* except.c (expand_start_catch_block): We only need the rethrow
[official-gcc.git] / gcc / regclass.c
blobdb29999aee1d944c4b090a91f56ffd5a5672094c
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 88, 91-96, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains two passes of the compiler: reg_scan and reg_class.
23 It also defines some tables of information about the hardware registers
24 and a function init_reg_sets to initialize the tables. */
26 #include "config.h"
27 #include <stdio.h>
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "reload.h"
36 #include "real.h"
37 #include "bytecode.h"
39 #ifndef REGISTER_MOVE_COST
40 #define REGISTER_MOVE_COST(x, y) 2
41 #endif
43 #ifndef MEMORY_MOVE_COST
44 #define MEMORY_MOVE_COST(x) 4
45 #endif
47 /* If we have auto-increment or auto-decrement and we can have secondary
48 reloads, we are not allowed to use classes requiring secondary
49 reloads for pseudos auto-incremented since reload can't handle it. */
51 #ifdef AUTO_INC_DEC
52 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
53 #define FORBIDDEN_INC_DEC_CLASSES
54 #endif
55 #endif
57 /* Register tables used by many passes. */
59 /* Indexed by hard register number, contains 1 for registers
60 that are fixed use (stack pointer, pc, frame pointer, etc.).
61 These are the registers that cannot be used to allocate
62 a pseudo reg whose life does not cross calls. */
64 char fixed_regs[FIRST_PSEUDO_REGISTER];
66 /* Same info as a HARD_REG_SET. */
68 HARD_REG_SET fixed_reg_set;
70 /* Data for initializing the above. */
72 static char initial_fixed_regs[] = FIXED_REGISTERS;
74 /* Indexed by hard register number, contains 1 for registers
75 that are fixed use or are clobbered by function calls.
76 These are the registers that cannot be used to allocate
77 a pseudo reg whose life crosses calls. */
79 char call_used_regs[FIRST_PSEUDO_REGISTER];
81 /* Same info as a HARD_REG_SET. */
83 HARD_REG_SET call_used_reg_set;
85 /* HARD_REG_SET of registers we want to avoid caller saving. */
86 HARD_REG_SET losing_caller_save_reg_set;
88 /* Data for initializing the above. */
90 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
92 /* Indexed by hard register number, contains 1 for registers that are
93 fixed use -- i.e. in fixed_regs -- or a function value return register
94 or STRUCT_VALUE_REGNUM or STATIC_CHAIN_REGNUM. These are the
95 registers that cannot hold quantities across calls even if we are
96 willing to save and restore them. */
98 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
100 /* The same info as a HARD_REG_SET. */
102 HARD_REG_SET call_fixed_reg_set;
104 /* Number of non-fixed registers. */
106 int n_non_fixed_regs;
108 /* Indexed by hard register number, contains 1 for registers
109 that are being used for global register decls.
110 These must be exempt from ordinary flow analysis
111 and are also considered fixed. */
113 char global_regs[FIRST_PSEUDO_REGISTER];
115 /* Table of register numbers in the order in which to try to use them. */
116 #ifdef REG_ALLOC_ORDER
117 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
118 #endif
120 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
122 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
124 /* The same information, but as an array of unsigned ints. We copy from
125 these unsigned ints to the table above. We do this so the tm.h files
126 do not have to be aware of the wordsize for machines with <= 64 regs. */
128 #define N_REG_INTS \
129 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
131 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
132 = REG_CLASS_CONTENTS;
134 /* For each reg class, number of regs it contains. */
136 int reg_class_size[N_REG_CLASSES];
138 /* For each reg class, table listing all the containing classes. */
140 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
142 /* For each reg class, table listing all the classes contained in it. */
144 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
146 /* For each pair of reg classes,
147 a largest reg class contained in their union. */
149 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
151 /* For each pair of reg classes,
152 the smallest reg class containing their union. */
154 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
156 /* Array containing all of the register names */
158 char *reg_names[] = REGISTER_NAMES;
160 /* For each hard register, the widest mode object that it can contain.
161 This will be a MODE_INT mode if the register can hold integers. Otherwise
162 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
163 register. */
165 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
167 /* Maximum cost of moving from a register in one class to a register in
168 another class. Based on REGISTER_MOVE_COST. */
170 static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
172 /* Similar, but here we don't have to move if the first index is a subset
173 of the second so in that case the cost is zero. */
175 static int may_move_cost[N_REG_CLASSES][N_REG_CLASSES];
177 #ifdef FORBIDDEN_INC_DEC_CLASSES
179 /* These are the classes that regs which are auto-incremented or decremented
180 cannot be put in. */
182 static int forbidden_inc_dec_class[N_REG_CLASSES];
184 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
185 context. */
187 static char *in_inc_dec;
189 #endif /* FORBIDDEN_INC_DEC_CLASSES */
191 /* Function called only once to initialize the above data on reg usage.
192 Once this is done, various switches may override. */
194 void
195 init_reg_sets ()
197 register int i, j;
199 /* First copy the register information from the initial int form into
200 the regsets. */
202 for (i = 0; i < N_REG_CLASSES; i++)
204 CLEAR_HARD_REG_SET (reg_class_contents[i]);
206 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
207 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
208 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
209 SET_HARD_REG_BIT (reg_class_contents[i], j);
212 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
213 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
214 bzero (global_regs, sizeof global_regs);
216 /* Compute number of hard regs in each class. */
218 bzero ((char *) reg_class_size, sizeof reg_class_size);
219 for (i = 0; i < N_REG_CLASSES; i++)
220 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
221 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
222 reg_class_size[i]++;
224 /* Initialize the table of subunions.
225 reg_class_subunion[I][J] gets the largest-numbered reg-class
226 that is contained in the union of classes I and J. */
228 for (i = 0; i < N_REG_CLASSES; i++)
230 for (j = 0; j < N_REG_CLASSES; j++)
232 #ifdef HARD_REG_SET
233 register /* Declare it register if it's a scalar. */
234 #endif
235 HARD_REG_SET c;
236 register int k;
238 COPY_HARD_REG_SET (c, reg_class_contents[i]);
239 IOR_HARD_REG_SET (c, reg_class_contents[j]);
240 for (k = 0; k < N_REG_CLASSES; k++)
242 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
243 subclass1);
244 continue;
246 subclass1:
247 /* keep the largest subclass */ /* SPEE 900308 */
248 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
249 reg_class_contents[(int) reg_class_subunion[i][j]],
250 subclass2);
251 reg_class_subunion[i][j] = (enum reg_class) k;
252 subclass2:
258 /* Initialize the table of superunions.
