PR target/64761
[official-gcc.git] / gcc / cfgcleanup.c
blobcee152e90cea44e21e94e8c1b83e69ab4340e562
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains optimizer of the control flow. The main entry point is
21 cleanup_cfg. Following optimizations are performed:
23 - Unreachable blocks removal
24 - Edge forwarding (edge to the forwarder block is forwarded to its
25 successor. Simplification of the branch instruction is performed by
26 underlying infrastructure so branch can be converted to simplejump or
27 eliminated).
28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "rtl.h"
37 #include "hash-set.h"
38 #include "machmode.h"
39 #include "vec.h"
40 #include "double-int.h"
41 #include "input.h"
42 #include "alias.h"
43 #include "symtab.h"
44 #include "wide-int.h"
45 #include "inchash.h"
46 #include "tree.h"
47 #include "hard-reg-set.h"
48 #include "regs.h"
49 #include "insn-config.h"
50 #include "flags.h"
51 #include "recog.h"
52 #include "diagnostic-core.h"
53 #include "cselib.h"
54 #include "params.h"
55 #include "tm_p.h"
56 #include "target.h"
57 #include "hashtab.h"
58 #include "function.h" /* For inline functions in emit-rtl.h they need crtl. */
59 #include "emit-rtl.h"
60 #include "tree-pass.h"
61 #include "cfgloop.h"
62 #include "function.h"
63 #include "statistics.h"
64 #include "real.h"
65 #include "fixed-value.h"
66 #include "expmed.h"
67 #include "dojump.h"
68 #include "explow.h"
69 #include "calls.h"
70 #include "varasm.h"
71 #include "stmt.h"
72 #include "expr.h"
73 #include "dominance.h"
74 #include "cfg.h"
75 #include "cfgrtl.h"
76 #include "cfganal.h"
77 #include "cfgbuild.h"
78 #include "cfgcleanup.h"
79 #include "predict.h"
80 #include "basic-block.h"
81 #include "df.h"
82 #include "dce.h"
83 #include "dbgcnt.h"
84 #include "rtl-iter.h"
86 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
88 /* Set to true when we are running first pass of try_optimize_cfg loop. */
89 static bool first_pass;
91 /* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
92 static bool crossjumps_occured;
94 /* Set to true if we couldn't run an optimization due to stale liveness
95 information; we should run df_analyze to enable more opportunities. */
96 static bool block_was_dirty;
98 static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
99 static bool try_crossjump_bb (int, basic_block);
100 static bool outgoing_edges_match (int, basic_block, basic_block);
101 static enum replace_direction old_insns_match_p (int, rtx_insn *, rtx_insn *);
103 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
104 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
105 static bool try_optimize_cfg (int);
106 static bool try_simplify_condjump (basic_block);
107 static bool try_forward_edges (int, basic_block);
108 static edge thread_jump (edge, basic_block);
109 static bool mark_effect (rtx, bitmap);
110 static void notice_new_block (basic_block);
111 static void update_forwarder_flag (basic_block);
112 static void merge_memattrs (rtx, rtx);
114 /* Set flags for newly created block. */
116 static void
117 notice_new_block (basic_block bb)
119 if (!bb)
120 return;
122 if (forwarder_block_p (bb))
123 bb->flags |= BB_FORWARDER_BLOCK;
126 /* Recompute forwarder flag after block has been modified. */
128 static void
129 update_forwarder_flag (basic_block bb)
131 if (forwarder_block_p (bb))
132 bb->flags |= BB_FORWARDER_BLOCK;
133 else
134 bb->flags &= ~BB_FORWARDER_BLOCK;
137 /* Simplify a conditional jump around an unconditional jump.
138 Return true if something changed. */
140 static bool
141 try_simplify_condjump (basic_block cbranch_block)
143 basic_block jump_block, jump_dest_block, cbranch_dest_block;
144 edge cbranch_jump_edge, cbranch_fallthru_edge;
145 rtx_insn *cbranch_insn;
147 /* Verify that there are exactly two successors. */
148 if (EDGE_COUNT (cbranch_block->succs) != 2)
149 return false;
151 /* Verify that we've got a normal conditional branch at the end
152 of the block. */
153 cbranch_insn = BB_END (cbranch_block);
154 if (!any_condjump_p (cbranch_insn))
155 return false;
157 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
158 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
160 /* The next block must not have multiple predecessors, must not
161 be the last block in the function, and must contain just the
162 unconditional jump. */
163 jump_block = cbranch_fallthru_edge->dest;
164 if (!single_pred_p (jump_block)
165 || jump_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
166 || !FORWARDER_BLOCK_P (jump_block))
167 return false;
168 jump_dest_block = single_succ (jump_block);
170 /* If we are partitioning hot/cold basic blocks, we don't want to
171 mess up unconditional or indirect jumps that cross between hot
172 and cold sections.
174 Basic block partitioning may result in some jumps that appear to
175 be optimizable (or blocks that appear to be mergeable), but which really
176 must be left untouched (they are required to make it safely across
177 partition boundaries). See the comments at the top of
178 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
180 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
181 || (cbranch_jump_edge->flags & EDGE_CROSSING))
182 return false;
184 /* The conditional branch must target the block after the
185 unconditional branch. */
186 cbranch_dest_block = cbranch_jump_edge->dest;
188 if (cbranch_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
189 || !can_fallthru (jump_block, cbranch_dest_block))
190 return false;
192 /* Invert the conditional branch. */
193 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
194 return false;
196 if (dump_file)
197 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
198 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
200 /* Success. Update the CFG to match. Note that after this point
201 the edge variable names appear backwards; the redirection is done
202 this way to preserve edge profile data. */
203 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
204 cbranch_dest_block);
205 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
206 jump_dest_block);
207 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
208 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
209 update_br_prob_note (cbranch_block);
211 /* Delete the block with the unconditional jump, and clean up the mess. */
212 delete_basic_block (jump_block);
213 tidy_fallthru_edge (cbranch_jump_edge);
214 update_forwarder_flag (cbranch_block);
216 return true;
219 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
220 on register. Used by jump threading. */
222 static bool
223 mark_effect (rtx exp, regset nonequal)
225 int regno;
226 rtx dest;
227 switch (GET_CODE (exp))
229 /* In case we do clobber the register, mark it as equal, as we know the
230 value is dead so it don't have to match. */
231 case CLOBBER:
232 if (REG_P (XEXP (exp, 0)))
234 dest = XEXP (exp, 0);
235 regno = REGNO (dest);
236 if (HARD_REGISTER_NUM_P (regno))
237 bitmap_clear_range (nonequal, regno,
238 hard_regno_nregs[regno][GET_MODE (dest)]);
239 else
240 bitmap_clear_bit (nonequal, regno);
242 return false;
244 case SET:
245 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
246 return false;
247 dest = SET_DEST (exp);
248 if (dest == pc_rtx)
249 return false;
250 if (!REG_P (dest))
251 return true;
252 regno = REGNO (dest);
253 if (HARD_REGISTER_NUM_P (regno))
254 bitmap_set_range (nonequal, regno,
255 hard_regno_nregs[regno][GET_MODE (dest)]);
256 else
257 bitmap_set_bit (nonequal, regno);
258 return false;
260 default:
261 return false;
265 /* Return true if X contains a register in NONEQUAL. */
266 static bool
267 mentions_nonequal_regs (const_rtx x, regset nonequal)
269 subrtx_iterator::array_type array;
270 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
272 const_rtx x = *iter;
273 if (REG_P (x))
275 unsigned int regno = REGNO (x);
276 if (REGNO_REG_SET_P (nonequal, regno))
277 return true;
278 if (regno < FIRST_PSEUDO_REGISTER)
280 int n = hard_regno_nregs[regno][GET_MODE (x)];
281 while (--n > 0)
282 if (REGNO_REG_SET_P (nonequal, regno + n))
283 return true;
287 return false;
290 /* Attempt to prove that the basic block B will have no side effects and
291 always continues in the same edge if reached via E. Return the edge
292 if exist, NULL otherwise. */
294 static edge
295 thread_jump (edge e, basic_block b)
297 rtx set1, set2, cond1, cond2;
298 rtx_insn *insn;
299 enum rtx_code code1, code2, reversed_code2;
300 bool reverse1 = false;
301 unsigned i;
302 regset nonequal;
303 bool failed = false;
304 reg_set_iterator rsi;
306 if (b->flags & BB_NONTHREADABLE_BLOCK)
307 return NULL;
309 /* At the moment, we do handle only conditional jumps, but later we may
310 want to extend this code to tablejumps and others. */
311 if (EDGE_COUNT (e->src->succs) != 2)
312 return NULL;
313 if (EDGE_COUNT (b->succs) != 2)
315 b->flags |= BB_NONTHREADABLE_BLOCK;
316 return NULL;
319 /* Second branch must end with onlyjump, as we will eliminate the jump. */
320 if (!any_condjump_p (BB_END (e->src)))
321 return NULL;
323 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
325 b->flags |= BB_NONTHREADABLE_BLOCK;
326 return NULL;
329 set1 = pc_set (BB_END (e->src));
330 set2 = pc_set (BB_END (b));
331 if (((e->flags & EDGE_FALLTHRU) != 0)
332 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
333 reverse1 = true;
335 cond1 = XEXP (SET_SRC (set1), 0);
336 cond2 = XEXP (SET_SRC (set2), 0);
337 if (reverse1)
338 code1 = reversed_comparison_code (cond1, BB_END (e->src));
339 else
340 code1 = GET_CODE (cond1);
342 code2 = GET_CODE (cond2);
343 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
345 if (!comparison_dominates_p (code1, code2)
346 && !comparison_dominates_p (code1, reversed_code2))
347 return NULL;
349 /* Ensure that the comparison operators are equivalent.
350 ??? This is far too pessimistic. We should allow swapped operands,
351 different CCmodes, or for example comparisons for interval, that
352 dominate even when operands are not equivalent. */
353 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
354 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
355 return NULL;
357 /* Short circuit cases where block B contains some side effects, as we can't
358 safely bypass it. */
359 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
360 insn = NEXT_INSN (insn))
361 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
363 b->flags |= BB_NONTHREADABLE_BLOCK;
364 return NULL;
367 cselib_init (0);
369 /* First process all values computed in the source basic block. */
370 for (insn = NEXT_INSN (BB_HEAD (e->src));
371 insn != NEXT_INSN (BB_END (e->src));
372 insn = NEXT_INSN (insn))
373 if (INSN_P (insn))
374 cselib_process_insn (insn);
376 nonequal = BITMAP_ALLOC (NULL);
377 CLEAR_REG_SET (nonequal);
379 /* Now assume that we've continued by the edge E to B and continue
380 processing as if it were same basic block.
381 Our goal is to prove that whole block is an NOOP. */
383 for (insn = NEXT_INSN (BB_HEAD (b));
384 insn != NEXT_INSN (BB_END (b)) && !failed;
385 insn = NEXT_INSN (insn))
387 if (INSN_P (insn))
389 rtx pat = PATTERN (insn);
391 if (GET_CODE (pat) == PARALLEL)
393 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
394 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
396 else
397 failed |= mark_effect (pat, nonequal);
400 cselib_process_insn (insn);
403 /* Later we should clear nonequal of dead registers. So far we don't
404 have life information in cfg_cleanup. */
405 if (failed)
407 b->flags |= BB_NONTHREADABLE_BLOCK;
408 goto failed_exit;
411 /* cond2 must not mention any register that is not equal to the
412 former block. */
413 if (mentions_nonequal_regs (cond2, nonequal))
414 goto failed_exit;
416 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
417 goto failed_exit;
419 BITMAP_FREE (nonequal);
420 cselib_finish ();
421 if ((comparison_dominates_p (code1, code2) != 0)
422 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
423 return BRANCH_EDGE (b);
424 else
425 return FALLTHRU_EDGE (b);
427 failed_exit:
428 BITMAP_FREE (nonequal);
429 cselib_finish ();
430 return NULL;
433 /* Attempt to forward edges leaving basic block B.
