config/sparc/sol2-bi.h: Revert previous delta.
[official-gcc.git] / gcc / dwarf2out.c
blobdcc7d6e3709ce8fc5a5ef073ad50e0764a7287c0
1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
68 #ifdef DWARF2_DEBUGGING_INFO
69 static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
70 #endif
72 /* DWARF2 Abbreviation Glossary:
73 CFA = Canonical Frame Address
74 a fixed address on the stack which identifies a call frame.
75 We define it to be the value of SP just before the call insn.
76 The CFA register and offset, which may change during the course
77 of the function, are used to calculate its value at runtime.
78 CFI = Call Frame Instruction
79 an instruction for the DWARF2 abstract machine
80 CIE = Common Information Entry
81 information describing information common to one or more FDEs
82 DIE = Debugging Information Entry
83 FDE = Frame Description Entry
84 information describing the stack call frame, in particular,
85 how to restore registers
87 DW_CFA_... = DWARF2 CFA call frame instruction
88 DW_TAG_... = DWARF2 DIE tag */
90 /* Decide whether we want to emit frame unwind information for the current
91 translation unit. */
93 int
94 dwarf2out_do_frame ()
96 return (write_symbols == DWARF2_DEBUG
97 || write_symbols == VMS_AND_DWARF2_DEBUG
98 #ifdef DWARF2_FRAME_INFO
99 || DWARF2_FRAME_INFO
100 #endif
101 #ifdef DWARF2_UNWIND_INFO
102 || flag_unwind_tables
103 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
104 #endif
108 /* The size of the target's pointer type. */
109 #ifndef PTR_SIZE
110 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
111 #endif
113 /* Default version of targetm.eh_frame_section. Note this must appear
114 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
115 guards. */
117 void
118 default_eh_frame_section ()
120 #ifdef EH_FRAME_SECTION_NAME
121 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
122 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
123 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
124 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
125 int flags;
127 flags = (! flag_pic
128 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
129 && (fde_encoding & 0x70) != DW_EH_PE_aligned
130 && (per_encoding & 0x70) != DW_EH_PE_absptr
131 && (per_encoding & 0x70) != DW_EH_PE_aligned
132 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
133 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
134 ? 0 : SECTION_WRITE;
135 named_section_flags (EH_FRAME_SECTION_NAME, flags);
136 #else
137 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
138 #endif
139 #else
140 tree label = get_file_function_name ('F');
142 data_section ();
143 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
144 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
145 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
146 #endif
149 /* Array of RTXes referenced by the debugging information, which therefore
150 must be kept around forever. */
151 static GTY(()) varray_type used_rtx_varray;
153 /* A pointer to the base of a list of incomplete types which might be
154 completed at some later time. incomplete_types_list needs to be a VARRAY
155 because we want to tell the garbage collector about it. */
156 static GTY(()) varray_type incomplete_types;
158 /* A pointer to the base of a table of references to declaration
159 scopes. This table is a display which tracks the nesting
160 of declaration scopes at the current scope and containing
161 scopes. This table is used to find the proper place to
162 define type declaration DIE's. */
163 static GTY(()) varray_type decl_scope_table;
165 /* How to start an assembler comment. */
166 #ifndef ASM_COMMENT_START
167 #define ASM_COMMENT_START ";#"
168 #endif
170 typedef struct dw_cfi_struct *dw_cfi_ref;
171 typedef struct dw_fde_struct *dw_fde_ref;
172 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
174 /* Call frames are described using a sequence of Call Frame
175 Information instructions. The register number, offset
176 and address fields are provided as possible operands;
177 their use is selected by the opcode field. */
179 enum dw_cfi_oprnd_type {
180 dw_cfi_oprnd_unused,
181 dw_cfi_oprnd_reg_num,
182 dw_cfi_oprnd_offset,
183 dw_cfi_oprnd_addr,
184 dw_cfi_oprnd_loc
187 typedef union dw_cfi_oprnd_struct GTY(())
189 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
190 long int GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
191 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
192 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
194 dw_cfi_oprnd;
196 typedef struct dw_cfi_struct GTY(())
198 dw_cfi_ref dw_cfi_next;
199 enum dwarf_call_frame_info dw_cfi_opc;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd1;
202 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
203 dw_cfi_oprnd2;
205 dw_cfi_node;
207 /* This is how we define the location of the CFA. We use to handle it
208 as REG + OFFSET all the time, but now it can be more complex.
209 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
210 Instead of passing around REG and OFFSET, we pass a copy
211 of this structure. */
212 typedef struct cfa_loc GTY(())
214 unsigned long reg;
215 long offset;
216 long base_offset;
217 int indirect; /* 1 if CFA is accessed via a dereference. */
218 } dw_cfa_location;
220 /* All call frame descriptions (FDE's) in the GCC generated DWARF
221 refer to a single Common Information Entry (CIE), defined at
222 the beginning of the .debug_frame section. This use of a single
223 CIE obviates the need to keep track of multiple CIE's
224 in the DWARF generation routines below. */
226 typedef struct dw_fde_struct GTY(())
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 dw_cfi_ref dw_fde_cfi;
232 unsigned funcdef_number;
233 unsigned all_throwers_are_sibcalls : 1;
234 unsigned nothrow : 1;
235 unsigned uses_eh_lsda : 1;
237 dw_fde_node;
239 /* Maximum size (in bytes) of an artificially generated label. */
240 #define MAX_ARTIFICIAL_LABEL_BYTES 30
242 /* The size of addresses as they appear in the Dwarf 2 data.
243 Some architectures use word addresses to refer to code locations,
244 but Dwarf 2 info always uses byte addresses. On such machines,
245 Dwarf 2 addresses need to be larger than the architecture's
246 pointers. */
247 #ifndef DWARF2_ADDR_SIZE
248 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
249 #endif
251 /* The size in bytes of a DWARF field indicating an offset or length
252 relative to a debug info section, specified to be 4 bytes in the
253 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
254 as PTR_SIZE. */
256 #ifndef DWARF_OFFSET_SIZE
257 #define DWARF_OFFSET_SIZE 4
258 #endif
260 /* According to the (draft) DWARF 3 specification, the initial length
261 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
262 bytes are 0xffffffff, followed by the length stored in the next 8
263 bytes.
265 However, the SGI/MIPS ABI uses an initial length which is equal to
266 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
268 #ifndef DWARF_INITIAL_LENGTH_SIZE
269 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
270 #endif
272 #define DWARF_VERSION 2
274 /* Round SIZE up to the nearest BOUNDARY. */
275 #define DWARF_ROUND(SIZE,BOUNDARY) \
276 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
278 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
279 #ifndef DWARF_CIE_DATA_ALIGNMENT
280 #ifdef STACK_GROWS_DOWNWARD
281 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
282 #else
283 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
284 #endif
285 #endif
287 /* A pointer to the base of a table that contains frame description
288 information for each routine. */
289 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
291 /* Number of elements currently allocated for fde_table. */
292 static unsigned fde_table_allocated;
294 /* Number of elements in fde_table currently in use. */
295 static GTY(()) unsigned fde_table_in_use;
297 /* Size (in elements) of increments by which we may expand the
298 fde_table. */
299 #define FDE_TABLE_INCREMENT 256
301 /* A list of call frame insns for the CIE. */
302 static GTY(()) dw_cfi_ref cie_cfi_head;
304 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
305 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
306 attribute that accelerates the lookup of the FDE associated
307 with the subprogram. This variable holds the table index of the FDE
308 associated with the current function (body) definition. */
309 static unsigned current_funcdef_fde;
310 #endif
312 struct indirect_string_node GTY(())
314 const char *str;
315 unsigned int refcount;
316 unsigned int form;
317 char *label;
320 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
322 static GTY(()) int dw2_string_counter;
323 static GTY(()) unsigned long dwarf2out_cfi_label_num;
325 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
327 /* Forward declarations for functions defined in this file. */
329 static char *stripattributes PARAMS ((const char *));
330 static const char *dwarf_cfi_name PARAMS ((unsigned));
331 static dw_cfi_ref new_cfi PARAMS ((void));
332 static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
333 static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
334 static void lookup_cfa_1 PARAMS ((dw_cfi_ref,
335 dw_cfa_location *));
336 static void lookup_cfa PARAMS ((dw_cfa_location *));
337 static void reg_save PARAMS ((const char *, unsigned,
338 unsigned, long));
339 static void initial_return_save PARAMS ((rtx));
340 static long stack_adjust_offset PARAMS ((rtx));
341 static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
342 static void output_call_frame_info PARAMS ((int));
343 static void dwarf2out_stack_adjust PARAMS ((rtx));
344 static void queue_reg_save PARAMS ((const char *, rtx, long));
345 static void flush_queued_reg_saves PARAMS ((void));
346 static bool clobbers_queued_reg_save PARAMS ((rtx));
347 static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
349 /* Support for complex CFA locations. */
350 static void output_cfa_loc PARAMS ((dw_cfi_ref));
351 static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
352 struct dw_loc_descr_struct *));
353 static struct dw_loc_descr_struct *build_cfa_loc
354 PARAMS ((dw_cfa_location *));
355 static void def_cfa_1 PARAMS ((const char *,
356 dw_cfa_location *));
358 /* How to start an assembler comment. */
359 #ifndef ASM_COMMENT_START
360 #define ASM_COMMENT_START ";#"
361 #endif
363 /* Data and reference forms for relocatable data. */
364 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
365 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
367 #ifndef DEBUG_FRAME_SECTION
368 #define DEBUG_FRAME_SECTION ".debug_frame"
369 #endif
371 #ifndef FUNC_BEGIN_LABEL
372 #define FUNC_BEGIN_LABEL "LFB"
373 #endif
375 #ifndef FUNC_END_LABEL
376 #define FUNC_END_LABEL "LFE"
377 #endif
379 #define FRAME_BEGIN_LABEL "Lframe"
380 #define CIE_AFTER_SIZE_LABEL "LSCIE"
381 #define CIE_END_LABEL "LECIE"
382 #define FDE_LABEL "LSFDE"
383 #define FDE_AFTER_SIZE_LABEL "LASFDE"
384 #define FDE_END_LABEL "LEFDE"
385 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
386 #define LINE_NUMBER_END_LABEL "LELT"
387 #define LN_PROLOG_AS_LABEL "LASLTP"
388 #define LN_PROLOG_END_LABEL "LELTP"
389 #define DIE_LABEL_PREFIX "DW"
391 /* The DWARF 2 CFA column which tracks the return address. Normally this
392 is the column for PC, or the first column after all of the hard
393 registers. */
394 #ifndef DWARF_FRAME_RETURN_COLUMN
395 #ifdef PC_REGNUM
396 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
397 #else
398 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
399 #endif
400 #endif
402 /* The mapping from gcc register number to DWARF 2 CFA column number. By
403 default, we just provide columns for all registers. */
404 #ifndef DWARF_FRAME_REGNUM
405 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
406 #endif
408 /* The offset from the incoming value of %sp to the top of the stack frame
409 for the current function. */
410 #ifndef INCOMING_FRAME_SP_OFFSET
411 #define INCOMING_FRAME_SP_OFFSET 0
412 #endif
414 /* Hook used by __throw. */
417 expand_builtin_dwarf_fp_regnum ()
419 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
422 /* Return a pointer to a copy of the section string name S with all
423 attributes stripped off, and an asterisk prepended (for assemble_name). */
425 static inline char *
426 stripattributes (s)
427 const char *s;
429 char *stripped = xmalloc (strlen (s) + 2);
430 char *p = stripped;
432 *p++ = '*';
434 while (*s && *s != ',')
435 *p++ = *s++;
437 *p = '\0';
438 return stripped;
441 /* Generate code to initialize the register size table. */
443 void
444 expand_builtin_init_dwarf_reg_sizes (address)
445 tree address;
447 int i;
448 enum machine_mode mode = TYPE_MODE (char_type_node);
449 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
450 rtx mem = gen_rtx_MEM (BLKmode, addr);
452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
453 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
455 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
456 HOST_WIDE_INT size = GET_MODE_SIZE (reg_raw_mode[i]);
458 if (offset < 0)
459 continue;
461 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
465 /* Convert a DWARF call frame info. operation to its string name */
467 static const char *
468 dwarf_cfi_name (cfi_opc)
469 unsigned cfi_opc;
471 switch (cfi_opc)
473 case DW_CFA_advance_loc:
474 return "DW_CFA_advance_loc";
475 case DW_CFA_offset:
476 return "DW_CFA_offset";
477 case DW_CFA_restore:
478 return "DW_CFA_restore";
479 case DW_CFA_nop:
480 return "DW_CFA_nop";
481 case DW_CFA_set_loc:
482 return "DW_CFA_set_loc";
483 case DW_CFA_advance_loc1:
484 return "DW_CFA_advance_loc1";
485 case DW_CFA_advance_loc2:
486 return "DW_CFA_advance_loc2";
487 case DW_CFA_advance_loc4:
488 return "DW_CFA_advance_loc4";
489 case DW_CFA_offset_extended:
490 return "DW_CFA_offset_extended";
491 case DW_CFA_restore_extended:
492 return "DW_CFA_restore_extended";
493 case DW_CFA_undefined:
494 return "DW_CFA_undefined";
495 case DW_CFA_same_value:
496 return "DW_CFA_same_value";
497 case DW_CFA_register:
498 return "DW_CFA_register";
499 case DW_CFA_remember_state:
500 return "DW_CFA_remember_state";
501 case DW_CFA_restore_state:
502 return "DW_CFA_restore_state";
503 case DW_CFA_def_cfa:
504 return "DW_CFA_def_cfa";
505 case DW_CFA_def_cfa_register:
506 return "DW_CFA_def_cfa_register";
507 case DW_CFA_def_cfa_offset:
508 return "DW_CFA_def_cfa_offset";
510 /* DWARF 3 */
511 case DW_CFA_def_cfa_expression:
512 return "DW_CFA_def_cfa_expression";
513 case DW_CFA_expression:
514 return "DW_CFA_expression";
515 case DW_CFA_offset_extended_sf:
516 return "DW_CFA_offset_extended_sf";
517 case DW_CFA_def_cfa_sf:
518 return "DW_CFA_def_cfa_sf";
519 case DW_CFA_def_cfa_offset_sf:
520 return "DW_CFA_def_cfa_offset_sf";
522 /* SGI/MIPS specific */
523 case DW_CFA_MIPS_advance_loc8:
524 return "DW_CFA_MIPS_advance_loc8";
526 /* GNU extensions */
527 case DW_CFA_GNU_window_save:
528 return "DW_CFA_GNU_window_save";
529 case DW_CFA_GNU_args_size:
530 return "DW_CFA_GNU_args_size";
531 case DW_CFA_GNU_negative_offset_extended:
532 return "DW_CFA_GNU_negative_offset_extended";
534 default:
535 return "DW_CFA_<unknown>";
539 /* Return a pointer to a newly allocated Call Frame Instruction. */
541 static inline dw_cfi_ref
542 new_cfi ()
544 dw_cfi_ref cfi = (dw_cfi_ref) ggc_alloc (sizeof (dw_cfi_node));
546 cfi->dw_cfi_next = NULL;
547 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
548 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
550 return cfi;
553 /* Add a Call Frame Instruction to list of instructions. */
555 static inline void
556 add_cfi (list_head, cfi)
557 dw_cfi_ref *list_head;
558 dw_cfi_ref cfi;
560 dw_cfi_ref *p;
562 /* Find the end of the chain. */
563 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
566 *p = cfi;
569 /* Generate a new label for the CFI info to refer to. */
571 char *
572 dwarf2out_cfi_label ()
574 static char label[20];
576 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
577 ASM_OUTPUT_LABEL (asm_out_file, label);
578 return label;
581 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
582 or to the CIE if LABEL is NULL. */
584 static void
585 add_fde_cfi (label, cfi)
586 const char *label;
587 dw_cfi_ref cfi;
589 if (label)
591 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
593 if (*label == 0)
594 label = dwarf2out_cfi_label ();
596 if (fde->dw_fde_current_label == NULL
597 || strcmp (label, fde->dw_fde_current_label) != 0)
599 dw_cfi_ref xcfi;
601 fde->dw_fde_current_label = label = xstrdup (label);
603 /* Set the location counter to the new label. */
604 xcfi = new_cfi ();
605 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
606 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
607 add_cfi (&fde->dw_fde_cfi, xcfi);
610 add_cfi (&fde->dw_fde_cfi, cfi);
613 else
614 add_cfi (&cie_cfi_head, cfi);
617 /* Subroutine of lookup_cfa. */
619 static inline void
620 lookup_cfa_1 (cfi, loc)
621 dw_cfi_ref cfi;
622 dw_cfa_location *loc;
624 switch (cfi->dw_cfi_opc)
626 case DW_CFA_def_cfa_offset:
627 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
628 break;
629 case DW_CFA_def_cfa_register:
630 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
631 break;
632 case DW_CFA_def_cfa:
633 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
634 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
635 break;
636 case DW_CFA_def_cfa_expression:
637 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
638 break;
639 default:
640 break;
644 /* Find the previous value for the CFA. */
646 static void
647 lookup_cfa (loc)
648 dw_cfa_location *loc;
650 dw_cfi_ref cfi;
652 loc->reg = (unsigned long) -1;
653 loc->offset = 0;
654 loc->indirect = 0;
655 loc->base_offset = 0;
657 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
658 lookup_cfa_1 (cfi, loc);
660 if (fde_table_in_use)
662 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
663 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
664 lookup_cfa_1 (cfi, loc);
668 /* The current rule for calculating the DWARF2 canonical frame address. */
669 static dw_cfa_location cfa;
671 /* The register used for saving registers to the stack, and its offset
672 from the CFA. */
673 static dw_cfa_location cfa_store;
675 /* The running total of the size of arguments pushed onto the stack. */
676 static long args_size;
678 /* The last args_size we actually output. */
679 static long old_args_size;
681 /* Entry point to update the canonical frame address (CFA).
682 LABEL is passed to add_fde_cfi. The value of CFA is now to be
683 calculated from REG+OFFSET. */
685 void
686 dwarf2out_def_cfa (label, reg, offset)
687 const char *label;
688 unsigned reg;
689 long offset;
691 dw_cfa_location loc;
692 loc.indirect = 0;
693 loc.base_offset = 0;
694 loc.reg = reg;
695 loc.offset = offset;
696 def_cfa_1 (label, &loc);
699 /* This routine does the actual work. The CFA is now calculated from
700 the dw_cfa_location structure. */
702 static void
703 def_cfa_1 (label, loc_p)
704 const char *label;
705 dw_cfa_location *loc_p;
707 dw_cfi_ref cfi;
708 dw_cfa_location old_cfa, loc;
710 cfa = *loc_p;
711 loc = *loc_p;
713 if (cfa_store.reg == loc.reg && loc.indirect == 0)
714 cfa_store.offset = loc.offset;
716 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
717 lookup_cfa (&old_cfa);
719 /* If nothing changed, no need to issue any call frame instructions. */
720 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
721 && loc.indirect == old_cfa.indirect
722 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
723 return;
725 cfi = new_cfi ();
727 if (loc.reg == old_cfa.reg && !loc.indirect)
729 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
730 indicating the CFA register did not change but the offset
731 did. */
732 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
733 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
736 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
737 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
738 && !loc.indirect)
740 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
741 indicating the CFA register has changed to <register> but the
742 offset has not changed. */
743 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
744 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
746 #endif
748 else if (loc.indirect == 0)
750 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
751 indicating the CFA register has changed to <register> with
752 the specified offset. */
753 cfi->dw_cfi_opc = DW_CFA_def_cfa;
754 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
755 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
757 else
759 /* Construct a DW_CFA_def_cfa_expression instruction to
760 calculate the CFA using a full location expression since no
761 register-offset pair is available. */
762 struct dw_loc_descr_struct *loc_list;
764 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
765 loc_list = build_cfa_loc (&loc);
766 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
769 add_fde_cfi (label, cfi);
772 /* Add the CFI for saving a register. REG is the CFA column number.
773 LABEL is passed to add_fde_cfi.
774 If SREG is -1, the register is saved at OFFSET from the CFA;
775 otherwise it is saved in SREG. */
777 static void
778 reg_save (label, reg, sreg, offset)
779 const char *label;
780 unsigned reg;
781 unsigned sreg;
782 long offset;
784 dw_cfi_ref cfi = new_cfi ();
786 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
788 /* The following comparison is correct. -1 is used to indicate that
789 the value isn't a register number. */
790 if (sreg == (unsigned int) -1)
792 if (reg & ~0x3f)
793 /* The register number won't fit in 6 bits, so we have to use
794 the long form. */
795 cfi->dw_cfi_opc = DW_CFA_offset_extended;
796 else
797 cfi->dw_cfi_opc = DW_CFA_offset;
799 #ifdef ENABLE_CHECKING
801 /* If we get an offset that is not a multiple of
802 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
803 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
804 description. */
805 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
807 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
808 abort ();
810 #endif
811 offset /= DWARF_CIE_DATA_ALIGNMENT;
812 if (offset < 0)
813 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
815 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
817 else if (sreg == reg)
818 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
819 return;
820 else
822 cfi->dw_cfi_opc = DW_CFA_register;
823 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
826 add_fde_cfi (label, cfi);
829 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
830 This CFI tells the unwinder that it needs to restore the window registers
831 from the previous frame's window save area.
833 ??? Perhaps we should note in the CIE where windows are saved (instead of
834 assuming 0(cfa)) and what registers are in the window. */
836 void
837 dwarf2out_window_save (label)
838 const char *label;
840 dw_cfi_ref cfi = new_cfi ();
842 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
843 add_fde_cfi (label, cfi);
846 /* Add a CFI to update the running total of the size of arguments
847 pushed onto the stack. */
849 void
850 dwarf2out_args_size (label, size)
851 const char *label;
852 long size;
854 dw_cfi_ref cfi;
856 if (size == old_args_size)
857 return;
859 old_args_size = size;
861 cfi = new_cfi ();
862 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
863 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
864 add_fde_cfi (label, cfi);
867 /* Entry point for saving a register to the stack. REG is the GCC register
868 number. LABEL and OFFSET are passed to reg_save. */
870 void
871 dwarf2out_reg_save (label, reg, offset)
872 const char *label;
873 unsigned reg;
874 long offset;
876 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
879 /* Entry point for saving the return address in the stack.
880 LABEL and OFFSET are passed to reg_save. */
882 void
883 dwarf2out_return_save (label, offset)
884 const char *label;
885 long offset;
887 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
890 /* Entry point for saving the return address in a register.
891 LABEL and SREG are passed to reg_save. */
893 void
894 dwarf2out_return_reg (label, sreg)
895 const char *label;
896 unsigned sreg;
898 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
901 /* Record the initial position of the return address. RTL is
902 INCOMING_RETURN_ADDR_RTX. */
904 static void
905 initial_return_save (rtl)
906 rtx rtl;
908 unsigned int reg = (unsigned int) -1;
909 HOST_WIDE_INT offset = 0;
911 switch (GET_CODE (rtl))
913 case REG:
914 /* RA is in a register. */
915 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
916 break;
918 case MEM:
919 /* RA is on the stack. */
920 rtl = XEXP (rtl, 0);
921 switch (GET_CODE (rtl))
923 case REG:
924 if (REGNO (rtl) != STACK_POINTER_REGNUM)
925 abort ();
926 offset = 0;
927 break;
929 case PLUS:
930 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
931 abort ();
932 offset = INTVAL (XEXP (rtl, 1));
933 break;
935 case MINUS:
936 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
937 abort ();
938 offset = -INTVAL (XEXP (rtl, 1));
939 break;
941 default:
942 abort ();
945 break;
947 case PLUS:
948 /* The return address is at some offset from any value we can
949 actually load. For instance, on the SPARC it is in %i7+8. Just
950 ignore the offset for now; it doesn't matter for unwinding frames. */
951 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
952 abort ();
953 initial_return_save (XEXP (rtl, 0));
954 return;
956 default:
957 abort ();
960 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
963 /* Given a SET, calculate the amount of stack adjustment it
964 contains. */
966 static long
967 stack_adjust_offset (pattern)
968 rtx pattern;
970 rtx src = SET_SRC (pattern);
971 rtx dest = SET_DEST (pattern);
972 HOST_WIDE_INT offset = 0;
973 enum rtx_code code;
975 if (dest == stack_pointer_rtx)
977 /* (set (reg sp) (plus (reg sp) (const_int))) */
978 code = GET_CODE (src);
979 if (! (code == PLUS || code == MINUS)
980 || XEXP (src, 0) != stack_pointer_rtx
981 || GET_CODE (XEXP (src, 1)) != CONST_INT)
982 return 0;
984 offset = INTVAL (XEXP (src, 1));
985 if (code == PLUS)
986 offset = -offset;
988 else if (GET_CODE (dest) == MEM)
990 /* (set (mem (pre_dec (reg sp))) (foo)) */
991 src = XEXP (dest, 0);
992 code = GET_CODE (src);
994 switch (code)
996 case PRE_MODIFY:
997 case POST_MODIFY:
998 if (XEXP (src, 0) == stack_pointer_rtx)
1000 rtx val = XEXP (XEXP (src, 1), 1);
1001 /* We handle only adjustments by constant amount. */
1002 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1003 GET_CODE (val) != CONST_INT)
1004 abort ();
1005 offset = -INTVAL (val);
1006 break;
1008 return 0;
1010 case PRE_DEC:
1011 case POST_DEC:
1012 if (XEXP (src, 0) == stack_pointer_rtx)
1014 offset = GET_MODE_SIZE (GET_MODE (dest));
1015 break;
1017 return 0;
1019 case PRE_INC:
1020 case POST_INC:
1021 if (XEXP (src, 0) == stack_pointer_rtx)
1023 offset = -GET_MODE_SIZE (GET_MODE (dest));
1024 break;
1026 return 0;
1028 default:
1029 return 0;
1032 else
1033 return 0;
1035 return offset;
1038 /* Check INSN to see if it looks like a push or a stack adjustment, and
1039 make a note of it if it does. EH uses this information to find out how
1040 much extra space it needs to pop off the stack. */
1042 static void
1043 dwarf2out_stack_adjust (insn)
1044 rtx insn;
1046 HOST_WIDE_INT offset;
1047 const char *label;
1048 int i;
1050 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1052 /* Extract the size of the args from the CALL rtx itself. */
1053 insn = PATTERN (insn);
1054 if (GET_CODE (insn) == PARALLEL)
1055 insn = XVECEXP (insn, 0, 0);
1056 if (GET_CODE (insn) == SET)
1057 insn = SET_SRC (insn);
1058 if (GET_CODE (insn) != CALL)
1059 abort ();
1061 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1062 return;
1065 /* If only calls can throw, and we have a frame pointer,
1066 save up adjustments until we see the CALL_INSN. */
1067 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1068 return;
1070 if (GET_CODE (insn) == BARRIER)
1072 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1073 the compiler will have already emitted a stack adjustment, but
1074 doesn't bother for calls to noreturn functions. */
1075 #ifdef STACK_GROWS_DOWNWARD
1076 offset = -args_size;
1077 #else
1078 offset = args_size;
1079 #endif
1081 else if (GET_CODE (PATTERN (insn)) == SET)
1082 offset = stack_adjust_offset (PATTERN (insn));
1083 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1084 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1086 /* There may be stack adjustments inside compound insns. Search
1087 for them. */
1088 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1089 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1090 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1092 else
1093 return;
1095 if (offset == 0)
1096 return;
1098 if (cfa.reg == STACK_POINTER_REGNUM)
1099 cfa.offset += offset;
1101 #ifndef STACK_GROWS_DOWNWARD
1102 offset = -offset;
1103 #endif
1105 args_size += offset;
1106 if (args_size < 0)
1107 args_size = 0;
1109 label = dwarf2out_cfi_label ();
1110 def_cfa_1 (label, &cfa);
1111 dwarf2out_args_size (label, args_size);
1114 #endif
1116 /* We delay emitting a register save until either (a) we reach the end
1117 of the prologue or (b) the register is clobbered. This clusters
1118 register saves so that there are fewer pc advances. */
1120 struct queued_reg_save GTY(())
1122 struct queued_reg_save *next;
1123 rtx reg;
1124 long cfa_offset;
1127 static GTY(()) struct queued_reg_save *queued_reg_saves;
1129 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1130 static const char *last_reg_save_label;
1132 static void
1133 queue_reg_save (label, reg, offset)
1134 const char *label;
1135 rtx reg;
1136 long offset;
1138 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1140 q->next = queued_reg_saves;
1141 q->reg = reg;
1142 q->cfa_offset = offset;
1143 queued_reg_saves = q;
1145 last_reg_save_label = label;
1148 static void
1149 flush_queued_reg_saves ()
1151 struct queued_reg_save *q, *next;
1153 for (q = queued_reg_saves; q; q = next)
1155 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1156 next = q->next;
1159 queued_reg_saves = NULL;
1160 last_reg_save_label = NULL;
1163 static bool
1164 clobbers_queued_reg_save (insn)
1165 rtx insn;
1167 struct queued_reg_save *q;
1169 for (q = queued_reg_saves; q; q = q->next)
1170 if (modified_in_p (q->reg, insn))
1171 return true;
1173 return false;
1177 /* A temporary register holding an integral value used in adjusting SP
1178 or setting up the store_reg. The "offset" field holds the integer
1179 value, not an offset. */
1180 static dw_cfa_location cfa_temp;
1182 /* Record call frame debugging information for an expression EXPR,
1183 which either sets SP or FP (adjusting how we calculate the frame
1184 address) or saves a register to the stack. LABEL indicates the
1185 address of EXPR.
1187 This function encodes a state machine mapping rtxes to actions on
1188 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1189 users need not read the source code.
1191 The High-Level Picture
1193 Changes in the register we use to calculate the CFA: Currently we
1194 assume that if you copy the CFA register into another register, we
1195 should take the other one as the new CFA register; this seems to
1196 work pretty well. If it's wrong for some target, it's simple
1197 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1199 Changes in the register we use for saving registers to the stack:
1200 This is usually SP, but not always. Again, we deduce that if you
1201 copy SP into another register (and SP is not the CFA register),
1202 then the new register is the one we will be using for register
1203 saves. This also seems to work.
1205 Register saves: There's not much guesswork about this one; if
1206 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1207 register save, and the register used to calculate the destination
1208 had better be the one we think we're using for this purpose.
1210 Except: If the register being saved is the CFA register, and the
1211 offset is nonzero, we are saving the CFA, so we assume we have to
1212 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1213 the intent is to save the value of SP from the previous frame.
1215 Invariants / Summaries of Rules
1217 cfa current rule for calculating the CFA. It usually
1218 consists of a register and an offset.
1219 cfa_store register used by prologue code to save things to the stack
1220 cfa_store.offset is the offset from the value of
1221 cfa_store.reg to the actual CFA
1222 cfa_temp register holding an integral value. cfa_temp.offset
1223 stores the value, which will be used to adjust the
1224 stack pointer. cfa_temp is also used like cfa_store,
1225 to track stores to the stack via fp or a temp reg.
1227 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1228 with cfa.reg as the first operand changes the cfa.reg and its
1229 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1230 cfa_temp.offset.
1232 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1233 expression yielding a constant. This sets cfa_temp.reg
1234 and cfa_temp.offset.
1236 Rule 5: Create a new register cfa_store used to save items to the
1237 stack.
1239 Rules 10-14: Save a register to the stack. Define offset as the
1240 difference of the original location and cfa_store's
1241 location (or cfa_temp's location if cfa_temp is used).
1243 The Rules
1245 "{a,b}" indicates a choice of a xor b.
1246 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1248 Rule 1:
1249 (set <reg1> <reg2>:cfa.reg)
1250 effects: cfa.reg = <reg1>
1251 cfa.offset unchanged
1252 cfa_temp.reg = <reg1>
1253 cfa_temp.offset = cfa.offset
1255 Rule 2:
1256 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1257 {<const_int>,<reg>:cfa_temp.reg}))
1258 effects: cfa.reg = sp if fp used
1259 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1260 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1261 if cfa_store.reg==sp
1263 Rule 3:
1264 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1265 effects: cfa.reg = fp
1266 cfa_offset += +/- <const_int>
1268 Rule 4:
1269 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1270 constraints: <reg1> != fp
1271 <reg1> != sp
1272 effects: cfa.reg = <reg1>
1273 cfa_temp.reg = <reg1>
1274 cfa_temp.offset = cfa.offset
1276 Rule 5:
1277 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1278 constraints: <reg1> != fp
1279 <reg1> != sp
1280 effects: cfa_store.reg = <reg1>
1281 cfa_store.offset = cfa.offset - cfa_temp.offset
1283 Rule 6:
1284 (set <reg> <const_int>)
1285 effects: cfa_temp.reg = <reg>
1286 cfa_temp.offset = <const_int>
1288 Rule 7:
1289 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1290 effects: cfa_temp.reg = <reg1>
1291 cfa_temp.offset |= <const_int>
1293 Rule 8:
1294 (set <reg> (high <exp>))
1295 effects: none
1297 Rule 9:
1298 (set <reg> (lo_sum <exp> <const_int>))
1299 effects: cfa_temp.reg = <reg>
1300 cfa_temp.offset = <const_int>
1302 Rule 10:
1303 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1304 effects: cfa_store.offset -= <const_int>
1305 cfa.offset = cfa_store.offset if cfa.reg == sp
1306 cfa.reg = sp
1307 cfa.base_offset = -cfa_store.offset
1309 Rule 11:
1310 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1311 effects: cfa_store.offset += -/+ mode_size(mem)
1312 cfa.offset = cfa_store.offset if cfa.reg == sp
1313 cfa.reg = sp
1314 cfa.base_offset = -cfa_store.offset
1316 Rule 12:
1317 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1319 <reg2>)
1320 effects: cfa.reg = <reg1>
1321 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1323 Rule 13:
1324 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1325 effects: cfa.reg = <reg1>
1326 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1328 Rule 14:
1329 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1330 effects: cfa.reg = <reg1>
1331 cfa.base_offset = -cfa_temp.offset
1332 cfa_temp.offset -= mode_size(mem) */
1334 static void
1335 dwarf2out_frame_debug_expr (expr, label)
1336 rtx expr;
1337 const char *label;
1339 rtx src, dest;
1340 HOST_WIDE_INT offset;
1342 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1343 the PARALLEL independently. The first element is always processed if
1344 it is a SET. This is for backward compatibility. Other elements
1345 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1346 flag is set in them. */
1347 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1349 int par_index;
1350 int limit = XVECLEN (expr, 0);
1352 for (par_index = 0; par_index < limit; par_index++)
1353 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1354 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1355 || par_index == 0))
1356 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1358 return;
1361 if (GET_CODE (expr) != SET)
1362 abort ();
1364 src = SET_SRC (expr);
1365 dest = SET_DEST (expr);
1367 switch (GET_CODE (dest))
1369 case REG:
1370 /* Rule 1 */
1371 /* Update the CFA rule wrt SP or FP. Make sure src is
1372 relative to the current CFA register. */
1373 switch (GET_CODE (src))
1375 /* Setting FP from SP. */
1376 case REG:
1377 if (cfa.reg == (unsigned) REGNO (src))
1378 /* OK. */
1380 else
1381 abort ();
1383 /* We used to require that dest be either SP or FP, but the
1384 ARM copies SP to a temporary register, and from there to
1385 FP. So we just rely on the backends to only set
1386 RTX_FRAME_RELATED_P on appropriate insns. */
1387 cfa.reg = REGNO (dest);
1388 cfa_temp.reg = cfa.reg;
1389 cfa_temp.offset = cfa.offset;
1390 break;
1392 case PLUS:
1393 case MINUS:
1394 case LO_SUM:
1395 if (dest == stack_pointer_rtx)
1397 /* Rule 2 */
1398 /* Adjusting SP. */
1399 switch (GET_CODE (XEXP (src, 1)))
1401 case CONST_INT:
1402 offset = INTVAL (XEXP (src, 1));
1403 break;
1404 case REG:
1405 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1406 abort ();
1407 offset = cfa_temp.offset;
1408 break;
1409 default:
1410 abort ();
1413 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1415 /* Restoring SP from FP in the epilogue. */
1416 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1417 abort ();
1418 cfa.reg = STACK_POINTER_REGNUM;
1420 else if (GET_CODE (src) == LO_SUM)
1421 /* Assume we've set the source reg of the LO_SUM from sp. */
1423 else if (XEXP (src, 0) != stack_pointer_rtx)
1424 abort ();
1426 if (GET_CODE (src) != MINUS)
1427 offset = -offset;
1428 if (cfa.reg == STACK_POINTER_REGNUM)
1429 cfa.offset += offset;
1430 if (cfa_store.reg == STACK_POINTER_REGNUM)
1431 cfa_store.offset += offset;
1433 else if (dest == hard_frame_pointer_rtx)
1435 /* Rule 3 */
1436 /* Either setting the FP from an offset of the SP,
1437 or adjusting the FP */
1438 if (! frame_pointer_needed)
1439 abort ();
1441 if (GET_CODE (XEXP (src, 0)) == REG
1442 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1443 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1445 offset = INTVAL (XEXP (src, 1));
1446 if (GET_CODE (src) != MINUS)
1447 offset = -offset;
1448 cfa.offset += offset;
1449 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1451 else
1452 abort ();
1454 else
1456 if (GET_CODE (src) == MINUS)
1457 abort ();
1459 /* Rule 4 */
1460 if (GET_CODE (XEXP (src, 0)) == REG
1461 && REGNO (XEXP (src, 0)) == cfa.reg
1462 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1464 /* Setting a temporary CFA register that will be copied
1465 into the FP later on. */
1466 offset = - INTVAL (XEXP (src, 1));
1467 cfa.offset += offset;
1468 cfa.reg = REGNO (dest);
1469 /* Or used to save regs to the stack. */
1470 cfa_temp.reg = cfa.reg;
1471 cfa_temp.offset = cfa.offset;
1474 /* Rule 5 */
1475 else if (GET_CODE (XEXP (src, 0)) == REG
1476 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1477 && XEXP (src, 1) == stack_pointer_rtx)
1479 /* Setting a scratch register that we will use instead
1480 of SP for saving registers to the stack. */
1481 if (cfa.reg != STACK_POINTER_REGNUM)
1482 abort ();
1483 cfa_store.reg = REGNO (dest);
1484 cfa_store.offset = cfa.offset - cfa_temp.offset;
1487 /* Rule 9 */
1488 else if (GET_CODE (src) == LO_SUM
1489 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1491 cfa_temp.reg = REGNO (dest);
1492 cfa_temp.offset = INTVAL (XEXP (src, 1));
1494 else
1495 abort ();
1497 break;
1499 /* Rule 6 */
1500 case CONST_INT:
1501 cfa_temp.reg = REGNO (dest);
1502 cfa_temp.offset = INTVAL (src);
1503 break;
1505 /* Rule 7 */
1506 case IOR:
1507 if (GET_CODE (XEXP (src, 0)) != REG
1508 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1509 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1510 abort ();
1512 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1513 cfa_temp.reg = REGNO (dest);
1514 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1515 break;
1517 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1518 which will fill in all of the bits. */
1519 /* Rule 8 */
1520 case HIGH:
1521 break;
1523 default:
1524 abort ();
1527 def_cfa_1 (label, &cfa);
1528 break;
1530 case MEM:
1531 if (GET_CODE (src) != REG)
1532 abort ();
1534 /* Saving a register to the stack. Make sure dest is relative to the
1535 CFA register. */
1536 switch (GET_CODE (XEXP (dest, 0)))
1538 /* Rule 10 */
1539 /* With a push. */
1540 case PRE_MODIFY:
1541 /* We can't handle variable size modifications. */
1542 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1543 abort ();
1544 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1546 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1547 || cfa_store.reg != STACK_POINTER_REGNUM)
1548 abort ();
1550 cfa_store.offset += offset;
1551 if (cfa.reg == STACK_POINTER_REGNUM)
1552 cfa.offset = cfa_store.offset;
1554 offset = -cfa_store.offset;
1555 break;
1557 /* Rule 11 */
1558 case PRE_INC:
1559 case PRE_DEC:
1560 offset = GET_MODE_SIZE (GET_MODE (dest));
1561 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1562 offset = -offset;
1564 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1565 || cfa_store.reg != STACK_POINTER_REGNUM)
1566 abort ();
1568 cfa_store.offset += offset;
1569 if (cfa.reg == STACK_POINTER_REGNUM)
1570 cfa.offset = cfa_store.offset;
1572 offset = -cfa_store.offset;
1573 break;
1575 /* Rule 12 */
1576 /* With an offset. */
1577 case PLUS:
1578 case MINUS:
1579 case LO_SUM:
1580 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1581 abort ();
1582 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1583 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1584 offset = -offset;
1586 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1587 offset -= cfa_store.offset;
1588 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1589 offset -= cfa_temp.offset;
1590 else
1591 abort ();
1592 break;
1594 /* Rule 13 */
1595 /* Without an offset. */
1596 case REG:
1597 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1598 offset = -cfa_store.offset;
1599 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1600 offset = -cfa_temp.offset;
1601 else
1602 abort ();
1603 break;
1605 /* Rule 14 */
1606 case POST_INC:
1607 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1608 abort ();
1609 offset = -cfa_temp.offset;
1610 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1611 break;
1613 default:
1614 abort ();
1617 if (REGNO (src) != STACK_POINTER_REGNUM
1618 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1619 && (unsigned) REGNO (src) == cfa.reg)
1621 /* We're storing the current CFA reg into the stack. */
1623 if (cfa.offset == 0)
1625 /* If the source register is exactly the CFA, assume
1626 we're saving SP like any other register; this happens
1627 on the ARM. */
1628 def_cfa_1 (label, &cfa);
1629 queue_reg_save (label, stack_pointer_rtx, offset);
1630 break;
1632 else
1634 /* Otherwise, we'll need to look in the stack to
1635 calculate the CFA. */
1636 rtx x = XEXP (dest, 0);
1638 if (GET_CODE (x) != REG)
1639 x = XEXP (x, 0);
1640 if (GET_CODE (x) != REG)
1641 abort ();
1643 cfa.reg = REGNO (x);
1644 cfa.base_offset = offset;
1645 cfa.indirect = 1;
1646 def_cfa_1 (label, &cfa);
1647 break;
1651 def_cfa_1 (label, &cfa);
1652 queue_reg_save (label, src, offset);
1653 break;
1655 default:
1656 abort ();
1660 /* Record call frame debugging information for INSN, which either
1661 sets SP or FP (adjusting how we calculate the frame address) or saves a
1662 register to the stack. If INSN is NULL_RTX, initialize our state. */
1664 void
1665 dwarf2out_frame_debug (insn)
1666 rtx insn;
1668 const char *label;
1669 rtx src;
1671 if (insn == NULL_RTX)
1673 /* Flush any queued register saves. */
1674 flush_queued_reg_saves ();
1676 /* Set up state for generating call frame debug info. */
1677 lookup_cfa (&cfa);
1678 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1679 abort ();
1681 cfa.reg = STACK_POINTER_REGNUM;
1682 cfa_store = cfa;
1683 cfa_temp.reg = -1;
1684 cfa_temp.offset = 0;
1685 return;
1688 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1689 flush_queued_reg_saves ();
1691 if (! RTX_FRAME_RELATED_P (insn))
1693 if (!ACCUMULATE_OUTGOING_ARGS)
1694 dwarf2out_stack_adjust (insn);
1696 return;
1699 label = dwarf2out_cfi_label ();
1700 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1701 if (src)
1702 insn = XEXP (src, 0);
1703 else
1704 insn = PATTERN (insn);
1706 dwarf2out_frame_debug_expr (insn, label);
1709 #endif
1711 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1712 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1713 PARAMS ((enum dwarf_call_frame_info cfi));
1715 static enum dw_cfi_oprnd_type
1716 dw_cfi_oprnd1_desc (cfi)
1717 enum dwarf_call_frame_info cfi;
1719 switch (cfi)
1721 case DW_CFA_nop:
1722 case DW_CFA_GNU_window_save:
1723 return dw_cfi_oprnd_unused;
1725 case DW_CFA_set_loc:
1726 case DW_CFA_advance_loc1:
1727 case DW_CFA_advance_loc2:
1728 case DW_CFA_advance_loc4:
1729 case DW_CFA_MIPS_advance_loc8:
1730 return dw_cfi_oprnd_addr;
1732 case DW_CFA_offset:
1733 case DW_CFA_offset_extended:
1734 case DW_CFA_def_cfa:
1735 case DW_CFA_offset_extended_sf:
1736 case DW_CFA_def_cfa_sf:
1737 case DW_CFA_restore_extended:
1738 case DW_CFA_undefined:
1739 case DW_CFA_same_value:
1740 case DW_CFA_def_cfa_register:
1741 case DW_CFA_register:
1742 return dw_cfi_oprnd_reg_num;
1744 case DW_CFA_def_cfa_offset:
1745 case DW_CFA_GNU_args_size:
1746 case DW_CFA_def_cfa_offset_sf:
1747 return dw_cfi_oprnd_offset;
1749 case DW_CFA_def_cfa_expression:
1750 case DW_CFA_expression:
1751 return dw_cfi_oprnd_loc;
1753 default:
1754 abort ();
1758 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1759 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1760 PARAMS ((enum dwarf_call_frame_info cfi));
1762 static enum dw_cfi_oprnd_type
1763 dw_cfi_oprnd2_desc (cfi)
1764 enum dwarf_call_frame_info cfi;
1766 switch (cfi)
1768 case DW_CFA_def_cfa:
1769 case DW_CFA_def_cfa_sf:
1770 case DW_CFA_offset:
1771 case DW_CFA_offset_extended_sf:
1772 case DW_CFA_offset_extended:
1773 return dw_cfi_oprnd_offset;
1775 case DW_CFA_register:
1776 return dw_cfi_oprnd_reg_num;
1778 default:
1779 return dw_cfi_oprnd_unused;
1783 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1785 /* Output a Call Frame Information opcode and its operand(s). */
1787 static void
1788 output_cfi (cfi, fde, for_eh)
1789 dw_cfi_ref cfi;
1790 dw_fde_ref fde;
1791 int for_eh;
1793 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1794 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1795 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1796 "DW_CFA_advance_loc 0x%lx",
1797 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1798 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1800 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1801 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1802 "DW_CFA_offset, column 0x%lx",
1803 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1804 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1806 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1807 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1808 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1809 "DW_CFA_restore, column 0x%lx",
1810 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1811 else
1813 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1814 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1816 switch (cfi->dw_cfi_opc)
1818 case DW_CFA_set_loc:
1819 if (for_eh)
1820 dw2_asm_output_encoded_addr_rtx (
1821 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1822 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1823 NULL);
1824 else
1825 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1826 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1827 break;
1829 case DW_CFA_advance_loc1:
1830 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1831 fde->dw_fde_current_label, NULL);
1832 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1833 break;
1835 case DW_CFA_advance_loc2:
1836 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1837 fde->dw_fde_current_label, NULL);
1838 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1839 break;
1841 case DW_CFA_advance_loc4:
1842 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1843 fde->dw_fde_current_label, NULL);
1844 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1845 break;
1847 case DW_CFA_MIPS_advance_loc8:
1848 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1849 fde->dw_fde_current_label, NULL);
1850 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1851 break;
1853 case DW_CFA_offset_extended:
1854 case DW_CFA_def_cfa:
1855 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1856 NULL);
1857 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1858 break;
1860 case DW_CFA_offset_extended_sf:
1861 case DW_CFA_def_cfa_sf:
1862 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1863 NULL);
1864 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1865 break;
1867 case DW_CFA_restore_extended:
1868 case DW_CFA_undefined:
1869 case DW_CFA_same_value:
1870 case DW_CFA_def_cfa_register:
1871 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1872 NULL);
1873 break;
1875 case DW_CFA_register:
1876 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1877 NULL);
1878 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1879 NULL);
1880 break;
1882 case DW_CFA_def_cfa_offset:
1883 case DW_CFA_GNU_args_size:
1884 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1885 break;
1887 case DW_CFA_def_cfa_offset_sf:
1888 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1889 break;
1891 case DW_CFA_GNU_window_save:
1892 break;
1894 case DW_CFA_def_cfa_expression:
1895 case DW_CFA_expression:
1896 output_cfa_loc (cfi);
1897 break;
1899 case DW_CFA_GNU_negative_offset_extended:
1900 /* Obsoleted by DW_CFA_offset_extended_sf. */
1901 abort ();
1903 default:
1904 break;
1909 /* Output the call frame information used to used to record information
1910 that relates to calculating the frame pointer, and records the
1911 location of saved registers. */
1913 static void
1914 output_call_frame_info (for_eh)
1915 int for_eh;
1917 unsigned int i;
1918 dw_fde_ref fde;
1919 dw_cfi_ref cfi;
1920 char l1[20], l2[20], section_start_label[20];
1921 bool any_lsda_needed = false;
1922 char augmentation[6];
1923 int augmentation_size;
1924 int fde_encoding = DW_EH_PE_absptr;
1925 int per_encoding = DW_EH_PE_absptr;
1926 int lsda_encoding = DW_EH_PE_absptr;
1928 /* Don't emit a CIE if there won't be any FDEs. */
1929 if (fde_table_in_use == 0)
1930 return;
1932 /* If we don't have any functions we'll want to unwind out of, don't
1933 emit any EH unwind information. Note that if exceptions aren't
1934 enabled, we won't have collected nothrow information, and if we
1935 asked for asynchronous tables, we always want this info. */
1936 if (for_eh)
1938 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1940 for (i = 0; i < fde_table_in_use; i++)
1941 if (fde_table[i].uses_eh_lsda)
1942 any_eh_needed = any_lsda_needed = true;
1943 else if (! fde_table[i].nothrow)
1944 any_eh_needed = true;
1946 if (! any_eh_needed)
1947 return;
1950 /* We're going to be generating comments, so turn on app. */
1951 if (flag_debug_asm)
1952 app_enable ();
1954 if (for_eh)
1955 (*targetm.asm_out.eh_frame_section) ();
1956 else
1957 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1959 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1960 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1962 /* Output the CIE. */
1963 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1964 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1965 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1966 "Length of Common Information Entry");
1967 ASM_OUTPUT_LABEL (asm_out_file, l1);
1969 /* Now that the CIE pointer is PC-relative for EH,
1970 use 0 to identify the CIE. */
1971 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1972 (for_eh ? 0 : DW_CIE_ID),
1973 "CIE Identifier Tag");
1975 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1977 augmentation[0] = 0;
1978 augmentation_size = 0;
1979 if (for_eh)
1981 char *p;
1983 /* Augmentation:
1984 z Indicates that a uleb128 is present to size the
1985 augmentation section.
