* except.c (expand_start_catch_block): We only need the rethrow
[official-gcc.git] / gcc / dwarfout.c
blob21f78b5661f71319759a90bacfe6017de76b5f56
1 /* Output Dwarf format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997 Free Software Foundation, Inc.
3 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
24 #ifdef DWARF_DEBUGGING_INFO
25 #include <stdio.h>
26 #include "dwarf.h"
27 #include "tree.h"
28 #include "flags.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "reload.h"
33 #include "output.h"
34 #include "defaults.h"
36 #if defined(DWARF_TIMESTAMPS)
37 #if defined(POSIX)
38 #include <time.h>
39 #else /* !defined(POSIX) */
40 #include <sys/types.h>
41 #if defined(__STDC__)
42 extern time_t time (time_t *);
43 #else /* !defined(__STDC__) */
44 extern time_t time ();
45 #endif /* !defined(__STDC__) */
46 #endif /* !defined(POSIX) */
47 #endif /* defined(DWARF_TIMESTAMPS) */
49 extern char *getpwd ();
51 extern char *index ();
52 extern char *rindex ();
54 /* IMPORTANT NOTE: Please see the file README.DWARF for important details
55 regarding the GNU implementation of Dwarf. */
57 /* NOTE: In the comments in this file, many references are made to
58 so called "Debugging Information Entries". For the sake of brevity,
59 this term is abbreviated to `DIE' throughout the remainder of this
60 file. */
62 /* Note that the implementation of C++ support herein is (as yet) unfinished.
63 If you want to try to complete it, more power to you. */
65 #if !defined(__GNUC__) || (NDEBUG != 1)
66 #define inline
67 #endif
69 /* How to start an assembler comment. */
70 #ifndef ASM_COMMENT_START
71 #define ASM_COMMENT_START ";#"
72 #endif
74 /* How to print out a register name. */
75 #ifndef PRINT_REG
76 #define PRINT_REG(RTX, CODE, FILE) \
77 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
78 #endif
80 /* Define a macro which returns non-zero for any tagged type which is
81 used (directly or indirectly) in the specification of either some
82 function's return type or some formal parameter of some function.
83 We use this macro when we are operating in "terse" mode to help us
84 know what tagged types have to be represented in Dwarf (even in
85 terse mode) and which ones don't.
87 A flag bit with this meaning really should be a part of the normal
88 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
89 for these nodes. For now, we have to just fake it. It it safe for
90 us to simply return zero for all complete tagged types (which will
91 get forced out anyway if they were used in the specification of some
92 formal or return type) and non-zero for all incomplete tagged types.
95 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
97 /* Define a macro which returns non-zero for a TYPE_DECL which was
98 implicitly generated for a tagged type.
100 Note that unlike the gcc front end (which generates a NULL named
101 TYPE_DECL node for each complete tagged type, each array type, and
102 each function type node created) the g++ front end generates a
103 _named_ TYPE_DECL node for each tagged type node created.
104 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
105 generate a DW_TAG_typedef DIE for them. */
106 #define TYPE_DECL_IS_STUB(decl) \
107 (DECL_NAME (decl) == NULL \
108 || (DECL_ARTIFICIAL (decl) \
109 && is_tagged_type (TREE_TYPE (decl)) \
110 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
112 extern int flag_traditional;
113 extern char *version_string;
114 extern char *language_string;
116 /* Maximum size (in bytes) of an artificially generated label. */
118 #define MAX_ARTIFICIAL_LABEL_BYTES 30
120 /* Make sure we know the sizes of the various types dwarf can describe.
121 These are only defaults. If the sizes are different for your target,
122 you should override these values by defining the appropriate symbols
123 in your tm.h file. */
125 #ifndef CHAR_TYPE_SIZE
126 #define CHAR_TYPE_SIZE BITS_PER_UNIT
127 #endif
129 #ifndef SHORT_TYPE_SIZE
130 #define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
131 #endif
133 #ifndef INT_TYPE_SIZE
134 #define INT_TYPE_SIZE BITS_PER_WORD
135 #endif
137 #ifndef LONG_TYPE_SIZE
138 #define LONG_TYPE_SIZE BITS_PER_WORD
139 #endif
141 #ifndef LONG_LONG_TYPE_SIZE
142 #define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
143 #endif
145 #ifndef WCHAR_TYPE_SIZE
146 #define WCHAR_TYPE_SIZE INT_TYPE_SIZE
147 #endif
149 #ifndef WCHAR_UNSIGNED
150 #define WCHAR_UNSIGNED 0
151 #endif
153 #ifndef FLOAT_TYPE_SIZE
154 #define FLOAT_TYPE_SIZE BITS_PER_WORD
155 #endif
157 #ifndef DOUBLE_TYPE_SIZE
158 #define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
159 #endif
161 #ifndef LONG_DOUBLE_TYPE_SIZE
162 #define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
163 #endif
165 /* Structure to keep track of source filenames. */
167 struct filename_entry {
168 unsigned number;
169 char * name;
172 typedef struct filename_entry filename_entry;
174 /* Pointer to an array of elements, each one having the structure above. */
176 static filename_entry *filename_table;
178 /* Total number of entries in the table (i.e. array) pointed to by
179 `filename_table'. This is the *total* and includes both used and
180 unused slots. */
182 static unsigned ft_entries_allocated;
184 /* Number of entries in the filename_table which are actually in use. */
186 static unsigned ft_entries;
188 /* Size (in elements) of increments by which we may expand the filename
189 table. Actually, a single hunk of space of this size should be enough
190 for most typical programs. */
192 #define FT_ENTRIES_INCREMENT 64
194 /* Local pointer to the name of the main input file. Initialized in
195 dwarfout_init. */
197 static char *primary_filename;
199 /* Pointer to the most recent filename for which we produced some line info. */
201 static char *last_filename;
203 /* For Dwarf output, we must assign lexical-blocks id numbers
204 in the order in which their beginnings are encountered.
205 We output Dwarf debugging info that refers to the beginnings
206 and ends of the ranges of code for each lexical block with
207 assembler labels ..Bn and ..Bn.e, where n is the block number.
208 The labels themselves are generated in final.c, which assigns
209 numbers to the blocks in the same way. */
211 static unsigned next_block_number = 2;
213 /* Counter to generate unique names for DIEs. */
215 static unsigned next_unused_dienum = 1;
217 /* Number of the DIE which is currently being generated. */
219 static unsigned current_dienum;
221 /* Number to use for the special "pubname" label on the next DIE which
222 represents a function or data object defined in this compilation
223 unit which has "extern" linkage. */
225 static next_pubname_number = 0;
227 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
229 /* Pointer to a dynamically allocated list of pre-reserved and still
230 pending sibling DIE numbers. Note that this list will grow as needed. */
232 static unsigned *pending_sibling_stack;
234 /* Counter to keep track of the number of pre-reserved and still pending
235 sibling DIE numbers. */
237 static unsigned pending_siblings;
239 /* The currently allocated size of the above list (expressed in number of
240 list elements). */
242 static unsigned pending_siblings_allocated;
244 /* Size (in elements) of increments by which we may expand the pending
245 sibling stack. Actually, a single hunk of space of this size should
246 be enough for most typical programs. */
248 #define PENDING_SIBLINGS_INCREMENT 64
250 /* Non-zero if we are performing our file-scope finalization pass and if
251 we should force out Dwarf descriptions of any and all file-scope
252 tagged types which are still incomplete types. */
254 static int finalizing = 0;
256 /* A pointer to the base of a list of pending types which we haven't
257 generated DIEs for yet, but which we will have to come back to
258 later on. */
260 static tree *pending_types_list;
262 /* Number of elements currently allocated for the pending_types_list. */
264 static unsigned pending_types_allocated;
266 /* Number of elements of pending_types_list currently in use. */
268 static unsigned pending_types;
270 /* Size (in elements) of increments by which we may expand the pending
271 types list. Actually, a single hunk of space of this size should
272 be enough for most typical programs. */
274 #define PENDING_TYPES_INCREMENT 64
276 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
277 This is used in a hack to help us get the DIEs describing types of
278 formal parameters to come *after* all of the DIEs describing the formal
279 parameters themselves. That's necessary in order to be compatible
280 with what the brain-damaged svr4 SDB debugger requires. */
282 static tree fake_containing_scope;
284 /* The number of the current function definition that we are generating
285 debugging information for. These numbers range from 1 up to the maximum
286 number of function definitions contained within the current compilation
287 unit. These numbers are used to create unique labels for various things
288 contained within various function definitions. */
290 static unsigned current_funcdef_number = 1;
292 /* A pointer to the ..._DECL node which we have most recently been working
293 on. We keep this around just in case something about it looks screwy
294 and we want to tell the user what the source coordinates for the actual
295 declaration are. */
297 static tree dwarf_last_decl;
299 /* A flag indicating that we are emitting the member declarations of a
300 class, so member functions and variables should not be entirely emitted.
301 This is a kludge to avoid passing a second argument to output_*_die. */
303 static int in_class;
305 /* Forward declarations for functions defined in this file. */
307 static char *dwarf_tag_name PROTO((unsigned));
308 static char *dwarf_attr_name PROTO((unsigned));
309 static char *dwarf_stack_op_name PROTO((unsigned));
310 static char *dwarf_typemod_name PROTO((unsigned));
311 static char *dwarf_fmt_byte_name PROTO((unsigned));
312 static char *dwarf_fund_type_name PROTO((unsigned));
313 static tree decl_ultimate_origin PROTO((tree));
314 static tree block_ultimate_origin PROTO((tree));
315 static void output_unsigned_leb128 PROTO((unsigned long));
316 static void output_signed_leb128 PROTO((long));
317 static inline int is_body_block PROTO((tree));
318 static int fundamental_type_code PROTO((tree));
319 static tree root_type_1 PROTO((tree, int));
320 static tree root_type PROTO((tree));
321 static void write_modifier_bytes_1 PROTO((tree, int, int, int));
322 static void write_modifier_bytes PROTO((tree, int, int));
323 static inline int type_is_fundamental PROTO((tree));
324 static void equate_decl_number_to_die_number PROTO((tree));
325 static inline void equate_type_number_to_die_number PROTO((tree));
326 static void output_reg_number PROTO((rtx));
327 static void output_mem_loc_descriptor PROTO((rtx));
328 static void output_loc_descriptor PROTO((rtx));
329 static void output_bound_representation PROTO((tree, unsigned, int));
330 static void output_enumeral_list PROTO((tree));
331 static inline unsigned ceiling PROTO((unsigned, unsigned));
332 static inline tree field_type PROTO((tree));
333 static inline unsigned simple_type_align_in_bits PROTO((tree));
334 static inline unsigned simple_type_size_in_bits PROTO((tree));
335 static unsigned field_byte_offset PROTO((tree));
336 static inline void sibling_attribute PROTO((void));
337 static void location_attribute PROTO((rtx));
338 static void data_member_location_attribute PROTO((tree));
339 static void const_value_attribute PROTO((rtx));
340 static void location_or_const_value_attribute PROTO((tree));
341 static inline void name_attribute PROTO((char *));
342 static inline void fund_type_attribute PROTO((unsigned));
343 static void mod_fund_type_attribute PROTO((tree, int, int));
344 static inline void user_def_type_attribute PROTO((tree));
345 static void mod_u_d_type_attribute PROTO((tree, int, int));
346 static inline void ordering_attribute PROTO((unsigned));
347 static void subscript_data_attribute PROTO((tree));
348 static void byte_size_attribute PROTO((tree));
349 static inline void bit_offset_attribute PROTO((tree));
350 static inline void bit_size_attribute PROTO((tree));
351 static inline void element_list_attribute PROTO((tree));
352 static inline void stmt_list_attribute PROTO((char *));
353 static inline void low_pc_attribute PROTO((char *));
354 static inline void high_pc_attribute PROTO((char *));
355 static inline void body_begin_attribute PROTO((char *));
356 static inline void body_end_attribute PROTO((char *));
357 static inline void langauge_attribute PROTO((unsigned));
358 static inline void member_attribute PROTO((tree));
359 static inline void string_length_attribute PROTO((tree));
360 static inline void comp_dir_attribute PROTO((char *));
361 static inline void sf_names_attribute PROTO((char *));
362 static inline void src_info_attribute PROTO((char *));
363 static inline void mac_info_attribute PROTO((char *));
364 static inline void prototyped_attribute PROTO((tree));
365 static inline void producer_attribute PROTO((char *));
366 static inline void inline_attribute PROTO((tree));
367 static inline void containing_type_attribute PROTO((tree));
368 static inline void abstract_origin_attribute PROTO((tree));
369 static inline void src_coords_attribute PROTO((unsigned, unsigned));
370 static inline void pure_or_virtual_attribute PROTO((tree));
371 static void name_and_src_coords_attributes PROTO((tree));
372 static void type_attribute PROTO((tree, int, int));
373 static char *type_tag PROTO((tree));
374 static inline void dienum_push PROTO((void));
375 static inline void dienum_pop PROTO((void));
376 static inline tree member_declared_type PROTO((tree));
377 static char *function_start_label PROTO((tree));
378 static void output_array_type_die PROTO((void *));
379 static void output_set_type_die PROTO((void *));
380 static void output_entry_point_die PROTO((void *));
381 static void output_inlined_enumeration_type_die PROTO((void *));
382 static void output_inlined_structure_type_die PROTO((void *));
383 static void output_inlined_union_type_die PROTO((void *));
384 static void output_enumeration_type_die PROTO((void *));
385 static void output_formal_parameter_die PROTO((void *));
386 static void output_global_subroutine_die PROTO((void *));
387 static void output_global_variable_die PROTO((void *));
388 static void output_label_die PROTO((void *));
389 static void output_lexical_block_die PROTO((void *));
390 static void output_inlined_subroutine_die PROTO((void *));
391 static void output_local_variable_die PROTO((void *));
392 static void output_member_die PROTO((void *));
393 static void output_pointer_type_die PROTO((void *));
394 static void output_reference_type_die PROTO((void *));
395 static void output_ptr_to_mbr_type_die PROTO((void *));
396 static void output_compile_unit_die PROTO((void *));
397 static void output_string_type_die PROTO((void *));
398 static void output_structure_type_die PROTO((void *));
399 static void output_local_subroutine_die PROTO((void *));
400 static void output_subroutine_type_die PROTO((void *));
401 static void output_typedef_die PROTO((void *));
402 static void output_union_type_die PROTO((void *));
403 static void output_unspecified_parameters_die PROTO((void *));
404 static void output_padded_null_die PROTO((void *));
405 static void output_die PROTO((void (*) (), void *));
406 static void end_sibling_chain PROTO((void));
407 static void output_formal_types PROTO((tree));
408 static void pend_type PROTO((tree));
409 static inline int type_of_for_scope PROTO((tree, tree));
410 static void output_pending_types_for_scope PROTO((tree));
411 static void output_type PROTO((tree, tree));
412 static void output_tagged_type_instantiation PROTO((tree));
413 static void output_block PROTO((tree, int));
414 static void output_decls_for_scope PROTO((tree, int));
415 static void output_decl PROTO((tree, tree));
416 static void shuffle_filename_entry PROTO((filename_entry *));
417 static void geneate_new_sfname_entry PROTO((void));
418 static unsigned lookup_filename PROTO((char *));
419 static void generate_srcinfo_entry PROTO((unsigned, unsigned));
420 static void generate_macinfo_entry PROTO((char *, char *));
422 /* Definitions of defaults for assembler-dependent names of various
423 pseudo-ops and section names.
425 Theses may be overridden in your tm.h file (if necessary) for your
426 particular assembler. The default values provided here correspond to
427 what is expected by "standard" AT&T System V.4 assemblers. */
429 #ifndef FILE_ASM_OP
430 #define FILE_ASM_OP ".file"
431 #endif
432 #ifndef VERSION_ASM_OP
433 #define VERSION_ASM_OP ".version"
434 #endif
435 #ifndef UNALIGNED_SHORT_ASM_OP
436 #define UNALIGNED_SHORT_ASM_OP ".2byte"
437 #endif
438 #ifndef UNALIGNED_INT_ASM_OP
439 #define UNALIGNED_INT_ASM_OP ".4byte"
440 #endif
441 #ifndef ASM_BYTE_OP
442 #define ASM_BYTE_OP ".byte"
443 #endif
444 #ifndef SET_ASM_OP
445 #define SET_ASM_OP ".set"
446 #endif
448 /* Pseudo-ops for pushing the current section onto the section stack (and
449 simultaneously changing to a new section) and for poping back to the
450 section we were in immediately before this one. Note that most svr4
451 assemblers only maintain a one level stack... you can push all the
452 sections you want, but you can only pop out one level. (The sparc
453 svr4 assembler is an exception to this general rule.) That's
454 OK because we only use at most one level of the section stack herein. */
456 #ifndef PUSHSECTION_ASM_OP
457 #define PUSHSECTION_ASM_OP ".section"
458 #endif
459 #ifndef POPSECTION_ASM_OP
460 #define POPSECTION_ASM_OP ".previous"
461 #endif
463 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
464 to print the PUSHSECTION_ASM_OP and the section name. The default here
465 works for almost all svr4 assemblers, except for the sparc, where the
466 section name must be enclosed in double quotes. (See sparcv4.h.) */
468 #ifndef PUSHSECTION_FORMAT
469 #define PUSHSECTION_FORMAT "\t%s\t%s\n"
470 #endif
472 #ifndef DEBUG_SECTION
473 #define DEBUG_SECTION ".debug"
474 #endif
475 #ifndef LINE_SECTION
476 #define LINE_SECTION ".line"
477 #endif
478 #ifndef SFNAMES_SECTION
479 #define SFNAMES_SECTION ".debug_sfnames"
480 #endif
481 #ifndef SRCINFO_SECTION
482 #define SRCINFO_SECTION ".debug_srcinfo"
483 #endif
484 #ifndef MACINFO_SECTION
485 #define MACINFO_SECTION ".debug_macinfo"
486 #endif
487 #ifndef PUBNAMES_SECTION
488 #define PUBNAMES_SECTION ".debug_pubnames"
489 #endif
490 #ifndef ARANGES_SECTION
491 #define ARANGES_SECTION ".debug_aranges"
492 #endif
493 #ifndef TEXT_SECTION
494 #define TEXT_SECTION ".text"
495 #endif
496 #ifndef DATA_SECTION
497 #define DATA_SECTION ".data"
498 #endif
499 #ifndef DATA1_SECTION
500 #define DATA1_SECTION ".data1"
501 #endif
502 #ifndef RODATA_SECTION
503 #define RODATA_SECTION ".rodata"
504 #endif
505 #ifndef RODATA1_SECTION
506 #define RODATA1_SECTION ".rodata1"
507 #endif
508 #ifndef BSS_SECTION
509 #define BSS_SECTION ".bss"
510 #endif
512 /* Definitions of defaults for formats and names of various special
513 (artificial) labels which may be generated within this file (when
514 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
516 If necessary, these may be overridden from within your tm.h file,
517 but typically, you should never need to override these.
519 These labels have been hacked (temporarily) so that they all begin with
520 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
521 stock m88k/svr4 assembler, both of which need to see .L at the start of
522 a label in order to prevent that label from going into the linker symbol
523 table). When I get time, I'll have to fix this the right way so that we
524 will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
525 but that will require a rather massive set of changes. For the moment,
526 the following definitions out to produce the right results for all svr4
527 and svr3 assemblers. -- rfg
530 #ifndef TEXT_BEGIN_LABEL
531 #define TEXT_BEGIN_LABEL "*.L_text_b"
532 #endif
533 #ifndef TEXT_END_LABEL
534 #define TEXT_END_LABEL "*.L_text_e"
535 #endif
537 #ifndef DATA_BEGIN_LABEL
538 #define DATA_BEGIN_LABEL "*.L_data_b"
539 #endif
540 #ifndef DATA_END_LABEL
541 #define DATA_END_LABEL "*.L_data_e"
542 #endif
544 #ifndef DATA1_BEGIN_LABEL
545 #define DATA1_BEGIN_LABEL "*.L_data1_b"
546 #endif
547 #ifndef DATA1_END_LABEL
548 #define DATA1_END_LABEL "*.L_data1_e"
549 #endif
551 #ifndef RODATA_BEGIN_LABEL
552 #define RODATA_BEGIN_LABEL "*.L_rodata_b"
553 #endif
554 #ifndef RODATA_END_LABEL
555 #define RODATA_END_LABEL "*.L_rodata_e"
556 #endif
558 #ifndef RODATA1_BEGIN_LABEL
559 #define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
560 #endif
561 #ifndef RODATA1_END_LABEL
562 #define RODATA1_END_LABEL "*.L_rodata1_e"
563 #endif
565 #ifndef BSS_BEGIN_LABEL
566 #define BSS_BEGIN_LABEL "*.L_bss_b"
567 #endif
568 #ifndef BSS_END_LABEL
569 #define BSS_END_LABEL "*.L_bss_e"
570 #endif
572 #ifndef LINE_BEGIN_LABEL
573 #define LINE_BEGIN_LABEL "*.L_line_b"
574 #endif
575 #ifndef LINE_LAST_ENTRY_LABEL
576 #define LINE_LAST_ENTRY_LABEL "*.L_line_last"
577 #endif
578 #ifndef LINE_END_LABEL
579 #define LINE_END_LABEL "*.L_line_e"
580 #endif
582 #ifndef DEBUG_BEGIN_LABEL
583 #define DEBUG_BEGIN_LABEL "*.L_debug_b"
584 #endif
585 #ifndef SFNAMES_BEGIN_LABEL
586 #define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
587 #endif
588 #ifndef SRCINFO_BEGIN_LABEL
589 #define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
590 #endif
591 #ifndef MACINFO_BEGIN_LABEL
592 #define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
593 #endif
595 #ifndef DIE_BEGIN_LABEL_FMT
596 #define DIE_BEGIN_LABEL_FMT "*.L_D%u"
597 #endif
598 #ifndef DIE_END_LABEL_FMT
599 #define DIE_END_LABEL_FMT "*.L_D%u_e"
600 #endif
601 #ifndef PUB_DIE_LABEL_FMT
602 #define PUB_DIE_LABEL_FMT "*.L_P%u"
603 #endif
604 #ifndef INSN_LABEL_FMT
605 #define INSN_LABEL_FMT "*.L_I%u_%u"
606 #endif
607 #ifndef BLOCK_BEGIN_LABEL_FMT
608 #define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
609 #endif
610 #ifndef BLOCK_END_LABEL_FMT
611 #define BLOCK_END_LABEL_FMT "*.L_B%u_e"
612 #endif
613 #ifndef SS_BEGIN_LABEL_FMT
614 #define SS_BEGIN_LABEL_FMT "*.L_s%u"
615 #endif
616 #ifndef SS_END_LABEL_FMT
617 #define SS_END_LABEL_FMT "*.L_s%u_e"
618 #endif
619 #ifndef EE_BEGIN_LABEL_FMT
620 #define EE_BEGIN_LABEL_FMT "*.L_e%u"
621 #endif
622 #ifndef EE_END_LABEL_FMT
623 #define EE_END_LABEL_FMT "*.L_e%u_e"
624 #endif
625 #ifndef MT_BEGIN_LABEL_FMT
626 #define MT_BEGIN_LABEL_FMT "*.L_t%u"
627 #endif
628 #ifndef MT_END_LABEL_FMT
629 #define MT_END_LABEL_FMT "*.L_t%u_e"
630 #endif
631 #ifndef LOC_BEGIN_LABEL_FMT
632 #define LOC_BEGIN_LABEL_FMT "*.L_l%u"
633 #endif
634 #ifndef LOC_END_LABEL_FMT
635 #define LOC_END_LABEL_FMT "*.L_l%u_e"
636 #endif
637 #ifndef BOUND_BEGIN_LABEL_FMT
638 #define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
639 #endif
640 #ifndef BOUND_END_LABEL_FMT
641 #define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
642 #endif
643 #ifndef DERIV_BEGIN_LABEL_FMT
644 #define DERIV_BEGIN_LABEL_FMT "*.L_d%u"
645 #endif
646 #ifndef DERIV_END_LABEL_FMT
647 #define DERIV_END_LABEL_FMT "*.L_d%u_e"
648 #endif
649 #ifndef SL_BEGIN_LABEL_FMT
650 #define SL_BEGIN_LABEL_FMT "*.L_sl%u"
651 #endif
652 #ifndef SL_END_LABEL_FMT
653 #define SL_END_LABEL_FMT "*.L_sl%u_e"
654 #endif
655 #ifndef BODY_BEGIN_LABEL_FMT
656 #define BODY_BEGIN_LABEL_FMT "*.L_b%u"
657 #endif
658 #ifndef BODY_END_LABEL_FMT
659 #define BODY_END_LABEL_FMT "*.L_b%u_e"
660 #endif
661 #ifndef FUNC_END_LABEL_FMT
662 #define FUNC_END_LABEL_FMT "*.L_f%u_e"
663 #endif
664 #ifndef TYPE_NAME_FMT
665 #define TYPE_NAME_FMT "*.L_T%u"
666 #endif
667 #ifndef DECL_NAME_FMT
668 #define DECL_NAME_FMT "*.L_E%u"
669 #endif
670 #ifndef LINE_CODE_LABEL_FMT
671 #define LINE_CODE_LABEL_FMT "*.L_LC%u"
672 #endif
673 #ifndef SFNAMES_ENTRY_LABEL_FMT
674 #define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
675 #endif
676 #ifndef LINE_ENTRY_LABEL_FMT
677 #define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
678 #endif
680 /* Definitions of defaults for various types of primitive assembly language
681 output operations.
