1 /* Alias analysis for GNU C
2 Copyright (C) 1997 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
26 #include "hard-reg-set.h"
29 static rtx canon_rtx
PROTO((rtx
));
30 static int rtx_equal_for_memref_p
PROTO((rtx
, rtx
));
31 static rtx find_symbolic_term
PROTO((rtx
));
32 static int memrefs_conflict_p
PROTO((int, rtx
, int, rtx
,
35 /* Set up all info needed to perform alias analysis on memory references. */
37 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
39 /* Cap the number of passes we make over the insns propagating alias
40 information through set chains.
42 10 is a completely arbitrary choice. */
43 #define MAX_ALIAS_LOOP_PASSES 10
45 /* reg_base_value[N] gives an address to which register N is related.
46 If all sets after the first add or subtract to the current value
47 or otherwise modify it so it does not point to a different top level
48 object, reg_base_value[N] is equal to the address part of the source
51 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
52 expressions represent certain special values: function arguments and
53 the stack, frame, and argument pointers. The contents of an address
54 expression are not used (but they are descriptive for debugging);
55 only the address and mode matter. Pointer equality, not rtx_equal_p,
56 determines whether two ADDRESS expressions refer to the same base
57 address. The mode determines whether it is a function argument or
58 other special value. */
61 rtx
*new_reg_base_value
;
62 unsigned int reg_base_value_size
; /* size of reg_base_value array */
63 #define REG_BASE_VALUE(X) \
64 (REGNO (X) < reg_base_value_size ? reg_base_value[REGNO (X)] : 0)
66 /* Vector indexed by N giving the initial (unchanging) value known
67 for pseudo-register N. */
70 /* Indicates number of valid entries in reg_known_value. */
71 static int reg_known_value_size
;
73 /* Vector recording for each reg_known_value whether it is due to a
74 REG_EQUIV note. Future passes (viz., reload) may replace the
75 pseudo with the equivalent expression and so we account for the
76 dependences that would be introduced if that happens. */
77 /* ??? This is a problem only on the Convex. The REG_EQUIV notes created in
78 assign_parms mention the arg pointer, and there are explicit insns in the
79 RTL that modify the arg pointer. Thus we must ensure that such insns don't
80 get scheduled across each other because that would invalidate the REG_EQUIV
81 notes. One could argue that the REG_EQUIV notes are wrong, but solving
82 the problem in the scheduler will likely give better code, so we do it
84 char *reg_known_equiv_p
;
86 /* True when scanning insns from the start of the rtl to the
87 NOTE_INSN_FUNCTION_BEG note. */
89 static int copying_arguments
;
91 /* Inside SRC, the source of a SET, find a base address. */
97 switch (GET_CODE (src
))
104 /* At the start of a function argument registers have known base
105 values which may be lost later. Returning an ADDRESS
106 expression here allows optimization based on argument values
107 even when the argument registers are used for other purposes. */
108 if (REGNO (src
) < FIRST_PSEUDO_REGISTER
&& copying_arguments
)
109 return new_reg_base_value
[REGNO (src
)];
111 /* If a pseudo has a known base value, return it. Do not do this
112 for hard regs since it can result in a circular dependency
113 chain for registers which have values at function entry.
115 The test above is not sufficient because the scheduler may move
116 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
117 if (REGNO (src
) >= FIRST_PSEUDO_REGISTER
118 && reg_base_value
[REGNO (src
)])
119 return reg_base_value
[REGNO (src
)];
124 /* Check for an argument passed in memory. Only record in the
125 copying-arguments block; it is too hard to track changes
127 if (copying_arguments
128 && (XEXP (src
, 0) == arg_pointer_rtx
129 || (GET_CODE (XEXP (src
, 0)) == PLUS
130 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
131 return gen_rtx (ADDRESS
, VOIDmode
, src
);
136 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
143 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
145 /* If either operand is a REG, then see if we already have
146 a known value for it. */
147 if (GET_CODE (src_0
) == REG
)
149 temp
= find_base_value (src_0
);
154 if (GET_CODE (src_1
) == REG
)
156 temp
= find_base_value (src_1
);
161 /* Guess which operand is the base address.