1986 L Indicates the encoding (and thus presence) of
1987 an LSDA pointer in the FDE augmentation.
1988 R Indicates a non-default pointer encoding for
1989 FDE code pointers.
1990 P Indicates the presence of an encoding + language
1991 personality routine in the CIE augmentation. */
1993 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1994 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1995 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1997 p = augmentation + 1;
1998 if (eh_personality_libfunc)
2000 *p++ = 'P';
2001 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2003 if (any_lsda_needed)
2005 *p++ = 'L';
2006 augmentation_size += 1;
2008 if (fde_encoding != DW_EH_PE_absptr)
2010 *p++ = 'R';
2011 augmentation_size += 1;
2013 if (p > augmentation + 1)
2015 augmentation[0] = 'z';
2016 *p = '\0';
2019 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2020 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2022 int offset = ( 4 /* Length */
2023 + 4 /* CIE Id */
2024 + 1 /* CIE version */
2025 + strlen (augmentation) + 1 /* Augmentation */
2026 + size_of_uleb128 (1) /* Code alignment */
2027 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2028 + 1 /* RA column */
2029 + 1 /* Augmentation size */
2030 + 1 /* Personality encoding */ );
2031 int pad = -offset & (PTR_SIZE - 1);
2033 augmentation_size += pad;
2035 /* Augmentations should be small, so there's scarce need to
2036 iterate for a solution. Die if we exceed one uleb128 byte. */
2037 if (size_of_uleb128 (augmentation_size) != 1)
2038 abort ();
2042 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2043 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2044 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2045 "CIE Data Alignment Factor");
2046 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2048 if (augmentation[0])
2050 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2051 if (eh_personality_libfunc)
2053 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2054 eh_data_format_name (per_encoding));
2055 dw2_asm_output_encoded_addr_rtx (per_encoding,
2056 eh_personality_libfunc, NULL);
2059 if (any_lsda_needed)
2060 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2061 eh_data_format_name (lsda_encoding));
2063 if (fde_encoding != DW_EH_PE_absptr)
2064 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2065 eh_data_format_name (fde_encoding));
2068 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2069 output_cfi (cfi, NULL, for_eh);
2071 /* Pad the CIE out to an address sized boundary. */
2072 ASM_OUTPUT_ALIGN (asm_out_file,
2073 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2074 ASM_OUTPUT_LABEL (asm_out_file, l2);
2076 /* Loop through all of the FDE's. */
2077 for (i = 0; i < fde_table_in_use; i++)
2079 fde = &fde_table[i];
2081 /* Don't emit EH unwind info for leaf functions that don't need it. */
2082 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2083 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2084 && !fde->uses_eh_lsda)
2085 continue;
2087 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2088 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2089 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2090 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2091 "FDE Length");
2092 ASM_OUTPUT_LABEL (asm_out_file, l1);
2094 if (for_eh)
2095 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2096 else
2097 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2098 "FDE CIE offset");
2100 if (for_eh)
2102 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2103 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2104 "FDE initial location");
2105 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2106 fde->dw_fde_end, fde->dw_fde_begin,
2107 "FDE address range");
2109 else
2111 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2112 "FDE initial location");
2113 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2114 fde->dw_fde_end, fde->dw_fde_begin,
2115 "FDE address range");
2118 if (augmentation[0])
2120 if (any_lsda_needed)
2122 int size = size_of_encoded_value (lsda_encoding);
2124 if (lsda_encoding == DW_EH_PE_aligned)
2126 int offset = ( 4 /* Length */
2127 + 4 /* CIE offset */
2128 + 2 * size_of_encoded_value (fde_encoding)
2129 + 1 /* Augmentation size */ );
2130 int pad = -offset & (PTR_SIZE - 1);
2132 size += pad;
2133 if (size_of_uleb128 (size) != 1)
2134 abort ();
2137 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2139 if (fde->uses_eh_lsda)
2141 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2142 fde->funcdef_number);
2143 dw2_asm_output_encoded_addr_rtx (
2144 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2145 "Language Specific Data Area");
2147 else
2149 if (lsda_encoding == DW_EH_PE_aligned)
2150 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2151 dw2_asm_output_data
2152 (size_of_encoded_value (lsda_encoding), 0,
2153 "Language Specific Data Area (none)");
2156 else
2157 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2160 /* Loop through the Call Frame Instructions associated with
2161 this FDE. */
2162 fde->dw_fde_current_label = fde->dw_fde_begin;
2163 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2164 output_cfi (cfi, fde, for_eh);
2166 /* Pad the FDE out to an address sized boundary. */
2167 ASM_OUTPUT_ALIGN (asm_out_file,
2168 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2169 ASM_OUTPUT_LABEL (asm_out_file, l2);
2172 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2173 dw2_asm_output_data (4, 0, "End of Table");
2174 #ifdef MIPS_DEBUGGING_INFO
2175 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2176 get a value of 0. Putting .align 0 after the label fixes it. */
2177 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2178 #endif
2180 /* Turn off app to make assembly quicker. */
2181 if (flag_debug_asm)
2182 app_disable ();
2185 /* Output a marker (i.e. a label) for the beginning of a function, before
2186 the prologue. */
2188 void
2189 dwarf2out_begin_prologue (line, file)
2190 unsigned int line ATTRIBUTE_UNUSED;
2191 const char *file ATTRIBUTE_UNUSED;
2193 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2194 dw_fde_ref fde;
2196 current_function_func_begin_label = 0;
2198 #ifdef IA64_UNWIND_INFO
2199 /* ??? current_function_func_begin_label is also used by except.c
2200 for call-site information. We must emit this label if it might
2201 be used. */
2202 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2203 && ! dwarf2out_do_frame ())
2204 return;
2205 #else
2206 if (! dwarf2out_do_frame ())
2207 return;
2208 #endif
2210 function_section (current_function_decl);
2211 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2212 current_function_funcdef_no);
2213 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2214 current_function_funcdef_no);
2215 current_function_func_begin_label = get_identifier (label);
2217 #ifdef IA64_UNWIND_INFO
2218 /* We can elide the fde allocation if we're not emitting debug info. */
2219 if (! dwarf2out_do_frame ())
2220 return;
2221 #endif
2223 /* Expand the fde table if necessary. */
2224 if (fde_table_in_use == fde_table_allocated)
2226 fde_table_allocated += FDE_TABLE_INCREMENT;
2227 fde_table = ggc_realloc (fde_table,
2228 fde_table_allocated * sizeof (dw_fde_node));
2229 memset (fde_table + fde_table_in_use, 0,
2230 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2233 /* Record the FDE associated with this function. */
2234 current_funcdef_fde = fde_table_in_use;
2236 /* Add the new FDE at the end of the fde_table. */
2237 fde = &fde_table[fde_table_in_use++];
2238 fde->dw_fde_begin = xstrdup (label);
2239 fde->dw_fde_current_label = NULL;
2240 fde->dw_fde_end = NULL;
2241 fde->dw_fde_cfi = NULL;
2242 fde->funcdef_number = current_function_funcdef_no;
2243 fde->nothrow = current_function_nothrow;
2244 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2245 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2247 args_size = old_args_size = 0;
2249 /* We only want to output line number information for the genuine dwarf2
2250 prologue case, not the eh frame case. */
2251 #ifdef DWARF2_DEBUGGING_INFO
2252 if (file)
2253 dwarf2out_source_line (line, file);
2254 #endif
2257 /* Output a marker (i.e. a label) for the absolute end of the generated code
2258 for a function definition. This gets called *after* the epilogue code has
2259 been generated. */
2261 void
2262 dwarf2out_end_epilogue (line, file)
2263 unsigned int line ATTRIBUTE_UNUSED;
2264 const char *file ATTRIBUTE_UNUSED;
2266 dw_fde_ref fde;
2267 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2269 /* Output a label to mark the endpoint of the code generated for this
2270 function. */
2271 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2272 current_function_funcdef_no);
2273 ASM_OUTPUT_LABEL (asm_out_file, label);
2274 fde = &fde_table[fde_table_in_use - 1];
2275 fde->dw_fde_end = xstrdup (label);
2278 void
2279 dwarf2out_frame_init ()
2281 /* Allocate the initial hunk of the fde_table. */
2282 fde_table = (dw_fde_ref) ggc_alloc_cleared (FDE_TABLE_INCREMENT
2283 * sizeof (dw_fde_node));
2284 fde_table_allocated = FDE_TABLE_INCREMENT;
2285 fde_table_in_use = 0;
2287 /* Generate the CFA instructions common to all FDE's. Do it now for the
2288 sake of lookup_cfa. */
2290 #ifdef DWARF2_UNWIND_INFO
2291 /* On entry, the Canonical Frame Address is at SP. */
2292 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2293 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2294 #endif
2297 void
2298 dwarf2out_frame_finish ()
2300 /* Output call frame information. */
2301 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2302 output_call_frame_info (0);
2304 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2305 output_call_frame_info (1);
2307 #endif
2309 /* And now, the subset of the debugging information support code necessary
2310 for emitting location expressions. */
2312 /* We need some way to distinguish DW_OP_addr with a direct symbol
2313 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2314 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2317 typedef struct dw_val_struct *dw_val_ref;
2318 typedef struct die_struct *dw_die_ref;
2319 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2320 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2322 /* Each DIE may have a series of attribute/value pairs. Values
2323 can take on several forms. The forms that are used in this
2324 implementation are listed below. */
2326 enum dw_val_class
2328 dw_val_class_addr,
2329 dw_val_class_offset,
2330 dw_val_class_loc,
2331 dw_val_class_loc_list,
2332 dw_val_class_range_list,
2333 dw_val_class_const,
2334 dw_val_class_unsigned_const,
2335 dw_val_class_long_long,
2336 dw_val_class_float,
2337 dw_val_class_flag,
2338 dw_val_class_die_ref,
2339 dw_val_class_fde_ref,
2340 dw_val_class_lbl_id,
2341 dw_val_class_lbl_offset,
2342 dw_val_class_str
2345 /* Describe a double word constant value. */
2346 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2348 typedef struct dw_long_long_struct GTY(())
2350 unsigned long hi;
2351 unsigned long low;
2353 dw_long_long_const;
2355 /* Describe a floating point constant value. */
2357 typedef struct dw_fp_struct GTY(())
2359 long * GTY((length ("%h.length"))) array;
2360 unsigned length;
2362 dw_float_const;
2364 /* The dw_val_node describes an attribute's value, as it is
2365 represented internally. */
2367 typedef struct dw_val_struct GTY(())
2369 enum dw_val_class val_class;
2370 union dw_val_struct_union
2372 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2373 long unsigned GTY ((tag ("dw_val_class_offset"))) val_offset;
2374 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2375 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2376 long int GTY ((default (""))) val_int;
2377 long unsigned GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2378 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2379 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2380 struct dw_val_die_union
2382 dw_die_ref die;
2383 int external;
2384 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2385 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2386 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2387 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2388 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2390 GTY ((desc ("%1.val_class"))) v;
2392 dw_val_node;
2394 /* Locations in memory are described using a sequence of stack machine
2395 operations. */
2397 typedef struct dw_loc_descr_struct GTY(())
2399 dw_loc_descr_ref dw_loc_next;
2400 enum dwarf_location_atom dw_loc_opc;
2401 dw_val_node dw_loc_oprnd1;
2402 dw_val_node dw_loc_oprnd2;
2403 int dw_loc_addr;
2405 dw_loc_descr_node;
2407 /* Location lists are ranges + location descriptions for that range,
2408 so you can track variables that are in different places over
2409 their entire life. */
2410 typedef struct dw_loc_list_struct GTY(())
2412 dw_loc_list_ref dw_loc_next;
2413 const char *begin; /* Label for begin address of range */
2414 const char *end; /* Label for end address of range */
2415 char *ll_symbol; /* Label for beginning of location list.
2416 Only on head of list */
2417 const char *section; /* Section this loclist is relative to */
2418 dw_loc_descr_ref expr;
2419 } dw_loc_list_node;
2421 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2423 static const char *dwarf_stack_op_name PARAMS ((unsigned));
2424 static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2425 unsigned long,
2426 unsigned long));
2427 static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2428 dw_loc_descr_ref));
2429 static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2430 static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2431 static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2432 static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
2434 /* Convert a DWARF stack opcode into its string name. */
2436 static const char *
2437 dwarf_stack_op_name (op)
2438 unsigned op;
2440 switch (op)
2442 case DW_OP_addr:
2443 case INTERNAL_DW_OP_tls_addr:
2444 return "DW_OP_addr";
2445 case DW_OP_deref:
2446 return "DW_OP_deref";
2447 case DW_OP_const1u:
2448 return "DW_OP_const1u";
2449 case DW_OP_const1s:
2450 return "DW_OP_const1s";
2451 case DW_OP_const2u:
2452 return "DW_OP_const2u";
2453 case DW_OP_const2s:
2454 return "DW_OP_const2s";
2455 case DW_OP_const4u:
2456 return "DW_OP_const4u";
2457 case DW_OP_const4s:
2458 return "DW_OP_const4s";
2459 case DW_OP_const8u:
2460 return "DW_OP_const8u";
2461 case DW_OP_const8s:
2462 return "DW_OP_const8s";
2463 case DW_OP_constu:
2464 return "DW_OP_constu";
2465 case DW_OP_consts:
2466 return "DW_OP_consts";
2467 case DW_OP_dup:
2468 return "DW_OP_dup";
2469 case DW_OP_drop:
2470 return "DW_OP_drop";
2471 case DW_OP_over:
2472 return "DW_OP_over";
2473 case DW_OP_pick:
2474 return "DW_OP_pick";
2475 case DW_OP_swap:
2476 return "DW_OP_swap";
2477 case DW_OP_rot:
2478 return "DW_OP_rot";
2479 case DW_OP_xderef:
2480 return "DW_OP_xderef";
2481 case DW_OP_abs:
2482 return "DW_OP_abs";
2483 case DW_OP_and:
2484 return "DW_OP_and";
2485 case DW_OP_div:
2486 return "DW_OP_div";
2487 case DW_OP_minus:
2488 return "DW_OP_minus";
2489 case DW_OP_mod:
2490 return "DW_OP_mod";
2491 case DW_OP_mul:
2492 return "DW_OP_mul";
2493 case DW_OP_neg:
2494 return "DW_OP_neg";
2495 case DW_OP_not:
2496 return "DW_OP_not";
2497 case DW_OP_or:
2498 return "DW_OP_or";
2499 case DW_OP_plus:
2500 return "DW_OP_plus";
2501 case DW_OP_plus_uconst:
2502 return "DW_OP_plus_uconst";
2503 case DW_OP_shl:
2504 return "DW_OP_shl";
2505 case DW_OP_shr:
2506 return "DW_OP_shr";
2507 case DW_OP_shra:
2508 return "DW_OP_shra";
2509 case DW_OP_xor:
2510 return "DW_OP_xor";
2511 case DW_OP_bra:
2512 return "DW_OP_bra";
2513 case DW_OP_eq:
2514 return "DW_OP_eq";
2515 case DW_OP_ge:
2516 return "DW_OP_ge";
2517 case DW_OP_gt:
2518 return "DW_OP_gt";
2519 case DW_OP_le:
2520 return "DW_OP_le";
2521 case DW_OP_lt:
2522 return "DW_OP_lt";
2523 case DW_OP_ne:
2524 return "DW_OP_ne";
2525 case DW_OP_skip:
2526 return "DW_OP_skip";
2527 case DW_OP_lit0:
2528 return "DW_OP_lit0";
2529 case DW_OP_lit1:
2530 return "DW_OP_lit1";
2531 case DW_OP_lit2:
2532 return "DW_OP_lit2";
2533 case DW_OP_lit3:
2534 return "DW_OP_lit3";
2535 case DW_OP_lit4:
2536 return "DW_OP_lit4";
2537 case DW_OP_lit5:
2538 return "DW_OP_lit5";
2539 case DW_OP_lit6:
2540 return "DW_OP_lit6";
2541 case DW_OP_lit7:
2542 return "DW_OP_lit7";
2543 case DW_OP_lit8:
2544 return "DW_OP_lit8";
2545 case DW_OP_lit9:
2546 return "DW_OP_lit9";
2547 case DW_OP_lit10:
2548 return "DW_OP_lit10";
2549 case DW_OP_lit11:
2550 return "DW_OP_lit11";
2551 case DW_OP_lit12:
2552 return "DW_OP_lit12";
2553 case DW_OP_lit13:
2554 return "DW_OP_lit13";
2555 case DW_OP_lit14:
2556 return "DW_OP_lit14";
2557 case DW_OP_lit15:
2558 return "DW_OP_lit15";
2559 case DW_OP_lit16:
2560 return "DW_OP_lit16";
2561 case DW_OP_lit17:
2562 return "DW_OP_lit17";
2563 case DW_OP_lit18:
2564 return "DW_OP_lit18";
2565 case DW_OP_lit19:
2566 return "DW_OP_lit19";
2567 case DW_OP_lit20:
2568 return "DW_OP_lit20";
2569 case DW_OP_lit21:
2570 return "DW_OP_lit21";
2571 case DW_OP_lit22:
2572 return "DW_OP_lit22";
2573 case DW_OP_lit23:
2574 return "DW_OP_lit23";
2575 case DW_OP_lit24:
2576 return "DW_OP_lit24";
2577 case DW_OP_lit25:
2578 return "DW_OP_lit25";
2579 case DW_OP_lit26:
2580 return "DW_OP_lit26";
2581 case DW_OP_lit27:
2582 return "DW_OP_lit27";
2583 case DW_OP_lit28:
2584 return "DW_OP_lit28";
2585 case DW_OP_lit29:
2586 return "DW_OP_lit29";
2587 case DW_OP_lit30:
2588 return "DW_OP_lit30";
2589 case DW_OP_lit31:
2590 return "DW_OP_lit31";
2591 case DW_OP_reg0:
2592 return "DW_OP_reg0";
2593 case DW_OP_reg1:
2594 return "DW_OP_reg1";
2595 case DW_OP_reg2:
2596 return "DW_OP_reg2";
2597 case DW_OP_reg3:
2598 return "DW_OP_reg3";
2599 case DW_OP_reg4:
2600 return "DW_OP_reg4";
2601 case DW_OP_reg5:
2602 return "DW_OP_reg5";
2603 case DW_OP_reg6:
2604 return "DW_OP_reg6";
2605 case DW_OP_reg7:
2606 return "DW_OP_reg7";
2607 case DW_OP_reg8:
2608 return "DW_OP_reg8";
2609 case DW_OP_reg9:
2610 return "DW_OP_reg9";
2611 case DW_OP_reg10:
2612 return "DW_OP_reg10";
2613 case DW_OP_reg11:
2614 return "DW_OP_reg11";
2615 case DW_OP_reg12:
2616 return "DW_OP_reg12";
2617 case DW_OP_reg13:
2618 return "DW_OP_reg13";
2619 case DW_OP_reg14:
2620 return "DW_OP_reg14";
2621 case DW_OP_reg15:
2622 return "DW_OP_reg15";
2623 case DW_OP_reg16:
2624 return "DW_OP_reg16";
2625 case DW_OP_reg17:
2626 return "DW_OP_reg17";
2627 case DW_OP_reg18:
2628 return "DW_OP_reg18";
2629 case DW_OP_reg19:
2630 return "DW_OP_reg19";
2631 case DW_OP_reg20:
2632 return "DW_OP_reg20";
2633 case DW_OP_reg21:
2634 return "DW_OP_reg21";
2635 case DW_OP_reg22:
2636 return "DW_OP_reg22";
2637 case DW_OP_reg23:
2638 return "DW_OP_reg23";
2639 case DW_OP_reg24:
2640 return "DW_OP_reg24";
2641 case DW_OP_reg25:
2642 return "DW_OP_reg25";
2643 case DW_OP_reg26:
2644 return "DW_OP_reg26";
2645 case DW_OP_reg27:
2646 return "DW_OP_reg27";
2647 case DW_OP_reg28:
2648 return "DW_OP_reg28";
2649 case DW_OP_reg29:
2650 return "DW_OP_reg29";
2651 case DW_OP_reg30:
2652 return "DW_OP_reg30";
2653 case DW_OP_reg31:
2654 return "DW_OP_reg31";
2655 case DW_OP_breg0:
2656 return "DW_OP_breg0";
2657 case DW_OP_breg1:
2658 return "DW_OP_breg1";
2659 case DW_OP_breg2:
2660 return "DW_OP_breg2";
2661 case DW_OP_breg3:
2662 return "DW_OP_breg3";
2663 case DW_OP_breg4:
2664 return "DW_OP_breg4";
2665 case DW_OP_breg5:
2666 return "DW_OP_breg5";
2667 case DW_OP_breg6:
2668 return "DW_OP_breg6";
2669 case DW_OP_breg7:
2670 return "DW_OP_breg7";
2671 case DW_OP_breg8:
2672 return "DW_OP_breg8";
2673 case DW_OP_breg9:
2674 return "DW_OP_breg9";
2675 case DW_OP_breg10:
2676 return "DW_OP_breg10";
2677 case DW_OP_breg11:
2678 return "DW_OP_breg11";
2679 case DW_OP_breg12:
2680 return "DW_OP_breg12";
2681 case DW_OP_breg13:
2682 return "DW_OP_breg13";
2683 case DW_OP_breg14:
2684 return "DW_OP_breg14";
2685 case DW_OP_breg15:
2686 return "DW_OP_breg15";
2687 case DW_OP_breg16:
2688 return "DW_OP_breg16";
2689 case DW_OP_breg17:
2690 return "DW_OP_breg17";
2691 case DW_OP_breg18:
2692 return "DW_OP_breg18";
2693 case DW_OP_breg19:
2694 return "DW_OP_breg19";
2695 case DW_OP_breg20:
2696 return "DW_OP_breg20";
2697 case DW_OP_breg21:
2698 return "DW_OP_breg21";
2699 case DW_OP_breg22:
2700 return "DW_OP_breg22";
2701 case DW_OP_breg23:
2702 return "DW_OP_breg23";
2703 case DW_OP_breg24:
2704 return "DW_OP_breg24";
2705 case DW_OP_breg25:
2706 return "DW_OP_breg25";
2707 case DW_OP_breg26:
2708 return "DW_OP_breg26";
2709 case DW_OP_breg27:
2710 return "DW_OP_breg27";
2711 case DW_OP_breg28:
2712 return "DW_OP_breg28";
2713 case DW_OP_breg29:
2714 return "DW_OP_breg29";
2715 case DW_OP_breg30:
2716 return "DW_OP_breg30";
2717 case DW_OP_breg31:
2718 return "DW_OP_breg31";
2719 case DW_OP_regx:
2720 return "DW_OP_regx";
2721 case DW_OP_fbreg:
2722 return "DW_OP_fbreg";
2723 case DW_OP_bregx:
2724 return "DW_OP_bregx";
2725 case DW_OP_piece:
2726 return "DW_OP_piece";
2727 case DW_OP_deref_size:
2728 return "DW_OP_deref_size";
2729 case DW_OP_xderef_size:
2730 return "DW_OP_xderef_size";
2731 case DW_OP_nop:
2732 return "DW_OP_nop";
2733 case DW_OP_push_object_address:
2734 return "DW_OP_push_object_address";
2735 case DW_OP_call2:
2736 return "DW_OP_call2";
2737 case DW_OP_call4:
2738 return "DW_OP_call4";
2739 case DW_OP_call_ref:
2740 return "DW_OP_call_ref";
2741 case DW_OP_GNU_push_tls_address:
2742 return "DW_OP_GNU_push_tls_address";
2743 default:
2744 return "OP_<unknown>";
2748 /* Return a pointer to a newly allocated location description. Location
2749 descriptions are simple expression terms that can be strung
2750 together to form more complicated location (address) descriptions. */
2752 static inline dw_loc_descr_ref
2753 new_loc_descr (op, oprnd1, oprnd2)
2754 enum dwarf_location_atom op;
2755 unsigned long oprnd1;
2756 unsigned long oprnd2;
2758 dw_loc_descr_ref descr
2759 = (dw_loc_descr_ref) ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2761 descr->dw_loc_opc = op;
2762 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2763 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2764 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2765 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2767 return descr;
2771 /* Add a location description term to a location description expression. */
2773 static inline void
2774 add_loc_descr (list_head, descr)
2775 dw_loc_descr_ref *list_head;
2776 dw_loc_descr_ref descr;
2778 dw_loc_descr_ref *d;
2780 /* Find the end of the chain. */
2781 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2784 *d = descr;
2787 /* Return the size of a location descriptor. */
2789 static unsigned long
2790 size_of_loc_descr (loc)
2791 dw_loc_descr_ref loc;
2793 unsigned long size = 1;
2795 switch (loc->dw_loc_opc)
2797 case DW_OP_addr:
2798 case INTERNAL_DW_OP_tls_addr:
2799 size += DWARF2_ADDR_SIZE;
2800 break;
2801 case DW_OP_const1u:
2802 case DW_OP_const1s:
2803 size += 1;
2804 break;
2805 case DW_OP_const2u:
2806 case DW_OP_const2s:
2807 size += 2;
2808 break;
2809 case DW_OP_const4u:
2810 case DW_OP_const4s:
2811 size += 4;
2812 break;
2813 case DW_OP_const8u:
2814 case DW_OP_const8s:
2815 size += 8;
2816 break;
2817 case DW_OP_constu:
2818 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2819 break;
2820 case DW_OP_consts:
2821 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2822 break;
2823 case DW_OP_pick:
2824 size += 1;
2825 break;
2826 case DW_OP_plus_uconst:
2827 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2828 break;
2829 case DW_OP_skip:
2830 case DW_OP_bra:
2831 size += 2;
2832 break;
2833 case DW_OP_breg0:
2834 case DW_OP_breg1:
2835 case DW_OP_breg2:
2836 case DW_OP_breg3:
2837 case DW_OP_breg4:
2838 case DW_OP_breg5:
2839 case DW_OP_breg6:
2840 case DW_OP_breg7:
2841 case DW_OP_breg8:
2842 case DW_OP_breg9:
2843 case DW_OP_breg10:
2844 case DW_OP_breg11:
2845 case DW_OP_breg12:
2846 case DW_OP_breg13:
2847 case DW_OP_breg14:
2848 case DW_OP_breg15:
2849 case DW_OP_breg16:
2850 case DW_OP_breg17:
2851 case DW_OP_breg18:
2852 case DW_OP_breg19:
2853 case DW_OP_breg20:
2854 case DW_OP_breg21:
2855 case DW_OP_breg22:
2856 case DW_OP_breg23:
2857 case DW_OP_breg24:
2858 case DW_OP_breg25:
2859 case DW_OP_breg26:
2860 case DW_OP_breg27:
2861 case DW_OP_breg28:
2862 case DW_OP_breg29:
2863 case DW_OP_breg30:
2864 case DW_OP_breg31:
2865 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2866 break;
2867 case DW_OP_regx:
2868 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2869 break;
2870 case DW_OP_fbreg:
2871 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2872 break;
2873 case DW_OP_bregx:
2874 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2875 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2876 break;
2877 case DW_OP_piece:
2878 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2879 break;
2880 case DW_OP_deref_size:
2881 case DW_OP_xderef_size:
2882 size += 1;
2883 break;
2884 case DW_OP_call2:
2885 size += 2;
2886 break;
2887 case DW_OP_call4:
2888 size += 4;
2889 break;
2890 case DW_OP_call_ref:
2891 size += DWARF2_ADDR_SIZE;
2892 break;
2893 default:
2894 break;
2897 return size;
2900 /* Return the size of a series of location descriptors. */
2902 static unsigned long
2903 size_of_locs (loc)
2904 dw_loc_descr_ref loc;
2906 unsigned long size;
2908 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2910 loc->dw_loc_addr = size;
2911 size += size_of_loc_descr (loc);
2914 return size;
2917 /* Output location description stack opcode's operands (if any). */
2919 static void
2920 output_loc_operands (loc)
2921 dw_loc_descr_ref loc;
2923 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2924 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2926 switch (loc->dw_loc_opc)
2928 #ifdef DWARF2_DEBUGGING_INFO
2929 case DW_OP_addr:
2930 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2931 break;
2932 case DW_OP_const2u:
2933 case DW_OP_const2s:
2934 dw2_asm_output_data (2, val1->v.val_int, NULL);
2935 break;
2936 case DW_OP_const4u:
2937 case DW_OP_const4s:
2938 dw2_asm_output_data (4, val1->v.val_int, NULL);
2939 break;
2940 case DW_OP_const8u:
2941 case DW_OP_const8s:
2942 if (HOST_BITS_PER_LONG < 64)
2943 abort ();
2944 dw2_asm_output_data (8, val1->v.val_int, NULL);
2945 break;
2946 case DW_OP_skip:
2947 case DW_OP_bra:
2949 int offset;
2951 if (val1->val_class == dw_val_class_loc)
2952 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2953 else
2954 abort ();
2956 dw2_asm_output_data (2, offset, NULL);
2958 break;
2959 #else
2960 case DW_OP_addr:
2961 case DW_OP_const2u:
2962 case DW_OP_const2s:
2963 case DW_OP_const4u:
2964 case DW_OP_const4s:
2965 case DW_OP_const8u:
2966 case DW_OP_const8s:
2967 case DW_OP_skip:
2968 case DW_OP_bra:
2969 /* We currently don't make any attempt to make sure these are
2970 aligned properly like we do for the main unwind info, so
2971 don't support emitting things larger than a byte if we're
2972 only doing unwinding. */
2973 abort ();
2974 #endif
2975 case DW_OP_const1u:
2976 case DW_OP_const1s:
2977 dw2_asm_output_data (1, val1->v.val_int, NULL);
2978 break;
2979 case DW_OP_constu:
2980 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2981 break;
2982 case DW_OP_consts:
2983 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2984 break;
2985 case DW_OP_pick:
2986 dw2_asm_output_data (1, val1->v.val_int, NULL);
2987 break;
2988 case DW_OP_plus_uconst:
2989 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2990 break;
2991 case DW_OP_breg0:
2992 case DW_OP_breg1:
2993 case DW_OP_breg2:
2994 case DW_OP_breg3:
2995 case DW_OP_breg4:
2996 case DW_OP_breg5:
2997 case DW_OP_breg6:
2998 case DW_OP_breg7:
2999 case DW_OP_breg8:
3000 case DW_OP_breg9:
3001 case DW_OP_breg10:
3002 case DW_OP_breg11:
3003 case DW_OP_breg12:
3004 case DW_OP_breg13:
3005 case DW_OP_breg14:
3006 case DW_OP_breg15:
3007 case DW_OP_breg16:
3008 case DW_OP_breg17:
3009 case DW_OP_breg18:
3010 case DW_OP_breg19:
3011 case DW_OP_breg20:
3012 case DW_OP_breg21:
3013 case DW_OP_breg22:
3014 case DW_OP_breg23:
3015 case DW_OP_breg24:
3016 case DW_OP_breg25:
3017 case DW_OP_breg26:
3018 case DW_OP_breg27:
3019 case DW_OP_breg28:
3020 case DW_OP_breg29:
3021 case DW_OP_breg30:
3022 case DW_OP_breg31:
3023 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3024 break;
3025 case DW_OP_regx:
3026 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3027 break;
3028 case DW_OP_fbreg:
3029 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3030 break;
3031 case DW_OP_bregx:
3032 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3033 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3034 break;
3035 case DW_OP_piece:
3036 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3037 break;
3038 case DW_OP_deref_size:
3039 case DW_OP_xderef_size:
3040 dw2_asm_output_data (1, val1->v.val_int, NULL);
3041 break;
3043 case INTERNAL_DW_OP_tls_addr:
3044 #ifdef ASM_OUTPUT_DWARF_DTPREL
3045 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3046 val1->v.val_addr);
3047 fputc ('\n', asm_out_file);
3048 #else
3049 abort ();
3050 #endif
3051 break;
3053 default:
3054 /* Other codes have no operands. */
3055 break;
3059 /* Output a sequence of location operations. */
3061 static void
3062 output_loc_sequence (loc)
3063 dw_loc_descr_ref loc;
3065 for (; loc != NULL; loc = loc->dw_loc_next)
3067 /* Output the opcode. */
3068 dw2_asm_output_data (1, loc->dw_loc_opc,
3069 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3071 /* Output the operand(s) (if any). */
3072 output_loc_operands (loc);
3076 /* This routine will generate the correct assembly data for a location
3077 description based on a cfi entry with a complex address. */
3079 static void
3080 output_cfa_loc (cfi)
3081 dw_cfi_ref cfi;
3083 dw_loc_descr_ref loc;
3084 unsigned long size;
3086 /* Output the size of the block. */
3087 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3088 size = size_of_locs (loc);
3089 dw2_asm_output_data_uleb128 (size, NULL);
3091 /* Now output the operations themselves. */
3092 output_loc_sequence (loc);
3095 /* This function builds a dwarf location descriptor sequence from
3096 a dw_cfa_location. */
3098 static struct dw_loc_descr_struct *
3099 build_cfa_loc (cfa)
3100 dw_cfa_location *cfa;
3102 struct dw_loc_descr_struct *head, *tmp;
3104 if (cfa->indirect == 0)
3105 abort ();
3107 if (cfa->base_offset)
3109 if (cfa->reg <= 31)
3110 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3111 else
3112 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3114 else if (cfa->reg <= 31)
3115 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3116 else
3117 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3119 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3120 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3121 add_loc_descr (&head, tmp);
3122 if (cfa->offset != 0)
3124 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3125 add_loc_descr (&head, tmp);
3128 return head;
3131 /* This function fills in aa dw_cfa_location structure from a dwarf location
3132 descriptor sequence. */
3134 static void
3135 get_cfa_from_loc_descr (cfa, loc)
3136 dw_cfa_location *cfa;
3137 struct dw_loc_descr_struct *loc;
3139 struct dw_loc_descr_struct *ptr;
3140 cfa->offset = 0;
3141 cfa->base_offset = 0;
3142 cfa->indirect = 0;
3143 cfa->reg = -1;
3145 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3147 enum dwarf_location_atom op = ptr->dw_loc_opc;
3149 switch (op)
3151 case DW_OP_reg0:
3152 case DW_OP_reg1:
3153 case DW_OP_reg2:
3154 case DW_OP_reg3:
3155 case DW_OP_reg4:
3156 case DW_OP_reg5:
3157 case DW_OP_reg6:
3158 case DW_OP_reg7:
3159 case DW_OP_reg8:
3160 case DW_OP_reg9:
3161 case DW_OP_reg10:
3162 case DW_OP_reg11:
3163 case DW_OP_reg12:
3164 case DW_OP_reg13:
3165 case DW_OP_reg14:
3166 case DW_OP_reg15:
3167 case DW_OP_reg16:
3168 case DW_OP_reg17:
3169 case DW_OP_reg18:
3170 case DW_OP_reg19:
3171 case DW_OP_reg20:
3172 case DW_OP_reg21:
3173 case DW_OP_reg22:
3174 case DW_OP_reg23:
3175 case DW_OP_reg24:
3176 case DW_OP_reg25:
3177 case DW_OP_reg26:
3178 case DW_OP_reg27:
3179 case DW_OP_reg28:
3180 case DW_OP_reg29:
3181 case DW_OP_reg30:
3182 case DW_OP_reg31:
3183 cfa->reg = op - DW_OP_reg0;
3184 break;
3185 case DW_OP_regx:
3186 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3187 break;
3188 case DW_OP_breg0:
3189 case DW_OP_breg1:
3190 case DW_OP_breg2:
3191 case DW_OP_breg3:
3192 case DW_OP_breg4:
3193 case DW_OP_breg5:
3194 case DW_OP_breg6:
3195 case DW_OP_breg7:
3196 case DW_OP_breg8:
3197 case DW_OP_breg9:
3198 case DW_OP_breg10:
3199 case DW_OP_breg11:
3200 case DW_OP_breg12:
3201 case DW_OP_breg13:
3202 case DW_OP_breg14:
3203 case DW_OP_breg15:
3204 case DW_OP_breg16:
3205 case DW_OP_breg17:
3206 case DW_OP_breg18:
3207 case DW_OP_breg19:
3208 case DW_OP_breg20:
3209 case DW_OP_breg21:
3210 case DW_OP_breg22:
3211 case DW_OP_breg23:
3212 case DW_OP_breg24:
3213 case DW_OP_breg25:
3214 case DW_OP_breg26:
3215 case DW_OP_breg27:
3216 case DW_OP_breg28:
3217 case DW_OP_breg29:
3218 case DW_OP_breg30:
3219 case DW_OP_breg31:
3220 cfa->reg = op - DW_OP_breg0;
3221 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3222 break;
3223 case DW_OP_bregx:
3224 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3225 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3226 break;
3227 case DW_OP_deref:
3228 cfa->indirect = 1;
3229 break;
3230 case DW_OP_plus_uconst:
3231 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3232 break;
3233 default:
3234 internal_error ("DW_LOC_OP %s not implemented\n",
3235 dwarf_stack_op_name (ptr->dw_loc_opc));
3239 #endif /* .debug_frame support */
3241 /* And now, the support for symbolic debugging information. */
3242 #ifdef DWARF2_DEBUGGING_INFO
3244 /* .debug_str support. */
3245 static int output_indirect_string PARAMS ((void **, void *));
3247 static void dwarf2out_init PARAMS ((const char *));
3248 static void dwarf2out_finish PARAMS ((const char *));
3249 static void dwarf2out_define PARAMS ((unsigned int, const char *));
3250 static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3251 static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3252 static void dwarf2out_end_source_file PARAMS ((unsigned));
3253 static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3254 static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
3255 static bool dwarf2out_ignore_block PARAMS ((tree));
3256 static void dwarf2out_global_decl PARAMS ((tree));
3257 static void dwarf2out_abstract_function PARAMS ((tree));
3259 /* The debug hooks structure. */
3261 const struct gcc_debug_hooks dwarf2_debug_hooks =
3263 dwarf2out_init,
3264 dwarf2out_finish,
3265 dwarf2out_define,
3266 dwarf2out_undef,
3267 dwarf2out_start_source_file,
3268 dwarf2out_end_source_file,
3269 dwarf2out_begin_block,
3270 dwarf2out_end_block,
3271 dwarf2out_ignore_block,
3272 dwarf2out_source_line,
3273 dwarf2out_begin_prologue,
3274 debug_nothing_int_charstar, /* end_prologue */
3275 dwarf2out_end_epilogue,
3276 debug_nothing_tree, /* begin_function */
3277 debug_nothing_int, /* end_function */
3278 dwarf2out_decl, /* function_decl */
3279 dwarf2out_global_decl,
3280 debug_nothing_tree, /* deferred_inline_function */
3281 /* The DWARF 2 backend tries to reduce debugging bloat by not
3282 emitting the abstract description of inline functions until
3283 something tries to reference them. */
3284 dwarf2out_abstract_function, /* outlining_inline_function */
3285 debug_nothing_rtx /* label */
3287 #endif
3289 /* NOTE: In the comments in this file, many references are made to
3290 "Debugging Information Entries". This term is abbreviated as `DIE'
3291 throughout the remainder of this file. */
3293 /* An internal representation of the DWARF output is built, and then
3294 walked to generate the DWARF debugging info. The walk of the internal
3295 representation is done after the entire program has been compiled.
3296 The types below are used to describe the internal representation. */
3298 /* Various DIE's use offsets relative to the beginning of the
3299 .debug_info section to refer to each other. */
3301 typedef long int dw_offset;
3303 /* Define typedefs here to avoid circular dependencies. */
3305 typedef struct dw_attr_struct *dw_attr_ref;
3306 typedef struct dw_line_info_struct *dw_line_info_ref;
3307 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3308 typedef struct pubname_struct *pubname_ref;
3309 typedef struct dw_ranges_struct *dw_ranges_ref;
3311 /* Each entry in the line_info_table maintains the file and
3312 line number associated with the label generated for that
3313 entry. The label gives the PC value associated with
3314 the line number entry. */
3316 typedef struct dw_line_info_struct GTY(())
3318 unsigned long dw_file_num;
3319 unsigned long dw_line_num;
3321 dw_line_info_entry;
3323 /* Line information for functions in separate sections; each one gets its
3324 own sequence. */
3325 typedef struct dw_separate_line_info_struct GTY(())
3327 unsigned long dw_file_num;
3328 unsigned long dw_line_num;
3329 unsigned long function;
3331 dw_separate_line_info_entry;
3333 /* Each DIE attribute has a field specifying the attribute kind,
3334 a link to the next attribute in the chain, and an attribute value.
3335 Attributes are typically linked below the DIE they modify. */
3337 typedef struct dw_attr_struct GTY(())
3339 enum dwarf_attribute dw_attr;
3340 dw_attr_ref dw_attr_next;
3341 dw_val_node dw_attr_val;
3343 dw_attr_node;
3345 /* The Debugging Information Entry (DIE) structure */
3347 typedef struct die_struct GTY(())
3349 enum dwarf_tag die_tag;
3350 char *die_symbol;
3351 dw_attr_ref die_attr;
3352 dw_die_ref die_parent;
3353 dw_die_ref die_child;
3354 dw_die_ref die_sib;
3355 dw_offset die_offset;
3356 unsigned long die_abbrev;
3357 int die_mark;
3359 die_node;
3361 /* The pubname structure */
3363 typedef struct pubname_struct GTY(())
3365 dw_die_ref die;
3366 char *name;
3368 pubname_entry;
3370 struct dw_ranges_struct GTY(())
3372 int block_num;
3375 /* The limbo die list structure. */
3376 typedef struct limbo_die_struct GTY(())
3378 dw_die_ref die;
3379 tree created_for;
3380 struct limbo_die_struct *next;
3382 limbo_die_node;
3384 /* How to start an assembler comment. */
3385 #ifndef ASM_COMMENT_START
3386 #define ASM_COMMENT_START ";#"
3387 #endif
3389 /* Define a macro which returns nonzero for a TYPE_DECL which was
3390 implicitly generated for a tagged type.
