re PR fortran/37792 (ICE in gfc_conv_array_initializer; works with -fno-range-check)
[official-gcc.git] / gcc / haifa-sched.c
blob46640c4a64566009cc773c12a1d53e27231ed082
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
57 The following list shows the order in which we want to break ties
58 among insns in the ready list:
60 1. choose insn with the longest path to end of bb, ties
61 broken by
62 2. choose insn with least contribution to register pressure,
63 ties broken by
64 3. prefer in-block upon interblock motion, ties broken by
65 4. prefer useful upon speculative motion, ties broken by
66 5. choose insn with largest control flow probability, ties
67 broken by
68 6. choose insn with the least dependences upon the previously
69 scheduled insn, or finally
70 7 choose the insn which has the most insns dependent on it.
71 8. choose insn with lowest UID.
73 Memory references complicate matters. Only if we can be certain
74 that memory references are not part of the data dependency graph
75 (via true, anti, or output dependence), can we move operations past
76 memory references. To first approximation, reads can be done
77 independently, while writes introduce dependencies. Better
78 approximations will yield fewer dependencies.
80 Before reload, an extended analysis of interblock data dependences
81 is required for interblock scheduling. This is performed in
82 compute_block_backward_dependences ().
84 Dependencies set up by memory references are treated in exactly the
85 same way as other dependencies, by using insn backward dependences
86 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
87 INSN_FORW_DEPS the purpose of forward list scheduling.
89 Having optimized the critical path, we may have also unduly
90 extended the lifetimes of some registers. If an operation requires
91 that constants be loaded into registers, it is certainly desirable
92 to load those constants as early as necessary, but no earlier.
93 I.e., it will not do to load up a bunch of registers at the
94 beginning of a basic block only to use them at the end, if they
95 could be loaded later, since this may result in excessive register
96 utilization.
98 Note that since branches are never in basic blocks, but only end
99 basic blocks, this pass will not move branches. But that is ok,
100 since we can use GNU's delayed branch scheduling pass to take care
101 of this case.
103 Also note that no further optimizations based on algebraic
104 identities are performed, so this pass would be a good one to
105 perform instruction splitting, such as breaking up a multiply
106 instruction into shifts and adds where that is profitable.
108 Given the memory aliasing analysis that this pass should perform,
109 it should be possible to remove redundant stores to memory, and to
110 load values from registers instead of hitting memory.
112 Before reload, speculative insns are moved only if a 'proof' exists
113 that no exception will be caused by this, and if no live registers
114 exist that inhibit the motion (live registers constraints are not
115 represented by data dependence edges).
117 This pass must update information that subsequent passes expect to
118 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
119 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
121 The information in the line number notes is carefully retained by
122 this pass. Notes that refer to the starting and ending of
123 exception regions are also carefully retained by this pass. All
124 other NOTE insns are grouped in their same relative order at the
125 beginning of basic blocks and regions that have been scheduled. */
127 #include "config.h"
128 #include "system.h"
129 #include "coretypes.h"
130 #include "tm.h"
131 #include "toplev.h"
132 #include "rtl.h"
133 #include "tm_p.h"
134 #include "hard-reg-set.h"
135 #include "regs.h"
136 #include "function.h"
137 #include "flags.h"
138 #include "insn-config.h"
139 #include "insn-attr.h"
140 #include "except.h"
141 #include "toplev.h"
142 #include "recog.h"
143 #include "sched-int.h"
144 #include "target.h"
145 #include "output.h"
146 #include "params.h"
147 #include "vecprim.h"
148 #include "dbgcnt.h"
149 #include "cfgloop.h"
151 #ifdef INSN_SCHEDULING
153 /* issue_rate is the number of insns that can be scheduled in the same
154 machine cycle. It can be defined in the config/mach/mach.h file,
155 otherwise we set it to 1. */
157 int issue_rate;
159 /* sched-verbose controls the amount of debugging output the
160 scheduler prints. It is controlled by -fsched-verbose=N:
161 N>0 and no -DSR : the output is directed to stderr.
162 N>=10 will direct the printouts to stderr (regardless of -dSR).
163 N=1: same as -dSR.
164 N=2: bb's probabilities, detailed ready list info, unit/insn info.
165 N=3: rtl at abort point, control-flow, regions info.
166 N=5: dependences info. */
168 static int sched_verbose_param = 0;
169 int sched_verbose = 0;
171 /* Debugging file. All printouts are sent to dump, which is always set,
172 either to stderr, or to the dump listing file (-dRS). */
173 FILE *sched_dump = 0;
175 /* fix_sched_param() is called from toplev.c upon detection
176 of the -fsched-verbose=N option. */
178 void
179 fix_sched_param (const char *param, const char *val)
181 if (!strcmp (param, "verbose"))
182 sched_verbose_param = atoi (val);
183 else
184 warning (0, "fix_sched_param: unknown param: %s", param);
187 /* This is a placeholder for the scheduler parameters common
188 to all schedulers. */
189 struct common_sched_info_def *common_sched_info;
191 #define INSN_TICK(INSN) (HID (INSN)->tick)
192 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
194 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
195 then it should be recalculated from scratch. */
196 #define INVALID_TICK (-(max_insn_queue_index + 1))
197 /* The minimal value of the INSN_TICK of an instruction. */
198 #define MIN_TICK (-max_insn_queue_index)
200 /* Issue points are used to distinguish between instructions in max_issue ().
201 For now, all instructions are equally good. */
202 #define ISSUE_POINTS(INSN) 1
204 /* List of important notes we must keep around. This is a pointer to the
205 last element in the list. */
206 rtx note_list;
208 static struct spec_info_def spec_info_var;
209 /* Description of the speculative part of the scheduling.
210 If NULL - no speculation. */
211 spec_info_t spec_info = NULL;
213 /* True, if recovery block was added during scheduling of current block.
214 Used to determine, if we need to fix INSN_TICKs. */
215 static bool haifa_recovery_bb_recently_added_p;
217 /* True, if recovery block was added during this scheduling pass.
218 Used to determine if we should have empty memory pools of dependencies
219 after finishing current region. */
220 bool haifa_recovery_bb_ever_added_p;
222 /* Counters of different types of speculative instructions. */
223 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
225 /* Array used in {unlink, restore}_bb_notes. */
226 static rtx *bb_header = 0;
228 /* Basic block after which recovery blocks will be created. */
229 static basic_block before_recovery;
231 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
232 created it. */
233 basic_block after_recovery;
235 /* FALSE if we add bb to another region, so we don't need to initialize it. */
236 bool adding_bb_to_current_region_p = true;
238 /* Queues, etc. */
240 /* An instruction is ready to be scheduled when all insns preceding it
241 have already been scheduled. It is important to ensure that all
242 insns which use its result will not be executed until its result
243 has been computed. An insn is maintained in one of four structures:
245 (P) the "Pending" set of insns which cannot be scheduled until
246 their dependencies have been satisfied.
247 (Q) the "Queued" set of insns that can be scheduled when sufficient
248 time has passed.
249 (R) the "Ready" list of unscheduled, uncommitted insns.
250 (S) the "Scheduled" list of insns.
252 Initially, all insns are either "Pending" or "Ready" depending on
253 whether their dependencies are satisfied.
255 Insns move from the "Ready" list to the "Scheduled" list as they
256 are committed to the schedule. As this occurs, the insns in the
257 "Pending" list have their dependencies satisfied and move to either
258 the "Ready" list or the "Queued" set depending on whether
259 sufficient time has passed to make them ready. As time passes,
260 insns move from the "Queued" set to the "Ready" list.
262 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
263 unscheduled insns, i.e., those that are ready, queued, and pending.
264 The "Queued" set (Q) is implemented by the variable `insn_queue'.
265 The "Ready" list (R) is implemented by the variables `ready' and
266 `n_ready'.
267 The "Scheduled" list (S) is the new insn chain built by this pass.
269 The transition (R->S) is implemented in the scheduling loop in
270 `schedule_block' when the best insn to schedule is chosen.
271 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
272 insns move from the ready list to the scheduled list.
273 The transition (Q->R) is implemented in 'queue_to_insn' as time
274 passes or stalls are introduced. */
276 /* Implement a circular buffer to delay instructions until sufficient
277 time has passed. For the new pipeline description interface,
278 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
279 than maximal time of instruction execution computed by genattr.c on
280 the base maximal time of functional unit reservations and getting a
281 result. This is the longest time an insn may be queued. */
283 static rtx *insn_queue;
284 static int q_ptr = 0;
285 static int q_size = 0;
286 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
287 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
289 #define QUEUE_SCHEDULED (-3)
290 #define QUEUE_NOWHERE (-2)
291 #define QUEUE_READY (-1)
292 /* QUEUE_SCHEDULED - INSN is scheduled.
293 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
294 queue or ready list.
295 QUEUE_READY - INSN is in ready list.
296 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
298 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
300 /* The following variable value refers for all current and future
301 reservations of the processor units. */
302 state_t curr_state;
304 /* The following variable value is size of memory representing all
305 current and future reservations of the processor units. */
306 size_t dfa_state_size;
308 /* The following array is used to find the best insn from ready when
309 the automaton pipeline interface is used. */
310 char *ready_try = NULL;
312 /* The ready list. */
313 struct ready_list ready = {NULL, 0, 0, 0};
315 /* The pointer to the ready list (to be removed). */
316 static struct ready_list *readyp = &ready;
318 /* Scheduling clock. */
319 static int clock_var;
321 static int may_trap_exp (const_rtx, int);
323 /* Nonzero iff the address is comprised from at most 1 register. */
324 #define CONST_BASED_ADDRESS_P(x) \
325 (REG_P (x) \
326 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
327 || (GET_CODE (x) == LO_SUM)) \
328 && (CONSTANT_P (XEXP (x, 0)) \
329 || CONSTANT_P (XEXP (x, 1)))))
331 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
332 as found by analyzing insn's expression. */
335 static int haifa_luid_for_non_insn (rtx x);
337 /* Haifa version of sched_info hooks common to all headers. */
338 const struct common_sched_info_def haifa_common_sched_info =
340 NULL, /* fix_recovery_cfg */
341 NULL, /* add_block */
342 NULL, /* estimate_number_of_insns */
343 haifa_luid_for_non_insn, /* luid_for_non_insn */
344 SCHED_PASS_UNKNOWN /* sched_pass_id */
347 const struct sched_scan_info_def *sched_scan_info;
349 /* Mapping from instruction UID to its Logical UID. */
350 VEC (int, heap) *sched_luids = NULL;
352 /* Next LUID to assign to an instruction. */
353 int sched_max_luid = 1;
355 /* Haifa Instruction Data. */
356 VEC (haifa_insn_data_def, heap) *h_i_d = NULL;
358 void (* sched_init_only_bb) (basic_block, basic_block);
360 /* Split block function. Different schedulers might use different functions
361 to handle their internal data consistent. */
362 basic_block (* sched_split_block) (basic_block, rtx);
364 /* Create empty basic block after the specified block. */
365 basic_block (* sched_create_empty_bb) (basic_block);
367 static int
368 may_trap_exp (const_rtx x, int is_store)
370 enum rtx_code code;
372 if (x == 0)
373 return TRAP_FREE;
374 code = GET_CODE (x);
375 if (is_store)
377 if (code == MEM && may_trap_p (x))
378 return TRAP_RISKY;
379 else
380 return TRAP_FREE;
382 if (code == MEM)
384 /* The insn uses memory: a volatile load. */
385 if (MEM_VOLATILE_P (x))
386 return IRISKY;
387 /* An exception-free load. */
388 if (!may_trap_p (x))
389 return IFREE;
390 /* A load with 1 base register, to be further checked. */
391 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
392 return PFREE_CANDIDATE;
393 /* No info on the load, to be further checked. */
394 return PRISKY_CANDIDATE;
396 else
398 const char *fmt;
399 int i, insn_class = TRAP_FREE;
401 /* Neither store nor load, check if it may cause a trap. */
402 if (may_trap_p (x))
403 return TRAP_RISKY;
404 /* Recursive step: walk the insn... */
405 fmt = GET_RTX_FORMAT (code);
406 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
408 if (fmt[i] == 'e')
410 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
411 insn_class = WORST_CLASS (insn_class, tmp_class);
413 else if (fmt[i] == 'E')
415 int j;
416 for (j = 0; j < XVECLEN (x, i); j++)
418 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
419 insn_class = WORST_CLASS (insn_class, tmp_class);
420 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
421 break;
424 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
425 break;
427 return insn_class;
431 /* Classifies rtx X of an insn for the purpose of verifying that X can be
432 executed speculatively (and consequently the insn can be moved
433 speculatively), by examining X, returning:
434 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
435 TRAP_FREE: non-load insn.
436 IFREE: load from a globally safe location.
437 IRISKY: volatile load.
438 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
439 being either PFREE or PRISKY. */
441 static int
442 haifa_classify_rtx (const_rtx x)
444 int tmp_class = TRAP_FREE;
445 int insn_class = TRAP_FREE;
446 enum rtx_code code;
448 if (GET_CODE (x) == PARALLEL)
450 int i, len = XVECLEN (x, 0);
452 for (i = len - 1; i >= 0; i--)
454 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
455 insn_class = WORST_CLASS (insn_class, tmp_class);
456 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
457 break;
460 else
462 code = GET_CODE (x);
463 switch (code)
465 case CLOBBER:
466 /* Test if it is a 'store'. */
467 tmp_class = may_trap_exp (XEXP (x, 0), 1);
468 break;
469 case SET:
470 /* Test if it is a store. */
471 tmp_class = may_trap_exp (SET_DEST (x), 1);
472 if (tmp_class == TRAP_RISKY)
473 break;
474 /* Test if it is a load. */
475 tmp_class =
476 WORST_CLASS (tmp_class,
477 may_trap_exp (SET_SRC (x), 0));
478 break;
479 case COND_EXEC:
480 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
481 if (tmp_class == TRAP_RISKY)
482 break;
483 tmp_class = WORST_CLASS (tmp_class,
484 may_trap_exp (COND_EXEC_TEST (x), 0));
485 break;
486 case TRAP_IF:
487 tmp_class = TRAP_RISKY;
488 break;
489 default:;
491 insn_class = tmp_class;
494 return insn_class;
498 haifa_classify_insn (const_rtx insn)
500 return haifa_classify_rtx (PATTERN (insn));
503 /* Forward declarations. */
505 static int priority (rtx);
506 static int rank_for_schedule (const void *, const void *);
507 static void swap_sort (rtx *, int);
508 static void queue_insn (rtx, int);
509 static int schedule_insn (rtx);
510 static int find_set_reg_weight (const_rtx);
511 static void find_insn_reg_weight (const_rtx);
512 static void adjust_priority (rtx);
513 static void advance_one_cycle (void);
514 static void extend_h_i_d (void);
517 /* Notes handling mechanism:
518 =========================
519 Generally, NOTES are saved before scheduling and restored after scheduling.
520 The scheduler distinguishes between two types of notes:
522 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
523 Before scheduling a region, a pointer to the note is added to the insn
524 that follows or precedes it. (This happens as part of the data dependence
525 computation). After scheduling an insn, the pointer contained in it is
526 used for regenerating the corresponding note (in reemit_notes).
528 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
529 these notes are put in a list (in rm_other_notes() and
530 unlink_other_notes ()). After scheduling the block, these notes are
531 inserted at the beginning of the block (in schedule_block()). */
533 static void ready_add (struct ready_list *, rtx, bool);
534 static rtx ready_remove_first (struct ready_list *);
536 static void queue_to_ready (struct ready_list *);
537 static int early_queue_to_ready (state_t, struct ready_list *);
539 static void debug_ready_list (struct ready_list *);
541 /* The following functions are used to implement multi-pass scheduling
542 on the first cycle. */
543 static rtx ready_remove (struct ready_list *, int);
544 static void ready_remove_insn (rtx);
546 static int choose_ready (struct ready_list *, rtx *);
548 static void fix_inter_tick (rtx, rtx);
549 static int fix_tick_ready (rtx);
550 static void change_queue_index (rtx, int);
552 /* The following functions are used to implement scheduling of data/control
553 speculative instructions. */
555 static void extend_h_i_d (void);
556 static void init_h_i_d (rtx);
557 static void generate_recovery_code (rtx);
558 static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
559 static void begin_speculative_block (rtx);
560 static void add_to_speculative_block (rtx);
561 static void init_before_recovery (basic_block *);
562 static void create_check_block_twin (rtx, bool);
563 static void fix_recovery_deps (basic_block);
564 static void haifa_change_pattern (rtx, rtx);
565 static void dump_new_block_header (int, basic_block, rtx, rtx);
566 static void restore_bb_notes (basic_block);
567 static void fix_jump_move (rtx);
568 static void move_block_after_check (rtx);
569 static void move_succs (VEC(edge,gc) **, basic_block);
570 static void sched_remove_insn (rtx);
571 static void clear_priorities (rtx, rtx_vec_t *);
572 static void calc_priorities (rtx_vec_t);
573 static void add_jump_dependencies (rtx, rtx);
574 #ifdef ENABLE_CHECKING
575 static int has_edge_p (VEC(edge,gc) *, int);
576 static void check_cfg (rtx, rtx);
577 #endif
579 #endif /* INSN_SCHEDULING */
581 /* Point to state used for the current scheduling pass. */
582 struct haifa_sched_info *current_sched_info;
584 #ifndef INSN_SCHEDULING
585 void
586 schedule_insns (void)
589 #else
591 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
592 so that insns independent of the last scheduled insn will be preferred
593 over dependent instructions. */
595 static rtx last_scheduled_insn;
597 /* Cached cost of the instruction. Use below function to get cost of the
598 insn. -1 here means that the field is not initialized. */
599 #define INSN_COST(INSN) (HID (INSN)->cost)
601 /* Compute cost of executing INSN.