259 reg_class_superunion[I][J] gets the smallest-numbered reg-class
260 containing the union of classes I and J. */
262 for (i = 0; i < N_REG_CLASSES; i++)
264 for (j = 0; j < N_REG_CLASSES; j++)
266 #ifdef HARD_REG_SET
267 register /* Declare it register if it's a scalar. */
268 #endif
269 HARD_REG_SET c;
270 register int k;
272 COPY_HARD_REG_SET (c, reg_class_contents[i]);
273 IOR_HARD_REG_SET (c, reg_class_contents[j]);
274 for (k = 0; k < N_REG_CLASSES; k++)
275 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
277 superclass:
278 reg_class_superunion[i][j] = (enum reg_class) k;
282 /* Initialize the tables of subclasses and superclasses of each reg class.
283 First clear the whole table, then add the elements as they are found. */
285 for (i = 0; i < N_REG_CLASSES; i++)
287 for (j = 0; j < N_REG_CLASSES; j++)
289 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
290 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
294 for (i = 0; i < N_REG_CLASSES; i++)
296 if (i == (int) NO_REGS)
297 continue;
299 for (j = i + 1; j < N_REG_CLASSES; j++)
301 enum reg_class *p;
303 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
304 subclass);
305 continue;
306 subclass:
307 /* Reg class I is a subclass of J.
308 Add J to the table of superclasses of I. */
309 p = &reg_class_superclasses[i][0];
310 while (*p != LIM_REG_CLASSES) p++;
311 *p = (enum reg_class) j;
312 /* Add I to the table of superclasses of J. */
313 p = &reg_class_subclasses[j][0];
314 while (*p != LIM_REG_CLASSES) p++;
315 *p = (enum reg_class) i;
319 /* Initialize the move cost table. Find every subset of each class
320 and take the maximum cost of moving any subset to any other. */
322 for (i = 0; i < N_REG_CLASSES; i++)
323 for (j = 0; j < N_REG_CLASSES; j++)
325 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
326 enum reg_class *p1, *p2;
328 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
329 if (*p2 != i)
330 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
332 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
334 if (*p1 != j)
335 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
337 for (p2 = &reg_class_subclasses[j][0];
338 *p2 != LIM_REG_CLASSES; p2++)
339 if (*p1 != *p2)
340 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
343 move_cost[i][j] = cost;
345 if (reg_class_subset_p (i, j))
346 cost = 0;
348 may_move_cost[i][j] = cost;
351 /* Do any additional initialization regsets may need */
352 INIT_ONCE_REG_SET ();
355 /* After switches have been processed, which perhaps alter
356 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
358 static void
359 init_reg_sets_1 ()
361 register int i;
363 /* This macro allows the fixed or call-used registers
364 to depend on target flags. */
366 #ifdef CONDITIONAL_REGISTER_USAGE
367 CONDITIONAL_REGISTER_USAGE;
368 #endif
370 /* Initialize "constant" tables. */
372 CLEAR_HARD_REG_SET (fixed_reg_set);
373 CLEAR_HARD_REG_SET (call_used_reg_set);
374 CLEAR_HARD_REG_SET (call_fixed_reg_set);
376 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
378 n_non_fixed_regs = 0;
380 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
382 if (fixed_regs[i])
383 SET_HARD_REG_BIT (fixed_reg_set, i);
384 else
385 n_non_fixed_regs++;
387 if (call_used_regs[i])
388 SET_HARD_REG_BIT (call_used_reg_set, i);
389 if (call_fixed_regs[i])
390 SET_HARD_REG_BIT (call_fixed_reg_set, i);
391 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
392 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
396 /* Compute the table of register modes.
397 These values are used to record death information for individual registers
398 (as opposed to a multi-register mode). */
400 static void
401 init_reg_modes ()
403 register int i;
405 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
407 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
409 /* If we couldn't find a valid mode, just use the previous mode.
410 ??? One situation in which we need to do this is on the mips where
411 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
412 to use DF mode for the even registers and VOIDmode for the odd
413 (for the cpu models where the odd ones are inaccessible). */
414 if (reg_raw_mode[i] == VOIDmode)
415 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
419 /* Finish initializing the register sets and
420 initialize the register modes. */
422 void
423 init_regs ()
425 /* This finishes what was started by init_reg_sets, but couldn't be done
426 until after register usage was specified. */
427 if (!output_bytecode)
428 init_reg_sets_1 ();
430 init_reg_modes ();
433 /* Return a machine mode that is legitimate for hard reg REGNO and large
434 enough to save nregs. If we can't find one, return VOIDmode. */
436 enum machine_mode
437 choose_hard_reg_mode (regno, nregs)
438 int regno;
439 int nregs;
441 enum machine_mode found_mode = VOIDmode, mode;
443 /* We first look for the largest integer mode that can be validly
444 held in REGNO. If none, we look for the largest floating-point mode.
445 If we still didn't find a valid mode, try CCmode. */
447 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
448 mode != VOIDmode;
449 mode = GET_MODE_WIDER_MODE (mode))
450 if (HARD_REGNO_NREGS (regno, mode) == nregs
451 && HARD_REGNO_MODE_OK (regno, mode))
452 found_mode = mode;
454 if (found_mode != VOIDmode)
455 return found_mode;
457 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
458 mode != VOIDmode;
459 mode = GET_MODE_WIDER_MODE (mode))
460 if (HARD_REGNO_NREGS (regno, mode) == nregs
461 && HARD_REGNO_MODE_OK (regno, mode))
462 found_mode = mode;
464 if (found_mode != VOIDmode)
465 return found_mode;
467 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
468 && HARD_REGNO_MODE_OK (regno, CCmode))
469 return CCmode;
471 /* We can't find a mode valid for this register. */
472 return VOIDmode;
475 /* Specify the usage characteristics of the register named NAME.
476 It should be a fixed register if FIXED and a
477 call-used register if CALL_USED. */
479 void
480 fix_register (name, fixed, call_used)
481 char *name;
482 int fixed, call_used;
484 int i;
486 if (output_bytecode)
488 warning ("request to mark `%s' as %s ignored by bytecode compiler",
489 name, call_used ? "call-used" : "fixed");
490 return;
493 /* Decode the name and update the primary form of
494 the register info. */
496 if ((i = decode_reg_name (name)) >= 0)
498 fixed_regs[i] = fixed;
499 call_used_regs[i] = call_used;
501 else
503 warning ("unknown register name: %s", name);
507 /* Mark register number I as global. */
509 void
510 globalize_reg (i)
511 int i;
513 if (global_regs[i])
515 warning ("register used for two global register variables");
516 return;
519 if (call_used_regs[i] && ! fixed_regs[i])
520 warning ("call-clobbered register used for global register variable");
522 global_regs[i] = 1;
524 /* If already fixed, nothing else to do. */
525 if (fixed_regs[i])
526 return;
528 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
529 n_non_fixed_regs--;
531 SET_HARD_REG_BIT (fixed_reg_set, i);
532 SET_HARD_REG_BIT (call_used_reg_set, i);
533 SET_HARD_REG_BIT (call_fixed_reg_set, i);
536 /* Now the data and code for the `regclass' pass, which happens
537 just before local-alloc. */
539 /* The `costs' struct records the cost of using a hard register of each class
540 and of using memory for each pseudo. We use this data to set up
541 register class preferences. */
543 struct costs
545 int cost[N_REG_CLASSES];
546 int mem_cost;
549 /* Record the cost of each class for each pseudo. */
551 static struct costs *costs;
553 /* Record the same data by operand number, accumulated for each alternative
554 in an insn. The contribution to a pseudo is that of the minimum-cost
555 alternative. */
557 static struct costs op_costs[MAX_RECOG_OPERANDS];
559 /* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
560 This is available after `regclass' is run. */
562 static char *prefclass;
564 /* altclass[R] is a register class that we should use for allocating
565 pseudo number R if no register in the preferred class is available.