3392 Note that unlike the gcc front end (which generates a NULL named
3393 TYPE_DECL node for each complete tagged type, each array type, and
3394 each function type node created) the g++ front end generates a
3395 _named_ TYPE_DECL node for each tagged type node created.
3396 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3397 generate a DW_TAG_typedef DIE for them. */
3399 #define TYPE_DECL_IS_STUB(decl) \
3400 (DECL_NAME (decl) == NULL_TREE \
3401 || (DECL_ARTIFICIAL (decl) \
3402 && is_tagged_type (TREE_TYPE (decl)) \
3403 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3404 /* This is necessary for stub decls that \
3405 appear in nested inline functions. */ \
3406 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3407 && (decl_ultimate_origin (decl) \
3408 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3410 /* Information concerning the compilation unit's programming
3411 language, and compiler version. */
3413 /* Fixed size portion of the DWARF compilation unit header. */
3414 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3415 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3417 /* Fixed size portion of public names info. */
3418 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3420 /* Fixed size portion of the address range info. */
3421 #define DWARF_ARANGES_HEADER_SIZE \
3422 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3423 - DWARF_OFFSET_SIZE)
3425 /* Size of padding portion in the address range info. It must be
3426 aligned to twice the pointer size. */
3427 #define DWARF_ARANGES_PAD_SIZE \
3428 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3429 - (2 * DWARF_OFFSET_SIZE + 4))
3431 /* Use assembler line directives if available. */
3432 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3433 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3434 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3435 #else
3436 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3437 #endif
3438 #endif
3440 /* Minimum line offset in a special line info. opcode.
3441 This value was chosen to give a reasonable range of values. */
3442 #define DWARF_LINE_BASE -10
3444 /* First special line opcode - leave room for the standard opcodes. */
3445 #define DWARF_LINE_OPCODE_BASE 10
3447 /* Range of line offsets in a special line info. opcode. */
3448 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3450 /* Flag that indicates the initial value of the is_stmt_start flag.
3451 In the present implementation, we do not mark any lines as
3452 the beginning of a source statement, because that information
3453 is not made available by the GCC front-end. */
3454 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3456 #ifdef DWARF2_DEBUGGING_INFO
3457 /* This location is used by calc_die_sizes() to keep track
3458 the offset of each DIE within the .debug_info section. */
3459 static unsigned long next_die_offset;
3460 #endif
3462 /* Record the root of the DIE's built for the current compilation unit. */
3463 static GTY(()) dw_die_ref comp_unit_die;
3465 #ifdef DWARF2_DEBUGGING_INFO
3466 /* We need special handling in dwarf2out_start_source_file if it is
3467 first one. */
3468 static int is_main_source;
3469 #endif
3471 /* A list of DIEs with a NULL parent waiting to be relocated. */
3472 static GTY(()) limbo_die_node *limbo_die_list;
3474 /* Filenames referenced by this compilation unit. */
3475 static GTY(()) varray_type file_table;
3476 static GTY(()) varray_type file_table_emitted;
3477 static GTY(()) size_t file_table_last_lookup_index;
3479 /* A pointer to the base of a table of references to DIE's that describe
3480 declarations. The table is indexed by DECL_UID() which is a unique
3481 number identifying each decl. */
3482 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3484 /* Number of elements currently allocated for the decl_die_table. */
3485 static unsigned decl_die_table_allocated;
3487 #ifdef DWARF2_DEBUGGING_INFO
3488 /* Number of elements in decl_die_table currently in use. */
3489 static unsigned decl_die_table_in_use;
3490 #endif
3492 /* Size (in elements) of increments by which we may expand the
3493 decl_die_table. */
3494 #define DECL_DIE_TABLE_INCREMENT 256
3496 /* A pointer to the base of a list of references to DIE's that
3497 are uniquely identified by their tag, presence/absence of
3498 children DIE's, and list of attribute/value pairs. */
3499 static GTY((length ("abbrev_die_table_allocated")))
3500 dw_die_ref *abbrev_die_table;
3502 /* Number of elements currently allocated for abbrev_die_table. */
3503 static unsigned abbrev_die_table_allocated;
3505 #ifdef DWARF2_DEBUGGING_INFO
3506 /* Number of elements in type_die_table currently in use. */
3507 static unsigned abbrev_die_table_in_use;
3508 #endif
3510 /* Size (in elements) of increments by which we may expand the
3511 abbrev_die_table. */
3512 #define ABBREV_DIE_TABLE_INCREMENT 256
3514 /* A pointer to the base of a table that contains line information
3515 for each source code line in .text in the compilation unit. */
3516 static GTY((length ("line_info_table_allocated")))
3517 dw_line_info_ref line_info_table;
3519 /* Number of elements currently allocated for line_info_table. */
3520 static unsigned line_info_table_allocated;
3522 #ifdef DWARF2_DEBUGGING_INFO
3523 /* Number of elements in line_info_table currently in use. */
3524 static unsigned line_info_table_in_use;
3525 #endif
3527 /* A pointer to the base of a table that contains line information
3528 for each source code line outside of .text in the compilation unit. */
3529 static GTY ((length ("separate_line_info_table_allocated")))
3530 dw_separate_line_info_ref separate_line_info_table;
3532 /* Number of elements currently allocated for separate_line_info_table. */
3533 static unsigned separate_line_info_table_allocated;
3535 #ifdef DWARF2_DEBUGGING_INFO
3536 /* Number of elements in separate_line_info_table currently in use. */
3537 static unsigned separate_line_info_table_in_use;
3538 #endif
3540 /* Size (in elements) of increments by which we may expand the
3541 line_info_table. */
3542 #define LINE_INFO_TABLE_INCREMENT 1024
3544 /* A pointer to the base of a table that contains a list of publicly
3545 accessible names. */
3546 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3548 /* Number of elements currently allocated for pubname_table. */
3549 static unsigned pubname_table_allocated;
3551 #ifdef DWARF2_DEBUGGING_INFO
3552 /* Number of elements in pubname_table currently in use. */
3553 static unsigned pubname_table_in_use;
3554 #endif
3556 /* Size (in elements) of increments by which we may expand the
3557 pubname_table. */
3558 #define PUBNAME_TABLE_INCREMENT 64
3560 /* Array of dies for which we should generate .debug_arange info. */
3561 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3563 /* Number of elements currently allocated for arange_table. */
3564 static unsigned arange_table_allocated;
3566 #ifdef DWARF2_DEBUGGING_INFO
3567 /* Number of elements in arange_table currently in use. */
3568 static unsigned arange_table_in_use;
3569 #endif
3571 /* Size (in elements) of increments by which we may expand the
3572 arange_table. */
3573 #define ARANGE_TABLE_INCREMENT 64
3575 /* Array of dies for which we should generate .debug_ranges info. */
3576 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3578 /* Number of elements currently allocated for ranges_table. */
3579 static unsigned ranges_table_allocated;
3581 #ifdef DWARF2_DEBUGGING_INFO
3582 /* Number of elements in ranges_table currently in use. */
3583 static unsigned ranges_table_in_use;
3585 /* Size (in elements) of increments by which we may expand the
3586 ranges_table. */
3587 #define RANGES_TABLE_INCREMENT 64
3589 /* Whether we have location lists that need outputting */
3590 static unsigned have_location_lists;
3592 /* Record whether the function being analyzed contains inlined functions. */
3593 static int current_function_has_inlines;
3594 #endif
3595 #if 0 && defined (MIPS_DEBUGGING_INFO)
3596 static int comp_unit_has_inlines;
3597 #endif
3599 #ifdef DWARF2_DEBUGGING_INFO
3601 /* Forward declarations for functions defined in this file. */
3603 static int is_pseudo_reg PARAMS ((rtx));
3604 static tree type_main_variant PARAMS ((tree));
3605 static int is_tagged_type PARAMS ((tree));
3606 static const char *dwarf_tag_name PARAMS ((unsigned));
3607 static const char *dwarf_attr_name PARAMS ((unsigned));
3608 static const char *dwarf_form_name PARAMS ((unsigned));
3609 #if 0
3610 static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3611 #endif
3612 static tree decl_ultimate_origin PARAMS ((tree));
3613 static tree block_ultimate_origin PARAMS ((tree));
3614 static tree decl_class_context PARAMS ((tree));
3615 static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3616 static inline enum dw_val_class AT_class PARAMS ((dw_attr_ref));
3617 static void add_AT_flag PARAMS ((dw_die_ref,
3618 enum dwarf_attribute,
3619 unsigned));
3620 static inline unsigned AT_flag PARAMS ((dw_attr_ref));
3621 static void add_AT_int PARAMS ((dw_die_ref,
3622 enum dwarf_attribute, long));
3623 static inline long int AT_int PARAMS ((dw_attr_ref));
3624 static void add_AT_unsigned PARAMS ((dw_die_ref,
3625 enum dwarf_attribute,
3626 unsigned long));
3627 static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
3628 static void add_AT_long_long PARAMS ((dw_die_ref,
3629 enum dwarf_attribute,
3630 unsigned long,
3631 unsigned long));
3632 static void add_AT_float PARAMS ((dw_die_ref,
3633 enum dwarf_attribute,
3634 unsigned, long *));
3635 static hashval_t debug_str_do_hash PARAMS ((const void *));
3636 static int debug_str_eq PARAMS ((const void *, const void *));
3637 static void add_AT_string PARAMS ((dw_die_ref,
3638 enum dwarf_attribute,
3639 const char *));
3640 static inline const char *AT_string PARAMS ((dw_attr_ref));
3641 static int AT_string_form PARAMS ((dw_attr_ref));
3642 static void add_AT_die_ref PARAMS ((dw_die_ref,
3643 enum dwarf_attribute,
3644 dw_die_ref));
3645 static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
3646 static inline int AT_ref_external PARAMS ((dw_attr_ref));
3647 static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
3648 static void add_AT_fde_ref PARAMS ((dw_die_ref,
3649 enum dwarf_attribute,
3650 unsigned));
3651 static void add_AT_loc PARAMS ((dw_die_ref,
3652 enum dwarf_attribute,
3653 dw_loc_descr_ref));
3654 static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
3655 static void add_AT_loc_list PARAMS ((dw_die_ref,
3656 enum dwarf_attribute,
3657 dw_loc_list_ref));
3658 static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
3659 static void add_AT_addr PARAMS ((dw_die_ref,
3660 enum dwarf_attribute,
3661 rtx));
3662 static inline rtx AT_addr PARAMS ((dw_attr_ref));
3663 static void add_AT_lbl_id PARAMS ((dw_die_ref,
3664 enum dwarf_attribute,
3665 const char *));
3666 static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3667 enum dwarf_attribute,
3668 const char *));
3669 static void add_AT_offset PARAMS ((dw_die_ref,
3670 enum dwarf_attribute,
3671 unsigned long));
3672 static void add_AT_range_list PARAMS ((dw_die_ref,
3673 enum dwarf_attribute,
3674 unsigned long));
3675 static inline const char *AT_lbl PARAMS ((dw_attr_ref));
3676 static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3677 enum dwarf_attribute));
3678 static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3679 static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3680 static const char *get_AT_string PARAMS ((dw_die_ref,
3681 enum dwarf_attribute));
3682 static int get_AT_flag PARAMS ((dw_die_ref,
3683 enum dwarf_attribute));
3684 static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3685 enum dwarf_attribute));
3686 static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3687 enum dwarf_attribute));
3688 static int is_c_family PARAMS ((void));
3689 static int is_cxx PARAMS ((void));
3690 static int is_java PARAMS ((void));
3691 static int is_fortran PARAMS ((void));
3692 static void remove_AT PARAMS ((dw_die_ref,
3693 enum dwarf_attribute));
3694 static inline void free_die PARAMS ((dw_die_ref));
3695 static void remove_children PARAMS ((dw_die_ref));
3696 static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3697 static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref,
3698 tree));
3699 static dw_die_ref lookup_type_die PARAMS ((tree));
3700 static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3701 static dw_die_ref lookup_decl_die PARAMS ((tree));
3702 static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3703 static void print_spaces PARAMS ((FILE *));
3704 static void print_die PARAMS ((dw_die_ref, FILE *));
3705 static void print_dwarf_line_table PARAMS ((FILE *));
3706 static void reverse_die_lists PARAMS ((dw_die_ref));
3707 static void reverse_all_dies PARAMS ((dw_die_ref));
3708 static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3709 static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3710 static void loc_checksum PARAMS ((dw_loc_descr_ref,
3711 struct md5_ctx *));
3712 static void attr_checksum PARAMS ((dw_attr_ref,
3713 struct md5_ctx *,
3714 int *));
3715 static void die_checksum PARAMS ((dw_die_ref,
3716 struct md5_ctx *,
3717 int *));
3718 static int same_loc_p PARAMS ((dw_loc_descr_ref,
3719 dw_loc_descr_ref, int *));
3720 static int same_dw_val_p PARAMS ((dw_val_node *, dw_val_node *,
3721 int *));
3722 static int same_attr_p PARAMS ((dw_attr_ref, dw_attr_ref, int *));
3723 static int same_die_p PARAMS ((dw_die_ref, dw_die_ref, int *));
3724 static int same_die_p_wrap PARAMS ((dw_die_ref, dw_die_ref));
3725 static void compute_section_prefix PARAMS ((dw_die_ref));
3726 static int is_type_die PARAMS ((dw_die_ref));
3727 static int is_comdat_die PARAMS ((dw_die_ref));
3728 static int is_symbol_die PARAMS ((dw_die_ref));
3729 static void assign_symbol_names PARAMS ((dw_die_ref));
3730 static void break_out_includes PARAMS ((dw_die_ref));
3731 static hashval_t htab_cu_hash PARAMS ((const void *));
3732 static int htab_cu_eq PARAMS ((const void *, const void *));
3733 static void htab_cu_del PARAMS ((void *));
3734 static int check_duplicate_cu PARAMS ((dw_die_ref, htab_t, unsigned *));
3735 static void record_comdat_symbol_number PARAMS ((dw_die_ref, htab_t, unsigned));
3736 static void add_sibling_attributes PARAMS ((dw_die_ref));
3737 static void build_abbrev_table PARAMS ((dw_die_ref));
3738 static void output_location_lists PARAMS ((dw_die_ref));
3739 static int constant_size PARAMS ((long unsigned));
3740 static unsigned long size_of_die PARAMS ((dw_die_ref));
3741 static void calc_die_sizes PARAMS ((dw_die_ref));
3742 static void mark_dies PARAMS ((dw_die_ref));
3743 static void unmark_dies PARAMS ((dw_die_ref));
3744 static void unmark_all_dies PARAMS ((dw_die_ref));
3745 static unsigned long size_of_pubnames PARAMS ((void));
3746 static unsigned long size_of_aranges PARAMS ((void));
3747 static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3748 static void output_value_format PARAMS ((dw_attr_ref));
3749 static void output_abbrev_section PARAMS ((void));
3750 static void output_die_symbol PARAMS ((dw_die_ref));
3751 static void output_die PARAMS ((dw_die_ref));
3752 static void output_compilation_unit_header PARAMS ((void));
3753 static void output_comp_unit PARAMS ((dw_die_ref, int));
3754 static const char *dwarf2_name PARAMS ((tree, int));
3755 static void add_pubname PARAMS ((tree, dw_die_ref));
3756 static void output_pubnames PARAMS ((void));
3757 static void add_arange PARAMS ((tree, dw_die_ref));
3758 static void output_aranges PARAMS ((void));
3759 static unsigned int add_ranges PARAMS ((tree));
3760 static void output_ranges PARAMS ((void));
3761 static void output_line_info PARAMS ((void));
3762 static void output_file_names PARAMS ((void));
3763 static dw_die_ref base_type_die PARAMS ((tree));
3764 static tree root_type PARAMS ((tree));
3765 static int is_base_type PARAMS ((tree));
3766 static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3767 static int type_is_enum PARAMS ((tree));
3768 static unsigned int reg_number PARAMS ((rtx));
3769 static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
3770 static dw_loc_descr_ref one_reg_loc_descriptor PARAMS ((unsigned int));
3771 static dw_loc_descr_ref multiple_reg_loc_descriptor PARAMS ((rtx, rtx));
3772 static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
3773 static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3774 static int is_based_loc PARAMS ((rtx));
3775 static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3776 static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3777 static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
3778 static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
3779 static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3780 static tree field_type PARAMS ((tree));
3781 static unsigned int simple_type_align_in_bits PARAMS ((tree));
3782 static unsigned int simple_decl_align_in_bits PARAMS ((tree));
3783 static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3784 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3785 static void add_AT_location_description PARAMS ((dw_die_ref,
3786 enum dwarf_attribute,
3787 dw_loc_descr_ref));
3788 static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3789 static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
3790 static rtx rtl_for_decl_location PARAMS ((tree));
3791 static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
3792 static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
3793 static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3794 static void add_comp_dir_attribute PARAMS ((dw_die_ref));
3795 static void add_bound_info PARAMS ((dw_die_ref,
3796 enum dwarf_attribute, tree));
3797 static void add_subscript_info PARAMS ((dw_die_ref, tree));
3798 static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3799 static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3800 static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3801 static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3802 static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3803 static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3804 static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3805 static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3806 static void push_decl_scope PARAMS ((tree));
3807 static void pop_decl_scope PARAMS ((void));
3808 static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3809 static inline int local_scope_p PARAMS ((dw_die_ref));
3810 static inline int class_scope_p PARAMS ((dw_die_ref));
3811 static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3812 dw_die_ref));
3813 static const char *type_tag PARAMS ((tree));
3814 static tree member_declared_type PARAMS ((tree));
3815 #if 0
3816 static const char *decl_start_label PARAMS ((tree));
3817 #endif
3818 static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3819 static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3820 #if 0
3821 static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3822 #endif
3823 static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3824 static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3825 static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3826 static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3827 static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3828 static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3829 static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3830 static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3831 static void gen_variable_die PARAMS ((tree, dw_die_ref));
3832 static void gen_label_die PARAMS ((tree, dw_die_ref));
3833 static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3834 static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3835 static void gen_field_die PARAMS ((tree, dw_die_ref));
3836 static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3837 static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3838 static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3839 static void gen_inheritance_die PARAMS ((tree, tree, dw_die_ref));
3840 static void gen_member_die PARAMS ((tree, dw_die_ref));
3841 static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3842 static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3843 static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3844 static void gen_type_die PARAMS ((tree, dw_die_ref));
3845 static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3846 static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3847 static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3848 static int is_redundant_typedef PARAMS ((tree));
3849 static void gen_decl_die PARAMS ((tree, dw_die_ref));
3850 static unsigned lookup_filename PARAMS ((const char *));
3851 static void init_file_table PARAMS ((void));
3852 static void retry_incomplete_types PARAMS ((void));
3853 static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
3854 static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
3855 static int file_info_cmp PARAMS ((const void *, const void *));
3856 static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3857 const char *, const char *,
3858 const char *, unsigned));
3859 static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3860 dw_loc_descr_ref,
3861 const char *, const char *, const char *));
3862 static void output_loc_list PARAMS ((dw_loc_list_ref));
3863 static char *gen_internal_sym PARAMS ((const char *));
3865 static void prune_unmark_dies PARAMS ((dw_die_ref));
3866 static void prune_unused_types_mark PARAMS ((dw_die_ref, int));
3867 static void prune_unused_types_walk PARAMS ((dw_die_ref));
3868 static void prune_unused_types_walk_attribs PARAMS ((dw_die_ref));
3869 static void prune_unused_types_prune PARAMS ((dw_die_ref));
3870 static void prune_unused_types PARAMS ((void));
3871 static int maybe_emit_file PARAMS ((int));
3873 /* Section names used to hold DWARF debugging information. */
3874 #ifndef DEBUG_INFO_SECTION
3875 #define DEBUG_INFO_SECTION ".debug_info"
3876 #endif
3877 #ifndef DEBUG_ABBREV_SECTION
3878 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3879 #endif
3880 #ifndef DEBUG_ARANGES_SECTION
3881 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3882 #endif
3883 #ifndef DEBUG_MACINFO_SECTION
3884 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3885 #endif
3886 #ifndef DEBUG_LINE_SECTION
3887 #define DEBUG_LINE_SECTION ".debug_line"
3888 #endif
3889 #ifndef DEBUG_LOC_SECTION
3890 #define DEBUG_LOC_SECTION ".debug_loc"
3891 #endif
3892 #ifndef DEBUG_PUBNAMES_SECTION
3893 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3894 #endif
3895 #ifndef DEBUG_STR_SECTION
3896 #define DEBUG_STR_SECTION ".debug_str"
3897 #endif
3898 #ifndef DEBUG_RANGES_SECTION
3899 #define DEBUG_RANGES_SECTION ".debug_ranges"
3900 #endif
3902 /* Standard ELF section names for compiled code and data. */
3903 #ifndef TEXT_SECTION_NAME
3904 #define TEXT_SECTION_NAME ".text"
3905 #endif
3907 /* Section flags for .debug_str section. */
3908 #ifdef HAVE_GAS_SHF_MERGE
3909 #define DEBUG_STR_SECTION_FLAGS \
3910 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3911 #else
3912 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3913 #endif
3915 /* Labels we insert at beginning sections we can reference instead of
3916 the section names themselves. */
3918 #ifndef TEXT_SECTION_LABEL
3919 #define TEXT_SECTION_LABEL "Ltext"
3920 #endif
3921 #ifndef DEBUG_LINE_SECTION_LABEL
3922 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3923 #endif
3924 #ifndef DEBUG_INFO_SECTION_LABEL
3925 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3926 #endif
3927 #ifndef DEBUG_ABBREV_SECTION_LABEL
3928 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3929 #endif
3930 #ifndef DEBUG_LOC_SECTION_LABEL
3931 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3932 #endif
3933 #ifndef DEBUG_RANGES_SECTION_LABEL
3934 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3935 #endif
3936 #ifndef DEBUG_MACINFO_SECTION_LABEL
3937 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3938 #endif
3940 /* Definitions of defaults for formats and names of various special
3941 (artificial) labels which may be generated within this file (when the -g
3942 options is used and DWARF_DEBUGGING_INFO is in effect.
3943 If necessary, these may be overridden from within the tm.h file, but
3944 typically, overriding these defaults is unnecessary. */
3946 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3947 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3948 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3949 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3950 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3951 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3952 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3953 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3955 #ifndef TEXT_END_LABEL
3956 #define TEXT_END_LABEL "Letext"
3957 #endif
3958 #ifndef BLOCK_BEGIN_LABEL
3959 #define BLOCK_BEGIN_LABEL "LBB"
3960 #endif
3961 #ifndef BLOCK_END_LABEL
3962 #define BLOCK_END_LABEL "LBE"
3963 #endif
3964 #ifndef LINE_CODE_LABEL
3965 #define LINE_CODE_LABEL "LM"
3966 #endif
3967 #ifndef SEPARATE_LINE_CODE_LABEL
3968 #define SEPARATE_LINE_CODE_LABEL "LSM"
3969 #endif
3971 /* We allow a language front-end to designate a function that is to be
3972 called to "demangle" any name before it it put into a DIE. */
3974 static const char *(*demangle_name_func) PARAMS ((const char *));
3976 void
3977 dwarf2out_set_demangle_name_func (func)
3978 const char *(*func) PARAMS ((const char *));
3980 demangle_name_func = func;
3983 /* Test if rtl node points to a pseudo register. */
3985 static inline int
3986 is_pseudo_reg (rtl)
3987 rtx rtl;
3989 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3990 || (GET_CODE (rtl) == SUBREG
3991 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3994 /* Return a reference to a type, with its const and volatile qualifiers
3995 removed. */
3997 static inline tree
3998 type_main_variant (type)
3999 tree type;
4001 type = TYPE_MAIN_VARIANT (type);
4003 /* ??? There really should be only one main variant among any group of
4004 variants of a given type (and all of the MAIN_VARIANT values for all
4005 members of the group should point to that one type) but sometimes the C
4006 front-end messes this up for array types, so we work around that bug
4007 here. */
4008 if (TREE_CODE (type) == ARRAY_TYPE)
4009 while (type != TYPE_MAIN_VARIANT (type))
4010 type = TYPE_MAIN_VARIANT (type);
4012 return type;
4015 /* Return nonzero if the given type node represents a tagged type. */
4017 static inline int
4018 is_tagged_type (type)
4019 tree type;
4021 enum tree_code code = TREE_CODE (type);
4023 return (code == RECORD_TYPE || code == UNION_TYPE
4024 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4027 /* Convert a DIE tag into its string name. */
4029 static const char *
4030 dwarf_tag_name (tag)
4031 unsigned tag;
4033 switch (tag)
4035 case DW_TAG_padding:
4036 return "DW_TAG_padding";
4037 case DW_TAG_array_type:
4038 return "DW_TAG_array_type";
4039 case DW_TAG_class_type:
4040 return "DW_TAG_class_type";
4041 case DW_TAG_entry_point:
4042 return "DW_TAG_entry_point";
4043 case DW_TAG_enumeration_type:
4044 return "DW_TAG_enumeration_type";
4045 case DW_TAG_formal_parameter:
4046 return "DW_TAG_formal_parameter";
4047 case DW_TAG_imported_declaration:
4048 return "DW_TAG_imported_declaration";
4049 case DW_TAG_label:
4050 return "DW_TAG_label";
4051 case DW_TAG_lexical_block:
4052 return "DW_TAG_lexical_block";
4053 case DW_TAG_member:
4054 return "DW_TAG_member";
4055 case DW_TAG_pointer_type:
4056 return "DW_TAG_pointer_type";
4057 case DW_TAG_reference_type:
4058 return "DW_TAG_reference_type";
4059 case DW_TAG_compile_unit:
4060 return "DW_TAG_compile_unit";
4061 case DW_TAG_string_type:
4062 return "DW_TAG_string_type";
4063 case DW_TAG_structure_type:
4064 return "DW_TAG_structure_type";
4065 case DW_TAG_subroutine_type:
4066 return "DW_TAG_subroutine_type";
4067 case DW_TAG_typedef:
4068 return "DW_TAG_typedef";
4069 case DW_TAG_union_type:
4070 return "DW_TAG_union_type";
4071 case DW_TAG_unspecified_parameters:
4072 return "DW_TAG_unspecified_parameters";
4073 case DW_TAG_variant:
4074 return "DW_TAG_variant";
4075 case DW_TAG_common_block:
4076 return "DW_TAG_common_block";
4077 case DW_TAG_common_inclusion:
4078 return "DW_TAG_common_inclusion";
4079 case DW_TAG_inheritance:
4080 return "DW_TAG_inheritance";
4081 case DW_TAG_inlined_subroutine:
4082 return "DW_TAG_inlined_subroutine";
4083 case DW_TAG_module:
4084 return "DW_TAG_module";
4085 case DW_TAG_ptr_to_member_type:
4086 return "DW_TAG_ptr_to_member_type";
4087 case DW_TAG_set_type:
4088 return "DW_TAG_set_type";
4089 case DW_TAG_subrange_type:
4090 return "DW_TAG_subrange_type";
4091 case DW_TAG_with_stmt:
4092 return "DW_TAG_with_stmt";
4093 case DW_TAG_access_declaration:
4094 return "DW_TAG_access_declaration";
4095 case DW_TAG_base_type:
4096 return "DW_TAG_base_type";
4097 case DW_TAG_catch_block:
4098 return "DW_TAG_catch_block";
4099 case DW_TAG_const_type:
4100 return "DW_TAG_const_type";
4101 case DW_TAG_constant:
4102 return "DW_TAG_constant";
4103 case DW_TAG_enumerator:
4104 return "DW_TAG_enumerator";
4105 case DW_TAG_file_type:
4106 return "DW_TAG_file_type";
4107 case DW_TAG_friend:
4108 return "DW_TAG_friend";
4109 case DW_TAG_namelist:
4110 return "DW_TAG_namelist";
4111 case DW_TAG_namelist_item:
4112 return "DW_TAG_namelist_item";
4113 case DW_TAG_packed_type:
4114 return "DW_TAG_packed_type";
4115 case DW_TAG_subprogram:
4116 return "DW_TAG_subprogram";
4117 case DW_TAG_template_type_param:
4118 return "DW_TAG_template_type_param";
4119 case DW_TAG_template_value_param:
4120 return "DW_TAG_template_value_param";
4121 case DW_TAG_thrown_type:
4122 return "DW_TAG_thrown_type";
4123 case DW_TAG_try_block:
4124 return "DW_TAG_try_block";
4125 case DW_TAG_variant_part:
4126 return "DW_TAG_variant_part";
4127 case DW_TAG_variable:
4128 return "DW_TAG_variable";
4129 case DW_TAG_volatile_type:
4130 return "DW_TAG_volatile_type";
4131 case DW_TAG_MIPS_loop:
4132 return "DW_TAG_MIPS_loop";
4133 case DW_TAG_format_label:
4134 return "DW_TAG_format_label";
4135 case DW_TAG_function_template:
4136 return "DW_TAG_function_template";
4137 case DW_TAG_class_template:
4138 return "DW_TAG_class_template";
4139 case DW_TAG_GNU_BINCL:
4140 return "DW_TAG_GNU_BINCL";
4141 case DW_TAG_GNU_EINCL:
4142 return "DW_TAG_GNU_EINCL";
4143 default:
4144 return "DW_TAG_<unknown>";
4148 /* Convert a DWARF attribute code into its string name. */
4150 static const char *
4151 dwarf_attr_name (attr)
4152 unsigned attr;
4154 switch (attr)
4156 case DW_AT_sibling:
4157 return "DW_AT_sibling";
4158 case DW_AT_location:
4159 return "DW_AT_location";
4160 case DW_AT_name:
4161 return "DW_AT_name";
4162 case DW_AT_ordering:
4163 return "DW_AT_ordering";
4164 case DW_AT_subscr_data:
4165 return "DW_AT_subscr_data";
4166 case DW_AT_byte_size:
4167 return "DW_AT_byte_size";
4168 case DW_AT_bit_offset:
4169 return "DW_AT_bit_offset";
4170 case DW_AT_bit_size:
4171 return "DW_AT_bit_size";
4172 case DW_AT_element_list:
4173 return "DW_AT_element_list";
4174 case DW_AT_stmt_list:
4175 return "DW_AT_stmt_list";
4176 case DW_AT_low_pc:
4177 return "DW_AT_low_pc";
4178 case DW_AT_high_pc:
4179 return "DW_AT_high_pc";
4180 case DW_AT_language:
4181 return "DW_AT_language";
4182 case DW_AT_member:
4183 return "DW_AT_member";
4184 case DW_AT_discr:
4185 return "DW_AT_discr";
4186 case DW_AT_discr_value:
4187 return "DW_AT_discr_value";
4188 case DW_AT_visibility:
4189 return "DW_AT_visibility";
4190 case DW_AT_import:
4191 return "DW_AT_import";
4192 case DW_AT_string_length:
4193 return "DW_AT_string_length";
4194 case DW_AT_common_reference:
4195 return "DW_AT_common_reference";
4196 case DW_AT_comp_dir:
4197 return "DW_AT_comp_dir";
4198 case DW_AT_const_value:
4199 return "DW_AT_const_value";
4200 case DW_AT_containing_type:
4201 return "DW_AT_containing_type";
4202 case DW_AT_default_value:
4203 return "DW_AT_default_value";
4204 case DW_AT_inline:
4205 return "DW_AT_inline";
4206 case DW_AT_is_optional:
4207 return "DW_AT_is_optional";
4208 case DW_AT_lower_bound:
4209 return "DW_AT_lower_bound";
4210 case DW_AT_producer:
4211 return "DW_AT_producer";
4212 case DW_AT_prototyped:
4213 return "DW_AT_prototyped";
4214 case DW_AT_return_addr:
4215 return "DW_AT_return_addr";
4216 case DW_AT_start_scope:
4217 return "DW_AT_start_scope";
4218 case DW_AT_stride_size:
4219 return "DW_AT_stride_size";
4220 case DW_AT_upper_bound:
4221 return "DW_AT_upper_bound";
4222 case DW_AT_abstract_origin:
4223 return "DW_AT_abstract_origin";
4224 case DW_AT_accessibility:
4225 return "DW_AT_accessibility";
4226 case DW_AT_address_class:
4227 return "DW_AT_address_class";
4228 case DW_AT_artificial:
4229 return "DW_AT_artificial";
4230 case DW_AT_base_types:
4231 return "DW_AT_base_types";
4232 case DW_AT_calling_convention:
4233 return "DW_AT_calling_convention";
4234 case DW_AT_count:
4235 return "DW_AT_count";
4236 case DW_AT_data_member_location:
4237 return "DW_AT_data_member_location";
4238 case DW_AT_decl_column:
4239 return "DW_AT_decl_column";
4240 case DW_AT_decl_file:
4241 return "DW_AT_decl_file";
4242 case DW_AT_decl_line:
4243 return "DW_AT_decl_line";
4244 case DW_AT_declaration:
4245 return "DW_AT_declaration";
4246 case DW_AT_discr_list:
4247 return "DW_AT_discr_list";
4248 case DW_AT_encoding:
4249 return "DW_AT_encoding";
4250 case DW_AT_external:
4251 return "DW_AT_external";
4252 case DW_AT_frame_base:
4253 return "DW_AT_frame_base";
4254 case DW_AT_friend:
4255 return "DW_AT_friend";
4256 case DW_AT_identifier_case:
4257 return "DW_AT_identifier_case";
4258 case DW_AT_macro_info:
4259 return "DW_AT_macro_info";
4260 case DW_AT_namelist_items:
4261 return "DW_AT_namelist_items";
4262 case DW_AT_priority:
4263 return "DW_AT_priority";
4264 case DW_AT_segment:
4265 return "DW_AT_segment";
4266 case DW_AT_specification:
4267 return "DW_AT_specification";
4268 case DW_AT_static_link:
4269 return "DW_AT_static_link";
4270 case DW_AT_type:
4271 return "DW_AT_type";
4272 case DW_AT_use_location:
4273 return "DW_AT_use_location";
4274 case DW_AT_variable_parameter:
4275 return "DW_AT_variable_parameter";
4276 case DW_AT_virtuality:
4277 return "DW_AT_virtuality";
4278 case DW_AT_vtable_elem_location:
4279 return "DW_AT_vtable_elem_location";
4281 case DW_AT_allocated:
4282 return "DW_AT_allocated";
4283 case DW_AT_associated:
4284 return "DW_AT_associated";
4285 case DW_AT_data_location:
4286 return "DW_AT_data_location";
4287 case DW_AT_stride:
4288 return "DW_AT_stride";
4289 case DW_AT_entry_pc:
4290 return "DW_AT_entry_pc";
4291 case DW_AT_use_UTF8:
4292 return "DW_AT_use_UTF8";
4293 case DW_AT_extension:
4294 return "DW_AT_extension";
4295 case DW_AT_ranges:
4296 return "DW_AT_ranges";
4297 case DW_AT_trampoline:
4298 return "DW_AT_trampoline";
4299 case DW_AT_call_column:
4300 return "DW_AT_call_column";
4301 case DW_AT_call_file:
4302 return "DW_AT_call_file";
4303 case DW_AT_call_line:
4304 return "DW_AT_call_line";
4306 case DW_AT_MIPS_fde:
4307 return "DW_AT_MIPS_fde";
4308 case DW_AT_MIPS_loop_begin:
4309 return "DW_AT_MIPS_loop_begin";
4310 case DW_AT_MIPS_tail_loop_begin:
4311 return "DW_AT_MIPS_tail_loop_begin";
4312 case DW_AT_MIPS_epilog_begin:
4313 return "DW_AT_MIPS_epilog_begin";
4314 case DW_AT_MIPS_loop_unroll_factor:
4315 return "DW_AT_MIPS_loop_unroll_factor";
4316 case DW_AT_MIPS_software_pipeline_depth:
4317 return "DW_AT_MIPS_software_pipeline_depth";
4318 case DW_AT_MIPS_linkage_name:
4319 return "DW_AT_MIPS_linkage_name";
4320 case DW_AT_MIPS_stride:
4321 return "DW_AT_MIPS_stride";
4322 case DW_AT_MIPS_abstract_name:
4323 return "DW_AT_MIPS_abstract_name";
4324 case DW_AT_MIPS_clone_origin:
4325 return "DW_AT_MIPS_clone_origin";
4326 case DW_AT_MIPS_has_inlines:
4327 return "DW_AT_MIPS_has_inlines";
4329 case DW_AT_sf_names:
4330 return "DW_AT_sf_names";
4331 case DW_AT_src_info:
4332 return "DW_AT_src_info";
4333 case DW_AT_mac_info:
4334 return "DW_AT_mac_info";
4335 case DW_AT_src_coords:
4336 return "DW_AT_src_coords";
4337 case DW_AT_body_begin:
4338 return "DW_AT_body_begin";
4339 case DW_AT_body_end:
4340 return "DW_AT_body_end";
4341 case DW_AT_GNU_vector:
4342 return "DW_AT_GNU_vector";
4344 case DW_AT_VMS_rtnbeg_pd_address:
4345 return "DW_AT_VMS_rtnbeg_pd_address";
4347 default:
4348 return "DW_AT_<unknown>";
4352 /* Convert a DWARF value form code into its string name. */
4354 static const char *
4355 dwarf_form_name (form)
4356 unsigned form;
4358 switch (form)
4360 case DW_FORM_addr:
4361 return "DW_FORM_addr";
4362 case DW_FORM_block2:
4363 return "DW_FORM_block2";
4364 case DW_FORM_block4:
4365 return "DW_FORM_block4";
4366 case DW_FORM_data2:
4367 return "DW_FORM_data2";
4368 case DW_FORM_data4:
4369 return "DW_FORM_data4";
4370 case DW_FORM_data8:
4371 return "DW_FORM_data8";
4372 case DW_FORM_string:
4373 return "DW_FORM_string";
4374 case DW_FORM_block:
4375 return "DW_FORM_block";
4376 case DW_FORM_block1:
4377 return "DW_FORM_block1";
4378 case DW_FORM_data1:
4379 return "DW_FORM_data1";
4380 case DW_FORM_flag:
4381 return "DW_FORM_flag";
4382 case DW_FORM_sdata:
4383 return "DW_FORM_sdata";
4384 case DW_FORM_strp:
4385 return "DW_FORM_strp";
4386 case DW_FORM_udata:
4387 return "DW_FORM_udata";
4388 case DW_FORM_ref_addr:
4389 return "DW_FORM_ref_addr";
4390 case DW_FORM_ref1:
4391 return "DW_FORM_ref1";
4392 case DW_FORM_ref2:
4393 return "DW_FORM_ref2";
4394 case DW_FORM_ref4:
4395 return "DW_FORM_ref4";
4396 case DW_FORM_ref8:
4397 return "DW_FORM_ref8";
4398 case DW_FORM_ref_udata:
4399 return "DW_FORM_ref_udata";
4400 case DW_FORM_indirect:
4401 return "DW_FORM_indirect";
4402 default:
4403 return "DW_FORM_<unknown>";
4407 /* Convert a DWARF type code into its string name. */
4409 #if 0
4410 static const char *
4411 dwarf_type_encoding_name (enc)
4412 unsigned enc;
4414 switch (enc)
4416 case DW_ATE_address:
4417 return "DW_ATE_address";
4418 case DW_ATE_boolean:
4419 return "DW_ATE_boolean";
4420 case DW_ATE_complex_float:
4421 return "DW_ATE_complex_float";
4422 case DW_ATE_float:
4423 return "DW_ATE_float";
4424 case DW_ATE_signed:
4425 return "DW_ATE_signed";
4426 case DW_ATE_signed_char:
4427 return "DW_ATE_signed_char";
4428 case DW_ATE_unsigned:
4429 return "DW_ATE_unsigned";
4430 case DW_ATE_unsigned_char:
4431 return "DW_ATE_unsigned_char";
4432 default:
4433 return "DW_ATE_<unknown>";
4436 #endif
4438 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4439 instance of an inlined instance of a decl which is local to an inline
4440 function, so we have to trace all of the way back through the origin chain
4441 to find out what sort of node actually served as the original seed for the
4442 given block. */
4444 static tree
4445 decl_ultimate_origin (decl)
4446 tree decl;
4448 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4449 nodes in the function to point to themselves; ignore that if
4450 we're trying to output the abstract instance of this function. */
4451 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4452 return NULL_TREE;
4454 #ifdef ENABLE_CHECKING
4455 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4456 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4457 most distant ancestor, this should never happen. */
4458 abort ();
4459 #endif
4461 return DECL_ABSTRACT_ORIGIN (decl);
4464 /* Determine the "ultimate origin" of a block. The block may be an inlined
4465 instance of an inlined instance of a block which is local to an inline
4466 function, so we have to trace all of the way back through the origin chain
4467 to find out what sort of node actually served as the original seed for the
4468 given block. */
4470 static tree
4471 block_ultimate_origin (block)
4472 tree block;
4474 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4476 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4477 nodes in the function to point to themselves; ignore that if
4478 we're trying to output the abstract instance of this function. */
4479 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4480 return NULL_TREE;
4482 if (immediate_origin == NULL_TREE)
4483 return NULL_TREE;
4484 else
4486 tree ret_val;
4487 tree lookahead = immediate_origin;
4491 ret_val = lookahead;
4492 lookahead = (TREE_CODE (ret_val) == BLOCK
4493 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4495 while (lookahead != NULL && lookahead != ret_val);
4497 return ret_val;
4501 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4502 of a virtual function may refer to a base class, so we check the 'this'
4503 parameter. */
4505 static tree
4506 decl_class_context (decl)
4507 tree decl;
4509 tree context = NULL_TREE;
4511 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4512 context = DECL_CONTEXT (decl);
4513 else
4514 context = TYPE_MAIN_VARIANT
4515 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4517 if (context && !TYPE_P (context))
4518 context = NULL_TREE;
4520 return context;
4523 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4524 addition order, and correct that in reverse_all_dies. */
4526 static inline void
4527 add_dwarf_attr (die, attr)
4528 dw_die_ref die;
4529 dw_attr_ref attr;
4531 if (die != NULL && attr != NULL)
4533 attr->dw_attr_next = die->die_attr;
4534 die->die_attr = attr;
4538 static inline enum dw_val_class
4539 AT_class (a)
4540 dw_attr_ref a;
4542 return a->dw_attr_val.val_class;
4545 /* Add a flag value attribute to a DIE. */
4547 static inline void
4548 add_AT_flag (die, attr_kind, flag)
4549 dw_die_ref die;
4550 enum dwarf_attribute attr_kind;
4551 unsigned flag;
4553 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4555 attr->dw_attr_next = NULL;
4556 attr->dw_attr = attr_kind;
4557 attr->dw_attr_val.val_class = dw_val_class_flag;
4558 attr->dw_attr_val.v.val_flag = flag;
4559 add_dwarf_attr (die, attr);
4562 static inline unsigned
4563 AT_flag (a)
4564 dw_attr_ref a;
4566 if (a && AT_class (a) == dw_val_class_flag)
4567 return a->dw_attr_val.v.val_flag;
4569 abort ();
4572 /* Add a signed integer attribute value to a DIE. */
4574 static inline void
4575 add_AT_int (die, attr_kind, int_val)
4576 dw_die_ref die;
4577 enum dwarf_attribute attr_kind;
4578 long int int_val;
4580 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4582 attr->dw_attr_next = NULL;
4583 attr->dw_attr = attr_kind;
4584 attr->dw_attr_val.val_class = dw_val_class_const;
4585 attr->dw_attr_val.v.val_int = int_val;
4586 add_dwarf_attr (die, attr);
4589 static inline long int
4590 AT_int (a)
4591 dw_attr_ref a;
4593 if (a && AT_class (a) == dw_val_class_const)
4594 return a->dw_attr_val.v.val_int;
4596 abort ();
4599 /* Add an unsigned integer attribute value to a DIE. */
4601 static inline void
4602 add_AT_unsigned (die, attr_kind, unsigned_val)
4603 dw_die_ref die;
4604 enum dwarf_attribute attr_kind;
4605 unsigned long unsigned_val;
4607 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4609 attr->dw_attr_next = NULL;
4610 attr->dw_attr = attr_kind;
4611 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4612 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4613 add_dwarf_attr (die, attr);
4616 static inline unsigned long
4617 AT_unsigned (a)
4618 dw_attr_ref a;
4620 if (a && AT_class (a) == dw_val_class_unsigned_const)
4621 return a->dw_attr_val.v.val_unsigned;
4623 abort ();
4626 /* Add an unsigned double integer attribute value to a DIE. */
4628 static inline void
4629 add_AT_long_long (die, attr_kind, val_hi, val_low)
4630 dw_die_ref die;
4631 enum dwarf_attribute attr_kind;
4632 unsigned long val_hi;
4633 unsigned long val_low;
4635 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4637 attr->dw_attr_next = NULL;
4638 attr->dw_attr = attr_kind;
4639 attr->dw_attr_val.val_class = dw_val_class_long_long;
4640 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4641 attr->dw_attr_val.v.val_long_long.low = val_low;
4642 add_dwarf_attr (die, attr);
4645 /* Add a floating point attribute value to a DIE and return it. */
4647 static inline void
4648 add_AT_float (die, attr_kind, length, array)
4649 dw_die_ref die;
4650 enum dwarf_attribute attr_kind;
4651 unsigned length;
4652 long *array;
4654 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4656 attr->dw_attr_next = NULL;
4657 attr->dw_attr = attr_kind;
4658 attr->dw_attr_val.val_class = dw_val_class_float;
4659 attr->dw_attr_val.v.val_float.length = length;
4660 attr->dw_attr_val.v.val_float.array = array;
4661 add_dwarf_attr (die, attr);
4664 /* Hash and equality functions for debug_str_hash. */
4666 static hashval_t
4667 debug_str_do_hash (x)
4668 const void * x;
4670 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4673 static int
4674 debug_str_eq (x1, x2)
4675 const void * x1;
4676 const void * x2;
4678 return strcmp ((((const struct indirect_string_node *)x1)->str),
4679 (const char *)x2) == 0;
4682 /* Add a string attribute value to a DIE. */
4684 static inline void
4685 add_AT_string (die, attr_kind, str)
4686 dw_die_ref die;
4687 enum dwarf_attribute attr_kind;
4688 const char *str;
4690 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4691 struct indirect_string_node *node;
4692 PTR *slot;
4694 if (! debug_str_hash)
4695 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4696 debug_str_eq, NULL);
4698 slot = htab_find_slot_with_hash (debug_str_hash, str,
4699 htab_hash_string (str), INSERT);
4700 if (*slot == NULL)
4701 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4702 node = (struct indirect_string_node *) *slot;
4703 node->str = ggc_alloc_string (str, -1);
4704 node->refcount++;
4706 attr->dw_attr_next = NULL;
4707 attr->dw_attr = attr_kind;
4708 attr->dw_attr_val.val_class = dw_val_class_str;
4709 attr->dw_attr_val.v.val_str = node;
4710 add_dwarf_attr (die, attr);
4713 static inline const char *
4714 AT_string (a)
4715 dw_attr_ref a;
4717 if (a && AT_class (a) == dw_val_class_str)
4718 return a->dw_attr_val.v.val_str->str;
4720 abort ();
4723 /* Find out whether a string should be output inline in DIE
4724 or out-of-line in .debug_str section. */
4726 static int
4727 AT_string_form (a)
4728 dw_attr_ref a;
4730 if (a && AT_class (a) == dw_val_class_str)
4732 struct indirect_string_node *node;
4733 unsigned int len;
4734 char label[32];
4736 node = a->dw_attr_val.v.val_str;
4737 if (node->form)
4738 return node->form;
4740 len = strlen (node->str) + 1;
4742 /* If the string is shorter or equal to the size of the reference, it is
4743 always better to put it inline. */
4744 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4745 return node->form = DW_FORM_string;
4747 /* If we cannot expect the linker to merge strings in .debug_str
4748 section, only put it into .debug_str if it is worth even in this
4749 single module. */
4750 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4751 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4752 return node->form = DW_FORM_string;
4754 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4755 ++dw2_string_counter;
4756 node->label = xstrdup (label);
4758 return node->form = DW_FORM_strp;
4761 abort ();
4764 /* Add a DIE reference attribute value to a DIE. */
4766 static inline void
4767 add_AT_die_ref (die, attr_kind, targ_die)
4768 dw_die_ref die;
4769 enum dwarf_attribute attr_kind;
4770 dw_die_ref targ_die;
4772 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4774 attr->dw_attr_next = NULL;
4775 attr->dw_attr = attr_kind;
4776 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4777 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4778 attr->dw_attr_val.v.val_die_ref.external = 0;
4779 add_dwarf_attr (die, attr);
4782 static inline dw_die_ref
4783 AT_ref (a)
4784 dw_attr_ref a;
4786 if (a && AT_class (a) == dw_val_class_die_ref)
4787 return a->dw_attr_val.v.val_die_ref.die;
4789 abort ();
4792 static inline int
4793 AT_ref_external (a)
4794 dw_attr_ref a;
4796 if (a && AT_class (a) == dw_val_class_die_ref)
4797 return a->dw_attr_val.v.val_die_ref.external;
4799 return 0;
4802 static inline void
4803 set_AT_ref_external (a, i)
4804 dw_attr_ref a;
4805 int i;
4807 if (a && AT_class (a) == dw_val_class_die_ref)
4808 a->dw_attr_val.v.val_die_ref.external = i;
4809 else
4810 abort ();
4813 /* Add an FDE reference attribute value to a DIE. */
4815 static inline void
4816 add_AT_fde_ref (die, attr_kind, targ_fde)
4817 dw_die_ref die;
4818 enum dwarf_attribute attr_kind;
4819 unsigned targ_fde;
4821 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4823 attr->dw_attr_next = NULL;
4824 attr->dw_attr = attr_kind;
4825 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4826 attr->dw_attr_val.v.val_fde_index = targ_fde;
4827 add_dwarf_attr (die, attr);
4830 /* Add a location description attribute value to a DIE. */
4832 static inline void
4833 add_AT_loc (die, attr_kind, loc)
4834 dw_die_ref die;
4835 enum dwarf_attribute attr_kind;
4836 dw_loc_descr_ref loc;
4838 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4840 attr->dw_attr_next = NULL;
4841 attr->dw_attr = attr_kind;
4842 attr->dw_attr_val.val_class = dw_val_class_loc;
4843 attr->dw_attr_val.v.val_loc = loc;
4844 add_dwarf_attr (die, attr);
4847 static inline dw_loc_descr_ref
4848 AT_loc (a)
4849 dw_attr_ref a;
4851 if (a && AT_class (a) == dw_val_class_loc)
4852 return a->dw_attr_val.v.val_loc;
4854 abort ();
4857 static inline void
4858 add_AT_loc_list (die, attr_kind, loc_list)
4859 dw_die_ref die;
4860 enum dwarf_attribute attr_kind;
4861 dw_loc_list_ref loc_list;
4863 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4865 attr->dw_attr_next = NULL;
4866 attr->dw_attr = attr_kind;
4867 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4868 attr->dw_attr_val.v.val_loc_list = loc_list;
4869 add_dwarf_attr (die, attr);
4870 have_location_lists = 1;
4873 static inline dw_loc_list_ref
4874 AT_loc_list (a)
4875 dw_attr_ref a;
4877 if (a && AT_class (a) == dw_val_class_loc_list)
4878 return a->dw_attr_val.v.val_loc_list;
4880 abort ();
4883 /* Add an address constant attribute value to a DIE. */
4885 static inline void
4886 add_AT_addr (die, attr_kind, addr)
4887 dw_die_ref die;
4888 enum dwarf_attribute attr_kind;
4889 rtx addr;
4891 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4893 attr->dw_attr_next = NULL;
4894 attr->dw_attr = attr_kind;
4895 attr->dw_attr_val.val_class = dw_val_class_addr;
4896 attr->dw_attr_val.v.val_addr = addr;
4897 add_dwarf_attr (die, attr);
4900 static inline rtx
4901 AT_addr (a)
4902 dw_attr_ref a;
4904 if (a && AT_class (a) == dw_val_class_addr)
4905 return a->dw_attr_val.v.val_addr;
4907 abort ();
4910 /* Add a label identifier attribute value to a DIE. */
4912 static inline void
4913 add_AT_lbl_id (die, attr_kind, lbl_id)
4914 dw_die_ref die;
4915 enum dwarf_attribute attr_kind;
4916 const char *lbl_id;
4918 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4920 attr->dw_attr_next = NULL;
4921 attr->dw_attr = attr_kind;
4922 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4923 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4924 add_dwarf_attr (die, attr);
4927 /* Add a section offset attribute value to a DIE. */
4929 static inline void
4930 add_AT_lbl_offset (die, attr_kind, label)
4931 dw_die_ref die;
4932 enum dwarf_attribute attr_kind;
4933 const char *label;
4935 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4937 attr->dw_attr_next = NULL;
4938 attr->dw_attr = attr_kind;
4939 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4940 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4941 add_dwarf_attr (die, attr);
4944 /* Add an offset attribute value to a DIE. */
4946 static inline void
4947 add_AT_offset (die, attr_kind, offset)
4948 dw_die_ref die;
4949 enum dwarf_attribute attr_kind;
4950 unsigned long offset;
4952 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4954 attr->dw_attr_next = NULL;
4955 attr->dw_attr = attr_kind;
4956 attr->dw_attr_val.val_class = dw_val_class_offset;