163 If either operand is a symbol, then it is the base. If
164 either operand is a CONST_INT, then the other is the base. */
166 if (GET_CODE (src_1
) == CONST_INT
167 || GET_CODE (src_0
) == SYMBOL_REF
168 || GET_CODE (src_0
) == LABEL_REF
169 || GET_CODE (src_0
) == CONST
)
170 return find_base_value (src_0
);
172 if (GET_CODE (src_0
) == CONST_INT
173 || GET_CODE (src_1
) == SYMBOL_REF
174 || GET_CODE (src_1
) == LABEL_REF
175 || GET_CODE (src_1
) == CONST
)
176 return find_base_value (src_1
);
178 /* This might not be necessary anymore.
180 If either operand is a REG that is a known pointer, then it
182 if (GET_CODE (src_0
) == REG
&& REGNO_POINTER_FLAG (REGNO (src_0
)))
183 return find_base_value (src_0
);
185 if (GET_CODE (src_1
) == REG
&& REGNO_POINTER_FLAG (REGNO (src_1
)))
186 return find_base_value (src_1
);
192 /* The standard form is (lo_sum reg sym) so look only at the
194 return find_base_value (XEXP (src
, 1));
197 /* If the second operand is constant set the base
198 address to the first operand. */
199 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
200 return find_base_value (XEXP (src
, 0));
204 return find_base_value (XEXP (src
, 0));
210 /* Called from init_alias_analysis indirectly through note_stores. */
212 /* while scanning insns to find base values, reg_seen[N] is nonzero if
213 register N has been set in this function. */
214 static char *reg_seen
;
217 static int unique_id
;
220 record_set (dest
, set
)
226 if (GET_CODE (dest
) != REG
)
229 regno
= REGNO (dest
);
233 /* A CLOBBER wipes out any old value but does not prevent a previously
234 unset register from acquiring a base address (i.e. reg_seen is not
236 if (GET_CODE (set
) == CLOBBER
)
238 new_reg_base_value
[regno
] = 0;
247 new_reg_base_value
[regno
] = 0;
251 new_reg_base_value
[regno
] = gen_rtx (ADDRESS
, Pmode
,
252 GEN_INT (unique_id
++));
256 /* This is not the first set. If the new value is not related to the
257 old value, forget the base value. Note that the following code is
259 extern int x, y; int *p = &x; p += (&y-&x);
260 ANSI C does not allow computing the difference of addresses
261 of distinct top level objects. */
262 if (new_reg_base_value
[regno
])
263 switch (GET_CODE (src
))
268 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
269 new_reg_base_value
[regno
] = 0;
272 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
273 new_reg_base_value
[regno
] = 0;
276 new_reg_base_value
[regno
] = 0;
279 /* If this is the first set of a register, record the value. */
280 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
281 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
282 new_reg_base_value
[regno
] = find_base_value (src
);
287 /* Called from loop optimization when a new pseudo-register is created. */
289 record_base_value (regno
, val
)
293 if (!flag_alias_check
|| regno
>= reg_base_value_size
)
295 if (GET_CODE (val
) == REG
)
297 if (REGNO (val
) < reg_base_value_size
)
298 reg_base_value
[regno
] = reg_base_value
[REGNO (val
)];
301 reg_base_value
[regno
] = find_base_value (val
);
308 /* Recursively look for equivalences. */
309 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
310 && REGNO (x
) < reg_known_value_size
)
311 return reg_known_value
[REGNO (x
)] == x
312 ? x
: canon_rtx (reg_known_value
[REGNO (x
)]);
313 else if (GET_CODE (x
) == PLUS
)
315 rtx x0
= canon_rtx (XEXP (x
, 0));
316 rtx x1
= canon_rtx (XEXP (x
, 1));
318 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
320 /* We can tolerate LO_SUMs being offset here; these
321 rtl are used for nothing other than comparisons. */
322 if (GET_CODE (x0
) == CONST_INT
)
323 return plus_constant_for_output (x1
, INTVAL (x0
));
324 else if (GET_CODE (x1
) == CONST_INT
)
325 return plus_constant_for_output (x0
, INTVAL (x1
));
326 return gen_rtx (PLUS
, GET_MODE (x
), x0
, x1
);
329 /* This gives us much better alias analysis when called from
330 the loop optimizer. Note we want to leave the original
331 MEM alone, but need to return the canonicalized MEM with
332 all the flags with their original values. */
333 else if (GET_CODE (x
) == MEM
)
335 rtx addr
= canon_rtx (XEXP (x
, 0));
336 if (addr
!= XEXP (x
, 0))
338 rtx
new = gen_rtx (MEM
, GET_MODE (x
), addr
);
339 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x
);
340 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x
);
341 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x
);
348 /* Return 1 if X and Y are identical-looking rtx's.
