGN (decl) = 0;
664 #endif
668 /* See if we can use an ordinary integer mode for a bit-field.
669 Conditions are: a fixed size that is correct for another mode,
670 occupying a complete byte or bytes on proper boundary. */
671 if (TYPE_SIZE (type) != 0
672 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
673 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
675 machine_mode xmode
676 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
677 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
679 if (xmode != BLKmode
680 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
681 && (known_align == 0 || known_align >= xalign))
683 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
684 DECL_MODE (decl) = xmode;
685 DECL_BIT_FIELD (decl) = 0;
689 /* Turn off DECL_BIT_FIELD if we won't need it set. */
690 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
691 && known_align >= TYPE_ALIGN (type)
692 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
693 DECL_BIT_FIELD (decl) = 0;
695 else if (packed_p && DECL_USER_ALIGN (decl))
696 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
697 round up; we'll reduce it again below. We want packing to
698 supersede USER_ALIGN inherited from the type, but defer to
699 alignment explicitly specified on the field decl. */;
700 else
701 do_type_align (type, decl);
703 /* If the field is packed and not explicitly aligned, give it the
704 minimum alignment. Note that do_type_align may set
705 DECL_USER_ALIGN, so we need to check old_user_align instead. */
706 if (packed_p
707 && !old_user_align)
708 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
710 if (! packed_p && ! DECL_USER_ALIGN (decl))
712 /* Some targets (i.e. i386, VMS) limit struct field alignment
713 to a lower boundary than alignment of variables unless
714 it was overridden by attribute aligned. */
715 #ifdef BIGGEST_FIELD_ALIGNMENT
716 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
717 (unsigned) BIGGEST_FIELD_ALIGNMENT));
718 #endif
719 #ifdef ADJUST_FIELD_ALIGN
720 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl)));
721 #endif
724 if (zero_bitfield)
725 mfa = initial_max_fld_align * BITS_PER_UNIT;
726 else
727 mfa = maximum_field_alignment;
728 /* Should this be controlled by DECL_USER_ALIGN, too? */
729 if (mfa != 0)
730 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
733 /* Evaluate nonconstant size only once, either now or as soon as safe. */
734 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
735 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
736 if (DECL_SIZE_UNIT (decl) != 0
737 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
738 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
740 /* If requested, warn about definitions of large data objects. */
741 if (warn_larger_than
742 && (code == VAR_DECL || code == PARM_DECL)
743 && ! DECL_EXTERNAL (decl))
745 tree size = DECL_SIZE_UNIT (decl);
747 if (size != 0 && TREE_CODE (size) == INTEGER_CST
748 && compare_tree_int (size, larger_than_size) > 0)
750 int size_as_int = TREE_INT_CST_LOW (size);
752 if (compare_tree_int (size, size_as_int) == 0)
753 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
754 else
755 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
756 decl, larger_than_size);
760 /* If the RTL was already set, update its mode and mem attributes. */
761 if (rtl)
763 PUT_MODE (rtl, DECL_MODE (decl));
764 SET_DECL_RTL (decl, 0);
765 if (MEM_P (rtl))
766 set_mem_attributes (rtl, decl, 1);
767 SET_DECL_RTL (decl, rtl);
771 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
772 results of a previous call to layout_decl and calls it again. */
774 void
775 relayout_decl (tree decl)
777 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
778 DECL_MODE (decl) = VOIDmode;
779 if (!DECL_USER_ALIGN (decl))
780 SET_DECL_ALIGN (decl, 0);
781 if (DECL_RTL_SET_P (decl))
782 SET_DECL_RTL (decl, 0);
784 layout_decl (decl, 0);
787 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
788 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
789 is to be passed to all other layout functions for this record. It is the
790 responsibility of the caller to call `free' for the storage returned.
791 Note that garbage collection is not permitted until we finish laying
792 out the record. */
794 record_layout_info
795 start_record_layout (tree t)
797 record_layout_info rli = XNEW (struct record_layout_info_s);
799 rli->t = t;
801 /* If the type has a minimum specified alignment (via an attribute
802 declaration, for example) use it -- otherwise, start with a
803 one-byte alignment. */
804 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
805 rli->unpacked_align = rli->record_align;
806 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
808 #ifdef STRUCTURE_SIZE_BOUNDARY
809 /* Packed structures don't need to have minimum size. */
810 if (! TYPE_PACKED (t))
812 unsigned tmp;
814 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
815 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
816 if (maximum_field_alignment != 0)
817 tmp = MIN (tmp, maximum_field_alignment);
818 rli->record_align = MAX (rli->record_align, tmp);
820 #endif
822 rli->offset = size_zero_node;
823 rli->bitpos = bitsize_zero_node;
824 rli->prev_field = 0;
825 rli->pending_statics = 0;
826 rli->packed_maybe_necessary = 0;
827 rli->remaining_in_alignment = 0;
829 return rli;
832 /* Return the combined bit position for the byte offset OFFSET and the
833 bit position BITPOS.
835 These functions operate on byte and bit positions present in FIELD_DECLs
836 and assume that these expressions result in no (intermediate) overflow.
837 This assumption is necessary to fold the expressions as much as possible,
838 so as to avoid creating artificially variable-sized types in languages
839 supporting variable-sized types like Ada. */
841 tree
842 bit_from_pos (tree offset, tree bitpos)
844 if (TREE_CODE (offset) == PLUS_EXPR)
845 offset = size_binop (PLUS_EXPR,
846 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
847 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
848 else
849 offset = fold_convert (bitsizetype, offset);
850 return size_binop (PLUS_EXPR, bitpos,
851 size_binop (MULT_EXPR, offset, bitsize_unit_node));
854 /* Return the combined truncated byte position for the byte offset OFFSET and
855 the bit position BITPOS. */
857 tree
858 byte_from_pos (tree offset, tree bitpos)
860 tree bytepos;
861 if (TREE_CODE (bitpos) == MULT_EXPR
862 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
863 bytepos = TREE_OPERAND (bitpos, 0);
864 else
865 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
866 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
869 /* Split the bit position POS into a byte offset *POFFSET and a bit
870 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
872 void
873 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
874 tree pos)
876 tree toff_align = bitsize_int (off_align);
877 if (TREE_CODE (pos) == MULT_EXPR
878 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
880 *poffset = size_binop (MULT_EXPR,
881 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
882 size_int (off_align / BITS_PER_UNIT));
883 *pbitpos = bitsize_zero_node;
885 else
887 *poffset = size_binop (MULT_EXPR,
888 fold_convert (sizetype,
889 size_binop (FLOOR_DIV_EXPR, pos,
890 toff_align)),
891 size_int (off_align / BITS_PER_UNIT));
892 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
896 /* Given a pointer to bit and byte offsets and an offset alignment,
897 normalize the offsets so they are within the alignment. */
899 void
900 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
902 /* If the bit position is now larger than it should be, adjust it
903 downwards. */
904 if (compare_tree_int (*pbitpos, off_align) >= 0)
906 tree offset, bitpos;
907 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
908 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
909 *pbitpos = bitpos;
913 /* Print debugging information about the information in RLI. */
915 DEBUG_FUNCTION void
916 debug_rli (record_layout_info rli)
918 print_node_brief (stderr, "type", rli->t, 0);
919 print_node_brief (stderr, "\noffset", rli->offset, 0);
920 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
922 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
923 rli->record_align, rli->unpacked_align,
924 rli->offset_align);
926 /* The ms_struct code is the only that uses this. */
927 if (targetm.ms_bitfield_layout_p (rli->t))
928 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
930 if (rli->packed_maybe_necessary)
931 fprintf (stderr, "packed may be necessary\n");
933 if (!vec_safe_is_empty (rli->pending_statics))
935 fprintf (stderr, "pending statics:\n");
936 debug_vec_tree (rli->pending_statics);
940 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
941 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
943 void
944 normalize_rli (record_layout_info rli)
946 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
949 /* Returns the size in bytes allocated so far. */
951 tree
952 rli_size_unit_so_far (record_layout_info rli)
954 return byte_from_pos (rli->offset, rli->bitpos);
957 /* Returns the size in bits allocated so far. */
959 tree
960 rli_size_so_far (record_layout_info rli)
962 return bit_from_pos (rli->offset, rli->bitpos);
965 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
966 the next available location within the record is given by KNOWN_ALIGN.
