re PR fortran/37792 (ICE in gfc_conv_array_initializer; works with -fno-range-check)
[official-gcc.git] / gcc / postreload.c
blob8abc90f83d9acb2b8693057e090cdf7f12499dd7
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "timevar.h"
48 #include "tree-pass.h"
49 #include "df.h"
50 #include "dbgcnt.h"
52 static int reload_cse_noop_set_p (rtx);
53 static void reload_cse_simplify (rtx, rtx);
54 static void reload_cse_regs_1 (rtx);
55 static int reload_cse_simplify_set (rtx, rtx);
56 static int reload_cse_simplify_operands (rtx, rtx);
58 static void reload_combine (void);
59 static void reload_combine_note_use (rtx *, rtx);
60 static void reload_combine_note_store (rtx, const_rtx, void *);
62 static void reload_cse_move2add (rtx);
63 static void move2add_note_store (rtx, const_rtx, void *);
65 /* Call cse / combine like post-reload optimization phases.
66 FIRST is the first instruction. */
67 void
68 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
70 reload_cse_regs_1 (first);
71 reload_combine ();
72 reload_cse_move2add (first);
73 if (flag_expensive_optimizations)
74 reload_cse_regs_1 (first);
77 /* See whether a single set SET is a noop. */
78 static int
79 reload_cse_noop_set_p (rtx set)
81 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
82 return 0;
84 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
87 /* Try to simplify INSN. */
88 static void
89 reload_cse_simplify (rtx insn, rtx testreg)
91 rtx body = PATTERN (insn);
93 if (GET_CODE (body) == SET)
95 int count = 0;
97 /* Simplify even if we may think it is a no-op.
98 We may think a memory load of a value smaller than WORD_SIZE
99 is redundant because we haven't taken into account possible
100 implicit extension. reload_cse_simplify_set() will bring
101 this out, so it's safer to simplify before we delete. */
102 count += reload_cse_simplify_set (body, insn);
104 if (!count && reload_cse_noop_set_p (body))
106 rtx value = SET_DEST (body);
107 if (REG_P (value)
108 && ! REG_FUNCTION_VALUE_P (value))
109 value = 0;
110 delete_insn_and_edges (insn);
111 return;
114 if (count > 0)
115 apply_change_group ();
116 else
117 reload_cse_simplify_operands (insn, testreg);
119 else if (GET_CODE (body) == PARALLEL)
121 int i;
122 int count = 0;
123 rtx value = NULL_RTX;
125 /* Registers mentioned in the clobber list for an asm cannot be reused
126 within the body of the asm. Invalidate those registers now so that
127 we don't try to substitute values for them. */
128 if (asm_noperands (body) >= 0)
130 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
132 rtx part = XVECEXP (body, 0, i);
133 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
134 cselib_invalidate_rtx (XEXP (part, 0));
138 /* If every action in a PARALLEL is a noop, we can delete
139 the entire PARALLEL. */
140 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
142 rtx part = XVECEXP (body, 0, i);
143 if (GET_CODE (part) == SET)
145 if (! reload_cse_noop_set_p (part))
146 break;
147 if (REG_P (SET_DEST (part))
148 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
150 if (value)
151 break;
152 value = SET_DEST (part);
155 else if (GET_CODE (part) != CLOBBER)
156 break;
159 if (i < 0)
161 delete_insn_and_edges (insn);
162 /* We're done with this insn. */
163 return;
166 /* It's not a no-op, but we can try to simplify it. */
167 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
168 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
169 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
171 if (count > 0)
172 apply_change_group ();
173 else
174 reload_cse_simplify_operands (insn, testreg);
178 /* Do a very simple CSE pass over the hard registers.
180 This function detects no-op moves where we happened to assign two
181 different pseudo-registers to the same hard register, and then
182 copied one to the other. Reload will generate a useless
183 instruction copying a register to itself.
185 This function also detects cases where we load a value from memory
186 into two different registers, and (if memory is more expensive than
187 registers) changes it to simply copy the first register into the
188 second register.
190 Another optimization is performed that scans the operands of each
191 instruction to see whether the value is already available in a
192 hard register. It then replaces the operand with the hard register
193 if possible, much like an optional reload would. */
195 static void
196 reload_cse_regs_1 (rtx first)
198 rtx insn;
199 rtx testreg = gen_rtx_REG (VOIDmode, -1);
201 cselib_init (true);
202 init_alias_analysis ();
204 for (insn = first; insn; insn = NEXT_INSN (insn))
206 if (INSN_P (insn))
207 reload_cse_simplify (insn, testreg);
209 cselib_process_insn (insn);
212 /* Clean up. */
213 end_alias_analysis ();
214 cselib_finish ();
217 /* Try to simplify a single SET instruction. SET is the set pattern.