434 Return true if successful. */
436 static bool
437 try_forward_edges (int mode, basic_block b)
439 bool changed = false;
440 edge_iterator ei;
441 edge e, *threaded_edges = NULL;
443 /* If we are partitioning hot/cold basic blocks, we don't want to
444 mess up unconditional or indirect jumps that cross between hot
445 and cold sections.
447 Basic block partitioning may result in some jumps that appear to
448 be optimizable (or blocks that appear to be mergeable), but which really
449 must be left untouched (they are required to make it safely across
450 partition boundaries). See the comments at the top of
451 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
453 if (JUMP_P (BB_END (b)) && CROSSING_JUMP_P (BB_END (b)))
454 return false;
456 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
458 basic_block target, first;
459 location_t goto_locus;
460 int counter;
461 bool threaded = false;
462 int nthreaded_edges = 0;
463 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
465 /* Skip complex edges because we don't know how to update them.
467 Still handle fallthru edges, as we can succeed to forward fallthru
468 edge to the same place as the branch edge of conditional branch
469 and turn conditional branch to an unconditional branch. */
470 if (e->flags & EDGE_COMPLEX)
472 ei_next (&ei);
473 continue;
476 target = first = e->dest;
477 counter = NUM_FIXED_BLOCKS;
478 goto_locus = e->goto_locus;
480 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
481 up jumps that cross between hot/cold sections.
483 Basic block partitioning may result in some jumps that appear
484 to be optimizable (or blocks that appear to be mergeable), but which
485 really must be left untouched (they are required to make it safely
486 across partition boundaries). See the comments at the top of
487 bb-reorder.c:partition_hot_cold_basic_blocks for complete
488 details. */
490 if (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
491 && JUMP_P (BB_END (first))
492 && CROSSING_JUMP_P (BB_END (first)))
493 return changed;
495 while (counter < n_basic_blocks_for_fn (cfun))
497 basic_block new_target = NULL;
498 bool new_target_threaded = false;
499 may_thread |= (target->flags & BB_MODIFIED) != 0;
501 if (FORWARDER_BLOCK_P (target)
502 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
503 && single_succ (target) != EXIT_BLOCK_PTR_FOR_FN (cfun))
505 /* Bypass trivial infinite loops. */
506 new_target = single_succ (target);
507 if (target == new_target)
508 counter = n_basic_blocks_for_fn (cfun);
509 else if (!optimize)
511 /* When not optimizing, ensure that edges or forwarder
512 blocks with different locus are not optimized out. */
513 location_t new_locus = single_succ_edge (target)->goto_locus;
514 location_t locus = goto_locus;
516 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
517 && LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
518 && new_locus != locus)
519 new_target = NULL;
520 else
522 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
523 locus = new_locus;
525 rtx_insn *last = BB_END (target);
526 if (DEBUG_INSN_P (last))
527 last = prev_nondebug_insn (last);
528 if (last && INSN_P (last))
529 new_locus = INSN_LOCATION (last);
530 else
531 new_locus = UNKNOWN_LOCATION;
533 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
534 && LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
535 && new_locus != locus)
536 new_target = NULL;
537 else
539 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
540 locus = new_locus;
542 goto_locus = locus;
548 /* Allow to thread only over one edge at time to simplify updating
549 of probabilities. */
550 else if ((mode & CLEANUP_THREADING) && may_thread)
552 edge t = thread_jump (e, target);
553 if (t)
555 if (!threaded_edges)
556 threaded_edges = XNEWVEC (edge,
557 n_basic_blocks_for_fn (cfun));
558 else
560 int i;
562 /* Detect an infinite loop across blocks not
563 including the start block. */
564 for (i = 0; i < nthreaded_edges; ++i)
565 if (threaded_edges[i] == t)
566 break;
567 if (i < nthreaded_edges)
569 counter = n_basic_blocks_for_fn (cfun);
570 break;
574 /* Detect an infinite loop across the start block. */
575 if (t->dest == b)
576 break;
578 gcc_assert (nthreaded_edges
579 < (n_basic_blocks_for_fn (cfun)
580 - NUM_FIXED_BLOCKS));
581 threaded_edges[nthreaded_edges++] = t;
583 new_target = t->dest;
584 new_target_threaded = true;
588 if (!new_target)
589 break;
591 counter++;
592 target = new_target;
593 threaded |= new_target_threaded;
596 if (counter >= n_basic_blocks_for_fn (cfun))
598 if (dump_file)
599 fprintf (dump_file, "Infinite loop in BB %i.\n",
600 target->index);
602 else if (target == first)
603 ; /* We didn't do anything. */
604 else
606 /* Save the values now, as the edge may get removed. */
607 gcov_type edge_count = e->count;
608 int edge_probability = e->probability;
609 int edge_frequency;
610 int n = 0;
612 e->goto_locus = goto_locus;
614 /* Don't force if target is exit block. */
615 if (threaded && target != EXIT_BLOCK_PTR_FOR_FN (cfun))
617 notice_new_block (redirect_edge_and_branch_force (e, target));
618 if (dump_file)
619 fprintf (dump_file, "Conditionals threaded.\n");
621 else if (!redirect_edge_and_branch (e, target))
623 if (dump_file)
624 fprintf (dump_file,
625 "Forwarding edge %i->%i to %i failed.\n",
626 b->index, e->dest->index, target->index);
627 ei_next (&ei);
628 continue;
631 /* We successfully forwarded the edge. Now update profile
632 data: for each edge we traversed in the chain, remove
633 the original edge's execution count. */
634 edge_frequency = apply_probability (b->frequency, edge_probability);
638 edge t;
640 if (!single_succ_p (first))
642 gcc_assert (n < nthreaded_edges);
643 t = threaded_edges [n++];
644 gcc_assert (t->src == first);
645 update_bb_profile_for_threading (first, edge_frequency,
646 edge_count, t);
647 update_br_prob_note (first);
649 else
651 first->count -= edge_count;
652 if (first->count < 0)
653 first->count = 0;
654 first->frequency -= edge_frequency;
655 if (first->frequency < 0)
656 first->frequency = 0;
657 /* It is possible that as the result of
658 threading we've removed edge as it is
659 threaded to the fallthru edge. Avoid
660 getting out of sync. */
661 if (n < nthreaded_edges
662 && first == threaded_edges [n]->src)
663 n++;
664 t = single_succ_edge (first);
667 t->count -= edge_count;
668 if (t->count < 0)
669 t->count = 0;
670 first = t->dest;
672 while (first != target);
674 changed = true;
675 continue;
677 ei_next (&ei);
680 free (threaded_edges);
681 return changed;
685 /* Blocks A and B are to be merged into a single block. A has no incoming
686 fallthru edge, so it can be moved before B without adding or modifying
687 any jumps (aside from the jump from A to B). */
689 static void
690 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
692 rtx_insn *barrier;
694 /* If we are partitioning hot/cold basic blocks, we don't want to
695 mess up unconditional or indirect jumps that cross between hot
696 and cold sections.
698 Basic block partitioning may result in some jumps that appear to
699 be optimizable (or blocks that appear to be mergeable), but which really
700 must be left untouched (they are required to make it safely across
701 partition boundaries). See the comments at the top of
702 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
704 if (BB_PARTITION (a) != BB_PARTITION (b))
705 return;
707 barrier = next_nonnote_insn (BB_END (a));
708 gcc_assert (BARRIER_P (barrier));
709 delete_insn (barrier);
711 /* Scramble the insn chain. */
712 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
713 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
714 df_set_bb_dirty (a);
716 if (dump_file)
717 fprintf (dump_file, "Moved block %d before %d and merged.\n",
718 a->index, b->index);
720 /* Swap the records for the two blocks around. */
722 unlink_block (a);
723 link_block (a, b->prev_bb);
725 /* Now blocks A and B are contiguous. Merge them. */
726 merge_blocks (a, b);
729 /* Blocks A and B are to be merged into a single block. B has no outgoing
730 fallthru edge, so it can be moved after A without adding or modifying
731 any jumps (aside from the jump from A to B). */
733 static void
734 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
736 rtx_insn *barrier, *real_b_end;
737 rtx label;
738 rtx_jump_table_data *table;
740 /* If we are partitioning hot/cold basic blocks, we don't want to
741 mess up unconditional or indirect jumps that cross between hot
742 and cold sections.
744 Basic block partitioning may result in some jumps that appear to
745 be optimizable (or blocks that appear to be mergeable), but which really
746 must be left untouched (they are required to make it safely across
747 partition boundaries). See the comments at the top of
748 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
750 if (BB_PARTITION (a) != BB_PARTITION (b))
751 return;
753 real_b_end = BB_END (b);
755 /* If there is a jump table following block B temporarily add the jump table
756 to block B so that it will also be moved to the correct location. */
757 if (tablejump_p (BB_END (b), &label, &table)
758 && prev_active_insn (label) == BB_END (b))
760 BB_END (b) = table;
763 /* There had better have been a barrier there. Delete it. */
764 barrier = NEXT_INSN (BB_END (b));
765 if (barrier && BARRIER_P (barrier))
766 delete_insn (barrier);
769 /* Scramble the insn chain. */
770 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
772 /* Restore the real end of b. */
773 BB_END (b) = real_b_end;
775 if (dump_file)
776 fprintf (dump_file, "Moved block %d after %d and merged.\n",
777 b->index, a->index);
779 /* Now blocks A and B are contiguous. Merge them. */
780 merge_blocks (a, b);
783 /* Attempt to merge basic blocks that are potentially non-adjacent.
784 Return NULL iff the attempt failed, otherwise return basic block
785 where cleanup_cfg should continue. Because the merging commonly
786 moves basic block away or introduces another optimization
787 possibility, return basic block just before B so cleanup_cfg don't
788 need to iterate.
790 It may be good idea to return basic block before C in the case
791 C has been moved after B and originally appeared earlier in the
792 insn sequence, but we have no information available about the
793 relative ordering of these two. Hopefully it is not too common. */
795 static basic_block
796 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
798 basic_block next;
800 /* If we are partitioning hot/cold basic blocks, we don't want to
801 mess up unconditional or indirect jumps that cross between hot
802 and cold sections.