602 This is the number of cycles between instruction issue and
603 instruction results. */
604 HAIFA_INLINE int
605 insn_cost (rtx insn)
607 int cost;
609 if (sel_sched_p ())
611 if (recog_memoized (insn) < 0)
612 return 0;
614 cost = insn_default_latency (insn);
615 if (cost < 0)
616 cost = 0;
618 return cost;
621 cost = INSN_COST (insn);
623 if (cost < 0)
625 /* A USE insn, or something else we don't need to
626 understand. We can't pass these directly to
627 result_ready_cost or insn_default_latency because it will
628 trigger a fatal error for unrecognizable insns. */
629 if (recog_memoized (insn) < 0)
631 INSN_COST (insn) = 0;
632 return 0;
634 else
636 cost = insn_default_latency (insn);
637 if (cost < 0)
638 cost = 0;
640 INSN_COST (insn) = cost;
644 return cost;
647 /* Compute cost of dependence LINK.
648 This is the number of cycles between instruction issue and
649 instruction results.
650 ??? We also use this function to call recog_memoized on all insns. */
652 dep_cost_1 (dep_t link, dw_t dw)
654 rtx insn = DEP_PRO (link);
655 rtx used = DEP_CON (link);
656 int cost;
658 /* A USE insn should never require the value used to be computed.
659 This allows the computation of a function's result and parameter
660 values to overlap the return and call. */
661 if (recog_memoized (used) < 0)
663 cost = 0;
664 recog_memoized (insn);
666 else
668 enum reg_note dep_type = DEP_TYPE (link);
670 cost = insn_cost (insn);
672 if (INSN_CODE (insn) >= 0)
674 if (dep_type == REG_DEP_ANTI)
675 cost = 0;
676 else if (dep_type == REG_DEP_OUTPUT)
678 cost = (insn_default_latency (insn)
679 - insn_default_latency (used));
680 if (cost <= 0)
681 cost = 1;
683 else if (bypass_p (insn))
684 cost = insn_latency (insn, used);
688 if (targetm.sched.adjust_cost_2)
690 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
691 dw);
693 else if (targetm.sched.adjust_cost != NULL)
695 /* This variable is used for backward compatibility with the
696 targets. */
697 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
699 /* Make it self-cycled, so that if some tries to walk over this
700 incomplete list he/she will be caught in an endless loop. */
701 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
703 /* Targets use only REG_NOTE_KIND of the link. */
704 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
706 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
707 insn, cost);
709 free_INSN_LIST_node (dep_cost_rtx_link);
712 if (cost < 0)
713 cost = 0;
716 return cost;
719 /* Compute cost of dependence LINK.
720 This is the number of cycles between instruction issue and
721 instruction results. */
723 dep_cost (dep_t link)
725 return dep_cost_1 (link, 0);
728 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
729 INSN_PRIORITY explicitly. */
730 void
731 increase_insn_priority (rtx insn, int amount)
733 if (!sel_sched_p ())
735 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
736 if (INSN_PRIORITY_KNOWN (insn))
737 INSN_PRIORITY (insn) += amount;
739 else
741 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
742 Use EXPR_PRIORITY instead. */
743 sel_add_to_insn_priority (insn, amount);
747 /* Return 'true' if DEP should be included in priority calculations. */
748 static bool
749 contributes_to_priority_p (dep_t dep)
751 /* Critical path is meaningful in block boundaries only. */
752 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
753 DEP_PRO (dep)))
754 return false;
756 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
757 then speculative instructions will less likely be
758 scheduled. That is because the priority of
759 their producers will increase, and, thus, the
760 producers will more likely be scheduled, thus,
761 resolving the dependence. */
762 if (sched_deps_info->generate_spec_deps
763 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
764 && (DEP_STATUS (dep) & SPECULATIVE))
765 return false;
767 return true;
770 /* Compute the priority number for INSN. */
771 static int
772 priority (rtx insn)
774 if (! INSN_P (insn))
775 return 0;
777 /* We should not be interested in priority of an already scheduled insn. */
778 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
780 if (!INSN_PRIORITY_KNOWN (insn))
782 int this_priority = -1;
784 if (sd_lists_empty_p (insn, SD_LIST_FORW))
785 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
786 some forward deps but all of them are ignored by
787 contributes_to_priority hook. At the moment we set priority of
788 such insn to 0. */
789 this_priority = insn_cost (insn);
790 else
792 rtx prev_first, twin;
793 basic_block rec;
795 /* For recovery check instructions we calculate priority slightly
796 different than that of normal instructions. Instead of walking
797 through INSN_FORW_DEPS (check) list, we walk through
798 INSN_FORW_DEPS list of each instruction in the corresponding
799 recovery block. */
801 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
802 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
803 if (!rec || rec == EXIT_BLOCK_PTR)
805 prev_first = PREV_INSN (insn);
806 twin = insn;
808 else
810 prev_first = NEXT_INSN (BB_HEAD (rec));
811 twin = PREV_INSN (BB_END (rec));
816 sd_iterator_def sd_it;
817 dep_t dep;
819 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
821 rtx next;
822 int next_priority;
824 next = DEP_CON (dep);
826 if (BLOCK_FOR_INSN (next) != rec)
828 int cost;
830 if (!contributes_to_priority_p (dep))
831 continue;
833 if (twin == insn)
834 cost = dep_cost (dep);
835 else
837 struct _dep _dep1, *dep1 = &_dep1;
839 init_dep (dep1, insn, next, REG_DEP_ANTI);
841 cost = dep_cost (dep1);
844 next_priority = cost + priority (next);
846 if (next_priority > this_priority)
847 this_priority = next_priority;
851 twin = PREV_INSN (twin);
853 while (twin != prev_first);
856 if (this_priority < 0)
858 gcc_assert (this_priority == -1);
860 this_priority = insn_cost (insn);
863 INSN_PRIORITY (insn) = this_priority;
864 INSN_PRIORITY_STATUS (insn) = 1;
867 return INSN_PRIORITY (insn);
870 /* Macros and functions for keeping the priority queue sorted, and
871 dealing with queuing and dequeuing of instructions. */
873 #define SCHED_SORT(READY, N_READY) \
874 do { if ((N_READY) == 2) \
875 swap_sort (READY, N_READY); \
876 else if ((N_READY) > 2) \
877 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
878 while (0)
880 /* Returns a positive value if x is preferred; returns a negative value if
881 y is preferred. Should never return 0, since that will make the sort
882 unstable. */
884 static int
885 rank_for_schedule (const void *x, const void *y)
887 rtx tmp = *(const rtx *) y;
888 rtx tmp2 = *(const rtx *) x;
889 int tmp_class, tmp2_class;
890 int val, priority_val, weight_val, info_val;
892 /* The insn in a schedule group should be issued the first. */
893 if (SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
894 return SCHED_GROUP_P (tmp2) ? 1 : -1;
896 /* Make sure that priority of TMP and TMP2 are initialized. */
897 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
899 /* Prefer insn with higher priority. */
900 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
902 if (priority_val)
903 return priority_val;
905 /* Prefer speculative insn with greater dependencies weakness. */
906 if (spec_info)
908 ds_t ds1, ds2;
909 dw_t dw1, dw2;
910 int dw;
912 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
913 if (ds1)
914 dw1 = ds_weak (ds1);
915 else
916 dw1 = NO_DEP_WEAK;
918 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
919 if (ds2)
920 dw2 = ds_weak (ds2);
921 else
922 dw2 = NO_DEP_WEAK;
924 dw = dw2 - dw1;
925 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
926 return dw;
929 /* Prefer an insn with smaller contribution to registers-pressure. */
930 if (!reload_completed &&
931 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
932 return weight_val;
934 info_val = (*current_sched_info->rank) (tmp, tmp2);
935 if (info_val)
936 return info_val;
938 /* Compare insns based on their relation to the last-scheduled-insn. */
939 if (INSN_P (last_scheduled_insn))
941 dep_t dep1;
942 dep_t dep2;
944 /* Classify the instructions into three classes:
945 1) Data dependent on last schedule insn.
946 2) Anti/Output dependent on last scheduled insn.
947 3) Independent of last scheduled insn, or has latency of one.
948 Choose the insn from the highest numbered class if different. */
949 dep1 = sd_find_dep_between (last_scheduled_insn, tmp, true);
951 if (dep1 == NULL || dep_cost (dep1) == 1)
952 tmp_class = 3;
953 else if (/* Data dependence. */
954 DEP_TYPE (dep1) == REG_DEP_TRUE)
955 tmp_class = 1;
956 else
957 tmp_class = 2;
959 dep2 = sd_find_dep_between (last_scheduled_insn, tmp2, true);
961 if (dep2 == NULL || dep_cost (dep2) == 1)
962 tmp2_class = 3;
963 else if (/* Data dependence. */
964 DEP_TYPE (dep2) == REG_DEP_TRUE)
965 tmp2_class = 1;
966 else
967 tmp2_class = 2;
969 if ((val = tmp2_class - tmp_class))
970 return val;
973 /* Prefer the insn which has more later insns that depend on it.
974 This gives the scheduler more freedom when scheduling later
975 instructions at the expense of added register pressure. */
977 val = (sd_lists_size (tmp2, SD_LIST_FORW)
978 - sd_lists_size (tmp, SD_LIST_FORW));
980 if (val != 0)
981 return val;
983 /* If insns are equally good, sort by INSN_LUID (original insn order),
984 so that we make the sort stable. This minimizes instruction movement,
985 thus minimizing sched's effect on debugging and cross-jumping. */
986 return INSN_LUID (tmp) - INSN_LUID (tmp2);
989 /* Resort the array A in which only element at index N may be out of order. */
991 HAIFA_INLINE static void
992 swap_sort (rtx *a, int n)
994 rtx insn = a[n - 1];
995 int i = n - 2;
997 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
999 a[i + 1] = a[i];
1000 i -= 1;
1002 a[i + 1] = insn;
1005 /* Add INSN to the insn queue so that it can be executed at least
1006 N_CYCLES after the currently executing insn. Preserve insns
1007 chain for debugging purposes. */
1009 HAIFA_INLINE static void
1010 queue_insn (rtx insn, int n_cycles)
1012 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
1013 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
1015 gcc_assert (n_cycles <= max_insn_queue_index);
1017 insn_queue[next_q] = link;
1018 q_size += 1;
1020 if (sched_verbose >= 2)
1022 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
1023 (*current_sched_info->print_insn) (insn, 0));
1025 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
1028 QUEUE_INDEX (insn) = next_q;
1031 /* Remove INSN from queue. */
1032 static void
1033 queue_remove (rtx insn)
1035 gcc_assert (QUEUE_INDEX (insn) >= 0);
1036 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
1037 q_size--;
1038 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
1041 /* Return a pointer to the bottom of the ready list, i.e. the insn
1042 with the lowest priority. */
1044 rtx *
1045 ready_lastpos (struct ready_list *ready)
1047 gcc_assert (ready->n_ready >= 1);
1048 return ready->vec + ready->first - ready->n_ready + 1;
1051 /* Add an element INSN to the ready list so that it ends up with the
1052 lowest/highest priority depending on FIRST_P. */
1054 HAIFA_INLINE static void
1055 ready_add (struct ready_list *ready, rtx insn, bool first_p)
1057 if (!first_p)
1059 if (ready->first == ready->n_ready)
1061 memmove (ready->vec + ready->veclen - ready->n_ready,
1062 ready_lastpos (ready),
1063 ready->n_ready * sizeof (rtx));
1064 ready->first = ready->veclen - 1;
1066 ready->vec[ready->first - ready->n_ready] = insn;
1068 else
1070 if (ready->first == ready->veclen - 1)
1072 if (ready->n_ready)
1073 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
1074 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
1075 ready_lastpos (ready),
1076 ready->n_ready * sizeof (rtx));
1077 ready->first = ready->veclen - 2;
1079 ready->vec[++(ready->first)] = insn;
1082 ready->n_ready++;
1084 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
1085 QUEUE_INDEX (insn) = QUEUE_READY;
1088 /* Remove the element with the highest priority from the ready list and
1089 return it. */
1091 HAIFA_INLINE static rtx
1092 ready_remove_first (struct ready_list *ready)
1094 rtx t;
1096 gcc_assert (ready->n_ready);
1097 t = ready->vec[ready->first--];
1098 ready->n_ready--;
1099 /* If the queue becomes empty, reset it. */
1100 if (ready->n_ready == 0)
1101 ready->first = ready->veclen - 1;
1103 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
1104 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1106 return t;
1109 /* The following code implements multi-pass scheduling for the first
1110 cycle. In other words, we will try to choose ready insn which
1111 permits to start maximum number of insns on the same cycle. */
1113 /* Return a pointer to the element INDEX from the ready. INDEX for
1114 insn with the highest priority is 0, and the lowest priority has
1115 N_READY - 1. */
1118 ready_element (struct ready_list *ready, int index)
1120 gcc_assert (ready->n_ready && index < ready->n_ready);
1122 return ready->vec[ready->first - index];
1125 /* Remove the element INDEX from the ready list and return it. INDEX
1126 for insn with the highest priority is 0, and the lowest priority
1127 has N_READY - 1. */
1129 HAIFA_INLINE static rtx
1130 ready_remove (struct ready_list *ready, int index)
1132 rtx t;
1133 int i;
1135 if (index == 0)
1136 return ready_remove_first (ready);
1137 gcc_assert (ready->n_ready && index < ready->n_ready);
1138 t = ready->vec[ready->first - index];
1139 ready->n_ready--;
1140 for (i = index; i < ready->n_ready; i++)
1141 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1142 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1143 return t;
1146 /* Remove INSN from the ready list. */
1147 static void
1148 ready_remove_insn (rtx insn)
1150 int i;
1152 for (i = 0; i < readyp->n_ready; i++)
1153 if (ready_element (readyp, i) == insn)
1155 ready_remove (readyp, i);
1156 return;
1158 gcc_unreachable ();
1161 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1162 macro. */
1164 void
1165 ready_sort (struct ready_list *ready)
1167 rtx *first = ready_lastpos (ready);
1168 SCHED_SORT (first, ready->n_ready);
1171 /* PREV is an insn that is ready to execute. Adjust its priority if that
1172 will help shorten or lengthen register lifetimes as appropriate. Also
1173 provide a hook for the target to tweak itself. */
1175 HAIFA_INLINE static void
1176 adjust_priority (rtx prev)
1178 /* ??? There used to be code here to try and estimate how an insn
1179 affected register lifetimes, but it did it by looking at REG_DEAD
1180 notes, which we removed in schedule_region. Nor did it try to
1181 take into account register pressure or anything useful like that.
1183 Revisit when we have a machine model to work with and not before. */
1185 if (targetm.sched.adjust_priority)
1186 INSN_PRIORITY (prev) =
1187 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
1190 /* Advance DFA state STATE on one cycle. */
1191 void
1192 advance_state (state_t state)
1194 if (targetm.sched.dfa_pre_advance_cycle)
1195 targetm.sched.dfa_pre_advance_cycle ();
1197 if (targetm.sched.dfa_pre_cycle_insn)
1198 state_transition (state,
1199 targetm.sched.dfa_pre_cycle_insn ());
1201 state_transition (state, NULL);
1203 if (targetm.sched.dfa_post_cycle_insn)
1204 state_transition (state,
1205 targetm.sched.dfa_post_cycle_insn ());
1207 if (targetm.sched.dfa_post_advance_cycle)
1208 targetm.sched.dfa_post_advance_cycle ();
1211 /* Advance time on one cycle. */
1212 HAIFA_INLINE static void
1213 advance_one_cycle (void)
1215 advance_state (curr_state);
1216 if (sched_verbose >= 6)
1217 fprintf (sched_dump, ";;\tAdvanced a state.\n");
1220 /* Clock at which the previous instruction was issued. */
1221 static int last_clock_var;
1223 /* INSN is the "currently executing insn". Launch each insn which was
1224 waiting on INSN. READY is the ready list which contains the insns
1225 that are ready to fire. CLOCK is the current cycle. The function
1226 returns necessary cycle advance after issuing the insn (it is not
1227 zero for insns in a schedule group). */
1229 static int
1230 schedule_insn (rtx insn)
1232 sd_iterator_def sd_it;
1233 dep_t dep;
1234 int advance = 0;
1236 if (sched_verbose >= 1)
1238 char buf[2048];
1240 print_insn (buf, insn, 0);
1241 buf[40] = 0;
1242 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
1244 if (recog_memoized (insn) < 0)
1245 fprintf (sched_dump, "nothing");
1246 else
1247 print_reservation (sched_dump, insn);
1248 fputc ('\n', sched_dump);
1251 /* Scheduling instruction should have all its dependencies resolved and
1252 should have been removed from the ready list. */
1253 gcc_assert (sd_lists_empty_p (insn, SD_LIST_BACK));
1255 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
1256 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
1258 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
1259 if (INSN_TICK (insn) > clock_var)
1260 /* INSN has been prematurely moved from the queue to the ready list.