218 INSN is the instruction it came from.
219 This function only handles one case: if we set a register to a value
220 which is not a register, we try to find that value in some other register
221 and change the set into a register copy. */
223 static int
224 reload_cse_simplify_set (rtx set, rtx insn)
226 int did_change = 0;
227 int dreg;
228 rtx src;
229 enum reg_class dclass;
230 int old_cost;
231 cselib_val *val;
232 struct elt_loc_list *l;
233 #ifdef LOAD_EXTEND_OP
234 enum rtx_code extend_op = UNKNOWN;
235 #endif
236 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
238 dreg = true_regnum (SET_DEST (set));
239 if (dreg < 0)
240 return 0;
242 src = SET_SRC (set);
243 if (side_effects_p (src) || true_regnum (src) >= 0)
244 return 0;
246 dclass = REGNO_REG_CLASS (dreg);
248 #ifdef LOAD_EXTEND_OP
249 /* When replacing a memory with a register, we need to honor assumptions
250 that combine made wrt the contents of sign bits. We'll do this by
251 generating an extend instruction instead of a reg->reg copy. Thus
252 the destination must be a register that we can widen. */
253 if (MEM_P (src)
254 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
255 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
256 && !REG_P (SET_DEST (set)))
257 return 0;
258 #endif
260 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
261 if (! val)
262 return 0;
264 /* If memory loads are cheaper than register copies, don't change them. */
265 if (MEM_P (src))
266 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
267 else if (REG_P (src))
268 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
269 REGNO_REG_CLASS (REGNO (src)), dclass);
270 else
271 old_cost = rtx_cost (src, SET, speed);
273 for (l = val->locs; l; l = l->next)
275 rtx this_rtx = l->loc;
276 int this_cost;
278 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
280 #ifdef LOAD_EXTEND_OP
281 if (extend_op != UNKNOWN)
283 HOST_WIDE_INT this_val;
285 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
286 constants, such as SYMBOL_REF, cannot be extended. */
287 if (GET_CODE (this_rtx) != CONST_INT)
288 continue;
290 this_val = INTVAL (this_rtx);
291 switch (extend_op)
293 case ZERO_EXTEND:
294 this_val &= GET_MODE_MASK (GET_MODE (src));
295 break;
296 case SIGN_EXTEND:
297 /* ??? In theory we're already extended. */
298 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
299 break;
300 default:
301 gcc_unreachable ();
303 this_rtx = GEN_INT (this_val);
305 #endif
306 this_cost = rtx_cost (this_rtx, SET, speed);
308 else if (REG_P (this_rtx))
310 #ifdef LOAD_EXTEND_OP
311 if (extend_op != UNKNOWN)
313 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
314 this_cost = rtx_cost (this_rtx, SET, speed);
316 else
317 #endif
318 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
319 REGNO_REG_CLASS (REGNO (this_rtx)),
320 dclass);
322 else
323 continue;
325 /* If equal costs, prefer registers over anything else. That
326 tends to lead to smaller instructions on some machines. */
327 if (this_cost < old_cost
328 || (this_cost == old_cost
329 && REG_P (this_rtx)
330 && !REG_P (SET_SRC (set))))
332 #ifdef LOAD_EXTEND_OP
333 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
334 && extend_op != UNKNOWN
335 #ifdef CANNOT_CHANGE_MODE_CLASS
336 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
337 word_mode,
338 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
339 #endif
342 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
343 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
344 validate_change (insn, &SET_DEST (set), wide_dest, 1);
346 #endif
348 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
349 old_cost = this_cost, did_change = 1;
353 return did_change;
356 /* Try to replace operands in INSN with equivalent values that are already
357 in registers. This can be viewed as optional reloading.
359 For each non-register operand in the insn, see if any hard regs are
360 known to be equivalent to that operand. Record the alternatives which
361 can accept these hard registers. Among all alternatives, select the
362 ones which are better or equal to the one currently matching, where
363 "better" is in terms of '?' and '!' constraints. Among the remaining
364 alternatives, select the one which replaces most operands with
365 hard registers. */
367 static int
368 reload_cse_simplify_operands (rtx insn, rtx testreg)
370 int i, j;
372 /* For each operand, all registers that are equivalent to it. */
373 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
375 const char *constraints[MAX_RECOG_OPERANDS];
377 /* Vector recording how bad an alternative is. */
378 int *alternative_reject;
379 /* Vector recording how many registers can be introduced by choosing
380 this alternative. */
381 int *alternative_nregs;
382 /* Array of vectors recording, for each operand and each alternative,
383 which hard register to substitute, or -1 if the operand should be
384 left as it is. */
385 int *op_alt_regno[MAX_RECOG_OPERANDS];
386 /* Array of alternatives, sorted in order of decreasing desirability. */
387 int *alternative_order;
389 extract_insn (insn);
391 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
392 return 0;
394 /* Figure out which alternative currently matches. */
395 if (! constrain_operands (1))
396 fatal_insn_not_found (insn);
398 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
399 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
400 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
401 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
402 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
404 /* For each operand, find out which regs are equivalent. */
405 for (i = 0; i < recog_data.n_operands; i++)
407 cselib_val *v;
408 struct elt_loc_list *l;
409 rtx op;
410 enum machine_mode mode;
412 CLEAR_HARD_REG_SET (equiv_regs[i]);
414 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
415 right, so avoid the problem here. Likewise if we have a constant
416 and the insn pattern doesn't tell us the mode we need. */
417 if (LABEL_P (recog_data.operand[i])
418 || (CONSTANT_P (recog_data.operand[i])
419 && recog_data.operand_mode[i] == VOIDmode))
420 continue;
422 op = recog_data.operand[i];
423 mode = GET_MODE (op);
424 #ifdef LOAD_EXTEND_OP
425 if (MEM_P (op)
426 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
427 && LOAD_EXTEND_OP (mode) != UNKNOWN)
429 rtx set = single_set (insn);
431 /* We might have multiple sets, some of which do implicit
432 extension. Punt on this for now. */
433 if (! set)
434 continue;
435 /* If the destination is also a MEM or a STRICT_LOW_PART, no
436 extension applies.