804 Basic block partitioning may result in some jumps that appear to
805 be optimizable (or blocks that appear to be mergeable), but which really
806 must be left untouched (they are required to make it safely across
807 partition boundaries). See the comments at the top of
808 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
810 if (BB_PARTITION (b) != BB_PARTITION (c))
811 return NULL;
813 /* If B has a fallthru edge to C, no need to move anything. */
814 if (e->flags & EDGE_FALLTHRU)
816 int b_index = b->index, c_index = c->index;
818 /* Protect the loop latches. */
819 if (current_loops && c->loop_father->latch == c)
820 return NULL;
822 merge_blocks (b, c);
823 update_forwarder_flag (b);
825 if (dump_file)
826 fprintf (dump_file, "Merged %d and %d without moving.\n",
827 b_index, c_index);
829 return b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? b : b->prev_bb;
832 /* Otherwise we will need to move code around. Do that only if expensive
833 transformations are allowed. */
834 else if (mode & CLEANUP_EXPENSIVE)
836 edge tmp_edge, b_fallthru_edge;
837 bool c_has_outgoing_fallthru;
838 bool b_has_incoming_fallthru;
840 /* Avoid overactive code motion, as the forwarder blocks should be
841 eliminated by edge redirection instead. One exception might have
842 been if B is a forwarder block and C has no fallthru edge, but
843 that should be cleaned up by bb-reorder instead. */
844 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
845 return NULL;
847 /* We must make sure to not munge nesting of lexical blocks,
848 and loop notes. This is done by squeezing out all the notes
849 and leaving them there to lie. Not ideal, but functional. */
851 tmp_edge = find_fallthru_edge (c->succs);
852 c_has_outgoing_fallthru = (tmp_edge != NULL);
854 tmp_edge = find_fallthru_edge (b->preds);
855 b_has_incoming_fallthru = (tmp_edge != NULL);
856 b_fallthru_edge = tmp_edge;
857 next = b->prev_bb;
858 if (next == c)
859 next = next->prev_bb;
861 /* Otherwise, we're going to try to move C after B. If C does
862 not have an outgoing fallthru, then it can be moved
863 immediately after B without introducing or modifying jumps. */
864 if (! c_has_outgoing_fallthru)
866 merge_blocks_move_successor_nojumps (b, c);
867 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
870 /* If B does not have an incoming fallthru, then it can be moved
871 immediately before C without introducing or modifying jumps.
872 C cannot be the first block, so we do not have to worry about
873 accessing a non-existent block. */
875 if (b_has_incoming_fallthru)
877 basic_block bb;
879 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
880 return NULL;
881 bb = force_nonfallthru (b_fallthru_edge);
882 if (bb)
883 notice_new_block (bb);
886 merge_blocks_move_predecessor_nojumps (b, c);
887 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
890 return NULL;
894 /* Removes the memory attributes of MEM expression
895 if they are not equal. */
897 static void
898 merge_memattrs (rtx x, rtx y)
900 int i;
901 int j;
902 enum rtx_code code;
903 const char *fmt;
905 if (x == y)
906 return;
907 if (x == 0 || y == 0)
908 return;
910 code = GET_CODE (x);
912 if (code != GET_CODE (y))
913 return;
915 if (GET_MODE (x) != GET_MODE (y))
916 return;
918 if (code == MEM && !mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
920 if (! MEM_ATTRS (x))
921 MEM_ATTRS (y) = 0;
922 else if (! MEM_ATTRS (y))
923 MEM_ATTRS (x) = 0;
924 else
926 HOST_WIDE_INT mem_size;
928 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
930 set_mem_alias_set (x, 0);
931 set_mem_alias_set (y, 0);
934 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
936 set_mem_expr (x, 0);
937 set_mem_expr (y, 0);
938 clear_mem_offset (x);
939 clear_mem_offset (y);
941 else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
942 || (MEM_OFFSET_KNOWN_P (x)
943 && MEM_OFFSET (x) != MEM_OFFSET (y)))
945 clear_mem_offset (x);
946 clear_mem_offset (y);
949 if (MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y))
951 mem_size = MAX (MEM_SIZE (x), MEM_SIZE (y));
952 set_mem_size (x, mem_size);
953 set_mem_size (y, mem_size);
955 else
957 clear_mem_size (x);
958 clear_mem_size (y);
961 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
962 set_mem_align (y, MEM_ALIGN (x));
965 if (code == MEM)
967 if (MEM_READONLY_P (x) != MEM_READONLY_P (y))
969 MEM_READONLY_P (x) = 0;
970 MEM_READONLY_P (y) = 0;
972 if (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y))
974 MEM_NOTRAP_P (x) = 0;
975 MEM_NOTRAP_P (y) = 0;
977 if (MEM_VOLATILE_P (x) != MEM_VOLATILE_P (y))
979 MEM_VOLATILE_P (x) = 1;
980 MEM_VOLATILE_P (y) = 1;
984 fmt = GET_RTX_FORMAT (code);
985 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
987 switch (fmt[i])
989 case 'E':
990 /* Two vectors must have the same length. */
991 if (XVECLEN (x, i) != XVECLEN (y, i))
992 return;
994 for (j = 0; j < XVECLEN (x, i); j++)
995 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
997 break;
999 case 'e':
1000 merge_memattrs (XEXP (x, i), XEXP (y, i));
1003 return;
1007 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
1008 different single sets S1 and S2. */
1010 static bool
1011 equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
1013 int i;
1014 rtx e1, e2;
1016 if (p1 == s1 && p2 == s2)
1017 return true;
1019 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
1020 return false;
1022 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
1023 return false;
1025 for (i = 0; i < XVECLEN (p1, 0); i++)
1027 e1 = XVECEXP (p1, 0, i);
1028 e2 = XVECEXP (p2, 0, i);
1029 if (e1 == s1 && e2 == s2)
1030 continue;
1031 if (reload_completed
1032 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
1033 continue;
1035 return false;
1038 return true;
1041 /* Examine register notes on I1 and I2 and return:
1042 - dir_forward if I1 can be replaced by I2, or
1043 - dir_backward if I2 can be replaced by I1, or
1044 - dir_both if both are the case. */
1046 static enum replace_direction
1047 can_replace_by (rtx_insn *i1, rtx_insn *i2)
1049 rtx s1, s2, d1, d2, src1, src2, note1, note2;
1050 bool c1, c2;
1052 /* Check for 2 sets. */
1053 s1 = single_set (i1);
1054 s2 = single_set (i2);
1055 if (s1 == NULL_RTX || s2 == NULL_RTX)
1056 return dir_none;
1058 /* Check that the 2 sets set the same dest. */
1059 d1 = SET_DEST (s1);
1060 d2 = SET_DEST (s2);
1061 if (!(reload_completed
1062 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1063 return dir_none;
1065 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1066 set dest to the same value. */
1067 note1 = find_reg_equal_equiv_note (i1);
1068 note2 = find_reg_equal_equiv_note (i2);
1069 if (!note1 || !note2 || !rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0))
1070 || !CONST_INT_P (XEXP (note1, 0)))
1071 return dir_none;
1073 if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
1074 return dir_none;
1076 /* Although the 2 sets set dest to the same value, we cannot replace
1077 (set (dest) (const_int))
1079 (set (dest) (reg))
1080 because we don't know if the reg is live and has the same value at the
1081 location of replacement. */
1082 src1 = SET_SRC (s1);
1083 src2 = SET_SRC (s2);
1084 c1 = CONST_INT_P (src1);
1085 c2 = CONST_INT_P (src2);
1086 if (c1 && c2)
1087 return dir_both;
1088 else if (c2)
1089 return dir_forward;
1090 else if (c1)
1091 return dir_backward;
1093 return dir_none;
1096 /* Merges directions A and B. */
1098 static enum replace_direction
1099 merge_dir (enum replace_direction a, enum replace_direction b)
1101 /* Implements the following table:
1102 |bo fw bw no
1103 ---+-----------
1104 bo |bo fw bw no
1105 fw |-- fw no no
1106 bw |-- -- bw no
1107 no |-- -- -- no. */
1109 if (a == b)
1110 return a;
1112 if (a == dir_both)
1113 return b;
1114 if (b == dir_both)
1115 return a;
1117 return dir_none;
1120 /* Examine I1 and I2 and return:
1121 - dir_forward if I1 can be replaced by I2, or
1122 - dir_backward if I2 can be replaced by I1, or
1123 - dir_both if both are the case. */
1125 static enum replace_direction
1126 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx_insn *i1, rtx_insn *i2)
1128 rtx p1, p2;
1130 /* Verify that I1 and I2 are equivalent. */
1131 if (GET_CODE (i1) != GET_CODE (i2))
1132 return dir_none;
1134 /* __builtin_unreachable() may lead to empty blocks (ending with
1135 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1136 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
1137 return dir_both;
1139 /* ??? Do not allow cross-jumping between different stack levels. */
1140 p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
1141 p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
1142 if (p1 && p2)
1144 p1 = XEXP (p1, 0);
1145 p2 = XEXP (p2, 0);
1146 if (!rtx_equal_p (p1, p2))
1147 return dir_none;
1149 /* ??? Worse, this adjustment had better be constant lest we
1150 have differing incoming stack levels. */
1151 if (!frame_pointer_needed
1152 && find_args_size_adjust (i1) == HOST_WIDE_INT_MIN)
1153 return dir_none;
1155 else if (p1 || p2)
1156 return dir_none;
1158 p1 = PATTERN (i1);
1159 p2 = PATTERN (i2);
1161 if (GET_CODE (p1) != GET_CODE (p2))
1162 return dir_none;
1164 /* If this is a CALL_INSN, compare register usage information.
1165 If we don't check this on stack register machines, the two
1166 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1167 numbers of stack registers in the same basic block.
1168 If we don't check this on machines with delay slots, a delay slot may
1169 be filled that clobbers a parameter expected by the subroutine.
1171 ??? We take the simple route for now and assume that if they're
1172 equal, they were constructed identically.
1174 Also check for identical exception regions. */
1176 if (CALL_P (i1))
1178 /* Ensure the same EH region. */
1179 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1180 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1182 if (!n1 && n2)
1183 return dir_none;
1185 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1186 return dir_none;
1188 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1189 CALL_INSN_FUNCTION_USAGE (i2))
1190 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
1191 return dir_none;
1193 /* For address sanitizer, never crossjump __asan_report_* builtins,
1194 otherwise errors might be reported on incorrect lines. */
1195 if (flag_sanitize & SANITIZE_ADDRESS)
1197 rtx call = get_call_rtx_from (i1);
1198 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
1200 rtx symbol = XEXP (XEXP (call, 0), 0);
1201 if (SYMBOL_REF_DECL (symbol)
1202 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
1204 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
1205 == BUILT_IN_NORMAL)
1206 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1207 >= BUILT_IN_ASAN_REPORT_LOAD1
1208 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1209 <= BUILT_IN_ASAN_STOREN)
1210 return dir_none;
1216 #ifdef STACK_REGS
1217 /* If cross_jump_death_matters is not 0, the insn's mode
1218 indicates whether or not the insn contains any stack-like
1219 regs. */
1221 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1223 /* If register stack conversion has already been done, then
1224 death notes must also be compared before it is certain that
1225 the two instruction streams match. */
1227 rtx note;
1228 HARD_REG_SET i1_regset, i2_regset;
1230 CLEAR_HARD_REG_SET (i1_regset);
1231 CLEAR_HARD_REG_SET (i2_regset);
1233 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1234 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1235 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1237 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1238 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1239 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1241 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
1242 return dir_none;
1244 #endif
1246 if (reload_completed
1247 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1248 return dir_both;
1250 return can_replace_by (i1, i2);
1253 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1254 flow_find_head_matching_sequence, ensure the notes match. */
1256 static void
1257 merge_notes (rtx_insn *i1, rtx_insn *i2)
1259 /* If the merged insns have different REG_EQUAL notes, then
1260 remove them. */
1261 rtx equiv1 = find_reg_equal_equiv_note (i1);
1262 rtx equiv2 = find_reg_equal_equiv_note (i2);
1264 if (equiv1 && !equiv2)
1265 remove_note (i1, equiv1);
1266 else if (!equiv1 && equiv2)
1267 remove_note (i2, equiv2);
1268 else if (equiv1 && equiv2
1269 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1271 remove_note (i1, equiv1);
1272 remove_note (i2, equiv2);
1276 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1277 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1278 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1279 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1280 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1282 static void
1283 walk_to_nondebug_insn (rtx_insn **i1, basic_block *bb1, bool follow_fallthru,
1284 bool *did_fallthru)
1286 edge fallthru;
1288 *did_fallthru = false;
1290 /* Ignore notes. */
1291 while (!NONDEBUG_INSN_P (*i1))
1293 if (*i1 != BB_HEAD (*bb1))
1295 *i1 = PREV_INSN (*i1);
1296 continue;
1299 if (!follow_fallthru)
1300 return;
1302 fallthru = find_fallthru_edge ((*bb1)->preds);
1303 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1304 || !single_succ_p (fallthru->src))
1305 return;
1307 *bb1 = fallthru->src;
1308 *i1 = BB_END (*bb1);
1309 *did_fallthru = true;
1313 /* Look through the insns at the end of BB1 and BB2 and find the longest
1314 sequence that are either equivalent, or allow forward or backward
1315 replacement. Store the first insns for that sequence in *F1 and *F2 and
1316 return the sequence length.