4957 attr->dw_attr_val.v.val_offset = offset;
4958 add_dwarf_attr (die, attr);
4961 /* Add an range_list attribute value to a DIE. */
4963 static void
4964 add_AT_range_list (die, attr_kind, offset)
4965 dw_die_ref die;
4966 enum dwarf_attribute attr_kind;
4967 unsigned long offset;
4969 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4971 attr->dw_attr_next = NULL;
4972 attr->dw_attr = attr_kind;
4973 attr->dw_attr_val.val_class = dw_val_class_range_list;
4974 attr->dw_attr_val.v.val_offset = offset;
4975 add_dwarf_attr (die, attr);
4978 static inline const char *
4979 AT_lbl (a)
4980 dw_attr_ref a;
4982 if (a && (AT_class (a) == dw_val_class_lbl_id
4983 || AT_class (a) == dw_val_class_lbl_offset))
4984 return a->dw_attr_val.v.val_lbl_id;
4986 abort ();
4989 /* Get the attribute of type attr_kind. */
4991 static inline dw_attr_ref
4992 get_AT (die, attr_kind)
4993 dw_die_ref die;
4994 enum dwarf_attribute attr_kind;
4996 dw_attr_ref a;
4997 dw_die_ref spec = NULL;
4999 if (die != NULL)
5001 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5002 if (a->dw_attr == attr_kind)
5003 return a;
5004 else if (a->dw_attr == DW_AT_specification
5005 || a->dw_attr == DW_AT_abstract_origin)
5006 spec = AT_ref (a);
5008 if (spec)
5009 return get_AT (spec, attr_kind);
5012 return NULL;
5015 /* Return the "low pc" attribute value, typically associated with a subprogram
5016 DIE. Return null if the "low pc" attribute is either not present, or if it
5017 cannot be represented as an assembler label identifier. */
5019 static inline const char *
5020 get_AT_low_pc (die)
5021 dw_die_ref die;
5023 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5025 return a ? AT_lbl (a) : NULL;
5028 /* Return the "high pc" attribute value, typically associated with a subprogram
5029 DIE. Return null if the "high pc" attribute is either not present, or if it
5030 cannot be represented as an assembler label identifier. */
5032 static inline const char *
5033 get_AT_hi_pc (die)
5034 dw_die_ref die;
5036 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5038 return a ? AT_lbl (a) : NULL;
5041 /* Return the value of the string attribute designated by ATTR_KIND, or
5042 NULL if it is not present. */
5044 static inline const char *
5045 get_AT_string (die, attr_kind)
5046 dw_die_ref die;
5047 enum dwarf_attribute attr_kind;
5049 dw_attr_ref a = get_AT (die, attr_kind);
5051 return a ? AT_string (a) : NULL;
5054 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5055 if it is not present. */
5057 static inline int
5058 get_AT_flag (die, attr_kind)
5059 dw_die_ref die;
5060 enum dwarf_attribute attr_kind;
5062 dw_attr_ref a = get_AT (die, attr_kind);
5064 return a ? AT_flag (a) : 0;
5067 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5068 if it is not present. */
5070 static inline unsigned
5071 get_AT_unsigned (die, attr_kind)
5072 dw_die_ref die;
5073 enum dwarf_attribute attr_kind;
5075 dw_attr_ref a = get_AT (die, attr_kind);
5077 return a ? AT_unsigned (a) : 0;
5080 static inline dw_die_ref
5081 get_AT_ref (die, attr_kind)
5082 dw_die_ref die;
5083 enum dwarf_attribute attr_kind;
5085 dw_attr_ref a = get_AT (die, attr_kind);
5087 return a ? AT_ref (a) : NULL;
5090 static inline int
5091 is_c_family ()
5093 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5095 return (lang == DW_LANG_C || lang == DW_LANG_C89
5096 || lang == DW_LANG_C_plus_plus);
5099 static inline int
5100 is_cxx ()
5102 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5103 == DW_LANG_C_plus_plus);
5106 static inline int
5107 is_fortran ()
5109 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5111 return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90);
5114 static inline int
5115 is_java ()
5117 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5119 return (lang == DW_LANG_Java);
5122 /* Free up the memory used by A. */
5124 static inline void free_AT PARAMS ((dw_attr_ref));
5125 static inline void
5126 free_AT (a)
5127 dw_attr_ref a;
5129 if (AT_class (a) == dw_val_class_str)
5130 if (a->dw_attr_val.v.val_str->refcount)
5131 a->dw_attr_val.v.val_str->refcount--;
5134 /* Remove the specified attribute if present. */
5136 static void
5137 remove_AT (die, attr_kind)
5138 dw_die_ref die;
5139 enum dwarf_attribute attr_kind;
5141 dw_attr_ref *p;
5142 dw_attr_ref removed = NULL;
5144 if (die != NULL)
5146 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5147 if ((*p)->dw_attr == attr_kind)
5149 removed = *p;
5150 *p = (*p)->dw_attr_next;
5151 break;
5154 if (removed != 0)
5155 free_AT (removed);
5159 /* Free up the memory used by DIE. */
5161 static inline void
5162 free_die (die)
5163 dw_die_ref die;
5165 remove_children (die);
5168 /* Discard the children of this DIE. */
5170 static void
5171 remove_children (die)
5172 dw_die_ref die;
5174 dw_die_ref child_die = die->die_child;
5176 die->die_child = NULL;
5178 while (child_die != NULL)
5180 dw_die_ref tmp_die = child_die;
5181 dw_attr_ref a;
5183 child_die = child_die->die_sib;
5185 for (a = tmp_die->die_attr; a != NULL;)
5187 dw_attr_ref tmp_a = a;
5189 a = a->dw_attr_next;
5190 free_AT (tmp_a);
5193 free_die (tmp_die);
5197 /* Add a child DIE below its parent. We build the lists up in reverse
5198 addition order, and correct that in reverse_all_dies. */
5200 static inline void
5201 add_child_die (die, child_die)
5202 dw_die_ref die;
5203 dw_die_ref child_die;
5205 if (die != NULL && child_die != NULL)
5207 if (die == child_die)
5208 abort ();
5210 child_die->die_parent = die;
5211 child_die->die_sib = die->die_child;
5212 die->die_child = child_die;
5216 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5217 is the specification, to the front of PARENT's list of children. */
5219 static void
5220 splice_child_die (parent, child)
5221 dw_die_ref parent, child;
5223 dw_die_ref *p;
5225 /* We want the declaration DIE from inside the class, not the
5226 specification DIE at toplevel. */
5227 if (child->die_parent != parent)
5229 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5231 if (tmp)
5232 child = tmp;
5235 if (child->die_parent != parent
5236 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5237 abort ();
5239 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5240 if (*p == child)
5242 *p = child->die_sib;
5243 break;
5246 child->die_parent = parent;
5247 child->die_sib = parent->die_child;
5248 parent->die_child = child;
5251 /* Return a pointer to a newly created DIE node. */
5253 static inline dw_die_ref
5254 new_die (tag_value, parent_die, t)
5255 enum dwarf_tag tag_value;
5256 dw_die_ref parent_die;
5257 tree t;
5259 dw_die_ref die = (dw_die_ref) ggc_alloc_cleared (sizeof (die_node));
5261 die->die_tag = tag_value;
5263 if (parent_die != NULL)
5264 add_child_die (parent_die, die);
5265 else
5267 limbo_die_node *limbo_node;
5269 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5270 limbo_node->die = die;
5271 limbo_node->created_for = t;
5272 limbo_node->next = limbo_die_list;
5273 limbo_die_list = limbo_node;
5276 return die;
5279 /* Return the DIE associated with the given type specifier. */
5281 static inline dw_die_ref
5282 lookup_type_die (type)
5283 tree type;
5285 return TYPE_SYMTAB_DIE (type);
5288 /* Equate a DIE to a given type specifier. */
5290 static inline void
5291 equate_type_number_to_die (type, type_die)
5292 tree type;
5293 dw_die_ref type_die;
5295 TYPE_SYMTAB_DIE (type) = type_die;
5298 /* Return the DIE associated with a given declaration. */
5300 static inline dw_die_ref
5301 lookup_decl_die (decl)
5302 tree decl;
5304 unsigned decl_id = DECL_UID (decl);
5306 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5309 /* Equate a DIE to a particular declaration. */
5311 static void
5312 equate_decl_number_to_die (decl, decl_die)
5313 tree decl;
5314 dw_die_ref decl_die;
5316 unsigned int decl_id = DECL_UID (decl);
5317 unsigned int num_allocated;
5319 if (decl_id >= decl_die_table_allocated)
5321 num_allocated
5322 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5323 / DECL_DIE_TABLE_INCREMENT)
5324 * DECL_DIE_TABLE_INCREMENT;
5326 decl_die_table = ggc_realloc (decl_die_table,
5327 sizeof (dw_die_ref) * num_allocated);
5329 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
5330 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5331 decl_die_table_allocated = num_allocated;
5334 if (decl_id >= decl_die_table_in_use)
5335 decl_die_table_in_use = (decl_id + 1);
5337 decl_die_table[decl_id] = decl_die;
5340 /* Keep track of the number of spaces used to indent the
5341 output of the debugging routines that print the structure of
5342 the DIE internal representation. */
5343 static int print_indent;
5345 /* Indent the line the number of spaces given by print_indent. */
5347 static inline void
5348 print_spaces (outfile)
5349 FILE *outfile;
5351 fprintf (outfile, "%*s", print_indent, "");
5354 /* Print the information associated with a given DIE, and its children.
5355 This routine is a debugging aid only. */
5357 static void
5358 print_die (die, outfile)
5359 dw_die_ref die;
5360 FILE *outfile;
5362 dw_attr_ref a;
5363 dw_die_ref c;
5365 print_spaces (outfile);
5366 fprintf (outfile, "DIE %4lu: %s\n",
5367 die->die_offset, dwarf_tag_name (die->die_tag));
5368 print_spaces (outfile);
5369 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5370 fprintf (outfile, " offset: %lu\n", die->die_offset);
5372 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5374 print_spaces (outfile);
5375 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5377 switch (AT_class (a))
5379 case dw_val_class_addr:
5380 fprintf (outfile, "address");
5381 break;
5382 case dw_val_class_offset:
5383 fprintf (outfile, "offset");
5384 break;
5385 case dw_val_class_loc:
5386 fprintf (outfile, "location descriptor");
5387 break;
5388 case dw_val_class_loc_list:
5389 fprintf (outfile, "location list -> label:%s",
5390 AT_loc_list (a)->ll_symbol);
5391 break;
5392 case dw_val_class_range_list:
5393 fprintf (outfile, "range list");
5394 break;
5395 case dw_val_class_const:
5396 fprintf (outfile, "%ld", AT_int (a));
5397 break;
5398 case dw_val_class_unsigned_const:
5399 fprintf (outfile, "%lu", AT_unsigned (a));
5400 break;
5401 case dw_val_class_long_long:
5402 fprintf (outfile, "constant (%lu,%lu)",
5403 a->dw_attr_val.v.val_long_long.hi,
5404 a->dw_attr_val.v.val_long_long.low);
5405 break;
5406 case dw_val_class_float:
5407 fprintf (outfile, "floating-point constant");
5408 break;
5409 case dw_val_class_flag:
5410 fprintf (outfile, "%u", AT_flag (a));
5411 break;
5412 case dw_val_class_die_ref:
5413 if (AT_ref (a) != NULL)
5415 if (AT_ref (a)->die_symbol)
5416 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5417 else
5418 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5420 else
5421 fprintf (outfile, "die -> <null>");
5422 break;
5423 case dw_val_class_lbl_id:
5424 case dw_val_class_lbl_offset:
5425 fprintf (outfile, "label: %s", AT_lbl (a));
5426 break;
5427 case dw_val_class_str:
5428 if (AT_string (a) != NULL)
5429 fprintf (outfile, "\"%s\"", AT_string (a));
5430 else
5431 fprintf (outfile, "<null>");
5432 break;
5433 default:
5434 break;
5437 fprintf (outfile, "\n");
5440 if (die->die_child != NULL)
5442 print_indent += 4;
5443 for (c = die->die_child; c != NULL; c = c->die_sib)
5444 print_die (c, outfile);
5446 print_indent -= 4;
5448 if (print_indent == 0)
5449 fprintf (outfile, "\n");
5452 /* Print the contents of the source code line number correspondence table.
5453 This routine is a debugging aid only. */
5455 static void
5456 print_dwarf_line_table (outfile)
5457 FILE *outfile;
5459 unsigned i;
5460 dw_line_info_ref line_info;
5462 fprintf (outfile, "\n\nDWARF source line information\n");
5463 for (i = 1; i < line_info_table_in_use; i++)
5465 line_info = &line_info_table[i];
5466 fprintf (outfile, "%5d: ", i);
5467 fprintf (outfile, "%-20s",
5468 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5469 fprintf (outfile, "%6ld", line_info->dw_line_num);
5470 fprintf (outfile, "\n");
5473 fprintf (outfile, "\n\n");
5476 /* Print the information collected for a given DIE. */
5478 void
5479 debug_dwarf_die (die)
5480 dw_die_ref die;
5482 print_die (die, stderr);
5485 /* Print all DWARF information collected for the compilation unit.
5486 This routine is a debugging aid only. */
5488 void
5489 debug_dwarf ()
5491 print_indent = 0;
5492 print_die (comp_unit_die, stderr);
5493 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5494 print_dwarf_line_table (stderr);
5497 /* We build up the lists of children and attributes by pushing new ones
5498 onto the beginning of the list. Reverse the lists for DIE so that
5499 they are in order of addition. */
5501 static void
5502 reverse_die_lists (die)
5503 dw_die_ref die;
5505 dw_die_ref c, cp, cn;
5506 dw_attr_ref a, ap, an;
5508 for (a = die->die_attr, ap = 0; a; a = an)
5510 an = a->dw_attr_next;
5511 a->dw_attr_next = ap;
5512 ap = a;
5515 die->die_attr = ap;
5517 for (c = die->die_child, cp = 0; c; c = cn)
5519 cn = c->die_sib;
5520 c->die_sib = cp;
5521 cp = c;
5524 die->die_child = cp;
5527 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5528 reverse all dies in add_sibling_attributes, which runs through all the dies,
5529 it would reverse all the dies. Now, however, since we don't call
5530 reverse_die_lists in add_sibling_attributes, we need a routine to
5531 recursively reverse all the dies. This is that routine. */
5533 static void
5534 reverse_all_dies (die)
5535 dw_die_ref die;
5537 dw_die_ref c;
5539 reverse_die_lists (die);
5541 for (c = die->die_child; c; c = c->die_sib)
5542 reverse_all_dies (c);
5545 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5546 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5547 DIE that marks the start of the DIEs for this include file. */
5549 static dw_die_ref
5550 push_new_compile_unit (old_unit, bincl_die)
5551 dw_die_ref old_unit, bincl_die;
5553 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5554 dw_die_ref new_unit = gen_compile_unit_die (filename);
5556 new_unit->die_sib = old_unit;
5557 return new_unit;
5560 /* Close an include-file CU and reopen the enclosing one. */
5562 static dw_die_ref
5563 pop_compile_unit (old_unit)
5564 dw_die_ref old_unit;
5566 dw_die_ref new_unit = old_unit->die_sib;
5568 old_unit->die_sib = NULL;
5569 return new_unit;
5572 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5573 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5575 /* Calculate the checksum of a location expression. */
5577 static inline void
5578 loc_checksum (loc, ctx)
5579 dw_loc_descr_ref loc;
5580 struct md5_ctx *ctx;
5582 CHECKSUM (loc->dw_loc_opc);
5583 CHECKSUM (loc->dw_loc_oprnd1);
5584 CHECKSUM (loc->dw_loc_oprnd2);
5587 /* Calculate the checksum of an attribute. */
5589 static void
5590 attr_checksum (at, ctx, mark)
5591 dw_attr_ref at;
5592 struct md5_ctx *ctx;
5593 int *mark;
5595 dw_loc_descr_ref loc;
5596 rtx r;
5598 CHECKSUM (at->dw_attr);
5600 /* We don't care about differences in file numbering. */
5601 if (at->dw_attr == DW_AT_decl_file
5602 /* Or that this was compiled with a different compiler snapshot; if
5603 the output is the same, that's what matters. */
5604 || at->dw_attr == DW_AT_producer)
5605 return;
5607 switch (AT_class (at))
5609 case dw_val_class_const:
5610 CHECKSUM (at->dw_attr_val.v.val_int);
5611 break;
5612 case dw_val_class_unsigned_const:
5613 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5614 break;
5615 case dw_val_class_long_long:
5616 CHECKSUM (at->dw_attr_val.v.val_long_long);
5617 break;
5618 case dw_val_class_float:
5619 CHECKSUM (at->dw_attr_val.v.val_float);
5620 break;
5621 case dw_val_class_flag:
5622 CHECKSUM (at->dw_attr_val.v.val_flag);
5623 break;
5624 case dw_val_class_str:
5625 CHECKSUM_STRING (AT_string (at));
5626 break;
5628 case dw_val_class_addr:
5629 r = AT_addr (at);
5630 switch (GET_CODE (r))
5632 case SYMBOL_REF:
5633 CHECKSUM_STRING (XSTR (r, 0));
5634 break;
5636 default:
5637 abort ();
5639 break;
5641 case dw_val_class_offset:
5642 CHECKSUM (at->dw_attr_val.v.val_offset);
5643 break;
5645 case dw_val_class_loc:
5646 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5647 loc_checksum (loc, ctx);
5648 break;
5650 case dw_val_class_die_ref:
5651 die_checksum (AT_ref (at), ctx, mark);
5652 break;
5654 case dw_val_class_fde_ref:
5655 case dw_val_class_lbl_id:
5656 case dw_val_class_lbl_offset:
5657 break;
5659 default:
5660 break;
5664 /* Calculate the checksum of a DIE. */
5666 static void
5667 die_checksum (die, ctx, mark)
5668 dw_die_ref die;
5669 struct md5_ctx *ctx;
5670 int *mark;
5672 dw_die_ref c;
5673 dw_attr_ref a;
5675 /* To avoid infinite recursion. */
5676 if (die->die_mark)
5678 CHECKSUM (die->die_mark);
5679 return;
5681 die->die_mark = ++(*mark);
5683 CHECKSUM (die->die_tag);
5685 for (a = die->die_attr; a; a = a->dw_attr_next)
5686 attr_checksum (a, ctx, mark);
5688 for (c = die->die_child; c; c = c->die_sib)
5689 die_checksum (c, ctx, mark);
5692 #undef CHECKSUM
5693 #undef CHECKSUM_STRING
5695 /* Do the location expressions look same? */
5696 static inline int
5697 same_loc_p (loc1, loc2, mark)
5698 dw_loc_descr_ref loc1;
5699 dw_loc_descr_ref loc2;
5700 int *mark;
5702 return loc1->dw_loc_opc == loc2->dw_loc_opc
5703 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5704 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5707 /* Do the values look the same? */
5708 static int
5709 same_dw_val_p (v1, v2, mark)
5710 dw_val_node *v1;
5711 dw_val_node *v2;
5712 int *mark;
5714 dw_loc_descr_ref loc1, loc2;
5715 rtx r1, r2;
5716 unsigned i;
5718 if (v1->val_class != v2->val_class)
5719 return 0;
5721 switch (v1->val_class)
5723 case dw_val_class_const:
5724 return v1->v.val_int == v2->v.val_int;
5725 case dw_val_class_unsigned_const:
5726 return v1->v.val_unsigned == v2->v.val_unsigned;
5727 case dw_val_class_long_long:
5728 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5729 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5730 case dw_val_class_float:
5731 if (v1->v.val_float.length != v2->v.val_float.length)
5732 return 0;
5733 for (i = 0; i < v1->v.val_float.length; i++)
5734 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5735 return 0;
5736 return 1;
5737 case dw_val_class_flag:
5738 return v1->v.val_flag == v2->v.val_flag;
5739 case dw_val_class_str:
5740 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5742 case dw_val_class_addr:
5743 r1 = v1->v.val_addr;
5744 r2 = v2->v.val_addr;
5745 if (GET_CODE (r1) != GET_CODE (r2))
5746 return 0;
5747 switch (GET_CODE (r1))
5749 case SYMBOL_REF:
5750 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5752 default:
5753 abort ();
5756 case dw_val_class_offset:
5757 return v1->v.val_offset == v2->v.val_offset;
5759 case dw_val_class_loc:
5760 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5761 loc1 && loc2;
5762 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5763 if (!same_loc_p (loc1, loc2, mark))
5764 return 0;
5765 return !loc1 && !loc2;
5767 case dw_val_class_die_ref:
5768 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5770 case dw_val_class_fde_ref:
5771 case dw_val_class_lbl_id:
5772 case dw_val_class_lbl_offset:
5773 return 1;
5775 default:
5776 return 1;
5780 /* Do the attributes look the same? */
5782 static int
5783 same_attr_p (at1, at2, mark)
5784 dw_attr_ref at1;
5785 dw_attr_ref at2;
5786 int *mark;
5788 if (at1->dw_attr != at2->dw_attr)
5789 return 0;
5791 /* We don't care about differences in file numbering. */
5792 if (at1->dw_attr == DW_AT_decl_file
5793 /* Or that this was compiled with a different compiler snapshot; if
5794 the output is the same, that's what matters. */
5795 || at1->dw_attr == DW_AT_producer)
5796 return 1;
5798 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5801 /* Do the dies look the same? */
5803 static int
5804 same_die_p (die1, die2, mark)
5805 dw_die_ref die1;
5806 dw_die_ref die2;
5807 int *mark;
5809 dw_die_ref c1, c2;
5810 dw_attr_ref a1, a2;
5812 /* To avoid infinite recursion. */
5813 if (die1->die_mark)
5814 return die1->die_mark == die2->die_mark;
5815 die1->die_mark = die2->die_mark = ++(*mark);
5817 if (die1->die_tag != die2->die_tag)
5818 return 0;
5820 for (a1 = die1->die_attr, a2 = die2->die_attr;
5821 a1 && a2;
5822 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5823 if (!same_attr_p (a1, a2, mark))
5824 return 0;
5825 if (a1 || a2)
5826 return 0;
5828 for (c1 = die1->die_child, c2 = die2->die_child;
5829 c1 && c2;
5830 c1 = c1->die_sib, c2 = c2->die_sib)
5831 if (!same_die_p (c1, c2, mark))
5832 return 0;
5833 if (c1 || c2)
5834 return 0;
5836 return 1;
5839 /* Do the dies look the same? Wrapper around same_die_p. */
5841 static int
5842 same_die_p_wrap (die1, die2)
5843 dw_die_ref die1;
5844 dw_die_ref die2;
5846 int mark = 0;
5847 int ret = same_die_p (die1, die2, &mark);
5849 unmark_all_dies (die1);
5850 unmark_all_dies (die2);
5852 return ret;
5855 /* The prefix to attach to symbols on DIEs in the current comdat debug
5856 info section. */
5857 static char *comdat_symbol_id;
5859 /* The index of the current symbol within the current comdat CU. */
5860 static unsigned int comdat_symbol_number;
5862 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5863 children, and set comdat_symbol_id accordingly. */
5865 static void
5866 compute_section_prefix (unit_die)
5867 dw_die_ref unit_die;
5869 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5870 const char *base = die_name ? lbasename (die_name) : "anonymous";
5871 char *name = (char *) alloca (strlen (base) + 64);
5872 char *p;
5873 int i, mark;
5874 unsigned char checksum[16];
5875 struct md5_ctx ctx;
5877 /* Compute the checksum of the DIE, then append part of it as hex digits to
5878 the name filename of the unit. */
5880 md5_init_ctx (&ctx);
5881 mark = 0;
5882 die_checksum (unit_die, &ctx, &mark);
5883 unmark_all_dies (unit_die);
5884 md5_finish_ctx (&ctx, checksum);
5886 sprintf (name, "%s.", base);
5887 clean_symbol_name (name);
5889 p = name + strlen (name);
5890 for (i = 0; i < 4; i++)
5892 sprintf (p, "%.2x", checksum[i]);
5893 p += 2;
5896 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5897 comdat_symbol_number = 0;
5900 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5902 static int
5903 is_type_die (die)
5904 dw_die_ref die;
5906 switch (die->die_tag)
5908 case DW_TAG_array_type:
5909 case DW_TAG_class_type:
5910 case DW_TAG_enumeration_type:
5911 case DW_TAG_pointer_type:
5912 case DW_TAG_reference_type:
5913 case DW_TAG_string_type:
5914 case DW_TAG_structure_type:
5915 case DW_TAG_subroutine_type:
5916 case DW_TAG_union_type:
5917 case DW_TAG_ptr_to_member_type:
5918 case DW_TAG_set_type:
5919 case DW_TAG_subrange_type:
5920 case DW_TAG_base_type:
5921 case DW_TAG_const_type:
5922 case DW_TAG_file_type:
5923 case DW_TAG_packed_type:
5924 case DW_TAG_volatile_type:
5925 case DW_TAG_typedef:
5926 return 1;
5927 default:
5928 return 0;
5932 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5933 Basically, we want to choose the bits that are likely to be shared between
5934 compilations (types) and leave out the bits that are specific to individual
5935 compilations (functions). */
5937 static int
5938 is_comdat_die (c)
5939 dw_die_ref c;
5941 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5942 we do for stabs. The advantage is a greater likelihood of sharing between
5943 objects that don't include headers in the same order (and therefore would
5944 put the base types in a different comdat). jason 8/28/00 */
5946 if (c->die_tag == DW_TAG_base_type)
5947 return 0;
5949 if (c->die_tag == DW_TAG_pointer_type
5950 || c->die_tag == DW_TAG_reference_type
5951 || c->die_tag == DW_TAG_const_type
5952 || c->die_tag == DW_TAG_volatile_type)
5954 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5956 return t ? is_comdat_die (t) : 0;
5959 return is_type_die (c);
5962 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5963 compilation unit. */
5965 static int
5966 is_symbol_die (c)
5967 dw_die_ref c;
5969 return (is_type_die (c)
5970 || (get_AT (c, DW_AT_declaration)
5971 && !get_AT (c, DW_AT_specification)));
5974 static char *
5975 gen_internal_sym (prefix)
5976 const char *prefix;
5978 char buf[256];
5979 static int label_num;
5981 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5982 return xstrdup (buf);
5985 /* Assign symbols to all worthy DIEs under DIE. */
5987 static void
5988 assign_symbol_names (die)
5989 dw_die_ref die;
5991 dw_die_ref c;
5993 if (is_symbol_die (die))
5995 if (comdat_symbol_id)
5997 char *p = alloca (strlen (comdat_symbol_id) + 64);
5999 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6000 comdat_symbol_id, comdat_symbol_number++);
6001 die->die_symbol = xstrdup (p);
6003 else
6004 die->die_symbol = gen_internal_sym ("LDIE");
6007 for (c = die->die_child; c != NULL; c = c->die_sib)
6008 assign_symbol_names (c);
6011 struct cu_hash_table_entry
6013 dw_die_ref cu;
6014 unsigned min_comdat_num, max_comdat_num;
6015 struct cu_hash_table_entry *next;
6018 /* Routines to manipulate hash table of CUs. */
6019 static hashval_t
6020 htab_cu_hash (of)
6021 const void *of;
6023 const struct cu_hash_table_entry *entry = of;
6025 return htab_hash_string (entry->cu->die_symbol);
6028 static int
6029 htab_cu_eq (of1, of2)
6030 const void *of1;
6031 const void *of2;
6033 const struct cu_hash_table_entry *entry1 = of1;
6034 const struct die_struct *entry2 = of2;
6036 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6039 static void
6040 htab_cu_del (what)
6041 void *what;
6043 struct cu_hash_table_entry *next, *entry = what;
6045 while (entry)
6047 next = entry->next;
6048 free (entry);
6049 entry = next;
6053 /* Check whether we have already seen this CU and set up SYM_NUM
6054 accordingly. */
6055 static int
6056 check_duplicate_cu (cu, htable, sym_num)
6057 dw_die_ref cu;
6058 htab_t htable;
6059 unsigned *sym_num;
6061 struct cu_hash_table_entry dummy;
6062 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6064 dummy.max_comdat_num = 0;
6066 slot = (struct cu_hash_table_entry **)
6067 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6068 INSERT);
6069 entry = *slot;
6071 for (; entry; last = entry, entry = entry->next)
6073 if (same_die_p_wrap (cu, entry->cu))
6074 break;
6077 if (entry)
6079 *sym_num = entry->min_comdat_num;
6080 return 1;
6083 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6084 entry->cu = cu;
6085 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6086 entry->next = *slot;
6087 *slot = entry;
6089 return 0;
6092 /* Record SYM_NUM to record of CU in HTABLE. */
6093 static void
6094 record_comdat_symbol_number (cu, htable, sym_num)
6095 dw_die_ref cu;
6096 htab_t htable;
6097 unsigned sym_num;
6099 struct cu_hash_table_entry **slot, *entry;
6101 slot = (struct cu_hash_table_entry **)
6102 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6103 NO_INSERT);
6104 entry = *slot;
6106 entry->max_comdat_num = sym_num;
6109 /* Traverse the DIE (which is always comp_unit_die), and set up
6110 additional compilation units for each of the include files we see
6111 bracketed by BINCL/EINCL. */
6113 static void
6114 break_out_includes (die)
6115 dw_die_ref die;
6117 dw_die_ref *ptr;
6118 dw_die_ref unit = NULL;
6119 limbo_die_node *node, **pnode;
6120 htab_t cu_hash_table;
6122 for (ptr = &(die->die_child); *ptr;)
6124 dw_die_ref c = *ptr;
6126 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6127 || (unit && is_comdat_die (c)))
6129 /* This DIE is for a secondary CU; remove it from the main one. */
6130 *ptr = c->die_sib;
6132 if (c->die_tag == DW_TAG_GNU_BINCL)
6134 unit = push_new_compile_unit (unit, c);
6135 free_die (c);
6137 else if (c->die_tag == DW_TAG_GNU_EINCL)
6139 unit = pop_compile_unit (unit);
6140 free_die (c);
6142 else
6143 add_child_die (unit, c);
6145 else
6147 /* Leave this DIE in the main CU. */
6148 ptr = &(c->die_sib);
6149 continue;
6153 #if 0
6154 /* We can only use this in debugging, since the frontend doesn't check
6155 to make sure that we leave every include file we enter. */
6156 if (unit != NULL)
6157 abort ();
6158 #endif
6160 assign_symbol_names (die);
6161 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6162 for (node = limbo_die_list, pnode = &limbo_die_list;
6163 node;
6164 node = node->next)
6166 int is_dupl;
6168 compute_section_prefix (node->die);
6169 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6170 &comdat_symbol_number);
6171 assign_symbol_names (node->die);
6172 if (is_dupl)
6173 *pnode = node->next;
6174 else
6176 pnode = &node->next;
6177 record_comdat_symbol_number (node->die, cu_hash_table,
6178 comdat_symbol_number);
6181 htab_delete (cu_hash_table);
6184 /* Traverse the DIE and add a sibling attribute if it may have the
6185 effect of speeding up access to siblings. To save some space,
6186 avoid generating sibling attributes for DIE's without children. */
6188 static void
6189 add_sibling_attributes (die)
6190 dw_die_ref die;
6192 dw_die_ref c;
6194 if (die->die_tag != DW_TAG_compile_unit
6195 && die->die_sib && die->die_child != NULL)
6196 /* Add the sibling link to the front of the attribute list. */
6197 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6199 for (c = die->die_child; c != NULL; c = c->die_sib)
6200 add_sibling_attributes (c);
6203 /* Output all location lists for the DIE and its children. */
6205 static void
6206 output_location_lists (die)
6207 dw_die_ref die;
6209 dw_die_ref c;
6210 dw_attr_ref d_attr;
6212 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6213 if (AT_class (d_attr) == dw_val_class_loc_list)
6214 output_loc_list (AT_loc_list (d_attr));
6216 for (c = die->die_child; c != NULL; c = c->die_sib)
6217 output_location_lists (c);
6221 /* The format of each DIE (and its attribute value pairs) is encoded in an
6222 abbreviation table. This routine builds the abbreviation table and assigns
6223 a unique abbreviation id for each abbreviation entry. The children of each
6224 die are visited recursively. */
6226 static void
6227 build_abbrev_table (die)
6228 dw_die_ref die;
6230 unsigned long abbrev_id;
6231 unsigned int n_alloc;
6232 dw_die_ref c;
6233 dw_attr_ref d_attr, a_attr;
6235 /* Scan the DIE references, and mark as external any that refer to
6236 DIEs from other CUs (i.e. those which are not marked). */
6237 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6238 if (AT_class (d_attr) == dw_val_class_die_ref
6239 && AT_ref (d_attr)->die_mark == 0)
6241 if (AT_ref (d_attr)->die_symbol == 0)
6242 abort ();
6244 set_AT_ref_external (d_attr, 1);
6247 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6249 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6251 if (abbrev->die_tag == die->die_tag)
6253 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6255 a_attr = abbrev->die_attr;
6256 d_attr = die->die_attr;
6258 while (a_attr != NULL && d_attr != NULL)
6260 if ((a_attr->dw_attr != d_attr->dw_attr)
6261 || (value_format (a_attr) != value_format (d_attr)))
6262 break;
6264 a_attr = a_attr->dw_attr_next;
6265 d_attr = d_attr->dw_attr_next;
6268 if (a_attr == NULL && d_attr == NULL)
6269 break;
6274 if (abbrev_id >= abbrev_die_table_in_use)
6276 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6278 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6279 abbrev_die_table = ggc_realloc (abbrev_die_table,
6280 sizeof (dw_die_ref) * n_alloc);
6282 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
6283 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6284 abbrev_die_table_allocated = n_alloc;
6287 ++abbrev_die_table_in_use;
6288 abbrev_die_table[abbrev_id] = die;
6291 die->die_abbrev = abbrev_id;
6292 for (c = die->die_child; c != NULL; c = c->die_sib)
6293 build_abbrev_table (c);
6296 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6298 static int
6299 constant_size (value)
6300 long unsigned value;
6302 int log;
6304 if (value == 0)
6305 log = 0;
6306 else
6307 log = floor_log2 (value);
6309 log = log / 8;
6310 log = 1 << (floor_log2 (log) + 1);
6312 return log;
6315 /* Return the size of a DIE as it is represented in the
6316 .debug_info section. */
6318 static unsigned long
6319 size_of_die (die)
6320 dw_die_ref die;
6322 unsigned long size = 0;
6323 dw_attr_ref a;
6325 size += size_of_uleb128 (die->die_abbrev);
6326 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6328 switch (AT_class (a))
6330 case dw_val_class_addr:
6331 size += DWARF2_ADDR_SIZE;
6332 break;
6333 case dw_val_class_offset:
6334 size += DWARF_OFFSET_SIZE;
6335 break;
6336 case dw_val_class_loc:
6338 unsigned long lsize = size_of_locs (AT_loc (a));
6340 /* Block length. */
6341 size += constant_size (lsize);
6342 size += lsize;
6344 break;
6345 case dw_val_class_loc_list:
6346 size += DWARF_OFFSET_SIZE;
6347 break;
6348 case dw_val_class_range_list:
6349 size += DWARF_OFFSET_SIZE;
6350 break;
6351 case dw_val_class_const:
6352 size += size_of_sleb128 (AT_int (a));
6353 break;
6354 case dw_val_class_unsigned_const:
6355 size += constant_size (AT_unsigned (a));
6356 break;
6357 case dw_val_class_long_long:
6358 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6359 break;
6360 case dw_val_class_float:
6361 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6362 break;
6363 case dw_val_class_flag:
6364 size += 1;
6365 break;
6366 case dw_val_class_die_ref:
6367 if (AT_ref_external (a))
6368 size += DWARF2_ADDR_SIZE;
6369 else
6370 size += DWARF_OFFSET_SIZE;
6371 break;
6372 case dw_val_class_fde_ref:
6373 size += DWARF_OFFSET_SIZE;
6374 break;
6375 case dw_val_class_lbl_id:
6376 size += DWARF2_ADDR_SIZE;
6377 break;
6378 case dw_val_class_lbl_offset:
6379 size += DWARF_OFFSET_SIZE;
6380 break;
6381 case dw_val_class_str:
6382 if (AT_string_form (a) == DW_FORM_strp)
6383 size += DWARF_OFFSET_SIZE;
6384 else
6385 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6386 break;
6387 default:
6388 abort ();
6392 return size;
6395 /* Size the debugging information associated with a given DIE. Visits the
6396 DIE's children recursively. Updates the global variable next_die_offset, on
6397 each time through. Uses the current value of next_die_offset to update the
6398 die_offset field in each DIE. */
6400 static void
6401 calc_die_sizes (die)
6402 dw_die_ref die;
6404 dw_die_ref c;
6406 die->die_offset = next_die_offset;
6407 next_die_offset += size_of_die (die);
6409 for (c = die->die_child; c != NULL; c = c->die_sib)
6410 calc_die_sizes (c);
6412 if (die->die_child != NULL)
6413 /* Count the null byte used to terminate sibling lists. */
6414 next_die_offset += 1;
6417 /* Set the marks for a die and its children. We do this so
6418 that we know whether or not a reference needs to use FORM_ref_addr; only
6419 DIEs in the same CU will be marked. We used to clear out the offset
6420 and use that as the flag, but ran into ordering problems. */
6422 static void
6423 mark_dies (die)
6424 dw_die_ref die;
6426 dw_die_ref c;
6428 if (die->die_mark)
6429 abort ();
6431 die->die_mark = 1;
6432 for (c = die->die_child; c; c = c->die_sib)
6433 mark_dies (c);
6436 /* Clear the marks for a die and its children. */
6438 static void
6439 unmark_dies (die)
6440 dw_die_ref die;
6442 dw_die_ref c;
6444 if (!die->die_mark)
6445 abort ();
6447 die->die_mark = 0;
6448 for (c = die->die_child; c; c = c->die_sib)
6449 unmark_dies (c);
6452 /* Clear the marks for a die, its children and referred dies. */
6454 static void
6455 unmark_all_dies (die)
6456 dw_die_ref die;
6458 dw_die_ref c;
6459 dw_attr_ref a;
6461 if (!die->die_mark)
6462 return;
6463 die->die_mark = 0;
6465 for (c = die->die_child; c; c = c->die_sib)
6466 unmark_all_dies (c);
6468 for (a = die->die_attr; a; a = a->dw_attr_next)
6469 if (AT_class (a) == dw_val_class_die_ref)
6470 unmark_all_dies (AT_ref (a));
6473 /* Return the size of the .debug_pubnames table generated for the
6474 compilation unit. */
6476 static unsigned long
6477 size_of_pubnames ()
6479 unsigned long size;
6480 unsigned i;
6482 size = DWARF_PUBNAMES_HEADER_SIZE;
6483 for (i = 0; i < pubname_table_in_use; i++)
6485 pubname_ref p = &pubname_table[i];
6486 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6489 size += DWARF_OFFSET_SIZE;
6490 return size;
6493 /* Return the size of the information in the .debug_aranges section. */
6495 static unsigned long
6496 size_of_aranges ()
6498 unsigned long size;
6500 size = DWARF_ARANGES_HEADER_SIZE;
6502 /* Count the address/length pair for this compilation unit. */
6503 size += 2 * DWARF2_ADDR_SIZE;
6504 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6506 /* Count the two zero words used to terminated the address range table. */
6507 size += 2 * DWARF2_ADDR_SIZE;
6508 return size;
6511 /* Select the encoding of an attribute value. */
6513 static enum dwarf_form
6514 value_format (a)
6515 dw_attr_ref a;
6517 switch (a->dw_attr_val.val_class)
6519 case dw_val_class_addr:
6520 return DW_FORM_addr;
6521 case dw_val_class_range_list:
6522 case dw_val_class_offset:
6523 if (DWARF_OFFSET_SIZE == 4)
6524 return DW_FORM_data4;
6525 if (DWARF_OFFSET_SIZE == 8)
6526 return DW_FORM_data8;
6527 abort ();
6528 case dw_val_class_loc_list:
6529 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6530 .debug_loc section */
6531 return DW_FORM_data4;
6532 case dw_val_class_loc:
6533 switch (constant_size (size_of_locs (AT_loc (a))))
6535 case 1:
6536 return DW_FORM_block1;
6537 case 2:
6538 return DW_FORM_block2;
6539 default:
6540 abort ();
6542 case dw_val_class_const:
6543 return DW_FORM_sdata;
6544 case dw_val_class_unsigned_const:
6545 switch (constant_size (AT_unsigned (a)))
6547 case 1:
6548 return DW_FORM_data1;
6549 case 2:
6550 return DW_FORM_data2;
6551 case 4:
6552 return DW_FORM_data4;
6553 case 8:
6554 return DW_FORM_data8;
6555 default:
6556 abort ();
6558 case dw_val_class_long_long:
6559 return DW_FORM_block1;
6560 case dw_val_class_float:
6561 return DW_FORM_block1;
6562 case dw_val_class_flag:
6563 return DW_FORM_flag;
6564 case dw_val_class_die_ref:
6565 if (AT_ref_external (a))
6566 return DW_FORM_ref_addr;
6567 else
6568 return DW_FORM_ref;
6569 case dw_val_class_fde_ref:
6570 return DW_FORM_data;
6571 case dw_val_class_lbl_id:
6572 return DW_FORM_addr;
6573 case dw_val_class_lbl_offset:
6574 return DW_FORM_data;
6575 case dw_val_class_str:
6576 return AT_string_form (a);
6578 default:
6579 abort ();
6583 /* Output the encoding of an attribute value. */
6585 static void
6586 output_value_format (a)
6587 dw_attr_ref a;
6589 enum dwarf_form form = value_format (a);
6591 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6594 /* Output the .debug_abbrev section which defines the DIE abbreviation
6595 table. */
6597 static void
6598 output_abbrev_section ()
6600 unsigned long abbrev_id;
6602 dw_attr_ref a_attr;
6604 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6606 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6608 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6609 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6610 dwarf_tag_name (abbrev->die_tag));
6612 if (abbrev->die_child != NULL)
6613 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6614 else
6615 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6617 for (a_attr = abbrev->die_attr; a_attr != NULL;
6618 a_attr = a_attr->dw_attr_next)
6620 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6621 dwarf_attr_name (a_attr->dw_attr));
6622 output_value_format (a_attr);
6625 dw2_asm_output_data (1, 0, NULL);
6626 dw2_asm_output_data (1, 0, NULL);
6629 /* Terminate the table. */
6630 dw2_asm_output_data (1, 0, NULL);
6633 /* Output a symbol we can use to refer to this DIE from another CU. */
6635 static inline void
6636 output_die_symbol (die)
6637 dw_die_ref die;
6639 char *sym = die->die_symbol;
6641 if (sym == 0)
6642 return;
6644 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6645 /* We make these global, not weak; if the target doesn't support
6646 .linkonce, it doesn't support combining the sections, so debugging
6647 will break. */
6648 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6650 ASM_OUTPUT_LABEL (asm_out_file, sym);
6653 /* Return a new location list, given the begin and end range, and the
6654 expression. gensym tells us whether to generate a new internal symbol for
6655 this location list node, which is done for the head of the list only. */
6657 static inline dw_loc_list_ref
6658 new_loc_list (expr, begin, end, section, gensym)
6659 dw_loc_descr_ref expr;
6660 const char *begin;
6661 const char *end;
6662 const char *section;
6663 unsigned gensym;
6665 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6667 retlist->begin = begin;
6668 retlist->end = end;
6669 retlist->expr = expr;
6670 retlist->section = section;
6671 if (gensym)
6672 retlist->ll_symbol = gen_internal_sym ("LLST");
6674 return retlist;
6677 /* Add a location description expression to a location list */
6679 static inline void
6680 add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
6681 dw_loc_list_ref *list_head;
6682 dw_loc_descr_ref descr;
6683 const char *begin;
6684 const char *end;
6685 const char *section;
6687 dw_loc_list_ref *d;
6689 /* Find the end of the chain. */
6690 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6693 /* Add a new location list node to the list */
6694 *d = new_loc_list (descr, begin, end, section, 0);
6697 /* Output the location list given to us */
6699 static void
6700 output_loc_list (list_head)
6701 dw_loc_list_ref list_head;
6703 dw_loc_list_ref curr = list_head;
6705 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6707 /* ??? This shouldn't be needed now that we've forced the
6708 compilation unit base address to zero when there is code
6709 in more than one section. */
6710 if (strcmp (curr->section, ".text") == 0)
6712 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6713 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6714 "Location list base address specifier fake entry");
6715 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6716 "Location list base address specifier base");
6719 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6721 unsigned long size;
6723 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6724 "Location list begin address (%s)",
6725 list_head->ll_symbol);
6726 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6727 "Location list end address (%s)",
6728 list_head->ll_symbol);
6729 size = size_of_locs (curr->expr);
6731 /* Output the block length for this list of location operations. */
6732 if (size > 0xffff)
6733 abort ();
6734 dw2_asm_output_data (2, size, "%s", "Location expression size");
6736 output_loc_sequence (curr->expr);
6739 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6740 "Location list terminator begin (%s)",
6741 list_head->ll_symbol);
6742 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6743 "Location list terminator end (%s)",
6744 list_head->ll_symbol);
6747 /* Output the DIE and its attributes. Called recursively to generate
6748 the definitions of each child DIE. */
6750 static void
6751 output_die (die)
6752 dw_die_ref die;
6754 dw_attr_ref a;
6755 dw_die_ref c;
6756 unsigned long size;
6758 /* If someone in another CU might refer to us, set up a symbol for
6759 them to point to. */
6760 if (die->die_symbol)
6761 output_die_symbol (die);
6763 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6764 die->die_offset, dwarf_tag_name (die->die_tag));
6766 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6768 const char *name = dwarf_attr_name (a->dw_attr);
6770 switch (AT_class (a))
6772 case dw_val_class_addr:
6773 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6774 break;
6776 case dw_val_class_offset:
6777 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6778 "%s", name);
6779 break;
6781 case dw_val_class_range_list:
6783 char *p = strchr (ranges_section_label, '\0');
6785 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6786 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6787 "%s", name);
6788 *p = '\0';
6790 break;
6792 case dw_val_class_loc:
6793 size = size_of_locs (AT_loc (a));
6795 /* Output the block length for this list of location operations. */
6796 dw2_asm_output_data (constant_size (size), size, "%s", name);
6798 output_loc_sequence (AT_loc (a));
6799 break;
6801 case dw_val_class_const:
6802 /* ??? It would be slightly more efficient to use a scheme like is
6803 used for unsigned constants below, but gdb 4.x does not sign
6804 extend. Gdb 5.x does sign extend. */
6805 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6806 break;
6808 case dw_val_class_unsigned_const:
6809 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6810 AT_unsigned (a), "%s", name);
6811 break;
6813 case dw_val_class_long_long:
6815 unsigned HOST_WIDE_INT first, second;
6817 dw2_asm_output_data (1,
6818 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6819 "%s", name);
6821 if (WORDS_BIG_ENDIAN)
6823 first = a->dw_attr_val.v.val_long_long.hi;
6824 second = a->dw_attr_val.v.val_long_long.low;
6826 else
6828 first = a->dw_attr_val.v.val_long_long.low;
6829 second = a->dw_attr_val.v.val_long_long.hi;
6832 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6833 first, "long long constant");
6834 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6835 second, NULL);
6837 break;
6839 case dw_val_class_float:
6841 unsigned int i;
6843 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6844 "%s", name);
6846 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6847 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6848 "fp constant word %u", i);
6849 break;
6852 case dw_val_class_flag:
6853 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6854 break;
6856 case dw_val_class_loc_list:
6858 char *sym = AT_loc_list (a)->ll_symbol;
6860 if (sym == 0)
6861 abort ();
6862 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6863 loc_section_label, "%s", name);
6865 break;
6867 case dw_val_class_die_ref:
6868 if (AT_ref_external (a))
6870 char *sym = AT_ref (a)->die_symbol;
6872 if (sym == 0)
6873 abort ();
6874 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6876 else if (AT_ref (a)->die_offset == 0)
6877 abort ();
6878 else
6879 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6880 "%s", name);
6881 break;
6883 case dw_val_class_fde_ref:
6885 char l1[20];
6887 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6888 a->dw_attr_val.v.val_fde_index * 2);
6889 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6891 break;
6893 case dw_val_class_lbl_id:
6894 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6895 break;
6897 case dw_val_class_lbl_offset:
6898 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6899 break;
6901 case dw_val_class_str:
6902 if (AT_string_form (a) == DW_FORM_strp)
6903 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6904 a->dw_attr_val.v.val_str->label,
6905 "%s: \"%s\"", name, AT_string (a));
6906 else
6907 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6908 break;
6910 default:
6911 abort ();
6915 for (c = die->die_child; c != NULL; c = c->die_sib)
6916 output_die (c);
6918 /* Add null byte to terminate sibling list. */
6919 if (die->die_child != NULL)
6920 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6921 die->die_offset);
6924 /* Output the compilation unit that appears at the beginning of the
6925 .debug_info section, and precedes the DIE descriptions. */
6927 static void
6928 output_compilation_unit_header ()
6930 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6931 dw2_asm_output_data (4, 0xffffffff,
6932 "Initial length escape value indicating 64-bit DWARF extension");
6933 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6934 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6935 "Length of Compilation Unit Info");
6936 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6937 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6938 "Offset Into Abbrev. Section");
6939 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6942 /* Output the compilation unit DIE and its children. */
6944 static void
6945 output_comp_unit (die, output_if_empty)
6946 dw_die_ref die;
6947 int output_if_empty;
6949 const char *secname;
6950 char *oldsym, *tmp;
6952 /* Unless we are outputting main CU, we may throw away empty ones. */
6953 if (!output_if_empty && die->die_child == NULL)
6954 return;
6956 /* Even if there are no children of this DIE, we must output the information
6957 about the compilation unit. Otherwise, on an empty translation unit, we
6958 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6959 will then complain when examining the file. First mark all the DIEs in
6960 this CU so we know which get local refs. */
6961 mark_dies (die);
6963 build_abbrev_table (die);
6965 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6966 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6967 calc_die_sizes (die);
6969 oldsym = die->die_symbol;
6970 if (oldsym)
6972 tmp = (char *) alloca (strlen (oldsym) + 24);
6974 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6975 secname = tmp;
6976 die->die_symbol = NULL;
6978 else
6979 secname = (const char *) DEBUG_INFO_SECTION;
6981 /* Output debugging information. */
6982 named_section_flags (secname, SECTION_DEBUG);
6983 output_compilation_unit_header ();
6984 output_die (die);
6986 /* Leave the marks on the main CU, so we can check them in
6987 output_pubnames. */
6988 if (oldsym)
6990 unmark_dies (die);
6991 die->die_symbol = oldsym;
6995 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6996 output of lang_hooks.decl_printable_name for C++ looks like
6997 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6999 static const char *
7000 dwarf2_name (decl, scope)
7001 tree decl;
7002 int scope;
7004 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
7007 /* Add a new entry to .debug_pubnames if appropriate. */
7009 static void
7010 add_pubname (decl, die)
7011 tree decl;
7012 dw_die_ref die;
7014 pubname_ref p;
7016 if (! TREE_PUBLIC (decl))
7017 return;
7019 if (pubname_table_in_use == pubname_table_allocated)
7021 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7022 pubname_table
7023 = (pubname_ref) ggc_realloc (pubname_table,
7024 (pubname_table_allocated
7025 * sizeof (pubname_entry)));
7026 memset (pubname_table + pubname_table_in_use, 0,
7027 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7030 p = &pubname_table[pubname_table_in_use++];
7031 p->die = die;
7032 p->name = xstrdup (dwarf2_name (decl, 1));
7035 /* Output the public names table used to speed up access to externally
7036 visible names. For now, only generate entries for externally
7037 visible procedures. */
7039 static void
7040 output_pubnames ()
7042 unsigned i;
7043 unsigned long pubnames_length = size_of_pubnames ();
7045 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7046 dw2_asm_output_data (4, 0xffffffff,
7047 "Initial length escape value indicating 64-bit DWARF extension");
7048 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7049 "Length of Public Names Info");
7050 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7051 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7052 "Offset of Compilation Unit Info");
7053 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7054 "Compilation Unit Length");
7056 for (i = 0; i < pubname_table_in_use; i++)
7058 pubname_ref pub = &pubname_table[i];
7060 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7061 if (pub->die->die_mark == 0)
7062 abort ();
7064 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7065 "DIE offset");
7067 dw2_asm_output_nstring (pub->name, -1, "external name");
7070 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7073 /* Add a new entry to .debug_aranges if appropriate. */
7075 static void
7076 add_arange (decl, die)
7077 tree decl;
7078 dw_die_ref die;
7080 if (! DECL_SECTION_NAME (decl))
7081 return;
7083 if (arange_table_in_use == arange_table_allocated)
7085 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7086 arange_table = ggc_realloc (arange_table,
7087 (arange_table_allocated
7088 * sizeof (dw_die_ref)));
7089 memset (arange_table + arange_table_in_use, 0,
7090 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7093 arange_table[arange_table_in_use++] = die;
7096 /* Output the information that goes into the .debug_aranges table.
