* check-init.c, decl.c, expr.c, gcj.texi, java-tree.h,
[official-gcc.git] / gcc / rtlanal.c
blob92068a1fd31a3353faf228cf31330a58c9d89871
1 /* Analyze RTL for C-Compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
40 /* Forward declarations */
41 static int global_reg_mentioned_p_1 (rtx *, void *);
42 static void set_of_1 (rtx, rtx, void *);
43 static bool covers_regno_p (rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (rtx, unsigned int);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (rtx);
47 static void parms_set (rtx, rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
50 rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
53 enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
59 enum machine_mode, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
65 /* Bit flags that specify the machine subtype we are compiling for.
66 Bits are tested using macros TARGET_... defined in the tm.h file
67 and set by `-m...' switches. Must be defined in rtlanal.c. */
69 int target_flags;
71 /* Return 1 if the value of X is unstable
72 (would be different at a different point in the program).
73 The frame pointer, arg pointer, etc. are considered stable
74 (within one function) and so is anything marked `unchanging'. */
76 int
77 rtx_unstable_p (rtx x)
79 RTX_CODE code = GET_CODE (x);
80 int i;
81 const char *fmt;
83 switch (code)
85 case MEM:
86 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
88 case CONST:
89 case CONST_INT:
90 case CONST_DOUBLE:
91 case CONST_VECTOR:
92 case SYMBOL_REF:
93 case LABEL_REF:
94 return 0;
96 case REG:
97 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
98 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
99 /* The arg pointer varies if it is not a fixed register. */
100 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
101 return 0;
102 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
103 /* ??? When call-clobbered, the value is stable modulo the restore
104 that must happen after a call. This currently screws up local-alloc
105 into believing that the restore is not needed. */
106 if (x == pic_offset_table_rtx)
107 return 0;
108 #endif
109 return 1;
111 case ASM_OPERANDS:
112 if (MEM_VOLATILE_P (x))
113 return 1;
115 /* Fall through. */
117 default:
118 break;
121 fmt = GET_RTX_FORMAT (code);
122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
123 if (fmt[i] == 'e')
125 if (rtx_unstable_p (XEXP (x, i)))
126 return 1;
128 else if (fmt[i] == 'E')
130 int j;
131 for (j = 0; j < XVECLEN (x, i); j++)
132 if (rtx_unstable_p (XVECEXP (x, i, j)))
133 return 1;
136 return 0;
139 /* Return 1 if X has a value that can vary even between two
140 executions of the program. 0 means X can be compared reliably
141 against certain constants or near-constants.
142 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
143 zero, we are slightly more conservative.
144 The frame pointer and the arg pointer are considered constant. */
147 rtx_varies_p (rtx x, int for_alias)
149 RTX_CODE code;
150 int i;
151 const char *fmt;
153 if (!x)
154 return 0;
156 code = GET_CODE (x);
157 switch (code)
159 case MEM:
160 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
162 case CONST:
163 case CONST_INT:
164 case CONST_DOUBLE:
165 case CONST_VECTOR:
166 case SYMBOL_REF:
167 case LABEL_REF:
168 return 0;
170 case REG:
171 /* Note that we have to test for the actual rtx used for the frame
172 and arg pointers and not just the register number in case we have
173 eliminated the frame and/or arg pointer and are using it
174 for pseudos. */
175 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
176 /* The arg pointer varies if it is not a fixed register. */
177 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
178 return 0;
179 if (x == pic_offset_table_rtx
180 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
181 /* ??? When call-clobbered, the value is stable modulo the restore
182 that must happen after a call. This currently screws up
183 local-alloc into believing that the restore is not needed, so we
184 must return 0 only if we are called from alias analysis. */
185 && for_alias
186 #endif
188 return 0;
189 return 1;
191 case LO_SUM:
192 /* The operand 0 of a LO_SUM is considered constant
193 (in fact it is related specifically to operand 1)
194 during alias analysis. */
195 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
196 || rtx_varies_p (XEXP (x, 1), for_alias);
198 case ASM_OPERANDS:
199 if (MEM_VOLATILE_P (x))
200 return 1;
202 /* Fall through. */
204 default:
205 break;
208 fmt = GET_RTX_FORMAT (code);
209 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
210 if (fmt[i] == 'e')
212 if (rtx_varies_p (XEXP (x, i), for_alias))
213 return 1;
215 else if (fmt[i] == 'E')
217 int j;
218 for (j = 0; j < XVECLEN (x, i); j++)
219 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
220 return 1;
223 return 0;
226 /* Return 0 if the use of X as an address in a MEM can cause a trap. */
229 rtx_addr_can_trap_p (rtx x)
231 enum rtx_code code = GET_CODE (x);
233 switch (code)
235 case SYMBOL_REF:
236 return SYMBOL_REF_WEAK (x);
238 case LABEL_REF:
239 return 0;
241 case REG:
242 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
243 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
244 || x == stack_pointer_rtx
245 /* The arg pointer varies if it is not a fixed register. */
246 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
247 return 0;
248 /* All of the virtual frame registers are stack references. */
249 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
250 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
251 return 0;
252 return 1;
254 case CONST:
255 return rtx_addr_can_trap_p (XEXP (x, 0));
257 case PLUS:
258 /* An address is assumed not to trap if it is an address that can't
259 trap plus a constant integer or it is the pic register plus a
260 constant. */
261 return ! ((! rtx_addr_can_trap_p (XEXP (x, 0))
262 && GET_CODE (XEXP (x, 1)) == CONST_INT)
263 || (XEXP (x, 0) == pic_offset_table_rtx
264 && CONSTANT_P (XEXP (x, 1))));
266 case LO_SUM:
267 case PRE_MODIFY:
268 return rtx_addr_can_trap_p (XEXP (x, 1));
270 case PRE_DEC:
271 case PRE_INC:
272 case POST_DEC:
273 case POST_INC:
274 case POST_MODIFY:
275 return rtx_addr_can_trap_p (XEXP (x, 0));
277 default:
278 break;
281 /* If it isn't one of the case above, it can cause a trap. */
282 return 1;
285 /* Return true if X is an address that is known to not be zero. */
287 bool
288 nonzero_address_p (rtx x)
290 enum rtx_code code = GET_CODE (x);
292 switch (code)
294 case SYMBOL_REF:
295 return !SYMBOL_REF_WEAK (x);
297 case LABEL_REF:
298 return true;
300 case REG:
301 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
302 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
303 || x == stack_pointer_rtx
304 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
305 return true;
306 /* All of the virtual frame registers are stack references. */
307 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
308 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
309 return true;
310 return false;
312 case CONST:
313 return nonzero_address_p (XEXP (x, 0));
315 case PLUS:
316 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
318 /* Pointers aren't allowed to wrap. If we've got a register
319 that is known to be a pointer, and a positive offset, then
320 the composite can't be zero. */
321 if (INTVAL (XEXP (x, 1)) > 0
322 && REG_P (XEXP (x, 0))
323 && REG_POINTER (XEXP (x, 0)))
324 return true;
326 return nonzero_address_p (XEXP (x, 0));
328 /* Handle PIC references. */
329 else if (XEXP (x, 0) == pic_offset_table_rtx
330 && CONSTANT_P (XEXP (x, 1)))
331 return true;
332 return false;
334 case PRE_MODIFY:
335 /* Similar to the above; allow positive offsets. Further, since
336 auto-inc is only allowed in memories, the register must be a
337 pointer. */
338 if (GET_CODE (XEXP (x, 1)) == CONST_INT
339 && INTVAL (XEXP (x, 1)) > 0)
340 return true;
341 return nonzero_address_p (XEXP (x, 0));
343 case PRE_INC:
344 /* Similarly. Further, the offset is always positive. */
345 return true;
347 case PRE_DEC:
348 case POST_DEC:
349 case POST_INC:
350 case POST_MODIFY:
351 return nonzero_address_p (XEXP (x, 0));
353 case LO_SUM:
354 return nonzero_address_p (XEXP (x, 1));
356 default:
357 break;
360 /* If it isn't one of the case above, might be zero. */
361 return false;
364 /* Return 1 if X refers to a memory location whose address
365 cannot be compared reliably with constant addresses,
366 or if X refers to a BLKmode memory object.