1318 DIR_P indicates the allowed replacement direction on function entry, and
1319 the actual replacement direction on function exit. If NULL, only equivalent
1320 sequences are allowed.
1322 To simplify callers of this function, if the blocks match exactly,
1323 store the head of the blocks in *F1 and *F2. */
1326 flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx_insn **f1,
1327 rtx_insn **f2, enum replace_direction *dir_p)
1329 rtx_insn *i1, *i2, *last1, *last2, *afterlast1, *afterlast2;
1330 int ninsns = 0;
1331 enum replace_direction dir, last_dir, afterlast_dir;
1332 bool follow_fallthru, did_fallthru;
1334 if (dir_p)
1335 dir = *dir_p;
1336 else
1337 dir = dir_both;
1338 afterlast_dir = dir;
1339 last_dir = afterlast_dir;
1341 /* Skip simple jumps at the end of the blocks. Complex jumps still
1342 need to be compared for equivalence, which we'll do below. */
1344 i1 = BB_END (bb1);
1345 last1 = afterlast1 = last2 = afterlast2 = NULL;
1346 if (onlyjump_p (i1)
1347 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1349 last1 = i1;
1350 i1 = PREV_INSN (i1);
1353 i2 = BB_END (bb2);
1354 if (onlyjump_p (i2)
1355 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1357 last2 = i2;
1358 /* Count everything except for unconditional jump as insn.
1359 Don't count any jumps if dir_p is NULL. */
1360 if (!simplejump_p (i2) && !returnjump_p (i2) && last1 && dir_p)
1361 ninsns++;
1362 i2 = PREV_INSN (i2);
1365 while (true)
1367 /* In the following example, we can replace all jumps to C by jumps to A.
1369 This removes 4 duplicate insns.
1370 [bb A] insn1 [bb C] insn1
1371 insn2 insn2
1372 [bb B] insn3 insn3
1373 insn4 insn4
1374 jump_insn jump_insn
1376 We could also replace all jumps to A by jumps to C, but that leaves B
1377 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1378 step, all jumps to B would be replaced with jumps to the middle of C,
1379 achieving the same result with more effort.
1380 So we allow only the first possibility, which means that we don't allow
1381 fallthru in the block that's being replaced. */
1383 follow_fallthru = dir_p && dir != dir_forward;
1384 walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
1385 if (did_fallthru)
1386 dir = dir_backward;
1388 follow_fallthru = dir_p && dir != dir_backward;
1389 walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
1390 if (did_fallthru)
1391 dir = dir_forward;
1393 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1394 break;
1396 dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
1397 if (dir == dir_none || (!dir_p && dir != dir_both))
1398 break;
1400 merge_memattrs (i1, i2);
1402 /* Don't begin a cross-jump with a NOTE insn. */
1403 if (INSN_P (i1))
1405 merge_notes (i1, i2);
1407 afterlast1 = last1, afterlast2 = last2;
1408 last1 = i1, last2 = i2;
1409 afterlast_dir = last_dir;
1410 last_dir = dir;
1411 if (active_insn_p (i1))
1412 ninsns++;
1415 i1 = PREV_INSN (i1);
1416 i2 = PREV_INSN (i2);
1419 #ifdef HAVE_cc0
1420 /* Don't allow the insn after a compare to be shared by
1421 cross-jumping unless the compare is also shared. */
1422 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1423 last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
1424 #endif
1426 /* Include preceding notes and labels in the cross-jump. One,
1427 this may bring us to the head of the blocks as requested above.
1428 Two, it keeps line number notes as matched as may be. */
1429 if (ninsns)
1431 bb1 = BLOCK_FOR_INSN (last1);
1432 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
1433 last1 = PREV_INSN (last1);
1435 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1436 last1 = PREV_INSN (last1);
1438 bb2 = BLOCK_FOR_INSN (last2);
1439 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
1440 last2 = PREV_INSN (last2);
1442 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1443 last2 = PREV_INSN (last2);
1445 *f1 = last1;
1446 *f2 = last2;
1449 if (dir_p)
1450 *dir_p = last_dir;
1451 return ninsns;
1454 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1455 the head of the two blocks. Do not include jumps at the end.
1456 If STOP_AFTER is nonzero, stop after finding that many matching
1457 instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
1458 non-zero, only count active insns. */
1461 flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx_insn **f1,
1462 rtx_insn **f2, int stop_after)
1464 rtx_insn *i1, *i2, *last1, *last2, *beforelast1, *beforelast2;
1465 int ninsns = 0;
1466 edge e;
1467 edge_iterator ei;
1468 int nehedges1 = 0, nehedges2 = 0;
1470 FOR_EACH_EDGE (e, ei, bb1->succs)
1471 if (e->flags & EDGE_EH)
1472 nehedges1++;
1473 FOR_EACH_EDGE (e, ei, bb2->succs)
1474 if (e->flags & EDGE_EH)
1475 nehedges2++;
1477 i1 = BB_HEAD (bb1);
1478 i2 = BB_HEAD (bb2);
1479 last1 = beforelast1 = last2 = beforelast2 = NULL;
1481 while (true)
1483 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1484 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
1486 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1487 break;
1488 i1 = NEXT_INSN (i1);
1491 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
1493 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1494 break;
1495 i2 = NEXT_INSN (i2);
1498 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1499 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1500 break;
1502 if (NOTE_P (i1) || NOTE_P (i2)
1503 || JUMP_P (i1) || JUMP_P (i2))
1504 break;
1506 /* A sanity check to make sure we're not merging insns with different
1507 effects on EH. If only one of them ends a basic block, it shouldn't
1508 have an EH edge; if both end a basic block, there should be the same
1509 number of EH edges. */
1510 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1511 && nehedges1 > 0)
1512 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1513 && nehedges2 > 0)
1514 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1515 && nehedges1 != nehedges2))
1516 break;
1518 if (old_insns_match_p (0, i1, i2) != dir_both)
1519 break;
1521 merge_memattrs (i1, i2);
1523 /* Don't begin a cross-jump with a NOTE insn. */
1524 if (INSN_P (i1))
1526 merge_notes (i1, i2);
1528 beforelast1 = last1, beforelast2 = last2;
1529 last1 = i1, last2 = i2;
1530 if (!stop_after || active_insn_p (i1))
1531 ninsns++;
1534 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1535 || (stop_after > 0 && ninsns == stop_after))
1536 break;
1538 i1 = NEXT_INSN (i1);
1539 i2 = NEXT_INSN (i2);
1542 #ifdef HAVE_cc0
1543 /* Don't allow a compare to be shared by cross-jumping unless the insn
1544 after the compare is also shared. */
1545 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && sets_cc0_p (last1))
1546 last1 = beforelast1, last2 = beforelast2, ninsns--;
1547 #endif
1549 if (ninsns)
1551 *f1 = last1;
1552 *f2 = last2;
1555 return ninsns;
1558 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1559 the branch instruction. This means that if we commonize the control
1560 flow before end of the basic block, the semantic remains unchanged.
1562 We may assume that there exists one edge with a common destination. */
1564 static bool
1565 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1567 int nehedges1 = 0, nehedges2 = 0;
1568 edge fallthru1 = 0, fallthru2 = 0;
1569 edge e1, e2;
1570 edge_iterator ei;
1572 /* If we performed shrink-wrapping, edges to the exit block can
1573 only be distinguished for JUMP_INSNs. The two paths may differ in
1574 whether they went through the prologue. Sibcalls are fine, we know
1575 that we either didn't need or inserted an epilogue before them. */
1576 if (crtl->shrink_wrapped
1577 && single_succ_p (bb1)
1578 && single_succ (bb1) == EXIT_BLOCK_PTR_FOR_FN (cfun)
1579 && !JUMP_P (BB_END (bb1))
1580 && !(CALL_P (BB_END (bb1)) && SIBLING_CALL_P (BB_END (bb1))))
1581 return false;
1583 /* If BB1 has only one successor, we may be looking at either an
1584 unconditional jump, or a fake edge to exit. */
1585 if (single_succ_p (bb1)
1586 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1587 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1588 return (single_succ_p (bb2)
1589 && (single_succ_edge (bb2)->flags
1590 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1591 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1593 /* Match conditional jumps - this may get tricky when fallthru and branch
1594 edges are crossed. */
1595 if (EDGE_COUNT (bb1->succs) == 2
1596 && any_condjump_p (BB_END (bb1))
1597 && onlyjump_p (BB_END (bb1)))
1599 edge b1, f1, b2, f2;
1600 bool reverse, match;
1601 rtx set1, set2, cond1, cond2;
1602 enum rtx_code code1, code2;
1604 if (EDGE_COUNT (bb2->succs) != 2
1605 || !any_condjump_p (BB_END (bb2))
1606 || !onlyjump_p (BB_END (bb2)))
1607 return false;
1609 b1 = BRANCH_EDGE (bb1);
1610 b2 = BRANCH_EDGE (bb2);
1611 f1 = FALLTHRU_EDGE (bb1);
1612 f2 = FALLTHRU_EDGE (bb2);
1614 /* Get around possible forwarders on fallthru edges. Other cases
1615 should be optimized out already. */
1616 if (FORWARDER_BLOCK_P (f1->dest))
1617 f1 = single_succ_edge (f1->dest);
1619 if (FORWARDER_BLOCK_P (f2->dest))
1620 f2 = single_succ_edge (f2->dest);
1622 /* To simplify use of this function, return false if there are
1623 unneeded forwarder blocks. These will get eliminated later
1624 during cleanup_cfg. */
1625 if (FORWARDER_BLOCK_P (f1->dest)
1626 || FORWARDER_BLOCK_P (f2->dest)
1627 || FORWARDER_BLOCK_P (b1->dest)
1628 || FORWARDER_BLOCK_P (b2->dest))
1629 return false;
1631 if (f1->dest == f2->dest && b1->dest == b2->dest)
1632 reverse = false;
1633 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1634 reverse = true;
1635 else
1636 return false;
1638 set1 = pc_set (BB_END (bb1));
1639 set2 = pc_set (BB_END (bb2));
1640 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1641 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1642 reverse = !reverse;
1644 cond1 = XEXP (SET_SRC (set1), 0);
1645 cond2 = XEXP (SET_SRC (set2), 0);
1646 code1 = GET_CODE (cond1);
1647 if (reverse)
1648 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1649 else
1650 code2 = GET_CODE (cond2);
1652 if (code2 == UNKNOWN)
1653 return false;
1655 /* Verify codes and operands match. */
1656 match = ((code1 == code2
1657 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1658 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1659 || (code1 == swap_condition (code2)
1660 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1661 XEXP (cond2, 0))
1662 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1663 XEXP (cond2, 1))));
1665 /* If we return true, we will join the blocks. Which means that
1666 we will only have one branch prediction bit to work with. Thus
1667 we require the existing branches to have probabilities that are
1668 roughly similar. */
1669 if (match
1670 && optimize_bb_for_speed_p (bb1)
1671 && optimize_bb_for_speed_p (bb2))
1673 int prob2;
1675 if (b1->dest == b2->dest)
1676 prob2 = b2->probability;
1677 else
1678 /* Do not use f2 probability as f2 may be forwarded. */
1679 prob2 = REG_BR_PROB_BASE - b2->probability;
1681 /* Fail if the difference in probabilities is greater than 50%.