437 Also, if there is an explicit extension, we don't have to
438 worry about an implicit one. */
439 else if (MEM_P (SET_DEST (set))
440 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
441 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
442 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
443 ; /* Continue ordinary processing. */
444 #ifdef CANNOT_CHANGE_MODE_CLASS
445 /* If the register cannot change mode to word_mode, it follows that
446 it cannot have been used in word_mode. */
447 else if (REG_P (SET_DEST (set))
448 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
449 word_mode,
450 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
451 ; /* Continue ordinary processing. */
452 #endif
453 /* If this is a straight load, make the extension explicit. */
454 else if (REG_P (SET_DEST (set))
455 && recog_data.n_operands == 2
456 && SET_SRC (set) == op
457 && SET_DEST (set) == recog_data.operand[1-i])
459 validate_change (insn, recog_data.operand_loc[i],
460 gen_rtx_fmt_e (LOAD_EXTEND_OP (mode),
461 word_mode, op),
463 validate_change (insn, recog_data.operand_loc[1-i],
464 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
466 if (! apply_change_group ())
467 return 0;
468 return reload_cse_simplify_operands (insn, testreg);
470 else
471 /* ??? There might be arithmetic operations with memory that are
472 safe to optimize, but is it worth the trouble? */
473 continue;
475 #endif /* LOAD_EXTEND_OP */
476 v = cselib_lookup (op, recog_data.operand_mode[i], 0);
477 if (! v)
478 continue;
480 for (l = v->locs; l; l = l->next)
481 if (REG_P (l->loc))
482 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
485 for (i = 0; i < recog_data.n_operands; i++)
487 enum machine_mode mode;
488 int regno;
489 const char *p;
491 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
492 for (j = 0; j < recog_data.n_alternatives; j++)
493 op_alt_regno[i][j] = -1;
495 p = constraints[i] = recog_data.constraints[i];
496 mode = recog_data.operand_mode[i];
498 /* Add the reject values for each alternative given by the constraints
499 for this operand. */
500 j = 0;
501 while (*p != '\0')
503 char c = *p++;
504 if (c == ',')
505 j++;
506 else if (c == '?')
507 alternative_reject[j] += 3;
508 else if (c == '!')
509 alternative_reject[j] += 300;
512 /* We won't change operands which are already registers. We
513 also don't want to modify output operands. */
514 regno = true_regnum (recog_data.operand[i]);
515 if (regno >= 0
516 || constraints[i][0] == '='
517 || constraints[i][0] == '+')
518 continue;
520 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
522 int rclass = (int) NO_REGS;
524 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
525 continue;
527 SET_REGNO (testreg, regno);
528 PUT_MODE (testreg, mode);
530 /* We found a register equal to this operand. Now look for all
531 alternatives that can accept this register and have not been
532 assigned a register they can use yet. */
533 j = 0;
534 p = constraints[i];
535 for (;;)
537 char c = *p;
539 switch (c)
541 case '=': case '+': case '?':
542 case '#': case '&': case '!':
543 case '*': case '%':
544 case '0': case '1': case '2': case '3': case '4':
545 case '5': case '6': case '7': case '8': case '9':
546 case '<': case '>': case 'V': case 'o':
547 case 'E': case 'F': case 'G': case 'H':
548 case 's': case 'i': case 'n':
549 case 'I': case 'J': case 'K': case 'L':
550 case 'M': case 'N': case 'O': case 'P':
551 case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
552 /* These don't say anything we care about. */
553 break;
555 case 'g': case 'r':
556 rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS];
557 break;
559 default:
560 rclass
561 = (reg_class_subunion
562 [(int) rclass]
563 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
564 break;
566 case ',': case '\0':
567 /* See if REGNO fits this alternative, and set it up as the
568 replacement register if we don't have one for this
569 alternative yet and the operand being replaced is not
570 a cheap CONST_INT. */
571 if (op_alt_regno[i][j] == -1
572 && reg_fits_class_p (testreg, rclass, 0, mode)
573 && (GET_CODE (recog_data.operand[i]) != CONST_INT
574 || (rtx_cost (recog_data.operand[i], SET,
575 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
576 > rtx_cost (testreg, SET,
577 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn))))))
579 alternative_nregs[j]++;
580 op_alt_regno[i][j] = regno;
582 j++;
583 rclass = (int) NO_REGS;
584 break;
586 p += CONSTRAINT_LEN (c, p);
588 if (c == '\0')
589 break;
594 /* Record all alternatives which are better or equal to the currently
595 matching one in the alternative_order array. */
596 for (i = j = 0; i < recog_data.n_alternatives; i++)
597 if (alternative_reject[i] <= alternative_reject[which_alternative])
598 alternative_order[j++] = i;
599 recog_data.n_alternatives = j;
601 /* Sort it. Given a small number of alternatives, a dumb algorithm
602 won't hurt too much. */
603 for (i = 0; i < recog_data.n_alternatives - 1; i++)
605 int best = i;
606 int best_reject = alternative_reject[alternative_order[i]];
607 int best_nregs = alternative_nregs[alternative_order[i]];
608 int tmp;
610 for (j = i + 1; j < recog_data.n_alternatives; j++)
612 int this_reject = alternative_reject[alternative_order[j]];
613 int this_nregs = alternative_nregs[alternative_order[j]];
615 if (this_reject < best_reject
616 || (this_reject == best_reject && this_nregs > best_nregs))
618 best = j;
619 best_reject = this_reject;
620 best_nregs = this_nregs;
624 tmp = alternative_order[best];
625 alternative_order[best] = alternative_order[i];
626 alternative_order[i] = tmp;
629 /* Substitute the operands as determined by op_alt_regno for the best
630 alternative. */
631 j = alternative_order[0];
633 for (i = 0; i < recog_data.n_operands; i++)
635 enum machine_mode mode = recog_data.operand_mode[i];
636 if (op_alt_regno[i][j] == -1)
637 continue;
639 validate_change (insn, recog_data.operand_loc[i],
640 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
643 for (i = recog_data.n_dups - 1; i >= 0; i--)
645 int op = recog_data.dup_num[i];
646 enum machine_mode mode = recog_data.operand_mode[op];
648 if (op_alt_regno[op][j] == -1)
649 continue;
651 validate_change (insn, recog_data.dup_loc[i],
652 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
655 return apply_change_group ();
658 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
659 addressing now.