967 Update the variable alignment fields in RLI, and return the alignment
968 to give the FIELD. */
970 unsigned int
971 update_alignment_for_field (record_layout_info rli, tree field,
972 unsigned int known_align)
974 /* The alignment required for FIELD. */
975 unsigned int desired_align;
976 /* The type of this field. */
977 tree type = TREE_TYPE (field);
978 /* True if the field was explicitly aligned by the user. */
979 bool user_align;
980 bool is_bitfield;
982 /* Do not attempt to align an ERROR_MARK node */
983 if (TREE_CODE (type) == ERROR_MARK)
984 return 0;
986 /* Lay out the field so we know what alignment it needs. */
987 layout_decl (field, known_align);
988 desired_align = DECL_ALIGN (field);
989 user_align = DECL_USER_ALIGN (field);
991 is_bitfield = (type != error_mark_node
992 && DECL_BIT_FIELD_TYPE (field)
993 && ! integer_zerop (TYPE_SIZE (type)));
995 /* Record must have at least as much alignment as any field.
996 Otherwise, the alignment of the field within the record is
997 meaningless. */
998 if (targetm.ms_bitfield_layout_p (rli->t))
1000 /* Here, the alignment of the underlying type of a bitfield can
1001 affect the alignment of a record; even a zero-sized field
1002 can do this. The alignment should be to the alignment of
1003 the type, except that for zero-size bitfields this only
1004 applies if there was an immediately prior, nonzero-size
1005 bitfield. (That's the way it is, experimentally.) */
1006 if ((!is_bitfield && !DECL_PACKED (field))
1007 || ((DECL_SIZE (field) == NULL_TREE
1008 || !integer_zerop (DECL_SIZE (field)))
1009 ? !DECL_PACKED (field)
1010 : (rli->prev_field
1011 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1012 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1014 unsigned int type_align = TYPE_ALIGN (type);
1015 type_align = MAX (type_align, desired_align);
1016 if (maximum_field_alignment != 0)
1017 type_align = MIN (type_align, maximum_field_alignment);
1018 rli->record_align = MAX (rli->record_align, type_align);
1019 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1022 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1024 /* Named bit-fields cause the entire structure to have the
1025 alignment implied by their type. Some targets also apply the same
1026 rules to unnamed bitfields. */
1027 if (DECL_NAME (field) != 0
1028 || targetm.align_anon_bitfield ())
1030 unsigned int type_align = TYPE_ALIGN (type);
1032 #ifdef ADJUST_FIELD_ALIGN
1033 if (! TYPE_USER_ALIGN (type))
1034 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1035 #endif
1037 /* Targets might chose to handle unnamed and hence possibly
1038 zero-width bitfield. Those are not influenced by #pragmas
1039 or packed attributes. */
1040 if (integer_zerop (DECL_SIZE (field)))
1042 if (initial_max_fld_align)
1043 type_align = MIN (type_align,
1044 initial_max_fld_align * BITS_PER_UNIT);
1046 else if (maximum_field_alignment != 0)
1047 type_align = MIN (type_align, maximum_field_alignment);
1048 else if (DECL_PACKED (field))
1049 type_align = MIN (type_align, BITS_PER_UNIT);
1051 /* The alignment of the record is increased to the maximum
1052 of the current alignment, the alignment indicated on the
1053 field (i.e., the alignment specified by an __aligned__
1054 attribute), and the alignment indicated by the type of
1055 the field. */
1056 rli->record_align = MAX (rli->record_align, desired_align);
1057 rli->record_align = MAX (rli->record_align, type_align);
1059 if (warn_packed)
1060 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1061 user_align |= TYPE_USER_ALIGN (type);
1064 else
1066 rli->record_align = MAX (rli->record_align, desired_align);
1067 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1070 TYPE_USER_ALIGN (rli->t) |= user_align;
1072 return desired_align;
1075 /* Called from place_field to handle unions. */
1077 static void
1078 place_union_field (record_layout_info rli, tree field)
1080 update_alignment_for_field (rli, field, /*known_align=*/0);
1082 DECL_FIELD_OFFSET (field) = size_zero_node;
1083 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1084 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1086 /* If this is an ERROR_MARK return *after* having set the
1087 field at the start of the union. This helps when parsing
1088 invalid fields. */
1089 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1090 return;
1092 /* We assume the union's size will be a multiple of a byte so we don't
1093 bother with BITPOS. */
1094 if (TREE_CODE (rli->t) == UNION_TYPE)
1095 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1096 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1097 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1098 DECL_SIZE_UNIT (field), rli->offset);
1101 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1102 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1103 units of alignment than the underlying TYPE. */
1104 static int
1105 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1106 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1108 /* Note that the calculation of OFFSET might overflow; we calculate it so
1109 that we still get the right result as long as ALIGN is a power of two. */
1110 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1112 offset = offset % align;
1113 return ((offset + size + align - 1) / align
1114 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1117 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1118 is a FIELD_DECL to be added after those fields already present in
1119 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1120 callers that desire that behavior must manually perform that step.) */
1122 void
1123 place_field (record_layout_info rli, tree field)
1125 /* The alignment required for FIELD. */
1126 unsigned int desired_align;
1127 /* The alignment FIELD would have if we just dropped it into the
1128 record as it presently stands. */
1129 unsigned int known_align;
1130 unsigned int actual_align;
1131 /* The type of this field. */
1132 tree type = TREE_TYPE (field);
1134 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1136 /* If FIELD is static, then treat it like a separate variable, not
1137 really like a structure field. If it is a FUNCTION_DECL, it's a
1138 method. In both cases, all we do is lay out the decl, and we do
1139 it *after* the record is laid out. */
1140 if (TREE_CODE (field) == VAR_DECL)
1142 vec_safe_push (rli->pending_statics, field);
1143 return;
1146 /* Enumerators and enum types which are local to this class need not
1147 be laid out. Likewise for initialized constant fields. */
1148 else if (TREE_CODE (field) != FIELD_DECL)
1149 return;
1151 /* Unions are laid out very differently than records, so split
1152 that code off to another function. */
1153 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1155 place_union_field (rli, field);
1156 return;
1159 else if (TREE_CODE (type) == ERROR_MARK)
1161 /* Place this field at the current allocation position, so we
1162 maintain monotonicity. */
1163 DECL_FIELD_OFFSET (field) = rli->offset;
1164 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1165 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1166 return;
1169 /* Work out the known alignment so far. Note that A & (-A) is the
1170 value of the least-significant bit in A that is one. */
1171 if (! integer_zerop (rli->bitpos))
1172 known_align = (tree_to_uhwi (rli->bitpos)
1173 & - tree_to_uhwi (rli->bitpos));
1174 else if (integer_zerop (rli->offset))
1175 known_align = 0;
1176 else if (tree_fits_uhwi_p (rli->offset))
1177 known_align = (BITS_PER_UNIT
1178 * (tree_to_uhwi (rli->offset)
1179 & - tree_to_uhwi (rli->offset)));
1180 else
1181 known_align = rli->offset_align;
1183 desired_align = update_alignment_for_field (rli, field, known_align);
1184 if (known_align == 0)
1185 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1187 if (warn_packed && DECL_PACKED (field))
1189 if (known_align >= TYPE_ALIGN (type))
1191 if (TYPE_ALIGN (type) > desired_align)
1193 if (STRICT_ALIGNMENT)
1194 warning (OPT_Wattributes, "packed attribute causes "
1195 "inefficient alignment for %q+D", field);
1196 /* Don't warn if DECL_PACKED was set by the type. */
1197 else if (!TYPE_PACKED (rli->t))
1198 warning (OPT_Wattributes, "packed attribute is "
1199 "unnecessary for %q+D", field);
1202 else
1203 rli->packed_maybe_necessary = 1;
1206 /* Does this field automatically have alignment it needs by virtue
1207 of the fields that precede it and the record's own alignment? */
1208 if (known_align < desired_align)
1210 /* No, we need to skip space before this field.