350 We use the data in reg_known_value above to see if two registers with
351 different numbers are, in fact, equivalent. */
354 rtx_equal_for_memref_p (x
, y
)
359 register enum rtx_code code
;
362 if (x
== 0 && y
== 0)
364 if (x
== 0 || y
== 0)
373 /* Rtx's of different codes cannot be equal. */
374 if (code
!= GET_CODE (y
))
377 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
378 (REG:SI x) and (REG:HI x) are NOT equivalent. */
380 if (GET_MODE (x
) != GET_MODE (y
))
383 /* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively. */
386 return REGNO (x
) == REGNO (y
);
387 if (code
== LABEL_REF
)
388 return XEXP (x
, 0) == XEXP (y
, 0);
389 if (code
== SYMBOL_REF
)
390 return XSTR (x
, 0) == XSTR (y
, 0);
392 /* For commutative operations, the RTX match if the operand match in any
393 order. Also handle the simple binary and unary cases without a loop. */
394 if (code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
395 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
396 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
397 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
398 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
399 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == '2')
400 return (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
401 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)));
402 else if (GET_RTX_CLASS (code
) == '1')
403 return rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0));
405 /* Compare the elements. If any pair of corresponding elements
406 fail to match, return 0 for the whole things. */
408 fmt
= GET_RTX_FORMAT (code
);
409 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
414 if (XWINT (x
, i
) != XWINT (y
, i
))
420 if (XINT (x
, i
) != XINT (y
, i
))
426 /* Two vectors must have the same length. */
427 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
430 /* And the corresponding elements must match. */
431 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
432 if (rtx_equal_for_memref_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)) == 0)
437 if (rtx_equal_for_memref_p (XEXP (x
, i
), XEXP (y
, i
)) == 0)
443 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
448 /* These are just backpointers, so they don't matter. */
454 /* It is believed that rtx's at this level will never
455 contain anything but integers and other rtx's,
456 except for within LABEL_REFs and SYMBOL_REFs. */
464 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
465 X and return it, or return 0 if none found. */
468 find_symbolic_term (x
)
472 register enum rtx_code code
;
476 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
478 if (GET_RTX_CLASS (code
) == 'o')
481 fmt
= GET_RTX_FORMAT (code
);
482 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
488 t
= find_symbolic_term (XEXP (x
, i
));
492 else if (fmt
[i
] == 'E')
502 switch (GET_CODE (x
))
505 return REG_BASE_VALUE (x
);
508 return find_base_term (XEXP (x
, 0));
514 return find_base_term (XEXP (x
, 0));
518 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
525 rtx tmp
= find_base_term (XEXP (x
, 0));
528 return find_base_term (XEXP (x
, 1));
532 if (GET_CODE (XEXP (x
, 0)) == REG
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
533 return REG_BASE_VALUE (XEXP (x
, 0));
545 /* Return 0 if the addresses X and Y are known to point to different
546 objects, 1 if they might be pointers to the same object. */
549 base_alias_check (x
, y
)
552 rtx x_base
= find_base_term (x
);
553 rtx y_base
= find_base_term (y
);
555 /* If either base address is unknown or the base addresses are equal,
556 nothing is known about aliasing. */
558 if (x_base
== 0 || y_base
== 0 || rtx_equal_p (x_base
, y_base
))
561 /* The base addresses of the read and write are different
562 expressions. If they are both symbols and they are not accessed
563 via AND, there is no conflict. */
564 /* XXX: We can bring knowledge of object alignment and offset into
565 play here. For example, on alpha, "char a, b;" can alias one
566 another, though "char a; long b;" cannot. Similarly, offsets
567 into strutures may be brought into play. Given "char a, b[40];",
568 a and b[1] may overlap, but a and b[20] do not. */
569 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
571 return GET_CODE (x
) == AND
|| GET_CODE (y
) == AND
;
574 /* If one address is a stack reference there can be no alias:
575 stack references using different base registers do not alias,
576 a stack reference can not alias a parameter, and a stack reference
577 can not alias a global. */
578 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
579 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
582 if (! flag_argument_noalias
)
585 if (flag_argument_noalias
> 1)
588 /* Weak noalias assertion (arguments are distinct, but may match globals). */