660 This code might also be useful when reload gave up on reg+reg addressing
661 because of clashes between the return register and INDEX_REG_CLASS. */
663 /* The maximum number of uses of a register we can keep track of to
664 replace them with reg+reg addressing. */
665 #define RELOAD_COMBINE_MAX_USES 6
667 /* INSN is the insn where a register has been used, and USEP points to the
668 location of the register within the rtl. */
669 struct reg_use { rtx insn, *usep; };
671 /* If the register is used in some unknown fashion, USE_INDEX is negative.
672 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
673 indicates where it becomes live again.
674 Otherwise, USE_INDEX is the index of the last encountered use of the
675 register (which is first among these we have seen since we scan backwards),
676 OFFSET contains the constant offset that is added to the register in
677 all encountered uses, and USE_RUID indicates the first encountered, i.e.
678 last, of these uses.
679 STORE_RUID is always meaningful if we only want to use a value in a
680 register in a different place: it denotes the next insn in the insn
681 stream (i.e. the last encountered) that sets or clobbers the register. */
682 static struct
684 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
685 int use_index;
686 rtx offset;
687 int store_ruid;
688 int use_ruid;
689 } reg_state[FIRST_PSEUDO_REGISTER];
691 /* Reverse linear uid. This is increased in reload_combine while scanning
692 the instructions from last to first. It is used to set last_label_ruid
693 and the store_ruid / use_ruid fields in reg_state. */
694 static int reload_combine_ruid;
696 #define LABEL_LIVE(LABEL) \
697 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
699 static void
700 reload_combine (void)
702 rtx insn, set;
703 int first_index_reg = -1;
704 int last_index_reg = 0;
705 int i;
706 basic_block bb;
707 unsigned int r;
708 int last_label_ruid;
709 int min_labelno, n_labels;
710 HARD_REG_SET ever_live_at_start, *label_live;
712 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
713 reload has already used it where appropriate, so there is no use in
714 trying to generate it now. */
715 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
716 return;
718 /* To avoid wasting too much time later searching for an index register,
719 determine the minimum and maximum index register numbers. */
720 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
721 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
723 if (first_index_reg == -1)
724 first_index_reg = r;
726 last_index_reg = r;
729 /* If no index register is available, we can quit now. */
730 if (first_index_reg == -1)
731 return;
733 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
734 information is a bit fuzzy immediately after reload, but it's
735 still good enough to determine which registers are live at a jump
736 destination. */
737 min_labelno = get_first_label_num ();
738 n_labels = max_label_num () - min_labelno;
739 label_live = XNEWVEC (HARD_REG_SET, n_labels);
740 CLEAR_HARD_REG_SET (ever_live_at_start);
742 FOR_EACH_BB_REVERSE (bb)
744 insn = BB_HEAD (bb);
745 if (LABEL_P (insn))
747 HARD_REG_SET live;
748 bitmap live_in = df_get_live_in (bb);
750 REG_SET_TO_HARD_REG_SET (live, live_in);
751 compute_use_by_pseudos (&live, live_in);
752 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
753 IOR_HARD_REG_SET (ever_live_at_start, live);
757 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
758 last_label_ruid = reload_combine_ruid = 0;
759 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
761 reg_state[r].store_ruid = reload_combine_ruid;
762 if (fixed_regs[r])
763 reg_state[r].use_index = -1;
764 else
765 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
768 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
770 rtx note;
772 /* We cannot do our optimization across labels. Invalidating all the use
773 information we have would be costly, so we just note where the label
774 is and then later disable any optimization that would cross it. */
775 if (LABEL_P (insn))
776 last_label_ruid = reload_combine_ruid;
777 else if (BARRIER_P (insn))
778 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
779 if (! fixed_regs[r])
780 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
782 if (! INSN_P (insn))
783 continue;
785 reload_combine_ruid++;
787 /* Look for (set (REGX) (CONST_INT))
788 (set (REGX) (PLUS (REGX) (REGY)))
790 ... (MEM (REGX)) ...
791 and convert it to
792 (set (REGZ) (CONST_INT))
794 ... (MEM (PLUS (REGZ) (REGY)))... .
796 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
797 and that we know all uses of REGX before it dies.
798 Also, explicitly check that REGX != REGY; our life information
799 does not yet show whether REGY changes in this insn. */
800 set = single_set (insn);
801 if (set != NULL_RTX
802 && REG_P (SET_DEST (set))
803 && (hard_regno_nregs[REGNO (SET_DEST (set))]
804 [GET_MODE (SET_DEST (set))]
805 == 1)
806 && GET_CODE (SET_SRC (set)) == PLUS
807 && REG_P (XEXP (SET_SRC (set), 1))
808 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
809 && !rtx_equal_p (XEXP (SET_SRC (set), 1), SET_DEST (set))
810 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
812 rtx reg = SET_DEST (set);
813 rtx plus = SET_SRC (set);
814 rtx base = XEXP (plus, 1);
815 rtx prev = prev_nonnote_insn (insn);
816 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
817 unsigned int regno = REGNO (reg);
818 rtx const_reg = NULL_RTX;
819 rtx reg_sum = NULL_RTX;
821 /* Now, we need an index register.