1211 Bump the cumulative size to multiple of field alignment. */
1213 if (!targetm.ms_bitfield_layout_p (rli->t)
1214 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1215 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1217 /* If the alignment is still within offset_align, just align
1218 the bit position. */
1219 if (desired_align < rli->offset_align)
1220 rli->bitpos = round_up (rli->bitpos, desired_align);
1221 else
1223 /* First adjust OFFSET by the partial bits, then align. */
1224 rli->offset
1225 = size_binop (PLUS_EXPR, rli->offset,
1226 fold_convert (sizetype,
1227 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1228 bitsize_unit_node)));
1229 rli->bitpos = bitsize_zero_node;
1231 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1234 if (! TREE_CONSTANT (rli->offset))
1235 rli->offset_align = desired_align;
1236 if (targetm.ms_bitfield_layout_p (rli->t))
1237 rli->prev_field = NULL;
1240 /* Handle compatibility with PCC. Note that if the record has any
1241 variable-sized fields, we need not worry about compatibility. */
1242 if (PCC_BITFIELD_TYPE_MATTERS
1243 && ! targetm.ms_bitfield_layout_p (rli->t)
1244 && TREE_CODE (field) == FIELD_DECL
1245 && type != error_mark_node
1246 && DECL_BIT_FIELD (field)
1247 && (! DECL_PACKED (field)
1248 /* Enter for these packed fields only to issue a warning. */
1249 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1250 && maximum_field_alignment == 0
1251 && ! integer_zerop (DECL_SIZE (field))
1252 && tree_fits_uhwi_p (DECL_SIZE (field))
1253 && tree_fits_uhwi_p (rli->offset)
1254 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1256 unsigned int type_align = TYPE_ALIGN (type);
1257 tree dsize = DECL_SIZE (field);
1258 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1259 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1260 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1262 #ifdef ADJUST_FIELD_ALIGN
1263 if (! TYPE_USER_ALIGN (type))
1264 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1265 #endif
1267 /* A bit field may not span more units of alignment of its type
1268 than its type itself. Advance to next boundary if necessary. */
1269 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1271 if (DECL_PACKED (field))
1273 if (warn_packed_bitfield_compat == 1)
1274 inform
1275 (input_location,
1276 "offset of packed bit-field %qD has changed in GCC 4.4",
1277 field);
1279 else
1280 rli->bitpos = round_up (rli->bitpos, type_align);
1283 if (! DECL_PACKED (field))
1284 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1287 #ifdef BITFIELD_NBYTES_LIMITED
1288 if (BITFIELD_NBYTES_LIMITED
1289 && ! targetm.ms_bitfield_layout_p (rli->t)
1290 && TREE_CODE (field) == FIELD_DECL
1291 && type != error_mark_node
1292 && DECL_BIT_FIELD_TYPE (field)
1293 && ! DECL_PACKED (field)
1294 && ! integer_zerop (DECL_SIZE (field))
1295 && tree_fits_uhwi_p (DECL_SIZE (field))
1296 && tree_fits_uhwi_p (rli->offset)
1297 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1299 unsigned int type_align = TYPE_ALIGN (type);
1300 tree dsize = DECL_SIZE (field);
1301 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1302 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1303 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1305 #ifdef ADJUST_FIELD_ALIGN
1306 if (! TYPE_USER_ALIGN (type))
1307 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1308 #endif
1310 if (maximum_field_alignment != 0)
1311 type_align = MIN (type_align, maximum_field_alignment);
1312 /* ??? This test is opposite the test in the containing if
1313 statement, so this code is unreachable currently. */
1314 else if (DECL_PACKED (field))
1315 type_align = MIN (type_align, BITS_PER_UNIT);
1317 /* A bit field may not span the unit of alignment of its type.
1318 Advance to next boundary if necessary. */
1319 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1320 rli->bitpos = round_up (rli->bitpos, type_align);
1322 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1324 #endif
1326 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1327 A subtlety:
1328 When a bit field is inserted into a packed record, the whole
1329 size of the underlying type is used by one or more same-size
1330 adjacent bitfields. (That is, if its long:3, 32 bits is
1331 used in the record, and any additional adjacent long bitfields are
1332 packed into the same chunk of 32 bits. However, if the size
1333 changes, a new field of that size is allocated.) In an unpacked
1334 record, this is the same as using alignment, but not equivalent
1335 when packing.
1337 Note: for compatibility, we use the type size, not the type alignment
1338 to determine alignment, since that matches the documentation */
1340 if (targetm.ms_bitfield_layout_p (rli->t))
1342 tree prev_saved = rli->prev_field;
1343 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1345 /* This is a bitfield if it exists. */
1346 if (rli->prev_field)
1348 /* If both are bitfields, nonzero, and the same size, this is
1349 the middle of a run. Zero declared size fields are special
1350 and handled as "end of run". (Note: it's nonzero declared
1351 size, but equal type sizes!) (Since we know that both
1352 the current and previous fields are bitfields by the
1353 time we check it, DECL_SIZE must be present for both.) */
1354 if (DECL_BIT_FIELD_TYPE (field)
1355 && !integer_zerop (DECL_SIZE (field))
1356 && !integer_zerop (DECL_SIZE (rli->prev_field))
1357 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1358 && tree_fits_uhwi_p (TYPE_SIZE (type))
1359 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1361 /* We're in the middle of a run of equal type size fields; make
1362 sure we realign if we run out of bits. (Not decl size,
1363 type size!) */
1364 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1366 if (rli->remaining_in_alignment < bitsize)
1368 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1370 /* out of bits; bump up to next 'word'. */
1371 rli->bitpos
1372 = size_binop (PLUS_EXPR, rli->bitpos,
1373 bitsize_int (rli->remaining_in_alignment));
1374 rli->prev_field = field;
1375 if (typesize < bitsize)
1376 rli->remaining_in_alignment = 0;
1377 else
1378 rli->remaining_in_alignment = typesize - bitsize;
1380 else
1381 rli->remaining_in_alignment -= bitsize;
1383 else
1385 /* End of a run: if leaving a run of bitfields of the same type
1386 size, we have to "use up" the rest of the bits of the type
1387 size.
1389 Compute the new position as the sum of the size for the prior
1390 type and where we first started working on that type.
1391 Note: since the beginning of the field was aligned then
1392 of course the end will be too. No round needed. */
1394 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1396 rli->bitpos
1397 = size_binop (PLUS_EXPR, rli->bitpos,
1398 bitsize_int (rli->remaining_in_alignment));
1400 else
1401 /* We "use up" size zero fields; the code below should behave
1402 as if the prior field was not a bitfield. */
1403 prev_saved = NULL;
1405 /* Cause a new bitfield to be captured, either this time (if
1406 currently a bitfield) or next time we see one. */
1407 if (!DECL_BIT_FIELD_TYPE (field)
1408 || integer_zerop (DECL_SIZE (field)))
1409 rli->prev_field = NULL;
1412 normalize_rli (rli);
1415 /* If we're starting a new run of same type size bitfields
1416 (or a run of non-bitfields), set up the "first of the run"
1417 fields.
1419 That is, if the current field is not a bitfield, or if there
1420 was a prior bitfield the type sizes differ, or if there wasn't
1421 a prior bitfield the size of the current field is nonzero.