1261 This is possible only if following flag is set. */
1262 gcc_assert (flag_sched_stalled_insns);
1264 /* ??? Probably, if INSN is scheduled prematurely, we should leave
1265 INSN_TICK untouched. This is a machine-dependent issue, actually. */
1266 INSN_TICK (insn) = clock_var;
1268 /* Update dependent instructions. */
1269 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
1270 sd_iterator_cond (&sd_it, &dep);)
1272 rtx next = DEP_CON (dep);
1274 /* Resolve the dependence between INSN and NEXT.
1275 sd_resolve_dep () moves current dep to another list thus
1276 advancing the iterator. */
1277 sd_resolve_dep (sd_it);
1279 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
1281 int effective_cost;
1283 effective_cost = try_ready (next);
1285 if (effective_cost >= 0
1286 && SCHED_GROUP_P (next)
1287 && advance < effective_cost)
1288 advance = effective_cost;
1290 else
1291 /* Check always has only one forward dependence (to the first insn in
1292 the recovery block), therefore, this will be executed only once. */
1294 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
1295 fix_recovery_deps (RECOVERY_BLOCK (insn));
1299 /* This is the place where scheduler doesn't *basically* need backward and
1300 forward dependencies for INSN anymore. Nevertheless they are used in
1301 heuristics in rank_for_schedule (), early_queue_to_ready () and in
1302 some targets (e.g. rs6000). Thus the earliest place where we *can*
1303 remove dependencies is after targetm.sched.md_finish () call in
1304 schedule_block (). But, on the other side, the safest place to remove
1305 dependencies is when we are finishing scheduling entire region. As we
1306 don't generate [many] dependencies during scheduling itself, we won't
1307 need memory until beginning of next region.
1308 Bottom line: Dependencies are removed for all insns in the end of
1309 scheduling the region. */
1311 /* Annotate the instruction with issue information -- TImode
1312 indicates that the instruction is expected not to be able
1313 to issue on the same cycle as the previous insn. A machine
1314 may use this information to decide how the instruction should
1315 be aligned. */
1316 if (issue_rate > 1
1317 && GET_CODE (PATTERN (insn)) != USE
1318 && GET_CODE (PATTERN (insn)) != CLOBBER)
1320 if (reload_completed)
1321 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
1322 last_clock_var = clock_var;
1325 return advance;
1328 /* Functions for handling of notes. */
1330 /* Insert the INSN note at the end of the notes list. */
1331 static void
1332 add_to_note_list (rtx insn, rtx *note_list_end_p)
1334 PREV_INSN (insn) = *note_list_end_p;
1335 if (*note_list_end_p)
1336 NEXT_INSN (*note_list_end_p) = insn;
1337 *note_list_end_p = insn;
1340 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
1341 void
1342 concat_note_lists (rtx from_end, rtx *to_endp)
1344 rtx from_start;
1346 if (from_end == NULL)
1347 /* It's easy when have nothing to concat. */
1348 return;
1350 if (*to_endp == NULL)
1351 /* It's also easy when destination is empty. */
1353 *to_endp = from_end;
1354 return;
1357 from_start = from_end;
1358 /* A note list should be traversed via PREV_INSN. */
1359 while (PREV_INSN (from_start) != NULL)
1360 from_start = PREV_INSN (from_start);
1362 add_to_note_list (from_start, to_endp);
1363 *to_endp = from_end;
1366 /* Delete notes beginning with INSN and put them in the chain
1367 of notes ended by NOTE_LIST.
1368 Returns the insn following the notes. */
1369 static rtx
1370 unlink_other_notes (rtx insn, rtx tail)
1372 rtx prev = PREV_INSN (insn);
1374 while (insn != tail && NOTE_NOT_BB_P (insn))
1376 rtx next = NEXT_INSN (insn);
1377 basic_block bb = BLOCK_FOR_INSN (insn);
1379 /* Delete the note from its current position. */
1380 if (prev)
1381 NEXT_INSN (prev) = next;
1382 if (next)
1383 PREV_INSN (next) = prev;
1385 if (bb)
1387 /* Basic block can begin with either LABEL or
1388 NOTE_INSN_BASIC_BLOCK. */
1389 gcc_assert (BB_HEAD (bb) != insn);
1391 /* Check if we are removing last insn in the BB. */
1392 if (BB_END (bb) == insn)
1393 BB_END (bb) = prev;
1396 /* See sched_analyze to see how these are handled. */
1397 if (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG
1398 && NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END)
1399 add_to_note_list (insn, &note_list);
1401 insn = next;
1404 if (insn == tail)
1406 gcc_assert (sel_sched_p ());
1407 return prev;
1410 return insn;
1413 /* Return the head and tail pointers of ebb starting at BEG and ending
1414 at END. */
1415 void
1416 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
1418 rtx beg_head = BB_HEAD (beg);
1419 rtx beg_tail = BB_END (beg);
1420 rtx end_head = BB_HEAD (end);
1421 rtx end_tail = BB_END (end);
1423 /* Don't include any notes or labels at the beginning of the BEG
1424 basic block, or notes at the end of the END basic blocks. */
1426 if (LABEL_P (beg_head))
1427 beg_head = NEXT_INSN (beg_head);
1429 while (beg_head != beg_tail)
1430 if (NOTE_P (beg_head))
1431 beg_head = NEXT_INSN (beg_head);
1432 else
1433 break;
1435 *headp = beg_head;
1437 if (beg == end)
1438 end_head = beg_head;
1439 else if (LABEL_P (end_head))
1440 end_head = NEXT_INSN (end_head);
1442 while (end_head != end_tail)
1443 if (NOTE_P (end_tail))
1444 end_tail = PREV_INSN (end_tail);
1445 else
1446 break;
1448 *tailp = end_tail;
1451 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1454 no_real_insns_p (const_rtx head, const_rtx tail)
1456 while (head != NEXT_INSN (tail))
1458 if (!NOTE_P (head) && !LABEL_P (head))
1459 return 0;
1460 head = NEXT_INSN (head);
1462 return 1;
1465 /* Delete notes between HEAD and TAIL and put them in the chain
1466 of notes ended by NOTE_LIST. */
1467 static void
1468 rm_other_notes (rtx head, rtx tail)
1470 rtx next_tail;
1471 rtx insn;
1473 note_list = 0;
1474 if (head == tail && (! INSN_P (head)))
1475 return;
1477 next_tail = NEXT_INSN (tail);
1478 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1480 rtx prev;
1482 /* Farm out notes, and maybe save them in NOTE_LIST.
1483 This is needed to keep the debugger from
1484 getting completely deranged. */
1485 if (NOTE_NOT_BB_P (insn))
1487 prev = insn;
1488 insn = unlink_other_notes (insn, next_tail);
1490 gcc_assert ((sel_sched_p ()
1491 || prev != tail) && prev != head && insn != next_tail);
1496 /* Same as above, but also process REG_SAVE_NOTEs of HEAD. */
1497 void
1498 remove_notes (rtx head, rtx tail)
1500 /* rm_other_notes only removes notes which are _inside_ the
1501 block---that is, it won't remove notes before the first real insn
1502 or after the last real insn of the block. So if the first insn
1503 has a REG_SAVE_NOTE which would otherwise be emitted before the
1504 insn, it is redundant with the note before the start of the
1505 block, and so we have to take it out. */
1506 if (INSN_P (head))
1508 rtx note;
1510 for (note = REG_NOTES (head); note; note = XEXP (note, 1))
1511 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
1512 remove_note (head, note);
1515 /* Remove remaining note insns from the block, save them in
1516 note_list. These notes are restored at the end of
1517 schedule_block (). */
1518 rm_other_notes (head, tail);
1521 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
1522 previously found among the insns. Insert them just before HEAD. */
1524 restore_other_notes (rtx head, basic_block head_bb)
1526 if (note_list != 0)
1528 rtx note_head = note_list;
1530 if (head)
1531 head_bb = BLOCK_FOR_INSN (head);
1532 else
1533 head = NEXT_INSN (bb_note (head_bb));
1535 while (PREV_INSN (note_head))
1537 set_block_for_insn (note_head, head_bb);
1538 note_head = PREV_INSN (note_head);
1540 /* In the above cycle we've missed this note. */
1541 set_block_for_insn (note_head, head_bb);
1543 PREV_INSN (note_head) = PREV_INSN (head);
1544 NEXT_INSN (PREV_INSN (head)) = note_head;
1545 PREV_INSN (head) = note_list;
1546 NEXT_INSN (note_list) = head;
1548 if (BLOCK_FOR_INSN (head) != head_bb)
1549 BB_END (head_bb) = note_list;
1551 head = note_head;
1554 return head;
1557 /* Functions for computation of registers live/usage info. */
1559 /* This function looks for a new register being defined.
1560 If the destination register is already used by the source,
1561 a new register is not needed. */
1562 static int
1563 find_set_reg_weight (const_rtx x)
1565 if (GET_CODE (x) == CLOBBER
1566 && register_operand (SET_DEST (x), VOIDmode))
1567 return 1;
1568 if (GET_CODE (x) == SET
1569 && register_operand (SET_DEST (x), VOIDmode))
1571 if (REG_P (SET_DEST (x)))
1573 if (!reg_mentioned_p (SET_DEST (x), SET_SRC (x)))
1574 return 1;
1575 else
1576 return 0;
1578 return 1;
1580 return 0;
1583 /* Calculate INSN_REG_WEIGHT for INSN. */
1584 static void
1585 find_insn_reg_weight (const_rtx insn)
1587 int reg_weight = 0;
1588 rtx x;
1590 /* Handle register life information. */
1591 if (! INSN_P (insn))
1592 return;
1594 /* Increment weight for each register born here. */
1595 x = PATTERN (insn);
1596 reg_weight += find_set_reg_weight (x);
1597 if (GET_CODE (x) == PARALLEL)
1599 int j;
1600 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
1602 x = XVECEXP (PATTERN (insn), 0, j);
1603 reg_weight += find_set_reg_weight (x);
1606 /* Decrement weight for each register that dies here. */
1607 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1609 if (REG_NOTE_KIND (x) == REG_DEAD
1610 || REG_NOTE_KIND (x) == REG_UNUSED)
1611 reg_weight--;
1614 INSN_REG_WEIGHT (insn) = reg_weight;
1617 /* Move insns that became ready to fire from queue to ready list. */
1619 static void
1620 queue_to_ready (struct ready_list *ready)
1622 rtx insn;
1623 rtx link;
1624 rtx skip_insn;
1626 q_ptr = NEXT_Q (q_ptr);
1628 if (dbg_cnt (sched_insn) == false)
1629 /* If debug counter is activated do not requeue insn next after
1630 last_scheduled_insn. */
1631 skip_insn = next_nonnote_insn (last_scheduled_insn);
1632 else
1633 skip_insn = NULL_RTX;
1635 /* Add all pending insns that can be scheduled without stalls to the
1636 ready list. */
1637 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
1639 insn = XEXP (link, 0);
1640 q_size -= 1;
1642 if (sched_verbose >= 2)
1643 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1644 (*current_sched_info->print_insn) (insn, 0));
1646 /* If the ready list is full, delay the insn for 1 cycle.
1647 See the comment in schedule_block for the rationale. */
1648 if (!reload_completed
1649 && ready->n_ready > MAX_SCHED_READY_INSNS
1650 && !SCHED_GROUP_P (insn)
1651 && insn != skip_insn)
1653 if (sched_verbose >= 2)
1654 fprintf (sched_dump, "requeued because ready full\n");
1655 queue_insn (insn, 1);
1657 else
1659 ready_add (ready, insn, false);
1660 if (sched_verbose >= 2)
1661 fprintf (sched_dump, "moving to ready without stalls\n");
1664 free_INSN_LIST_list (&insn_queue[q_ptr]);
1666 /* If there are no ready insns, stall until one is ready and add all
1667 of the pending insns at that point to the ready list. */
1668 if (ready->n_ready == 0)
1670 int stalls;
1672 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
1674 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1676 for (; link; link = XEXP (link, 1))
1678 insn = XEXP (link, 0);
1679 q_size -= 1;
1681 if (sched_verbose >= 2)
1682 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1683 (*current_sched_info->print_insn) (insn, 0));
1685 ready_add (ready, insn, false);
1686 if (sched_verbose >= 2)
1687 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
1689 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
1691 advance_one_cycle ();
1693 break;
1696 advance_one_cycle ();
1699 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
1700 clock_var += stalls;
1704 /* Used by early_queue_to_ready. Determines whether it is "ok" to
1705 prematurely move INSN from the queue to the ready list. Currently,
1706 if a target defines the hook 'is_costly_dependence', this function
1707 uses the hook to check whether there exist any dependences which are
1708 considered costly by the target, between INSN and other insns that
1709 have already been scheduled. Dependences are checked up to Y cycles
1710 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
1711 controlling this value.
1712 (Other considerations could be taken into account instead (or in
1713 addition) depending on user flags and target hooks. */
1715 static bool
1716 ok_for_early_queue_removal (rtx insn)
1718 int n_cycles;
1719 rtx prev_insn = last_scheduled_insn;
1721 if (targetm.sched.is_costly_dependence)
1723 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
1725 for ( ; prev_insn; prev_insn = PREV_INSN (prev_insn))
1727 int cost;
1729 if (prev_insn == current_sched_info->prev_head)
1731 prev_insn = NULL;
1732 break;
1735 if (!NOTE_P (prev_insn))
1737 dep_t dep;
1739 dep = sd_find_dep_between (prev_insn, insn, true);
1741 if (dep != NULL)
1743 cost = dep_cost (dep);
1745 if (targetm.sched.is_costly_dependence (dep, cost,
1746 flag_sched_stalled_insns_dep - n_cycles))
1747 return false;
1751 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
1752 break;
1755 if (!prev_insn)
1756 break;
1757 prev_insn = PREV_INSN (prev_insn);
1761 return true;
1765 /* Remove insns from the queue, before they become "ready" with respect
1766 to FU latency considerations. */
1768 static int
1769 early_queue_to_ready (state_t state, struct ready_list *ready)
1771 rtx insn;
1772 rtx link;
1773 rtx next_link;
1774 rtx prev_link;
1775 bool move_to_ready;
1776 int cost;
1777 state_t temp_state = alloca (dfa_state_size);
1778 int stalls;
1779 int insns_removed = 0;
1782 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
1783 function:
1785 X == 0: There is no limit on how many queued insns can be removed
1786 prematurely. (flag_sched_stalled_insns = -1).
1788 X >= 1: Only X queued insns can be removed prematurely in each
1789 invocation. (flag_sched_stalled_insns = X).