822 We'll set index_reg to this index register, const_reg to the
823 register that is to be loaded with the constant
824 (denoted as REGZ in the substitution illustration above),
825 and reg_sum to the register-register that we want to use to
826 substitute uses of REG (typically in MEMs) with.
827 First check REG and BASE for being index registers;
828 we can use them even if they are not dead. */
829 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
830 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
831 REGNO (base)))
833 const_reg = reg;
834 reg_sum = plus;
836 else
838 /* Otherwise, look for a free index register. Since we have
839 checked above that neither REG nor BASE are index registers,
840 if we find anything at all, it will be different from these
841 two registers. */
842 for (i = first_index_reg; i <= last_index_reg; i++)
844 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
846 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
847 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
848 && hard_regno_nregs[i][GET_MODE (reg)] == 1)
850 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
852 const_reg = index_reg;
853 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
854 break;
859 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
860 (REGY), i.e. BASE, is not clobbered before the last use we'll
861 create. */
862 if (prev_set != 0
863 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
864 && rtx_equal_p (SET_DEST (prev_set), reg)
865 && reg_state[regno].use_index >= 0
866 && (reg_state[REGNO (base)].store_ruid
867 <= reg_state[regno].use_ruid)
868 && reg_sum != 0)
870 int i;
872 /* Change destination register and, if necessary, the
873 constant value in PREV, the constant loading instruction. */
874 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
875 if (reg_state[regno].offset != const0_rtx)
876 validate_change (prev,
877 &SET_SRC (prev_set),
878 GEN_INT (INTVAL (SET_SRC (prev_set))
879 + INTVAL (reg_state[regno].offset)),
882 /* Now for every use of REG that we have recorded, replace REG
883 with REG_SUM. */
884 for (i = reg_state[regno].use_index;
885 i < RELOAD_COMBINE_MAX_USES; i++)
886 validate_unshare_change (reg_state[regno].reg_use[i].insn,
887 reg_state[regno].reg_use[i].usep,
888 /* Each change must have its own
889 replacement. */
890 reg_sum, 1);
892 if (apply_change_group ())
894 /* Delete the reg-reg addition. */
895 delete_insn (insn);
897 if (reg_state[regno].offset != const0_rtx)
898 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
899 are now invalid. */
900 remove_reg_equal_equiv_notes (prev);
902 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
903 reg_state[REGNO (const_reg)].store_ruid
904 = reload_combine_ruid;
905 continue;
910 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
912 if (CALL_P (insn))
914 rtx link;
916 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
917 if (call_used_regs[r])
919 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
920 reg_state[r].store_ruid = reload_combine_ruid;
923 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
924 link = XEXP (link, 1))
926 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
927 if (REG_P (usage_rtx))
929 unsigned int i;
930 unsigned int start_reg = REGNO (usage_rtx);
931 unsigned int num_regs =
932 hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
933 unsigned int end_reg = start_reg + num_regs - 1;
934 for (i = start_reg; i <= end_reg; i++)
935 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
937 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
938 reg_state[i].store_ruid = reload_combine_ruid;
940 else
941 reg_state[i].use_index = -1;
946 else if (JUMP_P (insn)
947 && GET_CODE (PATTERN (insn)) != RETURN)
949 /* Non-spill registers might be used at the call destination in
950 some unknown fashion, so we have to mark the unknown use. */
951 HARD_REG_SET *live;
953 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
954 && JUMP_LABEL (insn))
955 live = &LABEL_LIVE (JUMP_LABEL (insn));
956 else
957 live = &ever_live_at_start;
959 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
960 if (TEST_HARD_REG_BIT (*live, i))
961 reg_state[i].use_index = -1;
964 reload_combine_note_use (&PATTERN (insn), insn);
965 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
967 if (REG_NOTE_KIND (note) == REG_INC
968 && REG_P (XEXP (note, 0)))
970 int regno = REGNO (XEXP (note, 0));
972 reg_state[regno].store_ruid = reload_combine_ruid;
973 reg_state[regno].use_index = -1;
978 free (label_live);
981 /* Check if DST is a register or a subreg of a register; if it is,
982 update reg_state[regno].store_ruid and reg_state[regno].use_index
983 accordingly. Called via note_stores from reload_combine. */
985 static void
986 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
988 int regno = 0;
989 int i;
990 enum machine_mode mode = GET_MODE (dst);
992 if (GET_CODE (dst) == SUBREG)
994 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
995 GET_MODE (SUBREG_REG (dst)),
996 SUBREG_BYTE (dst),
997 GET_MODE (dst));
998 dst = SUBREG_REG (dst);
1000 if (!REG_P (dst))
1001 return;
1002 regno += REGNO (dst);
1004 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1005 careful with registers / register parts that are not full words.
1006 Similarly for ZERO_EXTRACT. */
1007 if (GET_CODE (set) != SET
1008 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1009 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1011 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1013 reg_state[i].use_index = -1;
1014 reg_state[i].store_ruid = reload_combine_ruid;
1017 else
1019 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1021 reg_state[i].store_ruid = reload_combine_ruid;
1022 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1027 /* XP points to a piece of rtl that has to be checked for any uses of
1028 registers.
1029 *XP is the pattern of INSN, or a part of it.