1423 Note: we must be sure to test ONLY the type size if there was
1424 a prior bitfield and ONLY for the current field being zero if
1425 there wasn't. */
1427 if (!DECL_BIT_FIELD_TYPE (field)
1428 || (prev_saved != NULL
1429 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1430 : !integer_zerop (DECL_SIZE (field)) ))
1432 /* Never smaller than a byte for compatibility. */
1433 unsigned int type_align = BITS_PER_UNIT;
1435 /* (When not a bitfield), we could be seeing a flex array (with
1436 no DECL_SIZE). Since we won't be using remaining_in_alignment
1437 until we see a bitfield (and come by here again) we just skip
1438 calculating it. */
1439 if (DECL_SIZE (field) != NULL
1440 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1441 && tree_fits_uhwi_p (DECL_SIZE (field)))
1443 unsigned HOST_WIDE_INT bitsize
1444 = tree_to_uhwi (DECL_SIZE (field));
1445 unsigned HOST_WIDE_INT typesize
1446 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1448 if (typesize < bitsize)
1449 rli->remaining_in_alignment = 0;
1450 else
1451 rli->remaining_in_alignment = typesize - bitsize;
1454 /* Now align (conventionally) for the new type. */
1455 type_align = TYPE_ALIGN (TREE_TYPE (field));
1457 if (maximum_field_alignment != 0)
1458 type_align = MIN (type_align, maximum_field_alignment);
1460 rli->bitpos = round_up (rli->bitpos, type_align);
1462 /* If we really aligned, don't allow subsequent bitfields
1463 to undo that. */
1464 rli->prev_field = NULL;
1468 /* Offset so far becomes the position of this field after normalizing. */
1469 normalize_rli (rli);
1470 DECL_FIELD_OFFSET (field) = rli->offset;
1471 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1472 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1474 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1475 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1476 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1478 /* If this field ended up more aligned than we thought it would be (we
1479 approximate this by seeing if its position changed), lay out the field
1480 again; perhaps we can use an integral mode for it now. */
1481 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1482 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1483 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1484 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1485 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1486 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1487 actual_align = (BITS_PER_UNIT
1488 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1489 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1490 else
1491 actual_align = DECL_OFFSET_ALIGN (field);
1492 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1493 store / extract bit field operations will check the alignment of the
1494 record against the mode of bit fields. */
1496 if (known_align != actual_align)
1497 layout_decl (field, actual_align);
1499 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1500 rli->prev_field = field;
1502 /* Now add size of this field to the size of the record. If the size is
1503 not constant, treat the field as being a multiple of bytes and just
1504 adjust the offset, resetting the bit position. Otherwise, apportion the
1505 size amongst the bit position and offset. First handle the case of an
1506 unspecified size, which can happen when we have an invalid nested struct
1507 definition, such as struct j { struct j { int i; } }. The error message
1508 is printed in finish_struct. */
1509 if (DECL_SIZE (field) == 0)
1510 /* Do nothing. */;
1511 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1512 || TREE_OVERFLOW (DECL_SIZE (field)))
1514 rli->offset
1515 = size_binop (PLUS_EXPR, rli->offset,
1516 fold_convert (sizetype,
1517 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1518 bitsize_unit_node)));
1519 rli->offset
1520 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1521 rli->bitpos = bitsize_zero_node;
1522 rli->offset_align = MIN (rli->offset_align, desired_align);
1524 else if (targetm.ms_bitfield_layout_p (rli->t))
1526 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1528 /* If we ended a bitfield before the full length of the type then
1529 pad the struct out to the full length of the last type. */
1530 if ((DECL_CHAIN (field) == NULL
1531 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1532 && DECL_BIT_FIELD_TYPE (field)
1533 && !integer_zerop (DECL_SIZE (field)))
1534 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1535 bitsize_int (rli->remaining_in_alignment));
1537 normalize_rli (rli);
1539 else
1541 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1542 normalize_rli (rli);
1546 /* Assuming that all the fields have been laid out, this function uses
1547 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1548 indicated by RLI. */
1550 static void
1551 finalize_record_size (record_layout_info rli)
1553 tree unpadded_size, unpadded_size_unit;
1555 /* Now we want just byte and bit offsets, so set the offset alignment
1556 to be a byte and then normalize. */
1557 rli->offset_align = BITS_PER_UNIT;
1558 normalize_rli (rli);
1560 /* Determine the desired alignment. */
1561 #ifdef ROUND_TYPE_ALIGN
1562 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1563 rli->record_align));
1564 #else
1565 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1566 #endif
1568 /* Compute the size so far. Be sure to allow for extra bits in the
1569 size in bytes. We have guaranteed above that it will be no more
1570 than a single byte. */
1571 unpadded_size = rli_size_so_far (rli);
1572 unpadded_size_unit = rli_size_unit_so_far (rli);
1573 if (! integer_zerop (rli->bitpos))
1574 unpadded_size_unit
1575 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1577 /* Round the size up to be a multiple of the required alignment. */
1578 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1579 TYPE_SIZE_UNIT (rli->t)
1580 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1582 if (TREE_CONSTANT (unpadded_size)
1583 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1584 && input_location != BUILTINS_LOCATION)
1585 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1587 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1588 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1589 && TREE_CONSTANT (unpadded_size))
1591 tree unpacked_size;
1593 #ifdef ROUND_TYPE_ALIGN
1594 rli->unpacked_align
1595 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1596 #else
1597 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1598 #endif
1600 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1601 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1603 if (TYPE_NAME (rli->t))
1605 tree name;
1607 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1608 name = TYPE_NAME (rli->t);
1609 else
1610 name = DECL_NAME (TYPE_NAME (rli->t));
1612 if (STRICT_ALIGNMENT)
1613 warning (OPT_Wpacked, "packed attribute causes inefficient "
1614 "alignment for %qE", name);
1615 else
1616 warning (OPT_Wpacked,
1617 "packed attribute is unnecessary for %qE", name);
1619 else
1621 if (STRICT_ALIGNMENT)
1622 warning (OPT_Wpacked,
1623 "packed attribute causes inefficient alignment");
1624 else
1625 warning (OPT_Wpacked, "packed attribute is unnecessary");
1631 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1633 void
1634 compute_record_mode (tree type)
1636 tree field;
1637 machine_mode mode = VOIDmode;
1639 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1640 However, if possible, we use a mode that fits in a register
1641 instead, in order to allow for better optimization down the
1642 line. */
1643 SET_TYPE_MODE (type, BLKmode);
1645 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1646 return;
1648 /* A record which has any BLKmode members must itself be
1649 BLKmode; it can't go in a register. Unless the member is
1650 BLKmode only because it isn't aligned. */
1651 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1653 if (TREE_CODE (field) != FIELD_DECL)
1654 continue;
1656 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1657 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1658 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1659 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1660 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1661 || ! tree_fits_uhwi_p (bit_position (field))
1662 || DECL_SIZE (field) == 0
1663 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1664 return;
1666 /* If this field is the whole struct, remember its mode so
1667 that, say, we can put a double in a class into a DF
1668 register instead of forcing it to live in the stack. */
1669 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1670 mode = DECL_MODE (field);
1672 /* With some targets, it is sub-optimal to access an aligned
1673 BLKmode structure as a scalar. */
1674 if (targetm.member_type_forces_blk (field, mode))
1675 return;
1678 /* If we only have one real field; use its mode if that mode's size
1679 matches the type's size. This only applies to RECORD_TYPE. This
1680 does not apply to unions. */
1681 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1682 && tree_fits_uhwi_p (TYPE_SIZE (type))
1683 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1684 SET_TYPE_MODE (type, mode);
1685 else
1686 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1688 /* If structure's known alignment is less than what the scalar
1689 mode would need, and it matters, then stick with BLKmode. */
1690 if (TYPE_MODE (type) != BLKmode
1691 && STRICT_ALIGNMENT
1692 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1693 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1695 /* If this is the only reason this type is BLKmode, then
1696 don't force containing types to be BLKmode. */
1697 TYPE_NO_FORCE_BLK (type) = 1;
1698 SET_TYPE_MODE (type, BLKmode);
1702 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1703 out. */
1705 static void
1706 finalize_type_size (tree type)
1708 /* Normally, use the alignment corresponding to the mode chosen.