683 If necessary, these may be overridden from within your tm.h file,
684 but typically, you shouldn't need to override these. */
686 #ifndef ASM_OUTPUT_PUSH_SECTION
687 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
688 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
689 #endif
691 #ifndef ASM_OUTPUT_POP_SECTION
692 #define ASM_OUTPUT_POP_SECTION(FILE) \
693 fprintf ((FILE), "\t%s\n", POPSECTION_ASM_OP)
694 #endif
696 #ifndef ASM_OUTPUT_DWARF_DELTA2
697 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
698 do { fprintf ((FILE), "\t%s\t", UNALIGNED_SHORT_ASM_OP); \
699 assemble_name (FILE, LABEL1); \
700 fprintf (FILE, "-"); \
701 assemble_name (FILE, LABEL2); \
702 fprintf (FILE, "\n"); \
703 } while (0)
704 #endif
706 #ifndef ASM_OUTPUT_DWARF_DELTA4
707 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
708 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
709 assemble_name (FILE, LABEL1); \
710 fprintf (FILE, "-"); \
711 assemble_name (FILE, LABEL2); \
712 fprintf (FILE, "\n"); \
713 } while (0)
714 #endif
716 #ifndef ASM_OUTPUT_DWARF_TAG
717 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
718 do { \
719 fprintf ((FILE), "\t%s\t0x%x", \
720 UNALIGNED_SHORT_ASM_OP, (unsigned) TAG); \
721 if (flag_debug_asm) \
722 fprintf ((FILE), "\t%s %s", \
723 ASM_COMMENT_START, dwarf_tag_name (TAG)); \
724 fputc ('\n', (FILE)); \
725 } while (0)
726 #endif
728 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
729 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
730 do { \
731 fprintf ((FILE), "\t%s\t0x%x", \
732 UNALIGNED_SHORT_ASM_OP, (unsigned) ATTR); \
733 if (flag_debug_asm) \
734 fprintf ((FILE), "\t%s %s", \
735 ASM_COMMENT_START, dwarf_attr_name (ATTR)); \
736 fputc ('\n', (FILE)); \
737 } while (0)
738 #endif
740 #ifndef ASM_OUTPUT_DWARF_STACK_OP
741 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
742 do { \
743 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) OP); \
744 if (flag_debug_asm) \
745 fprintf ((FILE), "\t%s %s", \
746 ASM_COMMENT_START, dwarf_stack_op_name (OP)); \
747 fputc ('\n', (FILE)); \
748 } while (0)
749 #endif
751 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
752 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
753 do { \
754 fprintf ((FILE), "\t%s\t0x%x", \
755 UNALIGNED_SHORT_ASM_OP, (unsigned) FT); \
756 if (flag_debug_asm) \
757 fprintf ((FILE), "\t%s %s", \
758 ASM_COMMENT_START, dwarf_fund_type_name (FT)); \
759 fputc ('\n', (FILE)); \
760 } while (0)
761 #endif
763 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
764 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
765 do { \
766 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) FMT); \
767 if (flag_debug_asm) \
768 fprintf ((FILE), "\t%s %s", \
769 ASM_COMMENT_START, dwarf_fmt_byte_name (FMT)); \
770 fputc ('\n', (FILE)); \
771 } while (0)
772 #endif
774 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
775 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
776 do { \
777 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) MOD); \
778 if (flag_debug_asm) \
779 fprintf ((FILE), "\t%s %s", \
780 ASM_COMMENT_START, dwarf_typemod_name (MOD)); \
781 fputc ('\n', (FILE)); \
782 } while (0)
783 #endif
785 #ifndef ASM_OUTPUT_DWARF_ADDR
786 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
787 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
788 assemble_name (FILE, LABEL); \
789 fprintf (FILE, "\n"); \
790 } while (0)
791 #endif
793 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
794 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
795 do { \
796 fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
797 output_addr_const ((FILE), (RTX)); \
798 fputc ('\n', (FILE)); \
799 } while (0)
800 #endif
802 #ifndef ASM_OUTPUT_DWARF_REF
803 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
804 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
805 assemble_name (FILE, LABEL); \
806 fprintf (FILE, "\n"); \
807 } while (0)
808 #endif
810 #ifndef ASM_OUTPUT_DWARF_DATA1
811 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
812 fprintf ((FILE), "\t%s\t0x%x\n", ASM_BYTE_OP, VALUE)
813 #endif
815 #ifndef ASM_OUTPUT_DWARF_DATA2
816 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
817 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_SHORT_ASM_OP, (unsigned) VALUE)
818 #endif
820 #ifndef ASM_OUTPUT_DWARF_DATA4
821 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
822 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, (unsigned) VALUE)
823 #endif
825 #ifndef ASM_OUTPUT_DWARF_DATA8
826 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
827 do { \
828 if (WORDS_BIG_ENDIAN) \
830 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
831 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
833 else \
835 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
836 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
838 } while (0)
839 #endif
841 #ifndef ASM_OUTPUT_DWARF_STRING
842 #define ASM_OUTPUT_DWARF_STRING(FILE,P) \
843 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
844 #endif
846 /************************ general utility functions **************************/
848 inline int
849 is_pseudo_reg (rtl)
850 register rtx rtl;
852 return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
853 || ((GET_CODE (rtl) == SUBREG)
854 && (REGNO (XEXP (rtl, 0)) >= FIRST_PSEUDO_REGISTER)));
857 inline tree
858 type_main_variant (type)
859 register tree type;
861 type = TYPE_MAIN_VARIANT (type);
863 /* There really should be only one main variant among any group of variants
864 of a given type (and all of the MAIN_VARIANT values for all members of
865 the group should point to that one type) but sometimes the C front-end
866 messes this up for array types, so we work around that bug here. */
868 if (TREE_CODE (type) == ARRAY_TYPE)
870 while (type != TYPE_MAIN_VARIANT (type))
871 type = TYPE_MAIN_VARIANT (type);
874 return type;
877 /* Return non-zero if the given type node represents a tagged type. */
879 inline int
880 is_tagged_type (type)
881 register tree type;
883 register enum tree_code code = TREE_CODE (type);
885 return (code == RECORD_TYPE || code == UNION_TYPE
886 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
889 static char *
890 dwarf_tag_name (tag)
891 register unsigned tag;
893 switch (tag)
895 case TAG_padding: return "TAG_padding";
896 case TAG_array_type: return "TAG_array_type";
897 case TAG_class_type: return "TAG_class_type";
898 case TAG_entry_point: return "TAG_entry_point";
899 case TAG_enumeration_type: return "TAG_enumeration_type";
900 case TAG_formal_parameter: return "TAG_formal_parameter";
901 case TAG_global_subroutine: return "TAG_global_subroutine";
902 case TAG_global_variable: return "TAG_global_variable";
903 case TAG_label: return "TAG_label";
904 case TAG_lexical_block: return "TAG_lexical_block";
905 case TAG_local_variable: return "TAG_local_variable";
906 case TAG_member: return "TAG_member";
907 case TAG_pointer_type: return "TAG_pointer_type";
908 case TAG_reference_type: return "TAG_reference_type";
909 case TAG_compile_unit: return "TAG_compile_unit";
910 case TAG_string_type: return "TAG_string_type";
911 case TAG_structure_type: return "TAG_structure_type";
912 case TAG_subroutine: return "TAG_subroutine";
913 case TAG_subroutine_type: return "TAG_subroutine_type";
914 case TAG_typedef: return "TAG_typedef";
915 case TAG_union_type: return "TAG_union_type";
916 case TAG_unspecified_parameters: return "TAG_unspecified_parameters";
917 case TAG_variant: return "TAG_variant";
918 case TAG_common_block: return "TAG_common_block";
919 case TAG_common_inclusion: return "TAG_common_inclusion";
920 case TAG_inheritance: return "TAG_inheritance";
921 case TAG_inlined_subroutine: return "TAG_inlined_subroutine";
922 case TAG_module: return "TAG_module";
923 case TAG_ptr_to_member_type: return "TAG_ptr_to_member_type";
924 case TAG_set_type: return "TAG_set_type";
925 case TAG_subrange_type: return "TAG_subrange_type";
926 case TAG_with_stmt: return "TAG_with_stmt";
928 /* GNU extensions. */
930 case TAG_format_label: return "TAG_format_label";
931 case TAG_namelist: return "TAG_namelist";
932 case TAG_function_template: return "TAG_function_template";
933 case TAG_class_template: return "TAG_class_template";
935 default: return "TAG_<unknown>";
939 static char *
940 dwarf_attr_name (attr)
941 register unsigned attr;
943 switch (attr)
945 case AT_sibling: return "AT_sibling";
946 case AT_location: return "AT_location";
947 case AT_name: return "AT_name";
948 case AT_fund_type: return "AT_fund_type";
949 case AT_mod_fund_type: return "AT_mod_fund_type";
950 case AT_user_def_type: return "AT_user_def_type";
951 case AT_mod_u_d_type: return "AT_mod_u_d_type";
952 case AT_ordering: return "AT_ordering";
953 case AT_subscr_data: return "AT_subscr_data";
954 case AT_byte_size: return "AT_byte_size";
955 case AT_bit_offset: return "AT_bit_offset";
956 case AT_bit_size: return "AT_bit_size";
957 case AT_element_list: return "AT_element_list";
958 case AT_stmt_list: return "AT_stmt_list";
959 case AT_low_pc: return "AT_low_pc";
960 case AT_high_pc: return "AT_high_pc";
961 case AT_language: return "AT_language";
962 case AT_member: return "AT_member";
963 case AT_discr: return "AT_discr";
964 case AT_discr_value: return "AT_discr_value";
965 case AT_string_length: return "AT_string_length";
966 case AT_common_reference: return "AT_common_reference";
967 case AT_comp_dir: return "AT_comp_dir";
968 case AT_const_value_string: return "AT_const_value_string";
969 case AT_const_value_data2: return "AT_const_value_data2";
970 case AT_const_value_data4: return "AT_const_value_data4";
971 case AT_const_value_data8: return "AT_const_value_data8";
972 case AT_const_value_block2: return "AT_const_value_block2";
973 case AT_const_value_block4: return "AT_const_value_block4";
974 case AT_containing_type: return "AT_containing_type";
975 case AT_default_value_addr: return "AT_default_value_addr";
976 case AT_default_value_data2: return "AT_default_value_data2";
977 case AT_default_value_data4: return "AT_default_value_data4";
978 case AT_default_value_data8: return "AT_default_value_data8";
979 case AT_default_value_string: return "AT_default_value_string";
980 case AT_friends: return "AT_friends";
981 case AT_inline: return "AT_inline";
982 case AT_is_optional: return "AT_is_optional";
983 case AT_lower_bound_ref: return "AT_lower_bound_ref";
984 case AT_lower_bound_data2: return "AT_lower_bound_data2";
985 case AT_lower_bound_data4: return "AT_lower_bound_data4";
986 case AT_lower_bound_data8: return "AT_lower_bound_data8";
987 case AT_private: return "AT_private";
988 case AT_producer: return "AT_producer";
989 case AT_program: return "AT_program";
990 case AT_protected: return "AT_protected";
991 case AT_prototyped: return "AT_prototyped";
992 case AT_public: return "AT_public";
993 case AT_pure_virtual: return "AT_pure_virtual";
994 case AT_return_addr: return "AT_return_addr";
995 case AT_abstract_origin: return "AT_abstract_origin";
996 case AT_start_scope: return "AT_start_scope";
997 case AT_stride_size: return "AT_stride_size";
998 case AT_upper_bound_ref: return "AT_upper_bound_ref";
999 case AT_upper_bound_data2: return "AT_upper_bound_data2";
1000 case AT_upper_bound_data4: return "AT_upper_bound_data4";
1001 case AT_upper_bound_data8: return "AT_upper_bound_data8";
1002 case AT_virtual: return "AT_virtual";
1004 /* GNU extensions */
1006 case AT_sf_names: return "AT_sf_names";
1007 case AT_src_info: return "AT_src_info";
1008 case AT_mac_info: return "AT_mac_info";
1009 case AT_src_coords: return "AT_src_coords";
1010 case AT_body_begin: return "AT_body_begin";
1011 case AT_body_end: return "AT_body_end";
1013 default: return "AT_<unknown>";
1017 static char *
1018 dwarf_stack_op_name (op)
1019 register unsigned op;
1021 switch (op)
1023 case OP_REG: return "OP_REG";
1024 case OP_BASEREG: return "OP_BASEREG";
1025 case OP_ADDR: return "OP_ADDR";
1026 case OP_CONST: return "OP_CONST";
1027 case OP_DEREF2: return "OP_DEREF2";
1028 case OP_DEREF4: return "OP_DEREF4";
1029 case OP_ADD: return "OP_ADD";
1030 default: return "OP_<unknown>";
1034 static char *
1035 dwarf_typemod_name (mod)
1036 register unsigned mod;
1038 switch (mod)
1040 case MOD_pointer_to: return "MOD_pointer_to";
1041 case MOD_reference_to: return "MOD_reference_to";
1042 case MOD_const: return "MOD_const";
1043 case MOD_volatile: return "MOD_volatile";
1044 default: return "MOD_<unknown>";
1048 static char *
1049 dwarf_fmt_byte_name (fmt)
1050 register unsigned fmt;
1052 switch (fmt)
1054 case FMT_FT_C_C: return "FMT_FT_C_C";
1055 case FMT_FT_C_X: return "FMT_FT_C_X";
1056 case FMT_FT_X_C: return "FMT_FT_X_C";
1057 case FMT_FT_X_X: return "FMT_FT_X_X";
1058 case FMT_UT_C_C: return "FMT_UT_C_C";
1059 case FMT_UT_C_X: return "FMT_UT_C_X";
1060 case FMT_UT_X_C: return "FMT_UT_X_C";
1061 case FMT_UT_X_X: return "FMT_UT_X_X";
1062 case FMT_ET: return "FMT_ET";
1063 default: return "FMT_<unknown>";
1067 static char *
1068 dwarf_fund_type_name (ft)
1069 register unsigned ft;
1071 switch (ft)
1073 case FT_char: return "FT_char";
1074 case FT_signed_char: return "FT_signed_char";
1075 case FT_unsigned_char: return "FT_unsigned_char";
1076 case FT_short: return "FT_short";
1077 case FT_signed_short: return "FT_signed_short";
1078 case FT_unsigned_short: return "FT_unsigned_short";
1079 case FT_integer: return "FT_integer";
1080 case FT_signed_integer: return "FT_signed_integer";
1081 case FT_unsigned_integer: return "FT_unsigned_integer";
1082 case FT_long: return "FT_long";
1083 case FT_signed_long: return "FT_signed_long";
1084 case FT_unsigned_long: return "FT_unsigned_long";
1085 case FT_pointer: return "FT_pointer";
1086 case FT_float: return "FT_float";
1087 case FT_dbl_prec_float: return "FT_dbl_prec_float";
1088 case FT_ext_prec_float: return "FT_ext_prec_float";
1089 case FT_complex: return "FT_complex";
1090 case FT_dbl_prec_complex: return "FT_dbl_prec_complex";
1091 case FT_void: return "FT_void";
1092 case FT_boolean: return "FT_boolean";
1093 case FT_ext_prec_complex: return "FT_ext_prec_complex";
1094 case FT_label: return "FT_label";
1096 /* GNU extensions. */
1098 case FT_long_long: return "FT_long_long";
1099 case FT_signed_long_long: return "FT_signed_long_long";
1100 case FT_unsigned_long_long: return "FT_unsigned_long_long";
1102 case FT_int8: return "FT_int8";
1103 case FT_signed_int8: return "FT_signed_int8";
1104 case FT_unsigned_int8: return "FT_unsigned_int8";
1105 case FT_int16: return "FT_int16";
1106 case FT_signed_int16: return "FT_signed_int16";
1107 case FT_unsigned_int16: return "FT_unsigned_int16";
1108 case FT_int32: return "FT_int32";
1109 case FT_signed_int32: return "FT_signed_int32";
1110 case FT_unsigned_int32: return "FT_unsigned_int32";
1111 case FT_int64: return "FT_int64";
1112 case FT_signed_int64: return "FT_signed_int64";
1113 case FT_unsigned_int64: return "FT_unsigned_int64";
1115 case FT_real32: return "FT_real32";
1116 case FT_real64: return "FT_real64";
1117 case FT_real96: return "FT_real96";
1118 case FT_real128: return "FT_real128";
1120 default: return "FT_<unknown>";
1124 /* Determine the "ultimate origin" of a decl. The decl may be an
1125 inlined instance of an inlined instance of a decl which is local
1126 to an inline function, so we have to trace all of the way back
1127 through the origin chain to find out what sort of node actually
1128 served as the original seed for the given block. */
1130 static tree
1131 decl_ultimate_origin (decl)
1132 register tree decl;
1134 register tree immediate_origin = DECL_ABSTRACT_ORIGIN (decl);
1136 if (immediate_origin == NULL)
1137 return NULL;
1138 else
1140 register tree ret_val;
1141 register tree lookahead = immediate_origin;
1145 ret_val = lookahead;
1146 lookahead = DECL_ABSTRACT_ORIGIN (ret_val);
1148 while (lookahead != NULL && lookahead != ret_val);
1149 return ret_val;
1153 /* Determine the "ultimate origin" of a block. The block may be an
1154 inlined instance of an inlined instance of a block which is local
1155 to an inline function, so we have to trace all of the way back
1156 through the origin chain to find out what sort of node actually
1157 served as the original seed for the given block. */
1159 static tree
1160 block_ultimate_origin (block)
1161 register tree block;
1163 register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1165 if (immediate_origin == NULL)
1166 return NULL;
1167 else
1169 register tree ret_val;
1170 register tree lookahead = immediate_origin;
1174 ret_val = lookahead;
1175 lookahead = (TREE_CODE (ret_val) == BLOCK)
1176 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1177 : NULL;
1179 while (lookahead != NULL && lookahead != ret_val);
1180 return ret_val;
1184 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1185 of a virtual function may refer to a base class, so we check the 'this'
1186 parameter. */
1188 static tree
1189 decl_class_context (decl)
1190 tree decl;
1192 tree context = NULL_TREE;
1193 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
1194 context = DECL_CONTEXT (decl);
1195 else
1196 context = TYPE_MAIN_VARIANT
1197 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
1199 if (context && TREE_CODE_CLASS (TREE_CODE (context)) != 't')
1200 context = NULL_TREE;
1202 return context;
1205 static void
1206 output_unsigned_leb128 (value)
1207 register unsigned long value;
1209 register unsigned long orig_value = value;
1213 register unsigned byte = (value & 0x7f);
1215 value >>= 7;
1216 if (value != 0) /* more bytes to follow */
1217 byte |= 0x80;
1218 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1219 if (flag_debug_asm && value == 0)
1220 fprintf (asm_out_file, "\t%s ULEB128 number - value = %u",
1221 ASM_COMMENT_START, orig_value);
1222 fputc ('\n', asm_out_file);
1224 while (value != 0);
1227 static void
1228 output_signed_leb128 (value)
1229 register long value;
1231 register long orig_value = value;
1232 register int negative = (value < 0);
1233 register int more;
1237 register unsigned byte = (value & 0x7f);
1239 value >>= 7;
1240 if (negative)
1241 value |= 0xfe000000; /* manually sign extend */
1242 if (((value == 0) && ((byte & 0x40) == 0))
1243 || ((value == -1) && ((byte & 0x40) == 1)))
1244 more = 0;
1245 else
1247 byte |= 0x80;
1248 more = 1;
1250 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1251 if (flag_debug_asm && more == 0)
1252 fprintf (asm_out_file, "\t%s SLEB128 number - value = %d",
1253 ASM_COMMENT_START, orig_value);
1254 fputc ('\n', asm_out_file);
1256 while (more);
1259 /**************** utility functions for attribute functions ******************/
1261 /* Given a pointer to a BLOCK node return non-zero if (and only if) the
1262 node in question represents the outermost pair of curly braces (i.e.