566 If no register in this class is available, memory is preferred.
568 It might appear to be more general to have a bitmask of classes here,
569 but since it is recommended that there be a class corresponding to the
570 union of most major pair of classes, that generality is not required.
572 This is available after `regclass' is run. */
574 static char *altclass;
576 /* Record the depth of loops that we are in. */
578 static int loop_depth;
580 /* Account for the fact that insns within a loop are executed very commonly,
581 but don't keep doing this as loops go too deep. */
583 static int loop_cost;
585 static void record_reg_classes PROTO((int, int, rtx *, enum machine_mode *,
586 char **, rtx));
587 static int copy_cost PROTO((rtx, enum machine_mode,
588 enum reg_class, int));
589 static void record_address_regs PROTO((rtx, enum reg_class, int));
590 static auto_inc_dec_reg_p PROTO((rtx, enum machine_mode));
591 static void reg_scan_mark_refs PROTO((rtx, rtx, int));
593 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
594 This function is sometimes called before the info has been computed.
595 When that happens, just return GENERAL_REGS, which is innocuous. */
597 enum reg_class
598 reg_preferred_class (regno)
599 int regno;
601 if (prefclass == 0)
602 return GENERAL_REGS;
603 return (enum reg_class) prefclass[regno];
606 enum reg_class
607 reg_alternate_class (regno)
609 if (prefclass == 0)
610 return ALL_REGS;
612 return (enum reg_class) altclass[regno];
615 /* This prevents dump_flow_info from losing if called
616 before regclass is run. */
618 void
619 regclass_init ()
621 prefclass = 0;
624 /* This is a pass of the compiler that scans all instructions
625 and calculates the preferred class for each pseudo-register.
626 This information can be accessed later by calling `reg_preferred_class'.
627 This pass comes just before local register allocation. */
629 void
630 regclass (f, nregs)
631 rtx f;
632 int nregs;
634 #ifdef REGISTER_CONSTRAINTS
635 register rtx insn;
636 register int i, j;
637 struct costs init_cost;
638 rtx set;
639 int pass;
641 init_recog ();
643 costs = (struct costs *) alloca (nregs * sizeof (struct costs));
645 #ifdef FORBIDDEN_INC_DEC_CLASSES
647 in_inc_dec = (char *) alloca (nregs);
649 /* Initialize information about which register classes can be used for
650 pseudos that are auto-incremented or auto-decremented. It would
651 seem better to put this in init_reg_sets, but we need to be able
652 to allocate rtx, which we can't do that early. */
654 for (i = 0; i < N_REG_CLASSES; i++)
656 rtx r = gen_rtx (REG, VOIDmode, 0);
657 enum machine_mode m;
659 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
660 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
662 REGNO (r) = j;
664 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
665 m = (enum machine_mode) ((int) m + 1))
666 if (HARD_REGNO_MODE_OK (j, m))
668 PUT_MODE (r, m);
670 /* If a register is not directly suitable for an
671 auto-increment or decrement addressing mode and
672 requires secondary reloads, disallow its class from
673 being used in such addresses. */
675 if ((0
676 #ifdef SECONDARY_RELOAD_CLASS
677 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
678 != NO_REGS)
679 #else
680 #ifdef SECONDARY_INPUT_RELOAD_CLASS
681 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
682 != NO_REGS)
683 #endif
684 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
685 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
686 != NO_REGS)
687 #endif
688 #endif
690 && ! auto_inc_dec_reg_p (r, m))
691 forbidden_inc_dec_class[i] = 1;
695 #endif /* FORBIDDEN_INC_DEC_CLASSES */
697 init_cost.mem_cost = 10000;
698 for (i = 0; i < N_REG_CLASSES; i++)
699 init_cost.cost[i] = 10000;
701 /* Normally we scan the insns once and determine the best class to use for
702 each register. However, if -fexpensive_optimizations are on, we do so
703 twice, the second time using the tentative best classes to guide the
704 selection. */
706 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
708 /* Zero out our accumulation of the cost of each class for each reg. */
710 bzero ((char *) costs, nregs * sizeof (struct costs));
712 #ifdef FORBIDDEN_INC_DEC_CLASSES
713 bzero (in_inc_dec, nregs);
714 #endif
716 loop_depth = 0, loop_cost = 1;
718 /* Scan the instructions and record each time it would
719 save code to put a certain register in a certain class. */
721 for (insn = f; insn; insn = NEXT_INSN (insn))
723 char *constraints[MAX_RECOG_OPERANDS];
724 enum machine_mode modes[MAX_RECOG_OPERANDS];
725 int nalternatives;
726 int noperands;
728 /* Show that an insn inside a loop is likely to be executed three
729 times more than insns outside a loop. This is much more aggressive
730 than the assumptions made elsewhere and is being tried as an
731 experiment. */
733 if (GET_CODE (insn) == NOTE
734 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
735 loop_depth++, loop_cost = 1 << (2 * MIN (loop_depth, 5));
736 else if (GET_CODE (insn) == NOTE
737 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
738 loop_depth--, loop_cost = 1 << (2 * MIN (loop_depth, 5));
740 else if ((GET_CODE (insn) == INSN
741 && GET_CODE (PATTERN (insn)) != USE
742 && GET_CODE (PATTERN (insn)) != CLOBBER
743 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
744 || (GET_CODE (insn) == JUMP_INSN
745 && GET_CODE (PATTERN (insn)) != ADDR_VEC
746 && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
747 || GET_CODE (insn) == CALL_INSN)
749 if (GET_CODE (insn) == INSN
750 && (noperands = asm_noperands (PATTERN (insn))) >= 0)
752 decode_asm_operands (PATTERN (insn), recog_operand, NULL_PTR,
753 constraints, modes);
754 nalternatives = (noperands == 0 ? 0
755 : n_occurrences (',', constraints[0]) + 1);
757 else
759 int insn_code_number = recog_memoized (insn);
760 rtx note;
762 set = single_set (insn);
763 insn_extract (insn);
765 nalternatives = insn_n_alternatives[insn_code_number];
766 noperands = insn_n_operands[insn_code_number];
768 /* If this insn loads a parameter from its stack slot, then
769 it represents a savings, rather than a cost, if the
770 parameter is stored in memory. Record this fact. */
772 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
773 && GET_CODE (SET_SRC (set)) == MEM
774 && (note = find_reg_note (insn, REG_EQUIV,
775 NULL_RTX)) != 0
776 && GET_CODE (XEXP (note, 0)) == MEM)
778 costs[REGNO (SET_DEST (set))].mem_cost
779 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)))
780 * loop_cost);
781 record_address_regs (XEXP (SET_SRC (set), 0),
782 BASE_REG_CLASS, loop_cost * 2);
783 continue;
786 /* Improve handling of two-address insns such as
787 (set X (ashift CONST Y)) where CONST must be made to
788 match X. Change it into two insns: (set X CONST)
789 (set X (ashift X Y)). If we left this for reloading, it
790 would probably get three insns because X and Y might go
791 in the same place. This prevents X and Y from receiving
792 the same hard reg.