7097 Namely, define the beginning and ending address range of the
7098 text section generated for this compilation unit. */
7100 static void
7101 output_aranges ()
7103 unsigned i;
7104 unsigned long aranges_length = size_of_aranges ();
7106 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7107 dw2_asm_output_data (4, 0xffffffff,
7108 "Initial length escape value indicating 64-bit DWARF extension");
7109 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7110 "Length of Address Ranges Info");
7111 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7112 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7113 "Offset of Compilation Unit Info");
7114 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7115 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7117 /* We need to align to twice the pointer size here. */
7118 if (DWARF_ARANGES_PAD_SIZE)
7120 /* Pad using a 2 byte words so that padding is correct for any
7121 pointer size. */
7122 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7123 2 * DWARF2_ADDR_SIZE);
7124 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7125 dw2_asm_output_data (2, 0, NULL);
7128 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7129 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7130 text_section_label, "Length");
7132 for (i = 0; i < arange_table_in_use; i++)
7134 dw_die_ref die = arange_table[i];
7136 /* We shouldn't see aranges for DIEs outside of the main CU. */
7137 if (die->die_mark == 0)
7138 abort ();
7140 if (die->die_tag == DW_TAG_subprogram)
7142 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7143 "Address");
7144 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7145 get_AT_low_pc (die), "Length");
7147 else
7149 /* A static variable; extract the symbol from DW_AT_location.
7150 Note that this code isn't currently hit, as we only emit
7151 aranges for functions (jason 9/23/99). */
7152 dw_attr_ref a = get_AT (die, DW_AT_location);
7153 dw_loc_descr_ref loc;
7155 if (! a || AT_class (a) != dw_val_class_loc)
7156 abort ();
7158 loc = AT_loc (a);
7159 if (loc->dw_loc_opc != DW_OP_addr)
7160 abort ();
7162 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7163 loc->dw_loc_oprnd1.v.val_addr, "Address");
7164 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7165 get_AT_unsigned (die, DW_AT_byte_size),
7166 "Length");
7170 /* Output the terminator words. */
7171 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7172 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7175 /* Add a new entry to .debug_ranges. Return the offset at which it
7176 was placed. */
7178 static unsigned int
7179 add_ranges (block)
7180 tree block;
7182 unsigned int in_use = ranges_table_in_use;
7184 if (in_use == ranges_table_allocated)
7186 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7187 ranges_table = (dw_ranges_ref)
7188 ggc_realloc (ranges_table, (ranges_table_allocated
7189 * sizeof (struct dw_ranges_struct)));
7190 memset (ranges_table + ranges_table_in_use, 0,
7191 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7194 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7195 ranges_table_in_use = in_use + 1;
7197 return in_use * 2 * DWARF2_ADDR_SIZE;
7200 static void
7201 output_ranges ()
7203 unsigned i;
7204 static const char *const start_fmt = "Offset 0x%x";
7205 const char *fmt = start_fmt;
7207 for (i = 0; i < ranges_table_in_use; i++)
7209 int block_num = ranges_table[i].block_num;
7211 if (block_num)
7213 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7214 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7216 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7217 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7219 /* If all code is in the text section, then the compilation
7220 unit base address defaults to DW_AT_low_pc, which is the
7221 base of the text section. */
7222 if (separate_line_info_table_in_use == 0)
7224 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7225 text_section_label,
7226 fmt, i * 2 * DWARF2_ADDR_SIZE);
7227 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7228 text_section_label, NULL);
7231 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7232 compilation unit base address to zero, which allows us to
7233 use absolute addresses, and not worry about whether the
7234 target supports cross-section arithmetic. */
7235 else
7237 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7238 fmt, i * 2 * DWARF2_ADDR_SIZE);
7239 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7242 fmt = NULL;
7244 else
7246 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7247 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7248 fmt = start_fmt;
7253 /* Data structure containing information about input files. */
7254 struct file_info
7256 char *path; /* Complete file name. */
7257 char *fname; /* File name part. */
7258 int length; /* Length of entire string. */
7259 int file_idx; /* Index in input file table. */
7260 int dir_idx; /* Index in directory table. */
7263 /* Data structure containing information about directories with source
7264 files. */
7265 struct dir_info
7267 char *path; /* Path including directory name. */
7268 int length; /* Path length. */
7269 int prefix; /* Index of directory entry which is a prefix. */
7270 int count; /* Number of files in this directory. */
7271 int dir_idx; /* Index of directory used as base. */
7272 int used; /* Used in the end? */
7275 /* Callback function for file_info comparison. We sort by looking at
7276 the directories in the path. */
7278 static int
7279 file_info_cmp (p1, p2)
7280 const void *p1;
7281 const void *p2;
7283 const struct file_info *s1 = p1;
7284 const struct file_info *s2 = p2;
7285 unsigned char *cp1;
7286 unsigned char *cp2;
7288 /* Take care of file names without directories. We need to make sure that
7289 we return consistent values to qsort since some will get confused if
7290 we return the same value when identical operands are passed in opposite
7291 orders. So if neither has a directory, return 0 and otherwise return
7292 1 or -1 depending on which one has the directory. */
7293 if ((s1->path == s1->fname || s2->path == s2->fname))
7294 return (s2->path == s2->fname) - (s1->path == s1->fname);
7296 cp1 = (unsigned char *) s1->path;
7297 cp2 = (unsigned char *) s2->path;
7299 while (1)
7301 ++cp1;
7302 ++cp2;
7303 /* Reached the end of the first path? If so, handle like above. */
7304 if ((cp1 == (unsigned char *) s1->fname)
7305 || (cp2 == (unsigned char *) s2->fname))
7306 return ((cp2 == (unsigned char *) s2->fname)
7307 - (cp1 == (unsigned char *) s1->fname));
7309 /* Character of current path component the same? */
7310 else if (*cp1 != *cp2)
7311 return *cp1 - *cp2;
7315 /* Output the directory table and the file name table. We try to minimize
7316 the total amount of memory needed. A heuristic is used to avoid large
7317 slowdowns with many input files. */
7319 static void
7320 output_file_names ()
7322 struct file_info *files;
7323 struct dir_info *dirs;
7324 int *saved;
7325 int *savehere;
7326 int *backmap;
7327 size_t ndirs;
7328 int idx_offset;
7329 size_t i;
7330 int idx;
7332 /* Handle the case where file_table is empty. */
7333 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7335 dw2_asm_output_data (1, 0, "End directory table");
7336 dw2_asm_output_data (1, 0, "End file name table");
7337 return;
7340 /* Allocate the various arrays we need. */
7341 files = (struct file_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7342 * sizeof (struct file_info));
7343 dirs = (struct dir_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7344 * sizeof (struct dir_info));
7346 /* Sort the file names. */
7347 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7349 char *f;
7351 /* Skip all leading "./". */
7352 f = VARRAY_CHAR_PTR (file_table, i);
7353 while (f[0] == '.' && f[1] == '/')
7354 f += 2;
7356 /* Create a new array entry. */
7357 files[i].path = f;
7358 files[i].length = strlen (f);
7359 files[i].file_idx = i;
7361 /* Search for the file name part. */
7362 f = strrchr (f, '/');
7363 files[i].fname = f == NULL ? files[i].path : f + 1;
7366 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7367 sizeof (files[0]), file_info_cmp);
7369 /* Find all the different directories used. */
7370 dirs[0].path = files[1].path;
7371 dirs[0].length = files[1].fname - files[1].path;
7372 dirs[0].prefix = -1;
7373 dirs[0].count = 1;
7374 dirs[0].dir_idx = 0;
7375 dirs[0].used = 0;
7376 files[1].dir_idx = 0;
7377 ndirs = 1;
7379 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7380 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7381 && memcmp (dirs[ndirs - 1].path, files[i].path,
7382 dirs[ndirs - 1].length) == 0)
7384 /* Same directory as last entry. */
7385 files[i].dir_idx = ndirs - 1;
7386 ++dirs[ndirs - 1].count;
7388 else
7390 size_t j;
7392 /* This is a new directory. */
7393 dirs[ndirs].path = files[i].path;
7394 dirs[ndirs].length = files[i].fname - files[i].path;
7395 dirs[ndirs].count = 1;
7396 dirs[ndirs].dir_idx = ndirs;
7397 dirs[ndirs].used = 0;
7398 files[i].dir_idx = ndirs;
7400 /* Search for a prefix. */
7401 dirs[ndirs].prefix = -1;
7402 for (j = 0; j < ndirs; j++)
7403 if (dirs[j].length < dirs[ndirs].length
7404 && dirs[j].length > 1
7405 && (dirs[ndirs].prefix == -1
7406 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7407 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7408 dirs[ndirs].prefix = j;
7410 ++ndirs;
7413 /* Now to the actual work. We have to find a subset of the directories which
7414 allow expressing the file name using references to the directory table
7415 with the least amount of characters. We do not do an exhaustive search
7416 where we would have to check out every combination of every single
7417 possible prefix. Instead we use a heuristic which provides nearly optimal
7418 results in most cases and never is much off. */
7419 saved = (int *) alloca (ndirs * sizeof (int));
7420 savehere = (int *) alloca (ndirs * sizeof (int));
7422 memset (saved, '\0', ndirs * sizeof (saved[0]));
7423 for (i = 0; i < ndirs; i++)
7425 size_t j;
7426 int total;
7428 /* We can always save some space for the current directory. But this
7429 does not mean it will be enough to justify adding the directory. */
7430 savehere[i] = dirs[i].length;
7431 total = (savehere[i] - saved[i]) * dirs[i].count;
7433 for (j = i + 1; j < ndirs; j++)
7435 savehere[j] = 0;
7436 if (saved[j] < dirs[i].length)
7438 /* Determine whether the dirs[i] path is a prefix of the
7439 dirs[j] path. */
7440 int k;
7442 k = dirs[j].prefix;
7443 while (k != -1 && k != (int) i)
7444 k = dirs[k].prefix;
7446 if (k == (int) i)
7448 /* Yes it is. We can possibly safe some memory but
7449 writing the filenames in dirs[j] relative to
7450 dirs[i]. */
7451 savehere[j] = dirs[i].length;
7452 total += (savehere[j] - saved[j]) * dirs[j].count;
7457 /* Check whether we can safe enough to justify adding the dirs[i]
7458 directory. */
7459 if (total > dirs[i].length + 1)
7461 /* It's worthwhile adding. */
7462 for (j = i; j < ndirs; j++)
7463 if (savehere[j] > 0)
7465 /* Remember how much we saved for this directory so far. */
7466 saved[j] = savehere[j];
7468 /* Remember the prefix directory. */
7469 dirs[j].dir_idx = i;
7474 /* We have to emit them in the order they appear in the file_table array
7475 since the index is used in the debug info generation. To do this
7476 efficiently we generate a back-mapping of the indices first. */
7477 backmap = (int *) alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7478 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7480 backmap[files[i].file_idx] = i;
7482 /* Mark this directory as used. */
7483 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7486 /* That was it. We are ready to emit the information. First emit the
7487 directory name table. We have to make sure the first actually emitted
7488 directory name has index one; zero is reserved for the current working
7489 directory. Make sure we do not confuse these indices with the one for the
7490 constructed table (even though most of the time they are identical). */
7491 idx = 1;
7492 idx_offset = dirs[0].length > 0 ? 1 : 0;
7493 for (i = 1 - idx_offset; i < ndirs; i++)
7494 if (dirs[i].used != 0)
7496 dirs[i].used = idx++;
7497 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7498 "Directory Entry: 0x%x", dirs[i].used);
7501 dw2_asm_output_data (1, 0, "End directory table");
7503 /* Correct the index for the current working directory entry if it
7504 exists. */
7505 if (idx_offset == 0)
7506 dirs[0].used = 0;
7508 /* Now write all the file names. */
7509 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7511 int file_idx = backmap[i];
7512 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7514 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7515 "File Entry: 0x%lx", (unsigned long) i);
7517 /* Include directory index. */
7518 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7520 /* Modification time. */
7521 dw2_asm_output_data_uleb128 (0, NULL);
7523 /* File length in bytes. */
7524 dw2_asm_output_data_uleb128 (0, NULL);
7527 dw2_asm_output_data (1, 0, "End file name table");
7531 /* Output the source line number correspondence information. This
7532 information goes into the .debug_line section. */
7534 static void
7535 output_line_info ()
7537 char l1[20], l2[20], p1[20], p2[20];
7538 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7539 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7540 unsigned opc;
7541 unsigned n_op_args;
7542 unsigned long lt_index;
7543 unsigned long current_line;
7544 long line_offset;
7545 long line_delta;
7546 unsigned long current_file;
7547 unsigned long function;
7549 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7550 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7551 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7552 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7554 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7555 dw2_asm_output_data (4, 0xffffffff,
7556 "Initial length escape value indicating 64-bit DWARF extension");
7557 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7558 "Length of Source Line Info");
7559 ASM_OUTPUT_LABEL (asm_out_file, l1);
7561 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7562 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7563 ASM_OUTPUT_LABEL (asm_out_file, p1);
7565 /* Define the architecture-dependent minimum instruction length (in
7566 bytes). In this implementation of DWARF, this field is used for
7567 information purposes only. Since GCC generates assembly language,
7568 we have no a priori knowledge of how many instruction bytes are
7569 generated for each source line, and therefore can use only the
7570 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7571 commands. Accordingly, we fix this as `1', which is "correct
7572 enough" for all architectures, and don't let the target override. */
7573 dw2_asm_output_data (1, 1,
7574 "Minimum Instruction Length");
7576 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7577 "Default is_stmt_start flag");
7578 dw2_asm_output_data (1, DWARF_LINE_BASE,
7579 "Line Base Value (Special Opcodes)");
7580 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7581 "Line Range Value (Special Opcodes)");
7582 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7583 "Special Opcode Base");
7585 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7587 switch (opc)
7589 case DW_LNS_advance_pc:
7590 case DW_LNS_advance_line:
7591 case DW_LNS_set_file:
7592 case DW_LNS_set_column:
7593 case DW_LNS_fixed_advance_pc:
7594 n_op_args = 1;
7595 break;
7596 default:
7597 n_op_args = 0;
7598 break;
7601 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7602 opc, n_op_args);
7605 /* Write out the information about the files we use. */
7606 output_file_names ();
7607 ASM_OUTPUT_LABEL (asm_out_file, p2);
7609 /* We used to set the address register to the first location in the text
7610 section here, but that didn't accomplish anything since we already
7611 have a line note for the opening brace of the first function. */
7613 /* Generate the line number to PC correspondence table, encoded as
7614 a series of state machine operations. */
7615 current_file = 1;
7616 current_line = 1;
7617 strcpy (prev_line_label, text_section_label);
7618 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7620 dw_line_info_ref line_info = &line_info_table[lt_index];
7622 #if 0
7623 /* Disable this optimization for now; GDB wants to see two line notes
7624 at the beginning of a function so it can find the end of the
7625 prologue. */
7627 /* Don't emit anything for redundant notes. Just updating the
7628 address doesn't accomplish anything, because we already assume
7629 that anything after the last address is this line. */
7630 if (line_info->dw_line_num == current_line
7631 && line_info->dw_file_num == current_file)
7632 continue;
7633 #endif
7635 /* Emit debug info for the address of the current line.
7637 Unfortunately, we have little choice here currently, and must always
7638 use the most general form. GCC does not know the address delta
7639 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7640 attributes which will give an upper bound on the address range. We
7641 could perhaps use length attributes to determine when it is safe to
7642 use DW_LNS_fixed_advance_pc. */
7644 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7645 if (0)
7647 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7648 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7649 "DW_LNS_fixed_advance_pc");
7650 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7652 else
7654 /* This can handle any delta. This takes
7655 4+DWARF2_ADDR_SIZE bytes. */
7656 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7657 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7658 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7659 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7662 strcpy (prev_line_label, line_label);
7664 /* Emit debug info for the source file of the current line, if
7665 different from the previous line. */
7666 if (line_info->dw_file_num != current_file)
7668 current_file = line_info->dw_file_num;
7669 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7670 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7671 VARRAY_CHAR_PTR (file_table,
7672 current_file));
7675 /* Emit debug info for the current line number, choosing the encoding
7676 that uses the least amount of space. */
7677 if (line_info->dw_line_num != current_line)
7679 line_offset = line_info->dw_line_num - current_line;
7680 line_delta = line_offset - DWARF_LINE_BASE;
7681 current_line = line_info->dw_line_num;
7682 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7683 /* This can handle deltas from -10 to 234, using the current
7684 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7685 takes 1 byte. */
7686 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7687 "line %lu", current_line);
7688 else
7690 /* This can handle any delta. This takes at least 4 bytes,
7691 depending on the value being encoded. */
7692 dw2_asm_output_data (1, DW_LNS_advance_line,
7693 "advance to line %lu", current_line);
7694 dw2_asm_output_data_sleb128 (line_offset, NULL);
7695 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7698 else
7699 /* We still need to start a new row, so output a copy insn. */
7700 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7703 /* Emit debug info for the address of the end of the function. */
7704 if (0)
7706 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7707 "DW_LNS_fixed_advance_pc");
7708 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7710 else
7712 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7713 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7714 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7715 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7718 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7719 dw2_asm_output_data_uleb128 (1, NULL);
7720 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7722 function = 0;
7723 current_file = 1;
7724 current_line = 1;
7725 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7727 dw_separate_line_info_ref line_info
7728 = &separate_line_info_table[lt_index];
7730 #if 0
7731 /* Don't emit anything for redundant notes. */
7732 if (line_info->dw_line_num == current_line
7733 && line_info->dw_file_num == current_file
7734 && line_info->function == function)
7735 goto cont;
7736 #endif
7738 /* Emit debug info for the address of the current line. If this is
7739 a new function, or the first line of a function, then we need
7740 to handle it differently. */
7741 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7742 lt_index);
7743 if (function != line_info->function)
7745 function = line_info->function;
7747 /* Set the address register to the first line in the function */
7748 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7749 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7750 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7751 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7753 else
7755 /* ??? See the DW_LNS_advance_pc comment above. */
7756 if (0)
7758 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7759 "DW_LNS_fixed_advance_pc");
7760 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7762 else
7764 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7765 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7766 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7767 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7771 strcpy (prev_line_label, line_label);
7773 /* Emit debug info for the source file of the current line, if
7774 different from the previous line. */
7775 if (line_info->dw_file_num != current_file)
7777 current_file = line_info->dw_file_num;
7778 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7779 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7780 VARRAY_CHAR_PTR (file_table,
7781 current_file));
7784 /* Emit debug info for the current line number, choosing the encoding
7785 that uses the least amount of space. */
7786 if (line_info->dw_line_num != current_line)
7788 line_offset = line_info->dw_line_num - current_line;
7789 line_delta = line_offset - DWARF_LINE_BASE;
7790 current_line = line_info->dw_line_num;
7791 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7792 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7793 "line %lu", current_line);
7794 else
7796 dw2_asm_output_data (1, DW_LNS_advance_line,
7797 "advance to line %lu", current_line);
7798 dw2_asm_output_data_sleb128 (line_offset, NULL);
7799 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7802 else
7803 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7805 #if 0
7806 cont:
7807 #endif
7809 lt_index++;
7811 /* If we're done with a function, end its sequence. */
7812 if (lt_index == separate_line_info_table_in_use
7813 || separate_line_info_table[lt_index].function != function)
7815 current_file = 1;
7816 current_line = 1;
7818 /* Emit debug info for the address of the end of the function. */
7819 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7820 if (0)
7822 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7823 "DW_LNS_fixed_advance_pc");
7824 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7826 else
7828 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7829 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7830 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7831 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7834 /* Output the marker for the end of this sequence. */
7835 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7836 dw2_asm_output_data_uleb128 (1, NULL);
7837 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7841 /* Output the marker for the end of the line number info. */
7842 ASM_OUTPUT_LABEL (asm_out_file, l2);
7845 /* Given a pointer to a tree node for some base type, return a pointer to
7846 a DIE that describes the given type.
7848 This routine must only be called for GCC type nodes that correspond to
7849 Dwarf base (fundamental) types. */
7851 static dw_die_ref
7852 base_type_die (type)
7853 tree type;
7855 dw_die_ref base_type_result;
7856 const char *type_name;
7857 enum dwarf_type encoding;
7858 tree name = TYPE_NAME (type);
7860 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7861 return 0;
7863 if (name)
7865 if (TREE_CODE (name) == TYPE_DECL)
7866 name = DECL_NAME (name);
7868 type_name = IDENTIFIER_POINTER (name);
7870 else
7871 type_name = "__unknown__";
7873 switch (TREE_CODE (type))
7875 case INTEGER_TYPE:
7876 /* Carefully distinguish the C character types, without messing
7877 up if the language is not C. Note that we check only for the names
7878 that contain spaces; other names might occur by coincidence in other
7879 languages. */
7880 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7881 && (type == char_type_node
7882 || ! strcmp (type_name, "signed char")
7883 || ! strcmp (type_name, "unsigned char"))))
7885 if (TREE_UNSIGNED (type))
7886 encoding = DW_ATE_unsigned;
7887 else
7888 encoding = DW_ATE_signed;
7889 break;
7891 /* else fall through. */
7893 case CHAR_TYPE:
7894 /* GNU Pascal/Ada CHAR type. Not used in C. */
7895 if (TREE_UNSIGNED (type))
7896 encoding = DW_ATE_unsigned_char;
7897 else
7898 encoding = DW_ATE_signed_char;
7899 break;
7901 case REAL_TYPE:
7902 encoding = DW_ATE_float;
7903 break;
7905 /* Dwarf2 doesn't know anything about complex ints, so use
7906 a user defined type for it. */
7907 case COMPLEX_TYPE:
7908 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7909 encoding = DW_ATE_complex_float;
7910 else
7911 encoding = DW_ATE_lo_user;
7912 break;
7914 case BOOLEAN_TYPE:
7915 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7916 encoding = DW_ATE_boolean;
7917 break;
7919 default:
7920 /* No other TREE_CODEs are Dwarf fundamental types. */
7921 abort ();
7924 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7925 if (demangle_name_func)
7926 type_name = (*demangle_name_func) (type_name);
7928 add_AT_string (base_type_result, DW_AT_name, type_name);
7929 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7930 int_size_in_bytes (type));
7931 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7933 return base_type_result;
7936 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7937 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7938 a given type is generally the same as the given type, except that if the
7939 given type is a pointer or reference type, then the root type of the given
7940 type is the root type of the "basis" type for the pointer or reference
7941 type. (This definition of the "root" type is recursive.) Also, the root
7942 type of a `const' qualified type or a `volatile' qualified type is the
7943 root type of the given type without the qualifiers. */
7945 static tree
7946 root_type (type)
7947 tree type;
7949 if (TREE_CODE (type) == ERROR_MARK)
7950 return error_mark_node;
7952 switch (TREE_CODE (type))
7954 case ERROR_MARK:
7955 return error_mark_node;
7957 case POINTER_TYPE:
7958 case REFERENCE_TYPE:
7959 return type_main_variant (root_type (TREE_TYPE (type)));
7961 default:
7962 return type_main_variant (type);
7966 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7967 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7969 static inline int
7970 is_base_type (type)
7971 tree type;
7973 switch (TREE_CODE (type))
7975 case ERROR_MARK:
7976 case VOID_TYPE:
7977 case INTEGER_TYPE:
7978 case REAL_TYPE:
7979 case COMPLEX_TYPE:
7980 case BOOLEAN_TYPE:
7981 case CHAR_TYPE:
7982 return 1;
7984 case SET_TYPE:
7985 case ARRAY_TYPE:
7986 case RECORD_TYPE:
7987 case UNION_TYPE:
7988 case QUAL_UNION_TYPE:
7989 case ENUMERAL_TYPE:
7990 case FUNCTION_TYPE:
7991 case METHOD_TYPE:
7992 case POINTER_TYPE:
7993 case REFERENCE_TYPE:
7994 case FILE_TYPE:
7995 case OFFSET_TYPE:
7996 case LANG_TYPE:
7997 case VECTOR_TYPE:
7998 return 0;
8000 default:
8001 abort ();
8004 return 0;
8007 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8008 node, return the size in bits for the type if it is a constant, or else
8009 return the alignment for the type if the type's size is not constant, or
8010 else return BITS_PER_WORD if the type actually turns out to be an
8011 ERROR_MARK node. */
8013 static inline unsigned HOST_WIDE_INT
8014 simple_type_size_in_bits (type)
8015 tree type;
8018 if (TREE_CODE (type) == ERROR_MARK)
8019 return BITS_PER_WORD;
8020 else if (TYPE_SIZE (type) == NULL_TREE)
8021 return 0;
8022 else if (host_integerp (TYPE_SIZE (type), 1))
8023 return tree_low_cst (TYPE_SIZE (type), 1);
8024 else
8025 return TYPE_ALIGN (type);
8028 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8029 entry that chains various modifiers in front of the given type. */
8031 static dw_die_ref
8032 modified_type_die (type, is_const_type, is_volatile_type, context_die)
8033 tree type;
8034 int is_const_type;
8035 int is_volatile_type;
8036 dw_die_ref context_die;
8038 enum tree_code code = TREE_CODE (type);
8039 dw_die_ref mod_type_die = NULL;
8040 dw_die_ref sub_die = NULL;
8041 tree item_type = NULL;
8043 if (code != ERROR_MARK)
8045 tree qualified_type;
8047 /* See if we already have the appropriately qualified variant of
8048 this type. */
8049 qualified_type
8050 = get_qualified_type (type,
8051 ((is_const_type ? TYPE_QUAL_CONST : 0)
8052 | (is_volatile_type
8053 ? TYPE_QUAL_VOLATILE : 0)));
8055 /* If we do, then we can just use its DIE, if it exists. */
8056 if (qualified_type)
8058 mod_type_die = lookup_type_die (qualified_type);
8059 if (mod_type_die)
8060 return mod_type_die;
8063 /* Handle C typedef types. */
8064 if (qualified_type && TYPE_NAME (qualified_type)
8065 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8066 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8068 tree type_name = TYPE_NAME (qualified_type);
8069 tree dtype = TREE_TYPE (type_name);
8071 if (qualified_type == dtype)
8073 /* For a named type, use the typedef. */
8074 gen_type_die (qualified_type, context_die);
8075 mod_type_die = lookup_type_die (qualified_type);
8077 else if (is_const_type < TYPE_READONLY (dtype)
8078 || is_volatile_type < TYPE_VOLATILE (dtype))
8079 /* cv-unqualified version of named type. Just use the unnamed
8080 type to which it refers. */
8081 mod_type_die
8082 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8083 is_const_type, is_volatile_type,
8084 context_die);
8086 /* Else cv-qualified version of named type; fall through. */
8089 if (mod_type_die)
8090 /* OK. */
8092 else if (is_const_type)
8094 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8095 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8097 else if (is_volatile_type)
8099 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8100 sub_die = modified_type_die (type, 0, 0, context_die);
8102 else if (code == POINTER_TYPE)
8104 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8105 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8106 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8107 #if 0
8108 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8109 #endif
8110 item_type = TREE_TYPE (type);
8112 else if (code == REFERENCE_TYPE)
8114 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8115 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8116 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8117 #if 0
8118 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8119 #endif
8120 item_type = TREE_TYPE (type);
8122 else if (is_base_type (type))
8123 mod_type_die = base_type_die (type);
8124 else
8126 gen_type_die (type, context_die);
8128 /* We have to get the type_main_variant here (and pass that to the
8129 `lookup_type_die' routine) because the ..._TYPE node we have
8130 might simply be a *copy* of some original type node (where the
8131 copy was created to help us keep track of typedef names) and
8132 that copy might have a different TYPE_UID from the original
8133 ..._TYPE node. */
8134 if (TREE_CODE (type) != VECTOR_TYPE)
8135 mod_type_die = lookup_type_die (type_main_variant (type));
8136 else
8137 /* Vectors have the debugging information in the type,
8138 not the main variant. */
8139 mod_type_die = lookup_type_die (type);
8140 if (mod_type_die == NULL)
8141 abort ();
8144 /* We want to equate the qualified type to the die below. */
8145 type = qualified_type;
8148 if (type)
8149 equate_type_number_to_die (type, mod_type_die);
8150 if (item_type)
8151 /* We must do this after the equate_type_number_to_die call, in case
8152 this is a recursive type. This ensures that the modified_type_die
8153 recursion will terminate even if the type is recursive. Recursive
8154 types are possible in Ada. */
8155 sub_die = modified_type_die (item_type,
8156 TYPE_READONLY (item_type),
8157 TYPE_VOLATILE (item_type),
8158 context_die);
8160 if (sub_die != NULL)
8161 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8163 return mod_type_die;
8166 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8167 an enumerated type. */
8169 static inline int
8170 type_is_enum (type)
8171 tree type;
8173 return TREE_CODE (type) == ENUMERAL_TYPE;
8176 /* Return the register number described by a given RTL node. */
8178 static unsigned int
8179 reg_number (rtl)
8180 rtx rtl;
8182 unsigned regno = REGNO (rtl);
8184 if (regno >= FIRST_PSEUDO_REGISTER)
8185 abort ();
8187 return DBX_REGISTER_NUMBER (regno);
8190 /* Return a location descriptor that designates a machine register or
8191 zero if there is none. */
8193 static dw_loc_descr_ref
8194 reg_loc_descriptor (rtl)
8195 rtx rtl;
8197 unsigned reg;
8198 rtx regs;
8200 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8201 return 0;
8203 reg = reg_number (rtl);
8204 regs = (*targetm.dwarf_register_span) (rtl);
8206 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
8207 || regs)
8208 return multiple_reg_loc_descriptor (rtl, regs);
8209 else
8210 return one_reg_loc_descriptor (reg);
8213 /* Return a location descriptor that designates a machine register for
8214 a given hard register number. */
8216 static dw_loc_descr_ref
8217 one_reg_loc_descriptor (regno)
8218 unsigned int regno;
8220 if (regno <= 31)
8221 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8222 else
8223 return new_loc_descr (DW_OP_regx, regno, 0);
8226 /* Given an RTL of a register, return a location descriptor that
8227 designates a value that spans more than one register. */
8229 static dw_loc_descr_ref
8230 multiple_reg_loc_descriptor (rtl, regs)
8231 rtx rtl, regs;
8233 int nregs, size, i;
8234 unsigned reg;
8235 dw_loc_descr_ref loc_result = NULL;
8237 reg = reg_number (rtl);
8238 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8240 /* Simple, contiguous registers. */
8241 if (regs == NULL_RTX)
8243 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8245 loc_result = NULL;
8246 while (nregs--)
8248 dw_loc_descr_ref t;
8250 t = one_reg_loc_descriptor (reg);
8251 add_loc_descr (&loc_result, t);
8252 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8253 ++reg;
8255 return loc_result;
8258 /* Now onto stupid register sets in non contiguous locations. */
8260 if (GET_CODE (regs) != PARALLEL)
8261 abort ();
8263 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8264 loc_result = NULL;
8266 for (i = 0; i < XVECLEN (regs, 0); ++i)
8268 dw_loc_descr_ref t;
8270 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8271 add_loc_descr (&loc_result, t);
8272 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8273 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8275 return loc_result;
8278 /* Return a location descriptor that designates a constant. */
8280 static dw_loc_descr_ref
8281 int_loc_descriptor (i)
8282 HOST_WIDE_INT i;
8284 enum dwarf_location_atom op;
8286 /* Pick the smallest representation of a constant, rather than just
8287 defaulting to the LEB encoding. */
8288 if (i >= 0)
8290 if (i <= 31)
8291 op = DW_OP_lit0 + i;
8292 else if (i <= 0xff)
8293 op = DW_OP_const1u;
8294 else if (i <= 0xffff)
8295 op = DW_OP_const2u;
8296 else if (HOST_BITS_PER_WIDE_INT == 32
8297 || i <= 0xffffffff)
8298 op = DW_OP_const4u;
8299 else
8300 op = DW_OP_constu;
8302 else
8304 if (i >= -0x80)
8305 op = DW_OP_const1s;
8306 else if (i >= -0x8000)
8307 op = DW_OP_const2s;
8308 else if (HOST_BITS_PER_WIDE_INT == 32
8309 || i >= -0x80000000)
8310 op = DW_OP_const4s;
8311 else
8312 op = DW_OP_consts;
8315 return new_loc_descr (op, i, 0);
8318 /* Return a location descriptor that designates a base+offset location. */
8320 static dw_loc_descr_ref
8321 based_loc_descr (reg, offset)
8322 unsigned reg;
8323 long int offset;
8325 dw_loc_descr_ref loc_result;
8326 /* For the "frame base", we use the frame pointer or stack pointer
8327 registers, since the RTL for local variables is relative to one of
8328 them. */
8329 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8330 ? HARD_FRAME_POINTER_REGNUM
8331 : STACK_POINTER_REGNUM);
8333 if (reg == fp_reg)
8334 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8335 else if (reg <= 31)
8336 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8337 else
8338 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8340 return loc_result;
8343 /* Return true if this RTL expression describes a base+offset calculation. */
8345 static inline int
8346 is_based_loc (rtl)
8347 rtx rtl;
8349 return (GET_CODE (rtl) == PLUS
8350 && ((GET_CODE (XEXP (rtl, 0)) == REG
8351 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8352 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8355 /* The following routine converts the RTL for a variable or parameter
8356 (resident in memory) into an equivalent Dwarf representation of a
8357 mechanism for getting the address of that same variable onto the top of a
8358 hypothetical "address evaluation" stack.