1682 This rules out two well-predicted branches with opposite
1683 outcomes. */
1684 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1686 if (dump_file)
1687 fprintf (dump_file,
1688 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1689 bb1->index, bb2->index, b1->probability, prob2);
1691 return false;
1695 if (dump_file && match)
1696 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1697 bb1->index, bb2->index);
1699 return match;
1702 /* Generic case - we are seeing a computed jump, table jump or trapping
1703 instruction. */
1705 /* Check whether there are tablejumps in the end of BB1 and BB2.
1706 Return true if they are identical. */
1708 rtx label1, label2;
1709 rtx_jump_table_data *table1, *table2;
1711 if (tablejump_p (BB_END (bb1), &label1, &table1)
1712 && tablejump_p (BB_END (bb2), &label2, &table2)
1713 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1715 /* The labels should never be the same rtx. If they really are same
1716 the jump tables are same too. So disable crossjumping of blocks BB1
1717 and BB2 because when deleting the common insns in the end of BB1
1718 by delete_basic_block () the jump table would be deleted too. */
1719 /* If LABEL2 is referenced in BB1->END do not do anything
1720 because we would loose information when replacing
1721 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1722 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1724 /* Set IDENTICAL to true when the tables are identical. */
1725 bool identical = false;
1726 rtx p1, p2;
1728 p1 = PATTERN (table1);
1729 p2 = PATTERN (table2);
1730 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1732 identical = true;
1734 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1735 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1736 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1737 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1739 int i;
1741 identical = true;
1742 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1743 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1744 identical = false;
1747 if (identical)
1749 bool match;
1751 /* Temporarily replace references to LABEL1 with LABEL2
1752 in BB1->END so that we could compare the instructions. */
1753 replace_label_in_insn (BB_END (bb1), label1, label2, false);
1755 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1756 == dir_both);
1757 if (dump_file && match)
1758 fprintf (dump_file,
1759 "Tablejumps in bb %i and %i match.\n",
1760 bb1->index, bb2->index);
1762 /* Set the original label in BB1->END because when deleting
1763 a block whose end is a tablejump, the tablejump referenced
1764 from the instruction is deleted too. */
1765 replace_label_in_insn (BB_END (bb1), label2, label1, false);
1767 return match;
1770 return false;
1774 /* Find the last non-debug non-note instruction in each bb, except
1775 stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
1776 handles that case specially. old_insns_match_p does not handle
1777 other types of instruction notes. */
1778 rtx_insn *last1 = BB_END (bb1);
1779 rtx_insn *last2 = BB_END (bb2);
1780 while (!NOTE_INSN_BASIC_BLOCK_P (last1) &&
1781 (DEBUG_INSN_P (last1) || NOTE_P (last1)))
1782 last1 = PREV_INSN (last1);
1783 while (!NOTE_INSN_BASIC_BLOCK_P (last2) &&
1784 (DEBUG_INSN_P (last2) || NOTE_P (last2)))
1785 last2 = PREV_INSN (last2);
1786 gcc_assert (last1 && last2);
1788 /* First ensure that the instructions match. There may be many outgoing
1789 edges so this test is generally cheaper. */
1790 if (old_insns_match_p (mode, last1, last2) != dir_both)
1791 return false;
1793 /* Search the outgoing edges, ensure that the counts do match, find possible
1794 fallthru and exception handling edges since these needs more
1795 validation. */
1796 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1797 return false;
1799 bool nonfakeedges = false;
1800 FOR_EACH_EDGE (e1, ei, bb1->succs)
1802 e2 = EDGE_SUCC (bb2, ei.index);
1804 if ((e1->flags & EDGE_FAKE) == 0)
1805 nonfakeedges = true;
1807 if (e1->flags & EDGE_EH)
1808 nehedges1++;
1810 if (e2->flags & EDGE_EH)
1811 nehedges2++;
1813 if (e1->flags & EDGE_FALLTHRU)
1814 fallthru1 = e1;
1815 if (e2->flags & EDGE_FALLTHRU)
1816 fallthru2 = e2;
1819 /* If number of edges of various types does not match, fail. */
1820 if (nehedges1 != nehedges2
1821 || (fallthru1 != 0) != (fallthru2 != 0))
1822 return false;
1824 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1825 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1826 attempt to optimize, as the two basic blocks might have different
1827 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1828 traps there should be REG_ARG_SIZE notes, they could be missing
1829 for __builtin_unreachable () uses though. */
1830 if (!nonfakeedges
1831 && !ACCUMULATE_OUTGOING_ARGS
1832 && (!INSN_P (last1)
1833 || !find_reg_note (last1, REG_ARGS_SIZE, NULL)))
1834 return false;
1836 /* fallthru edges must be forwarded to the same destination. */
1837 if (fallthru1)
1839 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1840 ? single_succ (fallthru1->dest): fallthru1->dest);
1841 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1842 ? single_succ (fallthru2->dest): fallthru2->dest);
1844 if (d1 != d2)
1845 return false;
1848 /* Ensure the same EH region. */
1850 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1851 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1853 if (!n1 && n2)
1854 return false;
1856 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1857 return false;
1860 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1861 version of sequence abstraction. */
1862 FOR_EACH_EDGE (e1, ei, bb2->succs)
1864 edge e2;
1865 edge_iterator ei;
1866 basic_block d1 = e1->dest;
1868 if (FORWARDER_BLOCK_P (d1))
1869 d1 = EDGE_SUCC (d1, 0)->dest;
1871 FOR_EACH_EDGE (e2, ei, bb1->succs)
1873 basic_block d2 = e2->dest;
1874 if (FORWARDER_BLOCK_P (d2))
1875 d2 = EDGE_SUCC (d2, 0)->dest;
1876 if (d1 == d2)
1877 break;
1880 if (!e2)
1881 return false;
1884 return true;
1887 /* Returns true if BB basic block has a preserve label. */
1889 static bool
1890 block_has_preserve_label (basic_block bb)
1892 return (bb
1893 && block_label (bb)
1894 && LABEL_PRESERVE_P (block_label (bb)));
1897 /* E1 and E2 are edges with the same destination block. Search their
1898 predecessors for common code. If found, redirect control flow from
1899 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1900 or the other way around (dir_backward). DIR specifies the allowed
1901 replacement direction. */
1903 static bool
1904 try_crossjump_to_edge (int mode, edge e1, edge e2,
1905 enum replace_direction dir)
1907 int nmatch;
1908 basic_block src1 = e1->src, src2 = e2->src;
1909 basic_block redirect_to, redirect_from, to_remove;
1910 basic_block osrc1, osrc2, redirect_edges_to, tmp;
1911 rtx_insn *newpos1, *newpos2;
1912 edge s;
1913 edge_iterator ei;
1915 newpos1 = newpos2 = NULL;
1917 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1918 to try this optimization.
1920 Basic block partitioning may result in some jumps that appear to
1921 be optimizable (or blocks that appear to be mergeable), but which really
1922 must be left untouched (they are required to make it safely across
1923 partition boundaries). See the comments at the top of
1924 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1926 if (crtl->has_bb_partition && reload_completed)
1927 return false;
1929 /* Search backward through forwarder blocks. We don't need to worry
1930 about multiple entry or chained forwarders, as they will be optimized
1931 away. We do this to look past the unconditional jump following a
1932 conditional jump that is required due to the current CFG shape. */
1933 if (single_pred_p (src1)
1934 && FORWARDER_BLOCK_P (src1))
1935 e1 = single_pred_edge (src1), src1 = e1->src;
1937 if (single_pred_p (src2)
1938 && FORWARDER_BLOCK_P (src2))
1939 e2 = single_pred_edge (src2), src2 = e2->src;
1941 /* Nothing to do if we reach ENTRY, or a common source block. */
1942 if (src1 == ENTRY_BLOCK_PTR_FOR_FN (cfun) || src2
1943 == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1944 return false;
1945 if (src1 == src2)
1946 return false;
1948 /* Seeing more than 1 forwarder blocks would confuse us later... */
1949 if (FORWARDER_BLOCK_P (e1->dest)
1950 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1951 return false;
1953 if (FORWARDER_BLOCK_P (e2->dest)
1954 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1955 return false;
1957 /* Likewise with dead code (possibly newly created by the other optimizations
1958 of cfg_cleanup). */
1959 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1960 return false;
1962 /* Look for the common insn sequence, part the first ... */
1963 if (!outgoing_edges_match (mode, src1, src2))
1964 return false;
1966 /* ... and part the second. */
1967 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
1969 osrc1 = src1;
1970 osrc2 = src2;
1971 if (newpos1 != NULL_RTX)
1972 src1 = BLOCK_FOR_INSN (newpos1);
1973 if (newpos2 != NULL_RTX)
1974 src2 = BLOCK_FOR_INSN (newpos2);
1976 if (dir == dir_backward)
1978 #define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
1979 SWAP (basic_block, osrc1, osrc2);
1980 SWAP (basic_block, src1, src2);
1981 SWAP (edge, e1, e2);
1982 SWAP (rtx_insn *, newpos1, newpos2);
1983 #undef SWAP
1986 /* Don't proceed with the crossjump unless we found a sufficient number
1987 of matching instructions or the 'from' block was totally matched
1988 (such that its predecessors will hopefully be redirected and the
1989 block removed). */
1990 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1991 && (newpos1 != BB_HEAD (src1)))
1992 return false;
1994 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1995 if (block_has_preserve_label (e1->dest)
1996 && (e1->flags & EDGE_ABNORMAL))
1997 return false;
1999 /* Here we know that the insns in the end of SRC1 which are common with SRC2
2000 will be deleted.