1791 Otherwise: Early queue removal is disabled.
1792 (flag_sched_stalled_insns = 0)
1795 if (! flag_sched_stalled_insns)
1796 return 0;
1798 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
1800 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1802 if (sched_verbose > 6)
1803 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
1805 prev_link = 0;
1806 while (link)
1808 next_link = XEXP (link, 1);
1809 insn = XEXP (link, 0);
1810 if (insn && sched_verbose > 6)
1811 print_rtl_single (sched_dump, insn);
1813 memcpy (temp_state, state, dfa_state_size);
1814 if (recog_memoized (insn) < 0)
1815 /* non-negative to indicate that it's not ready
1816 to avoid infinite Q->R->Q->R... */
1817 cost = 0;
1818 else
1819 cost = state_transition (temp_state, insn);
1821 if (sched_verbose >= 6)
1822 fprintf (sched_dump, "transition cost = %d\n", cost);
1824 move_to_ready = false;
1825 if (cost < 0)
1827 move_to_ready = ok_for_early_queue_removal (insn);
1828 if (move_to_ready == true)
1830 /* move from Q to R */
1831 q_size -= 1;
1832 ready_add (ready, insn, false);
1834 if (prev_link)
1835 XEXP (prev_link, 1) = next_link;
1836 else
1837 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
1839 free_INSN_LIST_node (link);
1841 if (sched_verbose >= 2)
1842 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
1843 (*current_sched_info->print_insn) (insn, 0));
1845 insns_removed++;
1846 if (insns_removed == flag_sched_stalled_insns)
1847 /* Remove no more than flag_sched_stalled_insns insns
1848 from Q at a time. */
1849 return insns_removed;
1853 if (move_to_ready == false)
1854 prev_link = link;
1856 link = next_link;
1857 } /* while link */
1858 } /* if link */
1860 } /* for stalls.. */
1862 return insns_removed;
1866 /* Print the ready list for debugging purposes. Callable from debugger. */
1868 static void
1869 debug_ready_list (struct ready_list *ready)
1871 rtx *p;
1872 int i;
1874 if (ready->n_ready == 0)
1876 fprintf (sched_dump, "\n");
1877 return;
1880 p = ready_lastpos (ready);
1881 for (i = 0; i < ready->n_ready; i++)
1882 fprintf (sched_dump, " %s", (*current_sched_info->print_insn) (p[i], 0));
1883 fprintf (sched_dump, "\n");
1886 /* Search INSN for REG_SAVE_NOTE note pairs for
1887 NOTE_INSN_EHREGION_{BEG,END}; and convert them back into
1888 NOTEs. The REG_SAVE_NOTE note following first one is contains the
1889 saved value for NOTE_BLOCK_NUMBER which is useful for
1890 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. */
1891 void
1892 reemit_notes (rtx insn)
1894 rtx note, last = insn;
1896 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1898 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
1900 enum insn_note note_type = INTVAL (XEXP (note, 0));
1902 last = emit_note_before (note_type, last);
1903 remove_note (insn, note);
1908 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
1909 static void
1910 move_insn (rtx insn, rtx last, rtx nt)
1912 if (PREV_INSN (insn) != last)
1914 basic_block bb;
1915 rtx note;
1916 int jump_p = 0;
1918 bb = BLOCK_FOR_INSN (insn);
1920 /* BB_HEAD is either LABEL or NOTE. */
1921 gcc_assert (BB_HEAD (bb) != insn);
1923 if (BB_END (bb) == insn)
1924 /* If this is last instruction in BB, move end marker one
1925 instruction up. */
1927 /* Jumps are always placed at the end of basic block. */
1928 jump_p = control_flow_insn_p (insn);
1930 gcc_assert (!jump_p
1931 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
1932 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
1933 || (common_sched_info->sched_pass_id
1934 == SCHED_EBB_PASS));
1936 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
1938 BB_END (bb) = PREV_INSN (insn);
1941 gcc_assert (BB_END (bb) != last);
1943 if (jump_p)
1944 /* We move the block note along with jump. */
1946 gcc_assert (nt);
1948 note = NEXT_INSN (insn);
1949 while (NOTE_NOT_BB_P (note) && note != nt)
1950 note = NEXT_INSN (note);
1952 if (note != nt
1953 && (LABEL_P (note)
1954 || BARRIER_P (note)))
1955 note = NEXT_INSN (note);
1957 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
1959 else
1960 note = insn;
1962 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
1963 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
1965 NEXT_INSN (note) = NEXT_INSN (last);
1966 PREV_INSN (NEXT_INSN (last)) = note;
1968 NEXT_INSN (last) = insn;
1969 PREV_INSN (insn) = last;
1971 bb = BLOCK_FOR_INSN (last);
1973 if (jump_p)
1975 fix_jump_move (insn);
1977 if (BLOCK_FOR_INSN (insn) != bb)
1978 move_block_after_check (insn);
1980 gcc_assert (BB_END (bb) == last);
1983 df_insn_change_bb (insn, bb);
1985 /* Update BB_END, if needed. */
1986 if (BB_END (bb) == last)
1987 BB_END (bb) = insn;
1990 SCHED_GROUP_P (insn) = 0;
1993 /* The following structure describe an entry of the stack of choices. */
1994 struct choice_entry
1996 /* Ordinal number of the issued insn in the ready queue. */
1997 int index;
1998 /* The number of the rest insns whose issues we should try. */
1999 int rest;
2000 /* The number of issued essential insns. */
2001 int n;
2002 /* State after issuing the insn. */
2003 state_t state;
2006 /* The following array is used to implement a stack of choices used in
2007 function max_issue. */
2008 static struct choice_entry *choice_stack;
2010 /* The following variable value is number of essential insns issued on
2011 the current cycle. An insn is essential one if it changes the
2012 processors state. */
2013 int cycle_issued_insns;
2015 /* This holds the value of the target dfa_lookahead hook. */
2016 int dfa_lookahead;
2018 /* The following variable value is maximal number of tries of issuing
2019 insns for the first cycle multipass insn scheduling. We define
2020 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
2021 need this constraint if all real insns (with non-negative codes)
2022 had reservations because in this case the algorithm complexity is
2023 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
2024 might be incomplete and such insn might occur. For such
2025 descriptions, the complexity of algorithm (without the constraint)
2026 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
2027 static int max_lookahead_tries;
2029 /* The following value is value of hook
2030 `first_cycle_multipass_dfa_lookahead' at the last call of
2031 `max_issue'. */
2032 static int cached_first_cycle_multipass_dfa_lookahead = 0;
2034 /* The following value is value of `issue_rate' at the last call of
2035 `sched_init'. */
2036 static int cached_issue_rate = 0;
2038 /* The following function returns maximal (or close to maximal) number
2039 of insns which can be issued on the same cycle and one of which
2040 insns is insns with the best rank (the first insn in READY). To
2041 make this function tries different samples of ready insns. READY
2042 is current queue `ready'. Global array READY_TRY reflects what
2043 insns are already issued in this try. MAX_POINTS is the sum of points
2044 of all instructions in READY. The function stops immediately,
2045 if it reached the such a solution, that all instruction can be issued.
2046 INDEX will contain index of the best insn in READY. The following
2047 function is used only for first cycle multipass scheduling.
2049 PRIVILEGED_N >= 0
2051 This function expects recognized insns only. All USEs,
2052 CLOBBERs, etc must be filtered elsewhere. */
2054 max_issue (struct ready_list *ready, int privileged_n, state_t state,
2055 int *index)
2057 int n, i, all, n_ready, best, delay, tries_num, points = -1, max_points;
2058 int more_issue;
2059 struct choice_entry *top;
2060 rtx insn;
2062 n_ready = ready->n_ready;
2063 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
2064 && privileged_n <= n_ready);
2066 /* Init MAX_LOOKAHEAD_TRIES. */
2067 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
2069 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
2070 max_lookahead_tries = 100;
2071 for (i = 0; i < issue_rate; i++)
2072 max_lookahead_tries *= dfa_lookahead;
2075 /* Init max_points. */
2076 max_points = 0;
2077 more_issue = issue_rate - cycle_issued_insns;
2079 /* ??? We used to assert here that we never issue more insns than issue_rate.
2080 However, some targets (e.g. MIPS/SB1) claim lower issue rate than can be
2081 achieved to get better performance. Until these targets are fixed to use
2082 scheduler hooks to manipulate insns priority instead, the assert should
2083 be disabled.
2085 gcc_assert (more_issue >= 0); */
2087 for (i = 0; i < n_ready; i++)
2088 if (!ready_try [i])
2090 if (more_issue-- > 0)
2091 max_points += ISSUE_POINTS (ready_element (ready, i));
2092 else
2093 break;
2096 /* The number of the issued insns in the best solution. */
2097 best = 0;
2099 top = choice_stack;
2101 /* Set initial state of the search. */
2102 memcpy (top->state, state, dfa_state_size);
2103 top->rest = dfa_lookahead;
2104 top->n = 0;
2106 /* Count the number of the insns to search among. */
2107 for (all = i = 0; i < n_ready; i++)
2108 if (!ready_try [i])
2109 all++;
2111 /* I is the index of the insn to try next. */
2112 i = 0;
2113 tries_num = 0;
2114 for (;;)
2116 if (/* If we've reached a dead end or searched enough of what we have
2117 been asked... */
2118 top->rest == 0
2119 /* Or have nothing else to try. */
2120 || i >= n_ready)
2122 /* ??? (... || i == n_ready). */
2123 gcc_assert (i <= n_ready);
2125 if (top == choice_stack)
2126 break;
2128 if (best < top - choice_stack)
2130 if (privileged_n)
2132 n = privileged_n;
2133 /* Try to find issued privileged insn. */
2134 while (n && !ready_try[--n]);
2137 if (/* If all insns are equally good... */
2138 privileged_n == 0
2139 /* Or a privileged insn will be issued. */
2140 || ready_try[n])
2141 /* Then we have a solution. */
2143 best = top - choice_stack;
2144 /* This is the index of the insn issued first in this
2145 solution. */
2146 *index = choice_stack [1].index;
2147 points = top->n;
2148 if (top->n == max_points || best == all)
2149 break;
2153 /* Set ready-list index to point to the last insn
2154 ('i++' below will advance it to the next insn). */
2155 i = top->index;
2157 /* Backtrack. */
2158 ready_try [i] = 0;
2159 top--;
2160 memcpy (state, top->state, dfa_state_size);
2162 else if (!ready_try [i])
2164 tries_num++;
2165 if (tries_num > max_lookahead_tries)
2166 break;
2167 insn = ready_element (ready, i);
2168 delay = state_transition (state, insn);
2169 if (delay < 0)
2171 if (state_dead_lock_p (state))
2172 top->rest = 0;
2173 else
2174 top->rest--;
2176 n = top->n;
2177 if (memcmp (top->state, state, dfa_state_size) != 0)
2178 n += ISSUE_POINTS (insn);
2180 /* Advance to the next choice_entry. */
2181 top++;
2182 /* Initialize it. */
2183 top->rest = dfa_lookahead;
2184 top->index = i;
2185 top->n = n;
2186 memcpy (top->state, state, dfa_state_size);
2188 ready_try [i] = 1;
2189 i = -1;
2193 /* Increase ready-list index. */
2194 i++;
2197 /* Restore the original state of the DFA. */
2198 memcpy (state, choice_stack->state, dfa_state_size);
2200 return best;
2203 /* The following function chooses insn from READY and modifies
2204 READY. The following function is used only for first
2205 cycle multipass scheduling.
2206 Return:
2207 -1 if cycle should be advanced,
2208 0 if INSN_PTR is set to point to the desirable insn,
2209 1 if choose_ready () should be restarted without advancing the cycle. */
2210 static int
2211 choose_ready (struct ready_list *ready, rtx *insn_ptr)
2213 int lookahead;
2215 if (dbg_cnt (sched_insn) == false)
2217 rtx insn;
2219 insn = next_nonnote_insn (last_scheduled_insn);
2221 if (QUEUE_INDEX (insn) == QUEUE_READY)
2222 /* INSN is in the ready_list. */
2224 ready_remove_insn (insn);
2225 *insn_ptr = insn;
2226 return 0;
2229 /* INSN is in the queue. Advance cycle to move it to the ready list. */
2230 return -1;
2233 lookahead = 0;
2235 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
2236 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
2237 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0)))
2239 *insn_ptr = ready_remove_first (ready);
2240 return 0;
2242 else
2244 /* Try to choose the better insn. */
2245 int index = 0, i, n;
2246 rtx insn;
2247 int try_data = 1, try_control = 1;
2248 ds_t ts;
2250 insn = ready_element (ready, 0);
2251 if (INSN_CODE (insn) < 0)
2253 *insn_ptr = ready_remove_first (ready);
2254 return 0;
2257 if (spec_info
2258 && spec_info->flags & (PREFER_NON_DATA_SPEC
2259 | PREFER_NON_CONTROL_SPEC))
2261 for (i = 0, n = ready->n_ready; i < n; i++)
2263 rtx x;
2264 ds_t s;
2266 x = ready_element (ready, i);
2267 s = TODO_SPEC (x);
2269 if (spec_info->flags & PREFER_NON_DATA_SPEC
2270 && !(s & DATA_SPEC))
2272 try_data = 0;
2273 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
2274 || !try_control)
2275 break;
2278 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
2279 && !(s & CONTROL_SPEC))
2281 try_control = 0;
2282 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
2283 break;
2288 ts = TODO_SPEC (insn);
2289 if ((ts & SPECULATIVE)
2290 && (((!try_data && (ts & DATA_SPEC))
2291 || (!try_control && (ts & CONTROL_SPEC)))
2292 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
2293 && !targetm.sched
2294 .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
2295 /* Discard speculative instruction that stands first in the ready
2296 list. */
2298 change_queue_index (insn, 1);
2299 return 1;
2302 ready_try[0] = 0;
2304 for (i = 1; i < ready->n_ready; i++)
2306 insn = ready_element (ready, i);
2308 ready_try [i]
2309 = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
2310 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
2313 /* Let the target filter the search space. */
2314 for (i = 1; i < ready->n_ready; i++)
2315 if (!ready_try[i])
2317 insn = ready_element (ready, i);
2319 #ifdef ENABLE_CHECKING
2320 /* If this insn is recognizable we should have already
2321 recognized it earlier.
2322 ??? Not very clear where this is supposed to be done.
2323 See dep_cost_1. */
2324 gcc_assert (INSN_CODE (insn) >= 0
2325 || recog_memoized (insn) < 0);
2326 #endif
2328 ready_try [i]
2329 = (/* INSN_CODE check can be omitted here as it is also done later
2330 in max_issue (). */
2331 INSN_CODE (insn) < 0
2332 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2333 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2334 (insn)));
2337 if (max_issue (ready, 1, curr_state, &index) == 0)
2339 *insn_ptr = ready_remove_first (ready);
2340 if (sched_verbose >= 4)
2341 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
2342 (*current_sched_info->print_insn) (*insn_ptr, 0));
2343 return 0;
2345 else
2347 if (sched_verbose >= 4)
2348 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
2349 (*current_sched_info->print_insn)
2350 (ready_element (ready, index), 0));
2352 *insn_ptr = ready_remove (ready, index);
2353 return 0;
2358 /* Use forward list scheduling to rearrange insns of block pointed to by
2359 TARGET_BB, possibly bringing insns from subsequent blocks in the same
2360 region. */
2362 void
2363 schedule_block (basic_block *target_bb)
2365 int i, first_cycle_insn_p;
2366 int can_issue_more;
2367 state_t temp_state = NULL; /* It is used for multipass scheduling. */
2368 int sort_p, advance, start_clock_var;
2370 /* Head/tail info for this block. */
2371 rtx prev_head = current_sched_info->prev_head;
2372 rtx next_tail = current_sched_info->next_tail;
2373 rtx head = NEXT_INSN (prev_head);
2374 rtx tail = PREV_INSN (next_tail);
2376 /* We used to have code to avoid getting parameters moved from hard
2377 argument registers into pseudos.
2379 However, it was removed when it proved to be of marginal benefit
2380 and caused problems because schedule_block and compute_forward_dependences
2381 had different notions of what the "head" insn was. */
2383 gcc_assert (head != tail || INSN_P (head));
2385 haifa_recovery_bb_recently_added_p = false;
2387 /* Debug info. */
2388 if (sched_verbose)
2389 dump_new_block_header (0, *target_bb, head, tail);
2391 state_reset (curr_state);
2393 /* Clear the ready list. */
2394 ready.first = ready.veclen - 1;
2395 ready.n_ready = 0;
2397 /* It is used for first cycle multipass scheduling. */
2398 temp_state = alloca (dfa_state_size);
2400 if (targetm.sched.md_init)
2401 targetm.sched.md_init (sched_dump, sched_verbose, ready.veclen);
2403 /* We start inserting insns after PREV_HEAD. */
2404 last_scheduled_insn = prev_head;
2406 gcc_assert (NOTE_P (last_scheduled_insn)
2407 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
2409 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
2410 queue. */
2411 q_ptr = 0;
2412 q_size = 0;
2414 insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
2415 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
2417 /* Start just before the beginning of time. */
2418 clock_var = -1;
2420 /* We need queue and ready lists and clock_var be initialized
2421 in try_ready () (which is called through init_ready_list ()). */
2422 (*current_sched_info->init_ready_list) ();
2424 /* The algorithm is O(n^2) in the number of ready insns at any given
2425 time in the worst case. Before reload we are more likely to have
2426 big lists so truncate them to a reasonable size. */
2427 if (!reload_completed && ready.n_ready > MAX_SCHED_READY_INSNS)
2429 ready_sort (&ready);
2431 /* Find first free-standing insn past MAX_SCHED_READY_INSNS. */
2432 for (i = MAX_SCHED_READY_INSNS; i < ready.n_ready; i++)
2433 if (!SCHED_GROUP_P (ready_element (&ready, i)))
2434 break;
2436 if (sched_verbose >= 2)
2438 fprintf (sched_dump,
2439 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
2440 fprintf (sched_dump,
2441 ";;\t\t before reload => truncated to %d insns\n", i);
2444 /* Delay all insns past it for 1 cycle. If debug counter is
2445 activated make an exception for the insn right after
2446 last_scheduled_insn. */
2448 rtx skip_insn;
2450 if (dbg_cnt (sched_insn) == false)
2451 skip_insn = next_nonnote_insn (last_scheduled_insn);
2452 else
2453 skip_insn = NULL_RTX;
2455 while (i < ready.n_ready)
2457 rtx insn;
2459 insn = ready_remove (&ready, i);
2461 if (insn != skip_insn)
2462 queue_insn (insn, 1);
2467 /* Now we can restore basic block notes and maintain precise cfg. */
2468 restore_bb_notes (*target_bb);
2470 last_clock_var = -1;
2472 advance = 0;
2474 sort_p = TRUE;
2475 /* Loop until all the insns in BB are scheduled. */
2476 while ((*current_sched_info->schedule_more_p) ())
2480 start_clock_var = clock_var;
2482 clock_var++;
2484 advance_one_cycle ();
2486 /* Add to the ready list all pending insns that can be issued now.