1263 the "body block") of a function or method.
1265 For any BLOCK node representing a "body block" of a function or method,
1266 the BLOCK_SUPERCONTEXT of the node will point to another BLOCK node
1267 which represents the outermost (function) scope for the function or
1268 method (i.e. the one which includes the formal parameters). The
1269 BLOCK_SUPERCONTEXT of *that* node in turn will point to the relevant
1270 FUNCTION_DECL node.
1273 static inline int
1274 is_body_block (stmt)
1275 register tree stmt;
1277 if (TREE_CODE (stmt) == BLOCK)
1279 register tree parent = BLOCK_SUPERCONTEXT (stmt);
1281 if (TREE_CODE (parent) == BLOCK)
1283 register tree grandparent = BLOCK_SUPERCONTEXT (parent);
1285 if (TREE_CODE (grandparent) == FUNCTION_DECL)
1286 return 1;
1289 return 0;
1292 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1293 type code for the given type.
1295 This routine must only be called for GCC type nodes that correspond to
1296 Dwarf fundamental types.
1298 The current Dwarf draft specification calls for Dwarf fundamental types
1299 to accurately reflect the fact that a given type was either a "plain"
1300 integral type or an explicitly "signed" integral type. Unfortunately,
1301 we can't always do this, because GCC may already have thrown away the
1302 information about the precise way in which the type was originally
1303 specified, as in:
1305 typedef signed int my_type;
1307 struct s { my_type f; };
1309 Since we may be stuck here without enought information to do exactly
1310 what is called for in the Dwarf draft specification, we do the best
1311 that we can under the circumstances and always use the "plain" integral
1312 fundamental type codes for int, short, and long types. That's probably
1313 good enough. The additional accuracy called for in the current DWARF
1314 draft specification is probably never even useful in practice. */
1316 static int
1317 fundamental_type_code (type)
1318 register tree type;
1320 if (TREE_CODE (type) == ERROR_MARK)
1321 return 0;
1323 switch (TREE_CODE (type))
1325 case ERROR_MARK:
1326 return FT_void;
1328 case VOID_TYPE:
1329 return FT_void;
1331 case INTEGER_TYPE:
1332 /* Carefully distinguish all the standard types of C,
1333 without messing up if the language is not C.
1334 Note that we check only for the names that contain spaces;
1335 other names might occur by coincidence in other languages. */
1336 if (TYPE_NAME (type) != 0
1337 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1338 && DECL_NAME (TYPE_NAME (type)) != 0
1339 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1341 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1343 if (!strcmp (name, "unsigned char"))
1344 return FT_unsigned_char;
1345 if (!strcmp (name, "signed char"))
1346 return FT_signed_char;
1347 if (!strcmp (name, "unsigned int"))
1348 return FT_unsigned_integer;
1349 if (!strcmp (name, "short int"))
1350 return FT_short;
1351 if (!strcmp (name, "short unsigned int"))
1352 return FT_unsigned_short;
1353 if (!strcmp (name, "long int"))
1354 return FT_long;
1355 if (!strcmp (name, "long unsigned int"))
1356 return FT_unsigned_long;
1357 if (!strcmp (name, "long long int"))
1358 return FT_long_long; /* Not grok'ed by svr4 SDB */
1359 if (!strcmp (name, "long long unsigned int"))
1360 return FT_unsigned_long_long; /* Not grok'ed by svr4 SDB */
1363 /* Most integer types will be sorted out above, however, for the
1364 sake of special `array index' integer types, the following code
1365 is also provided. */
1367 if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1368 return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1370 if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1371 return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1373 if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1374 return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1376 if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1377 return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1379 if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1380 return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1382 abort ();
1384 case REAL_TYPE:
1385 /* Carefully distinguish all the standard types of C,
1386 without messing up if the language is not C. */
1387 if (TYPE_NAME (type) != 0
1388 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1389 && DECL_NAME (TYPE_NAME (type)) != 0
1390 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1392 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1394 /* Note that here we can run afowl of a serious bug in "classic"
1395 svr4 SDB debuggers. They don't seem to understand the
1396 FT_ext_prec_float type (even though they should). */
1398 if (!strcmp (name, "long double"))
1399 return FT_ext_prec_float;
1402 if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
1403 return FT_dbl_prec_float;
1404 if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1405 return FT_float;
1407 /* Note that here we can run afowl of a serious bug in "classic"
1408 svr4 SDB debuggers. They don't seem to understand the
1409 FT_ext_prec_float type (even though they should). */
1411 if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1412 return FT_ext_prec_float;
1413 abort ();
1415 case COMPLEX_TYPE:
1416 return FT_complex; /* GNU FORTRAN COMPLEX type. */
1418 case CHAR_TYPE:
1419 return FT_char; /* GNU Pascal CHAR type. Not used in C. */
1421 case BOOLEAN_TYPE:
1422 return FT_boolean; /* GNU FORTRAN BOOLEAN type. */
1424 default:
1425 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1427 return 0;
1430 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1431 the Dwarf "root" type for the given input type. The Dwarf "root" type
1432 of a given type is generally the same as the given type, except that if
1433 the given type is a pointer or reference type, then the root type of
1434 the given type is the root type of the "basis" type for the pointer or
1435 reference type. (This definition of the "root" type is recursive.)
1436 Also, the root type of a `const' qualified type or a `volatile'
1437 qualified type is the root type of the given type without the
1438 qualifiers. */
1440 static tree
1441 root_type_1 (type, count)
1442 register tree type;
1443 register int count;
1445 /* Give up after searching 1000 levels, in case this is a recursive
1446 pointer type. Such types are possible in Ada, but it is not possible
1447 to represent them in DWARF1 debug info. */
1448 if (count > 1000)
1449 return error_mark_node;
1451 switch (TREE_CODE (type))
1453 case ERROR_MARK:
1454 return error_mark_node;
1456 case POINTER_TYPE:
1457 case REFERENCE_TYPE:
1458 return root_type_1 (TREE_TYPE (type), count+1);
1460 default:
1461 return type;
1465 static tree
1466 root_type (type)
1467 register tree type;
1469 type = root_type_1 (type, 0);
1470 if (type != error_mark_node)
1471 type = type_main_variant (type);
1472 return type;
1475 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1476 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1478 static void
1479 write_modifier_bytes_1 (type, decl_const, decl_volatile, count)
1480 register tree type;
1481 register int decl_const;
1482 register int decl_volatile;
1483 register int count;
1485 if (TREE_CODE (type) == ERROR_MARK)
1486 return;
1488 /* Give up after searching 1000 levels, in case this is a recursive
1489 pointer type. Such types are possible in Ada, but it is not possible
1490 to represent them in DWARF1 debug info. */
1491 if (count > 1000)
1492 return;
1494 if (TYPE_READONLY (type) || decl_const)
1495 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1496 if (TYPE_VOLATILE (type) || decl_volatile)
1497 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1498 switch (TREE_CODE (type))
1500 case POINTER_TYPE:
1501 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
1502 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1503 return;
1505 case REFERENCE_TYPE:
1506 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
1507 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1508 return;
1510 case ERROR_MARK:
1511 default:
1512 return;
1516 static void
1517 write_modifier_bytes (type, decl_const, decl_volatile)
1518 register tree type;
1519 register int decl_const;
1520 register int decl_volatile;
1522 write_modifier_bytes_1 (type, decl_const, decl_volatile, 0);
1525 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
1526 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1528 static inline int
1529 type_is_fundamental (type)
1530 register tree type;
1532 switch (TREE_CODE (type))
1534 case ERROR_MARK:
1535 case VOID_TYPE:
1536 case INTEGER_TYPE:
1537 case REAL_TYPE:
1538 case COMPLEX_TYPE:
1539 case BOOLEAN_TYPE:
1540 case CHAR_TYPE:
1541 return 1;
1543 case SET_TYPE:
1544 case ARRAY_TYPE:
1545 case RECORD_TYPE:
1546 case UNION_TYPE:
1547 case QUAL_UNION_TYPE:
1548 case ENUMERAL_TYPE:
1549 case FUNCTION_TYPE:
1550 case METHOD_TYPE:
1551 case POINTER_TYPE:
1552 case REFERENCE_TYPE:
1553 case FILE_TYPE:
1554 case OFFSET_TYPE:
1555 case LANG_TYPE:
1556 return 0;
1558 default:
1559 abort ();
1561 return 0;
1564 /* Given a pointer to some ..._DECL tree node, generate an assembly language
1565 equate directive which will associate a symbolic name with the current DIE.
1567 The name used is an artificial label generated from the DECL_UID number
1568 associated with the given decl node. The name it gets equated to is the
1569 symbolic label that we (previously) output at the start of the DIE that
1570 we are currently generating.
1572 Calling this function while generating some "decl related" form of DIE
1573 makes it possible to later refer to the DIE which represents the given
1574 decl simply by re-generating the symbolic name from the ..._DECL node's
1575 UID number. */
1577 static void
1578 equate_decl_number_to_die_number (decl)
1579 register tree decl;
1581 /* In the case where we are generating a DIE for some ..._DECL node
1582 which represents either some inline function declaration or some
1583 entity declared within an inline function declaration/definition,
1584 setup a symbolic name for the current DIE so that we have a name
1585 for this DIE that we can easily refer to later on within
1586 AT_abstract_origin attributes. */
1588 char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
1589 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1591 sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
1592 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1593 ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
1596 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
1597 equate directive which will associate a symbolic name with the current DIE.
1599 The name used is an artificial label generated from the TYPE_UID number
1600 associated with the given type node. The name it gets equated to is the
1601 symbolic label that we (previously) output at the start of the DIE that
1602 we are currently generating.
1604 Calling this function while generating some "type related" form of DIE
1605 makes it easy to later refer to the DIE which represents the given type
1606 simply by re-generating the alternative name from the ..._TYPE node's
1607 UID number. */
1609 static inline void
1610 equate_type_number_to_die_number (type)
1611 register tree type;
1613 char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
1614 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1616 /* We are generating a DIE to represent the main variant of this type
1617 (i.e the type without any const or volatile qualifiers) so in order
1618 to get the equate to come out right, we need to get the main variant
1619 itself here. */
1621 type = type_main_variant (type);
1623 sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
1624 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1625 ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
1628 static void
1629 output_reg_number (rtl)
1630 register rtx rtl;
1632 register unsigned regno = REGNO (rtl);
1634 if (regno >= FIRST_PSEUDO_REGISTER)
1636 warning_with_decl (dwarf_last_decl, "internal regno botch: regno = %d\n",
1637 regno);
1638 regno = 0;
1640 fprintf (asm_out_file, "\t%s\t0x%x",
1641 UNALIGNED_INT_ASM_OP, DBX_REGISTER_NUMBER (regno));
1642 if (flag_debug_asm)
1644 fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
1645 PRINT_REG (rtl, 0, asm_out_file);
1647 fputc ('\n', asm_out_file);
1650 /* The following routine is a nice and simple transducer. It converts the
1651 RTL for a variable or parameter (resident in memory) into an equivalent
1652 Dwarf representation of a mechanism for getting the address of that same
1653 variable onto the top of a hypothetical "address evaluation" stack.
1655 When creating memory location descriptors, we are effectively trans-
1656 forming the RTL for a memory-resident object into its Dwarf postfix
1657 expression equivalent. This routine just recursively descends an
1658 RTL tree, turning it into Dwarf postfix code as it goes. */
1660 static void
1661 output_mem_loc_descriptor (rtl)
1662 register rtx rtl;
1664 /* Note that for a dynamically sized array, the location we will
1665 generate a description of here will be the lowest numbered location
1666 which is actually within the array. That's *not* necessarily the
1667 same as the zeroth element of the array. */
1669 switch (GET_CODE (rtl))
1671 case SUBREG:
1673 /* The case of a subreg may arise when we have a local (register)
1674 variable or a formal (register) parameter which doesn't quite
1675 fill up an entire register. For now, just assume that it is
1676 legitimate to make the Dwarf info refer to the whole register
1677 which contains the given subreg. */
1679 rtl = XEXP (rtl, 0);
1680 /* Drop thru. */
1682 case REG:
1684 /* Whenever a register number forms a part of the description of
1685 the method for calculating the (dynamic) address of a memory
1686 resident object, DWARF rules require the register number to
1687 be referred to as a "base register". This distinction is not
1688 based in any way upon what category of register the hardware
1689 believes the given register belongs to. This is strictly
1690 DWARF terminology we're dealing with here.
1692 Note that in cases where the location of a memory-resident data
1693 object could be expressed as:
1695 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
1697 the actual DWARF location descriptor that we generate may just
1698 be OP_BASEREG (basereg). This may look deceptively like the
1699 object in question was allocated to a register (rather than
1700 in memory) so DWARF consumers need to be aware of the subtle
1701 distinction between OP_REG and OP_BASEREG. */
1703 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
1704 output_reg_number (rtl);
1705 break;
1707 case MEM:
1708 output_mem_loc_descriptor (XEXP (rtl, 0));
1709 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
1710 break;
1712 case CONST:
1713 case SYMBOL_REF:
1714 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
1715 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
1716 break;
1718 case PLUS:
1719 output_mem_loc_descriptor (XEXP (rtl, 0));
1720 output_mem_loc_descriptor (XEXP (rtl, 1));
1721 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
1722 break;
1724 case CONST_INT:
1725 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
1726 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
1727 break;
1729 case MULT:
1730 /* If a pseudo-reg is optimized away, it is possible for it to
1731 be replaced with a MEM containing a multiply. Use a GNU extension
1732 to describe it. */
1733 output_mem_loc_descriptor (XEXP (rtl, 0));
1734 output_mem_loc_descriptor (XEXP (rtl, 1));
1735 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_MULT);
1736 break;
1738 default:
1739 abort ();
1743 /* Output a proper Dwarf location descriptor for a variable or parameter
1744 which is either allocated in a register or in a memory location. For
1745 a register, we just generate an OP_REG and the register number. For a
1746 memory location we provide a Dwarf postfix expression describing how to
1747 generate the (dynamic) address of the object onto the address stack. */
1749 static void
1750 output_loc_descriptor (rtl)
1751 register rtx rtl;
1753 switch (GET_CODE (rtl))
1755 case SUBREG:
1757 /* The case of a subreg may arise when we have a local (register)
1758 variable or a formal (register) parameter which doesn't quite
1759 fill up an entire register. For now, just assume that it is
1760 legitimate to make the Dwarf info refer to the whole register
1761 which contains the given subreg. */
1763 rtl = XEXP (rtl, 0);
1764 /* Drop thru. */
1766 case REG:
1767 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
1768 output_reg_number (rtl);
1769 break;
1771 case MEM:
1772 output_mem_loc_descriptor (XEXP (rtl, 0));
1773 break;
1775 default:
1776 abort (); /* Should never happen */
1780 /* Given a tree node describing an array bound (either lower or upper)
1781 output a representation for that bound. */
1783 static void
1784 output_bound_representation (bound, dim_num, u_or_l)
1785 register tree bound;
1786 register unsigned dim_num; /* For multi-dimensional arrays. */
1787 register char u_or_l; /* Designates upper or lower bound. */
1789 switch (TREE_CODE (bound))
1792 case ERROR_MARK:
1793 return;
1795 /* All fixed-bounds are represented by INTEGER_CST nodes. */
1797 case INTEGER_CST:
1798 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1799 (unsigned) TREE_INT_CST_LOW (bound));
1800 break;
1802 default:
1804 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
1805 SAVE_EXPR nodes, in which case we can do something, or as
1806 an expression, which we cannot represent. */
1808 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1809 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
1811 sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
1812 current_dienum, dim_num, u_or_l);
1814 sprintf (end_label, BOUND_END_LABEL_FMT,
1815 current_dienum, dim_num, u_or_l);
1817 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
1818 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
1820 /* If optimization is turned on, the SAVE_EXPRs that describe
1821 how to access the upper bound values are essentially bogus.
1822 They only describe (at best) how to get at these values at
1823 the points in the generated code right after they have just
1824 been computed. Worse yet, in the typical case, the upper
1825 bound values will not even *be* computed in the optimized
1826 code, so these SAVE_EXPRs are entirely bogus.
1828 In order to compensate for this fact, we check here to see
1829 if optimization is enabled, and if so, we effectively create
1830 an empty location description for the (unknown and unknowable)
1831 upper bound.
1833 This should not cause too much trouble for existing (stupid?)
1834 debuggers because they have to deal with empty upper bounds
1835 location descriptions anyway in order to be able to deal with
1836 incomplete array types.
1838 Of course an intelligent debugger (GDB?) should be able to
1839 comprehend that a missing upper bound specification in a
1840 array type used for a storage class `auto' local array variable
1841 indicates that the upper bound is both unknown (at compile-
1842 time) and unknowable (at run-time) due to optimization. */
1844 if (! optimize)
1846 while (TREE_CODE (bound) == NOP_EXPR
1847 || TREE_CODE (bound) == CONVERT_EXPR)
1848 bound = TREE_OPERAND (bound, 0);
1850 if (TREE_CODE (bound) == SAVE_EXPR)
1851 output_loc_descriptor
1852 (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX, 0));
1855 ASM_OUTPUT_LABEL (asm_out_file, end_label);
1857 break;
1862 /* Recursive function to output a sequence of value/name pairs for
1863 enumeration constants in reversed order. This is called from
1864 enumeration_type_die. */
1866 static void
1867 output_enumeral_list (link)
1868 register tree link;
1870 if (link)
1872 output_enumeral_list (TREE_CHAIN (link));
1873 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1874 (unsigned) TREE_INT_CST_LOW (TREE_VALUE (link)));
1875 ASM_OUTPUT_DWARF_STRING (asm_out_file,
1876 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
1880 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
1881 which is not less than the value itself. */
1883 static inline unsigned
1884 ceiling (value, boundary)
1885 register unsigned value;
1886 register unsigned boundary;
1888 return (((value + boundary - 1) / boundary) * boundary);
1891 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
1892 pointer to the declared type for the relevant field variable, or return
1893 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
1895 static inline tree
1896 field_type (decl)
1897 register tree decl;
1899 register tree type;
1901 if (TREE_CODE (decl) == ERROR_MARK)
1902 return integer_type_node;
1904 type = DECL_BIT_FIELD_TYPE (decl);
1905 if (type == NULL)
1906 type = TREE_TYPE (decl);
1907 return type;
1910 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1911 node, return the alignment in bits for the type, or else return
1912 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
1914 static inline unsigned
1915 simple_type_align_in_bits (type)
1916 register tree type;
1918 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
1921 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1922 node, return the size in bits for the type if it is a constant, or
1923 else return the alignment for the type if the type's size is not
1924 constant, or else return BITS_PER_WORD if the type actually turns out
1925 to be an ERROR_MARK node. */
1927 static inline unsigned
1928 simple_type_size_in_bits (type)
1929 register tree type;
1931 if (TREE_CODE (type) == ERROR_MARK)
1932 return BITS_PER_WORD;
1933 else
1935 register tree type_size_tree = TYPE_SIZE (type);
1937 if (TREE_CODE (type_size_tree) != INTEGER_CST)
1938 return TYPE_ALIGN (type);
1940 return (unsigned) TREE_INT_CST_LOW (type_size_tree);
1944 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
1945 return the byte offset of the lowest addressed byte of the "containing
1946 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
1947 mine what that offset is, either because the argument turns out to be a
1948 pointer to an ERROR_MARK node, or because the offset is actually variable.
1949 (We can't handle the latter case just yet.) */
1951 static unsigned
1952 field_byte_offset (decl)
1953 register tree decl;
1955 register unsigned type_align_in_bytes;
1956 register unsigned type_align_in_bits;
1957 register unsigned type_size_in_bits;
1958 register unsigned object_offset_in_align_units;
1959 register unsigned object_offset_in_bits;
1960 register unsigned object_offset_in_bytes;
1961 register tree type;
1962 register tree bitpos_tree;
1963 register tree field_size_tree;
1964 register unsigned bitpos_int;
1965 register unsigned deepest_bitpos;
1966 register unsigned field_size_in_bits;
1968 if (TREE_CODE (decl) == ERROR_MARK)
1969 return 0;
1971 if (TREE_CODE (decl) != FIELD_DECL)
1972 abort ();
1974 type = field_type (decl);
1976 bitpos_tree = DECL_FIELD_BITPOS (decl);
1977 field_size_tree = DECL_SIZE (decl);
1979 /* We cannot yet cope with fields whose positions or sizes are variable,
1980 so for now, when we see such things, we simply return 0. Someday,
1981 we may be able to handle such cases, but it will be damn difficult. */
1983 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
1984 return 0;
1985 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
1987 if (TREE_CODE (field_size_tree) != INTEGER_CST)
1988 return 0;
1989 field_size_in_bits = (unsigned) TREE_INT_CST_LOW (field_size_tree);
1991 type_size_in_bits = simple_type_size_in_bits (type);
1993 type_align_in_bits = simple_type_align_in_bits (type);
1994 type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
1996 /* Note that the GCC front-end doesn't make any attempt to keep track
1997 of the starting bit offset (relative to the start of the containing
1998 structure type) of the hypothetical "containing object" for a bit-
1999 field. Thus, when computing the byte offset value for the start of
2000 the "containing object" of a bit-field, we must deduce this infor-
2001 mation on our own.
2003 This can be rather tricky to do in some cases. For example, handling
2004 the following structure type definition when compiling for an i386/i486
2005 target (which only aligns long long's to 32-bit boundaries) can be very
2006 tricky:
2008 struct S {
2009 int field1;
2010 long long field2:31;
2013 Fortunately, there is a simple rule-of-thumb which can be used in such
2014 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
2015 the structure shown above. It decides to do this based upon one simple
2016 rule for bit-field allocation. Quite simply, GCC allocates each "con-
2017 taining object" for each bit-field at the first (i.e. lowest addressed)
2018 legitimate alignment boundary (based upon the required minimum alignment
2019 for the declared type of the field) which it can possibly use, subject
2020 to the condition that there is still enough available space remaining
2021 in the containing object (when allocated at the selected point) to
2022 fully accommodate all of the bits of the bit-field itself.