367 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
368 zero, we are slightly more conservative. */
371 rtx_addr_varies_p (rtx x, int for_alias)
373 enum rtx_code code;
374 int i;
375 const char *fmt;
377 if (x == 0)
378 return 0;
380 code = GET_CODE (x);
381 if (code == MEM)
382 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
384 fmt = GET_RTX_FORMAT (code);
385 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
386 if (fmt[i] == 'e')
388 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
389 return 1;
391 else if (fmt[i] == 'E')
393 int j;
394 for (j = 0; j < XVECLEN (x, i); j++)
395 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
396 return 1;
398 return 0;
401 /* Return the value of the integer term in X, if one is apparent;
402 otherwise return 0.
403 Only obvious integer terms are detected.
404 This is used in cse.c with the `related_value' field. */
406 HOST_WIDE_INT
407 get_integer_term (rtx x)
409 if (GET_CODE (x) == CONST)
410 x = XEXP (x, 0);
412 if (GET_CODE (x) == MINUS
413 && GET_CODE (XEXP (x, 1)) == CONST_INT)
414 return - INTVAL (XEXP (x, 1));
415 if (GET_CODE (x) == PLUS
416 && GET_CODE (XEXP (x, 1)) == CONST_INT)
417 return INTVAL (XEXP (x, 1));
418 return 0;
421 /* If X is a constant, return the value sans apparent integer term;
422 otherwise return 0.
423 Only obvious integer terms are detected. */
426 get_related_value (rtx x)
428 if (GET_CODE (x) != CONST)
429 return 0;
430 x = XEXP (x, 0);
431 if (GET_CODE (x) == PLUS
432 && GET_CODE (XEXP (x, 1)) == CONST_INT)
433 return XEXP (x, 0);
434 else if (GET_CODE (x) == MINUS
435 && GET_CODE (XEXP (x, 1)) == CONST_INT)
436 return XEXP (x, 0);
437 return 0;
440 /* A subroutine of global_reg_mentioned_p, returns 1 if *LOC mentions
441 a global register. */
443 static int
444 global_reg_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
446 int regno;
447 rtx x = *loc;
449 if (! x)
450 return 0;
452 switch (GET_CODE (x))
454 case SUBREG:
455 if (REG_P (SUBREG_REG (x)))
457 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
458 && global_regs[subreg_regno (x)])
459 return 1;
460 return 0;
462 break;
464 case REG:
465 regno = REGNO (x);
466 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
467 return 1;
468 return 0;
470 case SCRATCH:
471 case PC:
472 case CC0:
473 case CONST_INT:
474 case CONST_DOUBLE:
475 case CONST:
476 case LABEL_REF:
477 return 0;
479 case CALL:
480 /* A non-constant call might use a global register. */
481 return 1;
483 default:
484 break;
487 return 0;
490 /* Returns nonzero if X mentions a global register. */
493 global_reg_mentioned_p (rtx x)
495 if (INSN_P (x))
497 if (CALL_P (x))
499 if (! CONST_OR_PURE_CALL_P (x))
500 return 1;
501 x = CALL_INSN_FUNCTION_USAGE (x);
502 if (x == 0)
503 return 0;
505 else
506 x = PATTERN (x);
509 return for_each_rtx (&x, global_reg_mentioned_p_1, NULL);
512 /* Return the number of places FIND appears within X. If COUNT_DEST is
513 zero, we do not count occurrences inside the destination of a SET. */
516 count_occurrences (rtx x, rtx find, int count_dest)
518 int i, j;
519 enum rtx_code code;
520 const char *format_ptr;
521 int count;
523 if (x == find)
524 return 1;
526 code = GET_CODE (x);
528 switch (code)
530 case REG:
531 case CONST_INT:
532 case CONST_DOUBLE:
533 case CONST_VECTOR:
534 case SYMBOL_REF:
535 case CODE_LABEL:
536 case PC:
537 case CC0:
538 return 0;
540 case MEM:
541 if (MEM_P (find) && rtx_equal_p (x, find))
542 return 1;
543 break;
545 case SET:
546 if (SET_DEST (x) == find && ! count_dest)
547 return count_occurrences (SET_SRC (x), find, count_dest);
548 break;
550 default:
551 break;
554 format_ptr = GET_RTX_FORMAT (code);
555 count = 0;
557 for (i = 0; i < GET_RTX_LENGTH (code); i++)
559 switch (*format_ptr++)
561 case 'e':
562 count += count_occurrences (XEXP (x, i), find, count_dest);
563 break;
565 case 'E':
566 for (j = 0; j < XVECLEN (x, i); j++)
567 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
568 break;
571 return count;
574 /* Nonzero if register REG appears somewhere within IN.