2487 If there are no ready insns, increment clock until one
2488 is ready and add all pending insns at that point to the ready
2489 list. */
2490 queue_to_ready (&ready);
2492 gcc_assert (ready.n_ready);
2494 if (sched_verbose >= 2)
2496 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
2497 debug_ready_list (&ready);
2499 advance -= clock_var - start_clock_var;
2501 while (advance > 0);
2503 if (sort_p)
2505 /* Sort the ready list based on priority. */
2506 ready_sort (&ready);
2508 if (sched_verbose >= 2)
2510 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
2511 debug_ready_list (&ready);
2515 /* Allow the target to reorder the list, typically for
2516 better instruction bundling. */
2517 if (sort_p && targetm.sched.reorder
2518 && (ready.n_ready == 0
2519 || !SCHED_GROUP_P (ready_element (&ready, 0))))
2520 can_issue_more =
2521 targetm.sched.reorder (sched_dump, sched_verbose,
2522 ready_lastpos (&ready),
2523 &ready.n_ready, clock_var);
2524 else
2525 can_issue_more = issue_rate;
2527 first_cycle_insn_p = 1;
2528 cycle_issued_insns = 0;
2529 for (;;)
2531 rtx insn;
2532 int cost;
2533 bool asm_p = false;
2535 if (sched_verbose >= 2)
2537 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
2538 clock_var);
2539 debug_ready_list (&ready);
2542 if (ready.n_ready == 0
2543 && can_issue_more
2544 && reload_completed)
2546 /* Allow scheduling insns directly from the queue in case
2547 there's nothing better to do (ready list is empty) but
2548 there are still vacant dispatch slots in the current cycle. */
2549 if (sched_verbose >= 6)
2550 fprintf (sched_dump,";;\t\tSecond chance\n");
2551 memcpy (temp_state, curr_state, dfa_state_size);
2552 if (early_queue_to_ready (temp_state, &ready))
2553 ready_sort (&ready);
2556 if (ready.n_ready == 0 || !can_issue_more
2557 || state_dead_lock_p (curr_state)
2558 || !(*current_sched_info->schedule_more_p) ())
2559 break;
2561 /* Select and remove the insn from the ready list. */
2562 if (sort_p)
2564 int res;
2566 insn = NULL_RTX;
2567 res = choose_ready (&ready, &insn);
2569 if (res < 0)
2570 /* Finish cycle. */
2571 break;
2572 if (res > 0)
2573 /* Restart choose_ready (). */
2574 continue;
2576 gcc_assert (insn != NULL_RTX);
2578 else
2579 insn = ready_remove_first (&ready);
2581 if (targetm.sched.dfa_new_cycle
2582 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
2583 insn, last_clock_var,
2584 clock_var, &sort_p))
2585 /* SORT_P is used by the target to override sorting
2586 of the ready list. This is needed when the target
2587 has modified its internal structures expecting that
2588 the insn will be issued next. As we need the insn
2589 to have the highest priority (so it will be returned by
2590 the ready_remove_first call above), we invoke
2591 ready_add (&ready, insn, true).
2592 But, still, there is one issue: INSN can be later
2593 discarded by scheduler's front end through
2594 current_sched_info->can_schedule_ready_p, hence, won't
2595 be issued next. */
2597 ready_add (&ready, insn, true);
2598 break;
2601 sort_p = TRUE;
2602 memcpy (temp_state, curr_state, dfa_state_size);
2603 if (recog_memoized (insn) < 0)
2605 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
2606 || asm_noperands (PATTERN (insn)) >= 0);
2607 if (!first_cycle_insn_p && asm_p)
2608 /* This is asm insn which is tried to be issued on the
2609 cycle not first. Issue it on the next cycle. */
2610 cost = 1;
2611 else
2612 /* A USE insn, or something else we don't need to
2613 understand. We can't pass these directly to
2614 state_transition because it will trigger a
2615 fatal error for unrecognizable insns. */
2616 cost = 0;
2618 else
2620 cost = state_transition (temp_state, insn);
2621 if (cost < 0)
2622 cost = 0;
2623 else if (cost == 0)
2624 cost = 1;
2627 if (cost >= 1)
2629 queue_insn (insn, cost);
2630 if (SCHED_GROUP_P (insn))
2632 advance = cost;
2633 break;
2636 continue;
2639 if (current_sched_info->can_schedule_ready_p
2640 && ! (*current_sched_info->can_schedule_ready_p) (insn))
2641 /* We normally get here only if we don't want to move
2642 insn from the split block. */
2644 TODO_SPEC (insn) = (TODO_SPEC (insn) & ~SPECULATIVE) | HARD_DEP;
2645 continue;
2648 /* DECISION is made. */
2650 if (TODO_SPEC (insn) & SPECULATIVE)
2651 generate_recovery_code (insn);
2653 if (control_flow_insn_p (last_scheduled_insn)
2654 /* This is used to switch basic blocks by request
2655 from scheduler front-end (actually, sched-ebb.c only).
2656 This is used to process blocks with single fallthru
2657 edge. If succeeding block has jump, it [jump] will try
2658 move at the end of current bb, thus corrupting CFG. */
2659 || current_sched_info->advance_target_bb (*target_bb, insn))
2661 *target_bb = current_sched_info->advance_target_bb
2662 (*target_bb, 0);
2664 if (sched_verbose)
2666 rtx x;
2668 x = next_real_insn (last_scheduled_insn);
2669 gcc_assert (x);
2670 dump_new_block_header (1, *target_bb, x, tail);
2673 last_scheduled_insn = bb_note (*target_bb);
2676 /* Update counters, etc in the scheduler's front end. */
2677 (*current_sched_info->begin_schedule_ready) (insn,
2678 last_scheduled_insn);
2680 move_insn (insn, last_scheduled_insn, current_sched_info->next_tail);
2681 reemit_notes (insn);
2682 last_scheduled_insn = insn;
2684 if (memcmp (curr_state, temp_state, dfa_state_size) != 0)
2686 cycle_issued_insns++;
2687 memcpy (curr_state, temp_state, dfa_state_size);
2690 if (targetm.sched.variable_issue)
2691 can_issue_more =
2692 targetm.sched.variable_issue (sched_dump, sched_verbose,
2693 insn, can_issue_more);
2694 /* A naked CLOBBER or USE generates no instruction, so do
2695 not count them against the issue rate. */
2696 else if (GET_CODE (PATTERN (insn)) != USE
2697 && GET_CODE (PATTERN (insn)) != CLOBBER)
2698 can_issue_more--;
2700 advance = schedule_insn (insn);
2702 /* After issuing an asm insn we should start a new cycle. */
2703 if (advance == 0 && asm_p)
2704 advance = 1;
2705 if (advance != 0)
2706 break;
2708 first_cycle_insn_p = 0;
2710 /* Sort the ready list based on priority. This must be
2711 redone here, as schedule_insn may have readied additional
2712 insns that will not be sorted correctly. */
2713 if (ready.n_ready > 0)
2714 ready_sort (&ready);
2716 if (targetm.sched.reorder2
2717 && (ready.n_ready == 0
2718 || !SCHED_GROUP_P (ready_element (&ready, 0))))
2720 can_issue_more =
2721 targetm.sched.reorder2 (sched_dump, sched_verbose,
2722 ready.n_ready
2723 ? ready_lastpos (&ready) : NULL,
2724 &ready.n_ready, clock_var);
2729 /* Debug info. */
2730 if (sched_verbose)
2732 fprintf (sched_dump, ";;\tReady list (final): ");
2733 debug_ready_list (&ready);
2736 if (current_sched_info->queue_must_finish_empty)
2737 /* Sanity check -- queue must be empty now. Meaningless if region has
2738 multiple bbs. */
2739 gcc_assert (!q_size && !ready.n_ready);
2740 else
2742 /* We must maintain QUEUE_INDEX between blocks in region. */
2743 for (i = ready.n_ready - 1; i >= 0; i--)
2745 rtx x;
2747 x = ready_element (&ready, i);
2748 QUEUE_INDEX (x) = QUEUE_NOWHERE;
2749 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
2752 if (q_size)
2753 for (i = 0; i <= max_insn_queue_index; i++)
2755 rtx link;
2756 for (link = insn_queue[i]; link; link = XEXP (link, 1))
2758 rtx x;
2760 x = XEXP (link, 0);
2761 QUEUE_INDEX (x) = QUEUE_NOWHERE;
2762 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
2764 free_INSN_LIST_list (&insn_queue[i]);
2768 if (sched_verbose)
2769 fprintf (sched_dump, ";; total time = %d\n", clock_var);
2771 if (!current_sched_info->queue_must_finish_empty
2772 || haifa_recovery_bb_recently_added_p)
2774 /* INSN_TICK (minimum clock tick at which the insn becomes
2775 ready) may be not correct for the insn in the subsequent
2776 blocks of the region. We should use a correct value of
2777 `clock_var' or modify INSN_TICK. It is better to keep
2778 clock_var value equal to 0 at the start of a basic block.
2779 Therefore we modify INSN_TICK here. */
2780 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
2783 if (targetm.sched.md_finish)
2785 targetm.sched.md_finish (sched_dump, sched_verbose);
2786 /* Target might have added some instructions to the scheduled block
2787 in its md_finish () hook. These new insns don't have any data
2788 initialized and to identify them we extend h_i_d so that they'll
2789 get zero luids. */
2790 sched_init_luids (NULL, NULL, NULL, NULL);
2793 if (sched_verbose)
2794 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n\n",
2795 INSN_UID (head), INSN_UID (tail));
2797 /* Update head/tail boundaries. */
2798 head = NEXT_INSN (prev_head);
2799 tail = last_scheduled_insn;
2801 head = restore_other_notes (head, NULL);
2803 current_sched_info->head = head;
2804 current_sched_info->tail = tail;
2807 /* Set_priorities: compute priority of each insn in the block. */
2810 set_priorities (rtx head, rtx tail)
2812 rtx insn;
2813 int n_insn;
2814 int sched_max_insns_priority =
2815 current_sched_info->sched_max_insns_priority;
2816 rtx prev_head;
2818 if (head == tail && (! INSN_P (head)))
2819 return 0;
2821 n_insn = 0;
2823 prev_head = PREV_INSN (head);
2824 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
2826 if (!INSN_P (insn))
2827 continue;
2829 n_insn++;
2830 (void) priority (insn);
2832 gcc_assert (INSN_PRIORITY_KNOWN (insn));
2834 sched_max_insns_priority = MAX (sched_max_insns_priority,
2835 INSN_PRIORITY (insn));
2838 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
2840 return n_insn;
2843 /* Set dump and sched_verbose for the desired debugging output. If no
2844 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
2845 For -fsched-verbose=N, N>=10, print everything to stderr. */
2846 void
2847 setup_sched_dump (void)
2849 sched_verbose = sched_verbose_param;
2850 if (sched_verbose_param == 0 && dump_file)
2851 sched_verbose = 1;
2852 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
2853 ? stderr : dump_file);
2856 /* Initialize some global state for the scheduler. This function works
2857 with the common data shared between all the schedulers. It is called
2858 from the scheduler specific initialization routine. */
2860 void
2861 sched_init (void)
2863 /* Disable speculative loads in their presence if cc0 defined. */
2864 #ifdef HAVE_cc0
2865 flag_schedule_speculative_load = 0;
2866 #endif
2868 /* Initialize SPEC_INFO. */
2869 if (targetm.sched.set_sched_flags)
2871 spec_info = &spec_info_var;
2872 targetm.sched.set_sched_flags (spec_info);
2874 if (spec_info->mask != 0)
2876 spec_info->data_weakness_cutoff =
2877 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
2878 spec_info->control_weakness_cutoff =
2879 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
2880 * REG_BR_PROB_BASE) / 100;
2882 else
2883 /* So we won't read anything accidentally. */
2884 spec_info = NULL;
2887 else
2888 /* So we won't read anything accidentally. */
2889 spec_info = 0;
2891 /* Initialize issue_rate. */
2892 if (targetm.sched.issue_rate)
2893 issue_rate = targetm.sched.issue_rate ();
2894 else
2895 issue_rate = 1;
2897 if (cached_issue_rate != issue_rate)
2899 cached_issue_rate = issue_rate;
2900 /* To invalidate max_lookahead_tries: */
2901 cached_first_cycle_multipass_dfa_lookahead = 0;
2904 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
2905 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
2906 else
2907 dfa_lookahead = 0;
2909 if (targetm.sched.init_dfa_pre_cycle_insn)
2910 targetm.sched.init_dfa_pre_cycle_insn ();
2912 if (targetm.sched.init_dfa_post_cycle_insn)
2913 targetm.sched.init_dfa_post_cycle_insn ();
2915 dfa_start ();
2916 dfa_state_size = state_size ();
2918 init_alias_analysis ();
2920 df_set_flags (DF_LR_RUN_DCE);
2921 df_note_add_problem ();
2923 /* More problems needed for interloop dep calculation in SMS. */
2924 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
2926 df_rd_add_problem ();
2927 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
2930 df_analyze ();
2932 /* Do not run DCE after reload, as this can kill nops inserted
2933 by bundling. */
2934 if (reload_completed)
2935 df_clear_flags (DF_LR_RUN_DCE);
2937 regstat_compute_calls_crossed ();
2939 if (targetm.sched.md_init_global)
2940 targetm.sched.md_init_global (sched_dump, sched_verbose,
2941 get_max_uid () + 1);
2943 curr_state = xmalloc (dfa_state_size);
2946 static void haifa_init_only_bb (basic_block, basic_block);
2948 /* Initialize data structures specific to the Haifa scheduler. */
2949 void
2950 haifa_sched_init (void)
2952 setup_sched_dump ();
2953 sched_init ();
2955 if (spec_info != NULL)
2957 sched_deps_info->use_deps_list = 1;
2958 sched_deps_info->generate_spec_deps = 1;
2961 /* Initialize luids, dependency caches, target and h_i_d for the
2962 whole function. */
2964 bb_vec_t bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
2965 basic_block bb;
2967 sched_init_bbs ();
2969 FOR_EACH_BB (bb)
2970 VEC_quick_push (basic_block, bbs, bb);
2971 sched_init_luids (bbs, NULL, NULL, NULL);
2972 sched_deps_init (true);
2973 sched_extend_target ();
2974 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
2976 VEC_free (basic_block, heap, bbs);
2979 sched_init_only_bb = haifa_init_only_bb;
2980 sched_split_block = sched_split_block_1;
2981 sched_create_empty_bb = sched_create_empty_bb_1;
2982 haifa_recovery_bb_ever_added_p = false;
2984 #ifdef ENABLE_CHECKING
2985 /* This is used preferably for finding bugs in check_cfg () itself.
2986 We must call sched_bbs_init () before check_cfg () because check_cfg ()
2987 assumes that the last insn in the last bb has a non-null successor. */
2988 check_cfg (0, 0);
2989 #endif
2991 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
2992 before_recovery = 0;
2993 after_recovery = 0;
2996 /* Finish work with the data specific to the Haifa scheduler. */
2997 void
2998 haifa_sched_finish (void)
3000 sched_create_empty_bb = NULL;
3001 sched_split_block = NULL;
3002 sched_init_only_bb = NULL;
3004 if (spec_info && spec_info->dump)
3006 char c = reload_completed ? 'a' : 'b';
3008 fprintf (spec_info->dump,
3009 ";; %s:\n", current_function_name ());
3011 fprintf (spec_info->dump,
3012 ";; Procedure %cr-begin-data-spec motions == %d\n",
3013 c, nr_begin_data);
3014 fprintf (spec_info->dump,
3015 ";; Procedure %cr-be-in-data-spec motions == %d\n",
3016 c, nr_be_in_data);
3017 fprintf (spec_info->dump,
3018 ";; Procedure %cr-begin-control-spec motions == %d\n",
3019 c, nr_begin_control);
3020 fprintf (spec_info->dump,
3021 ";; Procedure %cr-be-in-control-spec motions == %d\n",
3022 c, nr_be_in_control);
3025 /* Finalize h_i_d, dependency caches, and luids for the whole
3026 function. Target will be finalized in md_global_finish (). */
3027 sched_deps_finish ();
3028 sched_finish_luids ();
3029 current_sched_info = NULL;
3030 sched_finish ();
3033 /* Free global data used during insn scheduling. This function works with
3034 the common data shared between the schedulers. */
3036 void
3037 sched_finish (void)
3039 haifa_finish_h_i_d ();
3040 free (curr_state);
3042 if (targetm.sched.md_finish_global)
3043 targetm.sched.md_finish_global (sched_dump, sched_verbose);
3045 end_alias_analysis ();
3047 regstat_free_calls_crossed ();
3049 dfa_finish ();
3051 #ifdef ENABLE_CHECKING
3052 /* After reload ia64 backend clobbers CFG, so can't check anything. */
3053 if (!reload_completed)
3054 check_cfg (0, 0);
3055 #endif
3058 /* Fix INSN_TICKs of the instructions in the current block as well as
3059 INSN_TICKs of their dependents.
3060 HEAD and TAIL are the begin and the end of the current scheduled block. */
3061 static void
3062 fix_inter_tick (rtx head, rtx tail)
3064 /* Set of instructions with corrected INSN_TICK. */
3065 bitmap_head processed;
3066 /* ??? It is doubtful if we should assume that cycle advance happens on
3067 basic block boundaries. Basically insns that are unconditionally ready
3068 on the start of the block are more preferable then those which have
3069 a one cycle dependency over insn from the previous block. */
3070 int next_clock = clock_var + 1;
3072 bitmap_initialize (&processed, 0);
3074 /* Iterates over scheduled instructions and fix their INSN_TICKs and
3075 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
3076 across different blocks. */
3077 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
3079 if (INSN_P (head))
3081 int tick;
3082 sd_iterator_def sd_it;
3083 dep_t dep;
3085 tick = INSN_TICK (head);
3086 gcc_assert (tick >= MIN_TICK);
3088 /* Fix INSN_TICK of instruction from just scheduled block. */
3089 if (!bitmap_bit_p (&processed, INSN_LUID (head)))
3091 bitmap_set_bit (&processed, INSN_LUID (head));
3092 tick -= next_clock;
3094 if (tick < MIN_TICK)
3095 tick = MIN_TICK;
3097 INSN_TICK (head) = tick;
3100 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
3102 rtx next;
3104 next = DEP_CON (dep);
3105 tick = INSN_TICK (next);
3107 if (tick != INVALID_TICK
3108 /* If NEXT has its INSN_TICK calculated, fix it.