2024 This simple rule makes it obvious why GCC allocates 8 bytes for each
2025 object of the structure type shown above. When looking for a place to
2026 allocate the "containing object" for `field2', the compiler simply tries
2027 to allocate a 64-bit "containing object" at each successive 32-bit
2028 boundary (starting at zero) until it finds a place to allocate that 64-
2029 bit field such that at least 31 contiguous (and previously unallocated)
2030 bits remain within that selected 64 bit field. (As it turns out, for
2031 the example above, the compiler finds that it is OK to allocate the
2032 "containing object" 64-bit field at bit-offset zero within the
2033 structure type.)
2035 Here we attempt to work backwards from the limited set of facts we're
2036 given, and we try to deduce from those facts, where GCC must have
2037 believed that the containing object started (within the structure type).
2039 The value we deduce is then used (by the callers of this routine) to
2040 generate AT_location and AT_bit_offset attributes for fields (both
2041 bit-fields and, in the case of AT_location, regular fields as well).
2044 /* Figure out the bit-distance from the start of the structure to the
2045 "deepest" bit of the bit-field. */
2046 deepest_bitpos = bitpos_int + field_size_in_bits;
2048 /* This is the tricky part. Use some fancy footwork to deduce where the
2049 lowest addressed bit of the containing object must be. */
2050 object_offset_in_bits
2051 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2053 /* Compute the offset of the containing object in "alignment units". */
2054 object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
2056 /* Compute the offset of the containing object in bytes. */
2057 object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
2059 /* The above code assumes that the field does not cross an alignment
2060 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2061 or if the structure is packed. If this happens, then we get an object
2062 which starts after the bitfield, which means that the bit offset is
2063 negative. Gdb fails when given negative bit offsets. We avoid this
2064 by recomputing using the first bit of the bitfield. This will give
2065 us an object which does not completely contain the bitfield, but it
2066 will be aligned, and it will contain the first bit of the bitfield. */
2067 if (object_offset_in_bits > bitpos_int)
2069 deepest_bitpos = bitpos_int + 1;
2070 object_offset_in_bits
2071 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2072 object_offset_in_align_units = (object_offset_in_bits
2073 / type_align_in_bits);
2074 object_offset_in_bytes = (object_offset_in_align_units
2075 * type_align_in_bytes);
2078 return object_offset_in_bytes;
2081 /****************************** attributes *********************************/
2083 /* The following routines are responsible for writing out the various types
2084 of Dwarf attributes (and any following data bytes associated with them).
2085 These routines are listed in order based on the numerical codes of their
2086 associated attributes. */
2088 /* Generate an AT_sibling attribute. */
2090 static inline void
2091 sibling_attribute ()
2093 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2095 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
2096 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
2097 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2100 /* Output the form of location attributes suitable for whole variables and
2101 whole parameters. Note that the location attributes for struct fields
2102 are generated by the routine `data_member_location_attribute' below. */
2104 static void
2105 location_attribute (rtl)
2106 register rtx rtl;
2108 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2109 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2111 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2112 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2113 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2114 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2115 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2117 /* Handle a special case. If we are about to output a location descriptor
2118 for a variable or parameter which has been optimized out of existence,
2119 don't do that. Instead we output a zero-length location descriptor
2120 value as part of the location attribute.
2122 A variable which has been optimized out of existence will have a
2123 DECL_RTL value which denotes a pseudo-reg.
2125 Currently, in some rare cases, variables can have DECL_RTL values
2126 which look like (MEM (REG pseudo-reg#)). These cases are due to
2127 bugs elsewhere in the compiler. We treat such cases
2128 as if the variable(s) in question had been optimized out of existence.
2130 Note that in all cases where we wish to express the fact that a
2131 variable has been optimized out of existence, we do not simply
2132 suppress the generation of the entire location attribute because
2133 the absence of a location attribute in certain kinds of DIEs is
2134 used to indicate something else entirely... i.e. that the DIE
2135 represents an object declaration, but not a definition. So saith
2136 the PLSIG.
2139 if (! is_pseudo_reg (rtl)
2140 && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
2141 output_loc_descriptor (rtl);
2143 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2146 /* Output the specialized form of location attribute used for data members
2147 of struct and union types.
2149 In the special case of a FIELD_DECL node which represents a bit-field,
2150 the "offset" part of this special location descriptor must indicate the
2151 distance in bytes from the lowest-addressed byte of the containing
2152 struct or union type to the lowest-addressed byte of the "containing
2153 object" for the bit-field. (See the `field_byte_offset' function above.)
2155 For any given bit-field, the "containing object" is a hypothetical
2156 object (of some integral or enum type) within which the given bit-field
2157 lives. The type of this hypothetical "containing object" is always the
2158 same as the declared type of the individual bit-field itself (for GCC
2159 anyway... the DWARF spec doesn't actually mandate this).
2161 Note that it is the size (in bytes) of the hypothetical "containing
2162 object" which will be given in the AT_byte_size attribute for this
2163 bit-field. (See the `byte_size_attribute' function below.) It is
2164 also used when calculating the value of the AT_bit_offset attribute.
2165 (See the `bit_offset_attribute' function below.) */
2167 static void
2168 data_member_location_attribute (t)
2169 register tree t;
2171 register unsigned object_offset_in_bytes;
2172 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2173 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2175 if (TREE_CODE (t) == TREE_VEC)
2176 object_offset_in_bytes = TREE_INT_CST_LOW (BINFO_OFFSET (t));
2177 else
2178 object_offset_in_bytes = field_byte_offset (t);
2180 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2181 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2182 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2183 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2184 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2185 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2186 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
2187 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2188 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2191 /* Output an AT_const_value attribute for a variable or a parameter which
2192 does not have a "location" either in memory or in a register. These
2193 things can arise in GNU C when a constant is passed as an actual
2194 parameter to an inlined function. They can also arise in C++ where
2195 declared constants do not necessarily get memory "homes". */
2197 static void
2198 const_value_attribute (rtl)
2199 register rtx rtl;
2201 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2202 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2204 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2205 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2206 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2207 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2208 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2210 switch (GET_CODE (rtl))
2212 case CONST_INT:
2213 /* Note that a CONST_INT rtx could represent either an integer or
2214 a floating-point constant. A CONST_INT is used whenever the
2215 constant will fit into a single word. In all such cases, the
2216 original mode of the constant value is wiped out, and the
2217 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2218 precise mode information for these constants, we always just
2219 output them using 4 bytes. */
2221 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2222 break;
2224 case CONST_DOUBLE:
2225 /* Note that a CONST_DOUBLE rtx could represent either an integer
2226 or a floating-point constant. A CONST_DOUBLE is used whenever
2227 the constant requires more than one word in order to be adequately
2228 represented. In all such cases, the original mode of the constant
2229 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2230 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2232 ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
2233 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (rtl),
2234 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (rtl));
2235 break;
2237 case CONST_STRING:
2238 ASM_OUTPUT_DWARF_STRING (asm_out_file, XSTR (rtl, 0));
2239 break;
2241 case SYMBOL_REF:
2242 case LABEL_REF:
2243 case CONST:
2244 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2245 break;
2247 case PLUS:
2248 /* In cases where an inlined instance of an inline function is passed
2249 the address of an `auto' variable (which is local to the caller)
2250 we can get a situation where the DECL_RTL of the artificial
2251 local variable (for the inlining) which acts as a stand-in for
2252 the corresponding formal parameter (of the inline function)
2253 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2254 This is not exactly a compile-time constant expression, but it
2255 isn't the address of the (artificial) local variable either.
2256 Rather, it represents the *value* which the artificial local
2257 variable always has during its lifetime. We currently have no
2258 way to represent such quasi-constant values in Dwarf, so for now
2259 we just punt and generate an AT_const_value attribute with form
2260 FORM_BLOCK4 and a length of zero. */
2261 break;
2263 default:
2264 abort (); /* No other kinds of rtx should be possible here. */
2267 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2270 /* Generate *either* an AT_location attribute or else an AT_const_value
2271 data attribute for a variable or a parameter. We generate the
2272 AT_const_value attribute only in those cases where the given
2273 variable or parameter does not have a true "location" either in
2274 memory or in a register. This can happen (for example) when a
2275 constant is passed as an actual argument in a call to an inline
2276 function. (It's possible that these things can crop up in other
2277 ways also.) Note that one type of constant value which can be
2278 passed into an inlined function is a constant pointer. This can
2279 happen for example if an actual argument in an inlined function
2280 call evaluates to a compile-time constant address. */
2282 static void
2283 location_or_const_value_attribute (decl)
2284 register tree decl;
2286 register rtx rtl;
2288 if (TREE_CODE (decl) == ERROR_MARK)
2289 return;
2291 if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
2293 /* Should never happen. */
2294 abort ();
2295 return;
2298 /* Here we have to decide where we are going to say the parameter "lives"
2299 (as far as the debugger is concerned). We only have a couple of choices.
2300 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2301 normally indicates where the parameter lives during most of the activa-
2302 tion of the function. If optimization is enabled however, this could
2303 be either NULL or else a pseudo-reg. Both of those cases indicate that
2304 the parameter doesn't really live anywhere (as far as the code generation
2305 parts of GCC are concerned) during most of the function's activation.
2306 That will happen (for example) if the parameter is never referenced
2307 within the function.
2309 We could just generate a location descriptor here for all non-NULL
2310 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2311 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2312 cases where DECL_RTL is NULL or is a pseudo-reg.
2314 Note however that we can only get away with using DECL_INCOMING_RTL as
2315 a backup substitute for DECL_RTL in certain limited cases. In cases
2316 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2317 we can be sure that the parameter was passed using the same type as it
2318 is declared to have within the function, and that its DECL_INCOMING_RTL
2319 points us to a place where a value of that type is passed. In cases
2320 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2321 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2322 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2323 points us to a value of some type which is *different* from the type
2324 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2325 to generate a location attribute in such cases, the debugger would
2326 end up (for example) trying to fetch a `float' from a place which
2327 actually contains the first part of a `double'. That would lead to
2328 really incorrect and confusing output at debug-time, and we don't
2329 want that now do we?
2331 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2332 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2333 couple of cute exceptions however. On little-endian machines we can
2334 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2335 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2336 an integral type which is smaller than TREE_TYPE(decl). These cases
2337 arise when (on a little-endian machine) a non-prototyped function has
2338 a parameter declared to be of type `short' or `char'. In such cases,
2339 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2340 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2341 passed `int' value. If the debugger then uses that address to fetch a
2342 `short' or a `char' (on a little-endian machine) the result will be the
2343 correct data, so we allow for such exceptional cases below.
2345 Note that our goal here is to describe the place where the given formal
2346 parameter lives during most of the function's activation (i.e. between
2347 the end of the prologue and the start of the epilogue). We'll do that
2348 as best as we can. Note however that if the given formal parameter is
2349 modified sometime during the execution of the function, then a stack
2350 backtrace (at debug-time) will show the function as having been called
2351 with the *new* value rather than the value which was originally passed
2352 in. This happens rarely enough that it is not a major problem, but it
2353 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2354 may generate two additional attributes for any given TAG_formal_parameter
2355 DIE which will describe the "passed type" and the "passed location" for
2356 the given formal parameter in addition to the attributes we now generate
2357 to indicate the "declared type" and the "active location" for each
2358 parameter. This additional set of attributes could be used by debuggers
2359 for stack backtraces.
2361 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2362 can be NULL also. This happens (for example) for inlined-instances of
2363 inline function formal parameters which are never referenced. This really
2364 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2365 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2366 these values for inlined instances of inline function parameters, so
2367 when we see such cases, we are just SOL (shit-out-of-luck) for the time
2368 being (until integrate.c gets fixed).
2371 /* Use DECL_RTL as the "location" unless we find something better. */
2372 rtl = DECL_RTL (decl);
2374 if (TREE_CODE (decl) == PARM_DECL)
2375 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2377 /* This decl represents a formal parameter which was optimized out. */
2378 register tree declared_type = type_main_variant (TREE_TYPE (decl));
2379 register tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
2381 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2382 *all* cases where (rtl == NULL_RTX) just below. */
2384 if (declared_type == passed_type)
2385 rtl = DECL_INCOMING_RTL (decl);
2386 else if (! BYTES_BIG_ENDIAN)
2387 if (TREE_CODE (declared_type) == INTEGER_TYPE)
2388 if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2389 rtl = DECL_INCOMING_RTL (decl);
2392 if (rtl == NULL_RTX)
2393 return;
2395 rtl = eliminate_regs (rtl, 0, NULL_RTX, 0);
2396 #ifdef LEAF_REG_REMAP
2397 if (leaf_function)
2398 leaf_renumber_regs_insn (rtl);
2399 #endif
2401 switch (GET_CODE (rtl))
2403 case ADDRESSOF:
2404 /* The address of a variable that was optimized away; don't emit
2405 anything. */
2406 break;
2408 case CONST_INT:
2409 case CONST_DOUBLE:
2410 case CONST_STRING:
2411 case SYMBOL_REF:
2412 case LABEL_REF:
2413 case CONST:
2414 case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2415 const_value_attribute (rtl);
2416 break;
2418 case MEM:
2419 case REG:
2420 case SUBREG:
2421 location_attribute (rtl);
2422 break;
2424 case CONCAT:
2425 /* ??? CONCAT is used for complex variables, which may have the real
2426 part stored in one place and the imag part stored somewhere else.
2427 DWARF1 has no way to describe a variable that lives in two different
2428 places, so we just describe where the first part lives, and hope that
2429 the second part is stored after it. */
2430 location_attribute (XEXP (rtl, 0));
2431 break;
2433 default:
2434 abort (); /* Should never happen. */
2438 /* Generate an AT_name attribute given some string value to be included as
2439 the value of the attribute. */
2441 static inline void
2442 name_attribute (name_string)
2443 register char *name_string;
2445 if (name_string && *name_string)
2447 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
2448 ASM_OUTPUT_DWARF_STRING (asm_out_file, name_string);
2452 static inline void
2453 fund_type_attribute (ft_code)
2454 register unsigned ft_code;
2456 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2457 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2460 static void
2461 mod_fund_type_attribute (type, decl_const, decl_volatile)
2462 register tree type;
2463 register int decl_const;
2464 register int decl_volatile;
2466 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2467 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2469 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2470 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2471 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2472 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2473 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2474 write_modifier_bytes (type, decl_const, decl_volatile);
2475 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2476 fundamental_type_code (root_type (type)));
2477 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2480 static inline void
2481 user_def_type_attribute (type)
2482 register tree type;
2484 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2486 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2487 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2488 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2491 static void
2492 mod_u_d_type_attribute (type, decl_const, decl_volatile)
2493 register tree type;
2494 register int decl_const;
2495 register int decl_volatile;
2497 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2498 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2499 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2501 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2502 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2503 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2504 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2505 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2506 write_modifier_bytes (type, decl_const, decl_volatile);
2507 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2508 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2509 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2512 #ifdef USE_ORDERING_ATTRIBUTE
2513 static inline void
2514 ordering_attribute (ordering)
2515 register unsigned ordering;
2517 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2518 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2520 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2522 /* Note that the block of subscript information for an array type also
2523 includes information about the element type of type given array type. */
2525 static void
2526 subscript_data_attribute (type)
2527 register tree type;
2529 register unsigned dimension_number;
2530 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2531 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2533 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2534 sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2535 sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2536 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2537 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2539 /* The GNU compilers represent multidimensional array types as sequences
2540 of one dimensional array types whose element types are themselves array
2541 types. Here we squish that down, so that each multidimensional array
2542 type gets only one array_type DIE in the Dwarf debugging info. The
2543 draft Dwarf specification say that we are allowed to do this kind
2544 of compression in C (because there is no difference between an
2545 array or arrays and a multidimensional array in C) but for other
2546 source languages (e.g. Ada) we probably shouldn't do this. */
2548 for (dimension_number = 0;
2549 TREE_CODE (type) == ARRAY_TYPE;
2550 type = TREE_TYPE (type), dimension_number++)
2552 register tree domain = TYPE_DOMAIN (type);
2554 /* Arrays come in three flavors. Unspecified bounds, fixed
2555 bounds, and (in GNU C only) variable bounds. Handle all
2556 three forms here. */
2558 if (domain)
2560 /* We have an array type with specified bounds. */
2562 register tree lower = TYPE_MIN_VALUE (domain);
2563 register tree upper = TYPE_MAX_VALUE (domain);
2565 /* Handle only fundamental types as index types for now. */
2567 if (! type_is_fundamental (domain))
2568 abort ();
2570 /* Output the representation format byte for this dimension. */
2572 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
2573 FMT_CODE (1,
2574 TREE_CODE (lower) == INTEGER_CST,
2575 TREE_CODE (upper) == INTEGER_CST));
2577 /* Output the index type for this dimension. */
2579 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2580 fundamental_type_code (domain));
2582 /* Output the representation for the lower bound. */
2584 output_bound_representation (lower, dimension_number, 'l');
2586 /* Output the representation for the upper bound. */
2588 output_bound_representation (upper, dimension_number, 'u');
2590 else
2592 /* We have an array type with an unspecified length. For C and
2593 C++ we can assume that this really means that (a) the index
2594 type is an integral type, and (b) the lower bound is zero.
2595 Note that Dwarf defines the representation of an unspecified
2596 (upper) bound as being a zero-length location description. */
2598 /* Output the array-bounds format byte. */
2600 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
2602 /* Output the (assumed) index type. */
2604 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
2606 /* Output the (assumed) lower bound (constant) value. */
2608 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
2610 /* Output the (empty) location description for the upper bound. */
2612 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
2616 /* Output the prefix byte that says that the element type is coming up. */
2618 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
2620 /* Output a representation of the type of the elements of this array type. */
2622 type_attribute (type, 0, 0);
2624 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2627 static void
2628 byte_size_attribute (tree_node)
2629 register tree tree_node;
2631 register unsigned size;
2633 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
2634 switch (TREE_CODE (tree_node))
2636 case ERROR_MARK:
2637 size = 0;
2638 break;
2640 case ENUMERAL_TYPE:
2641 case RECORD_TYPE:
2642 case UNION_TYPE:
2643 case QUAL_UNION_TYPE:
2644 size = int_size_in_bytes (tree_node);
2645 break;
2647 case FIELD_DECL:
2648 /* For a data member of a struct or union, the AT_byte_size is
2649 generally given as the number of bytes normally allocated for
2650 an object of the *declared* type of the member itself. This
2651 is true even for bit-fields. */
2652 size = simple_type_size_in_bits (field_type (tree_node))
2653 / BITS_PER_UNIT;
2654 break;
2656 /* This goes with the hack for case ARRAY_TYPE in output_type() since
2657 the Chill front end represents strings using ARRAY_TYPE. */
2658 case ARRAY_TYPE:
2660 /* The lower bound is zero, so the length is the upper bound + 1. */
2661 register tree upper_bound;
2662 upper_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (tree_node));
2663 size = (unsigned) TREE_INT_CST_LOW (upper_bound) + 1;
2664 break;
2667 default:
2668 abort ();
2671 /* Note that `size' might be -1 when we get to this point. If it
2672 is, that indicates that the byte size of the entity in question
2673 is variable. We have no good way of expressing this fact in Dwarf
2674 at the present time, so just let the -1 pass on through. */
2676 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
2679 /* For a FIELD_DECL node which represents a bit-field, output an attribute
2680 which specifies the distance in bits from the highest order bit of the
2681 "containing object" for the bit-field to the highest order bit of the
2682 bit-field itself.
2684 For any given bit-field, the "containing object" is a hypothetical
2685 object (of some integral or enum type) within which the given bit-field
2686 lives. The type of this hypothetical "containing object" is always the
2687 same as the declared type of the individual bit-field itself.
2689 The determination of the exact location of the "containing object" for
2690 a bit-field is rather complicated. It's handled by the `field_byte_offset'
2691 function (above).