8360 When creating memory location descriptors, we are effectively transforming
8361 the RTL for a memory-resident object into its Dwarf postfix expression
8362 equivalent. This routine recursively descends an RTL tree, turning
8363 it into Dwarf postfix code as it goes.
8365 MODE is the mode of the memory reference, needed to handle some
8366 autoincrement addressing modes.
8368 Return 0 if we can't represent the location. */
8370 static dw_loc_descr_ref
8371 mem_loc_descriptor (rtl, mode)
8372 rtx rtl;
8373 enum machine_mode mode;
8375 dw_loc_descr_ref mem_loc_result = NULL;
8377 /* Note that for a dynamically sized array, the location we will generate a
8378 description of here will be the lowest numbered location which is
8379 actually within the array. That's *not* necessarily the same as the
8380 zeroth element of the array. */
8382 rtl = (*targetm.delegitimize_address) (rtl);
8384 switch (GET_CODE (rtl))
8386 case POST_INC:
8387 case POST_DEC:
8388 case POST_MODIFY:
8389 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8390 just fall into the SUBREG code. */
8392 /* ... fall through ... */
8394 case SUBREG:
8395 /* The case of a subreg may arise when we have a local (register)
8396 variable or a formal (register) parameter which doesn't quite fill
8397 up an entire register. For now, just assume that it is
8398 legitimate to make the Dwarf info refer to the whole register which
8399 contains the given subreg. */
8400 rtl = SUBREG_REG (rtl);
8402 /* ... fall through ... */
8404 case REG:
8405 /* Whenever a register number forms a part of the description of the
8406 method for calculating the (dynamic) address of a memory resident
8407 object, DWARF rules require the register number be referred to as
8408 a "base register". This distinction is not based in any way upon
8409 what category of register the hardware believes the given register
8410 belongs to. This is strictly DWARF terminology we're dealing with
8411 here. Note that in cases where the location of a memory-resident
8412 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8413 OP_CONST (0)) the actual DWARF location descriptor that we generate
8414 may just be OP_BASEREG (basereg). This may look deceptively like
8415 the object in question was allocated to a register (rather than in
8416 memory) so DWARF consumers need to be aware of the subtle
8417 distinction between OP_REG and OP_BASEREG. */
8418 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8419 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8420 break;
8422 case MEM:
8423 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8424 if (mem_loc_result != 0)
8425 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8426 break;
8428 case LO_SUM:
8429 rtl = XEXP (rtl, 1);
8431 /* ... fall through ... */
8433 case LABEL_REF:
8434 /* Some ports can transform a symbol ref into a label ref, because
8435 the symbol ref is too far away and has to be dumped into a constant
8436 pool. */
8437 case CONST:
8438 case SYMBOL_REF:
8439 /* Alternatively, the symbol in the constant pool might be referenced
8440 by a different symbol. */
8441 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8443 bool marked;
8444 rtx tmp = get_pool_constant_mark (rtl, &marked);
8446 if (GET_CODE (tmp) == SYMBOL_REF)
8448 rtl = tmp;
8449 if (CONSTANT_POOL_ADDRESS_P (tmp))
8450 get_pool_constant_mark (tmp, &marked);
8451 else
8452 marked = true;
8455 /* If all references to this pool constant were optimized away,
8456 it was not output and thus we can't represent it.
8457 FIXME: might try to use DW_OP_const_value here, though
8458 DW_OP_piece complicates it. */
8459 if (!marked)
8460 return 0;
8463 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8464 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8465 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8466 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8467 break;
8469 case PRE_MODIFY:
8470 /* Extract the PLUS expression nested inside and fall into
8471 PLUS code below. */
8472 rtl = XEXP (rtl, 1);
8473 goto plus;
8475 case PRE_INC:
8476 case PRE_DEC:
8477 /* Turn these into a PLUS expression and fall into the PLUS code
8478 below. */
8479 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8480 GEN_INT (GET_CODE (rtl) == PRE_INC
8481 ? GET_MODE_UNIT_SIZE (mode)
8482 : -GET_MODE_UNIT_SIZE (mode)));
8484 /* ... fall through ... */
8486 case PLUS:
8487 plus:
8488 if (is_based_loc (rtl))
8489 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8490 INTVAL (XEXP (rtl, 1)));
8491 else
8493 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8494 if (mem_loc_result == 0)
8495 break;
8497 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8498 && INTVAL (XEXP (rtl, 1)) >= 0)
8499 add_loc_descr (&mem_loc_result,
8500 new_loc_descr (DW_OP_plus_uconst,
8501 INTVAL (XEXP (rtl, 1)), 0));
8502 else
8504 add_loc_descr (&mem_loc_result,
8505 mem_loc_descriptor (XEXP (rtl, 1), mode));
8506 add_loc_descr (&mem_loc_result,
8507 new_loc_descr (DW_OP_plus, 0, 0));
8510 break;
8512 case MULT:
8514 /* If a pseudo-reg is optimized away, it is possible for it to
8515 be replaced with a MEM containing a multiply. */
8516 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8517 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8519 if (op0 == 0 || op1 == 0)
8520 break;
8522 mem_loc_result = op0;
8523 add_loc_descr (&mem_loc_result, op1);
8524 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8525 break;
8528 case CONST_INT:
8529 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8530 break;
8532 case ADDRESSOF:
8533 /* If this is a MEM, return its address. Otherwise, we can't
8534 represent this. */
8535 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8536 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8537 else
8538 return 0;
8540 default:
8541 abort ();
8544 return mem_loc_result;
8547 /* Return a descriptor that describes the concatenation of two locations.
8548 This is typically a complex variable. */
8550 static dw_loc_descr_ref
8551 concat_loc_descriptor (x0, x1)
8552 rtx x0, x1;
8554 dw_loc_descr_ref cc_loc_result = NULL;
8555 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8556 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8558 if (x0_ref == 0 || x1_ref == 0)
8559 return 0;
8561 cc_loc_result = x0_ref;
8562 add_loc_descr (&cc_loc_result,
8563 new_loc_descr (DW_OP_piece,
8564 GET_MODE_SIZE (GET_MODE (x0)), 0));
8566 add_loc_descr (&cc_loc_result, x1_ref);
8567 add_loc_descr (&cc_loc_result,
8568 new_loc_descr (DW_OP_piece,
8569 GET_MODE_SIZE (GET_MODE (x1)), 0));
8571 return cc_loc_result;
8574 /* Output a proper Dwarf location descriptor for a variable or parameter
8575 which is either allocated in a register or in a memory location. For a
8576 register, we just generate an OP_REG and the register number. For a
8577 memory location we provide a Dwarf postfix expression describing how to
8578 generate the (dynamic) address of the object onto the address stack.
8580 If we don't know how to describe it, return 0. */
8582 static dw_loc_descr_ref
8583 loc_descriptor (rtl)
8584 rtx rtl;
8586 dw_loc_descr_ref loc_result = NULL;
8588 switch (GET_CODE (rtl))
8590 case SUBREG:
8591 /* The case of a subreg may arise when we have a local (register)
8592 variable or a formal (register) parameter which doesn't quite fill
8593 up an entire register. For now, just assume that it is
8594 legitimate to make the Dwarf info refer to the whole register which
8595 contains the given subreg. */
8596 rtl = SUBREG_REG (rtl);
8598 /* ... fall through ... */
8600 case REG:
8601 loc_result = reg_loc_descriptor (rtl);
8602 break;
8604 case MEM:
8605 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8606 break;
8608 case CONCAT:
8609 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8610 break;
8612 default:
8613 abort ();
8616 return loc_result;
8619 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8620 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8621 looking for an address. Otherwise, we return a value. If we can't make a
8622 descriptor, return 0. */
8624 static dw_loc_descr_ref
8625 loc_descriptor_from_tree (loc, addressp)
8626 tree loc;
8627 int addressp;
8629 dw_loc_descr_ref ret, ret1;
8630 int indirect_p = 0;
8631 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8632 enum dwarf_location_atom op;
8634 /* ??? Most of the time we do not take proper care for sign/zero
8635 extending the values properly. Hopefully this won't be a real
8636 problem... */
8638 switch (TREE_CODE (loc))
8640 case ERROR_MARK:
8641 return 0;
8643 case WITH_RECORD_EXPR:
8644 case PLACEHOLDER_EXPR:
8645 /* This case involves extracting fields from an object to determine the
8646 position of other fields. We don't try to encode this here. The
8647 only user of this is Ada, which encodes the needed information using
8648 the names of types. */
8649 return 0;
8651 case CALL_EXPR:
8652 return 0;
8654 case ADDR_EXPR:
8655 /* We can support this only if we can look through conversions and
8656 find an INDIRECT_EXPR. */
8657 for (loc = TREE_OPERAND (loc, 0);
8658 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8659 || TREE_CODE (loc) == NON_LVALUE_EXPR
8660 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8661 || TREE_CODE (loc) == SAVE_EXPR;
8662 loc = TREE_OPERAND (loc, 0))
8665 return (TREE_CODE (loc) == INDIRECT_REF
8666 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8667 : 0);
8669 case VAR_DECL:
8670 if (DECL_THREAD_LOCAL (loc))
8672 rtx rtl;
8674 #ifndef ASM_OUTPUT_DWARF_DTPREL
8675 /* If this is not defined, we have no way to emit the data. */
8676 return 0;
8677 #endif
8679 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8680 look up addresses of objects in the current module. */
8681 if (DECL_EXTERNAL (loc))
8682 return 0;
8684 rtl = rtl_for_decl_location (loc);
8685 if (rtl == NULL_RTX)
8686 return 0;
8688 if (GET_CODE (rtl) != MEM)
8689 return 0;
8690 rtl = XEXP (rtl, 0);
8691 if (! CONSTANT_P (rtl))
8692 return 0;
8694 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8695 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8696 ret->dw_loc_oprnd1.v.val_addr = rtl;
8698 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8699 add_loc_descr (&ret, ret1);
8701 indirect_p = 1;
8702 break;
8704 /* FALLTHRU */
8706 case PARM_DECL:
8708 rtx rtl = rtl_for_decl_location (loc);
8710 if (rtl == NULL_RTX)
8711 return 0;
8712 else if (CONSTANT_P (rtl))
8714 ret = new_loc_descr (DW_OP_addr, 0, 0);
8715 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8716 ret->dw_loc_oprnd1.v.val_addr = rtl;
8717 indirect_p = 1;
8719 else
8721 enum machine_mode mode = GET_MODE (rtl);
8723 if (GET_CODE (rtl) == MEM)
8725 indirect_p = 1;
8726 rtl = XEXP (rtl, 0);
8729 ret = mem_loc_descriptor (rtl, mode);
8732 break;
8734 case INDIRECT_REF:
8735 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8736 indirect_p = 1;
8737 break;
8739 case COMPOUND_EXPR:
8740 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8742 case NOP_EXPR:
8743 case CONVERT_EXPR:
8744 case NON_LVALUE_EXPR:
8745 case VIEW_CONVERT_EXPR:
8746 case SAVE_EXPR:
8747 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8749 case COMPONENT_REF:
8750 case BIT_FIELD_REF:
8751 case ARRAY_REF:
8752 case ARRAY_RANGE_REF:
8754 tree obj, offset;
8755 HOST_WIDE_INT bitsize, bitpos, bytepos;
8756 enum machine_mode mode;
8757 int volatilep;
8759 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8760 &unsignedp, &volatilep);
8762 if (obj == loc)
8763 return 0;
8765 ret = loc_descriptor_from_tree (obj, 1);
8766 if (ret == 0
8767 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8768 return 0;
8770 if (offset != NULL_TREE)
8772 /* Variable offset. */
8773 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8774 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8777 if (!addressp)
8778 indirect_p = 1;
8780 bytepos = bitpos / BITS_PER_UNIT;
8781 if (bytepos > 0)
8782 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8783 else if (bytepos < 0)
8785 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8786 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8788 break;
8791 case INTEGER_CST:
8792 if (host_integerp (loc, 0))
8793 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8794 else
8795 return 0;
8796 break;
8798 case TRUTH_AND_EXPR:
8799 case TRUTH_ANDIF_EXPR:
8800 case BIT_AND_EXPR:
8801 op = DW_OP_and;
8802 goto do_binop;
8804 case TRUTH_XOR_EXPR:
8805 case BIT_XOR_EXPR:
8806 op = DW_OP_xor;
8807 goto do_binop;
8809 case TRUTH_OR_EXPR:
8810 case TRUTH_ORIF_EXPR:
8811 case BIT_IOR_EXPR:
8812 op = DW_OP_or;
8813 goto do_binop;
8815 case TRUNC_DIV_EXPR:
8816 op = DW_OP_div;
8817 goto do_binop;
8819 case MINUS_EXPR:
8820 op = DW_OP_minus;
8821 goto do_binop;
8823 case TRUNC_MOD_EXPR:
8824 op = DW_OP_mod;
8825 goto do_binop;
8827 case MULT_EXPR:
8828 op = DW_OP_mul;
8829 goto do_binop;
8831 case LSHIFT_EXPR:
8832 op = DW_OP_shl;
8833 goto do_binop;
8835 case RSHIFT_EXPR:
8836 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8837 goto do_binop;
8839 case PLUS_EXPR:
8840 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8841 && host_integerp (TREE_OPERAND (loc, 1), 0))
8843 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8844 if (ret == 0)
8845 return 0;
8847 add_loc_descr (&ret,
8848 new_loc_descr (DW_OP_plus_uconst,
8849 tree_low_cst (TREE_OPERAND (loc, 1),
8851 0));
8852 break;
8855 op = DW_OP_plus;
8856 goto do_binop;
8858 case LE_EXPR:
8859 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8860 return 0;
8862 op = DW_OP_le;
8863 goto do_binop;
8865 case GE_EXPR:
8866 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8867 return 0;
8869 op = DW_OP_ge;
8870 goto do_binop;
8872 case LT_EXPR:
8873 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8874 return 0;
8876 op = DW_OP_lt;
8877 goto do_binop;
8879 case GT_EXPR:
8880 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8881 return 0;
8883 op = DW_OP_gt;
8884 goto do_binop;
8886 case EQ_EXPR:
8887 op = DW_OP_eq;
8888 goto do_binop;
8890 case NE_EXPR:
8891 op = DW_OP_ne;
8892 goto do_binop;
8894 do_binop:
8895 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8896 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8897 if (ret == 0 || ret1 == 0)
8898 return 0;
8900 add_loc_descr (&ret, ret1);
8901 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8902 break;
8904 case TRUTH_NOT_EXPR:
8905 case BIT_NOT_EXPR:
8906 op = DW_OP_not;
8907 goto do_unop;
8909 case ABS_EXPR:
8910 op = DW_OP_abs;
8911 goto do_unop;
8913 case NEGATE_EXPR:
8914 op = DW_OP_neg;
8915 goto do_unop;
8917 do_unop:
8918 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8919 if (ret == 0)
8920 return 0;
8922 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8923 break;
8925 case MAX_EXPR:
8926 loc = build (COND_EXPR, TREE_TYPE (loc),
8927 build (LT_EXPR, integer_type_node,
8928 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8929 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8931 /* ... fall through ... */
8933 case COND_EXPR:
8935 dw_loc_descr_ref lhs
8936 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8937 dw_loc_descr_ref rhs
8938 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8939 dw_loc_descr_ref bra_node, jump_node, tmp;
8941 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8942 if (ret == 0 || lhs == 0 || rhs == 0)
8943 return 0;
8945 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8946 add_loc_descr (&ret, bra_node);
8948 add_loc_descr (&ret, rhs);
8949 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8950 add_loc_descr (&ret, jump_node);
8952 add_loc_descr (&ret, lhs);
8953 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8954 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8956 /* ??? Need a node to point the skip at. Use a nop. */
8957 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8958 add_loc_descr (&ret, tmp);
8959 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8960 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8962 break;
8964 default:
8965 abort ();
8968 /* Show if we can't fill the request for an address. */
8969 if (addressp && indirect_p == 0)
8970 return 0;
8972 /* If we've got an address and don't want one, dereference. */
8973 if (!addressp && indirect_p > 0)
8975 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8977 if (size > DWARF2_ADDR_SIZE || size == -1)
8978 return 0;
8979 else if (size == DWARF2_ADDR_SIZE)
8980 op = DW_OP_deref;
8981 else
8982 op = DW_OP_deref_size;
8984 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8987 return ret;
8990 /* Given a value, round it up to the lowest multiple of `boundary'
8991 which is not less than the value itself. */
8993 static inline HOST_WIDE_INT
8994 ceiling (value, boundary)
8995 HOST_WIDE_INT value;
8996 unsigned int boundary;
8998 return (((value + boundary - 1) / boundary) * boundary);
9001 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9002 pointer to the declared type for the relevant field variable, or return
9003 `integer_type_node' if the given node turns out to be an
9004 ERROR_MARK node. */
9006 static inline tree
9007 field_type (decl)
9008 tree decl;
9010 tree type;
9012 if (TREE_CODE (decl) == ERROR_MARK)
9013 return integer_type_node;
9015 type = DECL_BIT_FIELD_TYPE (decl);
9016 if (type == NULL_TREE)
9017 type = TREE_TYPE (decl);
9019 return type;
9022 /* Given a pointer to a tree node, return the alignment in bits for
9023 it, or else return BITS_PER_WORD if the node actually turns out to
9024 be an ERROR_MARK node. */
9026 static inline unsigned
9027 simple_type_align_in_bits (type)
9028 tree type;
9030 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9033 static inline unsigned
9034 simple_decl_align_in_bits (decl)
9035 tree decl;
9037 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9040 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9041 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9042 or return 0 if we are unable to determine what that offset is, either
9043 because the argument turns out to be a pointer to an ERROR_MARK node, or
9044 because the offset is actually variable. (We can't handle the latter case
9045 just yet). */
9047 static HOST_WIDE_INT
9048 field_byte_offset (decl)
9049 tree decl;
9051 unsigned int type_align_in_bits;
9052 unsigned int decl_align_in_bits;
9053 unsigned HOST_WIDE_INT type_size_in_bits;
9054 HOST_WIDE_INT object_offset_in_bits;
9055 tree type;
9056 tree field_size_tree;
9057 HOST_WIDE_INT bitpos_int;
9058 HOST_WIDE_INT deepest_bitpos;
9059 unsigned HOST_WIDE_INT field_size_in_bits;
9061 if (TREE_CODE (decl) == ERROR_MARK)
9062 return 0;
9063 else if (TREE_CODE (decl) != FIELD_DECL)
9064 abort ();
9066 type = field_type (decl);
9067 field_size_tree = DECL_SIZE (decl);
9069 /* The size could be unspecified if there was an error, or for
9070 a flexible array member. */
9071 if (! field_size_tree)
9072 field_size_tree = bitsize_zero_node;
9074 /* We cannot yet cope with fields whose positions are variable, so
9075 for now, when we see such things, we simply return 0. Someday, we may
9076 be able to handle such cases, but it will be damn difficult. */
9077 if (! host_integerp (bit_position (decl), 0))
9078 return 0;
9080 bitpos_int = int_bit_position (decl);
9082 /* If we don't know the size of the field, pretend it's a full word. */
9083 if (host_integerp (field_size_tree, 1))
9084 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9085 else
9086 field_size_in_bits = BITS_PER_WORD;
9088 type_size_in_bits = simple_type_size_in_bits (type);
9089 type_align_in_bits = simple_type_align_in_bits (type);
9090 decl_align_in_bits = simple_decl_align_in_bits (decl);
9092 /* The GCC front-end doesn't make any attempt to keep track of the starting
9093 bit offset (relative to the start of the containing structure type) of the
9094 hypothetical "containing object" for a bit-field. Thus, when computing
9095 the byte offset value for the start of the "containing object" of a
9096 bit-field, we must deduce this information on our own. This can be rather
9097 tricky to do in some cases. For example, handling the following structure
9098 type definition when compiling for an i386/i486 target (which only aligns
9099 long long's to 32-bit boundaries) can be very tricky:
9101 struct S { int field1; long long field2:31; };
9103 Fortunately, there is a simple rule-of-thumb which can be used in such
9104 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9105 structure shown above. It decides to do this based upon one simple rule
9106 for bit-field allocation. GCC allocates each "containing object" for each
9107 bit-field at the first (i.e. lowest addressed) legitimate alignment
9108 boundary (based upon the required minimum alignment for the declared type
9109 of the field) which it can possibly use, subject to the condition that
9110 there is still enough available space remaining in the containing object
9111 (when allocated at the selected point) to fully accommodate all of the
9112 bits of the bit-field itself.
9114 This simple rule makes it obvious why GCC allocates 8 bytes for each
9115 object of the structure type shown above. When looking for a place to
9116 allocate the "containing object" for `field2', the compiler simply tries
9117 to allocate a 64-bit "containing object" at each successive 32-bit
9118 boundary (starting at zero) until it finds a place to allocate that 64-
9119 bit field such that at least 31 contiguous (and previously unallocated)
9120 bits remain within that selected 64 bit field. (As it turns out, for the
9121 example above, the compiler finds it is OK to allocate the "containing
9122 object" 64-bit field at bit-offset zero within the structure type.)
9124 Here we attempt to work backwards from the limited set of facts we're
9125 given, and we try to deduce from those facts, where GCC must have believed
9126 that the containing object started (within the structure type). The value
9127 we deduce is then used (by the callers of this routine) to generate
9128 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9129 and, in the case of DW_AT_location, regular fields as well). */
9131 /* Figure out the bit-distance from the start of the structure to the
9132 "deepest" bit of the bit-field. */
9133 deepest_bitpos = bitpos_int + field_size_in_bits;
9135 /* This is the tricky part. Use some fancy footwork to deduce where the
9136 lowest addressed bit of the containing object must be. */
9137 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9139 /* Round up to type_align by default. This works best for bitfields. */
9140 object_offset_in_bits += type_align_in_bits - 1;
9141 object_offset_in_bits /= type_align_in_bits;
9142 object_offset_in_bits *= type_align_in_bits;
9144 if (object_offset_in_bits > bitpos_int)
9146 /* Sigh, the decl must be packed. */
9147 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9149 /* Round up to decl_align instead. */
9150 object_offset_in_bits += decl_align_in_bits - 1;
9151 object_offset_in_bits /= decl_align_in_bits;
9152 object_offset_in_bits *= decl_align_in_bits;
9155 return object_offset_in_bits / BITS_PER_UNIT;
9158 /* The following routines define various Dwarf attributes and any data
9159 associated with them. */
9161 /* Add a location description attribute value to a DIE.
9163 This emits location attributes suitable for whole variables and
9164 whole parameters. Note that the location attributes for struct fields are
9165 generated by the routine `data_member_location_attribute' below. */
9167 static inline void
9168 add_AT_location_description (die, attr_kind, descr)
9169 dw_die_ref die;
9170 enum dwarf_attribute attr_kind;
9171 dw_loc_descr_ref descr;
9173 if (descr != 0)
9174 add_AT_loc (die, attr_kind, descr);
9177 /* Attach the specialized form of location attribute used for data members of
9178 struct and union types. In the special case of a FIELD_DECL node which
9179 represents a bit-field, the "offset" part of this special location
9180 descriptor must indicate the distance in bytes from the lowest-addressed
9181 byte of the containing struct or union type to the lowest-addressed byte of
9182 the "containing object" for the bit-field. (See the `field_byte_offset'
9183 function above).
9185 For any given bit-field, the "containing object" is a hypothetical object
9186 (of some integral or enum type) within which the given bit-field lives. The
9187 type of this hypothetical "containing object" is always the same as the
9188 declared type of the individual bit-field itself (for GCC anyway... the
9189 DWARF spec doesn't actually mandate this). Note that it is the size (in
9190 bytes) of the hypothetical "containing object" which will be given in the
9191 DW_AT_byte_size attribute for this bit-field. (See the
9192 `byte_size_attribute' function below.) It is also used when calculating the
9193 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9194 function below.) */
9196 static void
9197 add_data_member_location_attribute (die, decl)
9198 dw_die_ref die;
9199 tree decl;
9201 long offset;
9202 dw_loc_descr_ref loc_descr = 0;
9204 if (TREE_CODE (decl) == TREE_VEC)
9206 /* We're working on the TAG_inheritance for a base class. */
9207 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9209 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9210 aren't at a fixed offset from all (sub)objects of the same
9211 type. We need to extract the appropriate offset from our
9212 vtable. The following dwarf expression means
9214 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9216 This is specific to the V3 ABI, of course. */
9218 dw_loc_descr_ref tmp;
9220 /* Make a copy of the object address. */
9221 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9222 add_loc_descr (&loc_descr, tmp);
9224 /* Extract the vtable address. */
9225 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9226 add_loc_descr (&loc_descr, tmp);
9228 /* Calculate the address of the offset. */
9229 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9230 if (offset >= 0)
9231 abort ();
9233 tmp = int_loc_descriptor (-offset);
9234 add_loc_descr (&loc_descr, tmp);
9235 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9236 add_loc_descr (&loc_descr, tmp);
9238 /* Extract the offset. */
9239 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9240 add_loc_descr (&loc_descr, tmp);
9242 /* Add it to the object address. */
9243 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9244 add_loc_descr (&loc_descr, tmp);
9246 else
9247 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9249 else
9250 offset = field_byte_offset (decl);
9252 if (! loc_descr)
9254 enum dwarf_location_atom op;
9256 /* The DWARF2 standard says that we should assume that the structure
9257 address is already on the stack, so we can specify a structure field
9258 address by using DW_OP_plus_uconst. */
9260 #ifdef MIPS_DEBUGGING_INFO
9261 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9262 operator correctly. It works only if we leave the offset on the
9263 stack. */
9264 op = DW_OP_constu;
9265 #else
9266 op = DW_OP_plus_uconst;
9267 #endif
9269 loc_descr = new_loc_descr (op, offset, 0);
9272 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9275 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
9276 does not have a "location" either in memory or in a register. These
9277 things can arise in GNU C when a constant is passed as an actual parameter
9278 to an inlined function. They can also arise in C++ where declared
9279 constants do not necessarily get memory "homes". */
9281 static void
9282 add_const_value_attribute (die, rtl)
9283 dw_die_ref die;
9284 rtx rtl;
9286 switch (GET_CODE (rtl))
9288 case CONST_INT:
9289 /* Note that a CONST_INT rtx could represent either an integer
9290 or a floating-point constant. A CONST_INT is used whenever
9291 the constant will fit into a single word. In all such
9292 cases, the original mode of the constant value is wiped
9293 out, and the CONST_INT rtx is assigned VOIDmode. */
9295 HOST_WIDE_INT val = INTVAL (rtl);
9297 /* ??? We really should be using HOST_WIDE_INT throughout. */
9298 if (val < 0 && (long) val == val)
9299 add_AT_int (die, DW_AT_const_value, (long) val);
9300 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
9301 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
9302 else
9304 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9305 add_AT_long_long (die, DW_AT_const_value,
9306 val >> HOST_BITS_PER_LONG, val);
9307 #else
9308 abort ();
9309 #endif
9312 break;
9314 case CONST_DOUBLE:
9315 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9316 floating-point constant. A CONST_DOUBLE is used whenever the
9317 constant requires more than one word in order to be adequately
9318 represented. We output CONST_DOUBLEs as blocks. */
9320 enum machine_mode mode = GET_MODE (rtl);
9322 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9324 unsigned length = GET_MODE_SIZE (mode) / 4;
9325 long *array = (long *) ggc_alloc (sizeof (long) * length);
9326 REAL_VALUE_TYPE rv;
9328 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9329 switch (mode)
9331 case SFmode:
9332 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
9333 break;
9335 case DFmode:
9336 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
9337 break;
9339 case XFmode:
9340 case TFmode:
9341 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
9342 break;
9344 default:
9345 abort ();
9348 add_AT_float (die, DW_AT_const_value, length, array);
9350 else
9352 /* ??? We really should be using HOST_WIDE_INT throughout. */
9353 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9354 abort ();
9356 add_AT_long_long (die, DW_AT_const_value,
9357 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9360 break;
9362 case CONST_STRING:
9363 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9364 break;
9366 case SYMBOL_REF:
9367 case LABEL_REF:
9368 case CONST:
9369 add_AT_addr (die, DW_AT_const_value, rtl);
9370 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9371 break;
9373 case PLUS:
9374 /* In cases where an inlined instance of an inline function is passed
9375 the address of an `auto' variable (which is local to the caller) we
9376 can get a situation where the DECL_RTL of the artificial local
9377 variable (for the inlining) which acts as a stand-in for the
9378 corresponding formal parameter (of the inline function) will look
9379 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9380 exactly a compile-time constant expression, but it isn't the address
9381 of the (artificial) local variable either. Rather, it represents the
9382 *value* which the artificial local variable always has during its
9383 lifetime. We currently have no way to represent such quasi-constant
9384 values in Dwarf, so for now we just punt and generate nothing. */
9385 break;
9387 default:
9388 /* No other kinds of rtx should be possible here. */
9389 abort ();
9394 static rtx
9395 rtl_for_decl_location (decl)
9396 tree decl;
9398 rtx rtl;
9400 /* Here we have to decide where we are going to say the parameter "lives"
9401 (as far as the debugger is concerned). We only have a couple of
9402 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9404 DECL_RTL normally indicates where the parameter lives during most of the
9405 activation of the function. If optimization is enabled however, this
9406 could be either NULL or else a pseudo-reg. Both of those cases indicate
9407 that the parameter doesn't really live anywhere (as far as the code
9408 generation parts of GCC are concerned) during most of the function's
9409 activation. That will happen (for example) if the parameter is never
9410 referenced within the function.
9412 We could just generate a location descriptor here for all non-NULL
9413 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9414 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9415 where DECL_RTL is NULL or is a pseudo-reg.
9417 Note however that we can only get away with using DECL_INCOMING_RTL as
9418 a backup substitute for DECL_RTL in certain limited cases. In cases
9419 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9420 we can be sure that the parameter was passed using the same type as it is
9421 declared to have within the function, and that its DECL_INCOMING_RTL
9422 points us to a place where a value of that type is passed.
9424 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9425 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9426 because in these cases DECL_INCOMING_RTL points us to a value of some
9427 type which is *different* from the type of the parameter itself. Thus,
9428 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9429 such cases, the debugger would end up (for example) trying to fetch a
9430 `float' from a place which actually contains the first part of a
9431 `double'. That would lead to really incorrect and confusing
9432 output at debug-time.
9434 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9435 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9436 are a couple of exceptions however. On little-endian machines we can
9437 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9438 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9439 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9440 when (on a little-endian machine) a non-prototyped function has a
9441 parameter declared to be of type `short' or `char'. In such cases,
9442 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9443 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9444 passed `int' value. If the debugger then uses that address to fetch
9445 a `short' or a `char' (on a little-endian machine) the result will be
9446 the correct data, so we allow for such exceptional cases below.
9448 Note that our goal here is to describe the place where the given formal
9449 parameter lives during most of the function's activation (i.e. between the
9450 end of the prologue and the start of the epilogue). We'll do that as best
9451 as we can. Note however that if the given formal parameter is modified
9452 sometime during the execution of the function, then a stack backtrace (at
9453 debug-time) will show the function as having been called with the *new*
9454 value rather than the value which was originally passed in. This happens
9455 rarely enough that it is not a major problem, but it *is* a problem, and
9456 I'd like to fix it.
9458 A future version of dwarf2out.c may generate two additional attributes for
9459 any given DW_TAG_formal_parameter DIE which will describe the "passed
9460 type" and the "passed location" for the given formal parameter in addition
9461 to the attributes we now generate to indicate the "declared type" and the
9462 "active location" for each parameter. This additional set of attributes
9463 could be used by debuggers for stack backtraces. Separately, note that
9464 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9465 This happens (for example) for inlined-instances of inline function formal
9466 parameters which are never referenced. This really shouldn't be
9467 happening. All PARM_DECL nodes should get valid non-NULL
9468 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9469 values for inlined instances of inline function parameters, so when we see
9470 such cases, we are just out-of-luck for the time being (until integrate.c
9471 gets fixed). */
9473 /* Use DECL_RTL as the "location" unless we find something better. */
9474 rtl = DECL_RTL_IF_SET (decl);
9476 /* When generating abstract instances, ignore everything except
9477 constants, symbols living in memory, and symbols living in
9478 fixed registers. */
9479 if (! reload_completed)
9481 if (rtl
9482 && (CONSTANT_P (rtl)
9483 || (GET_CODE (rtl) == MEM
9484 && CONSTANT_P (XEXP (rtl, 0)))
9485 || (GET_CODE (rtl) == REG
9486 && TREE_CODE (decl) == VAR_DECL
9487 && TREE_STATIC (decl))))
9489 rtl = (*targetm.delegitimize_address) (rtl);
9490 return rtl;
9492 rtl = NULL_RTX;
9494 else if (TREE_CODE (decl) == PARM_DECL)
9496 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9498 tree declared_type = type_main_variant (TREE_TYPE (decl));
9499 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9501 /* This decl represents a formal parameter which was optimized out.
9502 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9503 all cases where (rtl == NULL_RTX) just below. */
9504 if (declared_type == passed_type)
9505 rtl = DECL_INCOMING_RTL (decl);
9506 else if (! BYTES_BIG_ENDIAN
9507 && TREE_CODE (declared_type) == INTEGER_TYPE
9508 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9509 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9510 rtl = DECL_INCOMING_RTL (decl);
9513 /* If the parm was passed in registers, but lives on the stack, then
9514 make a big endian correction if the mode of the type of the
9515 parameter is not the same as the mode of the rtl. */
9516 /* ??? This is the same series of checks that are made in dbxout.c before
9517 we reach the big endian correction code there. It isn't clear if all
9518 of these checks are necessary here, but keeping them all is the safe
9519 thing to do. */
9520 else if (GET_CODE (rtl) == MEM
9521 && XEXP (rtl, 0) != const0_rtx
9522 && ! CONSTANT_P (XEXP (rtl, 0))
9523 /* Not passed in memory. */
9524 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9525 /* Not passed by invisible reference. */
9526 && (GET_CODE (XEXP (rtl, 0)) != REG
9527 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9528 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9529 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9530 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9531 #endif
9533 /* Big endian correction check. */
9534 && BYTES_BIG_ENDIAN
9535 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9536 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9537 < UNITS_PER_WORD))
9539 int offset = (UNITS_PER_WORD
9540 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9542 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9543 plus_constant (XEXP (rtl, 0), offset));
9547 if (rtl != NULL_RTX)
9549 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9550 #ifdef LEAF_REG_REMAP
9551 if (current_function_uses_only_leaf_regs)
9552 leaf_renumber_regs_insn (rtl);
9553 #endif
9556 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9557 and will have been substituted directly into all expressions that use it.
9558 C does not have such a concept, but C++ and other languages do. */
9559 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9561 /* If a variable is initialized with a string constant without embedded
9562 zeros, build CONST_STRING. */
9563 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9564 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9566 tree arrtype = TREE_TYPE (decl);
9567 tree enttype = TREE_TYPE (arrtype);
9568 tree domain = TYPE_DOMAIN (arrtype);
9569 tree init = DECL_INITIAL (decl);
9570 enum machine_mode mode = TYPE_MODE (enttype);
9572 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9573 && domain
9574 && integer_zerop (TYPE_MIN_VALUE (domain))
9575 && compare_tree_int (TYPE_MAX_VALUE (domain),
9576 TREE_STRING_LENGTH (init) - 1) == 0
9577 && ((size_t) TREE_STRING_LENGTH (init)
9578 == strlen (TREE_STRING_POINTER (init)) + 1))
9579 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9581 /* If the initializer is something that we know will expand into an
9582 immediate RTL constant, expand it now. Expanding anything else
9583 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9584 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9585 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9587 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9588 EXPAND_INITIALIZER);
9589 /* If expand_expr returns a MEM, it wasn't immediate. */
9590 if (rtl && GET_CODE (rtl) == MEM)
9591 abort ();
9595 if (rtl)
9596 rtl = (*targetm.delegitimize_address) (rtl);
9598 /* If we don't look past the constant pool, we risk emitting a
9599 reference to a constant pool entry that isn't referenced from
9600 code, and thus is not emitted. */
9601 if (rtl)
9602 rtl = avoid_constant_pool_reference (rtl);
9604 return rtl;
9607 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
9608 data attribute for a variable or a parameter. We generate the
9609 DW_AT_const_value attribute only in those cases where the given variable
9610 or parameter does not have a true "location" either in memory or in a
9611 register. This can happen (for example) when a constant is passed as an
9612 actual argument in a call to an inline function. (It's possible that
9613 these things can crop up in other ways also.) Note that one type of
9614 constant value which can be passed into an inlined function is a constant
9615 pointer. This can happen for example if an actual argument in an inlined
9616 function call evaluates to a compile-time constant address. */
9618 static void
9619 add_location_or_const_value_attribute (die, decl)
9620 dw_die_ref die;
9621 tree decl;
9623 rtx rtl;
9624 dw_loc_descr_ref descr;
9626 if (TREE_CODE (decl) == ERROR_MARK)
9627 return;
9628 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9629 abort ();
9631 rtl = rtl_for_decl_location (decl);
9632 if (rtl == NULL_RTX)
9633 return;
9635 switch (GET_CODE (rtl))
9637 case ADDRESSOF:
9638 /* The address of a variable that was optimized away;
9639 don't emit anything. */
9640 break;
9642 case CONST_INT:
9643 case CONST_DOUBLE:
9644 case CONST_STRING:
9645 case SYMBOL_REF:
9646 case LABEL_REF:
9647 case CONST:
9648 case PLUS:
9649 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9650 add_const_value_attribute (die, rtl);
9651 break;
9653 case MEM:
9654 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9656 /* Need loc_descriptor_from_tree since that's where we know
9657 how to handle TLS variables. Want the object's address
9658 since the top-level DW_AT_location assumes such. See
9659 the confusion in loc_descriptor for reference. */
9660 descr = loc_descriptor_from_tree (decl, 1);
9662 else
9664 case REG:
9665 case SUBREG:
9666 case CONCAT:
9667 descr = loc_descriptor (rtl);
9669 add_AT_location_description (die, DW_AT_location, descr);
9670 break;
9672 default:
9673 abort ();
9677 /* If we don't have a copy of this variable in memory for some reason (such
9678 as a C++ member constant that doesn't have an out-of-line definition),
9679 we should tell the debugger about the constant value. */
9681 static void
9682 tree_add_const_value_attribute (var_die, decl)
9683 dw_die_ref var_die;
9684 tree decl;
9686 tree init = DECL_INITIAL (decl);
9687 tree type = TREE_TYPE (decl);
9689 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9690 && initializer_constant_valid_p (init, type) == null_pointer_node)
9691 /* OK */;
9692 else
9693 return;
9695 switch (TREE_CODE (type))
9697 case INTEGER_TYPE:
9698 if (host_integerp (init, 0))
9699 add_AT_unsigned (var_die, DW_AT_const_value,
9700 tree_low_cst (init, 0));
9701 else
9702 add_AT_long_long (var_die, DW_AT_const_value,
9703 TREE_INT_CST_HIGH (init),
9704 TREE_INT_CST_LOW (init));
9705 break;
9707 default:;
9711 /* Generate an DW_AT_name attribute given some string value to be included as
9712 the value of the attribute. */
9714 static void
9715 add_name_attribute (die, name_string)
9716 dw_die_ref die;
9717 const char *name_string;
9719 if (name_string != NULL && *name_string != 0)
9721 if (demangle_name_func)
9722 name_string = (*demangle_name_func) (name_string);
9724 add_AT_string (die, DW_AT_name, name_string);
9728 /* Generate an DW_AT_comp_dir attribute for DIE. */
9730 static void
9731 add_comp_dir_attribute (die)
9732 dw_die_ref die;
9734 const char *wd = getpwd ();
9735 if (wd != NULL)
9736 add_AT_string (die, DW_AT_comp_dir, wd);
9739 /* Given a tree node describing an array bound (either lower or upper) output
9740 a representation for that bound. */
9742 static void
9743 add_bound_info (subrange_die, bound_attr, bound)
9744 dw_die_ref subrange_die;
9745 enum dwarf_attribute bound_attr;
9746 tree bound;
9748 switch (TREE_CODE (bound))
9750 case ERROR_MARK:
9751 return;
9753 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9754 case INTEGER_CST:
9755 if (! host_integerp (bound, 0)
9756 || (bound_attr == DW_AT_lower_bound
9757 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9758 || (is_fortran () && integer_onep (bound)))))
9759 /* use the default */
9761 else
9762 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9763 break;
9765 case CONVERT_EXPR:
9766 case NOP_EXPR:
9767 case NON_LVALUE_EXPR:
9768 case VIEW_CONVERT_EXPR:
9769 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9770 break;
9772 case SAVE_EXPR:
9773 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9774 access the upper bound values may be bogus. If they refer to a
9775 register, they may only describe how to get at these values at the
9776 points in the generated code right after they have just been
9777 computed. Worse yet, in the typical case, the upper bound values
9778 will not even *be* computed in the optimized code (though the
9779 number of elements will), so these SAVE_EXPRs are entirely
9780 bogus. In order to compensate for this fact, we check here to see
9781 if optimization is enabled, and if so, we don't add an attribute
9782 for the (unknown and unknowable) upper bound. This should not
9783 cause too much trouble for existing (stupid?) debuggers because
9784 they have to deal with empty upper bounds location descriptions
9785 anyway in order to be able to deal with incomplete array types.
9786 Of course an intelligent debugger (GDB?) should be able to
9787 comprehend that a missing upper bound specification in an array
9788 type used for a storage class `auto' local array variable
9789 indicates that the upper bound is both unknown (at compile- time)
9790 and unknowable (at run-time) due to optimization.
9792 We assume that a MEM rtx is safe because gcc wouldn't put the
9793 value there unless it was going to be used repeatedly in the
9794 function, i.e. for cleanups. */
9795 if (SAVE_EXPR_RTL (bound)
9796 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9798 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9799 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9800 rtx loc = SAVE_EXPR_RTL (bound);
9802 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9803 it references an outer function's frame. */
9804 if (GET_CODE (loc) == MEM)
9806 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9808 if (XEXP (loc, 0) != new_addr)
9809 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9812 add_AT_flag (decl_die, DW_AT_artificial, 1);
9813 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9814 add_AT_location_description (decl_die, DW_AT_location,
9815 loc_descriptor (loc));
9816 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9819 /* Else leave out the attribute. */
9820 break;
9822 case VAR_DECL:
9823 case PARM_DECL:
9825 dw_die_ref decl_die = lookup_decl_die (bound);
9827 /* ??? Can this happen, or should the variable have been bound
9828 first? Probably it can, since I imagine that we try to create
9829 the types of parameters in the order in which they exist in
9830 the list, and won't have created a forward reference to a
9831 later parameter. */
9832 if (decl_die != NULL)
9833 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9834 break;
9837 default:
9839 /* Otherwise try to create a stack operation procedure to
9840 evaluate the value of the array bound. */
9842 dw_die_ref ctx, decl_die;
9843 dw_loc_descr_ref loc;
9845 loc = loc_descriptor_from_tree (bound, 0);
9846 if (loc == NULL)
9847 break;
9849 if (current_function_decl == 0)
9850 ctx = comp_unit_die;
9851 else
9852 ctx = lookup_decl_die (current_function_decl);
9854 /* If we weren't able to find a context, it's most likely the case
9855 that we are processing the return type of the function. So
9856 make a SAVE_EXPR to point to it and have the limbo DIE code
9857 find the proper die. The save_expr function doesn't always
9858 make a SAVE_EXPR, so do it ourselves. */
9859 if (ctx == 0)
9860 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9861 current_function_decl, NULL_TREE);
9863 decl_die = new_die (DW_TAG_variable, ctx, bound);
9864 add_AT_flag (decl_die, DW_AT_artificial, 1);
9865 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9866 add_AT_loc (decl_die, DW_AT_location, loc);
9868 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9869 break;
9874 /* Note that the block of subscript information for an array type also
9875 includes information about the element type of type given array type. */
9877 static void
9878 add_subscript_info (type_die, type)
9879 dw_die_ref type_die;
9880 tree type;
9882 #ifndef MIPS_DEBUGGING_INFO
9883 unsigned dimension_number;
9884 #endif
9885 tree lower, upper;
9886 dw_die_ref subrange_die;
9888 /* The GNU compilers represent multidimensional array types as sequences of
9889 one dimensional array types whose element types are themselves array
9890 types. Here we squish that down, so that each multidimensional array
9891 type gets only one array_type DIE in the Dwarf debugging info. The draft
9892 Dwarf specification say that we are allowed to do this kind of
9893 compression in C (because there is no difference between an array or
9894 arrays and a multidimensional array in C) but for other source languages
9895 (e.g. Ada) we probably shouldn't do this. */
9897 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9898 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9899 We work around this by disabling this feature. See also
9900 gen_array_type_die. */
9901 #ifndef MIPS_DEBUGGING_INFO
9902 for (dimension_number = 0;
9903 TREE_CODE (type) == ARRAY_TYPE;
9904 type = TREE_TYPE (type), dimension_number++)
9905 #endif
9907 tree domain = TYPE_DOMAIN (type);
9909 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9910 and (in GNU C only) variable bounds. Handle all three forms
9911 here. */
9912 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9913 if (domain)
9915 /* We have an array type with specified bounds. */
9916 lower = TYPE_MIN_VALUE (domain);
9917 upper = TYPE_MAX_VALUE (domain);
9919 /* define the index type. */
9920 if (TREE_TYPE (domain))
9922 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9923 TREE_TYPE field. We can't emit debug info for this
9924 because it is an unnamed integral type. */
9925 if (TREE_CODE (domain) == INTEGER_TYPE
9926 && TYPE_NAME (domain) == NULL_TREE
9927 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9928 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9930 else
9931 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9932 type_die);
9935 /* ??? If upper is NULL, the array has unspecified length,
9936 but it does have a lower bound. This happens with Fortran
9937 dimension arr(N:*)
9938 Since the debugger is definitely going to need to know N
9939 to produce useful results, go ahead and output the lower
9940 bound solo, and hope the debugger can cope. */
9942 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9943 if (upper)
9944 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9947 /* Otherwise we have an array type with an unspecified length. The
9948 DWARF-2 spec does not say how to handle this; let's just leave out the
9949 bounds. */
9953 static void
9954 add_byte_size_attribute (die, tree_node)
9955 dw_die_ref die;
9956 tree tree_node;
9958 unsigned size;
9960 switch (TREE_CODE (tree_node))
9962 case ERROR_MARK:
9963 size = 0;
9964 break;
9965 case ENUMERAL_TYPE:
9966 case RECORD_TYPE:
9967 case UNION_TYPE:
9968 case QUAL_UNION_TYPE:
9969 size = int_size_in_bytes (tree_node);
9970 break;
9971 case FIELD_DECL:
9972 /* For a data member of a struct or union, the DW_AT_byte_size is
9973 generally given as the number of bytes normally allocated for an
9974 object of the *declared* type of the member itself. This is true
9975 even for bit-fields. */
9976 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9977 break;
9978 default:
9979 abort ();
9982 /* Note that `size' might be -1 when we get to this point. If it is, that
9983 indicates that the byte size of the entity in question is variable. We
9984 have no good way of expressing this fact in Dwarf at the present time,
9985 so just let the -1 pass on through. */
9986 add_AT_unsigned (die, DW_AT_byte_size, size);
9989 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9990 which specifies the distance in bits from the highest order bit of the
9991 "containing object" for the bit-field to the highest order bit of the
9992 bit-field itself.