575 Also works if REG is not a register; in this case it checks
576 for a subexpression of IN that is Lisp "equal" to REG. */
579 reg_mentioned_p (rtx reg, rtx in)
581 const char *fmt;
582 int i;
583 enum rtx_code code;
585 if (in == 0)
586 return 0;
588 if (reg == in)
589 return 1;
591 if (GET_CODE (in) == LABEL_REF)
592 return reg == XEXP (in, 0);
594 code = GET_CODE (in);
596 switch (code)
598 /* Compare registers by number. */
599 case REG:
600 return REG_P (reg) && REGNO (in) == REGNO (reg);
602 /* These codes have no constituent expressions
603 and are unique. */
604 case SCRATCH:
605 case CC0:
606 case PC:
607 return 0;
609 case CONST_INT:
610 case CONST_VECTOR:
611 case CONST_DOUBLE:
612 /* These are kept unique for a given value. */
613 return 0;
615 default:
616 break;
619 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
620 return 1;
622 fmt = GET_RTX_FORMAT (code);
624 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
626 if (fmt[i] == 'E')
628 int j;
629 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
630 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
631 return 1;
633 else if (fmt[i] == 'e'
634 && reg_mentioned_p (reg, XEXP (in, i)))
635 return 1;
637 return 0;
640 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
641 no CODE_LABEL insn. */
644 no_labels_between_p (rtx beg, rtx end)
646 rtx p;
647 if (beg == end)
648 return 0;
649 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
650 if (LABEL_P (p))
651 return 0;
652 return 1;
655 /* Nonzero if register REG is used in an insn between
656 FROM_INSN and TO_INSN (exclusive of those two). */
659 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
661 rtx insn;
663 if (from_insn == to_insn)
664 return 0;
666 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
667 if (INSN_P (insn)
668 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
669 || (CALL_P (insn)
670 && (find_reg_fusage (insn, USE, reg)
671 || find_reg_fusage (insn, CLOBBER, reg)))))
672 return 1;
673 return 0;
676 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
677 is entirely replaced by a new value and the only use is as a SET_DEST,
678 we do not consider it a reference. */
681 reg_referenced_p (rtx x, rtx body)
683 int i;
685 switch (GET_CODE (body))
687 case SET:
688 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
689 return 1;
691 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
692 of a REG that occupies all of the REG, the insn references X if
693 it is mentioned in the destination. */
694 if (GET_CODE (SET_DEST (body)) != CC0
695 && GET_CODE (SET_DEST (body)) != PC
696 && !REG_P (SET_DEST (body))
697 && ! (GET_CODE (SET_DEST (body)) == SUBREG
698 && REG_P (SUBREG_REG (SET_DEST (body)))
699 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
700 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
701 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
702 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
703 && reg_overlap_mentioned_p (x, SET_DEST (body)))
704 return 1;
705 return 0;
707 case ASM_OPERANDS:
708 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
709 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
710 return 1;
711 return 0;
713 case CALL:
714 case USE:
715 case IF_THEN_ELSE:
716 return reg_overlap_mentioned_p (x, body);
718 case TRAP_IF:
719 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
721 case PREFETCH:
722 return reg_overlap_mentioned_p (x, XEXP (body, 0));
724 case UNSPEC:
725 case UNSPEC_VOLATILE:
726 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
727 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
728 return 1;
729 return 0;
731 case PARALLEL:
732 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
733 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
734 return 1;
735 return 0;
737 case CLOBBER:
738 if (MEM_P (XEXP (body, 0)))
739 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
740 return 1;
741 return 0;
743 case COND_EXEC:
744 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
745 return 1;
746 return reg_referenced_p (x, COND_EXEC_CODE (body));
748 default:
749 return 0;
753 /* Nonzero if register REG is set or clobbered in an insn between
754 FROM_INSN and TO_INSN (exclusive of those two). */
757 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
759 rtx insn;
761 if (from_insn == to_insn)
762 return 0;
764 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
765 if (INSN_P (insn) && reg_set_p (reg, insn))
766 return 1;
767 return 0;
770 /* Internals of reg_set_between_p. */
772 reg_set_p (rtx reg, rtx insn)
774 /* We can be passed an insn or part of one. If we are passed an insn,
775 check if a side-effect of the insn clobbers REG. */
776 if (INSN_P (insn)
777 && (FIND_REG_INC_NOTE (insn, reg)
778 || (CALL_P (insn)
779 && ((REG_P (reg)
780 && REGNO (reg) < FIRST_PSEUDO_REGISTER
781 && TEST_HARD_REG_BIT (regs_invalidated_by_call,
782 REGNO (reg)))
783 || MEM_P (reg)
784 || find_reg_fusage (insn, CLOBBER, reg)))))
785 return 1;
787 return set_of (reg, insn) != NULL_RTX;
790 /* Similar to reg_set_between_p, but check all registers in X. Return 0
791 only if none of them are modified between START and END. Return 1 if
792 X contains a MEM; this routine does usememory aliasing. */
795 modified_between_p (rtx x, rtx start, rtx end)
797 enum rtx_code code = GET_CODE (x);
798 const char *fmt;
799 int i, j;
800 rtx insn;
802 if (start == end)
803 return 0;
805 switch (code)
807 case CONST_INT:
808 case CONST_DOUBLE:
809 case CONST_VECTOR:
810 case CONST:
811 case SYMBOL_REF:
812 case LABEL_REF:
813 return 0;
815 case PC:
816 case CC0:
817 return 1;
819 case MEM:
820 if (modified_between_p (XEXP (x, 0), start, end))
821 return 1;
822 if (MEM_READONLY_P (x))
823 return 0;
824 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
825 if (memory_modified_in_insn_p (x, insn))
826 return 1;
827 return 0;
828 break;
830 case REG:
831 return reg_set_between_p (x, start, end);
833 default:
834 break;
837 fmt = GET_RTX_FORMAT (code);
838 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
840 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
841 return 1;
843 else if (fmt[i] == 'E')
844 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
845 if (modified_between_p (XVECEXP (x, i, j), start, end))
846 return 1;
849 return 0;
852 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
853 of them are modified in INSN. Return 1 if X contains a MEM; this routine
854 does use memory aliasing. */
857 modified_in_p (rtx x, rtx insn)
859 enum rtx_code code = GET_CODE (x);
860 const char *fmt;
861 int i, j;
863 switch (code)
865 case CONST_INT:
866 case CONST_DOUBLE:
867 case CONST_VECTOR:
868 case CONST:
869 case SYMBOL_REF:
870 case LABEL_REF:
871 return 0;
873 case PC:
874 case CC0:
875 return 1;
877 case MEM:
878 if (modified_in_p (XEXP (x, 0), insn))
879 return 1;
880 if (MEM_READONLY_P (x))
881 return 0;
882 if (memory_modified_in_insn_p (x, insn))
883 return 1;
884 return 0;
885 break;
887 case REG:
888 return reg_set_p (x, insn);
890 default:
891 break;
894 fmt = GET_RTX_FORMAT (code);
895 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
897 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
898 return 1;
900 else if (fmt[i] == 'E')
901 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
902 if (modified_in_p (XVECEXP (x, i, j), insn))
903 return 1;
906 return 0;
909 /* Helper function for set_of. */
910 struct set_of_data
912 rtx found;
913 rtx pat;
916 static void
917 set_of_1 (rtx x, rtx pat, void *data1)
919 struct set_of_data *data = (struct set_of_data *) (data1);
920 if (rtx_equal_p (x, data->pat)
921 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
922 data->found = pat;
925 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
926 (either directly or via STRICT_LOW_PART and similar modifiers). */
928 set_of (rtx pat, rtx insn)
930 struct set_of_data data;
931 data.found = NULL_RTX;
932 data.pat = pat;
933 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
934 return data.found;
937 /* Given an INSN, return a SET expression if this insn has only a single SET.