2693 Note that it is the size (in bytes) of the hypothetical "containing
2694 object" which will be given in the AT_byte_size attribute for this
2695 bit-field. (See `byte_size_attribute' above.) */
2697 static inline void
2698 bit_offset_attribute (decl)
2699 register tree decl;
2701 register unsigned object_offset_in_bytes = field_byte_offset (decl);
2702 register tree type = DECL_BIT_FIELD_TYPE (decl);
2703 register tree bitpos_tree = DECL_FIELD_BITPOS (decl);
2704 register unsigned bitpos_int;
2705 register unsigned highest_order_object_bit_offset;
2706 register unsigned highest_order_field_bit_offset;
2707 register unsigned bit_offset;
2709 /* Must be a bit field. */
2710 if (!type
2711 || TREE_CODE (decl) != FIELD_DECL)
2712 abort ();
2714 /* We can't yet handle bit-fields whose offsets are variable, so if we
2715 encounter such things, just return without generating any attribute
2716 whatsoever. */
2718 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
2719 return;
2720 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
2722 /* Note that the bit offset is always the distance (in bits) from the
2723 highest-order bit of the "containing object" to the highest-order
2724 bit of the bit-field itself. Since the "high-order end" of any
2725 object or field is different on big-endian and little-endian machines,
2726 the computation below must take account of these differences. */
2728 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
2729 highest_order_field_bit_offset = bitpos_int;
2731 if (! BYTES_BIG_ENDIAN)
2733 highest_order_field_bit_offset
2734 += (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl));
2736 highest_order_object_bit_offset += simple_type_size_in_bits (type);
2739 bit_offset =
2740 (! BYTES_BIG_ENDIAN
2741 ? highest_order_object_bit_offset - highest_order_field_bit_offset
2742 : highest_order_field_bit_offset - highest_order_object_bit_offset);
2744 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
2745 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
2748 /* For a FIELD_DECL node which represents a bit field, output an attribute
2749 which specifies the length in bits of the given field. */
2751 static inline void
2752 bit_size_attribute (decl)
2753 register tree decl;
2755 /* Must be a field and a bit field. */
2756 if (TREE_CODE (decl) != FIELD_DECL
2757 || ! DECL_BIT_FIELD_TYPE (decl))
2758 abort ();
2760 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
2761 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2762 (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl)));
2765 /* The following routine outputs the `element_list' attribute for enumeration
2766 type DIEs. The element_lits attribute includes the names and values of
2767 all of the enumeration constants associated with the given enumeration
2768 type. */
2770 static inline void
2771 element_list_attribute (element)
2772 register tree element;
2774 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2775 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2777 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
2778 sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
2779 sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
2780 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2781 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2783 /* Here we output a list of value/name pairs for each enumeration constant
2784 defined for this enumeration type (as required), but we do it in REVERSE
2785 order. The order is the one required by the draft #5 Dwarf specification
2786 published by the UI/PLSIG. */
2788 output_enumeral_list (element); /* Recursively output the whole list. */
2790 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2793 /* Generate an AT_stmt_list attribute. These are normally present only in
2794 DIEs with a TAG_compile_unit tag. */
2796 static inline void
2797 stmt_list_attribute (label)
2798 register char *label;
2800 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
2801 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2802 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
2805 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
2806 for a subroutine DIE. */
2808 static inline void
2809 low_pc_attribute (asm_low_label)
2810 register char *asm_low_label;
2812 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
2813 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
2816 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
2817 subroutine DIE. */
2819 static inline void
2820 high_pc_attribute (asm_high_label)
2821 register char *asm_high_label;
2823 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
2824 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
2827 /* Generate an AT_body_begin attribute for a subroutine DIE. */
2829 static inline void
2830 body_begin_attribute (asm_begin_label)
2831 register char *asm_begin_label;
2833 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
2834 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
2837 /* Generate an AT_body_end attribute for a subroutine DIE. */
2839 static inline void
2840 body_end_attribute (asm_end_label)
2841 register char *asm_end_label;
2843 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
2844 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
2847 /* Generate an AT_language attribute given a LANG value. These attributes
2848 are used only within TAG_compile_unit DIEs. */
2850 static inline void
2851 language_attribute (language_code)
2852 register unsigned language_code;
2854 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
2855 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
2858 static inline void
2859 member_attribute (context)
2860 register tree context;
2862 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2864 /* Generate this attribute only for members in C++. */
2866 if (context != NULL && is_tagged_type (context))
2868 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
2869 sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
2870 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2874 static inline void
2875 string_length_attribute (upper_bound)
2876 register tree upper_bound;
2878 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2879 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2881 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
2882 sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
2883 sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
2884 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2885 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2886 output_bound_representation (upper_bound, 0, 'u');
2887 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2890 static inline void
2891 comp_dir_attribute (dirname)
2892 register char *dirname;
2894 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
2895 ASM_OUTPUT_DWARF_STRING (asm_out_file, dirname);
2898 static inline void
2899 sf_names_attribute (sf_names_start_label)
2900 register char *sf_names_start_label;
2902 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
2903 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2904 ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
2907 static inline void
2908 src_info_attribute (src_info_start_label)
2909 register char *src_info_start_label;
2911 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
2912 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2913 ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
2916 static inline void
2917 mac_info_attribute (mac_info_start_label)
2918 register char *mac_info_start_label;
2920 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
2921 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2922 ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
2925 static inline void
2926 prototyped_attribute (func_type)
2927 register tree func_type;
2929 if ((strcmp (language_string, "GNU C") == 0)
2930 && (TYPE_ARG_TYPES (func_type) != NULL))
2932 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
2933 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
2937 static inline void
2938 producer_attribute (producer)
2939 register char *producer;
2941 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
2942 ASM_OUTPUT_DWARF_STRING (asm_out_file, producer);
2945 static inline void
2946 inline_attribute (decl)
2947 register tree decl;
2949 if (DECL_INLINE (decl))
2951 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
2952 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
2956 static inline void
2957 containing_type_attribute (containing_type)
2958 register tree containing_type;
2960 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2962 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
2963 sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
2964 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2967 static inline void
2968 abstract_origin_attribute (origin)
2969 register tree origin;
2971 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2973 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
2974 switch (TREE_CODE_CLASS (TREE_CODE (origin)))
2976 case 'd':
2977 sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
2978 break;
2980 case 't':
2981 sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
2982 break;
2984 default:
2985 abort (); /* Should never happen. */
2988 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2991 #ifdef DWARF_DECL_COORDINATES
2992 static inline void
2993 src_coords_attribute (src_fileno, src_lineno)
2994 register unsigned src_fileno;
2995 register unsigned src_lineno;
2997 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
2998 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
2999 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
3001 #endif /* defined(DWARF_DECL_COORDINATES) */
3003 static inline void
3004 pure_or_virtual_attribute (func_decl)
3005 register tree func_decl;
3007 if (DECL_VIRTUAL_P (func_decl))
3009 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
3010 if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
3011 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
3012 else
3013 #endif
3014 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3015 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
3019 /************************* end of attributes *****************************/
3021 /********************* utility routines for DIEs *************************/
3023 /* Output an AT_name attribute and an AT_src_coords attribute for the
3024 given decl, but only if it actually has a name. */
3026 static void
3027 name_and_src_coords_attributes (decl)
3028 register tree decl;
3030 register tree decl_name = DECL_NAME (decl);
3032 if (decl_name && IDENTIFIER_POINTER (decl_name))
3034 name_attribute (IDENTIFIER_POINTER (decl_name));
3035 #ifdef DWARF_DECL_COORDINATES
3037 register unsigned file_index;
3039 /* This is annoying, but we have to pop out of the .debug section
3040 for a moment while we call `lookup_filename' because calling it
3041 may cause a temporary switch into the .debug_sfnames section and
3042 most svr4 assemblers are not smart enough be be able to nest
3043 section switches to any depth greater than one. Note that we
3044 also can't skirt this issue by delaying all output to the
3045 .debug_sfnames section unit the end of compilation because that
3046 would cause us to have inter-section forward references and
3047 Fred Fish sez that m68k/svr4 assemblers botch those. */
3049 ASM_OUTPUT_POP_SECTION (asm_out_file);
3050 file_index = lookup_filename (DECL_SOURCE_FILE (decl));
3051 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
3053 src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
3055 #endif /* defined(DWARF_DECL_COORDINATES) */
3059 /* Many forms of DIEs contain a "type description" part. The following
3060 routine writes out these "type descriptor" parts. */
3062 static void
3063 type_attribute (type, decl_const, decl_volatile)
3064 register tree type;
3065 register int decl_const;
3066 register int decl_volatile;
3068 register enum tree_code code = TREE_CODE (type);
3069 register int root_type_modified;
3071 if (code == ERROR_MARK)
3072 return;
3074 /* Handle a special case. For functions whose return type is void,
3075 we generate *no* type attribute. (Note that no object may have
3076 type `void', so this only applies to function return types. */
3078 if (code == VOID_TYPE)
3079 return;
3081 /* If this is a subtype, find the underlying type. Eventually,
3082 this should write out the appropriate subtype info. */
3083 while ((code == INTEGER_TYPE || code == REAL_TYPE)
3084 && TREE_TYPE (type) != 0)
3085 type = TREE_TYPE (type), code = TREE_CODE (type);
3087 root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
3088 || decl_const || decl_volatile
3089 || TYPE_READONLY (type) || TYPE_VOLATILE (type));
3091 if (type_is_fundamental (root_type (type)))
3092 if (root_type_modified)
3093 mod_fund_type_attribute (type, decl_const, decl_volatile);
3094 else
3095 fund_type_attribute (fundamental_type_code (type));
3096 else
3097 if (root_type_modified)
3098 mod_u_d_type_attribute (type, decl_const, decl_volatile);
3099 else
3100 /* We have to get the type_main_variant here (and pass that to the
3101 `user_def_type_attribute' routine) because the ..._TYPE node we
3102 have might simply be a *copy* of some original type node (where
3103 the copy was created to help us keep track of typedef names)
3104 and that copy might have a different TYPE_UID from the original
3105 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3106 is labeling a given type DIE for future reference, it always and
3107 only creates labels for DIEs representing *main variants*, and it
3108 never even knows about non-main-variants.) */
3109 user_def_type_attribute (type_main_variant (type));
3112 /* Given a tree pointer to a struct, class, union, or enum type node, return
3113 a pointer to the (string) tag name for the given type, or zero if the
3114 type was declared without a tag. */
3116 static char *
3117 type_tag (type)
3118 register tree type;
3120 register char *name = 0;
3122 if (TYPE_NAME (type) != 0)
3124 register tree t = 0;
3126 /* Find the IDENTIFIER_NODE for the type name. */
3127 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3128 t = TYPE_NAME (type);
3130 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3131 a TYPE_DECL node, regardless of whether or not a `typedef' was
3132 involved. */
3133 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
3134 && ! DECL_IGNORED_P (TYPE_NAME (type)))
3135 t = DECL_NAME (TYPE_NAME (type));
3137 /* Now get the name as a string, or invent one. */
3138 if (t != 0)
3139 name = IDENTIFIER_POINTER (t);
3142 return (name == 0 || *name == '\0') ? 0 : name;
3145 static inline void
3146 dienum_push ()
3148 /* Start by checking if the pending_sibling_stack needs to be expanded.
3149 If necessary, expand it. */
3151 if (pending_siblings == pending_siblings_allocated)
3153 pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
3154 pending_sibling_stack
3155 = (unsigned *) xrealloc (pending_sibling_stack,
3156 pending_siblings_allocated * sizeof(unsigned));
3159 pending_siblings++;
3160 NEXT_DIE_NUM = next_unused_dienum++;
3163 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3164 NEXT_DIE_NUM. */
3166 static inline void
3167 dienum_pop ()
3169 pending_siblings--;
3172 static inline tree
3173 member_declared_type (member)
3174 register tree member;
3176 return (DECL_BIT_FIELD_TYPE (member))
3177 ? DECL_BIT_FIELD_TYPE (member)
3178 : TREE_TYPE (member);
3181 /* Get the function's label, as described by its RTL.
3182 This may be different from the DECL_NAME name used
3183 in the source file. */
3185 static char *
3186 function_start_label (decl)
3187 register tree decl;
3189 rtx x;
3190 char *fnname;
3192 x = DECL_RTL (decl);
3193 if (GET_CODE (x) != MEM)
3194 abort ();
3195 x = XEXP (x, 0);
3196 if (GET_CODE (x) != SYMBOL_REF)
3197 abort ();
3198 fnname = XSTR (x, 0);
3199 return fnname;
3203 /******************************* DIEs ************************************/
3205 /* Output routines for individual types of DIEs. */
3207 /* Note that every type of DIE (except a null DIE) gets a sibling. */
3209 static void
3210 output_array_type_die (arg)
3211 register void *arg;
3213 register tree type = arg;
3215 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3216 sibling_attribute ();
3217 equate_type_number_to_die_number (type);
3218 member_attribute (TYPE_CONTEXT (type));
3220 /* I believe that we can default the array ordering. SDB will probably
3221 do the right things even if AT_ordering is not present. It's not
3222 even an issue until we start to get into multidimensional arrays
3223 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3224 dimensional arrays, then we'll have to put the AT_ordering attribute
3225 back in. (But if and when we find out that we need to put these in,
3226 we will only do so for multidimensional arrays. After all, we don't
3227 want to waste space in the .debug section now do we?) */
3229 #ifdef USE_ORDERING_ATTRIBUTE
3230 ordering_attribute (ORD_row_major);
3231 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3233 subscript_data_attribute (type);
3236 static void
3237 output_set_type_die (arg)
3238 register void *arg;
3240 register tree type = arg;
3242 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3243 sibling_attribute ();
3244 equate_type_number_to_die_number (type);
3245 member_attribute (TYPE_CONTEXT (type));
3246 type_attribute (TREE_TYPE (type), 0, 0);
3249 #if 0
3250 /* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3252 static void
3253 output_entry_point_die (arg)
3254 register void *arg;
3256 register tree decl = arg;
3257 register tree origin = decl_ultimate_origin (decl);
3259 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3260 sibling_attribute ();
3261 dienum_push ();
3262 if (origin != NULL)
3263 abstract_origin_attribute (origin);
3264 else
3266 name_and_src_coords_attributes (decl);
3267 member_attribute (DECL_CONTEXT (decl));
3268 type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3270 if (DECL_ABSTRACT (decl))
3271 equate_decl_number_to_die_number (decl);
3272 else
3273 low_pc_attribute (function_start_label (decl));
3275 #endif
3277 /* Output a DIE to represent an inlined instance of an enumeration type. */
3279 static void
3280 output_inlined_enumeration_type_die (arg)
3281 register void *arg;
3283 register tree type = arg;
3285 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3286 sibling_attribute ();
3287 if (!TREE_ASM_WRITTEN (type))
3288 abort ();
3289 abstract_origin_attribute (type);
3292 /* Output a DIE to represent an inlined instance of a structure type. */
3294 static void
3295 output_inlined_structure_type_die (arg)
3296 register void *arg;
3298 register tree type = arg;
3300 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3301 sibling_attribute ();
3302 if (!TREE_ASM_WRITTEN (type))
3303 abort ();
3304 abstract_origin_attribute (type);
3307 /* Output a DIE to represent an inlined instance of a union type. */
3309 static void
3310 output_inlined_union_type_die (arg)
3311 register void *arg;
3313 register tree type = arg;
3315 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3316 sibling_attribute ();
3317 if (!TREE_ASM_WRITTEN (type))
3318 abort ();
3319 abstract_origin_attribute (type);
3322 /* Output a DIE to represent an enumeration type. Note that these DIEs
3323 include all of the information about the enumeration values also.
3324 This information is encoded into the element_list attribute. */
3326 static void
3327 output_enumeration_type_die (arg)
3328 register void *arg;
3330 register tree type = arg;
3332 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3333 sibling_attribute ();
3334 equate_type_number_to_die_number (type);
3335 name_attribute (type_tag (type));
3336 member_attribute (TYPE_CONTEXT (type));
3338 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3339 given enum type is incomplete, do not generate the AT_byte_size
3340 attribute or the AT_element_list attribute. */
3342 if (TYPE_SIZE (type))
3344 byte_size_attribute (type);
3345 element_list_attribute (TYPE_FIELDS (type));
3349 /* Output a DIE to represent either a real live formal parameter decl or
3350 to represent just the type of some formal parameter position in some
3351 function type.
3353 Note that this routine is a bit unusual because its argument may be
3354 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3355 represents an inlining of some PARM_DECL) or else some sort of a
3356 ..._TYPE node. If it's the former then this function is being called
3357 to output a DIE to represent a formal parameter object (or some inlining
3358 thereof). If it's the latter, then this function is only being called
3359 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3360 formal argument type of some subprogram type. */
3362 static void
3363 output_formal_parameter_die (arg)
3364 register void *arg;
3366 register tree node = arg;
3368 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3369 sibling_attribute ();
3371 switch (TREE_CODE_CLASS (TREE_CODE (node)))
3373 case 'd': /* We were called with some kind of a ..._DECL node. */
3375 register tree origin = decl_ultimate_origin (node);
3377 if (origin != NULL)
3378 abstract_origin_attribute (origin);
3379 else
3381 name_and_src_coords_attributes (node);
3382 type_attribute (TREE_TYPE (node),
3383 TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3385 if (DECL_ABSTRACT (node))
3386 equate_decl_number_to_die_number (node);
3387 else
3388 location_or_const_value_attribute (node);
3390 break;
3392 case 't': /* We were called with some kind of a ..._TYPE node. */
3393 type_attribute (node, 0, 0);
3394 break;
3396 default:
3397 abort (); /* Should never happen. */
3401 /* Output a DIE to represent a declared function (either file-scope
3402 or block-local) which has "external linkage" (according to ANSI-C). */
3404 static void
3405 output_global_subroutine_die (arg)
3406 register void *arg;
3408 register tree decl = arg;
3409 register tree origin = decl_ultimate_origin (decl);
3411 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3412 sibling_attribute ();
3413 dienum_push ();
3414 if (origin != NULL)
3415 abstract_origin_attribute (origin);
3416 else
3418 register tree type = TREE_TYPE (decl);
3420 name_and_src_coords_attributes (decl);
3421 inline_attribute (decl);
3422 prototyped_attribute (type);
3423 member_attribute (DECL_CONTEXT (decl));
3424 type_attribute (TREE_TYPE (type), 0, 0);
3425 pure_or_virtual_attribute (decl);
3427 if (DECL_ABSTRACT (decl))
3428 equate_decl_number_to_die_number (decl);
3429 else
3431 if (! DECL_EXTERNAL (decl) && ! in_class
3432 && decl == current_function_decl)
3434 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3436 low_pc_attribute (function_start_label (decl));
3437 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3438 high_pc_attribute (label);
3439 if (use_gnu_debug_info_extensions)
3441 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3442 body_begin_attribute (label);
3443 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3444 body_end_attribute (label);
3450 /* Output a DIE to represent a declared data object (either file-scope
3451 or block-local) which has "external linkage" (according to ANSI-C). */
3453 static void
3454 output_global_variable_die (arg)
3455 register void *arg;
3457 register tree decl = arg;
3458 register tree origin = decl_ultimate_origin (decl);
3460 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3461 sibling_attribute ();
3462 if (origin != NULL)
3463 abstract_origin_attribute (origin);
3464 else
3466 name_and_src_coords_attributes (decl);
3467 member_attribute (DECL_CONTEXT (decl));
3468 type_attribute (TREE_TYPE (decl),
3469 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3471 if (DECL_ABSTRACT (decl))
3472 equate_decl_number_to_die_number (decl);
3473 else
3475 if (! DECL_EXTERNAL (decl) && ! in_class
3476 && current_function_decl == decl_function_context (decl))
3477 location_or_const_value_attribute (decl);
3481 static void
3482 output_label_die (arg)
3483 register void *arg;
3485 register tree decl = arg;
3486 register tree origin = decl_ultimate_origin (decl);
3488 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3489 sibling_attribute ();
3490 if (origin != NULL)
3491 abstract_origin_attribute (origin);
3492 else
3493 name_and_src_coords_attributes (decl);
3494 if (DECL_ABSTRACT (decl))
3495 equate_decl_number_to_die_number (decl);
3496 else
3498 register rtx insn = DECL_RTL (decl);
3500 if (GET_CODE (insn) == CODE_LABEL)
3502 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3504 /* When optimization is enabled (via -O) some parts of the compiler
3505 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3506 represent source-level labels which were explicitly declared by
3507 the user. This really shouldn't be happening though, so catch
3508 it if it ever does happen. */
3510 if (INSN_DELETED_P (insn))
3511 abort (); /* Should never happen. */
3513 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
3514 (unsigned) INSN_UID (insn));
3515 low_pc_attribute (label);
3520 static void
3521 output_lexical_block_die (arg)
3522 register void *arg;
3524 register tree stmt = arg;
3526 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3527 sibling_attribute ();
3528 dienum_push ();
3529 if (! BLOCK_ABSTRACT (stmt))
3531 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3532 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3534 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3535 low_pc_attribute (begin_label);
3536 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3537 high_pc_attribute (end_label);
3541 static void
3542 output_inlined_subroutine_die (arg)
3543 register void *arg;
3545 register tree stmt = arg;
3547 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
3548 sibling_attribute ();
3549 dienum_push ();
3550 abstract_origin_attribute (block_ultimate_origin (stmt));
3551 if (! BLOCK_ABSTRACT (stmt))
3553 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3554 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3556 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3557 low_pc_attribute (begin_label);
3558 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3559 high_pc_attribute (end_label);
3563 /* Output a DIE to represent a declared data object (either file-scope
3564 or block-local) which has "internal linkage" (according to ANSI-C). */
3566 static void
3567 output_local_variable_die (arg)
3568 register void *arg;
3570 register tree decl = arg;
3571 register tree origin = decl_ultimate_origin (decl);
3573 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
3574 sibling_attribute ();
3575 if (origin != NULL)
3576 abstract_origin_attribute (origin);
3577 else
3579 name_and_src_coords_attributes (decl);
3580 member_attribute (DECL_CONTEXT (decl));
3581 type_attribute (TREE_TYPE (decl),
3582 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3584 if (DECL_ABSTRACT (decl))
3585 equate_decl_number_to_die_number (decl);
3586 else
3587 location_or_const_value_attribute (decl);
3590 static void
3591 output_member_die (arg)
3592 register void *arg;
3594 register tree decl = arg;
3596 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
3597 sibling_attribute ();
3598 name_and_src_coords_attributes (decl);
3599 member_attribute (DECL_CONTEXT (decl));
3600 type_attribute (member_declared_type (decl),
3601 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3602 if (DECL_BIT_FIELD_TYPE (decl)) /* If this is a bit field... */
3604 byte_size_attribute (decl);
3605 bit_size_attribute (decl);
3606 bit_offset_attribute (decl);
3608 data_member_location_attribute (decl);
3611 #if 0
3612 /* Don't generate either pointer_type DIEs or reference_type DIEs. Use
3613 modified types instead.