1709 However, where strict alignment is not required, avoid
1710 over-aligning structures, since most compilers do not do this
1711 alignment. */
1712 if (TYPE_MODE (type) != BLKmode
1713 && TYPE_MODE (type) != VOIDmode
1714 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1716 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1718 /* Don't override a larger alignment requirement coming from a user
1719 alignment of one of the fields. */
1720 if (mode_align >= TYPE_ALIGN (type))
1722 SET_TYPE_ALIGN (type, mode_align);
1723 TYPE_USER_ALIGN (type) = 0;
1727 /* Do machine-dependent extra alignment. */
1728 #ifdef ROUND_TYPE_ALIGN
1729 SET_TYPE_ALIGN (type,
1730 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1731 #endif
1733 /* If we failed to find a simple way to calculate the unit size
1734 of the type, find it by division. */
1735 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1736 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1737 result will fit in sizetype. We will get more efficient code using
1738 sizetype, so we force a conversion. */
1739 TYPE_SIZE_UNIT (type)
1740 = fold_convert (sizetype,
1741 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1742 bitsize_unit_node));
1744 if (TYPE_SIZE (type) != 0)
1746 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1747 TYPE_SIZE_UNIT (type)
1748 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1751 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1752 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1753 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1754 if (TYPE_SIZE_UNIT (type) != 0
1755 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1756 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1758 /* Also layout any other variants of the type. */
1759 if (TYPE_NEXT_VARIANT (type)
1760 || type != TYPE_MAIN_VARIANT (type))
1762 tree variant;
1763 /* Record layout info of this variant. */
1764 tree size = TYPE_SIZE (type);
1765 tree size_unit = TYPE_SIZE_UNIT (type);
1766 unsigned int align = TYPE_ALIGN (type);
1767 unsigned int precision = TYPE_PRECISION (type);
1768 unsigned int user_align = TYPE_USER_ALIGN (type);
1769 machine_mode mode = TYPE_MODE (type);
1771 /* Copy it into all variants. */
1772 for (variant = TYPE_MAIN_VARIANT (type);
1773 variant != 0;
1774 variant = TYPE_NEXT_VARIANT (variant))
1776 TYPE_SIZE (variant) = size;
1777 TYPE_SIZE_UNIT (variant) = size_unit;
1778 unsigned valign = align;
1779 if (TYPE_USER_ALIGN (variant))
1780 valign = MAX (valign, TYPE_ALIGN (variant));
1781 else
1782 TYPE_USER_ALIGN (variant) = user_align;
1783 SET_TYPE_ALIGN (variant, valign);
1784 TYPE_PRECISION (variant) = precision;
1785 SET_TYPE_MODE (variant, mode);
1790 /* Return a new underlying object for a bitfield started with FIELD. */
1792 static tree
1793 start_bitfield_representative (tree field)
1795 tree repr = make_node (FIELD_DECL);
1796 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1797 /* Force the representative to begin at a BITS_PER_UNIT aligned
1798 boundary - C++ may use tail-padding of a base object to
1799 continue packing bits so the bitfield region does not start
1800 at bit zero (see g++.dg/abi/bitfield5.C for example).
1801 Unallocated bits may happen for other reasons as well,
1802 for example Ada which allows explicit bit-granular structure layout. */
1803 DECL_FIELD_BIT_OFFSET (repr)
1804 = size_binop (BIT_AND_EXPR,
1805 DECL_FIELD_BIT_OFFSET (field),
1806 bitsize_int (~(BITS_PER_UNIT - 1)));
1807 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1808 DECL_SIZE (repr) = DECL_SIZE (field);
1809 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1810 DECL_PACKED (repr) = DECL_PACKED (field);
1811 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1812 /* There are no indirect accesses to this field. If we introduce
1813 some then they have to use the record alias set. This makes
1814 sure to properly conflict with [indirect] accesses to addressable
1815 fields of the bitfield group. */
1816 DECL_NONADDRESSABLE_P (repr) = 1;
1817 return repr;
1820 /* Finish up a bitfield group that was started by creating the underlying
1821 object REPR with the last field in the bitfield group FIELD. */
1823 static void
1824 finish_bitfield_representative (tree repr, tree field)
1826 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1827 machine_mode mode;
1828 tree nextf, size;
1830 size = size_diffop (DECL_FIELD_OFFSET (field),
1831 DECL_FIELD_OFFSET (repr));
1832 while (TREE_CODE (size) == COMPOUND_EXPR)
1833 size = TREE_OPERAND (size, 1);
1834 gcc_assert (tree_fits_uhwi_p (size));
1835 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1836 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1837 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1838 + tree_to_uhwi (DECL_SIZE (field)));
1840 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1841 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1843 /* Now nothing tells us how to pad out bitsize ... */
1844 nextf = DECL_CHAIN (field);
1845 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1846 nextf = DECL_CHAIN (nextf);
1847 if (nextf)
1849 tree maxsize;
1850 /* If there was an error, the field may be not laid out
1851 correctly. Don't bother to do anything. */
1852 if (TREE_TYPE (nextf) == error_mark_node)
1853 return;
1854 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1855 DECL_FIELD_OFFSET (repr));
1856 if (tree_fits_uhwi_p (maxsize))
1858 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1859 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1860 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1861 /* If the group ends within a bitfield nextf does not need to be
1862 aligned to BITS_PER_UNIT. Thus round up. */
1863 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1865 else
1866 maxbitsize = bitsize;
1868 else
1870 /* ??? If you consider that tail-padding of this struct might be
1871 re-used when deriving from it we cannot really do the following
1872 and thus need to set maxsize to bitsize? Also we cannot
1873 generally rely on maxsize to fold to an integer constant, so
1874 use bitsize as fallback for this case. */
1875 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1876 DECL_FIELD_OFFSET (repr));
1877 if (tree_fits_uhwi_p (maxsize))
1878 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1879 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1880 else
1881 maxbitsize = bitsize;
1884 /* Only if we don't artificially break up the representative in
1885 the middle of a large bitfield with different possibly
1886 overlapping representatives. And all representatives start
1887 at byte offset. */
1888 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1890 /* Find the smallest nice mode to use. */
1891 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1892 mode = GET_MODE_WIDER_MODE (mode))
1893 if (GET_MODE_BITSIZE (mode) >= bitsize)
1894 break;
1895 if (mode != VOIDmode
1896 && (GET_MODE_BITSIZE (mode) > maxbitsize
1897 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1898 mode = VOIDmode;
1900 if (mode == VOIDmode)
1902 /* We really want a BLKmode representative only as a last resort,
1903 considering the member b in
1904 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1905 Otherwise we simply want to split the representative up
1906 allowing for overlaps within the bitfield region as required for
1907 struct { int a : 7; int b : 7;
1908 int c : 10; int d; } __attribute__((packed));
1909 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1910 DECL_SIZE (repr) = bitsize_int (bitsize);
1911 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1912 DECL_MODE (repr) = BLKmode;
1913 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1914 bitsize / BITS_PER_UNIT);
1916 else
1918 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1919 DECL_SIZE (repr) = bitsize_int (modesize);
1920 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1921 DECL_MODE (repr) = mode;
1922 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1925 /* Remember whether the bitfield group is at the end of the
1926 structure or not. */
1927 DECL_CHAIN (repr) = nextf;
1930 /* Compute and set FIELD_DECLs for the underlying objects we should
1931 use for bitfield access for the structure T. */
1933 void
1934 finish_bitfield_layout (tree t)
1936 tree field, prev;
1937 tree repr = NULL_TREE;
1939 /* Unions would be special, for the ease of type-punning optimizations
1940 we could use the underlying type as hint for the representative
1941 if the bitfield would fit and the representative would not exceed
1942 the union in size. */
1943 if (TREE_CODE (t) != RECORD_TYPE)
1944 return;
1946 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1947 field; field = DECL_CHAIN (field))
1949 if (TREE_CODE (field) != FIELD_DECL)
1950 continue;
1952 /* In the C++ memory model, consecutive bit fields in a structure are
1953 considered one memory location and updating a memory location
1954 may not store into adjacent memory locations. */
1955 if (!repr
1956 && DECL_BIT_FIELD_TYPE (field))
1958 /* Start new representative. */
1959 repr = start_bitfield_representative (field);
1961 else if (repr
1962 && ! DECL_BIT_FIELD_TYPE (field))
1964 /* Finish off new representative. */
1965 finish_bitfield_representative (repr, prev);
1966 repr = NULL_TREE;
1968 else if (DECL_BIT_FIELD_TYPE (field))
1970 gcc_assert (repr != NULL_TREE);
1972 /* Zero-size bitfields finish off a representative and
1973 do not have a representative themselves. This is
1974 required by the C++ memory model. */
1975 if (integer_zerop (DECL_SIZE (field)))
1977 finish_bitfield_representative (repr, prev);
1978 repr = NULL_TREE;
1981 /* We assume that either DECL_FIELD_OFFSET of the representative
1982 and each bitfield member is a constant or they are equal.
1983 This is because we need to be able to compute the bit-offset
1984 of each field relative to the representative in get_bit_range
1985 during RTL expansion.