938 It may also have CLOBBERs, USEs, or SET whose output
939 will not be used, which we ignore. */
942 single_set_2 (rtx insn, rtx pat)
944 rtx set = NULL;
945 int set_verified = 1;
946 int i;
948 if (GET_CODE (pat) == PARALLEL)
950 for (i = 0; i < XVECLEN (pat, 0); i++)
952 rtx sub = XVECEXP (pat, 0, i);
953 switch (GET_CODE (sub))
955 case USE:
956 case CLOBBER:
957 break;
959 case SET:
960 /* We can consider insns having multiple sets, where all
961 but one are dead as single set insns. In common case
962 only single set is present in the pattern so we want
963 to avoid checking for REG_UNUSED notes unless necessary.
965 When we reach set first time, we just expect this is
966 the single set we are looking for and only when more
967 sets are found in the insn, we check them. */
968 if (!set_verified)
970 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
971 && !side_effects_p (set))
972 set = NULL;
973 else
974 set_verified = 1;
976 if (!set)
977 set = sub, set_verified = 0;
978 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
979 || side_effects_p (sub))
980 return NULL_RTX;
981 break;
983 default:
984 return NULL_RTX;
988 return set;
991 /* Given an INSN, return nonzero if it has more than one SET, else return
992 zero. */
995 multiple_sets (rtx insn)
997 int found;
998 int i;
1000 /* INSN must be an insn. */
1001 if (! INSN_P (insn))
1002 return 0;
1004 /* Only a PARALLEL can have multiple SETs. */
1005 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1007 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1008 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1010 /* If we have already found a SET, then return now. */
1011 if (found)
1012 return 1;
1013 else
1014 found = 1;
1018 /* Either zero or one SET. */
1019 return 0;
1022 /* Return nonzero if the destination of SET equals the source
1023 and there are no side effects. */
1026 set_noop_p (rtx set)
1028 rtx src = SET_SRC (set);
1029 rtx dst = SET_DEST (set);
1031 if (dst == pc_rtx && src == pc_rtx)
1032 return 1;
1034 if (MEM_P (dst) && MEM_P (src))
1035 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1037 if (GET_CODE (dst) == ZERO_EXTRACT)
1038 return rtx_equal_p (XEXP (dst, 0), src)
1039 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1040 && !side_effects_p (src);
1042 if (GET_CODE (dst) == STRICT_LOW_PART)
1043 dst = XEXP (dst, 0);
1045 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1047 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1048 return 0;
1049 src = SUBREG_REG (src);
1050 dst = SUBREG_REG (dst);
1053 return (REG_P (src) && REG_P (dst)
1054 && REGNO (src) == REGNO (dst));
1057 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1058 value to itself. */
1061 noop_move_p (rtx insn)
1063 rtx pat = PATTERN (insn);
1065 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1066 return 1;
1068 /* Insns carrying these notes are useful later on. */
1069 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1070 return 0;
1072 /* For now treat an insn with a REG_RETVAL note as a
1073 a special insn which should not be considered a no-op. */
1074 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1075 return 0;
1077 if (GET_CODE (pat) == SET && set_noop_p (pat))
1078 return 1;
1080 if (GET_CODE (pat) == PARALLEL)
1082 int i;
1083 /* If nothing but SETs of registers to themselves,
1084 this insn can also be deleted. */
1085 for (i = 0; i < XVECLEN (pat, 0); i++)
1087 rtx tem = XVECEXP (pat, 0, i);
1089 if (GET_CODE (tem) == USE
1090 || GET_CODE (tem) == CLOBBER)
1091 continue;
1093 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1094 return 0;
1097 return 1;
1099 return 0;
1103 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1104 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1105 If the object was modified, if we hit a partial assignment to X, or hit a
1106 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1107 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1108 be the src. */
1111 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1113 rtx p;
1115 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1116 p = PREV_INSN (p))
1117 if (INSN_P (p))
1119 rtx set = single_set (p);
1120 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1122 if (set && rtx_equal_p (x, SET_DEST (set)))
1124 rtx src = SET_SRC (set);
1126 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1127 src = XEXP (note, 0);
1129 if ((valid_to == NULL_RTX
1130 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1131 /* Reject hard registers because we don't usually want
1132 to use them; we'd rather use a pseudo. */
1133 && (! (REG_P (src)
1134 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1136 *pinsn = p;
1137 return src;
1141 /* If set in non-simple way, we don't have a value. */
1142 if (reg_set_p (x, p))
1143 break;
1146 return x;
1149 /* Return nonzero if register in range [REGNO, ENDREGNO)
1150 appears either explicitly or implicitly in X
1151 other than being stored into.