589 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
592 /* Return nonzero if X and Y (memory addresses) could reference the
593 same location in memory. C is an offset accumulator. When
594 C is nonzero, we are testing aliases between X and Y + C.
595 XSIZE is the size in bytes of the X reference,
596 similarly YSIZE is the size in bytes for Y.
598 If XSIZE or YSIZE is zero, we do not know the amount of memory being
599 referenced (the reference was BLKmode), so make the most pessimistic
602 If XSIZE or YSIZE is negative, we may access memory outside the object
603 being referenced as a side effect. This can happen when using AND to
604 align memory references, as is done on the Alpha.
606 We recognize the following cases of non-conflicting memory:
608 (1) addresses involving the frame pointer cannot conflict
609 with addresses involving static variables.
610 (2) static variables with different addresses cannot conflict.
612 Nice to notice that varying addresses cannot conflict with fp if no
613 local variables had their addresses taken, but that's too hard now. */
617 memrefs_conflict_p (xsize
, x
, ysize
, y
, c
)
622 if (GET_CODE (x
) == HIGH
)
624 else if (GET_CODE (x
) == LO_SUM
)
628 if (GET_CODE (y
) == HIGH
)
630 else if (GET_CODE (y
) == LO_SUM
)
635 if (rtx_equal_for_memref_p (x
, y
))
637 if (xsize
<= 0 || ysize
<= 0)
639 if (c
>= 0 && xsize
> c
)
641 if (c
< 0 && ysize
+c
> 0)
646 if (y
== frame_pointer_rtx
|| y
== hard_frame_pointer_rtx
647 || y
== stack_pointer_rtx
|| y
== arg_pointer_rtx
)
651 y
= x
; ysize
= xsize
;
652 x
= t
; xsize
= tsize
;
655 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
656 || x
== stack_pointer_rtx
|| x
== arg_pointer_rtx
)
663 if (GET_CODE (y
) == PLUS
664 && canon_rtx (XEXP (y
, 0)) == x
665 && (y1
= canon_rtx (XEXP (y
, 1)))
666 && GET_CODE (y1
) == CONST_INT
)
669 return (xsize
<= 0 || ysize
<= 0
670 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
673 if (GET_CODE (y
) == PLUS
674 && (y1
= canon_rtx (XEXP (y
, 0)))
681 if (GET_CODE (x
) == PLUS
)
683 /* The fact that X is canonicalized means that this
684 PLUS rtx is canonicalized. */
685 rtx x0
= XEXP (x
, 0);
686 rtx x1
= XEXP (x
, 1);
688 if (GET_CODE (y
) == PLUS
)
690 /* The fact that Y is canonicalized means that this
691 PLUS rtx is canonicalized. */
692 rtx y0
= XEXP (y
, 0);
693 rtx y1
= XEXP (y
, 1);
695 if (rtx_equal_for_memref_p (x1
, y1
))
696 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
697 if (rtx_equal_for_memref_p (x0
, y0
))
698 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
699 if (GET_CODE (x1
) == CONST_INT
)
700 if (GET_CODE (y1
) == CONST_INT
)
701 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
702 c
- INTVAL (x1
) + INTVAL (y1
));
704 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
705 else if (GET_CODE (y1
) == CONST_INT
)
706 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
708 /* Handle case where we cannot understand iteration operators,
709 but we notice that the base addresses are distinct objects. */
710 /* ??? Is this still necessary? */
711 x
= find_symbolic_term (x
);
714 y
= find_symbolic_term (y
);
717 return rtx_equal_for_memref_p (x
, y
);
719 else if (GET_CODE (x1
) == CONST_INT
)
720 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
722 else if (GET_CODE (y
) == PLUS
)
724 /* The fact that Y is canonicalized means that this
725 PLUS rtx is canonicalized. */
726 rtx y0
= XEXP (y
, 0);
727 rtx y1
= XEXP (y
, 1);
729 if (GET_CODE (y1
) == CONST_INT
)
730 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
735 if (GET_CODE (x
) == GET_CODE (y
))
736 switch (GET_CODE (x
))
740 /* Handle cases where we expect the second operands to be the
741 same, and check only whether the first operand would conflict