2001 If we have tablejumps in the end of SRC1 and SRC2
2002 they have been already compared for equivalence in outgoing_edges_match ()
2003 so replace the references to TABLE1 by references to TABLE2. */
2005 rtx label1, label2;
2006 rtx_jump_table_data *table1, *table2;
2008 if (tablejump_p (BB_END (osrc1), &label1, &table1)
2009 && tablejump_p (BB_END (osrc2), &label2, &table2)
2010 && label1 != label2)
2012 rtx_insn *insn;
2014 /* Replace references to LABEL1 with LABEL2. */
2015 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2017 /* Do not replace the label in SRC1->END because when deleting
2018 a block whose end is a tablejump, the tablejump referenced
2019 from the instruction is deleted too. */
2020 if (insn != BB_END (osrc1))
2021 replace_label_in_insn (insn, label1, label2, true);
2026 /* Avoid splitting if possible. We must always split when SRC2 has
2027 EH predecessor edges, or we may end up with basic blocks with both
2028 normal and EH predecessor edges. */
2029 if (newpos2 == BB_HEAD (src2)
2030 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
2031 redirect_to = src2;
2032 else
2034 if (newpos2 == BB_HEAD (src2))
2036 /* Skip possible basic block header. */
2037 if (LABEL_P (newpos2))
2038 newpos2 = NEXT_INSN (newpos2);
2039 while (DEBUG_INSN_P (newpos2))
2040 newpos2 = NEXT_INSN (newpos2);
2041 if (NOTE_P (newpos2))
2042 newpos2 = NEXT_INSN (newpos2);
2043 while (DEBUG_INSN_P (newpos2))
2044 newpos2 = NEXT_INSN (newpos2);
2047 if (dump_file)
2048 fprintf (dump_file, "Splitting bb %i before %i insns\n",
2049 src2->index, nmatch);
2050 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
2053 if (dump_file)
2054 fprintf (dump_file,
2055 "Cross jumping from bb %i to bb %i; %i common insns\n",
2056 src1->index, src2->index, nmatch);
2058 /* We may have some registers visible through the block. */
2059 df_set_bb_dirty (redirect_to);
2061 if (osrc2 == src2)
2062 redirect_edges_to = redirect_to;
2063 else
2064 redirect_edges_to = osrc2;
2066 /* Recompute the frequencies and counts of outgoing edges. */
2067 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
2069 edge s2;
2070 edge_iterator ei;
2071 basic_block d = s->dest;
2073 if (FORWARDER_BLOCK_P (d))
2074 d = single_succ (d);
2076 FOR_EACH_EDGE (s2, ei, src1->succs)
2078 basic_block d2 = s2->dest;
2079 if (FORWARDER_BLOCK_P (d2))
2080 d2 = single_succ (d2);
2081 if (d == d2)
2082 break;
2085 s->count += s2->count;
2087 /* Take care to update possible forwarder blocks. We verified
2088 that there is no more than one in the chain, so we can't run
2089 into infinite loop. */
2090 if (FORWARDER_BLOCK_P (s->dest))
2092 single_succ_edge (s->dest)->count += s2->count;
2093 s->dest->count += s2->count;
2094 s->dest->frequency += EDGE_FREQUENCY (s);
2097 if (FORWARDER_BLOCK_P (s2->dest))
2099 single_succ_edge (s2->dest)->count -= s2->count;
2100 if (single_succ_edge (s2->dest)->count < 0)
2101 single_succ_edge (s2->dest)->count = 0;
2102 s2->dest->count -= s2->count;
2103 s2->dest->frequency -= EDGE_FREQUENCY (s);
2104 if (s2->dest->frequency < 0)
2105 s2->dest->frequency = 0;
2106 if (s2->dest->count < 0)
2107 s2->dest->count = 0;
2110 if (!redirect_edges_to->frequency && !src1->frequency)
2111 s->probability = (s->probability + s2->probability) / 2;
2112 else
2113 s->probability
2114 = ((s->probability * redirect_edges_to->frequency +
2115 s2->probability * src1->frequency)
2116 / (redirect_edges_to->frequency + src1->frequency));
2119 /* Adjust count and frequency for the block. An earlier jump
2120 threading pass may have left the profile in an inconsistent
2121 state (see update_bb_profile_for_threading) so we must be
2122 prepared for overflows. */
2123 tmp = redirect_to;
2126 tmp->count += src1->count;
2127 tmp->frequency += src1->frequency;
2128 if (tmp->frequency > BB_FREQ_MAX)
2129 tmp->frequency = BB_FREQ_MAX;
2130 if (tmp == redirect_edges_to)
2131 break;
2132 tmp = find_fallthru_edge (tmp->succs)->dest;
2134 while (true);
2135 update_br_prob_note (redirect_edges_to);
2137 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2139 /* Skip possible basic block header. */
2140 if (LABEL_P (newpos1))
2141 newpos1 = NEXT_INSN (newpos1);
2143 while (DEBUG_INSN_P (newpos1))
2144 newpos1 = NEXT_INSN (newpos1);
2146 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
2147 newpos1 = NEXT_INSN (newpos1);
2149 while (DEBUG_INSN_P (newpos1))
2150 newpos1 = NEXT_INSN (newpos1);
2152 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
2153 to_remove = single_succ (redirect_from);
2155 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
2156 delete_basic_block (to_remove);
2158 update_forwarder_flag (redirect_from);
2159 if (redirect_to != src2)
2160 update_forwarder_flag (src2);
2162 return true;
2165 /* Search the predecessors of BB for common insn sequences. When found,
2166 share code between them by redirecting control flow. Return true if
2167 any changes made. */
2169 static bool
2170 try_crossjump_bb (int mode, basic_block bb)
2172 edge e, e2, fallthru;
2173 bool changed;
2174 unsigned max, ix, ix2;
2176 /* Nothing to do if there is not at least two incoming edges. */
2177 if (EDGE_COUNT (bb->preds) < 2)
2178 return false;
2180 /* Don't crossjump if this block ends in a computed jump,
2181 unless we are optimizing for size. */
2182 if (optimize_bb_for_size_p (bb)
2183 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
2184 && computed_jump_p (BB_END (bb)))
2185 return false;
2187 /* If we are partitioning hot/cold basic blocks, we don't want to
2188 mess up unconditional or indirect jumps that cross between hot
2189 and cold sections.
2191 Basic block partitioning may result in some jumps that appear to
2192 be optimizable (or blocks that appear to be mergeable), but which really
2193 must be left untouched (they are required to make it safely across
2194 partition boundaries). See the comments at the top of
2195 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2197 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2198 BB_PARTITION (EDGE_PRED (bb, 1)->src)
2199 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
2200 return false;
2202 /* It is always cheapest to redirect a block that ends in a branch to
2203 a block that falls through into BB, as that adds no branches to the
2204 program. We'll try that combination first. */
2205 fallthru = NULL;
2206 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
2208 if (EDGE_COUNT (bb->preds) > max)
2209 return false;
2211 fallthru = find_fallthru_edge (bb->preds);
2213 changed = false;
2214 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
2216 e = EDGE_PRED (bb, ix);
2217 ix++;
2219 /* As noted above, first try with the fallthru predecessor (or, a
2220 fallthru predecessor if we are in cfglayout mode). */
2221 if (fallthru)
2223 /* Don't combine the fallthru edge into anything else.
2224 If there is a match, we'll do it the other way around. */
2225 if (e == fallthru)
2226 continue;
2227 /* If nothing changed since the last attempt, there is nothing
2228 we can do. */
2229 if (!first_pass
2230 && !((e->src->flags & BB_MODIFIED)
2231 || (fallthru->src->flags & BB_MODIFIED)))
2232 continue;
2234 if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
2236 changed = true;
2237 ix = 0;
2238 continue;
2242 /* Non-obvious work limiting check: Recognize that we're going
2243 to call try_crossjump_bb on every basic block. So if we have
2244 two blocks with lots of outgoing edges (a switch) and they
2245 share lots of common destinations, then we would do the
2246 cross-jump check once for each common destination.
2248 Now, if the blocks actually are cross-jump candidates, then
2249 all of their destinations will be shared. Which means that
2250 we only need check them for cross-jump candidacy once. We
2251 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2252 choosing to do the check from the block for which the edge
2253 in question is the first successor of A. */
2254 if (EDGE_SUCC (e->src, 0) != e)
2255 continue;
2257 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
2259 e2 = EDGE_PRED (bb, ix2);
2261 if (e2 == e)
2262 continue;
2264 /* We've already checked the fallthru edge above. */
2265 if (e2 == fallthru)
2266 continue;
2268 /* The "first successor" check above only prevents multiple
2269 checks of crossjump(A,B). In order to prevent redundant
2270 checks of crossjump(B,A), require that A be the block
2271 with the lowest index. */
2272 if (e->src->index > e2->src->index)
2273 continue;
2275 /* If nothing changed since the last attempt, there is nothing
2276 we can do. */
2277 if (!first_pass
2278 && !((e->src->flags & BB_MODIFIED)
2279 || (e2->src->flags & BB_MODIFIED)))
2280 continue;
2282 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2283 direction. */
2284 if (try_crossjump_to_edge (mode, e, e2, dir_both))
2286 changed = true;
2287 ix = 0;
2288 break;
2293 if (changed)
2294 crossjumps_occured = true;
2296 return changed;
2299 /* Search the successors of BB for common insn sequences. When found,
2300 share code between them by moving it across the basic block
2301 boundary. Return true if any changes made. */
2303 static bool
2304 try_head_merge_bb (basic_block bb)
2306 basic_block final_dest_bb = NULL;
2307 int max_match = INT_MAX;
2308 edge e0;
2309 rtx_insn **headptr, **currptr, **nextptr;
2310 bool changed, moveall;
2311 unsigned ix;
2312 rtx_insn *e0_last_head;
2313 rtx cond;
2314 rtx_insn *move_before;
2315 unsigned nedges = EDGE_COUNT (bb->succs);
2316 rtx_insn *jump = BB_END (bb);
2317 regset live, live_union;
2319 /* Nothing to do if there is not at least two outgoing edges. */
2320 if (nedges < 2)
2321 return false;
2323 /* Don't crossjump if this block ends in a computed jump,
2324 unless we are optimizing for size. */
2325 if (optimize_bb_for_size_p (bb)
2326 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
2327 && computed_jump_p (BB_END (bb)))
2328 return false;
2330 cond = get_condition (jump, &move_before, true, false);
2331 if (cond == NULL_RTX)
2333 #ifdef HAVE_cc0
2334 if (reg_mentioned_p (cc0_rtx, jump))
2335 move_before = prev_nonnote_nondebug_insn (jump);
2336 else
2337 #endif
2338 move_before = jump;
2341 for (ix = 0; ix < nedges; ix++)
2342 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
2343 return false;
2345 for (ix = 0; ix < nedges; ix++)
2347 edge e = EDGE_SUCC (bb, ix);
2348 basic_block other_bb = e->dest;
2350 if (df_get_bb_dirty (other_bb))
2352 block_was_dirty = true;
2353 return false;
2356 if (e->flags & EDGE_ABNORMAL)
2357 return false;
2359 /* Normally, all destination blocks must only be reachable from this
2360 block, i.e. they must have one incoming edge.
2362 There is one special case we can handle, that of multiple consecutive
2363 jumps where the first jumps to one of the targets of the second jump.
2364 This happens frequently in switch statements for default labels.
2365 The structure is as follows:
2366 FINAL_DEST_BB
2367 ....
2368 if (cond) jump A;
2369 fall through
2371 jump with targets A, B, C, D...