1986 If these constraints are not met, simply force a new
1987 representative to be generated. That will at most
1988 generate worse code but still maintain correctness with
1989 respect to the C++ memory model. */
1990 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1991 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1992 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1993 DECL_FIELD_OFFSET (field), 0)))
1995 finish_bitfield_representative (repr, prev);
1996 repr = start_bitfield_representative (field);
1999 else
2000 continue;
2002 if (repr)
2003 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2005 prev = field;
2008 if (repr)
2009 finish_bitfield_representative (repr, prev);
2012 /* Do all of the work required to layout the type indicated by RLI,
2013 once the fields have been laid out. This function will call `free'
2014 for RLI, unless FREE_P is false. Passing a value other than false
2015 for FREE_P is bad practice; this option only exists to support the
2016 G++ 3.2 ABI. */
2018 void
2019 finish_record_layout (record_layout_info rli, int free_p)
2021 tree variant;
2023 /* Compute the final size. */
2024 finalize_record_size (rli);
2026 /* Compute the TYPE_MODE for the record. */
2027 compute_record_mode (rli->t);
2029 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2030 finalize_type_size (rli->t);
2032 /* Compute bitfield representatives. */
2033 finish_bitfield_layout (rli->t);
2035 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2036 With C++ templates, it is too early to do this when the attribute
2037 is being parsed. */
2038 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2039 variant = TYPE_NEXT_VARIANT (variant))
2041 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2042 TYPE_REVERSE_STORAGE_ORDER (variant)
2043 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2046 /* Lay out any static members. This is done now because their type
2047 may use the record's type. */
2048 while (!vec_safe_is_empty (rli->pending_statics))
2049 layout_decl (rli->pending_statics->pop (), 0);
2051 /* Clean up. */
2052 if (free_p)
2054 vec_free (rli->pending_statics);
2055 free (rli);
2060 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2061 NAME, its fields are chained in reverse on FIELDS.
2063 If ALIGN_TYPE is non-null, it is given the same alignment as
2064 ALIGN_TYPE. */
2066 void
2067 finish_builtin_struct (tree type, const char *name, tree fields,
2068 tree align_type)
2070 tree tail, next;
2072 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2074 DECL_FIELD_CONTEXT (fields) = type;
2075 next = DECL_CHAIN (fields);
2076 DECL_CHAIN (fields) = tail;
2078 TYPE_FIELDS (type) = tail;
2080 if (align_type)
2082 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2083 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2086 layout_type (type);
2087 #if 0 /* not yet, should get fixed properly later */
2088 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2089 #else
2090 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2091 TYPE_DECL, get_identifier (name), type);
2092 #endif
2093 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2094 layout_decl (TYPE_NAME (type), 0);
2097 /* Calculate the mode, size, and alignment for TYPE.
2098 For an array type, calculate the element separation as well.
2099 Record TYPE on the chain of permanent or temporary types
2100 so that dbxout will find out about it.
2102 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2103 layout_type does nothing on such a type.
2105 If the type is incomplete, its TYPE_SIZE remains zero. */
2107 void
2108 layout_type (tree type)
2110 gcc_assert (type);
2112 if (type == error_mark_node)
2113 return;
2115 /* We don't want finalize_type_size to copy an alignment attribute to
2116 variants that don't have it. */
2117 type = TYPE_MAIN_VARIANT (type);
2119 /* Do nothing if type has been laid out before. */
2120 if (TYPE_SIZE (type))
2121 return;
2123 switch (TREE_CODE (type))
2125 case LANG_TYPE:
2126 /* This kind of type is the responsibility
2127 of the language-specific code. */
2128 gcc_unreachable ();
2130 case BOOLEAN_TYPE:
2131 case INTEGER_TYPE:
2132 case ENUMERAL_TYPE:
2133 SET_TYPE_MODE (type,
2134 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2135 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2136 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2137 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2138 break;
2140 case REAL_TYPE:
2141 SET_TYPE_MODE (type,
2142 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2143 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2144 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2145 break;
2147 case FIXED_POINT_TYPE:
2148 /* TYPE_MODE (type) has been set already. */
2149 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2150 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2151 break;
2153 case COMPLEX_TYPE:
2154 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2155 SET_TYPE_MODE (type,
2156 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2158 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2159 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2160 break;
2162 case VECTOR_TYPE:
2164 int nunits = TYPE_VECTOR_SUBPARTS (type);
2165 tree innertype = TREE_TYPE (type);
2167 gcc_assert (!(nunits & (nunits - 1)));
2169 /* Find an appropriate mode for the vector type. */
2170 if (TYPE_MODE (type) == VOIDmode)
2171 SET_TYPE_MODE (type,
2172 mode_for_vector (TYPE_MODE (innertype), nunits));
2174 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2175 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2176 /* Several boolean vector elements may fit in a single unit. */
2177 if (VECTOR_BOOLEAN_TYPE_P (type)
2178 && type->type_common.mode != BLKmode)
2179 TYPE_SIZE_UNIT (type)
2180 = size_int (GET_MODE_SIZE (type->type_common.mode));
2181 else
2182 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2183 TYPE_SIZE_UNIT (innertype),
2184 size_int (nunits));
2185 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2186 TYPE_SIZE (innertype),
2187 bitsize_int (nunits));
2189 /* For vector types, we do not default to the mode's alignment.
2190 Instead, query a target hook, defaulting to natural alignment.
2191 This prevents ABI changes depending on whether or not native
2192 vector modes are supported. */
2193 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2195 /* However, if the underlying mode requires a bigger alignment than
2196 what the target hook provides, we cannot use the mode. For now,
2197 simply reject that case. */
2198 gcc_assert (TYPE_ALIGN (type)
2199 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2200 break;
2203 case VOID_TYPE:
2204 /* This is an incomplete type and so doesn't have a size. */
2205 SET_TYPE_ALIGN (type, 1);
2206 TYPE_USER_ALIGN (type) = 0;
2207 SET_TYPE_MODE (type, VOIDmode);
2208 break;
2210 case POINTER_BOUNDS_TYPE:
2211 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2212 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2213 break;
2215 case OFFSET_TYPE:
2216 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2217 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2218 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2219 integral, which may be an __intN. */
2220 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2221 TYPE_PRECISION (type) = POINTER_SIZE;
2222 break;
2224 case FUNCTION_TYPE:
2225 case METHOD_TYPE:
2226 /* It's hard to see what the mode and size of a function ought to
2227 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2228 make it consistent with that. */
2229 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2230 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2231 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2232 break;
2234 case POINTER_TYPE:
2235 case REFERENCE_TYPE:
2237 machine_mode mode = TYPE_MODE (type);
2238 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2239 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2240 TYPE_UNSIGNED (type) = 1;
2241 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2243 break;
2245 case ARRAY_TYPE:
2247 tree index = TYPE_DOMAIN (type);
2248 tree element = TREE_TYPE (type);
2250 /* We need to know both bounds in order to compute the size. */
2251 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2252 && TYPE_SIZE (element))
2254 tree ub = TYPE_MAX_VALUE (index);
2255 tree lb = TYPE_MIN_VALUE (index);
2256 tree element_size = TYPE_SIZE (element);
2257 tree length;
2259 /* Make sure that an array of zero-sized element is zero-sized
2260 regardless of its extent. */
2261 if (integer_zerop (element_size))
2262 length = size_zero_node;
2264 /* The computation should happen in the original signedness so
2265 that (possible) negative values are handled appropriately
2266 when determining overflow. */
2267 else
2269 /* ??? When it is obvious that the range is signed
2270 represent it using ssizetype. */
2271 if (TREE_CODE (lb) == INTEGER_CST
2272 && TREE_CODE (ub) == INTEGER_CST
2273 && TYPE_UNSIGNED (TREE_TYPE (lb))
2274 && tree_int_cst_lt (ub, lb))
2276 lb = wide_int_to_tree (ssizetype,
2277 offset_int::from (lb, SIGNED));
2278 ub = wide_int_to_tree (ssizetype,
2279 offset_int::from (ub, SIGNED));
2281 length
2282 = fold_convert (sizetype,
2283 size_binop (PLUS_EXPR,
2284 build_int_cst (TREE_TYPE (lb), 1),
2285 size_binop (MINUS_EXPR, ub, lb)));
2288 /* ??? We have no way to distinguish a null-sized array from an
2289 array spanning the whole sizetype range, so we arbitrarily
2290 decide that [0, -1] is the only valid representation. */
2291 if (integer_zerop (length)
2292 && TREE_OVERFLOW (length)
2293 && integer_zerop (lb))
2294 length = size_zero_node;
2296 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2297 fold_convert (bitsizetype,
2298 length));
2300 /* If we know the size of the element, calculate the total size
2301 directly, rather than do some division thing below. This
2302 optimization helps Fortran assumed-size arrays (where the
2303 size of the array is determined at runtime) substantially. */
2304 if (TYPE_SIZE_UNIT (element))