744 rtx x1
= canon_rtx (XEXP (x
, 1));
745 rtx y1
= canon_rtx (XEXP (y
, 1));
746 if (! rtx_equal_for_memref_p (x1
, y1
))
748 x0
= canon_rtx (XEXP (x
, 0));
749 y0
= canon_rtx (XEXP (y
, 0));
750 if (rtx_equal_for_memref_p (x0
, y0
))
751 return (xsize
== 0 || ysize
== 0
752 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
754 /* Can't properly adjust our sizes. */
755 if (GET_CODE (x1
) != CONST_INT
)
757 xsize
/= INTVAL (x1
);
758 ysize
/= INTVAL (x1
);
760 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
764 /* Treat an access through an AND (e.g. a subword access on an Alpha)
765 as an access with indeterminate size. */
766 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
767 return memrefs_conflict_p (-1, XEXP (x
, 0), ysize
, y
, c
);
768 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
770 /* XXX: If we are indexing far enough into the array/structure, we
771 may yet be able to determine that we can not overlap. But we
772 also need to that we are far enough from the end not to overlap
773 a following reference, so we do nothing for now. */
774 return memrefs_conflict_p (xsize
, x
, -1, XEXP (y
, 0), c
);
779 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
781 c
+= (INTVAL (y
) - INTVAL (x
));
782 return (xsize
<= 0 || ysize
<= 0
783 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
786 if (GET_CODE (x
) == CONST
)
788 if (GET_CODE (y
) == CONST
)
789 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
790 ysize
, canon_rtx (XEXP (y
, 0)), c
);
792 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
795 if (GET_CODE (y
) == CONST
)
796 return memrefs_conflict_p (xsize
, x
, ysize
,
797 canon_rtx (XEXP (y
, 0)), c
);
800 return (xsize
< 0 || ysize
< 0
801 || (rtx_equal_for_memref_p (x
, y
)
802 && (xsize
== 0 || ysize
== 0
803 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
810 /* Functions to compute memory dependencies.
812 Since we process the insns in execution order, we can build tables
813 to keep track of what registers are fixed (and not aliased), what registers
814 are varying in known ways, and what registers are varying in unknown
817 If both memory references are volatile, then there must always be a
818 dependence between the two references, since their order can not be
819 changed. A volatile and non-volatile reference can be interchanged
822 A MEM_IN_STRUCT reference at a non-QImode non-AND varying address can never
823 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We must
824 allow QImode aliasing because the ANSI C standard allows character
825 pointers to alias anything. We are assuming that characters are
826 always QImode here. We also must allow AND addresses, because they may
827 generate accesses outside the object being referenced. This is used to
828 generate aligned addresses from unaligned addresses, for instance, the
829 alpha storeqi_unaligned pattern. */
831 /* Read dependence: X is read after read in MEM takes place. There can
832 only be a dependence here if both reads are volatile. */
835 read_dependence (mem
, x
)
839 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
842 /* True dependence: X is read after store in MEM takes place. */
845 true_dependence (mem
, mem_mode
, x
, varies
)
847 enum machine_mode mem_mode
;
851 rtx x_addr
, mem_addr
;
853 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
856 x_addr
= XEXP (x
, 0);
857 mem_addr
= XEXP (mem
, 0);
859 if (flag_alias_check
&& ! base_alias_check (x_addr
, mem_addr
))
862 /* If X is an unchanging read, then it can't possibly conflict with any
863 non-unchanging store. It may conflict with an unchanging write though,
864 because there may be a single store to this address to initialize it.