9994 For any given bit-field, the "containing object" is a hypothetical object
9995 (of some integral or enum type) within which the given bit-field lives. The
9996 type of this hypothetical "containing object" is always the same as the
9997 declared type of the individual bit-field itself. The determination of the
9998 exact location of the "containing object" for a bit-field is rather
9999 complicated. It's handled by the `field_byte_offset' function (above).
10001 Note that it is the size (in bytes) of the hypothetical "containing object"
10002 which will be given in the DW_AT_byte_size attribute for this bit-field.
10003 (See `byte_size_attribute' above). */
10005 static inline void
10006 add_bit_offset_attribute (die, decl)
10007 dw_die_ref die;
10008 tree decl;
10010 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10011 tree type = DECL_BIT_FIELD_TYPE (decl);
10012 HOST_WIDE_INT bitpos_int;
10013 HOST_WIDE_INT highest_order_object_bit_offset;
10014 HOST_WIDE_INT highest_order_field_bit_offset;
10015 HOST_WIDE_INT unsigned bit_offset;
10017 /* Must be a field and a bit field. */
10018 if (!type
10019 || TREE_CODE (decl) != FIELD_DECL)
10020 abort ();
10022 /* We can't yet handle bit-fields whose offsets are variable, so if we
10023 encounter such things, just return without generating any attribute
10024 whatsoever. Likewise for variable or too large size. */
10025 if (! host_integerp (bit_position (decl), 0)
10026 || ! host_integerp (DECL_SIZE (decl), 1))
10027 return;
10029 bitpos_int = int_bit_position (decl);
10031 /* Note that the bit offset is always the distance (in bits) from the
10032 highest-order bit of the "containing object" to the highest-order bit of
10033 the bit-field itself. Since the "high-order end" of any object or field
10034 is different on big-endian and little-endian machines, the computation
10035 below must take account of these differences. */
10036 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10037 highest_order_field_bit_offset = bitpos_int;
10039 if (! BYTES_BIG_ENDIAN)
10041 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10042 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10045 bit_offset
10046 = (! BYTES_BIG_ENDIAN
10047 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10048 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10050 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10053 /* For a FIELD_DECL node which represents a bit field, output an attribute
10054 which specifies the length in bits of the given field. */
10056 static inline void
10057 add_bit_size_attribute (die, decl)
10058 dw_die_ref die;
10059 tree decl;
10061 /* Must be a field and a bit field. */
10062 if (TREE_CODE (decl) != FIELD_DECL
10063 || ! DECL_BIT_FIELD_TYPE (decl))
10064 abort ();
10066 if (host_integerp (DECL_SIZE (decl), 1))
10067 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10070 /* If the compiled language is ANSI C, then add a 'prototyped'
10071 attribute, if arg types are given for the parameters of a function. */
10073 static inline void
10074 add_prototyped_attribute (die, func_type)
10075 dw_die_ref die;
10076 tree func_type;
10078 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10079 && TYPE_ARG_TYPES (func_type) != NULL)
10080 add_AT_flag (die, DW_AT_prototyped, 1);
10083 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10084 by looking in either the type declaration or object declaration
10085 equate table. */
10087 static inline void
10088 add_abstract_origin_attribute (die, origin)
10089 dw_die_ref die;
10090 tree origin;
10092 dw_die_ref origin_die = NULL;
10094 if (TREE_CODE (origin) != FUNCTION_DECL)
10096 /* We may have gotten separated from the block for the inlined
10097 function, if we're in an exception handler or some such; make
10098 sure that the abstract function has been written out.
10100 Doing this for nested functions is wrong, however; functions are
10101 distinct units, and our context might not even be inline. */
10102 tree fn = origin;
10104 if (TYPE_P (fn))
10105 fn = TYPE_STUB_DECL (fn);
10107 fn = decl_function_context (fn);
10108 if (fn)
10109 dwarf2out_abstract_function (fn);
10112 if (DECL_P (origin))
10113 origin_die = lookup_decl_die (origin);
10114 else if (TYPE_P (origin))
10115 origin_die = lookup_type_die (origin);
10117 if (origin_die == NULL)
10118 abort ();
10120 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10123 /* We do not currently support the pure_virtual attribute. */
10125 static inline void
10126 add_pure_or_virtual_attribute (die, func_decl)
10127 dw_die_ref die;
10128 tree func_decl;
10130 if (DECL_VINDEX (func_decl))
10132 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10134 if (host_integerp (DECL_VINDEX (func_decl), 0))
10135 add_AT_loc (die, DW_AT_vtable_elem_location,
10136 new_loc_descr (DW_OP_constu,
10137 tree_low_cst (DECL_VINDEX (func_decl), 0),
10138 0));
10140 /* GNU extension: Record what type this method came from originally. */
10141 if (debug_info_level > DINFO_LEVEL_TERSE)
10142 add_AT_die_ref (die, DW_AT_containing_type,
10143 lookup_type_die (DECL_CONTEXT (func_decl)));
10147 /* Add source coordinate attributes for the given decl. */
10149 static void
10150 add_src_coords_attributes (die, decl)
10151 dw_die_ref die;
10152 tree decl;
10154 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10156 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10157 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10160 /* Add an DW_AT_name attribute and source coordinate attribute for the
10161 given decl, but only if it actually has a name. */
10163 static void
10164 add_name_and_src_coords_attributes (die, decl)
10165 dw_die_ref die;
10166 tree decl;
10168 tree decl_name;
10170 decl_name = DECL_NAME (decl);
10171 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10173 add_name_attribute (die, dwarf2_name (decl, 0));
10174 if (! DECL_ARTIFICIAL (decl))
10175 add_src_coords_attributes (die, decl);
10177 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10178 && TREE_PUBLIC (decl)
10179 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10180 && !DECL_ABSTRACT (decl))
10181 add_AT_string (die, DW_AT_MIPS_linkage_name,
10182 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10185 #ifdef VMS_DEBUGGING_INFO
10186 /* Get the function's name, as described by its RTL. This may be different
10187 from the DECL_NAME name used in the source file. */
10188 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10190 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10191 XEXP (DECL_RTL (decl), 0));
10192 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10194 #endif
10197 /* Push a new declaration scope. */
10199 static void
10200 push_decl_scope (scope)
10201 tree scope;
10203 VARRAY_PUSH_TREE (decl_scope_table, scope);
10206 /* Pop a declaration scope. */
10208 static inline void
10209 pop_decl_scope ()
10211 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10212 abort ();
10214 VARRAY_POP (decl_scope_table);
10217 /* Return the DIE for the scope that immediately contains this type.
10218 Non-named types get global scope. Named types nested in other
10219 types get their containing scope if it's open, or global scope
10220 otherwise. All other types (i.e. function-local named types) get
10221 the current active scope. */
10223 static dw_die_ref
10224 scope_die_for (t, context_die)
10225 tree t;
10226 dw_die_ref context_die;
10228 dw_die_ref scope_die = NULL;
10229 tree containing_scope;
10230 int i;
10232 /* Non-types always go in the current scope. */
10233 if (! TYPE_P (t))
10234 abort ();
10236 containing_scope = TYPE_CONTEXT (t);
10238 /* Ignore namespaces for the moment. */
10239 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10240 containing_scope = NULL_TREE;
10242 /* Ignore function type "scopes" from the C frontend. They mean that
10243 a tagged type is local to a parmlist of a function declarator, but
10244 that isn't useful to DWARF. */
10245 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10246 containing_scope = NULL_TREE;
10248 if (containing_scope == NULL_TREE)
10249 scope_die = comp_unit_die;
10250 else if (TYPE_P (containing_scope))
10252 /* For types, we can just look up the appropriate DIE. But
10253 first we check to see if we're in the middle of emitting it
10254 so we know where the new DIE should go. */
10255 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10256 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10257 break;
10259 if (i < 0)
10261 if (debug_info_level > DINFO_LEVEL_TERSE
10262 && !TREE_ASM_WRITTEN (containing_scope))
10263 abort ();
10265 /* If none of the current dies are suitable, we get file scope. */
10266 scope_die = comp_unit_die;
10268 else
10269 scope_die = lookup_type_die (containing_scope);
10271 else
10272 scope_die = context_die;
10274 return scope_die;
10277 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10279 static inline int
10280 local_scope_p (context_die)
10281 dw_die_ref context_die;
10283 for (; context_die; context_die = context_die->die_parent)
10284 if (context_die->die_tag == DW_TAG_inlined_subroutine
10285 || context_die->die_tag == DW_TAG_subprogram)
10286 return 1;
10288 return 0;
10291 /* Returns nonzero if CONTEXT_DIE is a class. */
10293 static inline int
10294 class_scope_p (context_die)
10295 dw_die_ref context_die;
10297 return (context_die
10298 && (context_die->die_tag == DW_TAG_structure_type
10299 || context_die->die_tag == DW_TAG_union_type));
10302 /* Many forms of DIEs require a "type description" attribute. This
10303 routine locates the proper "type descriptor" die for the type given
10304 by 'type', and adds an DW_AT_type attribute below the given die. */
10306 static void
10307 add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
10308 dw_die_ref object_die;
10309 tree type;
10310 int decl_const;
10311 int decl_volatile;
10312 dw_die_ref context_die;
10314 enum tree_code code = TREE_CODE (type);
10315 dw_die_ref type_die = NULL;
10317 /* ??? If this type is an unnamed subrange type of an integral or
10318 floating-point type, use the inner type. This is because we have no
10319 support for unnamed types in base_type_die. This can happen if this is
10320 an Ada subrange type. Correct solution is emit a subrange type die. */
10321 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10322 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10323 type = TREE_TYPE (type), code = TREE_CODE (type);
10325 if (code == ERROR_MARK
10326 /* Handle a special case. For functions whose return type is void, we
10327 generate *no* type attribute. (Note that no object may have type
10328 `void', so this only applies to function return types). */
10329 || code == VOID_TYPE)
10330 return;
10332 type_die = modified_type_die (type,
10333 decl_const || TYPE_READONLY (type),
10334 decl_volatile || TYPE_VOLATILE (type),
10335 context_die);
10337 if (type_die != NULL)
10338 add_AT_die_ref (object_die, DW_AT_type, type_die);
10341 /* Given a tree pointer to a struct, class, union, or enum type node, return
10342 a pointer to the (string) tag name for the given type, or zero if the type
10343 was declared without a tag. */
10345 static const char *
10346 type_tag (type)
10347 tree type;
10349 const char *name = 0;
10351 if (TYPE_NAME (type) != 0)
10353 tree t = 0;
10355 /* Find the IDENTIFIER_NODE for the type name. */
10356 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10357 t = TYPE_NAME (type);
10359 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10360 a TYPE_DECL node, regardless of whether or not a `typedef' was
10361 involved. */
10362 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10363 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10364 t = DECL_NAME (TYPE_NAME (type));
10366 /* Now get the name as a string, or invent one. */
10367 if (t != 0)
10368 name = IDENTIFIER_POINTER (t);
10371 return (name == 0 || *name == '\0') ? 0 : name;
10374 /* Return the type associated with a data member, make a special check
10375 for bit field types. */
10377 static inline tree
10378 member_declared_type (member)
10379 tree member;
10381 return (DECL_BIT_FIELD_TYPE (member)
10382 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10385 /* Get the decl's label, as described by its RTL. This may be different
10386 from the DECL_NAME name used in the source file. */
10388 #if 0
10389 static const char *
10390 decl_start_label (decl)
10391 tree decl;
10393 rtx x;
10394 const char *fnname;
10396 x = DECL_RTL (decl);
10397 if (GET_CODE (x) != MEM)
10398 abort ();
10400 x = XEXP (x, 0);
10401 if (GET_CODE (x) != SYMBOL_REF)
10402 abort ();
10404 fnname = XSTR (x, 0);
10405 return fnname;
10407 #endif
10409 /* These routines generate the internal representation of the DIE's for
10410 the compilation unit. Debugging information is collected by walking
10411 the declaration trees passed in from dwarf2out_decl(). */
10413 static void
10414 gen_array_type_die (type, context_die)
10415 tree type;
10416 dw_die_ref context_die;
10418 dw_die_ref scope_die = scope_die_for (type, context_die);
10419 dw_die_ref array_die;
10420 tree element_type;
10422 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10423 the inner array type comes before the outer array type. Thus we must
10424 call gen_type_die before we call new_die. See below also. */
10425 #ifdef MIPS_DEBUGGING_INFO
10426 gen_type_die (TREE_TYPE (type), context_die);
10427 #endif
10429 array_die = new_die (DW_TAG_array_type, scope_die, type);
10430 add_name_attribute (array_die, type_tag (type));
10431 equate_type_number_to_die (type, array_die);
10433 if (TREE_CODE (type) == VECTOR_TYPE)
10435 /* The frontend feeds us a representation for the vector as a struct
10436 containing an array. Pull out the array type. */
10437 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10438 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10441 #if 0
10442 /* We default the array ordering. SDB will probably do
10443 the right things even if DW_AT_ordering is not present. It's not even
10444 an issue until we start to get into multidimensional arrays anyway. If
10445 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10446 then we'll have to put the DW_AT_ordering attribute back in. (But if
10447 and when we find out that we need to put these in, we will only do so
10448 for multidimensional arrays. */
10449 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10450 #endif
10452 #ifdef MIPS_DEBUGGING_INFO
10453 /* The SGI compilers handle arrays of unknown bound by setting
10454 AT_declaration and not emitting any subrange DIEs. */
10455 if (! TYPE_DOMAIN (type))
10456 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10457 else
10458 #endif
10459 add_subscript_info (array_die, type);
10461 /* Add representation of the type of the elements of this array type. */
10462 element_type = TREE_TYPE (type);
10464 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10465 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10466 We work around this by disabling this feature. See also
10467 add_subscript_info. */
10468 #ifndef MIPS_DEBUGGING_INFO
10469 while (TREE_CODE (element_type) == ARRAY_TYPE)
10470 element_type = TREE_TYPE (element_type);
10472 gen_type_die (element_type, context_die);
10473 #endif
10475 add_type_attribute (array_die, element_type, 0, 0, context_die);
10478 static void
10479 gen_set_type_die (type, context_die)
10480 tree type;
10481 dw_die_ref context_die;
10483 dw_die_ref type_die
10484 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10486 equate_type_number_to_die (type, type_die);
10487 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10490 #if 0
10491 static void
10492 gen_entry_point_die (decl, context_die)
10493 tree decl;
10494 dw_die_ref context_die;
10496 tree origin = decl_ultimate_origin (decl);
10497 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10499 if (origin != NULL)
10500 add_abstract_origin_attribute (decl_die, origin);
10501 else
10503 add_name_and_src_coords_attributes (decl_die, decl);
10504 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10505 0, 0, context_die);
10508 if (DECL_ABSTRACT (decl))
10509 equate_decl_number_to_die (decl, decl_die);
10510 else
10511 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10513 #endif
10515 /* Walk through the list of incomplete types again, trying once more to
10516 emit full debugging info for them. */
10518 static void
10519 retry_incomplete_types ()
10521 int i;
10523 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10524 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10527 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10529 static void
10530 gen_inlined_enumeration_type_die (type, context_die)
10531 tree type;
10532 dw_die_ref context_die;
10534 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10536 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10537 be incomplete and such types are not marked. */
10538 add_abstract_origin_attribute (type_die, type);
10541 /* Generate a DIE to represent an inlined instance of a structure type. */
10543 static void
10544 gen_inlined_structure_type_die (type, context_die)
10545 tree type;
10546 dw_die_ref context_die;
10548 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10550 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10551 be incomplete and such types are not marked. */
10552 add_abstract_origin_attribute (type_die, type);
10555 /* Generate a DIE to represent an inlined instance of a union type. */
10557 static void
10558 gen_inlined_union_type_die (type, context_die)
10559 tree type;
10560 dw_die_ref context_die;
10562 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10564 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10565 be incomplete and such types are not marked. */
10566 add_abstract_origin_attribute (type_die, type);
10569 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10570 include all of the information about the enumeration values also. Each
10571 enumerated type name/value is listed as a child of the enumerated type
10572 DIE. */
10574 static void
10575 gen_enumeration_type_die (type, context_die)
10576 tree type;
10577 dw_die_ref context_die;
10579 dw_die_ref type_die = lookup_type_die (type);
10581 if (type_die == NULL)
10583 type_die = new_die (DW_TAG_enumeration_type,
10584 scope_die_for (type, context_die), type);
10585 equate_type_number_to_die (type, type_die);
10586 add_name_attribute (type_die, type_tag (type));
10588 else if (! TYPE_SIZE (type))
10589 return;
10590 else
10591 remove_AT (type_die, DW_AT_declaration);
10593 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10594 given enum type is incomplete, do not generate the DW_AT_byte_size
10595 attribute or the DW_AT_element_list attribute. */
10596 if (TYPE_SIZE (type))
10598 tree link;
10600 TREE_ASM_WRITTEN (type) = 1;
10601 add_byte_size_attribute (type_die, type);
10602 if (TYPE_STUB_DECL (type) != NULL_TREE)
10603 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10605 /* If the first reference to this type was as the return type of an
10606 inline function, then it may not have a parent. Fix this now. */
10607 if (type_die->die_parent == NULL)
10608 add_child_die (scope_die_for (type, context_die), type_die);
10610 for (link = TYPE_FIELDS (type);
10611 link != NULL; link = TREE_CHAIN (link))
10613 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10615 add_name_attribute (enum_die,
10616 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10618 if (host_integerp (TREE_VALUE (link), 0))
10620 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10621 add_AT_int (enum_die, DW_AT_const_value,
10622 tree_low_cst (TREE_VALUE (link), 0));
10623 else
10624 add_AT_unsigned (enum_die, DW_AT_const_value,
10625 tree_low_cst (TREE_VALUE (link), 0));
10629 else
10630 add_AT_flag (type_die, DW_AT_declaration, 1);
10633 /* Generate a DIE to represent either a real live formal parameter decl or to
10634 represent just the type of some formal parameter position in some function
10635 type.
10637 Note that this routine is a bit unusual because its argument may be a
10638 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10639 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10640 node. If it's the former then this function is being called to output a
10641 DIE to represent a formal parameter object (or some inlining thereof). If
10642 it's the latter, then this function is only being called to output a
10643 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10644 argument type of some subprogram type. */
10646 static dw_die_ref
10647 gen_formal_parameter_die (node, context_die)
10648 tree node;
10649 dw_die_ref context_die;
10651 dw_die_ref parm_die
10652 = new_die (DW_TAG_formal_parameter, context_die, node);
10653 tree origin;
10655 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10657 case 'd':
10658 origin = decl_ultimate_origin (node);
10659 if (origin != NULL)
10660 add_abstract_origin_attribute (parm_die, origin);
10661 else
10663 add_name_and_src_coords_attributes (parm_die, node);
10664 add_type_attribute (parm_die, TREE_TYPE (node),
10665 TREE_READONLY (node),
10666 TREE_THIS_VOLATILE (node),
10667 context_die);
10668 if (DECL_ARTIFICIAL (node))
10669 add_AT_flag (parm_die, DW_AT_artificial, 1);
10672 equate_decl_number_to_die (node, parm_die);
10673 if (! DECL_ABSTRACT (node))
10674 add_location_or_const_value_attribute (parm_die, node);
10676 break;
10678 case 't':
10679 /* We were called with some kind of a ..._TYPE node. */
10680 add_type_attribute (parm_die, node, 0, 0, context_die);
10681 break;
10683 default:
10684 abort ();
10687 return parm_die;
10690 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10691 at the end of an (ANSI prototyped) formal parameters list. */
10693 static void
10694 gen_unspecified_parameters_die (decl_or_type, context_die)
10695 tree decl_or_type;
10696 dw_die_ref context_die;
10698 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10701 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10702 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10703 parameters as specified in some function type specification (except for
10704 those which appear as part of a function *definition*). */
10706 static void
10707 gen_formal_types_die (function_or_method_type, context_die)
10708 tree function_or_method_type;
10709 dw_die_ref context_die;
10711 tree link;
10712 tree formal_type = NULL;
10713 tree first_parm_type;
10714 tree arg;
10716 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10718 arg = DECL_ARGUMENTS (function_or_method_type);
10719 function_or_method_type = TREE_TYPE (function_or_method_type);
10721 else
10722 arg = NULL_TREE;
10724 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10726 /* Make our first pass over the list of formal parameter types and output a
10727 DW_TAG_formal_parameter DIE for each one. */
10728 for (link = first_parm_type; link; )
10730 dw_die_ref parm_die;
10732 formal_type = TREE_VALUE (link);
10733 if (formal_type == void_type_node)
10734 break;
10736 /* Output a (nameless) DIE to represent the formal parameter itself. */
10737 parm_die = gen_formal_parameter_die (formal_type, context_die);
10738 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10739 && link == first_parm_type)
10740 || (arg && DECL_ARTIFICIAL (arg)))
10741 add_AT_flag (parm_die, DW_AT_artificial, 1);
10743 link = TREE_CHAIN (link);
10744 if (arg)
10745 arg = TREE_CHAIN (arg);
10748 /* If this function type has an ellipsis, add a
10749 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10750 if (formal_type != void_type_node)
10751 gen_unspecified_parameters_die (function_or_method_type, context_die);
10753 /* Make our second (and final) pass over the list of formal parameter types
10754 and output DIEs to represent those types (as necessary). */
10755 for (link = TYPE_ARG_TYPES (function_or_method_type);
10756 link && TREE_VALUE (link);
10757 link = TREE_CHAIN (link))
10758 gen_type_die (TREE_VALUE (link), context_die);
10761 /* We want to generate the DIE for TYPE so that we can generate the
10762 die for MEMBER, which has been defined; we will need to refer back
10763 to the member declaration nested within TYPE. If we're trying to
10764 generate minimal debug info for TYPE, processing TYPE won't do the
10765 trick; we need to attach the member declaration by hand. */
10767 static void
10768 gen_type_die_for_member (type, member, context_die)
10769 tree type, member;
10770 dw_die_ref context_die;
10772 gen_type_die (type, context_die);
10774 /* If we're trying to avoid duplicate debug info, we may not have
10775 emitted the member decl for this function. Emit it now. */
10776 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10777 && ! lookup_decl_die (member))
10779 if (decl_ultimate_origin (member))
10780 abort ();
10782 push_decl_scope (type);
10783 if (TREE_CODE (member) == FUNCTION_DECL)
10784 gen_subprogram_die (member, lookup_type_die (type));
10785 else
10786 gen_variable_die (member, lookup_type_die (type));
10788 pop_decl_scope ();
10792 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10793 may later generate inlined and/or out-of-line instances of. */
10795 static void
10796 dwarf2out_abstract_function (decl)
10797 tree decl;
10799 dw_die_ref old_die;
10800 tree save_fn;
10801 tree context;
10802 int was_abstract = DECL_ABSTRACT (decl);
10804 /* Make sure we have the actual abstract inline, not a clone. */
10805 decl = DECL_ORIGIN (decl);
10807 old_die = lookup_decl_die (decl);
10808 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10809 /* We've already generated the abstract instance. */
10810 return;
10812 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10813 we don't get confused by DECL_ABSTRACT. */
10814 if (debug_info_level > DINFO_LEVEL_TERSE)
10816 context = decl_class_context (decl);
10817 if (context)
10818 gen_type_die_for_member
10819 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10822 /* Pretend we've just finished compiling this function. */
10823 save_fn = current_function_decl;
10824 current_function_decl = decl;
10826 set_decl_abstract_flags (decl, 1);
10827 dwarf2out_decl (decl);
10828 if (! was_abstract)
10829 set_decl_abstract_flags (decl, 0);
10831 current_function_decl = save_fn;
10834 /* Generate a DIE to represent a declared function (either file-scope or
10835 block-local). */
10837 static void
10838 gen_subprogram_die (decl, context_die)
10839 tree decl;
10840 dw_die_ref context_die;
10842 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10843 tree origin = decl_ultimate_origin (decl);
10844 dw_die_ref subr_die;
10845 rtx fp_reg;
10846 tree fn_arg_types;
10847 tree outer_scope;
10848 dw_die_ref old_die = lookup_decl_die (decl);
10849 int declaration = (current_function_decl != decl
10850 || class_scope_p (context_die));
10852 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10853 started to generate the abstract instance of an inline, decided to output
10854 its containing class, and proceeded to emit the declaration of the inline
10855 from the member list for the class. If so, DECLARATION takes priority;
10856 we'll get back to the abstract instance when done with the class. */
10858 /* The class-scope declaration DIE must be the primary DIE. */
10859 if (origin && declaration && class_scope_p (context_die))
10861 origin = NULL;
10862 if (old_die)
10863 abort ();
10866 if (origin != NULL)
10868 if (declaration && ! local_scope_p (context_die))
10869 abort ();
10871 /* Fixup die_parent for the abstract instance of a nested
10872 inline function. */
10873 if (old_die && old_die->die_parent == NULL)
10874 add_child_die (context_die, old_die);
10876 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10877 add_abstract_origin_attribute (subr_die, origin);
10879 else if (old_die)
10881 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10883 if (!get_AT_flag (old_die, DW_AT_declaration)
10884 /* We can have a normal definition following an inline one in the
10885 case of redefinition of GNU C extern inlines.
10886 It seems reasonable to use AT_specification in this case. */
10887 && !get_AT_unsigned (old_die, DW_AT_inline))
10889 /* ??? This can happen if there is a bug in the program, for
10890 instance, if it has duplicate function definitions. Ideally,
10891 we should detect this case and ignore it. For now, if we have
10892 already reported an error, any error at all, then assume that
10893 we got here because of an input error, not a dwarf2 bug. */
10894 if (errorcount)
10895 return;
10896 abort ();
10899 /* If the definition comes from the same place as the declaration,
10900 maybe use the old DIE. We always want the DIE for this function
10901 that has the *_pc attributes to be under comp_unit_die so the
10902 debugger can find it. We also need to do this for abstract
10903 instances of inlines, since the spec requires the out-of-line copy
10904 to have the same parent. For local class methods, this doesn't
10905 apply; we just use the old DIE. */
10906 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10907 && (DECL_ARTIFICIAL (decl)
10908 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10909 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10910 == (unsigned) DECL_SOURCE_LINE (decl)))))
10912 subr_die = old_die;
10914 /* Clear out the declaration attribute and the parm types. */
10915 remove_AT (subr_die, DW_AT_declaration);
10916 remove_children (subr_die);
10918 else
10920 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10921 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10922 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10923 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10924 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10925 != (unsigned) DECL_SOURCE_LINE (decl))
10926 add_AT_unsigned
10927 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10930 else
10932 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10934 if (TREE_PUBLIC (decl))
10935 add_AT_flag (subr_die, DW_AT_external, 1);
10937 add_name_and_src_coords_attributes (subr_die, decl);
10938 if (debug_info_level > DINFO_LEVEL_TERSE)
10940 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10941 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10942 0, 0, context_die);
10945 add_pure_or_virtual_attribute (subr_die, decl);
10946 if (DECL_ARTIFICIAL (decl))
10947 add_AT_flag (subr_die, DW_AT_artificial, 1);
10949 if (TREE_PROTECTED (decl))
10950 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10951 else if (TREE_PRIVATE (decl))
10952 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10955 if (declaration)
10957 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10959 add_AT_flag (subr_die, DW_AT_declaration, 1);
10961 /* The first time we see a member function, it is in the context of
10962 the class to which it belongs. We make sure of this by emitting
10963 the class first. The next time is the definition, which is
10964 handled above. The two may come from the same source text. */
10965 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10966 equate_decl_number_to_die (decl, subr_die);
10969 else if (DECL_ABSTRACT (decl))
10971 if (DECL_INLINE (decl) && !flag_no_inline)
10973 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10974 inline functions, but not for extern inline functions.
10975 We can't get this completely correct because information
10976 about whether the function was declared inline is not
10977 saved anywhere. */
10978 if (DECL_DEFER_OUTPUT (decl))
10979 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10980 else
10981 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10983 else
10984 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10986 equate_decl_number_to_die (decl, subr_die);
10988 else if (!DECL_EXTERNAL (decl))
10990 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10991 equate_decl_number_to_die (decl, subr_die);
10993 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10994 current_function_funcdef_no);
10995 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10996 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10997 current_function_funcdef_no);
10998 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11000 add_pubname (decl, subr_die);
11001 add_arange (decl, subr_die);
11003 #ifdef MIPS_DEBUGGING_INFO
11004 /* Add a reference to the FDE for this routine. */
11005 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11006 #endif
11008 /* Define the "frame base" location for this routine. We use the
11009 frame pointer or stack pointer registers, since the RTL for local
11010 variables is relative to one of them. */
11011 fp_reg
11012 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11013 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11015 #if 0
11016 /* ??? This fails for nested inline functions, because context_display
11017 is not part of the state saved/restored for inline functions. */
11018 if (current_function_needs_context)
11019 add_AT_location_description (subr_die, DW_AT_static_link,
11020 loc_descriptor (lookup_static_chain (decl)));
11021 #endif
11024 /* Now output descriptions of the arguments for this function. This gets
11025 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11026 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11027 `...' at the end of the formal parameter list. In order to find out if
11028 there was a trailing ellipsis or not, we must instead look at the type
11029 associated with the FUNCTION_DECL. This will be a node of type
11030 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11031 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11032 an ellipsis at the end. */
11034 /* In the case where we are describing a mere function declaration, all we
11035 need to do here (and all we *can* do here) is to describe the *types* of
11036 its formal parameters. */
11037 if (debug_info_level <= DINFO_LEVEL_TERSE)
11039 else if (declaration)
11040 gen_formal_types_die (decl, subr_die);
11041 else
11043 /* Generate DIEs to represent all known formal parameters */
11044 tree arg_decls = DECL_ARGUMENTS (decl);
11045 tree parm;
11047 /* When generating DIEs, generate the unspecified_parameters DIE
11048 instead if we come across the arg "__builtin_va_alist" */
11049 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11050 if (TREE_CODE (parm) == PARM_DECL)
11052 if (DECL_NAME (parm)
11053 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11054 "__builtin_va_alist"))
11055 gen_unspecified_parameters_die (parm, subr_die);
11056 else
11057 gen_decl_die (parm, subr_die);
11060 /* Decide whether we need an unspecified_parameters DIE at the end.
11061 There are 2 more cases to do this for: 1) the ansi ... declaration -
11062 this is detectable when the end of the arg list is not a
11063 void_type_node 2) an unprototyped function declaration (not a
11064 definition). This just means that we have no info about the
11065 parameters at all. */
11066 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11067 if (fn_arg_types != NULL)
11069 /* this is the prototyped case, check for ... */
11070 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11071 gen_unspecified_parameters_die (decl, subr_die);
11073 else if (DECL_INITIAL (decl) == NULL_TREE)
11074 gen_unspecified_parameters_die (decl, subr_die);
11077 /* Output Dwarf info for all of the stuff within the body of the function
11078 (if it has one - it may be just a declaration). */
11079 outer_scope = DECL_INITIAL (decl);
11081 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11082 a function. This BLOCK actually represents the outermost binding contour
11083 for the function, i.e. the contour in which the function's formal
11084 parameters and labels get declared. Curiously, it appears that the front
11085 end doesn't actually put the PARM_DECL nodes for the current function onto
11086 the BLOCK_VARS list for this outer scope, but are strung off of the
11087 DECL_ARGUMENTS list for the function instead.
11089 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11090 the LABEL_DECL nodes for the function however, and we output DWARF info
11091 for those in decls_for_scope. Just within the `outer_scope' there will be
11092 a BLOCK node representing the function's outermost pair of curly braces,
11093 and any blocks used for the base and member initializers of a C++
11094 constructor function. */
11095 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11097 current_function_has_inlines = 0;
11098 decls_for_scope (outer_scope, subr_die, 0);
11100 #if 0 && defined (MIPS_DEBUGGING_INFO)
11101 if (current_function_has_inlines)
11103 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11104 if (! comp_unit_has_inlines)
11106 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11107 comp_unit_has_inlines = 1;
11110 #endif
11114 /* Generate a DIE to represent a declared data object. */
11116 static void
11117 gen_variable_die (decl, context_die)
11118 tree decl;
11119 dw_die_ref context_die;
11121 tree origin = decl_ultimate_origin (decl);
11122 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11124 dw_die_ref old_die = lookup_decl_die (decl);
11125 int declaration = (DECL_EXTERNAL (decl)
11126 || class_scope_p (context_die));
11128 if (origin != NULL)
11129 add_abstract_origin_attribute (var_die, origin);
11131 /* Loop unrolling can create multiple blocks that refer to the same
11132 static variable, so we must test for the DW_AT_declaration flag.
11134 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11135 copy decls and set the DECL_ABSTRACT flag on them instead of
11136 sharing them.
11138 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11139 else if (old_die && TREE_STATIC (decl)
11140 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11142 /* This is a definition of a C++ class level static. */
11143 add_AT_die_ref (var_die, DW_AT_specification, old_die);
11144 if (DECL_NAME (decl))
11146 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11148 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11149 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11151 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11152 != (unsigned) DECL_SOURCE_LINE (decl))
11154 add_AT_unsigned (var_die, DW_AT_decl_line,
11155 DECL_SOURCE_LINE (decl));
11158 else
11160 add_name_and_src_coords_attributes (var_die, decl);
11161 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11162 TREE_THIS_VOLATILE (decl), context_die);
11164 if (TREE_PUBLIC (decl))
11165 add_AT_flag (var_die, DW_AT_external, 1);
11167 if (DECL_ARTIFICIAL (decl))
11168 add_AT_flag (var_die, DW_AT_artificial, 1);
11170 if (TREE_PROTECTED (decl))
11171 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11172 else if (TREE_PRIVATE (decl))
11173 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11176 if (declaration)
11177 add_AT_flag (var_die, DW_AT_declaration, 1);
11179 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
11180 equate_decl_number_to_die (decl, var_die);
11182 if (! declaration && ! DECL_ABSTRACT (decl))
11184 add_location_or_const_value_attribute (var_die, decl);
11185 add_pubname (decl, var_die);
11187 else
11188 tree_add_const_value_attribute (var_die, decl);
11191 /* Generate a DIE to represent a label identifier. */
11193 static void
11194 gen_label_die (decl, context_die)
11195 tree decl;
11196 dw_die_ref context_die;
11198 tree origin = decl_ultimate_origin (decl);
11199 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11200 rtx insn;
11201 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11203 if (origin != NULL)
11204 add_abstract_origin_attribute (lbl_die, origin);
11205 else
11206 add_name_and_src_coords_attributes (lbl_die, decl);
11208 if (DECL_ABSTRACT (decl))
11209 equate_decl_number_to_die (decl, lbl_die);
11210 else
11212 insn = DECL_RTL (decl);
11214 /* Deleted labels are programmer specified labels which have been
11215 eliminated because of various optimisations. We still emit them
11216 here so that it is possible to put breakpoints on them. */
11217 if (GET_CODE (insn) == CODE_LABEL
11218 || ((GET_CODE (insn) == NOTE
11219 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
11221 /* When optimization is enabled (via -O) some parts of the compiler
11222 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11223 represent source-level labels which were explicitly declared by
11224 the user. This really shouldn't be happening though, so catch
11225 it if it ever does happen. */
11226 if (INSN_DELETED_P (insn))
11227 abort ();
11229 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11230 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11235 /* Generate a DIE for a lexical block. */
11237 static void
11238 gen_lexical_block_die (stmt, context_die, depth)
11239 tree stmt;
11240 dw_die_ref context_die;
11241 int depth;
11243 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11244 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11246 if (! BLOCK_ABSTRACT (stmt))
11248 if (BLOCK_FRAGMENT_CHAIN (stmt))
11250 tree chain;
11252 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11254 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11257 add_ranges (chain);
11258 chain = BLOCK_FRAGMENT_CHAIN (chain);
11260 while (chain);
11261 add_ranges (NULL);
11263 else
11265 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11266 BLOCK_NUMBER (stmt));
11267 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11268 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11269 BLOCK_NUMBER (stmt));
11270 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11274 decls_for_scope (stmt, stmt_die, depth);
11277 /* Generate a DIE for an inlined subprogram. */
11279 static void
11280 gen_inlined_subroutine_die (stmt, context_die, depth)
11281 tree stmt;
11282 dw_die_ref context_die;
11283 int depth;
11285 if (! BLOCK_ABSTRACT (stmt))
11287 dw_die_ref subr_die
11288 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11289 tree decl = block_ultimate_origin (stmt);
11290 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11292 /* Emit info for the abstract instance first, if we haven't yet. */
11293 dwarf2out_abstract_function (decl);
11295 add_abstract_origin_attribute (subr_die, decl);
11296 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11297 BLOCK_NUMBER (stmt));
11298 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11299 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11300 BLOCK_NUMBER (stmt));
11301 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11302 decls_for_scope (stmt, subr_die, depth);
11303 current_function_has_inlines = 1;
11305 else
11306 /* We may get here if we're the outer block of function A that was
11307 inlined into function B that was inlined into function C. When
11308 generating debugging info for C, dwarf2out_abstract_function(B)
11309 would mark all inlined blocks as abstract, including this one.
11310 So, we wouldn't (and shouldn't) expect labels to be generated
11311 for this one. Instead, just emit debugging info for
11312 declarations within the block. This is particularly important
11313 in the case of initializers of arguments passed from B to us:
11314 if they're statement expressions containing declarations, we
11315 wouldn't generate dies for their abstract variables, and then,
11316 when generating dies for the real variables, we'd die (pun
11317 intended :-) */
11318 gen_lexical_block_die (stmt, context_die, depth);
11321 /* Generate a DIE for a field in a record, or structure. */
11323 static void
11324 gen_field_die (decl, context_die)
11325 tree decl;
11326 dw_die_ref context_die;
11328 dw_die_ref decl_die = new_die (DW_TAG_member, context_die, decl);
11330 add_name_and_src_coords_attributes (decl_die, decl);
11331 add_type_attribute (decl_die, member_declared_type (decl),
11332 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11333 context_die);
11335 if (DECL_BIT_FIELD_TYPE (decl))
11337 add_byte_size_attribute (decl_die, decl);
11338 add_bit_size_attribute (decl_die, decl);
11339 add_bit_offset_attribute (decl_die, decl);
11342 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11343 add_data_member_location_attribute (decl_die, decl);
11345 if (DECL_ARTIFICIAL (decl))
11346 add_AT_flag (decl_die, DW_AT_artificial, 1);
11348 if (TREE_PROTECTED (decl))
11349 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11350 else if (TREE_PRIVATE (decl))
11351 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11354 #if 0
11355 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11356 Use modified_type_die instead.
11357 We keep this code here just in case these types of DIEs may be needed to
11358 represent certain things in other languages (e.g. Pascal) someday. */
11360 static void
11361 gen_pointer_type_die (type, context_die)
11362 tree type;
11363 dw_die_ref context_die;
11365 dw_die_ref ptr_die
11366 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11368 equate_type_number_to_die (type, ptr_die);
11369 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11370 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11373 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11374 Use modified_type_die instead.
11375 We keep this code here just in case these types of DIEs may be needed to
11376 represent certain things in other languages (e.g. Pascal) someday. */
11378 static void
11379 gen_reference_type_die (type, context_die)
11380 tree type;
11381 dw_die_ref context_die;
11383 dw_die_ref ref_die
11384 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11386 equate_type_number_to_die (type, ref_die);
11387 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11388 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11390 #endif
11392 /* Generate a DIE for a pointer to a member type. */
11394 static void
11395 gen_ptr_to_mbr_type_die (type, context_die)
11396 tree type;
11397 dw_die_ref context_die;
11399 dw_die_ref ptr_die
11400 = new_die (DW_TAG_ptr_to_member_type,
11401 scope_die_for (type, context_die), type);
11403 equate_type_number_to_die (type, ptr_die);
11404 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11405 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11406 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11409 /* Generate the DIE for the compilation unit. */
11411 static dw_die_ref
11412 gen_compile_unit_die (filename)
11413 const char *filename;
11415 dw_die_ref die;
11416 char producer[250];
11417 const char *language_string = lang_hooks.name;
11418 int language;
11420 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11422 if (filename)
11424 add_name_attribute (die, filename);
11425 if (filename[0] != DIR_SEPARATOR)
11426 add_comp_dir_attribute (die);
11429 sprintf (producer, "%s %s", language_string, version_string);
11431 #ifdef MIPS_DEBUGGING_INFO
11432 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11433 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11434 not appear in the producer string, the debugger reaches the conclusion
11435 that the object file is stripped and has no debugging information.
11436 To get the MIPS/SGI debugger to believe that there is debugging
11437 information in the object file, we add a -g to the producer string. */
11438 if (debug_info_level > DINFO_LEVEL_TERSE)
11439 strcat (producer, " -g");
11440 #endif
11442 add_AT_string (die, DW_AT_producer, producer);
11444 if (strcmp (language_string, "GNU C++") == 0)
11445 language = DW_LANG_C_plus_plus;
11446 else if (strcmp (language_string, "GNU Ada") == 0)
11447 language = DW_LANG_Ada83;
11448 else if (strcmp (language_string, "GNU F77") == 0)
11449 language = DW_LANG_Fortran77;
11450 else if (strcmp (language_string, "GNU Pascal") == 0)
11451 language = DW_LANG_Pascal83;
11452 else if (strcmp (language_string, "GNU Java") == 0)
11453 language = DW_LANG_Java;
11454 else
11455 language = DW_LANG_C89;
11457 add_AT_unsigned (die, DW_AT_language, language);
11458 return die;
11461 /* Generate a DIE for a string type. */
11463 static void
11464 gen_string_type_die (type, context_die)
11465 tree type;
11466 dw_die_ref context_die;
11468 dw_die_ref type_die
11469 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11471 equate_type_number_to_die (type, type_die);
11473 /* ??? Fudge the string length attribute for now.