794 We can only do this if the modes of operands 0 and 1
795 (which might not be the same) are tieable and we only need
796 do this during our first pass. */
798 if (pass == 0 && optimize
799 && noperands >= 3
800 && insn_operand_constraint[insn_code_number][1][0] == '0'
801 && insn_operand_constraint[insn_code_number][1][1] == 0
802 && CONSTANT_P (recog_operand[1])
803 && ! rtx_equal_p (recog_operand[0], recog_operand[1])
804 && ! rtx_equal_p (recog_operand[0], recog_operand[2])
805 && GET_CODE (recog_operand[0]) == REG
806 && MODES_TIEABLE_P (GET_MODE (recog_operand[0]),
807 insn_operand_mode[insn_code_number][1]))
809 rtx previnsn = prev_real_insn (insn);
810 rtx dest
811 = gen_lowpart (insn_operand_mode[insn_code_number][1],
812 recog_operand[0]);
813 rtx newinsn
814 = emit_insn_before (gen_move_insn (dest,
815 recog_operand[1]),
816 insn);
818 /* If this insn was the start of a basic block,
819 include the new insn in that block.
820 We need not check for code_label here;
821 while a basic block can start with a code_label,
822 INSN could not be at the beginning of that block. */
823 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
825 int b;
826 for (b = 0; b < n_basic_blocks; b++)
827 if (insn == basic_block_head[b])
828 basic_block_head[b] = newinsn;
831 /* This makes one more setting of new insns's dest. */
832 REG_N_SETS (REGNO (recog_operand[0]))++;
834 *recog_operand_loc[1] = recog_operand[0];
835 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
836 if (recog_dup_num[i] == 1)
837 *recog_dup_loc[i] = recog_operand[0];
839 insn = PREV_INSN (newinsn);
840 continue;
843 for (i = 0; i < noperands; i++)
845 constraints[i]
846 = insn_operand_constraint[insn_code_number][i];
847 modes[i] = insn_operand_mode[insn_code_number][i];
851 /* If we get here, we are set up to record the costs of all the
852 operands for this insn. Start by initializing the costs.
853 Then handle any address registers. Finally record the desired
854 classes for any pseudos, doing it twice if some pair of
855 operands are commutative. */
857 for (i = 0; i < noperands; i++)
859 op_costs[i] = init_cost;
861 if (GET_CODE (recog_operand[i]) == SUBREG)
862 recog_operand[i] = SUBREG_REG (recog_operand[i]);
864 if (GET_CODE (recog_operand[i]) == MEM)
865 record_address_regs (XEXP (recog_operand[i], 0),
866 BASE_REG_CLASS, loop_cost * 2);
867 else if (constraints[i][0] == 'p')
868 record_address_regs (recog_operand[i],
869 BASE_REG_CLASS, loop_cost * 2);
872 /* Check for commutative in a separate loop so everything will
873 have been initialized. We must do this even if one operand
874 is a constant--see addsi3 in m68k.md. */
876 for (i = 0; i < noperands - 1; i++)
877 if (constraints[i][0] == '%')
879 char *xconstraints[MAX_RECOG_OPERANDS];
880 int j;
882 /* Handle commutative operands by swapping the constraints.
883 We assume the modes are the same. */
885 for (j = 0; j < noperands; j++)
886 xconstraints[j] = constraints[j];
888 xconstraints[i] = constraints[i+1];
889 xconstraints[i+1] = constraints[i];
890 record_reg_classes (nalternatives, noperands,
891 recog_operand, modes, xconstraints,
892 insn);
895 record_reg_classes (nalternatives, noperands, recog_operand,
896 modes, constraints, insn);
898 /* Now add the cost for each operand to the total costs for
899 its register. */
901 for (i = 0; i < noperands; i++)
902 if (GET_CODE (recog_operand[i]) == REG
903 && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
905 int regno = REGNO (recog_operand[i]);
906 struct costs *p = &costs[regno], *q = &op_costs[i];
908 p->mem_cost += q->mem_cost * loop_cost;
909 for (j = 0; j < N_REG_CLASSES; j++)
910 p->cost[j] += q->cost[j] * loop_cost;
915 /* Now for each register look at how desirable each class is
916 and find which class is preferred. Store that in
917 `prefclass[REGNO]'. Record in `altclass[REGNO]' the largest register
918 class any of whose registers is better than memory. */
920 if (pass == 0)
922 prefclass = (char *) oballoc (nregs);
923 altclass = (char *) oballoc (nregs);
926 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
928 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
929 enum reg_class best = ALL_REGS, alt = NO_REGS;
930 /* This is an enum reg_class, but we call it an int
931 to save lots of casts. */
932 register int class;
933 register struct costs *p = &costs[i];
935 for (class = (int) ALL_REGS - 1; class > 0; class--)
937 /* Ignore classes that are too small for this operand or
938 invalid for a operand that was auto-incremented. */
939 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
940 > reg_class_size[class]
941 #ifdef FORBIDDEN_INC_DEC_CLASSES
942 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
943 #endif
946 else if (p->cost[class] < best_cost)
948 best_cost = p->cost[class];
949 best = (enum reg_class) class;
951 else if (p->cost[class] == best_cost)
952 best = reg_class_subunion[(int)best][class];
955 /* Record the alternate register class; i.e., a class for which
956 every register in it is better than using memory. If adding a
957 class would make a smaller class (i.e., no union of just those
958 classes exists), skip that class. The major unions of classes
959 should be provided as a register class. Don't do this if we
960 will be doing it again later. */
962 if (pass == 1 || ! flag_expensive_optimizations)
963 for (class = 0; class < N_REG_CLASSES; class++)
964 if (p->cost[class] < p->mem_cost
965 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
966 > reg_class_size[(int) alt])
967 #ifdef FORBIDDEN_INC_DEC_CLASSES
968 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
969 #endif
971 alt = reg_class_subunion[(int) alt][class];
973 /* If we don't add any classes, nothing to try. */
974 if (alt == best)
975 alt = NO_REGS;
977 /* We cast to (int) because (char) hits bugs in some compilers. */
978 prefclass[i] = (int) best;
979 altclass[i] = (int) alt;
982 #endif /* REGISTER_CONSTRAINTS */
985 #ifdef REGISTER_CONSTRAINTS
987 /* Record the cost of using memory or registers of various classes for
988 the operands in INSN.