865 Just fall through to the code below to resolve the case where we have
866 both an unchanging read and an unchanging write. This won't handle all
867 cases optimally, but the possible performance loss should be
869 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
872 x_addr
= canon_rtx (x_addr
);
873 mem_addr
= canon_rtx (mem_addr
);
874 if (mem_mode
== VOIDmode
)
875 mem_mode
= GET_MODE (mem
);
877 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
878 SIZE_FOR_MODE (x
), x_addr
, 0))
881 /* If both references are struct references, or both are not, nothing
882 is known about aliasing.
884 If either reference is QImode or BLKmode, ANSI C permits aliasing.
886 If both addresses are constant, or both are not, nothing is known
888 if (MEM_IN_STRUCT_P (x
) == MEM_IN_STRUCT_P (mem
)
889 || mem_mode
== QImode
|| mem_mode
== BLKmode
890 || GET_MODE (x
) == QImode
|| GET_MODE (x
) == BLKmode
891 || GET_CODE (x_addr
) == AND
|| GET_CODE (mem_addr
) == AND
892 || varies (x_addr
) == varies (mem_addr
))
895 /* One memory reference is to a constant address, one is not.
896 One is to a structure, the other is not.
898 If either memory reference is a variable structure the other is a
899 fixed scalar and there is no aliasing. */
900 if ((MEM_IN_STRUCT_P (mem
) && varies (mem_addr
))
901 || (MEM_IN_STRUCT_P (x
) && varies (x_addr
)))
907 /* Anti dependence: X is written after read in MEM takes place. */
910 anti_dependence (mem
, x
)
914 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
917 if (flag_alias_check
&& ! base_alias_check (XEXP (x
, 0), XEXP (mem
, 0)))
920 /* If MEM is an unchanging read, then it can't possibly conflict with
921 the store to X, because there is at most one store to MEM, and it must
922 have occurred somewhere before MEM. */
924 mem
= canon_rtx (mem
);
925 if (RTX_UNCHANGING_P (mem
))
928 return (memrefs_conflict_p (SIZE_FOR_MODE (mem
), XEXP (mem
, 0),
929 SIZE_FOR_MODE (x
), XEXP (x
, 0), 0)
930 && ! (MEM_IN_STRUCT_P (mem
) && rtx_addr_varies_p (mem
)
931 && GET_MODE (mem
) != QImode
932 && GET_CODE (XEXP (mem
, 0)) != AND
933 && ! MEM_IN_STRUCT_P (x
) && ! rtx_addr_varies_p (x
))
934 && ! (MEM_IN_STRUCT_P (x
) && rtx_addr_varies_p (x
)
935 && GET_MODE (x
) != QImode
936 && GET_CODE (XEXP (x
, 0)) != AND
937 && ! MEM_IN_STRUCT_P (mem
) && ! rtx_addr_varies_p (mem
)));
940 /* Output dependence: X is written after store in MEM takes place. */
943 output_dependence (mem
, x
)
947 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
950 if (flag_alias_check
&& !base_alias_check (XEXP (x
, 0), XEXP (mem
, 0)))
954 mem
= canon_rtx (mem
);
955 return (memrefs_conflict_p (SIZE_FOR_MODE (mem
), XEXP (mem
, 0),
956 SIZE_FOR_MODE (x
), XEXP (x
, 0), 0)
957 && ! (MEM_IN_STRUCT_P (mem
) && rtx_addr_varies_p (mem
)
958 && GET_MODE (mem
) != QImode
959 && GET_CODE (XEXP (mem
, 0)) != AND
960 && ! MEM_IN_STRUCT_P (x
) && ! rtx_addr_varies_p (x
))
961 && ! (MEM_IN_STRUCT_P (x
) && rtx_addr_varies_p (x
)
962 && GET_MODE (x
) != QImode
963 && GET_CODE (XEXP (x