2305 TYPE_SIZE_UNIT (type)
2306 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2309 /* Now round the alignment and size,
2310 using machine-dependent criteria if any. */
2312 unsigned align = TYPE_ALIGN (element);
2313 if (TYPE_USER_ALIGN (type))
2314 align = MAX (align, TYPE_ALIGN (type));
2315 else
2316 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2317 #ifdef ROUND_TYPE_ALIGN
2318 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2319 #else
2320 align = MAX (align, BITS_PER_UNIT);
2321 #endif
2322 SET_TYPE_ALIGN (type, align);
2323 SET_TYPE_MODE (type, BLKmode);
2324 if (TYPE_SIZE (type) != 0
2325 && ! targetm.member_type_forces_blk (type, VOIDmode)
2326 /* BLKmode elements force BLKmode aggregate;
2327 else extract/store fields may lose. */
2328 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2329 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2331 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2332 TYPE_SIZE (type)));
2333 if (TYPE_MODE (type) != BLKmode
2334 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2335 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2337 TYPE_NO_FORCE_BLK (type) = 1;
2338 SET_TYPE_MODE (type, BLKmode);
2341 /* When the element size is constant, check that it is at least as
2342 large as the element alignment. */
2343 if (TYPE_SIZE_UNIT (element)
2344 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2345 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2346 TYPE_ALIGN_UNIT. */
2347 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2348 && !integer_zerop (TYPE_SIZE_UNIT (element))
2349 && compare_tree_int (TYPE_SIZE_UNIT (element),
2350 TYPE_ALIGN_UNIT (element)) < 0)
2351 error ("alignment of array elements is greater than element size");
2352 break;
2355 case RECORD_TYPE:
2356 case UNION_TYPE:
2357 case QUAL_UNION_TYPE:
2359 tree field;
2360 record_layout_info rli;
2362 /* Initialize the layout information. */
2363 rli = start_record_layout (type);
2365 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2366 in the reverse order in building the COND_EXPR that denotes
2367 its size. We reverse them again later. */
2368 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2369 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2371 /* Place all the fields. */
2372 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2373 place_field (rli, field);
2375 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2376 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2378 /* Finish laying out the record. */
2379 finish_record_layout (rli, /*free_p=*/true);
2381 break;
2383 default:
2384 gcc_unreachable ();
2387 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2388 records and unions, finish_record_layout already called this
2389 function. */
2390 if (!RECORD_OR_UNION_TYPE_P (type))
2391 finalize_type_size (type);
2393 /* We should never see alias sets on incomplete aggregates. And we
2394 should not call layout_type on not incomplete aggregates. */
2395 if (AGGREGATE_TYPE_P (type))
2396 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2399 /* Return the least alignment required for type TYPE. */
2401 unsigned int
2402 min_align_of_type (tree type)
2404 unsigned int align = TYPE_ALIGN (type);
2405 if (!TYPE_USER_ALIGN (type))
2407 align = MIN (align, BIGGEST_ALIGNMENT);
2408 #ifdef BIGGEST_FIELD_ALIGNMENT
2409 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2410 #endif
2411 unsigned int field_align = align;
2412 #ifdef ADJUST_FIELD_ALIGN
2413 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2414 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2415 ggc_free (field);
2416 #endif
2417 align = MIN (align, field_align);
2419 return align / BITS_PER_UNIT;
2422 /* Vector types need to re-check the target flags each time we report
2423 the machine mode. We need to do this because attribute target can
2424 change the result of vector_mode_supported_p and have_regs_of_mode
2425 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2426 change on a per-function basis. */
2427 /* ??? Possibly a better solution is to run through all the types
2428 referenced by a function and re-compute the TYPE_MODE once, rather
2429 than make the TYPE_MODE macro call a function. */
2431 machine_mode
2432 vector_type_mode (const_tree t)
2434 machine_mode mode;
2436 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2438 mode = t->type_common.mode;
2439 if (VECTOR_MODE_P (mode)
2440 && (!targetm.vector_mode_supported_p (mode)
2441 || !have_regs_of_mode[mode]))
2443 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2445 /* For integers, try mapping it to a same-sized scalar mode. */
2446 if (GET_MODE_CLASS (innermode) == MODE_INT)
2448 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2449 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2451 if (mode != VOIDmode && have_regs_of_mode[mode])
2452 return mode;
2455 return BLKmode;
2458 return mode;
2461 /* Create and return a type for signed integers of PRECISION bits. */
2463 tree
2464 make_signed_type (int precision)
2466 tree type = make_node (INTEGER_TYPE);
2468 TYPE_PRECISION (type) = precision;
2470 fixup_signed_type (type);
2471 return type;
2474 /* Create and return a type for unsigned integers of PRECISION bits. */
2476 tree
2477 make_unsigned_type (int precision)
2479 tree type = make_node (INTEGER_TYPE);
2481 TYPE_PRECISION (type) = precision;
2483 fixup_unsigned_type (type);
2484 return type;
2487 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2488 and SATP. */
2490 tree
2491 make_fract_type (int precision, int unsignedp, int satp)
2493 tree type = make_node (FIXED_POINT_TYPE);
2495 TYPE_PRECISION (type) = precision;
2497 if (satp)
2498 TYPE_SATURATING (type) = 1;
2500 /* Lay out the type: set its alignment, size, etc. */
2501 if (unsignedp)
2503 TYPE_UNSIGNED (type) = 1;
2504 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2506 else
2507 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2508 layout_type (type);
2510 return type;
2513 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2514 and SATP. */
2516 tree
2517 make_accum_type (int precision, int unsignedp, int satp)
2519 tree type = make_node (FIXED_POINT_TYPE);
2521 TYPE_PRECISION (type) = precision;
2523 if (satp)
2524 TYPE_SATURATING (type) = 1;
2526 /* Lay out the type: set its alignment, size, etc. */
2527 if (unsignedp)
2529 TYPE_UNSIGNED (type) = 1;
2530 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2532 else
2533 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2534 layout_type (type);
2536 return type;
2539 /* Initialize sizetypes so layout_type can use them. */
2541 void
2542 initialize_sizetypes (void)
2544 int precision, bprecision;
2546 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2547 if (strcmp (SIZETYPE, "unsigned int") == 0)
2548 precision = INT_TYPE_SIZE;
2549 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2550 precision = LONG_TYPE_SIZE;
2551 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2552 precision = LONG_LONG_TYPE_SIZE;
2553 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2554 precision = SHORT_TYPE_SIZE;
2555 else
2557 int i;
2559 precision = -1;
2560 for (i = 0; i < NUM_INT_N_ENTS; i++)
2561 if (int_n_enabled_p[i])
2563 char name[50];
2564 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2566 if (strcmp (name, SIZETYPE) == 0)
2568 precision = int_n_data[i].bitsize;
2571 if (precision == -1)
2572 gcc_unreachable ();
2575 bprecision
2576 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2577 bprecision
2578 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2579 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2580 bprecision = HOST_BITS_PER_DOUBLE_INT;
2582 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2583 sizetype = make_node (INTEGER_TYPE);
2584 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2585 TYPE_PRECISION (sizetype) = precision;
2586 TYPE_UNSIGNED (sizetype) = 1;
2587 bitsizetype = make_node (INTEGER_TYPE);
2588 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2589 TYPE_PRECISION (bitsizetype) = bprecision;
2590 TYPE_UNSIGNED (bitsizetype) = 1;
2592 /* Now layout both types manually. */
2593 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2594 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2595 TYPE_SIZE (sizetype) = bitsize_int (precision);
2596 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2597 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2599 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2600 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2601 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2602 TYPE_SIZE_UNIT (bitsizetype)
2603 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2604 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2606 /* Create the signed variants of *sizetype. */
2607 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2608 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2609 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2610 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2613 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2614 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2615 for TYPE, based on the PRECISION and whether or not the TYPE
2616 IS_UNSIGNED. PRECISION need not correspond to a width supported
2617 natively by the hardware; for example, on a machine with 8-bit,
2618 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2619 61. */
2621 void
2622 set_min_and_max_values_for_integral_type (tree type,
2623 int precision,
2624 signop sgn)
2626 /* For bitfields with zero width we end up creating integer types
2627 with zero precision. Don't assign any minimum/maximum values
2628 to those types, they don't have any valid value. */
2629 if (precision < 1)
2630 return;
2632 TYPE_MIN_VALUE (type)
2633 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2634 TYPE_MAX_VALUE (type)
2635 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2638 /* Set the extreme values of TYPE based on its precision in bits,
2639 then lay it out. Used when make_signed_type won't do
2640 because the tree code is not INTEGER_TYPE.