3615 We keep this code here just in case these types of DIEs may be
3616 needed to represent certain things in other languages (e.g. Pascal)
3617 someday. */
3619 static void
3620 output_pointer_type_die (arg)
3621 register void *arg;
3623 register tree type = arg;
3625 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
3626 sibling_attribute ();
3627 equate_type_number_to_die_number (type);
3628 member_attribute (TYPE_CONTEXT (type));
3629 type_attribute (TREE_TYPE (type), 0, 0);
3632 static void
3633 output_reference_type_die (arg)
3634 register void *arg;
3636 register tree type = arg;
3638 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
3639 sibling_attribute ();
3640 equate_type_number_to_die_number (type);
3641 member_attribute (TYPE_CONTEXT (type));
3642 type_attribute (TREE_TYPE (type), 0, 0);
3644 #endif
3646 static void
3647 output_ptr_to_mbr_type_die (arg)
3648 register void *arg;
3650 register tree type = arg;
3652 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
3653 sibling_attribute ();
3654 equate_type_number_to_die_number (type);
3655 member_attribute (TYPE_CONTEXT (type));
3656 containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
3657 type_attribute (TREE_TYPE (type), 0, 0);
3660 static void
3661 output_compile_unit_die (arg)
3662 register void *arg;
3664 register char *main_input_filename = arg;
3666 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
3667 sibling_attribute ();
3668 dienum_push ();
3669 name_attribute (main_input_filename);
3672 char producer[250];
3674 sprintf (producer, "%s %s", language_string, version_string);
3675 producer_attribute (producer);
3678 if (strcmp (language_string, "GNU C++") == 0)
3679 language_attribute (LANG_C_PLUS_PLUS);
3680 else if (strcmp (language_string, "GNU Ada") == 0)
3681 language_attribute (LANG_ADA83);
3682 else if (strcmp (language_string, "GNU F77") == 0)
3683 language_attribute (LANG_FORTRAN77);
3684 else if (strcmp (language_string, "GNU Pascal") == 0)
3685 language_attribute (LANG_PASCAL83);
3686 else if (flag_traditional)
3687 language_attribute (LANG_C);
3688 else
3689 language_attribute (LANG_C89);
3690 low_pc_attribute (TEXT_BEGIN_LABEL);
3691 high_pc_attribute (TEXT_END_LABEL);
3692 if (debug_info_level >= DINFO_LEVEL_NORMAL)
3693 stmt_list_attribute (LINE_BEGIN_LABEL);
3694 last_filename = xstrdup (main_input_filename);
3697 char *wd = getpwd ();
3698 if (wd)
3699 comp_dir_attribute (wd);
3702 if (debug_info_level >= DINFO_LEVEL_NORMAL && use_gnu_debug_info_extensions)
3704 sf_names_attribute (SFNAMES_BEGIN_LABEL);
3705 src_info_attribute (SRCINFO_BEGIN_LABEL);
3706 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
3707 mac_info_attribute (MACINFO_BEGIN_LABEL);
3711 static void
3712 output_string_type_die (arg)
3713 register void *arg;
3715 register tree type = arg;
3717 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
3718 sibling_attribute ();
3719 equate_type_number_to_die_number (type);
3720 member_attribute (TYPE_CONTEXT (type));
3721 /* this is a fixed length string */
3722 byte_size_attribute (type);
3725 static void
3726 output_inheritance_die (arg)
3727 register void *arg;
3729 register tree binfo = arg;
3731 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inheritance);
3732 sibling_attribute ();
3733 type_attribute (BINFO_TYPE (binfo), 0, 0);
3734 data_member_location_attribute (binfo);
3735 if (TREE_VIA_VIRTUAL (binfo))
3737 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3738 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
3740 if (TREE_VIA_PUBLIC (binfo))
3742 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_public);
3743 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
3745 else if (TREE_VIA_PROTECTED (binfo))
3747 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_protected);
3748 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
3752 static void
3753 output_structure_type_die (arg)
3754 register void *arg;
3756 register tree type = arg;
3758 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3759 sibling_attribute ();
3760 equate_type_number_to_die_number (type);
3761 name_attribute (type_tag (type));
3762 member_attribute (TYPE_CONTEXT (type));
3764 /* If this type has been completed, then give it a byte_size attribute
3765 and prepare to give a list of members. Otherwise, don't do either of
3766 these things. In the latter case, we will not be generating a list
3767 of members (since we don't have any idea what they might be for an
3768 incomplete type). */
3770 if (TYPE_SIZE (type))
3772 dienum_push ();
3773 byte_size_attribute (type);
3777 /* Output a DIE to represent a declared function (either file-scope
3778 or block-local) which has "internal linkage" (according to ANSI-C). */
3780 static void
3781 output_local_subroutine_die (arg)
3782 register void *arg;
3784 register tree decl = arg;
3785 register tree origin = decl_ultimate_origin (decl);
3787 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
3788 sibling_attribute ();
3789 dienum_push ();
3790 if (origin != NULL)
3791 abstract_origin_attribute (origin);
3792 else
3794 register tree type = TREE_TYPE (decl);
3796 name_and_src_coords_attributes (decl);
3797 inline_attribute (decl);
3798 prototyped_attribute (type);
3799 member_attribute (DECL_CONTEXT (decl));
3800 type_attribute (TREE_TYPE (type), 0, 0);
3801 pure_or_virtual_attribute (decl);
3803 if (DECL_ABSTRACT (decl))
3804 equate_decl_number_to_die_number (decl);
3805 else
3807 /* Avoid getting screwed up in cases where a function was declared
3808 static but where no definition was ever given for it. */
3810 if (TREE_ASM_WRITTEN (decl))
3812 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3813 low_pc_attribute (function_start_label (decl));
3814 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3815 high_pc_attribute (label);
3816 if (use_gnu_debug_info_extensions)
3818 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3819 body_begin_attribute (label);
3820 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3821 body_end_attribute (label);
3827 static void
3828 output_subroutine_type_die (arg)
3829 register void *arg;
3831 register tree type = arg;
3832 register tree return_type = TREE_TYPE (type);
3834 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
3835 sibling_attribute ();
3836 dienum_push ();
3837 equate_type_number_to_die_number (type);
3838 prototyped_attribute (type);
3839 member_attribute (TYPE_CONTEXT (type));
3840 type_attribute (return_type, 0, 0);
3843 static void
3844 output_typedef_die (arg)
3845 register void *arg;
3847 register tree decl = arg;
3848 register tree origin = decl_ultimate_origin (decl);
3850 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
3851 sibling_attribute ();
3852 if (origin != NULL)
3853 abstract_origin_attribute (origin);
3854 else
3856 name_and_src_coords_attributes (decl);
3857 member_attribute (DECL_CONTEXT (decl));
3858 type_attribute (TREE_TYPE (decl),
3859 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3861 if (DECL_ABSTRACT (decl))
3862 equate_decl_number_to_die_number (decl);
3865 static void
3866 output_union_type_die (arg)
3867 register void *arg;
3869 register tree type = arg;
3871 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3872 sibling_attribute ();
3873 equate_type_number_to_die_number (type);
3874 name_attribute (type_tag (type));
3875 member_attribute (TYPE_CONTEXT (type));
3877 /* If this type has been completed, then give it a byte_size attribute
3878 and prepare to give a list of members. Otherwise, don't do either of
3879 these things. In the latter case, we will not be generating a list
3880 of members (since we don't have any idea what they might be for an
3881 incomplete type). */
3883 if (TYPE_SIZE (type))
3885 dienum_push ();
3886 byte_size_attribute (type);
3890 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
3891 at the end of an (ANSI prototyped) formal parameters list. */
3893 static void
3894 output_unspecified_parameters_die (arg)
3895 register void *arg;
3897 register tree decl_or_type = arg;
3899 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
3900 sibling_attribute ();
3902 /* This kludge is here only for the sake of being compatible with what
3903 the USL CI5 C compiler does. The specification of Dwarf Version 1
3904 doesn't say that TAG_unspecified_parameters DIEs should contain any
3905 attributes other than the AT_sibling attribute, but they are certainly
3906 allowed to contain additional attributes, and the CI5 compiler
3907 generates AT_name, AT_fund_type, and AT_location attributes within
3908 TAG_unspecified_parameters DIEs which appear in the child lists for
3909 DIEs representing function definitions, so we do likewise here. */
3911 if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
3913 name_attribute ("...");
3914 fund_type_attribute (FT_pointer);
3915 /* location_attribute (?); */
3919 static void
3920 output_padded_null_die (arg)
3921 register void *arg;
3923 ASM_OUTPUT_ALIGN (asm_out_file, 2); /* 2**2 == 4 */
3926 /*************************** end of DIEs *********************************/
3928 /* Generate some type of DIE. This routine generates the generic outer
3929 wrapper stuff which goes around all types of DIE's (regardless of their
3930 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
3931 DIE-length word, followed by the guts of the DIE itself. After the guts
3932 of the DIE, there must always be a terminator label for the DIE. */
3934 static void
3935 output_die (die_specific_output_function, param)
3936 register void (*die_specific_output_function)();
3937 register void *param;
3939 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3940 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3942 current_dienum = NEXT_DIE_NUM;
3943 NEXT_DIE_NUM = next_unused_dienum;
3945 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
3946 sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
3948 /* Write a label which will act as the name for the start of this DIE. */
3950 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3952 /* Write the DIE-length word. */
3954 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
3956 /* Fill in the guts of the DIE. */
3958 next_unused_dienum++;
3959 die_specific_output_function (param);
3961 /* Write a label which will act as the name for the end of this DIE. */
3963 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3966 static void
3967 end_sibling_chain ()
3969 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3971 current_dienum = NEXT_DIE_NUM;
3972 NEXT_DIE_NUM = next_unused_dienum;
3974 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
3976 /* Write a label which will act as the name for the start of this DIE. */
3978 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3980 /* Write the DIE-length word. */
3982 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
3984 dienum_pop ();
3987 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
3988 TAG_unspecified_parameters DIE) to represent the types of the formal
3989 parameters as specified in some function type specification (except
3990 for those which appear as part of a function *definition*).
3992 Note that we must be careful here to output all of the parameter
3993 DIEs *before* we output any DIEs needed to represent the types of
3994 the formal parameters. This keeps svr4 SDB happy because it
3995 (incorrectly) thinks that the first non-parameter DIE it sees ends
3996 the formal parameter list. */
3998 static void
3999 output_formal_types (function_or_method_type)
4000 register tree function_or_method_type;
4002 register tree link;
4003 register tree formal_type = NULL;
4004 register tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
4006 /* In the case where we are generating a formal types list for a C++
4007 non-static member function type, skip over the first thing on the
4008 TYPE_ARG_TYPES list because it only represents the type of the
4009 hidden `this pointer'. The debugger should be able to figure
4010 out (without being explicitly told) that this non-static member
4011 function type takes a `this pointer' and should be able to figure
4012 what the type of that hidden parameter is from the AT_member
4013 attribute of the parent TAG_subroutine_type DIE. */
4015 if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
4016 first_parm_type = TREE_CHAIN (first_parm_type);
4018 /* Make our first pass over the list of formal parameter types and output
4019 a TAG_formal_parameter DIE for each one. */
4021 for (link = first_parm_type; link; link = TREE_CHAIN (link))
4023 formal_type = TREE_VALUE (link);
4024 if (formal_type == void_type_node)
4025 break;
4027 /* Output a (nameless) DIE to represent the formal parameter itself. */
4029 output_die (output_formal_parameter_die, formal_type);
4032 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4033 DIE to the end of the parameter list. */
4035 if (formal_type != void_type_node)
4036 output_die (output_unspecified_parameters_die, function_or_method_type);
4038 /* Make our second (and final) pass over the list of formal parameter types
4039 and output DIEs to represent those types (as necessary). */
4041 for (link = TYPE_ARG_TYPES (function_or_method_type);
4042 link;
4043 link = TREE_CHAIN (link))
4045 formal_type = TREE_VALUE (link);
4046 if (formal_type == void_type_node)
4047 break;
4049 output_type (formal_type, function_or_method_type);
4053 /* Remember a type in the pending_types_list. */
4055 static void
4056 pend_type (type)
4057 register tree type;
4059 if (pending_types == pending_types_allocated)
4061 pending_types_allocated += PENDING_TYPES_INCREMENT;
4062 pending_types_list
4063 = (tree *) xrealloc (pending_types_list,
4064 sizeof (tree) * pending_types_allocated);
4066 pending_types_list[pending_types++] = type;
4068 /* Mark the pending type as having been output already (even though
4069 it hasn't been). This prevents the type from being added to the
4070 pending_types_list more than once. */
4072 TREE_ASM_WRITTEN (type) = 1;
4075 /* Return non-zero if it is legitimate to output DIEs to represent a
4076 given type while we are generating the list of child DIEs for some
4077 DIE (e.g. a function or lexical block DIE) associated with a given scope.
4079 See the comments within the function for a description of when it is
4080 considered legitimate to output DIEs for various kinds of types.
4082 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4083 or it may point to a BLOCK node (for types local to a block), or to a
4084 FUNCTION_DECL node (for types local to the heading of some function
4085 definition), or to a FUNCTION_TYPE node (for types local to the
4086 prototyped parameter list of a function type specification), or to a
4087 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4088 (in the case of C++ nested types).
4090 The `scope' parameter should likewise be NULL or should point to a
4091 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4092 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4094 This function is used only for deciding when to "pend" and when to
4095 "un-pend" types to/from the pending_types_list.
4097 Note that we sometimes make use of this "type pending" feature in a
4098 rather twisted way to temporarily delay the production of DIEs for the
4099 types of formal parameters. (We do this just to make svr4 SDB happy.)
4100 It order to delay the production of DIEs representing types of formal
4101 parameters, callers of this function supply `fake_containing_scope' as
4102 the `scope' parameter to this function. Given that fake_containing_scope
4103 is a tagged type which is *not* the containing scope for *any* other type,
4104 the desired effect is achieved, i.e. output of DIEs representing types
4105 is temporarily suspended, and any type DIEs which would have otherwise
4106 been output are instead placed onto the pending_types_list. Later on,
4107 we force these (temporarily pended) types to be output simply by calling
4108 `output_pending_types_for_scope' with an actual argument equal to the
4109 true scope of the types we temporarily pended. */
4111 static inline int
4112 type_ok_for_scope (type, scope)
4113 register tree type;
4114 register tree scope;
4116 /* Tagged types (i.e. struct, union, and enum types) must always be
4117 output only in the scopes where they actually belong (or else the
4118 scoping of their own tag names and the scoping of their member
4119 names will be incorrect). Non-tagged-types on the other hand can
4120 generally be output anywhere, except that svr4 SDB really doesn't
4121 want to see them nested within struct or union types, so here we
4122 say it is always OK to immediately output any such a (non-tagged)
4123 type, so long as we are not within such a context. Note that the
4124 only kinds of non-tagged types which we will be dealing with here
4125 (for C and C++ anyway) will be array types and function types. */
4127 return is_tagged_type (type)
4128 ? (TYPE_CONTEXT (type) == scope
4129 || (scope == NULL_TREE && is_tagged_type (TYPE_CONTEXT (type))
4130 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type))))
4131 : (scope == NULL_TREE || ! is_tagged_type (scope));
4134 /* Output any pending types (from the pending_types list) which we can output
4135 now (taking into account the scope that we are working on now).
4137 For each type output, remove the given type from the pending_types_list
4138 *before* we try to output it.
4140 Note that we have to process the list in beginning-to-end order,
4141 because the call made here to output_type may cause yet more types
4142 to be added to the end of the list, and we may have to output some
4143 of them too. */
4145 static void
4146 output_pending_types_for_scope (containing_scope)
4147 register tree containing_scope;
4149 register unsigned i;
4151 for (i = 0; i < pending_types; )
4153 register tree type = pending_types_list[i];
4155 if (type_ok_for_scope (type, containing_scope))
4157 register tree *mover;
4158 register tree *limit;
4160 pending_types--;
4161 limit = &pending_types_list[pending_types];
4162 for (mover = &pending_types_list[i]; mover < limit; mover++)
4163 *mover = *(mover+1);
4165 /* Un-mark the type as having been output already (because it
4166 hasn't been, really). Then call output_type to generate a
4167 Dwarf representation of it. */
4169 TREE_ASM_WRITTEN (type) = 0;
4170 output_type (type, containing_scope);
4172 /* Don't increment the loop counter in this case because we
4173 have shifted all of the subsequent pending types down one
4174 element in the pending_types_list array. */
4176 else
4177 i++;
4181 static void
4182 output_type (type, containing_scope)
4183 register tree type;
4184 register tree containing_scope;
4186 if (type == 0 || type == error_mark_node)
4187 return;
4189 /* We are going to output a DIE to represent the unqualified version of
4190 of this type (i.e. without any const or volatile qualifiers) so get
4191 the main variant (i.e. the unqualified version) of this type now. */
4193 type = type_main_variant (type);
4195 if (TREE_ASM_WRITTEN (type))
4196 return;
4198 /* If this is a nested type whose containing class hasn't been
4199 written out yet, writing it out will cover this one, too. */
4201 if (TYPE_CONTEXT (type)
4202 && TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
4203 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
4205 output_type (TYPE_CONTEXT (type), containing_scope);
4206 return;
4209 /* Don't generate any DIEs for this type now unless it is OK to do so
4210 (based upon what `type_ok_for_scope' tells us). */
4212 if (! type_ok_for_scope (type, containing_scope))
4214 pend_type (type);
4215 return;
4218 switch (TREE_CODE (type))
4220 case ERROR_MARK:
4221 break;
4223 case POINTER_TYPE:
4224 case REFERENCE_TYPE:
4225 /* Prevent infinite recursion in cases where this is a recursive
4226 type. Recursive types are possible in Ada. */
4227 TREE_ASM_WRITTEN (type) = 1;
4228 /* For these types, all that is required is that we output a DIE
4229 (or a set of DIEs) to represent the "basis" type. */
4230 output_type (TREE_TYPE (type), containing_scope);
4231 break;
4233 case OFFSET_TYPE:
4234 /* This code is used for C++ pointer-to-data-member types. */
4235 /* Output a description of the relevant class type. */
4236 output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
4237 /* Output a description of the type of the object pointed to. */
4238 output_type (TREE_TYPE (type), containing_scope);
4239 /* Now output a DIE to represent this pointer-to-data-member type
4240 itself. */
4241 output_die (output_ptr_to_mbr_type_die, type);
4242 break;
4244 case SET_TYPE:
4245 output_type (TYPE_DOMAIN (type), containing_scope);
4246 output_die (output_set_type_die, type);
4247 break;
4249 case FILE_TYPE:
4250 output_type (TREE_TYPE (type), containing_scope);
4251 abort (); /* No way to represent these in Dwarf yet! */
4252 break;
4254 case FUNCTION_TYPE:
4255 /* Force out return type (in case it wasn't forced out already). */
4256 output_type (TREE_TYPE (type), containing_scope);
4257 output_die (output_subroutine_type_die, type);
4258 output_formal_types (type);
4259 end_sibling_chain ();
4260 break;
4262 case METHOD_TYPE:
4263 /* Force out return type (in case it wasn't forced out already). */
4264 output_type (TREE_TYPE (type), containing_scope);
4265 output_die (output_subroutine_type_die, type);
4266 output_formal_types (type);
4267 end_sibling_chain ();
4268 break;
4270 case ARRAY_TYPE:
4271 if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4273 output_type (TREE_TYPE (type), containing_scope);
4274 output_die (output_string_type_die, type);
4276 else
4278 register tree element_type;
4280 element_type = TREE_TYPE (type);
4281 while (TREE_CODE (element_type) == ARRAY_TYPE)
4282 element_type = TREE_TYPE (element_type);
4284 output_type (element_type, containing_scope);
4285 output_die (output_array_type_die, type);
4287 break;
4289 case ENUMERAL_TYPE:
4290 case RECORD_TYPE:
4291 case UNION_TYPE:
4292 case QUAL_UNION_TYPE:
4294 /* For a non-file-scope tagged type, we can always go ahead and
4295 output a Dwarf description of this type right now, even if
4296 the type in question is still incomplete, because if this
4297 local type *was* ever completed anywhere within its scope,
4298 that complete definition would already have been attached to
4299 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4300 node by the time we reach this point. That's true because of the
4301 way the front-end does its processing of file-scope declarations (of
4302 functions and class types) within which other types might be
4303 nested. The C and C++ front-ends always gobble up such "local
4304 scope" things en-mass before they try to output *any* debugging
4305 information for any of the stuff contained inside them and thus,
4306 we get the benefit here of what is (in effect) a pre-resolution
4307 of forward references to tagged types in local scopes.
4309 Note however that for file-scope tagged types we cannot assume
4310 that such pre-resolution of forward references has taken place.
4311 A given file-scope tagged type may appear to be incomplete when
4312 we reach this point, but it may yet be given a full definition
4313 (at file-scope) later on during compilation. In order to avoid
4314 generating a premature (and possibly incorrect) set of Dwarf
4315 DIEs for such (as yet incomplete) file-scope tagged types, we
4316 generate nothing at all for as-yet incomplete file-scope tagged
4317 types here unless we are making our special "finalization" pass
4318 for file-scope things at the very end of compilation. At that
4319 time, we will certainly know as much about each file-scope tagged
4320 type as we are ever going to know, so at that point in time, we
4321 can safely generate correct Dwarf descriptions for these file-
4322 scope tagged types. */
4324 if (TYPE_SIZE (type) == 0
4325 && (TYPE_CONTEXT (type) == NULL
4326 || TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't')
4327 && !finalizing)
4328 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4330 /* Prevent infinite recursion in cases where the type of some
4331 member of this type is expressed in terms of this type itself. */
4333 TREE_ASM_WRITTEN (type) = 1;
4335 /* Output a DIE to represent the tagged type itself. */
4337 switch (TREE_CODE (type))
4339 case ENUMERAL_TYPE:
4340 output_die (output_enumeration_type_die, type);
4341 return; /* a special case -- nothing left to do so just return */
4343 case RECORD_TYPE:
4344 output_die (output_structure_type_die, type);
4345 break;
4347 case UNION_TYPE:
4348 case QUAL_UNION_TYPE:
4349 output_die (output_union_type_die, type);
4350 break;
4352 default:
4353 abort (); /* Should never happen. */
4356 /* If this is not an incomplete type, output descriptions of
4357 each of its members.
4359 Note that as we output the DIEs necessary to represent the
4360 members of this record or union type, we will also be trying
4361 to output DIEs to represent the *types* of those members.
4362 However the `output_type' function (above) will specifically
4363 avoid generating type DIEs for member types *within* the list
4364 of member DIEs for this (containing) type execpt for those
4365 types (of members) which are explicitly marked as also being
4366 members of this (containing) type themselves. The g++ front-
4367 end can force any given type to be treated as a member of some
4368 other (containing) type by setting the TYPE_CONTEXT of the
4369 given (member) type to point to the TREE node representing the
4370 appropriate (containing) type.