2373 has two incoming edges, from FINAL_DEST_BB and BB
2375 In this case, we can try to move the insns through BB and into
2376 FINAL_DEST_BB. */
2377 if (EDGE_COUNT (other_bb->preds) != 1)
2379 edge incoming_edge, incoming_bb_other_edge;
2380 edge_iterator ei;
2382 if (final_dest_bb != NULL
2383 || EDGE_COUNT (other_bb->preds) != 2)
2384 return false;
2386 /* We must be able to move the insns across the whole block. */
2387 move_before = BB_HEAD (bb);
2388 while (!NONDEBUG_INSN_P (move_before))
2389 move_before = NEXT_INSN (move_before);
2391 if (EDGE_COUNT (bb->preds) != 1)
2392 return false;
2393 incoming_edge = EDGE_PRED (bb, 0);
2394 final_dest_bb = incoming_edge->src;
2395 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2396 return false;
2397 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2398 if (incoming_bb_other_edge != incoming_edge)
2399 break;
2400 if (incoming_bb_other_edge->dest != other_bb)
2401 return false;
2405 e0 = EDGE_SUCC (bb, 0);
2406 e0_last_head = NULL;
2407 changed = false;
2409 for (ix = 1; ix < nedges; ix++)
2411 edge e = EDGE_SUCC (bb, ix);
2412 rtx_insn *e0_last, *e_last;
2413 int nmatch;
2415 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2416 &e0_last, &e_last, 0);
2417 if (nmatch == 0)
2418 return false;
2420 if (nmatch < max_match)
2422 max_match = nmatch;
2423 e0_last_head = e0_last;
2427 /* If we matched an entire block, we probably have to avoid moving the
2428 last insn. */
2429 if (max_match > 0
2430 && e0_last_head == BB_END (e0->dest)
2431 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2432 || control_flow_insn_p (e0_last_head)))
2434 max_match--;
2435 if (max_match == 0)
2436 return false;
2438 e0_last_head = prev_real_insn (e0_last_head);
2439 while (DEBUG_INSN_P (e0_last_head));
2442 if (max_match == 0)
2443 return false;
2445 /* We must find a union of the live registers at each of the end points. */
2446 live = BITMAP_ALLOC (NULL);
2447 live_union = BITMAP_ALLOC (NULL);
2449 currptr = XNEWVEC (rtx_insn *, nedges);
2450 headptr = XNEWVEC (rtx_insn *, nedges);
2451 nextptr = XNEWVEC (rtx_insn *, nedges);
2453 for (ix = 0; ix < nedges; ix++)
2455 int j;
2456 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
2457 rtx_insn *head = BB_HEAD (merge_bb);
2459 while (!NONDEBUG_INSN_P (head))
2460 head = NEXT_INSN (head);
2461 headptr[ix] = head;
2462 currptr[ix] = head;
2464 /* Compute the end point and live information */
2465 for (j = 1; j < max_match; j++)
2467 head = NEXT_INSN (head);
2468 while (!NONDEBUG_INSN_P (head));
2469 simulate_backwards_to_point (merge_bb, live, head);
2470 IOR_REG_SET (live_union, live);
2473 /* If we're moving across two blocks, verify the validity of the
2474 first move, then adjust the target and let the loop below deal
2475 with the final move. */
2476 if (final_dest_bb != NULL)
2478 rtx_insn *move_upto;
2480 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2481 jump, e0->dest, live_union,
2482 NULL, &move_upto);
2483 if (!moveall)
2485 if (move_upto == NULL_RTX)
2486 goto out;
2488 while (e0_last_head != move_upto)
2490 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2491 live_union);
2492 e0_last_head = PREV_INSN (e0_last_head);
2495 if (e0_last_head == NULL_RTX)
2496 goto out;
2498 jump = BB_END (final_dest_bb);
2499 cond = get_condition (jump, &move_before, true, false);
2500 if (cond == NULL_RTX)
2502 #ifdef HAVE_cc0
2503 if (reg_mentioned_p (cc0_rtx, jump))
2504 move_before = prev_nonnote_nondebug_insn (jump);
2505 else
2506 #endif
2507 move_before = jump;
2513 rtx_insn *move_upto;
2514 moveall = can_move_insns_across (currptr[0], e0_last_head,
2515 move_before, jump, e0->dest, live_union,
2516 NULL, &move_upto);
2517 if (!moveall && move_upto == NULL_RTX)
2519 if (jump == move_before)
2520 break;
2522 /* Try again, using a different insertion point. */
2523 move_before = jump;
2525 #ifdef HAVE_cc0
2526 /* Don't try moving before a cc0 user, as that may invalidate
2527 the cc0. */
2528 if (reg_mentioned_p (cc0_rtx, jump))
2529 break;
2530 #endif
2532 continue;
2535 if (final_dest_bb && !moveall)
2536 /* We haven't checked whether a partial move would be OK for the first
2537 move, so we have to fail this case. */
2538 break;
2540 changed = true;
2541 for (;;)
2543 if (currptr[0] == move_upto)
2544 break;
2545 for (ix = 0; ix < nedges; ix++)
2547 rtx_insn *curr = currptr[ix];
2549 curr = NEXT_INSN (curr);
2550 while (!NONDEBUG_INSN_P (curr));
2551 currptr[ix] = curr;
2555 /* If we can't currently move all of the identical insns, remember
2556 each insn after the range that we'll merge. */
2557 if (!moveall)
2558 for (ix = 0; ix < nedges; ix++)
2560 rtx_insn *curr = currptr[ix];
2562 curr = NEXT_INSN (curr);
2563 while (!NONDEBUG_INSN_P (curr));
2564 nextptr[ix] = curr;
2567 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2568 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2569 if (final_dest_bb != NULL)
2570 df_set_bb_dirty (final_dest_bb);
2571 df_set_bb_dirty (bb);
2572 for (ix = 1; ix < nedges; ix++)
2574 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2575 delete_insn_chain (headptr[ix], currptr[ix], false);
2577 if (!moveall)
2579 if (jump == move_before)
2580 break;
2582 /* For the unmerged insns, try a different insertion point. */
2583 move_before = jump;
2585 #ifdef HAVE_cc0
2586 /* Don't try moving before a cc0 user, as that may invalidate
2587 the cc0. */
2588 if (reg_mentioned_p (cc0_rtx, jump))
2589 break;
2590 #endif
2592 for (ix = 0; ix < nedges; ix++)
2593 currptr[ix] = headptr[ix] = nextptr[ix];
2596 while (!moveall);
2598 out:
2599 free (currptr);
2600 free (headptr);
2601 free (nextptr);
2603 crossjumps_occured |= changed;
2605 return changed;
2608 /* Return true if BB contains just bb note, or bb note followed
2609 by only DEBUG_INSNs. */
2611 static bool
2612 trivially_empty_bb_p (basic_block bb)
2614 rtx_insn *insn = BB_END (bb);
2616 while (1)
2618 if (insn == BB_HEAD (bb))
2619 return true;
2620 if (!DEBUG_INSN_P (insn))
2621 return false;
2622 insn = PREV_INSN (insn);
2626 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2627 instructions etc. Return nonzero if changes were made. */
2629 static bool
2630 try_optimize_cfg (int mode)
2632 bool changed_overall = false;
2633 bool changed;
2634 int iterations = 0;
2635 basic_block bb, b, next;
2637 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
2638 clear_bb_flags ();
2640 crossjumps_occured = false;
2642 FOR_EACH_BB_FN (bb, cfun)
2643 update_forwarder_flag (bb);
2645 if (! targetm.cannot_modify_jumps_p ())
2647 first_pass = true;
2648 /* Attempt to merge blocks as made possible by edge removal. If
2649 a block has only one successor, and the successor has only
2650 one predecessor, they may be combined. */
2653 block_was_dirty = false;
2654 changed = false;
2655 iterations++;
2657 if (dump_file)
2658 fprintf (dump_file,
2659 "\n\ntry_optimize_cfg iteration %i\n\n",
2660 iterations);
2662 for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
2663 != EXIT_BLOCK_PTR_FOR_FN (cfun);)
2665 basic_block c;
2666 edge s;
2667 bool changed_here = false;
2669 /* Delete trivially dead basic blocks. This is either
2670 blocks with no predecessors, or empty blocks with no
2671 successors. However if the empty block with no
2672 successors is the successor of the ENTRY_BLOCK, it is
2673 kept. This ensures that the ENTRY_BLOCK will have a
2674 successor which is a precondition for many RTL
2675 passes. Empty blocks may result from expanding
2676 __builtin_unreachable (). */
2677 if (EDGE_COUNT (b->preds) == 0
2678 || (EDGE_COUNT (b->succs) == 0
2679 && trivially_empty_bb_p (b)
2680 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->dest
2681 != b))
2683 c = b->prev_bb;
2684 if (EDGE_COUNT (b->preds) > 0)
2686 edge e;
2687 edge_iterator ei;
2689 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2691 if (BB_FOOTER (b)
2692 && BARRIER_P (BB_FOOTER (b)))
2693 FOR_EACH_EDGE (e, ei, b->preds)
2694 if ((e->flags & EDGE_FALLTHRU)
2695 && BB_FOOTER (e->src) == NULL)
2697 if (BB_FOOTER (b))
2699 BB_FOOTER (e->src) = BB_FOOTER (b);
2700 BB_FOOTER (b) = NULL;
2702 else
2704 start_sequence ();
2705 BB_FOOTER (e->src) = emit_barrier ();
2706 end_sequence ();
2710 else
2712 rtx_insn *last = get_last_bb_insn (b);
2713 if (last && BARRIER_P (last))
2714 FOR_EACH_EDGE (e, ei, b->preds)
2715 if ((e->flags & EDGE_FALLTHRU))
2716 emit_barrier_after (BB_END (e->src));
2719 delete_basic_block (b);
2720 changed = true;
2721 /* Avoid trying to remove the exit block. */
2722 b = (c == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? c->next_bb : c);
2723 continue;
2726 /* Remove code labels no longer used. */
2727 if (single_pred_p (b)
2728 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2729 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
2730 && LABEL_P (BB_HEAD (b))
2731 && !LABEL_PRESERVE_P (BB_HEAD (b))
2732 /* If the previous block ends with a branch to this
2733 block, we can't delete the label. Normally this
2734 is a condjump that is yet to be simplified, but
2735 if CASE_DROPS_THRU, this can be a tablejump with
2736 some element going to the same place as the
2737 default (fallthru). */
2738 && (single_pred (b) == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2739 || !JUMP_P (BB_END (single_pred (b)))
2740 || ! label_is_jump_target_p (BB_HEAD (b),
2741 BB_END (single_pred (b)))))
2743 delete_insn (BB_HEAD (b));
2744 if (dump_file)
2745 fprintf (dump_file, "Deleted label in block %i.\n",
2746 b->index);
2749 /* If we fall through an empty block, we can remove it. */
2750 if (!(mode & (CLEANUP_CFGLAYOUT | CLEANUP_NO_INSN_DEL))
2751 && single_pred_p (b)
2752 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2753 && !LABEL_P (BB_HEAD (b))
2754 && FORWARDER_BLOCK_P (b)
2755 /* Note that forwarder_block_p true ensures that
2756 there is a successor for this block. */
2757 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
2758 && n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS + 1)
2760 if (dump_file)
2761 fprintf (dump_file,
2762 "Deleting fallthru block %i.\n",
2763 b->index);
2765 c = ((b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2766 ? b->next_bb : b->prev_bb);
2767 redirect_edge_succ_nodup (single_pred_edge (b),
2768 single_succ (b));
2769 delete_basic_block (b);
2770 changed = true;
2771 b = c;
2772 continue;
2775 /* Merge B with its single successor, if any. */
2776 if (single_succ_p (b)
2777 && (s = single_succ_edge (b))
2778 && !(s->flags & EDGE_COMPLEX)
2779 && (c = s->dest) != EXIT_BLOCK_PTR_FOR_FN (cfun)
2780 && single_pred_p (c)
2781 && b != c)
2783 /* When not in cfg_layout mode use code aware of reordering