990 N_ALTS is the number of alternatives.
992 N_OPS is the number of operands.
994 OPS is an array of the operands.
996 MODES are the modes of the operands, in case any are VOIDmode.
998 CONSTRAINTS are the constraints to use for the operands. This array
999 is modified by this procedure.
1001 This procedure works alternative by alternative. For each alternative
1002 we assume that we will be able to allocate all pseudos to their ideal
1003 register class and calculate the cost of using that alternative. Then
1004 we compute for each operand that is a pseudo-register, the cost of
1005 having the pseudo allocated to each register class and using it in that
1006 alternative. To this cost is added the cost of the alternative.
1008 The cost of each class for this insn is its lowest cost among all the
1009 alternatives. */
1011 static void
1012 record_reg_classes (n_alts, n_ops, ops, modes, constraints, insn)
1013 int n_alts;
1014 int n_ops;
1015 rtx *ops;
1016 enum machine_mode *modes;
1017 char **constraints;
1018 rtx insn;
1020 int alt;
1021 enum op_type {OP_READ, OP_WRITE, OP_READ_WRITE} op_types[MAX_RECOG_OPERANDS];
1022 int i, j;
1023 rtx set;
1025 /* By default, each operand is an input operand. */
1027 for (i = 0; i < n_ops; i++)
1028 op_types[i] = OP_READ;
1030 /* Process each alternative, each time minimizing an operand's cost with
1031 the cost for each operand in that alternative. */
1033 for (alt = 0; alt < n_alts; alt++)
1035 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1036 int alt_fail = 0;
1037 int alt_cost = 0;
1038 enum reg_class classes[MAX_RECOG_OPERANDS];
1039 int class;
1041 for (i = 0; i < n_ops; i++)
1043 char *p = constraints[i];
1044 rtx op = ops[i];
1045 enum machine_mode mode = modes[i];
1046 int allows_mem = 0;
1047 int win = 0;
1048 char c;
1050 /* If this operand has no constraints at all, we can conclude
1051 nothing about it since anything is valid. */
1053 if (*p == 0)
1055 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1056 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
1058 continue;
1061 if (*p == '%')
1062 p++;
1064 /* If this alternative is only relevant when this operand
1065 matches a previous operand, we do different things depending
1066 on whether this operand is a pseudo-reg or not. */
1068 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1070 j = p[0] - '0';
1071 classes[i] = classes[j];
1073 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1075 /* If this matches the other operand, we have no added
1076 cost and we win. */
1077 if (rtx_equal_p (ops[j], op))
1078 win = 1;
1080 /* If we can put the other operand into a register, add to
1081 the cost of this alternative the cost to copy this
1082 operand to the register used for the other operand. */
1084 else if (classes[j] != NO_REGS)
1085 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1087 else if (GET_CODE (ops[j]) != REG
1088 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1090 /* This op is a pseudo but the one it matches is not. */
1092 /* If we can't put the other operand into a register, this
1093 alternative can't be used. */
1095 if (classes[j] == NO_REGS)
1096 alt_fail = 1;
1098 /* Otherwise, add to the cost of this alternative the cost
1099 to copy the other operand to the register used for this
1100 operand. */
1102 else
1103 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1105 else
1107 /* The costs of this operand are the same as that of the
1108 other operand. However, if we cannot tie them, this
1109 alternative needs to do a copy, which is one
1110 instruction. */
1112 this_op_costs[i] = this_op_costs[j];
1113 if (REGNO (ops[i]) != REGNO (ops[j])
1114 && ! find_reg_note (insn, REG_DEAD, op))
1115 alt_cost += 2;
1117 /* This is in place of ordinary cost computation
1118 for this operand, so skip to the end of the
1119 alternative (should be just one character). */
1120 while (*p && *p++ != ',')
1123 constraints[i] = p;
1124 continue;
1128 /* Scan all the constraint letters. See if the operand matches
1129 any of the constraints. Collect the valid register classes
1130 and see if this operand accepts memory. */
1132 classes[i] = NO_REGS;
1133 while (*p && (c = *p++) != ',')
1134 switch (c)
1136 case '=':
1137 op_types[i] = OP_WRITE;
1138 break;
1140 case '+':
1141 op_types[i] = OP_READ_WRITE;
1142 break;
1144 case '*':
1145 /* Ignore the next letter for this pass. */
1146 p++;
1147 break;
1149 case '%':
1150 case '?': case '!': case '#':
1151 case '&':
1152 case '0': case '1': case '2': case '3': case '4':
1153 case 'p':
1154 break;
1156 case 'm': case 'o': case 'V':
1157 /* It doesn't seem worth distinguishing between offsettable
1158 and non-offsettable addresses here. */
1159 allows_mem = 1;
1160 if (GET_CODE (op) == MEM)
1161 win = 1;
1162 break;
1164 case '<':
1165 if (GET_CODE (op) == MEM
1166 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1167 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1168 win = 1;
1169 break;
1171 case '>':
1172 if (GET_CODE (op) == MEM
1173 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1174 || GET_CODE (XEXP (op, 0)) == POST_INC))
1175 win = 1;
1176 break;
1178 case 'E':
1179 #ifndef REAL_ARITHMETIC
1180 /* Match any floating double constant, but only if
1181 we can examine the bits of it reliably. */
1182 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1183 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1184 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1185 break;
1186 #endif
1187 if (GET_CODE (op) == CONST_DOUBLE)
1188 win = 1;
1189 break;
1191 case 'F':
1192 if (GET_CODE (op) == CONST_DOUBLE)
1193 win = 1;
1194 break;
1196 case 'G':
1197 case 'H':
1198 if (GET_CODE (op) == CONST_DOUBLE
1199 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1200 win = 1;
1201 break;
1203 case 's':
1204 if (GET_CODE (op) == CONST_INT
1205 || (GET_CODE (op) == CONST_DOUBLE
1206 && GET_MODE (op) == VOIDmode))
1207 break;
1208 case 'i':
1209 if (CONSTANT_P (op)
1210 #ifdef LEGITIMATE_PIC_OPERAND_P
1211 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1212 #endif
1214 win = 1;
1215 break;
1217 case 'n':
1218 if (GET_CODE (op) == CONST_INT
1219 || (GET_CODE (op) == CONST_DOUBLE
1220 && GET_MODE (op) == VOIDmode))
1221 win = 1;
1222 break;
1224 case 'I':
1225 case 'J':
1226 case 'K':
1227 case 'L':
1228 case 'M':
1229 case 'N':
1230 case 'O':
1231 case 'P':
1232 if (GET_CODE (op) == CONST_INT
1233 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1234 win = 1;
1235 break;
1237 case 'X':
1238 win = 1;
1239 break;