1030 Called from reload_combine, and recursively by itself. */
1031 static void
1032 reload_combine_note_use (rtx *xp, rtx insn)
1034 rtx x = *xp;
1035 enum rtx_code code = x->code;
1036 const char *fmt;
1037 int i, j;
1038 rtx offset = const0_rtx; /* For the REG case below. */
1040 switch (code)
1042 case SET:
1043 if (REG_P (SET_DEST (x)))
1045 reload_combine_note_use (&SET_SRC (x), insn);
1046 return;
1048 break;
1050 case USE:
1051 /* If this is the USE of a return value, we can't change it. */
1052 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1054 /* Mark the return register as used in an unknown fashion. */
1055 rtx reg = XEXP (x, 0);
1056 int regno = REGNO (reg);
1057 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1059 while (--nregs >= 0)
1060 reg_state[regno + nregs].use_index = -1;
1061 return;
1063 break;
1065 case CLOBBER:
1066 if (REG_P (SET_DEST (x)))
1068 /* No spurious CLOBBERs of pseudo registers may remain. */
1069 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1070 return;
1072 break;
1074 case PLUS:
1075 /* We are interested in (plus (reg) (const_int)) . */
1076 if (!REG_P (XEXP (x, 0))
1077 || GET_CODE (XEXP (x, 1)) != CONST_INT)
1078 break;
1079 offset = XEXP (x, 1);
1080 x = XEXP (x, 0);
1081 /* Fall through. */
1082 case REG:
1084 int regno = REGNO (x);
1085 int use_index;
1086 int nregs;
1088 /* No spurious USEs of pseudo registers may remain. */
1089 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1091 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1093 /* We can't substitute into multi-hard-reg uses. */
1094 if (nregs > 1)
1096 while (--nregs >= 0)
1097 reg_state[regno + nregs].use_index = -1;
1098 return;
1101 /* If this register is already used in some unknown fashion, we
1102 can't do anything.
1103 If we decrement the index from zero to -1, we can't store more
1104 uses, so this register becomes used in an unknown fashion. */
1105 use_index = --reg_state[regno].use_index;
1106 if (use_index < 0)
1107 return;
1109 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
1111 /* We have found another use for a register that is already
1112 used later. Check if the offsets match; if not, mark the
1113 register as used in an unknown fashion. */
1114 if (! rtx_equal_p (offset, reg_state[regno].offset))
1116 reg_state[regno].use_index = -1;
1117 return;
1120 else
1122 /* This is the first use of this register we have seen since we
1123 marked it as dead. */
1124 reg_state[regno].offset = offset;
1125 reg_state[regno].use_ruid = reload_combine_ruid;
1127 reg_state[regno].reg_use[use_index].insn = insn;
1128 reg_state[regno].reg_use[use_index].usep = xp;
1129 return;
1132 default:
1133 break;
1136 /* Recursively process the components of X. */
1137 fmt = GET_RTX_FORMAT (code);
1138 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1140 if (fmt[i] == 'e')
1141 reload_combine_note_use (&XEXP (x, i), insn);
1142 else if (fmt[i] == 'E')
1144 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1145 reload_combine_note_use (&XVECEXP (x, i, j), insn);
1150 /* See if we can reduce the cost of a constant by replacing a move
1151 with an add. We track situations in which a register is set to a
1152 constant or to a register plus a constant. */
1153 /* We cannot do our optimization across labels. Invalidating all the
1154 information about register contents we have would be costly, so we
1155 use move2add_last_label_luid to note where the label is and then
1156 later disable any optimization that would cross it.
1157 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
1158 reg_set_luid[n] is greater than move2add_last_label_luid. */
1159 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1161 /* If reg_base_reg[n] is negative, register n has been set to
1162 reg_offset[n] in mode reg_mode[n] .
1163 If reg_base_reg[n] is non-negative, register n has been set to the
1164 sum of reg_offset[n] and the value of register reg_base_reg[n]
1165 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1166 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1167 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1168 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1170 /* move2add_luid is linearly increased while scanning the instructions
1171 from first to last. It is used to set reg_set_luid in
1172 reload_cse_move2add and move2add_note_store. */
1173 static int move2add_luid;
1175 /* move2add_last_label_luid is set whenever a label is found. Labels
1176 invalidate all previously collected reg_offset data. */
1177 static int move2add_last_label_luid;
1179 /* ??? We don't know how zero / sign extension is handled, hence we
1180 can't go from a narrower to a wider mode. */
1181 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1182 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1183 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1184 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1185 GET_MODE_BITSIZE (INMODE))))
1187 static void
1188 reload_cse_move2add (rtx first)
1190 int i;
1191 rtx insn;
1193 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1194 reg_set_luid[i] = 0;
1196 move2add_last_label_luid = 0;
1197 move2add_luid = 2;
1198 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1200 rtx pat, note;
1202 if (LABEL_P (insn))
1204 move2add_last_label_luid = move2add_luid;
1205 /* We're going to increment move2add_luid twice after a
1206 label, so that we can use move2add_last_label_luid + 1 as
1207 the luid for constants. */
1208 move2add_luid++;
1209 continue;
1211 if (! INSN_P (insn))
1212 continue;
1213 pat = PATTERN (insn);
1214 /* For simplicity, we only perform this optimization on
1215 straightforward SETs. */
1216 if (GET_CODE (pat) == SET
1217 && REG_P (SET_DEST (pat)))
1219 rtx reg = SET_DEST (pat);
1220 int regno = REGNO (reg);
1221 rtx src = SET_SRC (pat);
1223 /* Check if we have valid information on the contents of this
1224 register in the mode of REG. */
1225 if (reg_set_luid[regno] > move2add_last_label_luid
1226 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1227 && dbg_cnt (cse2_move2add))
1229 /* Try to transform (set (REGX) (CONST_INT A))
1231 (set (REGX) (CONST_INT B))
1233 (set (REGX) (CONST_INT A))
1235 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1237 (set (REGX) (CONST_INT A))
1239 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1242 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
1244 rtx new_src = gen_int_mode (INTVAL (src) - reg_offset[regno],
1245 GET_MODE (reg));
1246 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1248 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1249 use (set (reg) (reg)) instead.