3109 If not - it will be properly calculated from
3110 scratch later in fix_tick_ready. */
3111 && !bitmap_bit_p (&processed, INSN_LUID (next)))
3113 bitmap_set_bit (&processed, INSN_LUID (next));
3114 tick -= next_clock;
3116 if (tick < MIN_TICK)
3117 tick = MIN_TICK;
3119 if (tick > INTER_TICK (next))
3120 INTER_TICK (next) = tick;
3121 else
3122 tick = INTER_TICK (next);
3124 INSN_TICK (next) = tick;
3129 bitmap_clear (&processed);
3132 static int haifa_speculate_insn (rtx, ds_t, rtx *);
3134 /* Check if NEXT is ready to be added to the ready or queue list.
3135 If "yes", add it to the proper list.
3136 Returns:
3137 -1 - is not ready yet,
3138 0 - added to the ready list,
3139 0 < N - queued for N cycles. */
3141 try_ready (rtx next)
3143 ds_t old_ts, *ts;
3145 ts = &TODO_SPEC (next);
3146 old_ts = *ts;
3148 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP))
3149 && ((old_ts & HARD_DEP)
3150 || (old_ts & SPECULATIVE)));
3152 if (sd_lists_empty_p (next, SD_LIST_BACK))
3153 /* NEXT has all its dependencies resolved. */
3155 /* Remove HARD_DEP bit from NEXT's status. */
3156 *ts &= ~HARD_DEP;
3158 if (current_sched_info->flags & DO_SPECULATION)
3159 /* Remove all speculative bits from NEXT's status. */
3160 *ts &= ~SPECULATIVE;
3162 else
3164 /* One of the NEXT's dependencies has been resolved.
3165 Recalculate NEXT's status. */
3167 *ts &= ~SPECULATIVE & ~HARD_DEP;
3169 if (sd_lists_empty_p (next, SD_LIST_HARD_BACK))
3170 /* Now we've got NEXT with speculative deps only.
3171 1. Look at the deps to see what we have to do.
3172 2. Check if we can do 'todo'. */
3174 sd_iterator_def sd_it;
3175 dep_t dep;
3176 bool first_p = true;
3178 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
3180 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
3182 if (first_p)
3184 first_p = false;
3186 *ts = ds;
3188 else
3189 *ts = ds_merge (*ts, ds);
3192 if (ds_weak (*ts) < spec_info->data_weakness_cutoff)
3193 /* Too few points. */
3194 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
3196 else
3197 *ts |= HARD_DEP;
3200 if (*ts & HARD_DEP)
3201 gcc_assert (*ts == old_ts
3202 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
3203 else if (current_sched_info->new_ready)
3204 *ts = current_sched_info->new_ready (next, *ts);
3206 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
3207 have its original pattern or changed (speculative) one. This is due
3208 to changing ebb in region scheduling.
3209 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
3210 has speculative pattern.
3212 We can't assert (!(*ts & HARD_DEP) || *ts == old_ts) here because
3213 control-speculative NEXT could have been discarded by sched-rgn.c
3214 (the same case as when discarded by can_schedule_ready_p ()). */
3216 if ((*ts & SPECULATIVE)
3217 /* If (old_ts == *ts), then (old_ts & SPECULATIVE) and we don't
3218 need to change anything. */
3219 && *ts != old_ts)
3221 int res;
3222 rtx new_pat;
3224 gcc_assert ((*ts & SPECULATIVE) && !(*ts & ~SPECULATIVE));
3226 res = haifa_speculate_insn (next, *ts, &new_pat);
3228 switch (res)
3230 case -1:
3231 /* It would be nice to change DEP_STATUS of all dependences,
3232 which have ((DEP_STATUS & SPECULATIVE) == *ts) to HARD_DEP,
3233 so we won't reanalyze anything. */
3234 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
3235 break;
3237 case 0:
3238 /* We follow the rule, that every speculative insn
3239 has non-null ORIG_PAT. */
3240 if (!ORIG_PAT (next))
3241 ORIG_PAT (next) = PATTERN (next);
3242 break;
3244 case 1:
3245 if (!ORIG_PAT (next))
3246 /* If we gonna to overwrite the original pattern of insn,
3247 save it. */
3248 ORIG_PAT (next) = PATTERN (next);
3250 haifa_change_pattern (next, new_pat);
3251 break;
3253 default:
3254 gcc_unreachable ();
3258 /* We need to restore pattern only if (*ts == 0), because otherwise it is
3259 either correct (*ts & SPECULATIVE),
3260 or we simply don't care (*ts & HARD_DEP). */
3262 gcc_assert (!ORIG_PAT (next)
3263 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
3265 if (*ts & HARD_DEP)
3267 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
3268 control-speculative NEXT could have been discarded by sched-rgn.c
3269 (the same case as when discarded by can_schedule_ready_p ()). */
3270 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
3272 change_queue_index (next, QUEUE_NOWHERE);
3273 return -1;
3275 else if (!(*ts & BEGIN_SPEC) && ORIG_PAT (next) && !IS_SPECULATION_CHECK_P (next))
3276 /* We should change pattern of every previously speculative
3277 instruction - and we determine if NEXT was speculative by using
3278 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
3279 pat too, so skip them. */
3281 haifa_change_pattern (next, ORIG_PAT (next));
3282 ORIG_PAT (next) = 0;
3285 if (sched_verbose >= 2)
3287 int s = TODO_SPEC (next);
3289 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
3290 (*current_sched_info->print_insn) (next, 0));
3292 if (spec_info && spec_info->dump)
3294 if (s & BEGIN_DATA)
3295 fprintf (spec_info->dump, "; data-spec;");
3296 if (s & BEGIN_CONTROL)
3297 fprintf (spec_info->dump, "; control-spec;");
3298 if (s & BE_IN_CONTROL)
3299 fprintf (spec_info->dump, "; in-control-spec;");
3302 fprintf (sched_dump, "\n");
3305 adjust_priority (next);
3307 return fix_tick_ready (next);
3310 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
3311 static int
3312 fix_tick_ready (rtx next)
3314 int tick, delay;
3316 if (!sd_lists_empty_p (next, SD_LIST_RES_BACK))
3318 int full_p;
3319 sd_iterator_def sd_it;
3320 dep_t dep;
3322 tick = INSN_TICK (next);
3323 /* if tick is not equal to INVALID_TICK, then update
3324 INSN_TICK of NEXT with the most recent resolved dependence
3325 cost. Otherwise, recalculate from scratch. */
3326 full_p = (tick == INVALID_TICK);
3328 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
3330 rtx pro = DEP_PRO (dep);
3331 int tick1;
3333 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
3335 tick1 = INSN_TICK (pro) + dep_cost (dep);
3336 if (tick1 > tick)
3337 tick = tick1;
3339 if (!full_p)
3340 break;
3343 else
3344 tick = -1;
3346 INSN_TICK (next) = tick;
3348 delay = tick - clock_var;
3349 if (delay <= 0)
3350 delay = QUEUE_READY;
3352 change_queue_index (next, delay);
3354 return delay;
3357 /* Move NEXT to the proper queue list with (DELAY >= 1),
3358 or add it to the ready list (DELAY == QUEUE_READY),
3359 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
3360 static void
3361 change_queue_index (rtx next, int delay)
3363 int i = QUEUE_INDEX (next);
3365 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
3366 && delay != 0);
3367 gcc_assert (i != QUEUE_SCHEDULED);
3369 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
3370 || (delay < 0 && delay == i))
3371 /* We have nothing to do. */
3372 return;
3374 /* Remove NEXT from wherever it is now. */
3375 if (i == QUEUE_READY)
3376 ready_remove_insn (next);
3377 else if (i >= 0)
3378 queue_remove (next);
3380 /* Add it to the proper place. */
3381 if (delay == QUEUE_READY)
3382 ready_add (readyp, next, false);
3383 else if (delay >= 1)
3384 queue_insn (next, delay);
3386 if (sched_verbose >= 2)
3388 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
3389 (*current_sched_info->print_insn) (next, 0));
3391 if (delay == QUEUE_READY)
3392 fprintf (sched_dump, " into ready\n");
3393 else if (delay >= 1)
3394 fprintf (sched_dump, " into queue with cost=%d\n", delay);
3395 else
3396 fprintf (sched_dump, " removed from ready or queue lists\n");
3400 static int sched_ready_n_insns = -1;
3402 /* Initialize per region data structures. */
3403 void
3404 sched_extend_ready_list (int new_sched_ready_n_insns)
3406 int i;
3408 if (sched_ready_n_insns == -1)
3409 /* At the first call we need to initialize one more choice_stack
3410 entry. */
3412 i = 0;
3413 sched_ready_n_insns = 0;
3415 else
3416 i = sched_ready_n_insns + 1;
3418 ready.veclen = new_sched_ready_n_insns + issue_rate;
3419 ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
3421 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
3423 ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
3424 sched_ready_n_insns, sizeof (*ready_try));
3426 /* We allocate +1 element to save initial state in the choice_stack[0]
3427 entry. */
3428 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
3429 new_sched_ready_n_insns + 1);
3431 for (; i <= new_sched_ready_n_insns; i++)
3432 choice_stack[i].state = xmalloc (dfa_state_size);
3434 sched_ready_n_insns = new_sched_ready_n_insns;
3437 /* Free per region data structures. */
3438 void
3439 sched_finish_ready_list (void)
3441 int i;
3443 free (ready.vec);
3444 ready.vec = NULL;
3445 ready.veclen = 0;
3447 free (ready_try);
3448 ready_try = NULL;
3450 for (i = 0; i <= sched_ready_n_insns; i++)
3451 free (choice_stack [i].state);
3452 free (choice_stack);
3453 choice_stack = NULL;
3455 sched_ready_n_insns = -1;
3458 static int
3459 haifa_luid_for_non_insn (rtx x)
3461 gcc_assert (NOTE_P (x) || LABEL_P (x));
3463 return 0;
3466 /* Generates recovery code for INSN. */
3467 static void
3468 generate_recovery_code (rtx insn)
3470 if (TODO_SPEC (insn) & BEGIN_SPEC)
3471 begin_speculative_block (insn);
3473 /* Here we have insn with no dependencies to
3474 instructions other then CHECK_SPEC ones. */
3476 if (TODO_SPEC (insn) & BE_IN_SPEC)
3477 add_to_speculative_block (insn);
3480 /* Helper function.
3481 Tries to add speculative dependencies of type FS between instructions
3482 in deps_list L and TWIN. */
3483 static void
3484 process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
3486 sd_iterator_def sd_it;
3487 dep_t dep;
3489 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
3491 ds_t ds;
3492 rtx consumer;
3494 consumer = DEP_CON (dep);
3496 ds = DEP_STATUS (dep);
3498 if (/* If we want to create speculative dep. */
3500 /* And we can do that because this is a true dep. */
3501 && (ds & DEP_TYPES) == DEP_TRUE)
3503 gcc_assert (!(ds & BE_IN_SPEC));
3505 if (/* If this dep can be overcome with 'begin speculation'. */
3506 ds & BEGIN_SPEC)
3507 /* Then we have a choice: keep the dep 'begin speculative'
3508 or transform it into 'be in speculative'. */
3510 if (/* In try_ready we assert that if insn once became ready
3511 it can be removed from the ready (or queue) list only
3512 due to backend decision. Hence we can't let the
3513 probability of the speculative dep to decrease. */
3514 ds_weak (ds) <= ds_weak (fs))
3516 ds_t new_ds;
3518 new_ds = (ds & ~BEGIN_SPEC) | fs;
3520 if (/* consumer can 'be in speculative'. */
3521 sched_insn_is_legitimate_for_speculation_p (consumer,
3522 new_ds))
3523 /* Transform it to be in speculative. */
3524 ds = new_ds;
3527 else
3528 /* Mark the dep as 'be in speculative'. */
3529 ds |= fs;
3533 dep_def _new_dep, *new_dep = &_new_dep;
3535 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
3536 sd_add_dep (new_dep, false);
3541 /* Generates recovery code for BEGIN speculative INSN. */
3542 static void
3543 begin_speculative_block (rtx insn)
3545 if (TODO_SPEC (insn) & BEGIN_DATA)
3546 nr_begin_data++;
3547 if (TODO_SPEC (insn) & BEGIN_CONTROL)
3548 nr_begin_control++;
3550 create_check_block_twin (insn, false);
3552 TODO_SPEC (insn) &= ~BEGIN_SPEC;
3555 static void haifa_init_insn (rtx);
3557 /* Generates recovery code for BE_IN speculative INSN. */
3558 static void
3559 add_to_speculative_block (rtx insn)
3561 ds_t ts;
3562 sd_iterator_def sd_it;
3563 dep_t dep;
3564 rtx twins = NULL;
3565 rtx_vec_t priorities_roots;
3567 ts = TODO_SPEC (insn);
3568 gcc_assert (!(ts & ~BE_IN_SPEC));
3570 if (ts & BE_IN_DATA)
3571 nr_be_in_data++;
3572 if (ts & BE_IN_CONTROL)
3573 nr_be_in_control++;
3575 TODO_SPEC (insn) &= ~BE_IN_SPEC;
3576 gcc_assert (!TODO_SPEC (insn));
3578 DONE_SPEC (insn) |= ts;
3580 /* First we convert all simple checks to branchy. */
3581 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3582 sd_iterator_cond (&sd_it, &dep);)
3584 rtx check = DEP_PRO (dep);
3586 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
3588 create_check_block_twin (check, true);
3590 /* Restart search. */
3591 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3593 else
3594 /* Continue search. */
3595 sd_iterator_next (&sd_it);
3598 priorities_roots = NULL;
3599 clear_priorities (insn, &priorities_roots);
3601 while (1)
3603 rtx check, twin;
3604 basic_block rec;
3606 /* Get the first backward dependency of INSN. */
3607 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3608 if (!sd_iterator_cond (&sd_it, &dep))
3609 /* INSN has no backward dependencies left. */
3610 break;
3612 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
3613 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
3614 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
3616 check = DEP_PRO (dep);
3618 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
3619 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
3621 rec = BLOCK_FOR_INSN (check);
3623 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
3624 haifa_init_insn (twin);
3626 sd_copy_back_deps (twin, insn, true);
3628 if (sched_verbose && spec_info->dump)
3629 /* INSN_BB (insn) isn't determined for twin insns yet.
3630 So we can't use current_sched_info->print_insn. */
3631 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
3632 INSN_UID (twin), rec->index);
3634 twins = alloc_INSN_LIST (twin, twins);
3636 /* Add dependences between TWIN and all appropriate
3637 instructions from REC. */
3638 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
3640 rtx pro = DEP_PRO (dep);
3642 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
3644 /* INSN might have dependencies from the instructions from
3645 several recovery blocks. At this iteration we process those
3646 producers that reside in REC. */
3647 if (BLOCK_FOR_INSN (pro) == rec)
3649 dep_def _new_dep, *new_dep = &_new_dep;
3651 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
3652 sd_add_dep (new_dep, false);
3656 process_insn_forw_deps_be_in_spec (insn, twin, ts);
3658 /* Remove all dependencies between INSN and insns in REC. */
3659 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3660 sd_iterator_cond (&sd_it, &dep);)
3662 rtx pro = DEP_PRO (dep);
3664 if (BLOCK_FOR_INSN (pro) == rec)
3665 sd_delete_dep (sd_it);
3666 else
3667 sd_iterator_next (&sd_it);
3671 /* We couldn't have added the dependencies between INSN and TWINS earlier
3672 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
3673 while (twins)
3675 rtx twin;
3677 twin = XEXP (twins, 0);
3680 dep_def _new_dep, *new_dep = &_new_dep;
3682 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
3683 sd_add_dep (new_dep, false);
3686 twin = XEXP (twins, 1);
3687 free_INSN_LIST_node (twins);
3688 twins = twin;
3691 calc_priorities (priorities_roots);
3692 VEC_free (rtx, heap, priorities_roots);
3695 /* Extends and fills with zeros (only the new part) array pointed to by P. */
3696 void *
3697 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
3699 gcc_assert (new_nmemb >= old_nmemb);
3700 p = XRESIZEVAR (void, p, new_nmemb * size);
3701 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
3702 return p;
3705 /* Helper function.
3706 Find fallthru edge from PRED. */
3707 edge
3708 find_fallthru_edge (basic_block pred)
3710 edge e;
3711 edge_iterator ei;
3712 basic_block succ;
3714 succ = pred->next_bb;
3715 gcc_assert (succ->prev_bb == pred);
3717 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
3719 FOR_EACH_EDGE (e, ei, pred->succs)
3720 if (e->flags & EDGE_FALLTHRU)
3722 gcc_assert (e->dest == succ);
3723 return e;
3726 else
3728 FOR_EACH_EDGE (e, ei, succ->preds)
3729 if (e->flags & EDGE_FALLTHRU)
3731 gcc_assert (e->src == pred);
3732 return e;
3736 return NULL;
3739 /* Extend per basic block data structures. */
3740 static void
3741 sched_extend_bb (void)
3743 rtx insn;
3745 /* The following is done to keep current_sched_info->next_tail non null. */
3746 insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
3747 if (NEXT_INSN (insn) == 0
3748 || (!NOTE_P (insn)
3749 && !LABEL_P (insn)
3750 /* Don't emit a NOTE if it would end up before a BARRIER. */
3751 && !BARRIER_P (NEXT_INSN (insn))))
3753 rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
3754 /* Make insn appear outside BB. */
3755 set_block_for_insn (note, NULL);
3756 BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
3760 /* Init per basic block data structures. */
3761 void
3762 sched_init_bbs (void)
3764 sched_extend_bb ();
3767 /* Initialize BEFORE_RECOVERY variable. */
3768 static void
3769 init_before_recovery (basic_block *before_recovery_ptr)
3771 basic_block last;
3772 edge e;
3774 last = EXIT_BLOCK_PTR->prev_bb;
3775 e = find_fallthru_edge (last);
3777 if (e)
3779 /* We create two basic blocks:
3780 1. Single instruction block is inserted right after E->SRC
3781 and has jump to
3782 2. Empty block right before EXIT_BLOCK.