, 0)) != AND
964 && ! MEM_IN_STRUCT_P (mem
) && ! rtx_addr_varies_p (mem
)));
968 init_alias_analysis ()
970 int maxreg
= max_reg_num ();
977 reg_known_value_size
= maxreg
;
980 = (rtx
*) oballoc ((maxreg
- FIRST_PSEUDO_REGISTER
) * sizeof (rtx
))
981 - FIRST_PSEUDO_REGISTER
;
983 oballoc (maxreg
- FIRST_PSEUDO_REGISTER
) - FIRST_PSEUDO_REGISTER
;
984 bzero ((char *) (reg_known_value
+ FIRST_PSEUDO_REGISTER
),
985 (maxreg
-FIRST_PSEUDO_REGISTER
) * sizeof (rtx
));
986 bzero (reg_known_equiv_p
+ FIRST_PSEUDO_REGISTER
,
987 (maxreg
- FIRST_PSEUDO_REGISTER
) * sizeof (char));
989 if (flag_alias_check
)
991 /* Overallocate reg_base_value to allow some growth during loop
992 optimization. Loop unrolling can create a large number of
994 reg_base_value_size
= maxreg
* 2;
995 reg_base_value
= (rtx
*)oballoc (reg_base_value_size
* sizeof (rtx
));
996 new_reg_base_value
= (rtx
*)alloca (reg_base_value_size
* sizeof (rtx
));
997 reg_seen
= (char *)alloca (reg_base_value_size
);
998 bzero ((char *) reg_base_value
, reg_base_value_size
* sizeof (rtx
));
1001 /* The basic idea is that each pass through this loop will use the
1002 "constant" information from the previous pass to propagate alias
1003 information through another level of assignments.
1005 This could get expensive if the assignment chains are long. Maybe
1006 we should throttle the number of iterations, possibly based on
1007 the optimization level.
1009 We could propagate more information in the first pass by making use
1010 of REG_N_SETS to determine immediately that the alias information
1011 for a pseudo is "constant".
1013 A program with an uninitialized variable can cause an infinite loop
1014 here. Instead of doing a full dataflow analysis to detect such problems
1015 we just cap the number of iterations for the loop.
1017 The state of the arrays for the set chain in question does not matter
1018 since the program has undefined behavior. */
1021 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
)
1023 /* Keep track of the pass number so we can break out of the loop. */
1026 /* Assume nothing will change this iteration of the loop. */
1029 /* We want to assign the same IDs each iteration of this loop, so
1030 start counting from zero each iteration of the loop. */
1033 /* We're at the start of the funtion each iteration through the
1034 loop, so we're copying arguments. */
1035 copying_arguments
= 1;
1037 /* Only perform initialization of the arrays if we're actually
1038 performing alias analysis. */
1039 if (flag_alias_check
)
1041 /* Wipe the potential alias information clean for this pass. */
1042 bzero ((char *) new_reg_base_value
,
1043 reg_base_value_size
* sizeof (rtx
));
1045 /* Wipe the reg_seen array clean. */
1046 bzero ((char *) reg_seen
, reg_base_value_size
);
1048 /* Mark all hard registers which may contain an address.
1049 The stack, frame and argument pointers may contain an address.
1050 An argument register which can hold a Pmode value may contain
1051 an address even if it is not in BASE_REGS.