1250 We don't delete this insn, nor do we convert it into a
1251 note, to avoid losing register notes or the return
1252 value flag. jump2 already knows how to get rid of
1253 no-op moves. */
1254 if (new_src == const0_rtx)
1256 /* If the constants are different, this is a
1257 truncation, that, if turned into (set (reg)
1258 (reg)), would be discarded. Maybe we should
1259 try a truncMN pattern? */
1260 if (INTVAL (src) == reg_offset [regno])
1261 validate_change (insn, &SET_SRC (pat), reg, 0);
1263 else if (rtx_cost (new_src, PLUS, speed) < rtx_cost (src, SET, speed)
1264 && have_add2_insn (reg, new_src))
1266 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1267 validate_change (insn, &SET_SRC (pat), tem, 0);
1269 else if (GET_MODE (reg) != BImode)
1271 enum machine_mode narrow_mode;
1272 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1273 narrow_mode != VOIDmode
1274 && narrow_mode != GET_MODE (reg);
1275 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1277 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1278 && ((reg_offset[regno]
1279 & ~GET_MODE_MASK (narrow_mode))
1280 == (INTVAL (src)
1281 & ~GET_MODE_MASK (narrow_mode))))
1283 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1284 REGNO (reg));
1285 rtx narrow_src = gen_int_mode (INTVAL (src),
1286 narrow_mode);
1287 rtx new_set =
1288 gen_rtx_SET (VOIDmode,
1289 gen_rtx_STRICT_LOW_PART (VOIDmode,
1290 narrow_reg),
1291 narrow_src);
1292 if (validate_change (insn, &PATTERN (insn),
1293 new_set, 0))
1294 break;
1298 reg_set_luid[regno] = move2add_luid;
1299 reg_mode[regno] = GET_MODE (reg);
1300 reg_offset[regno] = INTVAL (src);
1301 continue;
1304 /* Try to transform (set (REGX) (REGY))
1305 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1307 (set (REGX) (REGY))
1308 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1310 (set (REGX) (REGY))
1311 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1313 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1314 else if (REG_P (src)
1315 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1316 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1317 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1318 reg_mode[REGNO (src)]))
1320 rtx next = next_nonnote_insn (insn);
1321 rtx set = NULL_RTX;
1322 if (next)
1323 set = single_set (next);
1324 if (set
1325 && SET_DEST (set) == reg
1326 && GET_CODE (SET_SRC (set)) == PLUS
1327 && XEXP (SET_SRC (set), 0) == reg
1328 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1330 rtx src3 = XEXP (SET_SRC (set), 1);
1331 HOST_WIDE_INT added_offset = INTVAL (src3);
1332 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1333 HOST_WIDE_INT regno_offset = reg_offset[regno];
1334 rtx new_src =
1335 gen_int_mode (added_offset
1336 + base_offset
1337 - regno_offset,
1338 GET_MODE (reg));
1339 bool success = false;
1340 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1342 if (new_src == const0_rtx)
1343 /* See above why we create (set (reg) (reg)) here. */
1344 success
1345 = validate_change (next, &SET_SRC (set), reg, 0);
1346 else if ((rtx_cost (new_src, PLUS, speed)
1347 < COSTS_N_INSNS (1) + rtx_cost (src3, SET, speed))
1348 && have_add2_insn (reg, new_src))
1350 rtx newpat = gen_rtx_SET (VOIDmode,
1351 reg,
1352 gen_rtx_PLUS (GET_MODE (reg),
1353 reg,
1354 new_src));
1355 success
1356 = validate_change (next, &PATTERN (next),
1357 newpat, 0);
1359 if (success)
1360 delete_insn (insn);
1361 insn = next;
1362 reg_mode[regno] = GET_MODE (reg);
1363 reg_offset[regno] =
1364 trunc_int_for_mode (added_offset + base_offset,
1365 GET_MODE (reg));
1366 continue;
1372 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1374 if (REG_NOTE_KIND (note) == REG_INC
1375 && REG_P (XEXP (note, 0)))
1377 /* Reset the information about this register. */
1378 int regno = REGNO (XEXP (note, 0));
1379 if (regno < FIRST_PSEUDO_REGISTER)
1380 reg_set_luid[regno] = 0;
1383 note_stores (PATTERN (insn), move2add_note_store, NULL);
1385 /* If INSN is a conditional branch, we try to extract an
1386 implicit set out of it. */
1387 if (any_condjump_p (insn))
1389 rtx cnd = fis_get_condition (insn);
1391 if (cnd != NULL_RTX
1392 && GET_CODE (cnd) == NE
1393 && REG_P (XEXP (cnd, 0))
1394 && !reg_set_p (XEXP (cnd, 0), insn)
1395 /* The following two checks, which are also in
1396 move2add_note_store, are intended to reduce the
1397 number of calls to gen_rtx_SET to avoid memory
1398 allocation if possible. */
1399 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
1400 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
1401 && GET_CODE (XEXP (cnd, 1)) == CONST_INT)
1403 rtx implicit_set =
1404 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
1405 move2add_note_store (SET_DEST (implicit_set), implicit_set, 0);
1409 /* If this is a CALL_INSN, all call used registers are stored with
1410 unknown values. */
1411 if (CALL_P (insn))
1413 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1415 if (call_used_regs[i])
1416 /* Reset the information about this register. */
1417 reg_set_luid[i] = 0;
1423 /* SET is a SET or CLOBBER that sets DST.