11474 TODO: add string length info. */
11475 #if 0
11476 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11477 bound_representation (upper_bound, 0, 'u');
11478 #endif
11481 /* Generate the DIE for a base class. */
11483 static void
11484 gen_inheritance_die (binfo, access, context_die)
11485 tree binfo, access;
11486 dw_die_ref context_die;
11488 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11490 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11491 add_data_member_location_attribute (die, binfo);
11493 if (TREE_VIA_VIRTUAL (binfo))
11494 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11496 if (access == access_public_node)
11497 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11498 else if (access == access_protected_node)
11499 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11502 /* Generate a DIE for a class member. */
11504 static void
11505 gen_member_die (type, context_die)
11506 tree type;
11507 dw_die_ref context_die;
11509 tree member;
11510 tree binfo = TYPE_BINFO (type);
11511 dw_die_ref child;
11513 /* If this is not an incomplete type, output descriptions of each of its
11514 members. Note that as we output the DIEs necessary to represent the
11515 members of this record or union type, we will also be trying to output
11516 DIEs to represent the *types* of those members. However the `type'
11517 function (above) will specifically avoid generating type DIEs for member
11518 types *within* the list of member DIEs for this (containing) type except
11519 for those types (of members) which are explicitly marked as also being
11520 members of this (containing) type themselves. The g++ front- end can
11521 force any given type to be treated as a member of some other (containing)
11522 type by setting the TYPE_CONTEXT of the given (member) type to point to
11523 the TREE node representing the appropriate (containing) type. */
11525 /* First output info about the base classes. */
11526 if (binfo && BINFO_BASETYPES (binfo))
11528 tree bases = BINFO_BASETYPES (binfo);
11529 tree accesses = BINFO_BASEACCESSES (binfo);
11530 int n_bases = TREE_VEC_LENGTH (bases);
11531 int i;
11533 for (i = 0; i < n_bases; i++)
11534 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11535 (accesses ? TREE_VEC_ELT (accesses, i)
11536 : access_public_node), context_die);
11539 /* Now output info about the data members and type members. */
11540 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11542 /* If we thought we were generating minimal debug info for TYPE
11543 and then changed our minds, some of the member declarations
11544 may have already been defined. Don't define them again, but
11545 do put them in the right order. */
11547 child = lookup_decl_die (member);
11548 if (child)
11549 splice_child_die (context_die, child);
11550 else
11551 gen_decl_die (member, context_die);
11554 /* Now output info about the function members (if any). */
11555 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11557 /* Don't include clones in the member list. */
11558 if (DECL_ABSTRACT_ORIGIN (member))
11559 continue;
11561 child = lookup_decl_die (member);
11562 if (child)
11563 splice_child_die (context_die, child);
11564 else
11565 gen_decl_die (member, context_die);
11569 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11570 is set, we pretend that the type was never defined, so we only get the
11571 member DIEs needed by later specification DIEs. */
11573 static void
11574 gen_struct_or_union_type_die (type, context_die)
11575 tree type;
11576 dw_die_ref context_die;
11578 dw_die_ref type_die = lookup_type_die (type);
11579 dw_die_ref scope_die = 0;
11580 int nested = 0;
11581 int complete = (TYPE_SIZE (type)
11582 && (! TYPE_STUB_DECL (type)
11583 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11585 if (type_die && ! complete)
11586 return;
11588 if (TYPE_CONTEXT (type) != NULL_TREE
11589 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11590 nested = 1;
11592 scope_die = scope_die_for (type, context_die);
11594 if (! type_die || (nested && scope_die == comp_unit_die))
11595 /* First occurrence of type or toplevel definition of nested class. */
11597 dw_die_ref old_die = type_die;
11599 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11600 ? DW_TAG_structure_type : DW_TAG_union_type,
11601 scope_die, type);
11602 equate_type_number_to_die (type, type_die);
11603 if (old_die)
11604 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11605 else
11606 add_name_attribute (type_die, type_tag (type));
11608 else
11609 remove_AT (type_die, DW_AT_declaration);
11611 /* If this type has been completed, then give it a byte_size attribute and
11612 then give a list of members. */
11613 if (complete)
11615 /* Prevent infinite recursion in cases where the type of some member of
11616 this type is expressed in terms of this type itself. */
11617 TREE_ASM_WRITTEN (type) = 1;
11618 add_byte_size_attribute (type_die, type);
11619 if (TYPE_STUB_DECL (type) != NULL_TREE)
11620 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11622 /* If the first reference to this type was as the return type of an
11623 inline function, then it may not have a parent. Fix this now. */
11624 if (type_die->die_parent == NULL)
11625 add_child_die (scope_die, type_die);
11627 push_decl_scope (type);
11628 gen_member_die (type, type_die);
11629 pop_decl_scope ();
11631 /* GNU extension: Record what type our vtable lives in. */
11632 if (TYPE_VFIELD (type))
11634 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11636 gen_type_die (vtype, context_die);
11637 add_AT_die_ref (type_die, DW_AT_containing_type,
11638 lookup_type_die (vtype));
11641 else
11643 add_AT_flag (type_die, DW_AT_declaration, 1);
11645 /* We don't need to do this for function-local types. */
11646 if (TYPE_STUB_DECL (type)
11647 && ! decl_function_context (TYPE_STUB_DECL (type)))
11648 VARRAY_PUSH_TREE (incomplete_types, type);
11652 /* Generate a DIE for a subroutine _type_. */
11654 static void
11655 gen_subroutine_type_die (type, context_die)
11656 tree type;
11657 dw_die_ref context_die;
11659 tree return_type = TREE_TYPE (type);
11660 dw_die_ref subr_die
11661 = new_die (DW_TAG_subroutine_type,
11662 scope_die_for (type, context_die), type);
11664 equate_type_number_to_die (type, subr_die);
11665 add_prototyped_attribute (subr_die, type);
11666 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11667 gen_formal_types_die (type, subr_die);
11670 /* Generate a DIE for a type definition */
11672 static void
11673 gen_typedef_die (decl, context_die)
11674 tree decl;
11675 dw_die_ref context_die;
11677 dw_die_ref type_die;
11678 tree origin;
11680 if (TREE_ASM_WRITTEN (decl))
11681 return;
11683 TREE_ASM_WRITTEN (decl) = 1;
11684 type_die = new_die (DW_TAG_typedef, context_die, decl);
11685 origin = decl_ultimate_origin (decl);
11686 if (origin != NULL)
11687 add_abstract_origin_attribute (type_die, origin);
11688 else
11690 tree type;
11692 add_name_and_src_coords_attributes (type_die, decl);
11693 if (DECL_ORIGINAL_TYPE (decl))
11695 type = DECL_ORIGINAL_TYPE (decl);
11697 if (type == TREE_TYPE (decl))
11698 abort ();
11699 else
11700 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11702 else
11703 type = TREE_TYPE (decl);
11705 add_type_attribute (type_die, type, TREE_READONLY (decl),
11706 TREE_THIS_VOLATILE (decl), context_die);
11709 if (DECL_ABSTRACT (decl))
11710 equate_decl_number_to_die (decl, type_die);
11713 /* Generate a type description DIE. */
11715 static void
11716 gen_type_die (type, context_die)
11717 tree type;
11718 dw_die_ref context_die;
11720 int need_pop;
11722 if (type == NULL_TREE || type == error_mark_node)
11723 return;
11725 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11726 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11728 if (TREE_ASM_WRITTEN (type))
11729 return;
11731 /* Prevent broken recursion; we can't hand off to the same type. */
11732 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11733 abort ();
11735 TREE_ASM_WRITTEN (type) = 1;
11736 gen_decl_die (TYPE_NAME (type), context_die);
11737 return;
11740 /* We are going to output a DIE to represent the unqualified version
11741 of this type (i.e. without any const or volatile qualifiers) so
11742 get the main variant (i.e. the unqualified version) of this type
11743 now. (Vectors are special because the debugging info is in the
11744 cloned type itself). */
11745 if (TREE_CODE (type) != VECTOR_TYPE)
11746 type = type_main_variant (type);
11748 if (TREE_ASM_WRITTEN (type))
11749 return;
11751 switch (TREE_CODE (type))
11753 case ERROR_MARK:
11754 break;
11756 case POINTER_TYPE:
11757 case REFERENCE_TYPE:
11758 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11759 ensures that the gen_type_die recursion will terminate even if the
11760 type is recursive. Recursive types are possible in Ada. */
11761 /* ??? We could perhaps do this for all types before the switch
11762 statement. */
11763 TREE_ASM_WRITTEN (type) = 1;
11765 /* For these types, all that is required is that we output a DIE (or a
11766 set of DIEs) to represent the "basis" type. */
11767 gen_type_die (TREE_TYPE (type), context_die);
11768 break;
11770 case OFFSET_TYPE:
11771 /* This code is used for C++ pointer-to-data-member types.
11772 Output a description of the relevant class type. */
11773 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11775 /* Output a description of the type of the object pointed to. */
11776 gen_type_die (TREE_TYPE (type), context_die);
11778 /* Now output a DIE to represent this pointer-to-data-member type
11779 itself. */
11780 gen_ptr_to_mbr_type_die (type, context_die);
11781 break;
11783 case SET_TYPE:
11784 gen_type_die (TYPE_DOMAIN (type), context_die);
11785 gen_set_type_die (type, context_die);
11786 break;
11788 case FILE_TYPE:
11789 gen_type_die (TREE_TYPE (type), context_die);
11790 abort (); /* No way to represent these in Dwarf yet! */
11791 break;
11793 case FUNCTION_TYPE:
11794 /* Force out return type (in case it wasn't forced out already). */
11795 gen_type_die (TREE_TYPE (type), context_die);
11796 gen_subroutine_type_die (type, context_die);
11797 break;
11799 case METHOD_TYPE:
11800 /* Force out return type (in case it wasn't forced out already). */
11801 gen_type_die (TREE_TYPE (type), context_die);
11802 gen_subroutine_type_die (type, context_die);
11803 break;
11805 case ARRAY_TYPE:
11806 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11808 gen_type_die (TREE_TYPE (type), context_die);
11809 gen_string_type_die (type, context_die);
11811 else
11812 gen_array_type_die (type, context_die);
11813 break;
11815 case VECTOR_TYPE:
11816 gen_array_type_die (type, context_die);
11817 break;
11819 case ENUMERAL_TYPE:
11820 case RECORD_TYPE:
11821 case UNION_TYPE:
11822 case QUAL_UNION_TYPE:
11823 /* If this is a nested type whose containing class hasn't been written
11824 out yet, writing it out will cover this one, too. This does not apply
11825 to instantiations of member class templates; they need to be added to
11826 the containing class as they are generated. FIXME: This hurts the
11827 idea of combining type decls from multiple TUs, since we can't predict
11828 what set of template instantiations we'll get. */
11829 if (TYPE_CONTEXT (type)
11830 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11831 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11833 gen_type_die (TYPE_CONTEXT (type), context_die);
11835 if (TREE_ASM_WRITTEN (type))
11836 return;
11838 /* If that failed, attach ourselves to the stub. */
11839 push_decl_scope (TYPE_CONTEXT (type));
11840 context_die = lookup_type_die (TYPE_CONTEXT (type));
11841 need_pop = 1;
11843 else
11844 need_pop = 0;
11846 if (TREE_CODE (type) == ENUMERAL_TYPE)
11847 gen_enumeration_type_die (type, context_die);
11848 else
11849 gen_struct_or_union_type_die (type, context_die);
11851 if (need_pop)
11852 pop_decl_scope ();
11854 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11855 it up if it is ever completed. gen_*_type_die will set it for us
11856 when appropriate. */
11857 return;
11859 case VOID_TYPE:
11860 case INTEGER_TYPE:
11861 case REAL_TYPE:
11862 case COMPLEX_TYPE:
11863 case BOOLEAN_TYPE:
11864 case CHAR_TYPE:
11865 /* No DIEs needed for fundamental types. */
11866 break;
11868 case LANG_TYPE:
11869 /* No Dwarf representation currently defined. */
11870 break;
11872 default:
11873 abort ();
11876 TREE_ASM_WRITTEN (type) = 1;
11879 /* Generate a DIE for a tagged type instantiation. */
11881 static void
11882 gen_tagged_type_instantiation_die (type, context_die)
11883 tree type;
11884 dw_die_ref context_die;
11886 if (type == NULL_TREE || type == error_mark_node)
11887 return;
11889 /* We are going to output a DIE to represent the unqualified version of
11890 this type (i.e. without any const or volatile qualifiers) so make sure
11891 that we have the main variant (i.e. the unqualified version) of this
11892 type now. */
11893 if (type != type_main_variant (type))
11894 abort ();
11896 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11897 an instance of an unresolved type. */
11899 switch (TREE_CODE (type))
11901 case ERROR_MARK:
11902 break;
11904 case ENUMERAL_TYPE:
11905 gen_inlined_enumeration_type_die (type, context_die);
11906 break;
11908 case RECORD_TYPE:
11909 gen_inlined_structure_type_die (type, context_die);
11910 break;
11912 case UNION_TYPE:
11913 case QUAL_UNION_TYPE:
11914 gen_inlined_union_type_die (type, context_die);
11915 break;
11917 default:
11918 abort ();
11922 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11923 things which are local to the given block. */
11925 static void
11926 gen_block_die (stmt, context_die, depth)
11927 tree stmt;
11928 dw_die_ref context_die;
11929 int depth;
11931 int must_output_die = 0;
11932 tree origin;
11933 tree decl;
11934 enum tree_code origin_code;
11936 /* Ignore blocks never really used to make RTL. */
11937 if (stmt == NULL_TREE || !TREE_USED (stmt)
11938 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11939 return;
11941 /* If the block is one fragment of a non-contiguous block, do not
11942 process the variables, since they will have been done by the
11943 origin block. Do process subblocks. */
11944 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11946 tree sub;
11948 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11949 gen_block_die (sub, context_die, depth + 1);
11951 return;
11954 /* Determine the "ultimate origin" of this block. This block may be an
11955 inlined instance of an inlined instance of inline function, so we have
11956 to trace all of the way back through the origin chain to find out what
11957 sort of node actually served as the original seed for the creation of
11958 the current block. */
11959 origin = block_ultimate_origin (stmt);
11960 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11962 /* Determine if we need to output any Dwarf DIEs at all to represent this
11963 block. */
11964 if (origin_code == FUNCTION_DECL)
11965 /* The outer scopes for inlinings *must* always be represented. We
11966 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11967 must_output_die = 1;
11968 else
11970 /* In the case where the current block represents an inlining of the
11971 "body block" of an inline function, we must *NOT* output any DIE for
11972 this block because we have already output a DIE to represent the whole
11973 inlined function scope and the "body block" of any function doesn't
11974 really represent a different scope according to ANSI C rules. So we
11975 check here to make sure that this block does not represent a "body
11976 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11977 if (! is_body_block (origin ? origin : stmt))
11979 /* Determine if this block directly contains any "significant"
11980 local declarations which we will need to output DIEs for. */
11981 if (debug_info_level > DINFO_LEVEL_TERSE)
11982 /* We are not in terse mode so *any* local declaration counts
11983 as being a "significant" one. */
11984 must_output_die = (BLOCK_VARS (stmt) != NULL);
11985 else
11986 /* We are in terse mode, so only local (nested) function
11987 definitions count as "significant" local declarations. */
11988 for (decl = BLOCK_VARS (stmt);
11989 decl != NULL; decl = TREE_CHAIN (decl))
11990 if (TREE_CODE (decl) == FUNCTION_DECL
11991 && DECL_INITIAL (decl))
11993 must_output_die = 1;
11994 break;
11999 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12000 DIE for any block which contains no significant local declarations at
12001 all. Rather, in such cases we just call `decls_for_scope' so that any
12002 needed Dwarf info for any sub-blocks will get properly generated. Note
12003 that in terse mode, our definition of what constitutes a "significant"
12004 local declaration gets restricted to include only inlined function
12005 instances and local (nested) function definitions. */
12006 if (must_output_die)
12008 if (origin_code == FUNCTION_DECL)
12009 gen_inlined_subroutine_die (stmt, context_die, depth);
12010 else
12011 gen_lexical_block_die (stmt, context_die, depth);
12013 else
12014 decls_for_scope (stmt, context_die, depth);
12017 /* Generate all of the decls declared within a given scope and (recursively)
12018 all of its sub-blocks. */
12020 static void
12021 decls_for_scope (stmt, context_die, depth)
12022 tree stmt;
12023 dw_die_ref context_die;
12024 int depth;
12026 tree decl;
12027 tree subblocks;
12029 /* Ignore blocks never really used to make RTL. */
12030 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12031 return;
12033 /* Output the DIEs to represent all of the data objects and typedefs
12034 declared directly within this block but not within any nested
12035 sub-blocks. Also, nested function and tag DIEs have been
12036 generated with a parent of NULL; fix that up now. */
12037 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12039 dw_die_ref die;
12041 if (TREE_CODE (decl) == FUNCTION_DECL)
12042 die = lookup_decl_die (decl);
12043 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12044 die = lookup_type_die (TREE_TYPE (decl));
12045 else
12046 die = NULL;
12048 if (die != NULL && die->die_parent == NULL)
12049 add_child_die (context_die, die);
12050 else
12051 gen_decl_die (decl, context_die);
12054 /* If we're at -g1, we're not interested in subblocks. */
12055 if (debug_info_level <= DINFO_LEVEL_TERSE)
12056 return;
12058 /* Output the DIEs to represent all sub-blocks (and the items declared
12059 therein) of this block. */
12060 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12061 subblocks != NULL;
12062 subblocks = BLOCK_CHAIN (subblocks))
12063 gen_block_die (subblocks, context_die, depth + 1);
12066 /* Is this a typedef we can avoid emitting? */
12068 static inline int
12069 is_redundant_typedef (decl)
12070 tree decl;
12072 if (TYPE_DECL_IS_STUB (decl))
12073 return 1;
12075 if (DECL_ARTIFICIAL (decl)
12076 && DECL_CONTEXT (decl)
12077 && is_tagged_type (DECL_CONTEXT (decl))
12078 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12079 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12080 /* Also ignore the artificial member typedef for the class name. */
12081 return 1;
12083 return 0;
12086 /* Generate Dwarf debug information for a decl described by DECL. */
12088 static void
12089 gen_decl_die (decl, context_die)
12090 tree decl;
12091 dw_die_ref context_die;
12093 tree origin;
12095 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12096 return;
12098 switch (TREE_CODE (decl))
12100 case ERROR_MARK:
12101 break;
12103 case CONST_DECL:
12104 /* The individual enumerators of an enum type get output when we output
12105 the Dwarf representation of the relevant enum type itself. */
12106 break;
12108 case FUNCTION_DECL:
12109 /* Don't output any DIEs to represent mere function declarations,
12110 unless they are class members or explicit block externs. */
12111 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12112 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12113 break;
12115 /* If we're emitting a clone, emit info for the abstract instance. */
12116 if (DECL_ORIGIN (decl) != decl)
12117 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12119 /* If we're emitting an out-of-line copy of an inline function,
12120 emit info for the abstract instance and set up to refer to it. */
12121 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
12122 && ! class_scope_p (context_die)
12123 /* dwarf2out_abstract_function won't emit a die if this is just
12124 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12125 that case, because that works only if we have a die. */
12126 && DECL_INITIAL (decl) != NULL_TREE)
12128 dwarf2out_abstract_function (decl);
12129 set_decl_origin_self (decl);
12132 /* Otherwise we're emitting the primary DIE for this decl. */
12133 else if (debug_info_level > DINFO_LEVEL_TERSE)
12135 /* Before we describe the FUNCTION_DECL itself, make sure that we
12136 have described its return type. */
12137 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12139 /* And its virtual context. */
12140 if (DECL_VINDEX (decl) != NULL_TREE)
12141 gen_type_die (DECL_CONTEXT (decl), context_die);
12143 /* And its containing type. */
12144 origin = decl_class_context (decl);
12145 if (origin != NULL_TREE)
12146 gen_type_die_for_member (origin, decl, context_die);
12149 /* Now output a DIE to represent the function itself. */
12150 gen_subprogram_die (decl, context_die);
12151 break;
12153 case TYPE_DECL:
12154 /* If we are in terse mode, don't generate any DIEs to represent any
12155 actual typedefs. */
12156 if (debug_info_level <= DINFO_LEVEL_TERSE)
12157 break;
12159 /* In the special case of a TYPE_DECL node representing the declaration
12160 of some type tag, if the given TYPE_DECL is marked as having been
12161 instantiated from some other (original) TYPE_DECL node (e.g. one which
12162 was generated within the original definition of an inline function) we
12163 have to generate a special (abbreviated) DW_TAG_structure_type,
12164 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12165 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12167 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12168 break;
12171 if (is_redundant_typedef (decl))
12172 gen_type_die (TREE_TYPE (decl), context_die);
12173 else
12174 /* Output a DIE to represent the typedef itself. */
12175 gen_typedef_die (decl, context_die);
12176 break;
12178 case LABEL_DECL:
12179 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12180 gen_label_die (decl, context_die);
12181 break;
12183 case VAR_DECL:
12184 /* If we are in terse mode, don't generate any DIEs to represent any
12185 variable declarations or definitions. */
12186 if (debug_info_level <= DINFO_LEVEL_TERSE)
12187 break;
12189 /* Output any DIEs that are needed to specify the type of this data
12190 object. */
12191 gen_type_die (TREE_TYPE (decl), context_die);
12193 /* And its containing type. */
12194 origin = decl_class_context (decl);
12195 if (origin != NULL_TREE)
12196 gen_type_die_for_member (origin, decl, context_die);
12198 /* Now output the DIE to represent the data object itself. This gets
12199 complicated because of the possibility that the VAR_DECL really
12200 represents an inlined instance of a formal parameter for an inline
12201 function. */
12202 origin = decl_ultimate_origin (decl);
12203 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12204 gen_formal_parameter_die (decl, context_die);
12205 else
12206 gen_variable_die (decl, context_die);
12207 break;
12209 case FIELD_DECL:
12210 /* Ignore the nameless fields that are used to skip bits but handle C++
12211 anonymous unions. */
12212 if (DECL_NAME (decl) != NULL_TREE
12213 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12215 gen_type_die (member_declared_type (decl), context_die);
12216 gen_field_die (decl, context_die);
12218 break;
12220 case PARM_DECL:
12221 gen_type_die (TREE_TYPE (decl), context_die);
12222 gen_formal_parameter_die (decl, context_die);
12223 break;
12225 case NAMESPACE_DECL:
12226 /* Ignore for now. */
12227 break;
12229 default:
12230 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12231 /* Probably some frontend-internal decl. Assume we don't care. */
12232 break;
12233 abort ();
12237 /* Add Ada "use" clause information for SGI Workshop debugger. */
12239 void
12240 dwarf2out_add_library_unit_info (filename, context_list)
12241 const char *filename;
12242 const char *context_list;
12244 unsigned int file_index;
12246 if (filename != NULL)
12248 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12249 tree context_list_decl
12250 = build_decl (LABEL_DECL, get_identifier (context_list),
12251 void_type_node);
12253 TREE_PUBLIC (context_list_decl) = TRUE;
12254 add_name_attribute (unit_die, context_list);
12255 file_index = lookup_filename (filename);
12256 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12257 add_pubname (context_list_decl, unit_die);
12261 /* Output debug information for global decl DECL. Called from toplev.c after
12262 compilation proper has finished. */
12264 static void
12265 dwarf2out_global_decl (decl)
12266 tree decl;
12268 /* Output DWARF2 information for file-scope tentative data object
12269 declarations, file-scope (extern) function declarations (which had no
12270 corresponding body) and file-scope tagged type declarations and
12271 definitions which have not yet been forced out. */
12272 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12273 dwarf2out_decl (decl);
12276 /* Write the debugging output for DECL. */
12278 void
12279 dwarf2out_decl (decl)
12280 tree decl;
12282 dw_die_ref context_die = comp_unit_die;
12284 switch (TREE_CODE (decl))
12286 case ERROR_MARK:
12287 return;
12289 case FUNCTION_DECL:
12290 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12291 builtin function. Explicit programmer-supplied declarations of
12292 these same functions should NOT be ignored however. */
12293 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12294 return;
12296 /* What we would really like to do here is to filter out all mere
12297 file-scope declarations of file-scope functions which are never
12298 referenced later within this translation unit (and keep all of ones
12299 that *are* referenced later on) but we aren't clairvoyant, so we have
12300 no idea which functions will be referenced in the future (i.e. later
12301 on within the current translation unit). So here we just ignore all
12302 file-scope function declarations which are not also definitions. If
12303 and when the debugger needs to know something about these functions,
12304 it will have to hunt around and find the DWARF information associated
12305 with the definition of the function.
12307 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12308 nodes represent definitions and which ones represent mere
12309 declarations. We have to check DECL_INITIAL instead. That's because
12310 the C front-end supports some weird semantics for "extern inline"
12311 function definitions. These can get inlined within the current
12312 translation unit (an thus, we need to generate Dwarf info for their
12313 abstract instances so that the Dwarf info for the concrete inlined
12314 instances can have something to refer to) but the compiler never
12315 generates any out-of-lines instances of such things (despite the fact
12316 that they *are* definitions).
12318 The important point is that the C front-end marks these "extern
12319 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12320 them anyway. Note that the C++ front-end also plays some similar games
12321 for inline function definitions appearing within include files which
12322 also contain `#pragma interface' pragmas. */
12323 if (DECL_INITIAL (decl) == NULL_TREE)
12324 return;
12326 /* If we're a nested function, initially use a parent of NULL; if we're
12327 a plain function, this will be fixed up in decls_for_scope. If
12328 we're a method, it will be ignored, since we already have a DIE. */
12329 if (decl_function_context (decl)
12330 /* But if we're in terse mode, we don't care about scope. */
12331 && debug_info_level > DINFO_LEVEL_TERSE)
12332 context_die = NULL;
12333 break;
12335 case VAR_DECL:
12336 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12337 declaration and if the declaration was never even referenced from
12338 within this entire compilation unit. We suppress these DIEs in
12339 order to save space in the .debug section (by eliminating entries
12340 which are probably useless). Note that we must not suppress
12341 block-local extern declarations (whether used or not) because that
12342 would screw-up the debugger's name lookup mechanism and cause it to
12343 miss things which really ought to be in scope at a given point. */
12344 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12345 return;
12347 /* If we are in terse mode, don't generate any DIEs to represent any
12348 variable declarations or definitions. */
12349 if (debug_info_level <= DINFO_LEVEL_TERSE)
12350 return;
12351 break;
12353 case TYPE_DECL:
12354 /* Don't emit stubs for types unless they are needed by other DIEs. */
12355 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12356 return;
12358 /* Don't bother trying to generate any DIEs to represent any of the
12359 normal built-in types for the language we are compiling. */
12360 if (DECL_SOURCE_LINE (decl) == 0)
12362 /* OK, we need to generate one for `bool' so GDB knows what type
12363 comparisons have. */
12364 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12365 == DW_LANG_C_plus_plus)
12366 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12367 && ! DECL_IGNORED_P (decl))
12368 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12370 return;
12373 /* If we are in terse mode, don't generate any DIEs for types. */
12374 if (debug_info_level <= DINFO_LEVEL_TERSE)
12375 return;
12377 /* If we're a function-scope tag, initially use a parent of NULL;
12378 this will be fixed up in decls_for_scope. */
12379 if (decl_function_context (decl))
12380 context_die = NULL;
12382 break;
12384 default:
12385 return;
12388 gen_decl_die (decl, context_die);
12391 /* Output a marker (i.e. a label) for the beginning of the generated code for
12392 a lexical block. */
12394 static void
12395 dwarf2out_begin_block (line, blocknum)
12396 unsigned int line ATTRIBUTE_UNUSED;
12397 unsigned int blocknum;
12399 function_section (current_function_decl);
12400 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12403 /* Output a marker (i.e. a label) for the end of the generated code for a
12404 lexical block. */
12406 static void
12407 dwarf2out_end_block (line, blocknum)
12408 unsigned int line ATTRIBUTE_UNUSED;
12409 unsigned int blocknum;
12411 function_section (current_function_decl);
12412 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12415 /* Returns nonzero if it is appropriate not to emit any debugging
12416 information for BLOCK, because it doesn't contain any instructions.
12418 Don't allow this for blocks with nested functions or local classes
12419 as we would end up with orphans, and in the presence of scheduling
12420 we may end up calling them anyway. */
12422 static bool
12423 dwarf2out_ignore_block (block)
12424 tree block;
12426 tree decl;
12428 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12429 if (TREE_CODE (decl) == FUNCTION_DECL
12430 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12431 return 0;
12433 return 1;
12436 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12437 dwarf2out.c) and return its "index". The index of each (known) filename is
12438 just a unique number which is associated with only that one filename. We
12439 need such numbers for the sake of generating labels (in the .debug_sfnames
12440 section) and references to those files numbers (in the .debug_srcinfo
12441 and.debug_macinfo sections). If the filename given as an argument is not
12442 found in our current list, add it to the list and assign it the next
12443 available unique index number. In order to speed up searches, we remember
12444 the index of the filename was looked up last. This handles the majority of
12445 all searches. */
12447 static unsigned
12448 lookup_filename (file_name)
12449 const char *file_name;
12451 size_t i, n;
12452 char *save_file_name;
12454 /* Check to see if the file name that was searched on the previous
12455 call matches this file name. If so, return the index. */
12456 if (file_table_last_lookup_index != 0)
12458 const char *last
12459 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12460 if (strcmp (file_name, last) == 0)
12461 return file_table_last_lookup_index;
12464 /* Didn't match the previous lookup, search the table */
12465 n = VARRAY_ACTIVE_SIZE (file_table);
12466 for (i = 1; i < n; i++)
12467 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12469 file_table_last_lookup_index = i;
12470 return i;
12473 /* Add the new entry to the end of the filename table. */
12474 file_table_last_lookup_index = n;
12475 save_file_name = (char *) ggc_strdup (file_name);
12476 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12477 VARRAY_PUSH_UINT (file_table_emitted, 0);
12479 return i;
12482 static int
12483 maybe_emit_file (fileno)
12484 int fileno;
12486 static int emitcount = 0;
12487 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12489 if (!VARRAY_UINT (file_table_emitted, fileno))
12491 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12492 fprintf (asm_out_file, "\t.file %u ",
12493 VARRAY_UINT (file_table_emitted, fileno));
12494 output_quoted_string (asm_out_file,
12495 VARRAY_CHAR_PTR (file_table, fileno));
12496 fputc ('\n', asm_out_file);
12498 return VARRAY_UINT (file_table_emitted, fileno);
12500 else
12501 return fileno;
12504 static void
12505 init_file_table ()
12507 /* Allocate the initial hunk of the file_table. */
12508 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12509 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12511 /* Skip the first entry - file numbers begin at 1. */
12512 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12513 VARRAY_PUSH_UINT (file_table_emitted, 0);
12514 file_table_last_lookup_index = 0;
12517 /* Output a label to mark the beginning of a source code line entry
12518 and record information relating to this source line, in
12519 'line_info_table' for later output of the .debug_line section. */
12521 static void
12522 dwarf2out_source_line (line, filename)
12523 unsigned int line;
12524 const char *filename;
12526 if (debug_info_level >= DINFO_LEVEL_NORMAL
12527 && line != 0)
12529 function_section (current_function_decl);
12531 /* If requested, emit something human-readable. */
12532 if (flag_debug_asm)
12533 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12534 filename, line);
12536 if (DWARF2_ASM_LINE_DEBUG_INFO)
12538 unsigned file_num = lookup_filename (filename);
12540 file_num = maybe_emit_file (file_num);
12542 /* Emit the .loc directive understood by GNU as. */
12543 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12545 /* Indicate that line number info exists. */
12546 line_info_table_in_use++;
12548 /* Indicate that multiple line number tables exist. */
12549 if (DECL_SECTION_NAME (current_function_decl))
12550 separate_line_info_table_in_use++;
12552 else if (DECL_SECTION_NAME (current_function_decl))
12554 dw_separate_line_info_ref line_info;
12555 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12556 separate_line_info_table_in_use);
12558 /* expand the line info table if necessary */
12559 if (separate_line_info_table_in_use
12560 == separate_line_info_table_allocated)
12562 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12563 separate_line_info_table
12564 = (dw_separate_line_info_ref)
12565 ggc_realloc (separate_line_info_table,
12566 separate_line_info_table_allocated
12567 * sizeof (dw_separate_line_info_entry));
12568 memset ((separate_line_info_table
12569 + separate_line_info_table_in_use),
12571 (LINE_INFO_TABLE_INCREMENT
12572 * sizeof (dw_separate_line_info_entry)));
12575 /* Add the new entry at the end of the line_info_table. */
12576 line_info
12577 = &separate_line_info_table[separate_line_info_table_in_use++];
12578 line_info->dw_file_num = lookup_filename (filename);
12579 line_info->dw_line_num = line;
12580 line_info->function = current_function_funcdef_no;
12582 else
12584 dw_line_info_ref line_info;
12586 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12587 line_info_table_in_use);
12589 /* Expand the line info table if necessary. */
12590 if (line_info_table_in_use == line_info_table_allocated)
12592 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12593 line_info_table
12594 = ggc_realloc (line_info_table,
12595 (line_info_table_allocated
12596 * sizeof (dw_line_info_entry)));
12597 memset (line_info_table + line_info_table_in_use, 0,
12598 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12601 /* Add the new entry at the end of the line_info_table. */
12602 line_info = &line_info_table[line_info_table_in_use++];
12603 line_info->dw_file_num = lookup_filename (filename);
12604 line_info->dw_line_num = line;
12609 /* Record the beginning of a new source file. */
12611 static void
12612 dwarf2out_start_source_file (lineno, filename)
12613 unsigned int lineno;
12614 const char *filename;
12616 if (flag_eliminate_dwarf2_dups && !is_main_source)
12618 /* Record the beginning of the file for break_out_includes. */
12619 dw_die_ref bincl_die;
12621 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12622 add_AT_string (bincl_die, DW_AT_name, filename);
12625 is_main_source = 0;
12627 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12629 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12630 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12631 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12632 lineno);
12633 maybe_emit_file (lookup_filename (filename));
12634 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12635 "Filename we just started");
12639 /* Record the end of a source file. */
12641 static void
12642 dwarf2out_end_source_file (lineno)
12643 unsigned int lineno ATTRIBUTE_UNUSED;
12645 if (flag_eliminate_dwarf2_dups)
12646 /* Record the end of the file for break_out_includes. */
12647 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12649 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12651 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12652 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12656 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12657 the tail part of the directive line, i.e. the part which is past the
12658 initial whitespace, #, whitespace, directive-name, whitespace part. */
12660 static void
12661 dwarf2out_define (lineno, buffer)
12662 unsigned lineno ATTRIBUTE_UNUSED;
12663 const char *buffer ATTRIBUTE_UNUSED;
12665 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12667 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12668 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12669 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12670 dw2_asm_output_nstring (buffer, -1, "The macro");
12674 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12675 the tail part of the directive line, i.e. the part which is past the
12676 initial whitespace, #, whitespace, directive-name, whitespace part. */
12678 static void
12679 dwarf2out_undef (lineno, buffer)
12680 unsigned lineno ATTRIBUTE_UNUSED;
12681 const char *buffer ATTRIBUTE_UNUSED;
12683 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12685 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12686 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12687 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12688 dw2_asm_output_nstring (buffer, -1, "The macro");
12692 /* Set up for Dwarf output at the start of compilation. */
12694 static void
12695 dwarf2out_init (input_filename)
12696 const char *input_filename ATTRIBUTE_UNUSED;
12698 init_file_table ();
12700 /* Allocate the initial hunk of the decl_die_table. */
12701 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12702 * sizeof (dw_die_ref));
12703 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12704 decl_die_table_in_use = 0;
12706 /* Allocate the initial hunk of the decl_scope_table. */
12707 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12709 /* Allocate the initial hunk of the abbrev_die_table. */
12710 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12711 * sizeof (dw_die_ref));
12712 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12713 /* Zero-th entry is allocated, but unused */
12714 abbrev_die_table_in_use = 1;
12716 /* Allocate the initial hunk of the line_info_table. */
12717 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12718 * sizeof (dw_line_info_entry));
12719 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12721 /* Zero-th entry is allocated, but unused */
12722 line_info_table_in_use = 1;
12724 /* Generate the initial DIE for the .debug section. Note that the (string)
12725 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12726 will (typically) be a relative pathname and that this pathname should be
12727 taken as being relative to the directory from which the compiler was
12728 invoked when the given (base) source file was compiled. We will fill
12729 in this value in dwarf2out_finish. */
12730 comp_unit_die = gen_compile_unit_die (NULL);
12731 is_main_source = 1;
12733 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12735 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12737 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12738 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12739 DEBUG_ABBREV_SECTION_LABEL, 0);
12740 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12741 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12742 else
12743 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12745 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12746 DEBUG_INFO_SECTION_LABEL, 0);
12747 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12748 DEBUG_LINE_SECTION_LABEL, 0);
12749 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12750 DEBUG_RANGES_SECTION_LABEL, 0);
12751 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12752 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12753 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12754 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12755 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12756 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12758 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12760 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12761 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12762 DEBUG_MACINFO_SECTION_LABEL, 0);
12763 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12766 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12768 text_section ();
12769 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12773 /* A helper function for dwarf2out_finish called through
12774 ht_forall. Emit one queued .debug_str string. */
12776 static int
12777 output_indirect_string (h, v)
12778 void **h;
12779 void *v ATTRIBUTE_UNUSED;
12781 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12783 if (node->form == DW_FORM_strp)
12785 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12786 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12787 assemble_string (node->str, strlen (node->str) + 1);
12790 return 1;
12795 /* Clear the marks for a die and its children.
12796 Be cool if the mark isn't set. */
12798 static void
12799 prune_unmark_dies (die)
12800 dw_die_ref die;
12802 dw_die_ref c;
12803 die->die_mark = 0;
12804 for (c = die->die_child; c; c = c->die_sib)
12805 prune_unmark_dies (c);
12809 /* Given DIE that we're marking as used, find any other dies
12810 it references as attributes and mark them as used. */
12812 static void
12813 prune_unused_types_walk_attribs (die)
12814 dw_die_ref die;
12816 dw_attr_ref a;
12818 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12820 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12822 /* A reference to another DIE.
12823 Make sure that it will get emitted. */
12824 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12826 else if (a->dw_attr == DW_AT_decl_file)
12828 /* A reference to a file. Make sure the file name is emitted. */
12829 a->dw_attr_val.v.val_unsigned =
12830 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12836 /* Mark DIE as being used. If DOKIDS is true, then walk down
12837 to DIE's children. */
12839 static void
12840 prune_unused_types_mark (die, dokids)
12841 dw_die_ref die;
12842 int dokids;
12844 dw_die_ref c;
12846 if (die->die_mark == 0)
12848 /* We haven't done this node yet. Mark it as used. */
12849 die->die_mark = 1;
12851 /* We also have to mark its parents as used.
12852 (But we don't want to mark our parents' kids due to this.) */
12853 if (die->die_parent)
12854 prune_unused_types_mark (die->die_parent, 0);
12856 /* Mark any referenced nodes. */
12857 prune_unused_types_walk_attribs (die);
12860 if (dokids && die->die_mark != 2)
12862 /* We need to walk the children, but haven't done so yet.
12863 Remember that we've walked the kids. */
12864 die->die_mark = 2;
12866 /* Walk them. */
12867 for (c = die->die_child; c; c = c->die_sib)
12869 /* If this is an array type, we need to make sure our
12870 kids get marked, even if they're types. */
12871 if (die->die_tag == DW_TAG_array_type)
12872 prune_unused_types_mark (c, 1);
12873 else
12874 prune_unused_types_walk (c);
12880 /* Walk the tree DIE and mark types that we actually use. */
12882 static void
12883 prune_unused_types_walk (die)
12884 dw_die_ref die;
12886 dw_die_ref c;
12888 /* Don't do anything if this node is already marked. */
12889 if (die->die_mark)
12890 return;
12892 switch (die->die_tag) {
12893 case DW_TAG_const_type:
12894 case DW_TAG_packed_type:
12895 case DW_TAG_pointer_type:
12896 case DW_TAG_reference_type:
12897 case DW_TAG_volatile_type:
12898 case DW_TAG_typedef:
12899 case DW_TAG_array_type:
12900 case DW_TAG_structure_type:
12901 case DW_TAG_union_type:
12902 case DW_TAG_class_type:
12903 case DW_TAG_friend:
12904 case DW_TAG_variant_part:
12905 case DW_TAG_enumeration_type:
12906 case DW_TAG_subroutine_type:
12907 case DW_TAG_string_type:
12908 case DW_TAG_set_type:
12909 case DW_TAG_subrange_type:
12910 case DW_TAG_ptr_to_member_type:
12911 case DW_TAG_file_type:
12912 /* It's a type node --- don't mark it. */
12913 return;
12915 default:
12916 /* Mark everything else. */
12917 break;
12920 die->die_mark = 1;
12922 /* Now, mark any dies referenced from here. */
12923 prune_unused_types_walk_attribs (die);
12925 /* Mark children. */
12926 for (c = die->die_child; c; c = c->die_sib)
12927 prune_unused_types_walk (c);
12931 /* Remove from the tree DIE any dies that aren't marked. */
12933 static void
12934 prune_unused_types_prune (die)
12935 dw_die_ref die;
12937 dw_die_ref c, p, n;
12938 if (!die->die_mark)
12939 abort();
12941 p = NULL;
12942 for (c = die->die_child; c; c = n)
12944 n = c->die_sib;
12945 if (c->die_mark)
12947 prune_unused_types_prune (c);
12948 p = c;
12950 else
12952 if (p)
12953 p->die_sib = n;
12954 else
12955 die->die_child = n;
12956 free_die (c);
12962 /* Remove dies representing declarations that we never use. */
12964 static void
12965 prune_unused_types ()
12967 unsigned int i;
12968 limbo_die_node *node;
12970 /* Clear all the marks. */
12971 prune_unmark_dies (comp_unit_die);
12972 for (node = limbo_die_list; node; node = node->next)
12973 prune_unmark_dies (node->die);
12975 /* Set the mark on nodes that are actually used. */
12976 prune_unused_types_walk (comp_unit_die);
12977 for (node = limbo_die_list; node; node = node->next)
12978 prune_unused_types_walk (node->die);
12980 /* Also set the mark on nodes referenced from the
12981 pubname_table or arange_table. */
12982 for (i = 0; i < pubname_table_in_use; i++)
12983 prune_unused_types_mark (pubname_table[i].die, 1);
12984 for (i = 0; i < arange_table_in_use; i++)
12985 prune_unused_types_mark (arange_table[i], 1);
12987 /* Get rid of nodes that aren't marked. */
12988 prune_unused_types_prune (comp_unit_die);
12989 for (node = limbo_die_list; node; node = node->next)
12990 prune_unused_types_prune (node->die);
12992 /* Leave the marks clear. */
12993 prune_unmark_dies (comp_unit_die);
12994 for (node = limbo_die_list; node; node = node->next)
12995 prune_unmark_dies (node->die);
12998 /* Output stuff that dwarf requires at the end of every file,
12999 and generate the DWARF-2 debugging info. */
13001 static void
13002 dwarf2out_finish (input_filename)
13003 const char *input_filename;
13005 limbo_die_node *node, *next_node;
13006 dw_die_ref die = 0;
13008 /* Add the name for the main input file now. We delayed this from
13009 dwarf2out_init to avoid complications with PCH. */
13010 add_name_attribute (comp_unit_die, input_filename);
13011 if (input_filename[0] != DIR_SEPARATOR)
13012 add_comp_dir_attribute (comp_unit_die);
13013 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13015 size_t i;
13016 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13017 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR)
13019 add_comp_dir_attribute (comp_unit_die);
13020 break;
13024 /* Traverse the limbo die list, and add parent/child links. The only
13025 dies without parents that should be here are concrete instances of
13026 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13027 For concrete instances, we can get the parent die from the abstract
13028 instance. */
13029 for (node = limbo_die_list; node; node = next_node)
13031 next_node = node->next;
13032 die = node->die;
13034 if (die->die_parent == NULL)
13036 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13037 tree context;
13039 if (origin)
13040 add_child_die (origin->die_parent, die);
13041 else if (die == comp_unit_die)
13043 /* If this was an expression for a bound involved in a function
13044 return type, it may be a SAVE_EXPR for which we weren't able
13045 to find a DIE previously. So try now. */
13046 else if (node->created_for
13047 && TREE_CODE (node->created_for) == SAVE_EXPR
13048 && 0 != (origin = (lookup_decl_die
13049 (SAVE_EXPR_CONTEXT
13050 (node->created_for)))))
13051 add_child_die (origin, die);
13052 else if (errorcount > 0 || sorrycount > 0)
13053 /* It's OK to be confused by errors in the input. */
13054 add_child_die (comp_unit_die, die);
13055 else if (node->created_for
13056 && ((DECL_P (node->created_for)
13057 && (context = DECL_CONTEXT (node->created_for)))
13058 || (TYPE_P (node->created_for)
13059 && (context = TYPE_CONTEXT (node->created_for))))
13060 && TREE_CODE (context) == FUNCTION_DECL)
13062 /* In certain situations, the lexical block containing a
13063 nested function can be optimized away, which results
13064 in the nested function die being orphaned. Likewise
13065 with the return type of that nested function. Force
13066 this to be a child of the containing function. */
13067 origin = lookup_decl_die (context);
13068 if (! origin)
13069 abort ();
13070 add_child_die (origin, die);
13072 else
13073 abort ();
13077 limbo_die_list = NULL;
13079 /* Walk through the list of incomplete types again, trying once more to
13080 emit full debugging info for them. */
13081 retry_incomplete_types ();
13083 /* We need to reverse all the dies before break_out_includes, or
13084 we'll see the end of an include file before the beginning. */
13085 reverse_all_dies (comp_unit_die);
13087 if (flag_eliminate_unused_debug_types)
13088 prune_unused_types ();
13090 /* Generate separate CUs for each of the include files we've seen.
13091 They will go into limbo_die_list. */
13092 if (flag_eliminate_dwarf2_dups)
13093 break_out_includes (comp_unit_die);
13095 /* Traverse the DIE's and add add sibling attributes to those DIE's
13096 that have children. */
13097 add_sibling_attributes (comp_unit_die);
13098 for (node = limbo_die_list; node; node = node->next)
13099 add_sibling_attributes (node->die);
13101 /* Output a terminator label for the .text section. */
13102 text_section ();
13103 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
13105 /* Output the source line correspondence table. We must do this
13106 even if there is no line information. Otherwise, on an empty
13107 translation unit, we will generate a present, but empty,
13108 .debug_info section. IRIX 6.5 `nm' will then complain when
13109 examining the file. */
13110 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13112 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13113 output_line_info ();
13116 /* Output location list section if necessary. */
13117 if (have_location_lists)
13119 /* Output the location lists info. */
13120 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13121 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13122 DEBUG_LOC_SECTION_LABEL, 0);
13123 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13124 output_location_lists (die);
13125 have_location_lists = 0;
13128 /* We can only use the low/high_pc attributes if all of the code was
13129 in .text. */
13130 if (separate_line_info_table_in_use == 0)
13132 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13133 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13136 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13137 "base address". Use zero so that these addresses become absolute. */
13138 else if (have_location_lists || ranges_table_in_use)
13139 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13141 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13142 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13143 debug_line_section_label);
13145 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13146 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13148 /* Output all of the compilation units. We put the main one last so that
13149 the offsets are available to output_pubnames. */
13150 for (node = limbo_die_list; node; node = node->next)
13151 output_comp_unit (node->die, 0);
13153 output_comp_unit (comp_unit_die, 0);
13155 /* Output the abbreviation table. */
13156 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13157 output_abbrev_section ();
13159 /* Output public names table if necessary. */
13160 if (pubname_table_in_use)
13162 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13163 output_pubnames ();
13166 /* Output the address range information. We only put functions in the arange
13167 table, so don't write it out if we don't have any. */
13168 if (fde_table_in_use)
13170 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13171 output_aranges ();
13174 /* Output ranges section if necessary. */
13175 if (ranges_table_in_use)
13177 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13178 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13179 output_ranges ();
13182 /* Have to end the primary source file. */
13183 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13185 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13186 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13187 dw2_asm_output_data (1, 0, "End compilation unit");
13190 /* If we emitted any DW_FORM_strp form attribute, output the string
13191 table too. */
13192 if (debug_str_hash)
13193 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13195 #else
13197 /* This should never be used, but its address is needed for comparisons. */
13198 const struct gcc_debug_hooks dwarf2_debug_hooks;
13200 #endif /* DWARF2_DEBUGGING_INFO */
13202 #include "gt-dwarf2out.h"