1153 References contained within the substructure at LOC do not count.
1154 LOC may be zero, meaning don't ignore anything. */
1157 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1158 rtx *loc)
1160 int i;
1161 unsigned int x_regno;
1162 RTX_CODE code;
1163 const char *fmt;
1165 repeat:
1166 /* The contents of a REG_NONNEG note is always zero, so we must come here
1167 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1168 if (x == 0)
1169 return 0;
1171 code = GET_CODE (x);
1173 switch (code)
1175 case REG:
1176 x_regno = REGNO (x);
1178 /* If we modifying the stack, frame, or argument pointer, it will
1179 clobber a virtual register. In fact, we could be more precise,
1180 but it isn't worth it. */
1181 if ((x_regno == STACK_POINTER_REGNUM
1182 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1183 || x_regno == ARG_POINTER_REGNUM
1184 #endif
1185 || x_regno == FRAME_POINTER_REGNUM)
1186 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1187 return 1;
1189 return (endregno > x_regno
1190 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1191 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1192 : 1));
1194 case SUBREG:
1195 /* If this is a SUBREG of a hard reg, we can see exactly which
1196 registers are being modified. Otherwise, handle normally. */
1197 if (REG_P (SUBREG_REG (x))
1198 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1200 unsigned int inner_regno = subreg_regno (x);
1201 unsigned int inner_endregno
1202 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1203 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1205 return endregno > inner_regno && regno < inner_endregno;
1207 break;
1209 case CLOBBER:
1210 case SET:
1211 if (&SET_DEST (x) != loc
1212 /* Note setting a SUBREG counts as referring to the REG it is in for
1213 a pseudo but not for hard registers since we can
1214 treat each word individually. */
1215 && ((GET_CODE (SET_DEST (x)) == SUBREG
1216 && loc != &SUBREG_REG (SET_DEST (x))
1217 && REG_P (SUBREG_REG (SET_DEST (x)))
1218 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1219 && refers_to_regno_p (regno, endregno,
1220 SUBREG_REG (SET_DEST (x)), loc))
1221 || (!REG_P (SET_DEST (x))
1222 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1223 return 1;
1225 if (code == CLOBBER || loc == &SET_SRC (x))
1226 return 0;
1227 x = SET_SRC (x);
1228 goto repeat;
1230 default:
1231 break;
1234 /* X does not match, so try its subexpressions. */
1236 fmt = GET_RTX_FORMAT (code);
1237 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1239 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1241 if (i == 0)
1243 x = XEXP (x, 0);
1244 goto repeat;
1246 else
1247 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1248 return 1;
1250 else if (fmt[i] == 'E')
1252 int j;
1253 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1254 if (loc != &XVECEXP (x, i, j)
1255 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1256 return 1;
1259 return 0;
1262 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1263 we check if any register number in X conflicts with the relevant register
1264 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1265 contains a MEM (we don't bother checking for memory addresses that can't
1266 conflict because we expect this to be a rare case. */
1269 reg_overlap_mentioned_p (rtx x, rtx in)
1271 unsigned int regno, endregno;
1273 /* If either argument is a constant, then modifying X can not
1274 affect IN. Here we look at IN, we can profitably combine
1275 CONSTANT_P (x) with the switch statement below. */
1276 if (CONSTANT_P (in))
1277 return 0;
1279 recurse:
1280 switch (GET_CODE (x))
1282 case STRICT_LOW_PART:
1283 case ZERO_EXTRACT:
1284 case SIGN_EXTRACT:
1285 /* Overly conservative. */
1286 x = XEXP (x, 0);
1287 goto recurse;
1289 case SUBREG:
1290 regno = REGNO (SUBREG_REG (x));
1291 if (regno < FIRST_PSEUDO_REGISTER)
1292 regno = subreg_regno (x);
1293 goto do_reg;
1295 case REG:
1296 regno = REGNO (x);
1297 do_reg:
1298 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1299 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1300 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1302 case MEM:
1304 const char *fmt;
1305 int i;
1307 if (MEM_P (in))
1308 return 1;
1310 fmt = GET_RTX_FORMAT (GET_CODE (in));
1311 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1312 if (fmt[i] == 'e')
1314 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1315 return 1;
1317 else if (fmt[i] == 'E')
1319 int j;
1320 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1321 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1322 return 1;
1325 return 0;
1328 case SCRATCH:
1329 case PC:
1330 case CC0:
1331 return reg_mentioned_p (x, in);
1333 case PARALLEL:
1335 int i;
1337 /* If any register in here refers to it we return true. */
1338 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1339 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1340 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1341 return 1;
1342 return 0;
1345 default:
1346 gcc_assert (CONSTANT_P (x));
1347 return 0;
1351 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1352 (X would be the pattern of an insn).
1353 FUN receives two arguments:
1354 the REG, MEM, CC0 or PC being stored in or clobbered,
1355 the SET or CLOBBER rtx that does the store.
1357 If the item being stored in or clobbered is a SUBREG of a hard register,
1358 the SUBREG will be passed. */
1360 void
1361 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1363 int i;
1365 if (GET_CODE (x) == COND_EXEC)
1366 x = COND_EXEC_CODE (x);
1368 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1370 rtx dest = SET_DEST (x);
1372 while ((GET_CODE (dest) == SUBREG
1373 && (!REG_P (SUBREG_REG (dest))
1374 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1375 || GET_CODE (dest) == ZERO_EXTRACT
1376 || GET_CODE (dest) == STRICT_LOW_PART)
1377 dest = XEXP (dest, 0);
1379 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1380 each of whose first operand is a register. */
1381 if (GET_CODE (dest) == PARALLEL)
1383 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1384 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1385 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1387 else
1388 (*fun) (dest, x, data);
1391 else if (GET_CODE (x) == PARALLEL)
1392 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1393 note_stores (XVECEXP (x, 0, i), fun, data);
1396 /* Like notes_stores, but call FUN for each expression that is being
1397 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1398 FUN for each expression, not any interior subexpressions. FUN receives a
1399 pointer to the expression and the DATA passed to this function.
1401 Note that this is not quite the same test as that done in reg_referenced_p
1402 since that considers something as being referenced if it is being
1403 partially set, while we do not. */
1405 void
1406 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1408 rtx body = *pbody;
1409 int i;
1411 switch (GET_CODE (body))
1413 case COND_EXEC:
1414 (*fun) (&COND_EXEC_TEST (body), data);
1415 note_uses (&COND_EXEC_CODE (body), fun, data);
1416 return;
1418 case PARALLEL:
1419 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1420 note_uses (&XVECEXP (body, 0, i), fun, data);
1421 return;
1423 case USE:
1424 (*fun) (&XEXP (body, 0), data);
1425 return;
1427 case ASM_OPERANDS:
1428 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1429 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1430 return;
1432 case TRAP_IF:
1433 (*fun) (&TRAP_CONDITION (body), data);
1434 return;
1436 case PREFETCH:
1437 (*fun) (&XEXP (body, 0), data);
1438 return;
1440 case UNSPEC:
1441 case UNSPEC_VOLATILE:
1442 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1443 (*fun) (&XVECEXP (body, 0, i), data);
1444 return;
1446 case CLOBBER:
1447 if (MEM_P (XEXP (body, 0)))
1448 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1449 return;
1451 case SET:
1453 rtx dest = SET_DEST (body);
1455 /* For sets we replace everything in source plus registers in memory
1456 expression in store and operands of a ZERO_EXTRACT. */
1457 (*fun) (&SET_SRC (body), data);
1459 if (GET_CODE (dest) == ZERO_EXTRACT)
1461 (*fun) (&XEXP (dest, 1), data);
1462 (*fun) (&XEXP (dest, 2), data);
1465 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1466 dest = XEXP (dest, 0);
1468 if (MEM_P (dest))
1469 (*fun) (&XEXP (dest, 0), data);
1471 return;
1473 default:
1474 /* All the other possibilities never store. */
1475 (*fun) (pbody, data);
1476 return;
1480 /* Return nonzero if X's old contents don't survive after INSN.
1481 This will be true if X is (cc0) or if X is a register and
1482 X dies in INSN or because INSN entirely sets X.
1484 "Entirely set" means set directly and not through a SUBREG, or
1485 ZERO_EXTRACT, so no trace of the old contents remains.
1486 Likewise, REG_INC does not count.
1488 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1489 but for this use that makes no difference, since regs don't overlap
1490 during their lifetimes. Therefore, this function may be used
1491 at any time after deaths have been computed (in flow.c).