2784 INSN. This code possibly creates new basic blocks so it
2785 does not fit merge_blocks interface and is kept here in
2786 hope that it will become useless once more of compiler
2787 is transformed to use cfg_layout mode. */
2789 if ((mode & CLEANUP_CFGLAYOUT)
2790 && can_merge_blocks_p (b, c))
2792 merge_blocks (b, c);
2793 update_forwarder_flag (b);
2794 changed_here = true;
2796 else if (!(mode & CLEANUP_CFGLAYOUT)
2797 /* If the jump insn has side effects,
2798 we can't kill the edge. */
2799 && (!JUMP_P (BB_END (b))
2800 || (reload_completed
2801 ? simplejump_p (BB_END (b))
2802 : (onlyjump_p (BB_END (b))
2803 && !tablejump_p (BB_END (b),
2804 NULL, NULL))))
2805 && (next = merge_blocks_move (s, b, c, mode)))
2807 b = next;
2808 changed_here = true;
2812 /* Simplify branch over branch. */
2813 if ((mode & CLEANUP_EXPENSIVE)
2814 && !(mode & CLEANUP_CFGLAYOUT)
2815 && try_simplify_condjump (b))
2816 changed_here = true;
2818 /* If B has a single outgoing edge, but uses a
2819 non-trivial jump instruction without side-effects, we
2820 can either delete the jump entirely, or replace it
2821 with a simple unconditional jump. */
2822 if (single_succ_p (b)
2823 && single_succ (b) != EXIT_BLOCK_PTR_FOR_FN (cfun)
2824 && onlyjump_p (BB_END (b))
2825 && !CROSSING_JUMP_P (BB_END (b))
2826 && try_redirect_by_replacing_jump (single_succ_edge (b),
2827 single_succ (b),
2828 (mode & CLEANUP_CFGLAYOUT) != 0))
2830 update_forwarder_flag (b);
2831 changed_here = true;
2834 /* Simplify branch to branch. */
2835 if (try_forward_edges (mode, b))
2837 update_forwarder_flag (b);
2838 changed_here = true;
2841 /* Look for shared code between blocks. */
2842 if ((mode & CLEANUP_CROSSJUMP)
2843 && try_crossjump_bb (mode, b))
2844 changed_here = true;
2846 if ((mode & CLEANUP_CROSSJUMP)
2847 /* This can lengthen register lifetimes. Do it only after
2848 reload. */
2849 && reload_completed
2850 && try_head_merge_bb (b))
2851 changed_here = true;
2853 /* Don't get confused by the index shift caused by
2854 deleting blocks. */
2855 if (!changed_here)
2856 b = b->next_bb;
2857 else
2858 changed = true;
2861 if ((mode & CLEANUP_CROSSJUMP)
2862 && try_crossjump_bb (mode, EXIT_BLOCK_PTR_FOR_FN (cfun)))
2863 changed = true;
2865 if (block_was_dirty)
2867 /* This should only be set by head-merging. */
2868 gcc_assert (mode & CLEANUP_CROSSJUMP);
2869 df_analyze ();
2872 if (changed)
2874 /* Edge forwarding in particular can cause hot blocks previously
2875 reached by both hot and cold blocks to become dominated only
2876 by cold blocks. This will cause the verification below to fail,
2877 and lead to now cold code in the hot section. This is not easy
2878 to detect and fix during edge forwarding, and in some cases
2879 is only visible after newly unreachable blocks are deleted,
2880 which will be done in fixup_partitions. */
2881 fixup_partitions ();
2883 #ifdef ENABLE_CHECKING
2884 verify_flow_info ();
2885 #endif
2888 changed_overall |= changed;
2889 first_pass = false;
2891 while (changed);
2894 FOR_ALL_BB_FN (b, cfun)
2895 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2897 return changed_overall;
2900 /* Delete all unreachable basic blocks. */
2902 bool
2903 delete_unreachable_blocks (void)
2905 bool changed = false;
2906 basic_block b, prev_bb;
2908 find_unreachable_blocks ();
2910 /* When we're in GIMPLE mode and there may be debug insns, we should
2911 delete blocks in reverse dominator order, so as to get a chance
2912 to substitute all released DEFs into debug stmts. If we don't
2913 have dominators information, walking blocks backward gets us a
2914 better chance of retaining most debug information than
2915 otherwise. */
2916 if (MAY_HAVE_DEBUG_INSNS && current_ir_type () == IR_GIMPLE
2917 && dom_info_available_p (CDI_DOMINATORS))
2919 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2920 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
2922 prev_bb = b->prev_bb;
2924 if (!(b->flags & BB_REACHABLE))
2926 /* Speed up the removal of blocks that don't dominate
2927 others. Walking backwards, this should be the common
2928 case. */
2929 if (!first_dom_son (CDI_DOMINATORS, b))
2930 delete_basic_block (b);
2931 else
2933 vec<basic_block> h
2934 = get_all_dominated_blocks (CDI_DOMINATORS, b);
2936 while (h.length ())
2938 b = h.pop ();
2940 prev_bb = b->prev_bb;
2942 gcc_assert (!(b->flags & BB_REACHABLE));
2944 delete_basic_block (b);
2947 h.release ();
2950 changed = true;
2954 else
2956 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2957 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
2959 prev_bb = b->prev_bb;
2961 if (!(b->flags & BB_REACHABLE))
2963 delete_basic_block (b);
2964 changed = true;
2969 if (changed)
2970 tidy_fallthru_edges ();
2971 return changed;
2974 /* Delete any jump tables never referenced. We can't delete them at the
2975 time of removing tablejump insn as they are referenced by the preceding
2976 insns computing the destination, so we delay deleting and garbagecollect
2977 them once life information is computed. */
2978 void
2979 delete_dead_jumptables (void)
2981 basic_block bb;
2983 /* A dead jump table does not belong to any basic block. Scan insns
2984 between two adjacent basic blocks. */
2985 FOR_EACH_BB_FN (bb, cfun)
2987 rtx_insn *insn, *next;
2989 for (insn = NEXT_INSN (BB_END (bb));
2990 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2991 insn = next)
2993 next = NEXT_INSN (insn);
2994 if (LABEL_P (insn)
2995 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2996 && JUMP_TABLE_DATA_P (next))
2998 rtx_insn *label = insn, *jump = next;
3000 if (dump_file)
3001 fprintf (dump_file, "Dead jumptable %i removed\n",
3002 INSN_UID (insn));
3004 next = NEXT_INSN (next);
3005 delete_insn (jump);
3006 delete_insn (label);
3013 /* Tidy the CFG by deleting unreachable code and whatnot. */
3015 bool
3016 cleanup_cfg (int mode)
3018 bool changed = false;
3020 /* Set the cfglayout mode flag here. We could update all the callers
3021 but that is just inconvenient, especially given that we eventually
3022 want to have cfglayout mode as the default. */
3023 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3024 mode |= CLEANUP_CFGLAYOUT;
3026 timevar_push (TV_CLEANUP_CFG);
3027 if (delete_unreachable_blocks ())
3029 changed = true;
3030 /* We've possibly created trivially dead code. Cleanup it right
3031 now to introduce more opportunities for try_optimize_cfg. */
3032 if (!(mode & (CLEANUP_NO_INSN_DEL))
3033 && !reload_completed)
3034 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3037 compact_blocks ();
3039 /* To tail-merge blocks ending in the same noreturn function (e.g.
3040 a call to abort) we have to insert fake edges to exit. Do this
3041 here once. The fake edges do not interfere with any other CFG
3042 cleanups. */
3043 if (mode & CLEANUP_CROSSJUMP)
3044 add_noreturn_fake_exit_edges ();
3046 if (!dbg_cnt (cfg_cleanup))
3047 return changed;
3049 while (try_optimize_cfg (mode))
3051 delete_unreachable_blocks (), changed = true;
3052 if (!(mode & CLEANUP_NO_INSN_DEL))
3054 /* Try to remove some trivially dead insns when doing an expensive
3055 cleanup. But delete_trivially_dead_insns doesn't work after
3056 reload (it only handles pseudos) and run_fast_dce is too costly
3057 to run in every iteration.
3059 For effective cross jumping, we really want to run a fast DCE to
3060 clean up any dead conditions, or they get in the way of performing
3061 useful tail merges.
3063 Other transformations in cleanup_cfg are not so sensitive to dead
3064 code, so delete_trivially_dead_insns or even doing nothing at all
3065 is good enough. */
3066 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
3067 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3068 break;
3069 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occured)
3070 run_fast_dce ();
3072 else
3073 break;
3076 if (mode & CLEANUP_CROSSJUMP)
3077 remove_fake_exit_edges ();
3079 /* Don't call delete_dead_jumptables in cfglayout mode, because
3080 that function assumes that jump tables are in the insns stream.
3081 But we also don't _have_ to delete dead jumptables in cfglayout
3082 mode because we shouldn't even be looking at things that are
3083 not in a basic block. Dead jumptables are cleaned up when
3084 going out of cfglayout mode. */
3085 if (!(mode & CLEANUP_CFGLAYOUT))
3086 delete_dead_jumptables ();
3088 /* ??? We probably do this way too often. */
3089 if (current_loops
3090 && (changed
3091 || (mode & CLEANUP_CFG_CHANGED)))
3093 timevar_push (TV_REPAIR_LOOPS);
3094 /* The above doesn't preserve dominance info if available. */
3095 gcc_assert (!dom_info_available_p (CDI_DOMINATORS));
3096 calculate_dominance_info (CDI_DOMINATORS);
3097 fix_loop_structure (NULL);
3098 free_dominance_info (CDI_DOMINATORS);
3099 timevar_pop (TV_REPAIR_LOOPS);
3102 timevar_pop (TV_CLEANUP_CFG);
3104 return changed;
3107 namespace {
3109 const pass_data pass_data_jump =
3111 RTL_PASS, /* type */
3112 "jump", /* name */
3113 OPTGROUP_NONE, /* optinfo_flags */
3114 TV_JUMP, /* tv_id */
3115 0, /* properties_required */
3116 0, /* properties_provided */
3117 0, /* properties_destroyed */
3118 0, /* todo_flags_start */
3119 0, /* todo_flags_finish */
3122 class pass_jump : public rtl_opt_pass
3124 public:
3125 pass_jump (gcc::context *ctxt)
3126 : rtl_opt_pass (pass_data_jump, ctxt)
3129 /* opt_pass methods: */
3130 virtual unsigned int execute (function *);
3132 }; // class pass_jump
3134 unsigned int
3135 pass_jump::execute (function *)
3137 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3138 if (dump_file)
3139 dump_flow_info (dump_file, dump_flags);
3140 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
3141 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
3142 return 0;
3145 } // anon namespace
3147 rtl_opt_pass *
3148 make_pass_jump (gcc::context *ctxt)
3150 return new pass_jump (ctxt);
3153 namespace {
3155 const pass_data pass_data_jump2 =
3157 RTL_PASS, /* type */
3158 "jump2", /* name */
3159 OPTGROUP_NONE, /* optinfo_flags */
3160 TV_JUMP, /* tv_id */
3161 0, /* properties_required */
3162 0, /* properties_provided */
3163 0, /* properties_destroyed */
3164 0, /* todo_flags_start */
3165 0, /* todo_flags_finish */
3168 class pass_jump2 : public rtl_opt_pass
3170 public:
3171 pass_jump2 (gcc::context *ctxt)
3172 : rtl_opt_pass (pass_data_jump2, ctxt)
3175 /* opt_pass methods: */
3176 virtual unsigned int execute (function *)
3178 cleanup_cfg (flag_crossjumping ? CLEANUP_CROSSJUMP : 0);
3179 return 0;
3182 }; // class pass_jump2
3184 } // anon namespace
3186 rtl_opt_pass *
3187 make_pass_jump2 (gcc::context *ctxt)
3189 return new pass_jump2 (ctxt);