4373 if (TYPE_SIZE (type))
4375 /* First output info about the base classes. */
4376 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
4378 register tree bases = TYPE_BINFO_BASETYPES (type);
4379 register int n_bases = TREE_VEC_LENGTH (bases);
4380 register int i;
4382 for (i = 0; i < n_bases; i++)
4383 output_die (output_inheritance_die, TREE_VEC_ELT (bases, i));
4386 ++in_class;
4389 register tree normal_member;
4391 /* Now output info about the data members and type members. */
4393 for (normal_member = TYPE_FIELDS (type);
4394 normal_member;
4395 normal_member = TREE_CHAIN (normal_member))
4396 output_decl (normal_member, type);
4400 register tree func_member;
4402 /* Now output info about the function members (if any). */
4404 for (func_member = TYPE_METHODS (type);
4405 func_member;
4406 func_member = TREE_CHAIN (func_member))
4407 output_decl (func_member, type);
4410 --in_class;
4412 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4413 scopes (at least in C++) so we must now output any nested
4414 pending types which are local just to this type. */
4416 output_pending_types_for_scope (type);
4418 end_sibling_chain (); /* Terminate member chain. */
4421 break;
4423 case VOID_TYPE:
4424 case INTEGER_TYPE:
4425 case REAL_TYPE:
4426 case COMPLEX_TYPE:
4427 case BOOLEAN_TYPE:
4428 case CHAR_TYPE:
4429 break; /* No DIEs needed for fundamental types. */
4431 case LANG_TYPE: /* No Dwarf representation currently defined. */
4432 break;
4434 default:
4435 abort ();
4438 TREE_ASM_WRITTEN (type) = 1;
4441 static void
4442 output_tagged_type_instantiation (type)
4443 register tree type;
4445 if (type == 0 || type == error_mark_node)
4446 return;
4448 /* We are going to output a DIE to represent the unqualified version of
4449 of this type (i.e. without any const or volatile qualifiers) so make
4450 sure that we have the main variant (i.e. the unqualified version) of
4451 this type now. */
4453 if (type != type_main_variant (type))
4454 abort ();
4456 if (!TREE_ASM_WRITTEN (type))
4457 abort ();
4459 switch (TREE_CODE (type))
4461 case ERROR_MARK:
4462 break;
4464 case ENUMERAL_TYPE:
4465 output_die (output_inlined_enumeration_type_die, type);
4466 break;
4468 case RECORD_TYPE:
4469 output_die (output_inlined_structure_type_die, type);
4470 break;
4472 case UNION_TYPE:
4473 case QUAL_UNION_TYPE:
4474 output_die (output_inlined_union_type_die, type);
4475 break;
4477 default:
4478 abort (); /* Should never happen. */
4482 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
4483 the things which are local to the given block. */
4485 static void
4486 output_block (stmt, depth)
4487 register tree stmt;
4488 int depth;
4490 register int must_output_die = 0;
4491 register tree origin;
4492 register enum tree_code origin_code;
4494 /* Ignore blocks never really used to make RTL. */
4496 if (! stmt || ! TREE_USED (stmt))
4497 return;
4499 /* Determine the "ultimate origin" of this block. This block may be an
4500 inlined instance of an inlined instance of inline function, so we
4501 have to trace all of the way back through the origin chain to find
4502 out what sort of node actually served as the original seed for the
4503 creation of the current block. */
4505 origin = block_ultimate_origin (stmt);
4506 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
4508 /* Determine if we need to output any Dwarf DIEs at all to represent this
4509 block. */
4511 if (origin_code == FUNCTION_DECL)
4512 /* The outer scopes for inlinings *must* always be represented. We
4513 generate TAG_inlined_subroutine DIEs for them. (See below.) */
4514 must_output_die = 1;
4515 else
4517 /* In the case where the current block represents an inlining of the
4518 "body block" of an inline function, we must *NOT* output any DIE
4519 for this block because we have already output a DIE to represent
4520 the whole inlined function scope and the "body block" of any
4521 function doesn't really represent a different scope according to
4522 ANSI C rules. So we check here to make sure that this block does
4523 not represent a "body block inlining" before trying to set the
4524 `must_output_die' flag. */
4526 if (! is_body_block (origin ? origin : stmt))
4528 /* Determine if this block directly contains any "significant"
4529 local declarations which we will need to output DIEs for. */
4531 if (debug_info_level > DINFO_LEVEL_TERSE)
4532 /* We are not in terse mode so *any* local declaration counts
4533 as being a "significant" one. */
4534 must_output_die = (BLOCK_VARS (stmt) != NULL);
4535 else
4537 register tree decl;
4539 /* We are in terse mode, so only local (nested) function
4540 definitions count as "significant" local declarations. */
4542 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4543 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
4545 must_output_die = 1;
4546 break;
4552 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
4553 DIE for any block which contains no significant local declarations
4554 at all. Rather, in such cases we just call `output_decls_for_scope'
4555 so that any needed Dwarf info for any sub-blocks will get properly
4556 generated. Note that in terse mode, our definition of what constitutes
4557 a "significant" local declaration gets restricted to include only
4558 inlined function instances and local (nested) function definitions. */
4560 if (origin_code == FUNCTION_DECL && BLOCK_ABSTRACT (stmt))
4561 /* We don't care about an abstract inlined subroutine. */;
4562 else if (must_output_die)
4564 output_die ((origin_code == FUNCTION_DECL)
4565 ? output_inlined_subroutine_die
4566 : output_lexical_block_die,
4567 stmt);
4568 output_decls_for_scope (stmt, depth);
4569 end_sibling_chain ();
4571 else
4572 output_decls_for_scope (stmt, depth);
4575 /* Output all of the decls declared within a given scope (also called
4576 a `binding contour') and (recursively) all of it's sub-blocks. */
4578 static void
4579 output_decls_for_scope (stmt, depth)
4580 register tree stmt;
4581 int depth;
4583 /* Ignore blocks never really used to make RTL. */
4585 if (! stmt || ! TREE_USED (stmt))
4586 return;
4588 if (! BLOCK_ABSTRACT (stmt) && depth > 0)
4589 next_block_number++;
4591 /* Output the DIEs to represent all of the data objects, functions,
4592 typedefs, and tagged types declared directly within this block
4593 but not within any nested sub-blocks. */
4596 register tree decl;
4598 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4599 output_decl (decl, stmt);
4602 output_pending_types_for_scope (stmt);
4604 /* Output the DIEs to represent all sub-blocks (and the items declared
4605 therein) of this block. */
4608 register tree subblocks;
4610 for (subblocks = BLOCK_SUBBLOCKS (stmt);
4611 subblocks;
4612 subblocks = BLOCK_CHAIN (subblocks))
4613 output_block (subblocks, depth + 1);
4617 /* Is this a typedef we can avoid emitting? */
4619 inline int
4620 is_redundant_typedef (decl)
4621 register tree decl;
4623 if (TYPE_DECL_IS_STUB (decl))
4624 return 1;
4625 if (DECL_ARTIFICIAL (decl)
4626 && DECL_CONTEXT (decl)
4627 && is_tagged_type (DECL_CONTEXT (decl))
4628 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
4629 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
4630 /* Also ignore the artificial member typedef for the class name. */
4631 return 1;
4632 return 0;
4635 /* Output Dwarf .debug information for a decl described by DECL. */
4637 static void
4638 output_decl (decl, containing_scope)
4639 register tree decl;
4640 register tree containing_scope;
4642 /* Make a note of the decl node we are going to be working on. We may
4643 need to give the user the source coordinates of where it appeared in
4644 case we notice (later on) that something about it looks screwy. */
4646 dwarf_last_decl = decl;
4648 if (TREE_CODE (decl) == ERROR_MARK)
4649 return;
4651 /* If a structure is declared within an initialization, e.g. as the
4652 operand of a sizeof, then it will not have a name. We don't want
4653 to output a DIE for it, as the tree nodes are in the temporary obstack */
4655 if ((TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4656 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
4657 && ((DECL_NAME (decl) == 0 && TYPE_NAME (TREE_TYPE (decl)) == 0)
4658 || (TYPE_FIELDS (TREE_TYPE (decl))
4659 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl))) == ERROR_MARK))))
4660 return;
4662 /* If this ..._DECL node is marked to be ignored, then ignore it.
4663 But don't ignore a function definition, since that would screw
4664 up our count of blocks, and that it turn will completely screw up the
4665 the labels we will reference in subsequent AT_low_pc and AT_high_pc
4666 attributes (for subsequent blocks). */
4668 if (DECL_IGNORED_P (decl) && TREE_CODE (decl) != FUNCTION_DECL)
4669 return;
4671 switch (TREE_CODE (decl))
4673 case CONST_DECL:
4674 /* The individual enumerators of an enum type get output when we
4675 output the Dwarf representation of the relevant enum type itself. */
4676 break;
4678 case FUNCTION_DECL:
4679 /* If we are in terse mode, don't output any DIEs to represent
4680 mere function declarations. Also, if we are conforming
4681 to the DWARF version 1 specification, don't output DIEs for
4682 mere function declarations. */
4684 if (DECL_INITIAL (decl) == NULL_TREE)
4685 #if (DWARF_VERSION > 1)
4686 if (debug_info_level <= DINFO_LEVEL_TERSE)
4687 #endif
4688 break;
4690 /* Before we describe the FUNCTION_DECL itself, make sure that we
4691 have described its return type. */
4693 output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
4696 /* And its containing type. */
4697 register tree origin = decl_class_context (decl);
4698 if (origin)
4699 output_type (origin, containing_scope);
4702 /* If the following DIE will represent a function definition for a
4703 function with "extern" linkage, output a special "pubnames" DIE
4704 label just ahead of the actual DIE. A reference to this label
4705 was already generated in the .debug_pubnames section sub-entry
4706 for this function definition. */
4708 if (TREE_PUBLIC (decl))
4710 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4712 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4713 ASM_OUTPUT_LABEL (asm_out_file, label);
4716 /* Now output a DIE to represent the function itself. */
4718 output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
4719 ? output_global_subroutine_die
4720 : output_local_subroutine_die,
4721 decl);
4723 /* Now output descriptions of the arguments for this function.
4724 This gets (unnecessarily?) complex because of the fact that
4725 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
4726 cases where there was a trailing `...' at the end of the formal
4727 parameter list. In order to find out if there was a trailing
4728 ellipsis or not, we must instead look at the type associated
4729 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
4730 If the chain of type nodes hanging off of this FUNCTION_TYPE node
4731 ends with a void_type_node then there should *not* be an ellipsis
4732 at the end. */
4734 /* In the case where we are describing a mere function declaration, all
4735 we need to do here (and all we *can* do here) is to describe
4736 the *types* of its formal parameters. */
4738 if (decl != current_function_decl || in_class)
4739 output_formal_types (TREE_TYPE (decl));
4740 else
4742 /* Generate DIEs to represent all known formal parameters */
4744 register tree arg_decls = DECL_ARGUMENTS (decl);
4745 register tree parm;
4747 /* WARNING! Kludge zone ahead! Here we have a special
4748 hack for svr4 SDB compatibility. Instead of passing the
4749 current FUNCTION_DECL node as the second parameter (i.e.
4750 the `containing_scope' parameter) to `output_decl' (as
4751 we ought to) we instead pass a pointer to our own private
4752 fake_containing_scope node. That node is a RECORD_TYPE
4753 node which NO OTHER TYPE may ever actually be a member of.
4755 This pointer will ultimately get passed into `output_type'
4756 as its `containing_scope' parameter. `Output_type' will
4757 then perform its part in the hack... i.e. it will pend
4758 the type of the formal parameter onto the pending_types
4759 list. Later on, when we are done generating the whole
4760 sequence of formal parameter DIEs for this function
4761 definition, we will un-pend all previously pended types
4762 of formal parameters for this function definition.
4764 This whole kludge prevents any type DIEs from being
4765 mixed in with the formal parameter DIEs. That's good
4766 because svr4 SDB believes that the list of formal
4767 parameter DIEs for a function ends wherever the first
4768 non-formal-parameter DIE appears. Thus, we have to
4769 keep the formal parameter DIEs segregated. They must
4770 all appear (consecutively) at the start of the list of
4771 children for the DIE representing the function definition.
4772 Then (and only then) may we output any additional DIEs
4773 needed to represent the types of these formal parameters.
4777 When generating DIEs, generate the unspecified_parameters
4778 DIE instead if we come across the arg "__builtin_va_alist"
4781 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
4782 if (TREE_CODE (parm) == PARM_DECL)
4784 if (DECL_NAME(parm) &&
4785 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
4786 "__builtin_va_alist") )
4787 output_die (output_unspecified_parameters_die, decl);
4788 else
4789 output_decl (parm, fake_containing_scope);
4793 Now that we have finished generating all of the DIEs to
4794 represent the formal parameters themselves, force out
4795 any DIEs needed to represent their types. We do this
4796 simply by un-pending all previously pended types which
4797 can legitimately go into the chain of children DIEs for
4798 the current FUNCTION_DECL.
4801 output_pending_types_for_scope (decl);
4804 Decide whether we need a unspecified_parameters DIE at the end.
4805 There are 2 more cases to do this for:
4806 1) the ansi ... declaration - this is detectable when the end
4807 of the arg list is not a void_type_node
4808 2) an unprototyped function declaration (not a definition). This
4809 just means that we have no info about the parameters at all.
4813 register tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
4815 if (fn_arg_types)
4817 /* this is the prototyped case, check for ... */
4818 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
4819 output_die (output_unspecified_parameters_die, decl);
4821 else
4823 /* this is unprototyped, check for undefined (just declaration) */
4824 if (!DECL_INITIAL (decl))
4825 output_die (output_unspecified_parameters_die, decl);
4829 /* Output Dwarf info for all of the stuff within the body of the
4830 function (if it has one - it may be just a declaration). */
4833 register tree outer_scope = DECL_INITIAL (decl);
4835 if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
4837 /* Note that here, `outer_scope' is a pointer to the outermost
4838 BLOCK node created to represent a function.
4839 This outermost BLOCK actually represents the outermost
4840 binding contour for the function, i.e. the contour in which
4841 the function's formal parameters and labels get declared.
4843 Curiously, it appears that the front end doesn't actually
4844 put the PARM_DECL nodes for the current function onto the
4845 BLOCK_VARS list for this outer scope. (They are strung
4846 off of the DECL_ARGUMENTS list for the function instead.)
4847 The BLOCK_VARS list for the `outer_scope' does provide us
4848 with a list of the LABEL_DECL nodes for the function however,
4849 and we output DWARF info for those here.
4851 Just within the `outer_scope' there will be a BLOCK node
4852 representing the function's outermost pair of curly braces,
4853 and any blocks used for the base and member initializers of
4854 a C++ constructor function. */
4856 output_decls_for_scope (outer_scope, 0);
4858 /* Finally, force out any pending types which are local to the
4859 outermost block of this function definition. These will
4860 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
4861 node itself. */
4863 output_pending_types_for_scope (decl);
4868 /* Generate a terminator for the list of stuff `owned' by this
4869 function. */
4871 end_sibling_chain ();
4873 break;
4875 case TYPE_DECL:
4876 /* If we are in terse mode, don't generate any DIEs to represent
4877 any actual typedefs. Note that even when we are in terse mode,
4878 we must still output DIEs to represent those tagged types which
4879 are used (directly or indirectly) in the specification of either
4880 a return type or a formal parameter type of some function. */
4882 if (debug_info_level <= DINFO_LEVEL_TERSE)
4883 if (! TYPE_DECL_IS_STUB (decl)
4884 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)) && ! in_class))
4885 return;
4887 /* In the special case of a TYPE_DECL node representing
4888 the declaration of some type tag, if the given TYPE_DECL is
4889 marked as having been instantiated from some other (original)
4890 TYPE_DECL node (e.g. one which was generated within the original
4891 definition of an inline function) we have to generate a special
4892 (abbreviated) TAG_structure_type, TAG_union_type, or
4893 TAG_enumeration-type DIE here. */
4895 if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl))
4897 output_tagged_type_instantiation (TREE_TYPE (decl));
4898 return;
4901 output_type (TREE_TYPE (decl), containing_scope);
4903 if (! is_redundant_typedef (decl))
4904 /* Output a DIE to represent the typedef itself. */
4905 output_die (output_typedef_die, decl);
4906 break;
4908 case LABEL_DECL:
4909 if (debug_info_level >= DINFO_LEVEL_NORMAL)
4910 output_die (output_label_die, decl);
4911 break;
4913 case VAR_DECL:
4914 /* If we are conforming to the DWARF version 1 specification, don't
4915 generated any DIEs to represent mere external object declarations. */
4917 #if (DWARF_VERSION <= 1)
4918 if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
4919 break;
4920 #endif
4922 /* If we are in terse mode, don't generate any DIEs to represent
4923 any variable declarations or definitions. */
4925 if (debug_info_level <= DINFO_LEVEL_TERSE)
4926 break;
4928 /* Output any DIEs that are needed to specify the type of this data
4929 object. */
4931 output_type (TREE_TYPE (decl), containing_scope);
4934 /* And its containing type. */
4935 register tree origin = decl_class_context (decl);
4936 if (origin)
4937 output_type (origin, containing_scope);
4940 /* If the following DIE will represent a data object definition for a
4941 data object with "extern" linkage, output a special "pubnames" DIE
4942 label just ahead of the actual DIE. A reference to this label
4943 was already generated in the .debug_pubnames section sub-entry
4944 for this data object definition. */
4946 if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
4948 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4950 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4951 ASM_OUTPUT_LABEL (asm_out_file, label);
4954 /* Now output the DIE to represent the data object itself. This gets
4955 complicated because of the possibility that the VAR_DECL really
4956 represents an inlined instance of a formal parameter for an inline
4957 function. */
4960 register void (*func) ();
4961 register tree origin = decl_ultimate_origin (decl);
4963 if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
4964 func = output_formal_parameter_die;
4965 else
4967 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
4968 func = output_global_variable_die;
4969 else
4970 func = output_local_variable_die;
4972 output_die (func, decl);
4974 break;
4976 case FIELD_DECL:
4977 /* Ignore the nameless fields that are used to skip bits. */
4978 if (DECL_NAME (decl) != 0)
4980 output_type (member_declared_type (decl), containing_scope);
4981 output_die (output_member_die, decl);
4983 break;
4985 case PARM_DECL:
4986 /* Force out the type of this formal, if it was not forced out yet.
4987 Note that here we can run afowl of a bug in "classic" svr4 SDB.
4988 It should be able to grok the presence of type DIEs within a list
4989 of TAG_formal_parameter DIEs, but it doesn't. */
4991 output_type (TREE_TYPE (decl), containing_scope);
4992 output_die (output_formal_parameter_die, decl);
4993 break;
4995 default:
4996 abort ();
5000 void
5001 dwarfout_file_scope_decl (decl, set_finalizing)
5002 register tree decl;
5003 register int set_finalizing;
5005 if (TREE_CODE (decl) == ERROR_MARK)
5006 return;
5008 /* If this ..._DECL node is marked to be ignored, then ignore it. We
5009 gotta hope that the node in question doesn't represent a function
5010 definition. If it does, then totally ignoring it is bound to screw
5011 up our count of blocks, and that it turn will completely screw up the
5012 the labels we will reference in subsequent AT_low_pc and AT_high_pc
5013 attributes (for subsequent blocks). (It's too bad that BLOCK nodes
5014 don't carry their own sequence numbers with them!) */
5016 if (DECL_IGNORED_P (decl))
5018 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5019 abort ();
5020 return;
5023 switch (TREE_CODE (decl))
5025 case FUNCTION_DECL:
5027 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5028 a builtin function. Explicit programmer-supplied declarations of
5029 these same functions should NOT be ignored however. */
5031 if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
5032 return;
5034 /* What we would really like to do here is to filter out all mere
5035 file-scope declarations of file-scope functions which are never
5036 referenced later within this translation unit (and keep all of
5037 ones that *are* referenced later on) but we aren't clairvoyant,
5038 so we have no idea which functions will be referenced in the
5039 future (i.e. later on within the current translation unit).
5040 So here we just ignore all file-scope function declarations
5041 which are not also definitions. If and when the debugger needs
5042 to know something about these functions, it wil have to hunt
5043 around and find the DWARF information associated with the
5044 *definition* of the function.
5046 Note that we can't just check `DECL_EXTERNAL' to find out which
5047 FUNCTION_DECL nodes represent definitions and which ones represent
5048 mere declarations. We have to check `DECL_INITIAL' instead. That's
5049 because the C front-end supports some weird semantics for "extern
5050 inline" function definitions. These can get inlined within the
5051 current translation unit (an thus, we need to generate DWARF info
5052 for their abstract instances so that the DWARF info for the
5053 concrete inlined instances can have something to refer to) but
5054 the compiler never generates any out-of-lines instances of such
5055 things (despite the fact that they *are* definitions). The
5056 important point is that the C front-end marks these "extern inline"
5057 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5058 anyway.