2641 E.g. for Pascal, when the -fsigned-char option is given. */
2643 void
2644 fixup_signed_type (tree type)
2646 int precision = TYPE_PRECISION (type);
2648 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2650 /* Lay out the type: set its alignment, size, etc. */
2651 layout_type (type);
2654 /* Set the extreme values of TYPE based on its precision in bits,
2655 then lay it out. This is used both in `make_unsigned_type'
2656 and for enumeral types. */
2658 void
2659 fixup_unsigned_type (tree type)
2661 int precision = TYPE_PRECISION (type);
2663 TYPE_UNSIGNED (type) = 1;
2665 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2667 /* Lay out the type: set its alignment, size, etc. */
2668 layout_type (type);
2671 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2672 starting at BITPOS.
2674 BITREGION_START is the bit position of the first bit in this
2675 sequence of bit fields. BITREGION_END is the last bit in this
2676 sequence. If these two fields are non-zero, we should restrict the
2677 memory access to that range. Otherwise, we are allowed to touch
2678 any adjacent non bit-fields.
2680 ALIGN is the alignment of the underlying object in bits.
2681 VOLATILEP says whether the bitfield is volatile. */
2683 bit_field_mode_iterator
2684 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2685 HOST_WIDE_INT bitregion_start,
2686 HOST_WIDE_INT bitregion_end,
2687 unsigned int align, bool volatilep)
2688 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2689 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2690 m_bitregion_end (bitregion_end), m_align (align),
2691 m_volatilep (volatilep), m_count (0)
2693 if (!m_bitregion_end)
2695 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2696 the bitfield is mapped and won't trap, provided that ALIGN isn't
2697 too large. The cap is the biggest required alignment for data,
2698 or at least the word size. And force one such chunk at least. */
2699 unsigned HOST_WIDE_INT units
2700 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2701 if (bitsize <= 0)
2702 bitsize = 1;
2703 m_bitregion_end = bitpos + bitsize + units - 1;
2704 m_bitregion_end -= m_bitregion_end % units + 1;
2708 /* Calls to this function return successively larger modes that can be used
2709 to represent the bitfield. Return true if another bitfield mode is
2710 available, storing it in *OUT_MODE if so. */
2712 bool
2713 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2715 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2717 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2719 /* Skip modes that don't have full precision. */
2720 if (unit != GET_MODE_PRECISION (m_mode))
2721 continue;
2723 /* Stop if the mode is too wide to handle efficiently. */
2724 if (unit > MAX_FIXED_MODE_SIZE)
2725 break;
2727 /* Don't deliver more than one multiword mode; the smallest one
2728 should be used. */
2729 if (m_count > 0 && unit > BITS_PER_WORD)
2730 break;
2732 /* Skip modes that are too small. */
2733 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2734 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2735 if (subend > unit)
2736 continue;
2738 /* Stop if the mode goes outside the bitregion. */
2739 HOST_WIDE_INT start = m_bitpos - substart;
2740 if (m_bitregion_start && start < m_bitregion_start)
2741 break;
2742 HOST_WIDE_INT end = start + unit;
2743 if (end > m_bitregion_end + 1)
2744 break;
2746 /* Stop if the mode requires too much alignment. */
2747 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2748 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2749 break;
2751 *out_mode = m_mode;
2752 m_mode = GET_MODE_WIDER_MODE (m_mode);
2753 m_count++;
2754 return true;
2756 return false;
2759 /* Return true if smaller modes are generally preferred for this kind
2760 of bitfield. */
2762 bool
2763 bit_field_mode_iterator::prefer_smaller_modes ()
2765 return (m_volatilep
2766 ? targetm.narrow_volatile_bitfield ()
2767 : !SLOW_BYTE_ACCESS);
2770 /* Find the best machine mode to use when referencing a bit field of length
2771 BITSIZE bits starting at BITPOS.
2773 BITREGION_START is the bit position of the first bit in this
2774 sequence of bit fields. BITREGION_END is the last bit in this
2775 sequence. If these two fields are non-zero, we should restrict the
2776 memory access to that range. Otherwise, we are allowed to touch
2777 any adjacent non bit-fields.
2779 The underlying object is known to be aligned to a boundary of ALIGN bits.
2780 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2781 larger than LARGEST_MODE (usually SImode).
2783 If no mode meets all these conditions, we return VOIDmode.
2785 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2786 smallest mode meeting these conditions.
2788 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2789 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2790 all the conditions.
2792 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2793 decide which of the above modes should be used. */
2795 machine_mode
2796 get_best_mode (int bitsize, int bitpos,
2797 unsigned HOST_WIDE_INT bitregion_start,
2798 unsigned HOST_WIDE_INT bitregion_end,
2799 unsigned int align,
2800 machine_mode largest_mode, bool volatilep)
2802 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2803 bitregion_end, align, volatilep);
2804 machine_mode widest_mode = VOIDmode;
2805 machine_mode mode;
2806 while (iter.next_mode (&mode)
2807 /* ??? For historical reasons, reject modes that would normally
2808 receive greater alignment, even if unaligned accesses are
2809 acceptable. This has both advantages and disadvantages.
2810 Removing this check means that something like:
2812 struct s { unsigned int x; unsigned int y; };
2813 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2815 can be implemented using a single load and compare on
2816 64-bit machines that have no alignment restrictions.
2817 For example, on powerpc64-linux-gnu, we would generate:
2819 ld 3,0(3)
2820 cntlzd 3,3
2821 srdi 3,3,6
2824 rather than:
2826 lwz 9,0(3)
2827 cmpwi 7,9,0
2828 bne 7,.L3
2829 lwz 3,4(3)
2830 cntlzw 3,3
2831 srwi 3,3,5
2832 extsw 3,3
2834 .p2align 4,,15
2835 .L3:
2836 li 3,0
2839 However, accessing more than one field can make life harder
2840 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2841 has a series of unsigned short copies followed by a series of
2842 unsigned short comparisons. With this check, both the copies
2843 and comparisons remain 16-bit accesses and FRE is able
2844 to eliminate the latter. Without the check, the comparisons
2845 can be done using 2 64-bit operations, which FRE isn't able
2846 to handle in the same way.
2848 Either way, it would probably be worth disabling this check
2849 during expand. One particular example where removing the
2850 check would help is the get_best_mode call in store_bit_field.
2851 If we are given a memory bitregion of 128 bits that is aligned
2852 to a 64-bit boundary, and the bitfield we want to modify is
2853 in the second half of the bitregion, this check causes
2854 store_bitfield to turn the memory into a 64-bit reference
2855 to the _first_ half of the region. We later use
2856 adjust_bitfield_address to get a reference to the correct half,
2857 but doing so looks to adjust_bitfield_address as though we are
2858 moving past the end of the original object, so it drops the
2859 associated MEM_EXPR and MEM_OFFSET. Removing the check
2860 causes store_bit_field to keep a 128-bit memory reference,
2861 so that the final bitfield reference still has a MEM_EXPR
2862 and MEM_OFFSET. */
2863 && GET_MODE_ALIGNMENT (mode) <= align
2864 && (largest_mode == VOIDmode
2865 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2867 widest_mode = mode;
2868 if (iter.prefer_smaller_modes ())
2869 break;
2871 return widest_mode;
2874 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2875 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2877 void
2878 get_mode_bounds (machine_mode mode, int sign,
2879 machine_mode target_mode,
2880 rtx *mmin, rtx *mmax)
2882 unsigned size = GET_MODE_PRECISION (mode);
2883 unsigned HOST_WIDE_INT min_val, max_val;
2885 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2887 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2888 if (mode == BImode)
2890 if (STORE_FLAG_VALUE < 0)
2892 min_val = STORE_FLAG_VALUE;
2893 max_val = 0;
2895 else
2897 min_val = 0;
2898 max_val = STORE_FLAG_VALUE;
2901 else if (sign)
2903 min_val = -(HOST_WIDE_INT_1U << (size - 1));
2904 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
2906 else
2908 min_val = 0;
2909 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
2912 *mmin = gen_int_mode (min_val, target_mode);
2913 *mmax = gen_int_mode (max_val, target_mode);
2916 #include "gt-stor-layout.h"