1241 #ifdef EXTRA_CONSTRAINT
1242 case 'Q':
1243 case 'R':
1244 case 'S':
1245 case 'T':
1246 case 'U':
1247 if (EXTRA_CONSTRAINT (op, c))
1248 win = 1;
1249 break;
1250 #endif
1252 case 'g':
1253 if (GET_CODE (op) == MEM
1254 || (CONSTANT_P (op)
1255 #ifdef LEGITIMATE_PIC_OPERAND_P
1256 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1257 #endif
1259 win = 1;
1260 allows_mem = 1;
1261 case 'r':
1262 classes[i]
1263 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1264 break;
1266 default:
1267 classes[i]
1268 = reg_class_subunion[(int) classes[i]]
1269 [(int) REG_CLASS_FROM_LETTER (c)];
1272 constraints[i] = p;
1274 /* How we account for this operand now depends on whether it is a
1275 pseudo register or not. If it is, we first check if any
1276 register classes are valid. If not, we ignore this alternative,
1277 since we want to assume that all pseudos get allocated for
1278 register preferencing. If some register class is valid, compute
1279 the costs of moving the pseudo into that class. */
1281 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1283 if (classes[i] == NO_REGS)
1284 alt_fail = 1;
1285 else
1287 struct costs *pp = &this_op_costs[i];
1289 for (class = 0; class < N_REG_CLASSES; class++)
1290 pp->cost[class] = may_move_cost[class][(int) classes[i]];
1292 /* If the alternative actually allows memory, make things
1293 a bit cheaper since we won't need an extra insn to
1294 load it. */
1296 pp->mem_cost = MEMORY_MOVE_COST (mode) - allows_mem;
1298 /* If we have assigned a class to this register in our
1299 first pass, add a cost to this alternative corresponding
1300 to what we would add if this register were not in the
1301 appropriate class. */
1303 if (prefclass)
1304 alt_cost
1305 += may_move_cost[prefclass[REGNO (op)]][(int) classes[i]];
1309 /* Otherwise, if this alternative wins, either because we
1310 have already determined that or if we have a hard register of
1311 the proper class, there is no cost for this alternative. */
1313 else if (win
1314 || (GET_CODE (op) == REG
1315 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1318 /* If registers are valid, the cost of this alternative includes
1319 copying the object to and/or from a register. */
1321 else if (classes[i] != NO_REGS)
1323 if (op_types[i] != OP_WRITE)
1324 alt_cost += copy_cost (op, mode, classes[i], 1);
1326 if (op_types[i] != OP_READ)
1327 alt_cost += copy_cost (op, mode, classes[i], 0);
1330 /* The only other way this alternative can be used is if this is a
1331 constant that could be placed into memory. */
1333 else if (CONSTANT_P (op) && allows_mem)
1334 alt_cost += MEMORY_MOVE_COST (mode);
1335 else
1336 alt_fail = 1;
1339 if (alt_fail)
1340 continue;
1342 /* Finally, update the costs with the information we've calculated
1343 about this alternative. */
1345 for (i = 0; i < n_ops; i++)
1346 if (GET_CODE (ops[i]) == REG
1347 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1349 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1350 int scale = 1 + (op_types[i] == OP_READ_WRITE);
1352 pp->mem_cost = MIN (pp->mem_cost,
1353 (qq->mem_cost + alt_cost) * scale);
1355 for (class = 0; class < N_REG_CLASSES; class++)
1356 pp->cost[class] = MIN (pp->cost[class],
1357 (qq->cost[class] + alt_cost) * scale);
1361 /* If this insn is a single set copying operand 1 to operand 0
1362 and one is a pseudo with the other a hard reg that is in its
1363 own register class, set the cost of that register class to -1. */
1365 if ((set = single_set (insn)) != 0
1366 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1367 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG)
1368 for (i = 0; i <= 1; i++)
1369 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1371 int regno = REGNO (ops[!i]);
1372 enum machine_mode mode = GET_MODE (ops[!i]);
1373 int class;
1374 int nr;
1376 if (regno >= FIRST_PSEUDO_REGISTER && prefclass != 0
1377 && (reg_class_size[prefclass[regno]]
1378 == CLASS_MAX_NREGS (prefclass[regno], mode)))
1379 op_costs[i].cost[prefclass[regno]] = -1;
1380 else if (regno < FIRST_PSEUDO_REGISTER)
1381 for (class = 0; class < N_REG_CLASSES; class++)
1382 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1383 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1385 if (reg_class_size[class] == 1)
1386 op_costs[i].cost[class] = -1;
1387 else
1389 for (nr = 0; nr < HARD_REGNO_NREGS(regno, mode); nr++)
1391 if (!TEST_HARD_REG_BIT (reg_class_contents[class], regno + nr))
1392 break;
1395 if (nr == HARD_REGNO_NREGS(regno,mode))
1396 op_costs[i].cost[class] = -1;
1402 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1403 TO_P is zero) a register of class CLASS in mode MODE.
1405 X must not be a pseudo. */
1407 static int
1408 copy_cost (x, mode, class, to_p)
1409 rtx x;
1410 enum machine_mode mode;
1411 enum reg_class class;
1412 int to_p;
1414 enum reg_class secondary_class = NO_REGS;
1416 /* If X is a SCRATCH, there is actually nothing to move since we are
1417 assuming optimal allocation. */
1419 if (GET_CODE (x) == SCRATCH)
1420 return 0;
1422 /* Get the class we will actually use for a reload. */
1423 class = PREFERRED_RELOAD_CLASS (x, class);
1425 #ifdef HAVE_SECONDARY_RELOADS
1426 /* If we need a secondary reload (we assume here that we are using
1427 the secondary reload as an intermediate, not a scratch register), the
1428 cost is that to load the input into the intermediate register, then
1429 to copy them. We use a special value of TO_P to avoid recursion. */
1431 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1432 if (to_p == 1)
1433 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1434 #endif
1436 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1437 if (! to_p)
1438 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1439 #endif
1441 if (secondary_class != NO_REGS)
1442 return (move_cost[(int) secondary_class][(int) class]
1443 + copy_cost (x, mode, secondary_class, 2));
1444 #endif /* HAVE_SECONDARY_RELOADS */
1446 /* For memory, use the memory move cost, for (hard) registers, use the
1447 cost to move between the register classes, and use 2 for everything
1448 else (constants). */
1450 if (GET_CODE (x) == MEM || class == NO_REGS)
1451 return MEMORY_MOVE_COST (mode);
1453 else if (GET_CODE (x) == REG)
1454 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1456 else
1457 /* If this is a constant, we may eventually want to call rtx_cost here. */
1458 return 2;
1461 /* Record the pseudo registers we must reload into hard registers
1462 in a subexpression of a memory address, X.