5060 Note that the C++ front-end also plays some similar games for inline
5061 function definitions appearing within include files which also
5062 contain `#pragma interface' pragmas. */
5064 if (DECL_INITIAL (decl) == NULL_TREE)
5065 return;
5067 if (TREE_PUBLIC (decl)
5068 && ! DECL_EXTERNAL (decl)
5069 && ! DECL_ABSTRACT (decl))
5071 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5073 /* Output a .debug_pubnames entry for a public function
5074 defined in this compilation unit. */
5076 fputc ('\n', asm_out_file);
5077 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5078 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5079 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5080 ASM_OUTPUT_DWARF_STRING (asm_out_file,
5081 IDENTIFIER_POINTER (DECL_NAME (decl)));
5082 ASM_OUTPUT_POP_SECTION (asm_out_file);
5085 break;
5087 case VAR_DECL:
5089 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5090 object declaration and if the declaration was never even
5091 referenced from within this entire compilation unit. We
5092 suppress these DIEs in order to save space in the .debug section
5093 (by eliminating entries which are probably useless). Note that
5094 we must not suppress block-local extern declarations (whether
5095 used or not) because that would screw-up the debugger's name
5096 lookup mechanism and cause it to miss things which really ought
5097 to be in scope at a given point. */
5099 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
5100 return;
5102 if (TREE_PUBLIC (decl)
5103 && ! DECL_EXTERNAL (decl)
5104 && GET_CODE (DECL_RTL (decl)) == MEM
5105 && ! DECL_ABSTRACT (decl))
5107 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5109 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5111 /* Output a .debug_pubnames entry for a public variable
5112 defined in this compilation unit. */
5114 fputc ('\n', asm_out_file);
5115 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5116 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5117 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5118 ASM_OUTPUT_DWARF_STRING (asm_out_file,
5119 IDENTIFIER_POINTER (DECL_NAME (decl)));
5120 ASM_OUTPUT_POP_SECTION (asm_out_file);
5123 if (DECL_INITIAL (decl) == NULL)
5125 /* Output a .debug_aranges entry for a public variable
5126 which is tentatively defined in this compilation unit. */
5128 fputc ('\n', asm_out_file);
5129 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5130 ASM_OUTPUT_DWARF_ADDR (asm_out_file,
5131 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
5132 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
5133 (unsigned) int_size_in_bytes (TREE_TYPE (decl)));
5134 ASM_OUTPUT_POP_SECTION (asm_out_file);
5138 /* If we are in terse mode, don't generate any DIEs to represent
5139 any variable declarations or definitions. */
5141 if (debug_info_level <= DINFO_LEVEL_TERSE)
5142 return;
5144 break;
5146 case TYPE_DECL:
5147 /* Don't bother trying to generate any DIEs to represent any of the
5148 normal built-in types for the language we are compiling, except
5149 in cases where the types in question are *not* DWARF fundamental
5150 types. We make an exception in the case of non-fundamental types
5151 for the sake of objective C (and perhaps C++) because the GNU
5152 front-ends for these languages may in fact create certain "built-in"
5153 types which are (for example) RECORD_TYPEs. In such cases, we
5154 really need to output these (non-fundamental) types because other
5155 DIEs may contain references to them. */
5157 if (DECL_SOURCE_LINE (decl) == 0
5158 && type_is_fundamental (TREE_TYPE (decl)))
5159 return;
5161 /* If we are in terse mode, don't generate any DIEs to represent
5162 any actual typedefs. Note that even when we are in terse mode,
5163 we must still output DIEs to represent those tagged types which
5164 are used (directly or indirectly) in the specification of either
5165 a return type or a formal parameter type of some function. */
5167 if (debug_info_level <= DINFO_LEVEL_TERSE)
5168 if (! TYPE_DECL_IS_STUB (decl)
5169 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
5170 return;
5172 break;
5174 default:
5175 return;
5178 fputc ('\n', asm_out_file);
5179 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5180 finalizing = set_finalizing;
5181 output_decl (decl, NULL_TREE);
5183 /* NOTE: The call above to `output_decl' may have caused one or more
5184 file-scope named types (i.e. tagged types) to be placed onto the
5185 pending_types_list. We have to get those types off of that list
5186 at some point, and this is the perfect time to do it. If we didn't
5187 take them off now, they might still be on the list when cc1 finally
5188 exits. That might be OK if it weren't for the fact that when we put
5189 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5190 for these types, and that causes them never to be output unless
5191 `output_pending_types_for_scope' takes them off of the list and un-sets
5192 their TREE_ASM_WRITTEN flags. */
5194 output_pending_types_for_scope (NULL_TREE);
5196 /* The above call should have totally emptied the pending_types_list. */
5198 if (pending_types != 0)
5199 abort ();
5201 ASM_OUTPUT_POP_SECTION (asm_out_file);
5203 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5204 current_funcdef_number++;
5207 /* Output a marker (i.e. a label) for the beginning of the generated code
5208 for a lexical block. */
5210 void
5211 dwarfout_begin_block (blocknum)
5212 register unsigned blocknum;
5214 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5216 function_section (current_function_decl);
5217 sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
5218 ASM_OUTPUT_LABEL (asm_out_file, label);
5221 /* Output a marker (i.e. a label) for the end of the generated code
5222 for a lexical block. */
5224 void
5225 dwarfout_end_block (blocknum)
5226 register unsigned blocknum;
5228 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5230 function_section (current_function_decl);
5231 sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
5232 ASM_OUTPUT_LABEL (asm_out_file, label);
5235 /* Output a marker (i.e. a label) at a point in the assembly code which
5236 corresponds to a given source level label. */
5238 void
5239 dwarfout_label (insn)
5240 register rtx insn;
5242 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5244 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5246 function_section (current_function_decl);
5247 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
5248 (unsigned) INSN_UID (insn));
5249 ASM_OUTPUT_LABEL (asm_out_file, label);
5253 /* Output a marker (i.e. a label) for the point in the generated code where
5254 the real body of the function begins (after parameters have been moved
5255 to their home locations). */
5257 void
5258 dwarfout_begin_function ()
5260 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5262 if (! use_gnu_debug_info_extensions)
5263 return;
5264 function_section (current_function_decl);
5265 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
5266 ASM_OUTPUT_LABEL (asm_out_file, label);
5269 /* Output a marker (i.e. a label) for the point in the generated code where
5270 the real body of the function ends (just before the epilogue code). */
5272 void
5273 dwarfout_end_function ()
5275 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5277 if (! use_gnu_debug_info_extensions)
5278 return;
5279 function_section (current_function_decl);
5280 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
5281 ASM_OUTPUT_LABEL (asm_out_file, label);
5284 /* Output a marker (i.e. a label) for the absolute end of the generated code
5285 for a function definition. This gets called *after* the epilogue code
5286 has been generated. */
5288 void
5289 dwarfout_end_epilogue ()
5291 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5293 /* Output a label to mark the endpoint of the code generated for this
5294 function. */
5296 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
5297 ASM_OUTPUT_LABEL (asm_out_file, label);
5300 static void
5301 shuffle_filename_entry (new_zeroth)
5302 register filename_entry *new_zeroth;
5304 filename_entry temp_entry;
5305 register filename_entry *limit_p;
5306 register filename_entry *move_p;
5308 if (new_zeroth == &filename_table[0])
5309 return;
5311 temp_entry = *new_zeroth;
5313 /* Shift entries up in the table to make room at [0]. */
5315 limit_p = &filename_table[0];
5316 for (move_p = new_zeroth; move_p > limit_p; move_p--)
5317 *move_p = *(move_p-1);
5319 /* Install the found entry at [0]. */
5321 filename_table[0] = temp_entry;
5324 /* Create a new (string) entry for the .debug_sfnames section. */
5326 static void
5327 generate_new_sfname_entry ()
5329 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5331 fputc ('\n', asm_out_file);
5332 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5333 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5334 ASM_OUTPUT_LABEL (asm_out_file, label);
5335 ASM_OUTPUT_DWARF_STRING (asm_out_file,
5336 filename_table[0].name
5337 ? filename_table[0].name
5338 : "");
5339 ASM_OUTPUT_POP_SECTION (asm_out_file);
5342 /* Lookup a filename (in the list of filenames that we know about here in
5343 dwarfout.c) and return its "index". The index of each (known) filename
5344 is just a unique number which is associated with only that one filename.
5345 We need such numbers for the sake of generating labels (in the
5346 .debug_sfnames section) and references to those unique labels (in the
5347 .debug_srcinfo and .debug_macinfo sections).
5349 If the filename given as an argument is not found in our current list,
5350 add it to the list and assign it the next available unique index number.
5352 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5353 one), we shuffle the filename found (or added) up to the zeroth entry of
5354 our list of filenames (which is always searched linearly). We do this so
5355 as to optimize the most common case for these filename lookups within
5356 dwarfout.c. The most common case by far is the case where we call
5357 lookup_filename to lookup the very same filename that we did a lookup
5358 on the last time we called lookup_filename. We make sure that this
5359 common case is fast because such cases will constitute 99.9% of the
5360 lookups we ever do (in practice).
5362 If we add a new filename entry to our table, we go ahead and generate
5363 the corresponding entry in the .debug_sfnames section right away.
5364 Doing so allows us to avoid tickling an assembler bug (present in some
5365 m68k assemblers) which yields assembly-time errors in cases where the
5366 difference of two label addresses is taken and where the two labels
5367 are in a section *other* than the one where the difference is being
5368 calculated, and where at least one of the two symbol references is a
5369 forward reference. (This bug could be tickled by our .debug_srcinfo
5370 entries if we don't output their corresponding .debug_sfnames entries
5371 before them.) */
5373 static unsigned
5374 lookup_filename (file_name)
5375 char *file_name;
5377 register filename_entry *search_p;
5378 register filename_entry *limit_p = &filename_table[ft_entries];
5380 for (search_p = filename_table; search_p < limit_p; search_p++)
5381 if (!strcmp (file_name, search_p->name))
5383 /* When we get here, we have found the filename that we were
5384 looking for in the filename_table. Now we want to make sure
5385 that it gets moved to the zero'th entry in the table (if it
5386 is not already there) so that subsequent attempts to find the
5387 same filename will find it as quickly as possible. */
5389 shuffle_filename_entry (search_p);
5390 return filename_table[0].number;
5393 /* We come here whenever we have a new filename which is not registered
5394 in the current table. Here we add it to the table. */
5396 /* Prepare to add a new table entry by making sure there is enough space
5397 in the table to do so. If not, expand the current table. */
5399 if (ft_entries == ft_entries_allocated)
5401 ft_entries_allocated += FT_ENTRIES_INCREMENT;
5402 filename_table
5403 = (filename_entry *)
5404 xrealloc (filename_table,
5405 ft_entries_allocated * sizeof (filename_entry));
5408 /* Initially, add the new entry at the end of the filename table. */
5410 filename_table[ft_entries].number = ft_entries;
5411 filename_table[ft_entries].name = xstrdup (file_name);
5413 /* Shuffle the new entry into filename_table[0]. */
5415 shuffle_filename_entry (&filename_table[ft_entries]);
5417 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5418 generate_new_sfname_entry ();
5420 ft_entries++;
5421 return filename_table[0].number;
5424 static void
5425 generate_srcinfo_entry (line_entry_num, files_entry_num)
5426 unsigned line_entry_num;
5427 unsigned files_entry_num;
5429 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5431 fputc ('\n', asm_out_file);
5432 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5433 sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
5434 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
5435 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
5436 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
5437 ASM_OUTPUT_POP_SECTION (asm_out_file);
5440 void
5441 dwarfout_line (filename, line)
5442 register char *filename;
5443 register unsigned line;
5445 if (debug_info_level >= DINFO_LEVEL_NORMAL
5446 /* We can't emit line number info for functions in separate sections,
5447 because the assembler can't subtract labels in different sections. */
5448 && DECL_SECTION_NAME (current_function_decl) == NULL_TREE)
5450 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5451 static unsigned last_line_entry_num = 0;
5452 static unsigned prev_file_entry_num = (unsigned) -1;
5453 register unsigned this_file_entry_num;
5455 function_section (current_function_decl);
5456 sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
5457 ASM_OUTPUT_LABEL (asm_out_file, label);
5459 fputc ('\n', asm_out_file);
5461 if (use_gnu_debug_info_extensions)
5462 this_file_entry_num = lookup_filename (filename);
5463 else
5464 this_file_entry_num = (unsigned) -1;
5466 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5467 if (this_file_entry_num != prev_file_entry_num)
5469 char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
5471 sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
5472 ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
5476 register char *tail = rindex (filename, '/');
5478 if (tail != NULL)
5479 filename = tail;
5482 fprintf (asm_out_file, "\t%s\t%u\t%s %s:%u\n",
5483 UNALIGNED_INT_ASM_OP, line, ASM_COMMENT_START,
5484 filename, line);
5485 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5486 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
5487 ASM_OUTPUT_POP_SECTION (asm_out_file);
5489 if (this_file_entry_num != prev_file_entry_num)
5490 generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
5491 prev_file_entry_num = this_file_entry_num;
5495 /* Generate an entry in the .debug_macinfo section. */
5497 static void
5498 generate_macinfo_entry (type_and_offset, string)
5499 register char *type_and_offset;
5500 register char *string;
5502 if (! use_gnu_debug_info_extensions)
5503 return;
5505 fputc ('\n', asm_out_file);
5506 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5507 fprintf (asm_out_file, "\t%s\t%s\n", UNALIGNED_INT_ASM_OP, type_and_offset);
5508 ASM_OUTPUT_DWARF_STRING (asm_out_file, string);
5509 ASM_OUTPUT_POP_SECTION (asm_out_file);
5512 void
5513 dwarfout_start_new_source_file (filename)
5514 register char *filename;
5516 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5517 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*3];
5519 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
5520 sprintf (type_and_offset, "0x%08x+%s-%s",
5521 ((unsigned) MACINFO_start << 24),
5522 /* Hack: skip leading '*' . */
5523 (*label == '*') + label,
5524 (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL);
5525 generate_macinfo_entry (type_and_offset, "");
5528 void
5529 dwarfout_resume_previous_source_file (lineno)
5530 register unsigned lineno;
5532 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5534 sprintf (type_and_offset, "0x%08x+%u",
5535 ((unsigned) MACINFO_resume << 24), lineno);
5536 generate_macinfo_entry (type_and_offset, "");
5539 /* Called from check_newline in c-parse.y. The `buffer' parameter
5540 contains the tail part of the directive line, i.e. the part which
5541 is past the initial whitespace, #, whitespace, directive-name,
5542 whitespace part. */
5544 void
5545 dwarfout_define (lineno, buffer)
5546 register unsigned lineno;
5547 register char *buffer;
5549 static int initialized = 0;
5550 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5552 if (!initialized)
5554 dwarfout_start_new_source_file (primary_filename);
5555 initialized = 1;
5557 sprintf (type_and_offset, "0x%08x+%u",
5558 ((unsigned) MACINFO_define << 24), lineno);
5559 generate_macinfo_entry (type_and_offset, buffer);
5562 /* Called from check_newline in c-parse.y. The `buffer' parameter
5563 contains the tail part of the directive line, i.e. the part which
5564 is past the initial whitespace, #, whitespace, directive-name,
5565 whitespace part. */
5567 void
5568 dwarfout_undef (lineno, buffer)
5569 register unsigned lineno;
5570 register char *buffer;
5572 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5574 sprintf (type_and_offset, "0x%08x+%u",
5575 ((unsigned) MACINFO_undef << 24), lineno);
5576 generate_macinfo_entry (type_and_offset, buffer);
5579 /* Set up for Dwarf output at the start of compilation. */
5581 void
5582 dwarfout_init (asm_out_file, main_input_filename)
5583 register FILE *asm_out_file;
5584 register char *main_input_filename;
5586 /* Remember the name of the primary input file. */
5588 primary_filename = main_input_filename;
5590 /* Allocate the initial hunk of the pending_sibling_stack. */
5592 pending_sibling_stack
5593 = (unsigned *)
5594 xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
5595 pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
5596 pending_siblings = 1;
5598 /* Allocate the initial hunk of the filename_table. */
5600 filename_table
5601 = (filename_entry *)
5602 xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
5603 ft_entries_allocated = FT_ENTRIES_INCREMENT;
5604 ft_entries = 0;
5606 /* Allocate the initial hunk of the pending_types_list. */
5608 pending_types_list
5609 = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
5610 pending_types_allocated = PENDING_TYPES_INCREMENT;
5611 pending_types = 0;
5613 /* Create an artificial RECORD_TYPE node which we can use in our hack
5614 to get the DIEs representing types of formal parameters to come out
5615 only *after* the DIEs for the formal parameters themselves. */
5617 fake_containing_scope = make_node (RECORD_TYPE);
5619 /* Output a starting label for the .text section. */
5621 fputc ('\n', asm_out_file);
5622 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5623 ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
5624 ASM_OUTPUT_POP_SECTION (asm_out_file);
5626 /* Output a starting label for the .data section. */
5628 fputc ('\n', asm_out_file);
5629 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5630 ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
5631 ASM_OUTPUT_POP_SECTION (asm_out_file);
5633 #if 0 /* GNU C doesn't currently use .data1. */
5634 /* Output a starting label for the .data1 section. */
5636 fputc ('\n', asm_out_file);
5637 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5638 ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
5639 ASM_OUTPUT_POP_SECTION (asm_out_file);
5640 #endif
5642 /* Output a starting label for the .rodata section. */
5644 fputc ('\n', asm_out_file);
5645 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5646 ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
5647 ASM_OUTPUT_POP_SECTION (asm_out_file);
5649 #if 0 /* GNU C doesn't currently use .rodata1. */
5650 /* Output a starting label for the .rodata1 section. */
5652 fputc ('\n', asm_out_file);
5653 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5654 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
5655 ASM_OUTPUT_POP_SECTION (asm_out_file);
5656 #endif
5658 /* Output a starting label for the .bss section. */
5660 fputc ('\n', asm_out_file);
5661 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5662 ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
5663 ASM_OUTPUT_POP_SECTION (asm_out_file);
5665 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5667 if (use_gnu_debug_info_extensions)
5669 /* Output a starting label and an initial (compilation directory)
5670 entry for the .debug_sfnames section. The starting label will be
5671 referenced by the initial entry in the .debug_srcinfo section. */
5673 fputc ('\n', asm_out_file);
5674 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5675 ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
5677 register char *pwd;
5678 register unsigned len;
5679 register char *dirname;
5681 pwd = getpwd ();
5682 if (!pwd)
5683 pfatal_with_name ("getpwd");
5684 len = strlen (pwd);
5685 dirname = (char *) xmalloc (len + 2);
5687 strcpy (dirname, pwd);
5688 strcpy (dirname + len, "/");
5689 ASM_OUTPUT_DWARF_STRING (asm_out_file, dirname);
5690 free (dirname);
5692 ASM_OUTPUT_POP_SECTION (asm_out_file);
5695 if (debug_info_level >= DINFO_LEVEL_VERBOSE
5696 && use_gnu_debug_info_extensions)
5698 /* Output a starting label for the .debug_macinfo section. This
5699 label will be referenced by the AT_mac_info attribute in the
5700 TAG_compile_unit DIE. */
5702 fputc ('\n', asm_out_file);
5703 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5704 ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
5705 ASM_OUTPUT_POP_SECTION (asm_out_file);
5708 /* Generate the initial entry for the .line section. */
5710 fputc ('\n', asm_out_file);
5711 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5712 ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
5713 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
5714 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5715 ASM_OUTPUT_POP_SECTION (asm_out_file);
5717 if (use_gnu_debug_info_extensions)
5719 /* Generate the initial entry for the .debug_srcinfo section. */
5721 fputc ('\n', asm_out_file);
5722 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5723 ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
5724 ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
5725 ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
5726 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5727 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
5728 #ifdef DWARF_TIMESTAMPS
5729 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
5730 #else
5731 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5732 #endif
5733 ASM_OUTPUT_POP_SECTION (asm_out_file);
5736 /* Generate the initial entry for the .debug_pubnames section. */
5738 fputc ('\n', asm_out_file);
5739 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5740 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5741 ASM_OUTPUT_POP_SECTION (asm_out_file);
5743 /* Generate the initial entry for the .debug_aranges section. */
5745 fputc ('\n', asm_out_file);
5746 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5747 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5748 ASM_OUTPUT_POP_SECTION (asm_out_file);
5751 /* Setup first DIE number == 1. */
5752 NEXT_DIE_NUM = next_unused_dienum++;
5754 /* Generate the initial DIE for the .debug section. Note that the
5755 (string) value given in the AT_name attribute of the TAG_compile_unit
5756 DIE will (typically) be a relative pathname and that this pathname
5757 should be taken as being relative to the directory from which the
5758 compiler was invoked when the given (base) source file was compiled. */
5760 fputc ('\n', asm_out_file);
5761 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5762 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
5763 output_die (output_compile_unit_die, main_input_filename);
5764 ASM_OUTPUT_POP_SECTION (asm_out_file);
5766 fputc ('\n', asm_out_file);
5769 /* Output stuff that dwarf requires at the end of every file. */
5771 void
5772 dwarfout_finish ()
5774 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5776 fputc ('\n', asm_out_file);
5777 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5779 /* Mark the end of the chain of siblings which represent all file-scope
5780 declarations in this compilation unit. */
5782 /* The (null) DIE which represents the terminator for the (sibling linked)
5783 list of file-scope items is *special*. Normally, we would just call
5784 end_sibling_chain at this point in order to output a word with the
5785 value `4' and that word would act as the terminator for the list of
5786 DIEs describing file-scope items. Unfortunately, if we were to simply
5787 do that, the label that would follow this DIE in the .debug section
5788 (i.e. `..D2') would *not* be properly aligned (as it must be on some
5789 machines) to a 4 byte boundary.
5791 In order to force the label `..D2' to get aligned to a 4 byte boundary,
5792 the trick used is to insert extra (otherwise useless) padding bytes
5793 into the (null) DIE that we know must precede the ..D2 label in the
5794 .debug section. The amount of padding required can be anywhere between
5795 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
5796 with the padding) would normally contain the value 4, but now it will
5797 also have to include the padding bytes, so it will instead have some
5798 value in the range 4..7.
5800 Fortunately, the rules of Dwarf say that any DIE whose length word
5801 contains *any* value less than 8 should be treated as a null DIE, so
5802 this trick works out nicely. Clever, eh? Don't give me any credit
5803 (or blame). I didn't think of this scheme. I just conformed to it.
5806 output_die (output_padded_null_die, (void *) 0);
5807 dienum_pop ();
5809 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
5810 ASM_OUTPUT_LABEL (asm_out_file, label); /* should be ..D2 */
5811 ASM_OUTPUT_POP_SECTION (asm_out_file);
5813 /* Output a terminator label for the .text section. */
5815 fputc ('\n', asm_out_file);
5816 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5817 ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
5818 ASM_OUTPUT_POP_SECTION (asm_out_file);
5820 /* Output a terminator label for the .data section. */
5822 fputc ('\n', asm_out_file);
5823 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5824 ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
5825 ASM_OUTPUT_POP_SECTION (asm_out_file);
5827 #if 0 /* GNU C doesn't currently use .data1. */
5828 /* Output a terminator label for the .data1 section. */
5830 fputc ('\n', asm_out_file);
5831 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5832 ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
5833 ASM_OUTPUT_POP_SECTION (asm_out_file);
5834 #endif
5836 /* Output a terminator label for the .rodata section. */
5838 fputc ('\n', asm_out_file);
5839 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5840 ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
5841 ASM_OUTPUT_POP_SECTION (asm_out_file);
5843 #if 0 /* GNU C doesn't currently use .rodata1. */
5844 /* Output a terminator label for the .rodata1 section. */
5846 fputc ('\n', asm_out_file);
5847 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5848 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
5849 ASM_OUTPUT_POP_SECTION (asm_out_file);
5850 #endif
5852 /* Output a terminator label for the .bss section. */
5854 fputc ('\n', asm_out_file);
5855 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5856 ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
5857 ASM_OUTPUT_POP_SECTION (asm_out_file);
5859 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5861 /* Output a terminating entry for the .line section. */
5863 fputc ('\n', asm_out_file);
5864 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5865 ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
5866 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5867 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5868 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
5869 ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
5870 ASM_OUTPUT_POP_SECTION (asm_out_file);
5872 if (use_gnu_debug_info_extensions)
5874 /* Output a terminating entry for the .debug_srcinfo section. */
5876 fputc ('\n', asm_out_file);
5877 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5878 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
5879 LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
5880 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5881 ASM_OUTPUT_POP_SECTION (asm_out_file);
5884 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
5886 /* Output terminating entries for the .debug_macinfo section. */
5888 dwarfout_resume_previous_source_file (0);
5890 fputc ('\n', asm_out_file);
5891 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5892 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5893 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
5894 ASM_OUTPUT_POP_SECTION (asm_out_file);
5897 /* Generate the terminating entry for the .debug_pubnames section. */
5899 fputc ('\n', asm_out_file);
5900 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5901 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5902 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
5903 ASM_OUTPUT_POP_SECTION (asm_out_file);
5905 /* Generate the terminating entries for the .debug_aranges section.
5907 Note that we want to do this only *after* we have output the end
5908 labels (for the various program sections) which we are going to
5909 refer to here. This allows us to work around a bug in the m68k
5910 svr4 assembler. That assembler gives bogus assembly-time errors
5911 if (within any given section) you try to take the difference of
5912 two relocatable symbols, both of which are located within some
5913 other section, and if one (or both?) of the symbols involved is
5914 being forward-referenced. By generating the .debug_aranges
5915 entries at this late point in the assembly output, we skirt the
5916 issue simply by avoiding forward-references.
5919 fputc ('\n', asm_out_file);
5920 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5922 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5923 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
5925 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
5926 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
5928 #if 0 /* GNU C doesn't currently use .data1. */
5929 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
5930 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
5931 DATA1_BEGIN_LABEL);
5932 #endif
5934 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
5935 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
5936 RODATA_BEGIN_LABEL);
5938 #if 0 /* GNU C doesn't currently use .rodata1. */
5939 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
5940 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
5941 RODATA1_BEGIN_LABEL);
5942 #endif
5944 ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
5945 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
5947 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5948 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5950 ASM_OUTPUT_POP_SECTION (asm_out_file);
5954 #endif /* DWARF_DEBUGGING_INFO */