1424 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
1425 Called from reload_cse_move2add via note_stores. */
1427 static void
1428 move2add_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1430 unsigned int regno = 0;
1431 unsigned int nregs = 0;
1432 unsigned int i;
1433 enum machine_mode mode = GET_MODE (dst);
1435 if (GET_CODE (dst) == SUBREG)
1437 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1438 GET_MODE (SUBREG_REG (dst)),
1439 SUBREG_BYTE (dst),
1440 GET_MODE (dst));
1441 nregs = subreg_nregs (dst);
1442 dst = SUBREG_REG (dst);
1445 /* Some targets do argument pushes without adding REG_INC notes. */
1447 if (MEM_P (dst))
1449 dst = XEXP (dst, 0);
1450 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1451 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
1452 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
1453 return;
1455 if (!REG_P (dst))
1456 return;
1458 regno += REGNO (dst);
1459 if (!nregs)
1460 nregs = hard_regno_nregs[regno][mode];
1462 if (SCALAR_INT_MODE_P (GET_MODE (dst))
1463 && nregs == 1 && GET_CODE (set) == SET
1464 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1465 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
1467 rtx src = SET_SRC (set);
1468 rtx base_reg;
1469 HOST_WIDE_INT offset;
1470 int base_regno;
1471 /* This may be different from mode, if SET_DEST (set) is a
1472 SUBREG. */
1473 enum machine_mode dst_mode = GET_MODE (dst);
1475 switch (GET_CODE (src))
1477 case PLUS:
1478 if (REG_P (XEXP (src, 0)))
1480 base_reg = XEXP (src, 0);
1482 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
1483 offset = INTVAL (XEXP (src, 1));
1484 else if (REG_P (XEXP (src, 1))
1485 && (reg_set_luid[REGNO (XEXP (src, 1))]
1486 > move2add_last_label_luid)
1487 && (MODES_OK_FOR_MOVE2ADD
1488 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
1490 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
1491 offset = reg_offset[REGNO (XEXP (src, 1))];
1492 /* Maybe the first register is known to be a
1493 constant. */
1494 else if (reg_set_luid[REGNO (base_reg)]
1495 > move2add_last_label_luid
1496 && (MODES_OK_FOR_MOVE2ADD
1497 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
1498 && reg_base_reg[REGNO (base_reg)] < 0)
1500 offset = reg_offset[REGNO (base_reg)];
1501 base_reg = XEXP (src, 1);
1503 else
1504 goto invalidate;
1506 else
1507 goto invalidate;
1509 break;
1512 goto invalidate;
1514 case REG:
1515 base_reg = src;
1516 offset = 0;
1517 break;
1519 case CONST_INT:
1520 /* Start tracking the register as a constant. */
1521 reg_base_reg[regno] = -1;
1522 reg_offset[regno] = INTVAL (SET_SRC (set));
1523 /* We assign the same luid to all registers set to constants. */
1524 reg_set_luid[regno] = move2add_last_label_luid + 1;
1525 reg_mode[regno] = mode;
1526 return;
1528 default:
1529 invalidate:
1530 /* Invalidate the contents of the register. */
1531 reg_set_luid[regno] = 0;
1532 return;
1535 base_regno = REGNO (base_reg);
1536 /* If information about the base register is not valid, set it
1537 up as a new base register, pretending its value is known
1538 starting from the current insn. */
1539 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
1541 reg_base_reg[base_regno] = base_regno;
1542 reg_offset[base_regno] = 0;
1543 reg_set_luid[base_regno] = move2add_luid;
1544 reg_mode[base_regno] = mode;
1546 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
1547 reg_mode[base_regno]))
1548 goto invalidate;
1550 reg_mode[regno] = mode;
1552 /* Copy base information from our base register. */
1553 reg_set_luid[regno] = reg_set_luid[base_regno];
1554 reg_base_reg[regno] = reg_base_reg[base_regno];
1556 /* Compute the sum of the offsets or constants. */
1557 reg_offset[regno] = trunc_int_for_mode (offset
1558 + reg_offset[base_regno],
1559 dst_mode);
1561 else
1563 unsigned int endregno = regno + nregs;
1565 for (i = regno; i < endregno; i++)
1566 /* Reset the information about this register. */
1567 reg_set_luid[i] = 0;
1571 static bool
1572 gate_handle_postreload (void)
1574 return (optimize > 0 && reload_completed);
1578 static unsigned int
1579 rest_of_handle_postreload (void)
1581 if (!dbg_cnt (postreload_cse))
1582 return 0;
1584 /* Do a very simple CSE pass over just the hard registers. */
1585 reload_cse_regs (get_insns ());
1586 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
1587 Remove any EH edges associated with them. */
1588 if (flag_non_call_exceptions)
1589 purge_all_dead_edges ();
1591 return 0;
1594 struct rtl_opt_pass pass_postreload_cse =
1597 RTL_PASS,
1598 "postreload", /* name */
1599 gate_handle_postreload, /* gate */
1600 rest_of_handle_postreload, /* execute */
1601 NULL, /* sub */
1602 NULL, /* next */
1603 0, /* static_pass_number */
1604 TV_RELOAD_CSE_REGS, /* tv_id */
1605 0, /* properties_required */
1606 0, /* properties_provided */
1607 0, /* properties_destroyed */
1608 0, /* todo_flags_start */
1609 TODO_df_finish | TODO_verify_rtl_sharing |
1610 TODO_dump_func /* todo_flags_finish */