1464 CLASS is the class that the register needs to be in and is either
1465 BASE_REG_CLASS or INDEX_REG_CLASS.
1467 SCALE is twice the amount to multiply the cost by (it is twice so we
1468 can represent half-cost adjustments). */
1470 static void
1471 record_address_regs (x, class, scale)
1472 rtx x;
1473 enum reg_class class;
1474 int scale;
1476 register enum rtx_code code = GET_CODE (x);
1478 switch (code)
1480 case CONST_INT:
1481 case CONST:
1482 case CC0:
1483 case PC:
1484 case SYMBOL_REF:
1485 case LABEL_REF:
1486 return;
1488 case PLUS:
1489 /* When we have an address that is a sum,
1490 we must determine whether registers are "base" or "index" regs.
1491 If there is a sum of two registers, we must choose one to be
1492 the "base". Luckily, we can use the REGNO_POINTER_FLAG
1493 to make a good choice most of the time. We only need to do this
1494 on machines that can have two registers in an address and where
1495 the base and index register classes are different.
1497 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1498 that seems bogus since it should only be set when we are sure
1499 the register is being used as a pointer. */
1502 rtx arg0 = XEXP (x, 0);
1503 rtx arg1 = XEXP (x, 1);
1504 register enum rtx_code code0 = GET_CODE (arg0);
1505 register enum rtx_code code1 = GET_CODE (arg1);
1507 /* Look inside subregs. */
1508 if (code0 == SUBREG)
1509 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1510 if (code1 == SUBREG)
1511 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1513 /* If this machine only allows one register per address, it must
1514 be in the first operand. */
1516 if (MAX_REGS_PER_ADDRESS == 1)
1517 record_address_regs (arg0, class, scale);
1519 /* If index and base registers are the same on this machine, just
1520 record registers in any non-constant operands. We assume here,
1521 as well as in the tests below, that all addresses are in
1522 canonical form. */
1524 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1526 record_address_regs (arg0, class, scale);
1527 if (! CONSTANT_P (arg1))
1528 record_address_regs (arg1, class, scale);
1531 /* If the second operand is a constant integer, it doesn't change
1532 what class the first operand must be. */
1534 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1535 record_address_regs (arg0, class, scale);
1537 /* If the second operand is a symbolic constant, the first operand
1538 must be an index register. */
1540 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1541 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1543 /* If one operand is known to be a pointer, it must be the base
1544 with the other operand the index. Likewise if the other operand
1545 is a MULT. */
1547 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1548 || code1 == MULT)
1550 record_address_regs (arg0, BASE_REG_CLASS, scale);
1551 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1553 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1554 || code0 == MULT)
1556 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1557 record_address_regs (arg1, BASE_REG_CLASS, scale);
1560 /* Otherwise, count equal chances that each might be a base
1561 or index register. This case should be rare. */
1563 else
1565 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1566 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1567 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1568 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1571 break;
1573 case POST_INC:
1574 case PRE_INC:
1575 case POST_DEC:
1576 case PRE_DEC:
1577 /* Double the importance of a pseudo register that is incremented
1578 or decremented, since it would take two extra insns
1579 if it ends up in the wrong place. If the operand is a pseudo,
1580 show it is being used in an INC_DEC context. */
1582 #ifdef FORBIDDEN_INC_DEC_CLASSES
1583 if (GET_CODE (XEXP (x, 0)) == REG
1584 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1585 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1586 #endif
1588 record_address_regs (XEXP (x, 0), class, 2 * scale);
1589 break;
1591 case REG:
1593 register struct costs *pp = &costs[REGNO (x)];
1594 register int i;
1596 pp->mem_cost += (MEMORY_MOVE_COST (Pmode) * scale) / 2;
1598 for (i = 0; i < N_REG_CLASSES; i++)
1599 pp->cost[i] += (may_move_cost[i][(int) class] * scale) / 2;
1601 break;
1603 default:
1605 register char *fmt = GET_RTX_FORMAT (code);
1606 register int i;
1607 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1608 if (fmt[i] == 'e')
1609 record_address_regs (XEXP (x, i), class, scale);
1614 #ifdef FORBIDDEN_INC_DEC_CLASSES
1616 /* Return 1 if REG is valid as an auto-increment memory reference
1617 to an object of MODE. */
1619 static
1620 auto_inc_dec_reg_p (reg, mode)
1621 rtx reg;
1622 enum machine_mode mode;
1624 #ifdef HAVE_POST_INCREMENT
1625 if (memory_address_p (mode, gen_rtx (POST_INC, Pmode, reg)))
1626 return 1;
1627 #endif
1629 #ifdef HAVE_POST_DECREMENT
1630 if (memory_address_p (mode, gen_rtx (POST_DEC, Pmode, reg)))
1631 return 1;
1632 #endif
1634 #ifdef HAVE_PRE_INCREMENT
1635 if (memory_address_p (mode, gen_rtx (PRE_INC, Pmode, reg)))
1636 return 1;
1637 #endif
1639 #ifdef HAVE_PRE_DECREMENT
1640 if (memory_address_p (mode, gen_rtx (PRE_DEC, Pmode, reg)))
1641 return 1;
1642 #endif
1644 return 0;
1646 #endif
1648 #endif /* REGISTER_CONSTRAINTS */
1650 /* Allocate enough space to hold NUM_REGS registers for the tables used for
1651 reg_scan and flow_analysis that are indexed by the register number. If
1652 NEW_P is non zero, initialize all of the registers, otherwise only
1653 initialize the new registers allocated. The same table is kept from
1654 function to function, only reallocating it when we need more room. If
1655 RENUMBER_P is non zero, allocate the reg_renumber array also. */
1657 void
1658 allocate_reg_info (num_regs, new_p, renumber_p)
1659 int num_regs;
1660 int new_p;
1661 int renumber_p;
1663 static int regno_allocated = 0;
1664 static int regno_max = 0;
1665 static short *renumber = (short *)0;
1666 int i;
1667 int size_info;
1668 int size_renumber;
1669 int min = (new_p) ? 0 : regno_max;
1671 /* If this message come up, and you want to fix it, then all of the tables
1672 like reg_renumber, etc. that use short will have to be found and lengthed
1673 to int or HOST_WIDE_INT. */
1675 /* Free up all storage allocated */
1676 if (num_regs < 0)
1678 if (reg_n_info)
1680 free ((char *)reg_n_info);
1681 free ((char *)renumber);
1682 reg_n_info = (reg_info *)0;
1683 renumber = (short *)0;
1685 regno_allocated = 0;
1686 regno_max = 0;
1687 return;
1690 if (num_regs > regno_allocated)
1692 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
1693 size_info = regno_allocated * sizeof (reg_info);
1694 size_renumber = regno_allocated * sizeof (short);
1696 if (!reg_n_info)
1698 reg_n_info = (reg_info *) xmalloc (size_info);
1699 renumber = (short *) xmalloc (size_renumber);
1702 else if (new_p) /* if we're zapping everything, no need to realloc */
1704 free ((char *)reg_n_info);
1705 free ((char *)renumber);
1706 reg_n_info = (reg_info *) xmalloc (size_info);
1707 renumber = (short *) xmalloc (size_renumber);
1710 else
1712 reg_n_info = (reg_info *) xrealloc ((char *)reg_n_info, size_info);
1713 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
1717 if (min < num_regs)
1719 bzero ((char *) &reg_n_info[min], (num_regs - min) * sizeof (reg_info));
1720 for (i = min; i < num_regs; i++)
1722 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1723 renumber[i] = -1;
1727 if (renumber_p)
1728 reg_renumber = renumber;
1730 /* Tell the regset code about the new number of registers */
1731 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
1733 regno_max = num_regs;
1737 /* This is the `regscan' pass of the compiler, run just before cse
1738 and again just before loop.