1493 If REG is a hard reg that occupies multiple machine registers, this
1494 function will only return 1 if each of those registers will be replaced
1495 by INSN. */
1498 dead_or_set_p (rtx insn, rtx x)
1500 unsigned int regno, last_regno;
1501 unsigned int i;
1503 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1504 if (GET_CODE (x) == CC0)
1505 return 1;
1507 gcc_assert (REG_P (x));
1509 regno = REGNO (x);
1510 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1511 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1513 for (i = regno; i <= last_regno; i++)
1514 if (! dead_or_set_regno_p (insn, i))
1515 return 0;
1517 return 1;
1520 /* Return TRUE iff DEST is a register or subreg of a register and
1521 doesn't change the number of words of the inner register, and any
1522 part of the register is TEST_REGNO. */
1524 static bool
1525 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1527 unsigned int regno, endregno;
1529 if (GET_CODE (dest) == SUBREG
1530 && (((GET_MODE_SIZE (GET_MODE (dest))
1531 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1532 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1533 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1534 dest = SUBREG_REG (dest);
1536 if (!REG_P (dest))
1537 return false;
1539 regno = REGNO (dest);
1540 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1541 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1542 return (test_regno >= regno && test_regno < endregno);
1545 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1546 any member matches the covers_regno_no_parallel_p criteria. */
1548 static bool
1549 covers_regno_p (rtx dest, unsigned int test_regno)
1551 if (GET_CODE (dest) == PARALLEL)
1553 /* Some targets place small structures in registers for return
1554 values of functions, and those registers are wrapped in
1555 PARALLELs that we may see as the destination of a SET. */
1556 int i;
1558 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1560 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1561 if (inner != NULL_RTX
1562 && covers_regno_no_parallel_p (inner, test_regno))
1563 return true;
1566 return false;
1568 else
1569 return covers_regno_no_parallel_p (dest, test_regno);
1572 /* Utility function for dead_or_set_p to check an individual register. Also
1573 called from flow.c. */
1576 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1578 rtx pattern;
1580 /* See if there is a death note for something that includes TEST_REGNO. */
1581 if (find_regno_note (insn, REG_DEAD, test_regno))
1582 return 1;
1584 if (CALL_P (insn)
1585 && find_regno_fusage (insn, CLOBBER, test_regno))
1586 return 1;
1588 pattern = PATTERN (insn);
1590 if (GET_CODE (pattern) == COND_EXEC)
1591 pattern = COND_EXEC_CODE (pattern);
1593 if (GET_CODE (pattern) == SET)
1594 return covers_regno_p (SET_DEST (pattern), test_regno);
1595 else if (GET_CODE (pattern) == PARALLEL)
1597 int i;
1599 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1601 rtx body = XVECEXP (pattern, 0, i);
1603 if (GET_CODE (body) == COND_EXEC)
1604 body = COND_EXEC_CODE (body);
1606 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1607 && covers_regno_p (SET_DEST (body), test_regno))
1608 return 1;
1612 return 0;
1615 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1616 If DATUM is nonzero, look for one whose datum is DATUM. */
1619 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1621 rtx link;
1623 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1624 if (! INSN_P (insn))
1625 return 0;
1626 if (datum == 0)
1628 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1629 if (REG_NOTE_KIND (link) == kind)
1630 return link;
1631 return 0;
1634 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1635 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1636 return link;
1637 return 0;
1640 /* Return the reg-note of kind KIND in insn INSN which applies to register
1641 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1642 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1643 it might be the case that the note overlaps REGNO. */
1646 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1648 rtx link;
1650 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1651 if (! INSN_P (insn))
1652 return 0;
1654 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1655 if (REG_NOTE_KIND (link) == kind
1656 /* Verify that it is a register, so that scratch and MEM won't cause a
1657 problem here. */
1658 && REG_P (XEXP (link, 0))
1659 && REGNO (XEXP (link, 0)) <= regno
1660 && ((REGNO (XEXP (link, 0))
1661 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1662 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1663 [GET_MODE (XEXP (link, 0))]))
1664 > regno))
1665 return link;
1666 return 0;
1669 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1670 has such a note. */
1673 find_reg_equal_equiv_note (rtx insn)
1675 rtx link;
1677 if (!INSN_P (insn))
1678 return 0;
1679 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1680 if (REG_NOTE_KIND (link) == REG_EQUAL
1681 || REG_NOTE_KIND (link) == REG_EQUIV)
1683 if (single_set (insn) == 0)
1684 return 0;
1685 return link;
1687 return NULL;
1690 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1691 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1694 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1696 /* If it's not a CALL_INSN, it can't possibly have a
1697 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1698 if (!CALL_P (insn))
1699 return 0;
1701 gcc_assert (datum);
1703 if (!REG_P (datum))
1705 rtx link;
1707 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1708 link;
1709 link = XEXP (link, 1))
1710 if (GET_CODE (XEXP (link, 0)) == code
1711 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1712 return 1;
1714 else
1716 unsigned int regno = REGNO (datum);
1718 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1719 to pseudo registers, so don't bother checking. */
1721 if (regno < FIRST_PSEUDO_REGISTER)
1723 unsigned int end_regno
1724 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1725 unsigned int i;
1727 for (i = regno; i < end_regno; i++)
1728 if (find_regno_fusage (insn, code, i))
1729 return 1;
1733 return 0;
1736 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1737 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1740 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1742 rtx link;
1744 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1745 to pseudo registers, so don't bother checking. */
1747 if (regno >= FIRST_PSEUDO_REGISTER
1748 || !CALL_P (insn) )
1749 return 0;
1751 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1753 unsigned int regnote;
1754 rtx op, reg;
1756 if (GET_CODE (op = XEXP (link, 0)) == code
1757 && REG_P (reg = XEXP (op, 0))
1758 && (regnote = REGNO (reg)) <= regno
1759 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1760 return 1;
1763 return 0;
1766 /* Return true if INSN is a call to a pure function. */
1769 pure_call_p (rtx insn)
1771 rtx link;
1773 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1774 return 0;
1776 /* Look for the note that differentiates const and pure functions. */
1777 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1779 rtx u, m;
1781 if (GET_CODE (u = XEXP (link, 0)) == USE
1782 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1783 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1784 return 1;
1787 return 0;
1790 /* Remove register note NOTE from the REG_NOTES of INSN. */
1792 void
1793 remove_note (rtx insn, rtx note)
1795 rtx link;
1797 if (note == NULL_RTX)
1798 return;
1800 if (REG_NOTES (insn) == note)
1802 REG_NOTES (insn) = XEXP (note, 1);
1803 return;
1806 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1807 if (XEXP (link, 1) == note)
1809 XEXP (link, 1) = XEXP (note, 1);
1810 return;
1813 gcc_unreachable ();
1816 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1817 return 1 if it is found. A simple equality test is used to determine if
1818 NODE matches. */
1821 in_expr_list_p (rtx listp, rtx node)
1823 rtx x;
1825 for (x = listp; x; x = XEXP (x, 1))
1826 if (node == XEXP (x, 0))
1827 return 1;
1829 return 0;
1832 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1833 remove that entry from the list if it is found.