1053 The address expression is VOIDmode for an argument and
1054 Pmode for other registers. */
1055 #ifndef OUTGOING_REGNO
1056 #define OUTGOING_REGNO(N) N
1058 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1059 /* Check whether this register can hold an incoming pointer
1060 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1061 numbers, so translate if necessary due to register windows. */
1062 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
1063 && HARD_REGNO_MODE_OK (i
, Pmode
))
1064 new_reg_base_value
[i
] = gen_rtx (ADDRESS
, VOIDmode
,
1065 gen_rtx (REG
, Pmode
, i
));
1067 new_reg_base_value
[STACK_POINTER_REGNUM
]
1068 = gen_rtx (ADDRESS
, Pmode
, stack_pointer_rtx
);
1069 new_reg_base_value
[ARG_POINTER_REGNUM
]
1070 = gen_rtx (ADDRESS
, Pmode
, arg_pointer_rtx
);
1071 new_reg_base_value
[FRAME_POINTER_REGNUM
]
1072 = gen_rtx (ADDRESS
, Pmode
, frame_pointer_rtx
);
1073 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1074 new_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
1075 = gen_rtx (ADDRESS
, Pmode
, hard_frame_pointer_rtx
);
1077 if (struct_value_incoming_rtx
1078 && GET_CODE (struct_value_incoming_rtx
) == REG
)
1079 new_reg_base_value
[REGNO (struct_value_incoming_rtx
)]
1080 = gen_rtx (ADDRESS
, Pmode
, struct_value_incoming_rtx
);
1082 if (static_chain_rtx
1083 && GET_CODE (static_chain_rtx
) == REG
)
1084 new_reg_base_value
[REGNO (static_chain_rtx
)]
1085 = gen_rtx (ADDRESS
, Pmode
, static_chain_rtx
);
1088 /* Walk the insns adding values to the new_reg_base_value array. */
1089 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1091 if (flag_alias_check
&& GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
1093 /* If this insn has a noalias note, process it, Otherwise,
1094 scan for sets. A simple set will have no side effects
1095 which could change the base value of any other register. */
1097 if (GET_CODE (PATTERN (insn
)) == SET
1098 && (noalias_note
= find_reg_note (insn
,
1099 REG_NOALIAS
, NULL_RTX
)))
1100 record_set (SET_DEST (PATTERN (insn
)), 0);
1102 note_stores (PATTERN (insn
), record_set
);
1104 else if (GET_CODE (insn
) == NOTE
1105 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
1106 copying_arguments
= 0;
1108 if ((set
= single_set (insn
)) != 0
1109 && GET_CODE (SET_DEST (set
)) == REG
1110 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
1111 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
1112 && REG_N_SETS (REGNO (SET_DEST (set
))) == 1)
1113 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
1114 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1116 int regno
= REGNO (SET_DEST (set
));
1117 reg_known_value
[regno
] = XEXP (note
, 0);
1118 reg_known_equiv_p
[regno
] = REG_NOTE_KIND (note
) == REG_EQUIV
;
1122 /* Now propagate values from new_reg_base_value to reg_base_value. */
1123 if (flag_alias_check
)
1124 for (i
= 0; i
< reg_base_value_size
; i
++)
1126 if (new_reg_base_value
[i
]
1127 && new_reg_base_value
[i
] != reg_base_value
[i
]
1128 && !rtx_equal_p (new_reg_base_value
[i
], reg_base_value
[i
]))
1130 reg_base_value
[i
] = new_reg_base_value
[i
];
1136 /* Fill in the remaining entries. */
1137 for (i
= FIRST_PSEUDO_REGISTER
; i
< maxreg
; i
++)
1138 if (reg_known_value
[i
] == 0)
1139 reg_known_value
[i
] = regno_reg_rtx
[i
];
1141 if (! flag_alias_check
)
1144 /* Simplify the reg_base_value array so that no register refers to
1145 another register, except to special registers indirectly through
1146 ADDRESS expressions.
1148 In theory this loop can take as long as O(registers^2), but unless
1149 there are very long dependency chains it will run in close to linear
1152 This loop may not be needed any longer now that the main loop does
1153 a better job at propagating alias information. */
1159 for (i
= 0; i
< reg_base_value_size
; i
++)
1161 rtx base
= reg_base_value
[i
];
1162 if (base
&& GET_CODE (base
) == REG
)
1164 int base_regno
= REGNO (base
);
1165 if (base_regno
== i
) /* register set from itself */
1166 reg_base_value
[i
] = 0;
1168 reg_base_value
[i
] = reg_base_value
[base_regno
];
1173 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
1175 new_reg_base_value
= 0;
1180 end_alias_analysis ()
1182 reg_known_value
= 0;
1184 reg_base_value_size
= 0;