1740 It finds the first and last use of each pseudo-register
1741 and records them in the vectors regno_first_uid, regno_last_uid
1742 and counts the number of sets in the vector reg_n_sets.
1744 REPEAT is nonzero the second time this is called. */
1746 /* Maximum number of parallel sets and clobbers in any insn in this fn.
1747 Always at least 3, since the combiner could put that many together
1748 and we want this to remain correct for all the remaining passes. */
1750 int max_parallel;
1752 void
1753 reg_scan (f, nregs, repeat)
1754 rtx f;
1755 int nregs;
1756 int repeat;
1758 register rtx insn;
1760 allocate_reg_info (nregs, TRUE, FALSE);
1761 max_parallel = 3;
1763 for (insn = f; insn; insn = NEXT_INSN (insn))
1764 if (GET_CODE (insn) == INSN
1765 || GET_CODE (insn) == CALL_INSN
1766 || GET_CODE (insn) == JUMP_INSN)
1768 if (GET_CODE (PATTERN (insn)) == PARALLEL
1769 && XVECLEN (PATTERN (insn), 0) > max_parallel)
1770 max_parallel = XVECLEN (PATTERN (insn), 0);
1771 reg_scan_mark_refs (PATTERN (insn), insn, 0);
1773 if (REG_NOTES (insn))
1774 reg_scan_mark_refs (REG_NOTES (insn), insn, 1);
1778 /* X is the expression to scan. INSN is the insn it appears in.
1779 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body. */
1781 static void
1782 reg_scan_mark_refs (x, insn, note_flag)
1783 rtx x;
1784 rtx insn;
1785 int note_flag;
1787 register enum rtx_code code = GET_CODE (x);
1788 register rtx dest;
1789 register rtx note;
1791 switch (code)
1793 case CONST_INT:
1794 case CONST:
1795 case CONST_DOUBLE:
1796 case CC0:
1797 case PC:
1798 case SYMBOL_REF:
1799 case LABEL_REF:
1800 case ADDR_VEC:
1801 case ADDR_DIFF_VEC:
1802 return;
1804 case REG:
1806 register int regno = REGNO (x);
1808 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
1809 if (!note_flag)
1810 REGNO_LAST_UID (regno) = INSN_UID (insn);
1811 if (REGNO_FIRST_UID (regno) == 0)
1812 REGNO_FIRST_UID (regno) = INSN_UID (insn);
1814 break;
1816 case EXPR_LIST:
1817 if (XEXP (x, 0))
1818 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag);
1819 if (XEXP (x, 1))
1820 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
1821 break;
1823 case INSN_LIST:
1824 if (XEXP (x, 1))
1825 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
1826 break;
1828 case SET:
1829 /* Count a set of the destination if it is a register. */
1830 for (dest = SET_DEST (x);
1831 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1832 || GET_CODE (dest) == ZERO_EXTEND;
1833 dest = XEXP (dest, 0))
1836 if (GET_CODE (dest) == REG)
1837 REG_N_SETS (REGNO (dest))++;
1839 /* If this is setting a pseudo from another pseudo or the sum of a
1840 pseudo and a constant integer and the other pseudo is known to be
1841 a pointer, set the destination to be a pointer as well.
1843 Likewise if it is setting the destination from an address or from a
1844 value equivalent to an address or to the sum of an address and
1845 something else.
1847 But don't do any of this if the pseudo corresponds to a user
1848 variable since it should have already been set as a pointer based
1849 on the type. */
1851 if (GET_CODE (SET_DEST (x)) == REG
1852 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1853 && ! REG_USERVAR_P (SET_DEST (x))
1854 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
1855 && ((GET_CODE (SET_SRC (x)) == REG
1856 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
1857 || ((GET_CODE (SET_SRC (x)) == PLUS
1858 || GET_CODE (SET_SRC (x)) == LO_SUM)
1859 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1860 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
1861 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
1862 || GET_CODE (SET_SRC (x)) == CONST
1863 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1864 || GET_CODE (SET_SRC (x)) == LABEL_REF
1865 || (GET_CODE (SET_SRC (x)) == HIGH
1866 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1867 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1868 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1869 || ((GET_CODE (SET_SRC (x)) == PLUS
1870 || GET_CODE (SET_SRC (x)) == LO_SUM)
1871 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1872 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1873 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1874 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1875 && (GET_CODE (XEXP (note, 0)) == CONST
1876 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1877 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1878 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
1880 /* ... fall through ... */
1882 default:
1884 register char *fmt = GET_RTX_FORMAT (code);
1885 register int i;
1886 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1888 if (fmt[i] == 'e')
1889 reg_scan_mark_refs (XEXP (x, i), insn, note_flag);
1890 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1892 register int j;
1893 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1894 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag);
1901 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1902 is also in C2. */
1905 reg_class_subset_p (c1, c2)
1906 register enum reg_class c1;
1907 register enum reg_class c2;
1909 if (c1 == c2) return 1;
1911 if (c2 == ALL_REGS)
1912 win:
1913 return 1;
1914 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
1915 reg_class_contents[(int)c2],
1916 win);
1917 return 0;
1920 /* Return nonzero if there is a register that is in both C1 and C2. */
1923 reg_classes_intersect_p (c1, c2)
1924 register enum reg_class c1;
1925 register enum reg_class c2;
1927 #ifdef HARD_REG_SET
1928 register
1929 #endif
1930 HARD_REG_SET c;
1932 if (c1 == c2) return 1;
1934 if (c1 == ALL_REGS || c2 == ALL_REGS)
1935 return 1;
1937 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
1938 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
1940 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
1941 return 1;
1943 lose:
1944 return 0;
1947 /* Release any memory allocated by register sets. */
1949 void
1950 regset_release_memory ()
1952 if (basic_block_live_at_start)
1954 free_regset_vector (basic_block_live_at_start, n_basic_blocks);
1955 basic_block_live_at_start = 0;
1958 FREE_REG_SET (regs_live_at_setjmp);
1959 bitmap_release_memory ();