3783 Between these two blocks recovery blocks will be emitted. */
3785 basic_block single, empty;
3786 rtx x, label;
3788 /* If the fallthrough edge to exit we've found is from the block we've
3789 created before, don't do anything more. */
3790 if (last == after_recovery)
3791 return;
3793 adding_bb_to_current_region_p = false;
3795 single = sched_create_empty_bb (last);
3796 empty = sched_create_empty_bb (single);
3798 /* Add new blocks to the root loop. */
3799 if (current_loops != NULL)
3801 add_bb_to_loop (single, VEC_index (loop_p, current_loops->larray, 0));
3802 add_bb_to_loop (empty, VEC_index (loop_p, current_loops->larray, 0));
3805 single->count = last->count;
3806 empty->count = last->count;
3807 single->frequency = last->frequency;
3808 empty->frequency = last->frequency;
3809 BB_COPY_PARTITION (single, last);
3810 BB_COPY_PARTITION (empty, last);
3812 redirect_edge_succ (e, single);
3813 make_single_succ_edge (single, empty, 0);
3814 make_single_succ_edge (empty, EXIT_BLOCK_PTR,
3815 EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
3817 label = block_label (empty);
3818 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
3819 JUMP_LABEL (x) = label;
3820 LABEL_NUSES (label)++;
3821 haifa_init_insn (x);
3823 emit_barrier_after (x);
3825 sched_init_only_bb (empty, NULL);
3826 sched_init_only_bb (single, NULL);
3827 sched_extend_bb ();
3829 adding_bb_to_current_region_p = true;
3830 before_recovery = single;
3831 after_recovery = empty;
3833 if (before_recovery_ptr)
3834 *before_recovery_ptr = before_recovery;
3836 if (sched_verbose >= 2 && spec_info->dump)
3837 fprintf (spec_info->dump,
3838 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
3839 last->index, single->index, empty->index);
3841 else
3842 before_recovery = last;
3845 /* Returns new recovery block. */
3846 basic_block
3847 sched_create_recovery_block (basic_block *before_recovery_ptr)
3849 rtx label;
3850 rtx barrier;
3851 basic_block rec;
3853 haifa_recovery_bb_recently_added_p = true;
3854 haifa_recovery_bb_ever_added_p = true;
3856 init_before_recovery (before_recovery_ptr);
3858 barrier = get_last_bb_insn (before_recovery);
3859 gcc_assert (BARRIER_P (barrier));
3861 label = emit_label_after (gen_label_rtx (), barrier);
3863 rec = create_basic_block (label, label, before_recovery);
3865 /* A recovery block always ends with an unconditional jump. */
3866 emit_barrier_after (BB_END (rec));
3868 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
3869 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
3871 if (sched_verbose && spec_info->dump)
3872 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
3873 rec->index);
3875 return rec;
3878 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
3879 and emit necessary jumps. */
3880 void
3881 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
3882 basic_block second_bb)
3884 rtx label;
3885 rtx jump;
3886 edge e;
3887 int edge_flags;
3889 /* This is fixing of incoming edge. */
3890 /* ??? Which other flags should be specified? */
3891 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
3892 /* Partition type is the same, if it is "unpartitioned". */
3893 edge_flags = EDGE_CROSSING;
3894 else
3895 edge_flags = 0;
3897 e = make_edge (first_bb, rec, edge_flags);
3898 label = block_label (second_bb);
3899 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
3900 JUMP_LABEL (jump) = label;
3901 LABEL_NUSES (label)++;
3903 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
3904 /* Partition type is the same, if it is "unpartitioned". */
3906 /* Rewritten from cfgrtl.c. */
3907 if (flag_reorder_blocks_and_partition
3908 && targetm.have_named_sections)
3909 /* We don't need the same note for the check because
3910 any_condjump_p (check) == true. */
3912 REG_NOTES (jump) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
3913 NULL_RTX,
3914 REG_NOTES (jump));
3916 edge_flags = EDGE_CROSSING;
3918 else
3919 edge_flags = 0;
3921 make_single_succ_edge (rec, second_bb, edge_flags);
3924 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
3925 INSN is a simple check, that should be converted to branchy one. */
3926 static void
3927 create_check_block_twin (rtx insn, bool mutate_p)
3929 basic_block rec;
3930 rtx label, check, twin;
3931 ds_t fs;
3932 sd_iterator_def sd_it;
3933 dep_t dep;
3934 dep_def _new_dep, *new_dep = &_new_dep;
3935 ds_t todo_spec;
3937 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
3939 if (!mutate_p)
3940 todo_spec = TODO_SPEC (insn);
3941 else
3943 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
3944 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
3946 todo_spec = CHECK_SPEC (insn);
3949 todo_spec &= SPECULATIVE;
3951 /* Create recovery block. */
3952 if (mutate_p || targetm.sched.needs_block_p (insn))
3954 rec = sched_create_recovery_block (NULL);
3955 label = BB_HEAD (rec);
3957 else
3959 rec = EXIT_BLOCK_PTR;
3960 label = NULL_RTX;
3963 /* Emit CHECK. */
3964 check = targetm.sched.gen_spec_check (insn, label, mutate_p);
3966 if (rec != EXIT_BLOCK_PTR)
3968 /* To have mem_reg alive at the beginning of second_bb,
3969 we emit check BEFORE insn, so insn after splitting
3970 insn will be at the beginning of second_bb, which will
3971 provide us with the correct life information. */
3972 check = emit_jump_insn_before (check, insn);
3973 JUMP_LABEL (check) = label;
3974 LABEL_NUSES (label)++;
3976 else
3977 check = emit_insn_before (check, insn);
3979 /* Extend data structures. */
3980 haifa_init_insn (check);
3982 /* CHECK is being added to current region. Extend ready list. */
3983 gcc_assert (sched_ready_n_insns != -1);
3984 sched_extend_ready_list (sched_ready_n_insns + 1);
3986 if (current_sched_info->add_remove_insn)
3987 current_sched_info->add_remove_insn (insn, 0);
3989 RECOVERY_BLOCK (check) = rec;
3991 if (sched_verbose && spec_info->dump)
3992 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
3993 (*current_sched_info->print_insn) (check, 0));
3995 gcc_assert (ORIG_PAT (insn));
3997 /* Initialize TWIN (twin is a duplicate of original instruction
3998 in the recovery block). */
3999 if (rec != EXIT_BLOCK_PTR)
4001 sd_iterator_def sd_it;
4002 dep_t dep;
4004 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
4005 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
4007 struct _dep _dep2, *dep2 = &_dep2;
4009 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
4011 sd_add_dep (dep2, true);
4014 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
4015 haifa_init_insn (twin);
4017 if (sched_verbose && spec_info->dump)
4018 /* INSN_BB (insn) isn't determined for twin insns yet.
4019 So we can't use current_sched_info->print_insn. */
4020 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
4021 INSN_UID (twin), rec->index);
4023 else
4025 ORIG_PAT (check) = ORIG_PAT (insn);
4026 HAS_INTERNAL_DEP (check) = 1;
4027 twin = check;
4028 /* ??? We probably should change all OUTPUT dependencies to
4029 (TRUE | OUTPUT). */
4032 /* Copy all resolved back dependencies of INSN to TWIN. This will
4033 provide correct value for INSN_TICK (TWIN). */
4034 sd_copy_back_deps (twin, insn, true);
4036 if (rec != EXIT_BLOCK_PTR)
4037 /* In case of branchy check, fix CFG. */
4039 basic_block first_bb, second_bb;
4040 rtx jump;
4042 first_bb = BLOCK_FOR_INSN (check);
4043 second_bb = sched_split_block (first_bb, check);
4045 sched_create_recovery_edges (first_bb, rec, second_bb);
4047 sched_init_only_bb (second_bb, first_bb);
4048 sched_init_only_bb (rec, EXIT_BLOCK_PTR);
4050 jump = BB_END (rec);
4051 haifa_init_insn (jump);
4054 /* Move backward dependences from INSN to CHECK and
4055 move forward dependences from INSN to TWIN. */
4057 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
4058 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4060 rtx pro = DEP_PRO (dep);
4061 ds_t ds;
4063 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
4064 check --TRUE--> producer ??? or ANTI ???
4065 twin --TRUE--> producer
4066 twin --ANTI--> check
4068 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
4069 check --ANTI--> producer
4070 twin --ANTI--> producer
4071 twin --ANTI--> check
4073 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
4074 check ~~TRUE~~> producer
4075 twin ~~TRUE~~> producer
4076 twin --ANTI--> check */
4078 ds = DEP_STATUS (dep);
4080 if (ds & BEGIN_SPEC)
4082 gcc_assert (!mutate_p);
4083 ds &= ~BEGIN_SPEC;
4086 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
4087 sd_add_dep (new_dep, false);
4089 if (rec != EXIT_BLOCK_PTR)
4091 DEP_CON (new_dep) = twin;
4092 sd_add_dep (new_dep, false);
4096 /* Second, remove backward dependencies of INSN. */
4097 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4098 sd_iterator_cond (&sd_it, &dep);)
4100 if ((DEP_STATUS (dep) & BEGIN_SPEC)
4101 || mutate_p)
4102 /* We can delete this dep because we overcome it with
4103 BEGIN_SPECULATION. */
4104 sd_delete_dep (sd_it);
4105 else
4106 sd_iterator_next (&sd_it);
4109 /* Future Speculations. Determine what BE_IN speculations will be like. */
4110 fs = 0;
4112 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
4113 here. */
4115 gcc_assert (!DONE_SPEC (insn));
4117 if (!mutate_p)
4119 ds_t ts = TODO_SPEC (insn);
4121 DONE_SPEC (insn) = ts & BEGIN_SPEC;
4122 CHECK_SPEC (check) = ts & BEGIN_SPEC;
4124 /* Luckiness of future speculations solely depends upon initial
4125 BEGIN speculation. */
4126 if (ts & BEGIN_DATA)
4127 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
4128 if (ts & BEGIN_CONTROL)
4129 fs = set_dep_weak (fs, BE_IN_CONTROL,
4130 get_dep_weak (ts, BEGIN_CONTROL));
4132 else
4133 CHECK_SPEC (check) = CHECK_SPEC (insn);
4135 /* Future speculations: call the helper. */
4136 process_insn_forw_deps_be_in_spec (insn, twin, fs);
4138 if (rec != EXIT_BLOCK_PTR)
4140 /* Which types of dependencies should we use here is,
4141 generally, machine-dependent question... But, for now,
4142 it is not. */
4144 if (!mutate_p)
4146 init_dep (new_dep, insn, check, REG_DEP_TRUE);
4147 sd_add_dep (new_dep, false);
4149 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
4150 sd_add_dep (new_dep, false);
4152 else
4154 if (spec_info->dump)
4155 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
4156 (*current_sched_info->print_insn) (insn, 0));
4158 /* Remove all dependencies of the INSN. */
4160 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
4161 | SD_LIST_BACK
4162 | SD_LIST_RES_BACK));
4163 while (sd_iterator_cond (&sd_it, &dep))
4164 sd_delete_dep (sd_it);
4167 /* If former check (INSN) already was moved to the ready (or queue)
4168 list, add new check (CHECK) there too. */
4169 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
4170 try_ready (check);
4172 /* Remove old check from instruction stream and free its
4173 data. */
4174 sched_remove_insn (insn);
4177 init_dep (new_dep, check, twin, REG_DEP_ANTI);
4178 sd_add_dep (new_dep, false);
4180 else
4182 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
4183 sd_add_dep (new_dep, false);
4186 if (!mutate_p)
4187 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
4188 because it'll be done later in add_to_speculative_block. */
4190 rtx_vec_t priorities_roots = NULL;
4192 clear_priorities (twin, &priorities_roots);
4193 calc_priorities (priorities_roots);
4194 VEC_free (rtx, heap, priorities_roots);
4198 /* Removes dependency between instructions in the recovery block REC
4199 and usual region instructions. It keeps inner dependences so it
4200 won't be necessary to recompute them. */
4201 static void
4202 fix_recovery_deps (basic_block rec)
4204 rtx note, insn, jump, ready_list = 0;
4205 bitmap_head in_ready;
4206 rtx link;
4208 bitmap_initialize (&in_ready, 0);
4210 /* NOTE - a basic block note. */
4211 note = NEXT_INSN (BB_HEAD (rec));
4212 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4213 insn = BB_END (rec);
4214 gcc_assert (JUMP_P (insn));
4215 insn = PREV_INSN (insn);
4219 sd_iterator_def sd_it;
4220 dep_t dep;
4222 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4223 sd_iterator_cond (&sd_it, &dep);)
4225 rtx consumer = DEP_CON (dep);
4227 if (BLOCK_FOR_INSN (consumer) != rec)
4229 sd_delete_dep (sd_it);
4231 if (!bitmap_bit_p (&in_ready, INSN_LUID (consumer)))
4233 ready_list = alloc_INSN_LIST (consumer, ready_list);
4234 bitmap_set_bit (&in_ready, INSN_LUID (consumer));
4237 else
4239 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
4241 sd_iterator_next (&sd_it);
4245 insn = PREV_INSN (insn);
4247 while (insn != note);
4249 bitmap_clear (&in_ready);
4251 /* Try to add instructions to the ready or queue list. */
4252 for (link = ready_list; link; link = XEXP (link, 1))
4253 try_ready (XEXP (link, 0));
4254 free_INSN_LIST_list (&ready_list);
4256 /* Fixing jump's dependences. */
4257 insn = BB_HEAD (rec);
4258 jump = BB_END (rec);
4260 gcc_assert (LABEL_P (insn));
4261 insn = NEXT_INSN (insn);
4263 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4264 add_jump_dependencies (insn, jump);
4267 /* Change pattern of INSN to NEW_PAT. */
4268 void
4269 sched_change_pattern (rtx insn, rtx new_pat)
4271 int t;
4273 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
4274 gcc_assert (t);
4275 dfa_clear_single_insn_cache (insn);
4278 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
4279 instruction data. */
4280 static void
4281 haifa_change_pattern (rtx insn, rtx new_pat)
4283 sched_change_pattern (insn, new_pat);
4285 /* Invalidate INSN_COST, so it'll be recalculated. */
4286 INSN_COST (insn) = -1;
4287 /* Invalidate INSN_TICK, so it'll be recalculated. */
4288 INSN_TICK (insn) = INVALID_TICK;
4291 /* -1 - can't speculate,
4292 0 - for speculation with REQUEST mode it is OK to use
4293 current instruction pattern,
4294 1 - need to change pattern for *NEW_PAT to be speculative. */
4296 sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
4298 gcc_assert (current_sched_info->flags & DO_SPECULATION
4299 && (request & SPECULATIVE)
4300 && sched_insn_is_legitimate_for_speculation_p (insn, request));
4302 if ((request & spec_info->mask) != request)
4303 return -1;
4305 if (request & BE_IN_SPEC
4306 && !(request & BEGIN_SPEC))
4307 return 0;
4309 return targetm.sched.speculate_insn (insn, request, new_pat);
4312 static int
4313 haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
4315 gcc_assert (sched_deps_info->generate_spec_deps
4316 && !IS_SPECULATION_CHECK_P (insn));
4318 if (HAS_INTERNAL_DEP (insn)
4319 || SCHED_GROUP_P (insn))
4320 return -1;
4322 return sched_speculate_insn (insn, request, new_pat);
4325 /* Print some information about block BB, which starts with HEAD and
4326 ends with TAIL, before scheduling it.
4327 I is zero, if scheduler is about to start with the fresh ebb. */
4328 static void
4329 dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
4331 if (!i)
4332 fprintf (sched_dump,
4333 ";; ======================================================\n");
4334 else
4335 fprintf (sched_dump,
4336 ";; =====================ADVANCING TO=====================\n");
4337 fprintf (sched_dump,
4338 ";; -- basic block %d from %d to %d -- %s reload\n",
4339 bb->index, INSN_UID (head), INSN_UID (tail),
4340 (reload_completed ? "after" : "before"));
4341 fprintf (sched_dump,
4342 ";; ======================================================\n");
4343 fprintf (sched_dump, "\n");
4346 /* Unlink basic block notes and labels and saves them, so they
4347 can be easily restored. We unlink basic block notes in EBB to
4348 provide back-compatibility with the previous code, as target backends
4349 assume, that there'll be only instructions between
4350 current_sched_info->{head and tail}. We restore these notes as soon
4351 as we can.