1835 A simple equality test is used to determine if NODE matches. */
1837 void
1838 remove_node_from_expr_list (rtx node, rtx *listp)
1840 rtx temp = *listp;
1841 rtx prev = NULL_RTX;
1843 while (temp)
1845 if (node == XEXP (temp, 0))
1847 /* Splice the node out of the list. */
1848 if (prev)
1849 XEXP (prev, 1) = XEXP (temp, 1);
1850 else
1851 *listp = XEXP (temp, 1);
1853 return;
1856 prev = temp;
1857 temp = XEXP (temp, 1);
1861 /* Nonzero if X contains any volatile instructions. These are instructions
1862 which may cause unpredictable machine state instructions, and thus no
1863 instructions should be moved or combined across them. This includes
1864 only volatile asms and UNSPEC_VOLATILE instructions. */
1867 volatile_insn_p (rtx x)
1869 RTX_CODE code;
1871 code = GET_CODE (x);
1872 switch (code)
1874 case LABEL_REF:
1875 case SYMBOL_REF:
1876 case CONST_INT:
1877 case CONST:
1878 case CONST_DOUBLE:
1879 case CONST_VECTOR:
1880 case CC0:
1881 case PC:
1882 case REG:
1883 case SCRATCH:
1884 case CLOBBER:
1885 case ADDR_VEC:
1886 case ADDR_DIFF_VEC:
1887 case CALL:
1888 case MEM:
1889 return 0;
1891 case UNSPEC_VOLATILE:
1892 /* case TRAP_IF: This isn't clear yet. */
1893 return 1;
1895 case ASM_INPUT:
1896 case ASM_OPERANDS:
1897 if (MEM_VOLATILE_P (x))
1898 return 1;
1900 default:
1901 break;
1904 /* Recursively scan the operands of this expression. */
1907 const char *fmt = GET_RTX_FORMAT (code);
1908 int i;
1910 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1912 if (fmt[i] == 'e')
1914 if (volatile_insn_p (XEXP (x, i)))
1915 return 1;
1917 else if (fmt[i] == 'E')
1919 int j;
1920 for (j = 0; j < XVECLEN (x, i); j++)
1921 if (volatile_insn_p (XVECEXP (x, i, j)))
1922 return 1;
1926 return 0;
1929 /* Nonzero if X contains any volatile memory references
1930 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
1933 volatile_refs_p (rtx x)
1935 RTX_CODE code;
1937 code = GET_CODE (x);
1938 switch (code)
1940 case LABEL_REF:
1941 case SYMBOL_REF:
1942 case CONST_INT:
1943 case CONST:
1944 case CONST_DOUBLE:
1945 case CONST_VECTOR:
1946 case CC0:
1947 case PC:
1948 case REG:
1949 case SCRATCH:
1950 case CLOBBER:
1951 case ADDR_VEC:
1952 case ADDR_DIFF_VEC:
1953 return 0;
1955 case UNSPEC_VOLATILE:
1956 return 1;
1958 case MEM:
1959 case ASM_INPUT:
1960 case ASM_OPERANDS:
1961 if (MEM_VOLATILE_P (x))
1962 return 1;
1964 default:
1965 break;
1968 /* Recursively scan the operands of this expression. */
1971 const char *fmt = GET_RTX_FORMAT (code);
1972 int i;
1974 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1976 if (fmt[i] == 'e')
1978 if (volatile_refs_p (XEXP (x, i)))
1979 return 1;
1981 else if (fmt[i] == 'E')
1983 int j;
1984 for (j = 0; j < XVECLEN (x, i); j++)
1985 if (volatile_refs_p (XVECEXP (x, i, j)))
1986 return 1;
1990 return 0;
1993 /* Similar to above, except that it also rejects register pre- and post-
1994 incrementing. */
1997 side_effects_p (rtx x)
1999 RTX_CODE code;
2001 code = GET_CODE (x);
2002 switch (code)
2004 case LABEL_REF:
2005 case SYMBOL_REF:
2006 case CONST_INT:
2007 case CONST:
2008 case CONST_DOUBLE:
2009 case CONST_VECTOR:
2010 case CC0:
2011 case PC:
2012 case REG:
2013 case SCRATCH:
2014 case ADDR_VEC:
2015 case ADDR_DIFF_VEC:
2016 return 0;
2018 case CLOBBER:
2019 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2020 when some combination can't be done. If we see one, don't think
2021 that we can simplify the expression. */
2022 return (GET_MODE (x) != VOIDmode);
2024 case PRE_INC:
2025 case PRE_DEC:
2026 case POST_INC:
2027 case POST_DEC:
2028 case PRE_MODIFY:
2029 case POST_MODIFY:
2030 case CALL:
2031 case UNSPEC_VOLATILE:
2032 /* case TRAP_IF: This isn't clear yet. */
2033 return 1;
2035 case MEM:
2036 case ASM_INPUT:
2037 case ASM_OPERANDS:
2038 if (MEM_VOLATILE_P (x))
2039 return 1;
2041 default:
2042 break;
2045 /* Recursively scan the operands of this expression. */
2048 const char *fmt = GET_RTX_FORMAT (code);
2049 int i;
2051 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2053 if (fmt[i] == 'e')
2055 if (side_effects_p (XEXP (x, i)))
2056 return 1;
2058 else if (fmt[i] == 'E')
2060 int j;
2061 for (j = 0; j < XVECLEN (x, i); j++)
2062 if (side_effects_p (XVECEXP (x, i, j)))
2063 return 1;
2067 return 0;
2070 /* Return nonzero if evaluating rtx X might cause a trap. */
2073 may_trap_p (rtx x)
2075 int i;
2076 enum rtx_code code;
2077 const char *fmt;
2079 if (x == 0)
2080 return 0;
2081 code = GET_CODE (x);
2082 switch (code)
2084 /* Handle these cases quickly. */
2085 case CONST_INT:
2086 case CONST_DOUBLE:
2087 case CONST_VECTOR:
2088 case SYMBOL_REF:
2089 case LABEL_REF:
2090 case CONST:
2091 case PC:
2092 case CC0:
2093 case REG:
2094 case SCRATCH:
2095 return 0;
2097 case ASM_INPUT:
2098 case UNSPEC_VOLATILE:
2099 case TRAP_IF:
2100 return 1;
2102 case ASM_OPERANDS:
2103 return MEM_VOLATILE_P (x);
2105 /* Memory ref can trap unless it's a static var or a stack slot. */
2106 case MEM:
2107 if (MEM_NOTRAP_P (x))
2108 return 0;
2109 return rtx_addr_can_trap_p (XEXP (x, 0));
2111 /* Division by a non-constant might trap. */
2112 case DIV:
2113 case MOD:
2114 case UDIV:
2115 case UMOD:
2116 if (HONOR_SNANS (GET_MODE (x)))
2117 return 1;
2118 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
2119 return flag_trapping_math;
2120 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2121 return 1;
2122 break;
2124 case EXPR_LIST:
2125 /* An EXPR_LIST is used to represent a function call. This
2126 certainly may trap. */
2127 return 1;
2129 case GE:
2130 case GT:
2131 case LE:
2132 case LT:
2133 case LTGT:
2134 case COMPARE:
2135 /* Some floating point comparisons may trap. */
2136 if (!flag_trapping_math)
2137 break;
2138 /* ??? There is no machine independent way to check for tests that trap
2139 when COMPARE is used, though many targets do make this distinction.