4352 FIRST (LAST) is the first (last) basic block in the ebb.
4353 NB: In usual case (FIRST == LAST) nothing is really done. */
4354 void
4355 unlink_bb_notes (basic_block first, basic_block last)
4357 /* We DON'T unlink basic block notes of the first block in the ebb. */
4358 if (first == last)
4359 return;
4361 bb_header = XNEWVEC (rtx, last_basic_block);
4363 /* Make a sentinel. */
4364 if (last->next_bb != EXIT_BLOCK_PTR)
4365 bb_header[last->next_bb->index] = 0;
4367 first = first->next_bb;
4370 rtx prev, label, note, next;
4372 label = BB_HEAD (last);
4373 if (LABEL_P (label))
4374 note = NEXT_INSN (label);
4375 else
4376 note = label;
4377 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4379 prev = PREV_INSN (label);
4380 next = NEXT_INSN (note);
4381 gcc_assert (prev && next);
4383 NEXT_INSN (prev) = next;
4384 PREV_INSN (next) = prev;
4386 bb_header[last->index] = label;
4388 if (last == first)
4389 break;
4391 last = last->prev_bb;
4393 while (1);
4396 /* Restore basic block notes.
4397 FIRST is the first basic block in the ebb. */
4398 static void
4399 restore_bb_notes (basic_block first)
4401 if (!bb_header)
4402 return;
4404 /* We DON'T unlink basic block notes of the first block in the ebb. */
4405 first = first->next_bb;
4406 /* Remember: FIRST is actually a second basic block in the ebb. */
4408 while (first != EXIT_BLOCK_PTR
4409 && bb_header[first->index])
4411 rtx prev, label, note, next;
4413 label = bb_header[first->index];
4414 prev = PREV_INSN (label);
4415 next = NEXT_INSN (prev);
4417 if (LABEL_P (label))
4418 note = NEXT_INSN (label);
4419 else
4420 note = label;
4421 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4423 bb_header[first->index] = 0;
4425 NEXT_INSN (prev) = label;
4426 NEXT_INSN (note) = next;
4427 PREV_INSN (next) = note;
4429 first = first->next_bb;
4432 free (bb_header);
4433 bb_header = 0;
4436 /* Helper function.
4437 Fix CFG after both in- and inter-block movement of
4438 control_flow_insn_p JUMP. */
4439 static void
4440 fix_jump_move (rtx jump)
4442 basic_block bb, jump_bb, jump_bb_next;
4444 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
4445 jump_bb = BLOCK_FOR_INSN (jump);
4446 jump_bb_next = jump_bb->next_bb;
4448 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
4449 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
4451 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
4452 /* if jump_bb_next is not empty. */
4453 BB_END (jump_bb) = BB_END (jump_bb_next);
4455 if (BB_END (bb) != PREV_INSN (jump))
4456 /* Then there are instruction after jump that should be placed
4457 to jump_bb_next. */
4458 BB_END (jump_bb_next) = BB_END (bb);
4459 else
4460 /* Otherwise jump_bb_next is empty. */
4461 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
4463 /* To make assertion in move_insn happy. */
4464 BB_END (bb) = PREV_INSN (jump);
4466 update_bb_for_insn (jump_bb_next);
4469 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
4470 static void
4471 move_block_after_check (rtx jump)
4473 basic_block bb, jump_bb, jump_bb_next;
4474 VEC(edge,gc) *t;
4476 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
4477 jump_bb = BLOCK_FOR_INSN (jump);
4478 jump_bb_next = jump_bb->next_bb;
4480 update_bb_for_insn (jump_bb);
4482 gcc_assert (IS_SPECULATION_CHECK_P (jump)
4483 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
4485 unlink_block (jump_bb_next);
4486 link_block (jump_bb_next, bb);
4488 t = bb->succs;
4489 bb->succs = 0;
4490 move_succs (&(jump_bb->succs), bb);
4491 move_succs (&(jump_bb_next->succs), jump_bb);
4492 move_succs (&t, jump_bb_next);
4494 df_mark_solutions_dirty ();
4496 common_sched_info->fix_recovery_cfg
4497 (bb->index, jump_bb->index, jump_bb_next->index);
4500 /* Helper function for move_block_after_check.
4501 This functions attaches edge vector pointed to by SUCCSP to
4502 block TO. */
4503 static void
4504 move_succs (VEC(edge,gc) **succsp, basic_block to)
4506 edge e;
4507 edge_iterator ei;
4509 gcc_assert (to->succs == 0);
4511 to->succs = *succsp;
4513 FOR_EACH_EDGE (e, ei, to->succs)
4514 e->src = to;
4516 *succsp = 0;
4519 /* Remove INSN from the instruction stream.
4520 INSN should have any dependencies. */
4521 static void
4522 sched_remove_insn (rtx insn)
4524 sd_finish_insn (insn);
4526 change_queue_index (insn, QUEUE_NOWHERE);
4527 current_sched_info->add_remove_insn (insn, 1);
4528 remove_insn (insn);
4531 /* Clear priorities of all instructions, that are forward dependent on INSN.
4532 Store in vector pointed to by ROOTS_PTR insns on which priority () should
4533 be invoked to initialize all cleared priorities. */
4534 static void
4535 clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
4537 sd_iterator_def sd_it;
4538 dep_t dep;
4539 bool insn_is_root_p = true;
4541 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
4543 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4545 rtx pro = DEP_PRO (dep);
4547 if (INSN_PRIORITY_STATUS (pro) >= 0
4548 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
4550 /* If DEP doesn't contribute to priority then INSN itself should
4551 be added to priority roots. */
4552 if (contributes_to_priority_p (dep))
4553 insn_is_root_p = false;
4555 INSN_PRIORITY_STATUS (pro) = -1;
4556 clear_priorities (pro, roots_ptr);
4560 if (insn_is_root_p)
4561 VEC_safe_push (rtx, heap, *roots_ptr, insn);
4564 /* Recompute priorities of instructions, whose priorities might have been
4565 changed. ROOTS is a vector of instructions whose priority computation will
4566 trigger initialization of all cleared priorities. */
4567 static void
4568 calc_priorities (rtx_vec_t roots)
4570 int i;
4571 rtx insn;
4573 for (i = 0; VEC_iterate (rtx, roots, i, insn); i++)
4574 priority (insn);
4578 /* Add dependences between JUMP and other instructions in the recovery
4579 block. INSN is the first insn the recovery block. */
4580 static void
4581 add_jump_dependencies (rtx insn, rtx jump)
4585 insn = NEXT_INSN (insn);
4586 if (insn == jump)
4587 break;
4589 if (sd_lists_empty_p (insn, SD_LIST_FORW))
4591 dep_def _new_dep, *new_dep = &_new_dep;
4593 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
4594 sd_add_dep (new_dep, false);
4597 while (1);
4599 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
4602 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
4604 bb_note (basic_block bb)
4606 rtx note;
4608 note = BB_HEAD (bb);
4609 if (LABEL_P (note))
4610 note = NEXT_INSN (note);
4612 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4613 return note;
4616 #ifdef ENABLE_CHECKING
4617 /* Helper function for check_cfg.
4618 Return nonzero, if edge vector pointed to by EL has edge with TYPE in
4619 its flags. */
4620 static int
4621 has_edge_p (VEC(edge,gc) *el, int type)
4623 edge e;
4624 edge_iterator ei;
4626 FOR_EACH_EDGE (e, ei, el)
4627 if (e->flags & type)
4628 return 1;
4629 return 0;
4632 /* Check few properties of CFG between HEAD and TAIL.
4633 If HEAD (TAIL) is NULL check from the beginning (till the end) of the
4634 instruction stream. */
4635 static void
4636 check_cfg (rtx head, rtx tail)
4638 rtx next_tail;
4639 basic_block bb = 0;
4640 int not_first = 0, not_last;
4642 if (head == NULL)
4643 head = get_insns ();
4644 if (tail == NULL)
4645 tail = get_last_insn ();
4646 next_tail = NEXT_INSN (tail);
4650 not_last = head != tail;
4652 if (not_first)
4653 gcc_assert (NEXT_INSN (PREV_INSN (head)) == head);
4654 if (not_last)
4655 gcc_assert (PREV_INSN (NEXT_INSN (head)) == head);
4657 if (LABEL_P (head)
4658 || (NOTE_INSN_BASIC_BLOCK_P (head)
4659 && (!not_first
4660 || (not_first && !LABEL_P (PREV_INSN (head))))))
4662 gcc_assert (bb == 0);
4663 bb = BLOCK_FOR_INSN (head);
4664 if (bb != 0)
4665 gcc_assert (BB_HEAD (bb) == head);
4666 else
4667 /* This is the case of jump table. See inside_basic_block_p (). */
4668 gcc_assert (LABEL_P (head) && !inside_basic_block_p (head));
4671 if (bb == 0)
4673 gcc_assert (!inside_basic_block_p (head));
4674 head = NEXT_INSN (head);
4676 else
4678 gcc_assert (inside_basic_block_p (head)
4679 || NOTE_P (head));
4680 gcc_assert (BLOCK_FOR_INSN (head) == bb);
4682 if (LABEL_P (head))
4684 head = NEXT_INSN (head);
4685 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (head));
4687 else
4689 if (control_flow_insn_p (head))
4691 gcc_assert (BB_END (bb) == head);
4693 if (any_uncondjump_p (head))
4694 gcc_assert (EDGE_COUNT (bb->succs) == 1
4695 && BARRIER_P (NEXT_INSN (head)));
4696 else if (any_condjump_p (head))
4697 gcc_assert (/* Usual case. */
4698 (EDGE_COUNT (bb->succs) > 1
4699 && !BARRIER_P (NEXT_INSN (head)))
4700 /* Or jump to the next instruction. */
4701 || (EDGE_COUNT (bb->succs) == 1
4702 && (BB_HEAD (EDGE_I (bb->succs, 0)->dest)
4703 == JUMP_LABEL (head))));
4705 if (BB_END (bb) == head)
4707 if (EDGE_COUNT (bb->succs) > 1)
4708 gcc_assert (control_flow_insn_p (head)
4709 || has_edge_p (bb->succs, EDGE_COMPLEX));
4710 bb = 0;
4713 head = NEXT_INSN (head);
4717 not_first = 1;
4719 while (head != next_tail);
4721 gcc_assert (bb == 0);
4724 #endif /* ENABLE_CHECKING */
4726 const struct sched_scan_info_def *sched_scan_info;
4728 /* Extend per basic block data structures. */
4729 static void
4730 extend_bb (void)
4732 if (sched_scan_info->extend_bb)
4733 sched_scan_info->extend_bb ();
4736 /* Init data for BB. */
4737 static void
4738 init_bb (basic_block bb)
4740 if (sched_scan_info->init_bb)
4741 sched_scan_info->init_bb (bb);
4744 /* Extend per insn data structures. */
4745 static void
4746 extend_insn (void)
4748 if (sched_scan_info->extend_insn)
4749 sched_scan_info->extend_insn ();
4752 /* Init data structures for INSN. */
4753 static void
4754 init_insn (rtx insn)
4756 if (sched_scan_info->init_insn)
4757 sched_scan_info->init_insn (insn);
4760 /* Init all insns in BB. */
4761 static void
4762 init_insns_in_bb (basic_block bb)
4764 rtx insn;
4766 FOR_BB_INSNS (bb, insn)
4767 init_insn (insn);
4770 /* A driver function to add a set of basic blocks (BBS),
4771 a single basic block (BB), a set of insns (INSNS) or a single insn (INSN)
4772 to the scheduling region. */
4773 void
4774 sched_scan (const struct sched_scan_info_def *ssi,
4775 bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
4777 sched_scan_info = ssi;
4779 if (bbs != NULL || bb != NULL)
4781 extend_bb ();
4783 if (bbs != NULL)
4785 unsigned i;
4786 basic_block x;
4788 for (i = 0; VEC_iterate (basic_block, bbs, i, x); i++)
4789 init_bb (x);
4792 if (bb != NULL)
4793 init_bb (bb);
4796 extend_insn ();
4798 if (bbs != NULL)
4800 unsigned i;
4801 basic_block x;
4803 for (i = 0; VEC_iterate (basic_block, bbs, i, x); i++)
4804 init_insns_in_bb (x);
4807 if (bb != NULL)
4808 init_insns_in_bb (bb);
4810 if (insns != NULL)
4812 unsigned i;
4813 rtx x;
4815 for (i = 0; VEC_iterate (rtx, insns, i, x); i++)
4816 init_insn (x);
4819 if (insn != NULL)
4820 init_insn (insn);
4824 /* Extend data structures for logical insn UID. */
4825 static void
4826 luids_extend_insn (void)
4828 int new_luids_max_uid = get_max_uid () + 1;
4830 VEC_safe_grow_cleared (int, heap, sched_luids, new_luids_max_uid);
4833 /* Initialize LUID for INSN. */
4834 static void
4835 luids_init_insn (rtx insn)
4837 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
4838 int luid;
4840 if (i >= 0)
4842 luid = sched_max_luid;
4843 sched_max_luid += i;
4845 else
4846 luid = -1;
4848 SET_INSN_LUID (insn, luid);
4851 /* Initialize luids for BBS, BB, INSNS and INSN.
4852 The hook common_sched_info->luid_for_non_insn () is used to determine
4853 if notes, labels, etc. need luids. */
4854 void
4855 sched_init_luids (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
4857 const struct sched_scan_info_def ssi =
4859 NULL, /* extend_bb */
4860 NULL, /* init_bb */
4861 luids_extend_insn, /* extend_insn */
4862 luids_init_insn /* init_insn */
4865 sched_scan (&ssi, bbs, bb, insns, insn);
4868 /* Free LUIDs. */
4869 void
4870 sched_finish_luids (void)
4872 VEC_free (int, heap, sched_luids);
4873 sched_max_luid = 1;
4876 /* Return logical uid of INSN. Helpful while debugging. */
4878 insn_luid (rtx insn)
4880 return INSN_LUID (insn);
4883 /* Extend per insn data in the target. */
4884 void
4885 sched_extend_target (void)
4887 if (targetm.sched.h_i_d_extended)
4888 targetm.sched.h_i_d_extended ();
4891 /* Extend global scheduler structures (those, that live across calls to
4892 schedule_block) to include information about just emitted INSN. */
4893 static void
4894 extend_h_i_d (void)
4896 int reserve = (get_max_uid () + 1
4897 - VEC_length (haifa_insn_data_def, h_i_d));
4898 if (reserve > 0
4899 && ! VEC_space (haifa_insn_data_def, h_i_d, reserve))
4901 VEC_safe_grow_cleared (haifa_insn_data_def, heap, h_i_d,
4902 3 * get_max_uid () / 2);
4903 sched_extend_target ();
4907 /* Initialize h_i_d entry of the INSN with default values.
4908 Values, that are not explicitly initialized here, hold zero. */
4909 static void
4910 init_h_i_d (rtx insn)
4912 if (INSN_LUID (insn) > 0)
4914 INSN_COST (insn) = -1;
4915 find_insn_reg_weight (insn);
4916 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4917 INSN_TICK (insn) = INVALID_TICK;
4918 INTER_TICK (insn) = INVALID_TICK;
4919 TODO_SPEC (insn) = HARD_DEP;
4923 /* Initialize haifa_insn_data for BBS, BB, INSNS and INSN. */
4924 void
4925 haifa_init_h_i_d (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
4927 const struct sched_scan_info_def ssi =
4929 NULL, /* extend_bb */
4930 NULL, /* init_bb */
4931 extend_h_i_d, /* extend_insn */
4932 init_h_i_d /* init_insn */
4935 sched_scan (&ssi, bbs, bb, insns, insn);
4938 /* Finalize haifa_insn_data. */
4939 void
4940 haifa_finish_h_i_d (void)
4942 VEC_free (haifa_insn_data_def, heap, h_i_d);
4945 /* Init data for the new insn INSN. */
4946 static void
4947 haifa_init_insn (rtx insn)
4949 gcc_assert (insn != NULL);
4951 sched_init_luids (NULL, NULL, NULL, insn);
4952 sched_extend_target ();
4953 sched_deps_init (false);
4954 haifa_init_h_i_d (NULL, NULL, NULL, insn);
4956 if (adding_bb_to_current_region_p)
4958 sd_init_insn (insn);
4960 /* Extend dependency caches by one element. */
4961 extend_dependency_caches (1, false);
4965 /* Init data for the new basic block BB which comes after AFTER. */
4966 static void
4967 haifa_init_only_bb (basic_block bb, basic_block after)
4969 gcc_assert (bb != NULL);
4971 sched_init_bbs ();
4973 if (common_sched_info->add_block)
4974 /* This changes only data structures of the front-end. */
4975 common_sched_info->add_block (bb, after);
4978 /* A generic version of sched_split_block (). */
4979 basic_block
4980 sched_split_block_1 (basic_block first_bb, rtx after)
4982 edge e;
4984 e = split_block (first_bb, after);
4985 gcc_assert (e->src == first_bb);
4987 /* sched_split_block emits note if *check == BB_END. Probably it
4988 is better to rip that note off. */
4990 return e->dest;
4993 /* A generic version of sched_create_empty_bb (). */
4994 basic_block
4995 sched_create_empty_bb_1 (basic_block after)
4997 return create_empty_bb (after);
5000 /* Insert PAT as an INSN into the schedule and update the necessary data
5001 structures to account for it. */
5003 sched_emit_insn (rtx pat)
5005 rtx insn = emit_insn_after (pat, last_scheduled_insn);
5006 last_scheduled_insn = insn;
5007 haifa_init_insn (insn);
5008 return insn;
5011 #endif /* INSN_SCHEDULING */