2140 For instance, sparc uses CCFPE for compares which generate exceptions
2141 and CCFP for compares which do not generate exceptions. */
2142 if (HONOR_NANS (GET_MODE (x)))
2143 return 1;
2144 /* But often the compare has some CC mode, so check operand
2145 modes as well. */
2146 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2147 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2148 return 1;
2149 break;
2151 case EQ:
2152 case NE:
2153 if (HONOR_SNANS (GET_MODE (x)))
2154 return 1;
2155 /* Often comparison is CC mode, so check operand modes. */
2156 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2157 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2158 return 1;
2159 break;
2161 case FIX:
2162 /* Conversion of floating point might trap. */
2163 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2164 return 1;
2165 break;
2167 case NEG:
2168 case ABS:
2169 case SUBREG:
2170 /* These operations don't trap even with floating point. */
2171 break;
2173 default:
2174 /* Any floating arithmetic may trap. */
2175 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2176 && flag_trapping_math)
2177 return 1;
2180 fmt = GET_RTX_FORMAT (code);
2181 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2183 if (fmt[i] == 'e')
2185 if (may_trap_p (XEXP (x, i)))
2186 return 1;
2188 else if (fmt[i] == 'E')
2190 int j;
2191 for (j = 0; j < XVECLEN (x, i); j++)
2192 if (may_trap_p (XVECEXP (x, i, j)))
2193 return 1;
2196 return 0;
2199 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2200 i.e., an inequality. */
2203 inequality_comparisons_p (rtx x)
2205 const char *fmt;
2206 int len, i;
2207 enum rtx_code code = GET_CODE (x);
2209 switch (code)
2211 case REG:
2212 case SCRATCH:
2213 case PC:
2214 case CC0:
2215 case CONST_INT:
2216 case CONST_DOUBLE:
2217 case CONST_VECTOR:
2218 case CONST:
2219 case LABEL_REF:
2220 case SYMBOL_REF:
2221 return 0;
2223 case LT:
2224 case LTU:
2225 case GT:
2226 case GTU:
2227 case LE:
2228 case LEU:
2229 case GE:
2230 case GEU:
2231 return 1;
2233 default:
2234 break;
2237 len = GET_RTX_LENGTH (code);
2238 fmt = GET_RTX_FORMAT (code);
2240 for (i = 0; i < len; i++)
2242 if (fmt[i] == 'e')
2244 if (inequality_comparisons_p (XEXP (x, i)))
2245 return 1;
2247 else if (fmt[i] == 'E')
2249 int j;
2250 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2251 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2252 return 1;
2256 return 0;
2259 /* Replace any occurrence of FROM in X with TO. The function does
2260 not enter into CONST_DOUBLE for the replace.
2262 Note that copying is not done so X must not be shared unless all copies
2263 are to be modified. */
2266 replace_rtx (rtx x, rtx from, rtx to)
2268 int i, j;
2269 const char *fmt;
2271 /* The following prevents loops occurrence when we change MEM in
2272 CONST_DOUBLE onto the same CONST_DOUBLE. */
2273 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2274 return x;
2276 if (x == from)
2277 return to;
2279 /* Allow this function to make replacements in EXPR_LISTs. */
2280 if (x == 0)
2281 return 0;
2283 if (GET_CODE (x) == SUBREG)
2285 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2287 if (GET_CODE (new) == CONST_INT)
2289 x = simplify_subreg (GET_MODE (x), new,
2290 GET_MODE (SUBREG_REG (x)),
2291 SUBREG_BYTE (x));
2292 gcc_assert (x);
2294 else
2295 SUBREG_REG (x) = new;
2297 return x;
2299 else if (GET_CODE (x) == ZERO_EXTEND)
2301 rtx new = replace_rtx (XEXP (x, 0), from, to);
2303 if (GET_CODE (new) == CONST_INT)
2305 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2306 new, GET_MODE (XEXP (x, 0)));
2307 gcc_assert (x);
2309 else
2310 XEXP (x, 0) = new;
2312 return x;
2315 fmt = GET_RTX_FORMAT (GET_CODE (x));
2316 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2318 if (fmt[i] == 'e')
2319 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2320 else if (fmt[i] == 'E')
2321 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2322 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2325 return x;
2328 /* Throughout the rtx X, replace many registers according to REG_MAP.
2329 Return the replacement for X (which may be X with altered contents).
2330 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2331 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2333 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2334 should not be mapped to pseudos or vice versa since validate_change
2335 is not called.
2337 If REPLACE_DEST is 1, replacements are also done in destinations;
2338 otherwise, only sources are replaced. */
2341 replace_regs (rtx x, rtx *reg_map, unsigned int nregs, int replace_dest)
2343 enum rtx_code code;
2344 int i;
2345 const char *fmt;
2347 if (x == 0)
2348 return x;
2350 code = GET_CODE (x);
2351 switch (code)
2353 case SCRATCH:
2354 case PC:
2355 case CC0:
2356 case CONST_INT:
2357 case CONST_DOUBLE:
2358 case CONST_VECTOR:
2359 case CONST:
2360 case SYMBOL_REF:
2361 case LABEL_REF:
2362 return x;
2364 case REG:
2365 /* Verify that the register has an entry before trying to access it. */
2366 if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2368 /* SUBREGs can't be shared. Always return a copy to ensure that if
2369 this replacement occurs more than once then each instance will
2370 get distinct rtx. */
2371 if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2372 return copy_rtx (reg_map[REGNO (x)]);
2373 return reg_map[REGNO (x)];
2375 return x;
2377 case SUBREG:
2378 /* Prevent making nested SUBREGs. */
2379 if (REG_P (SUBREG_REG (x)) && REGNO (SUBREG_REG (x)) < nregs
2380 && reg_map[REGNO (SUBREG_REG (x))] != 0
2381 && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2383 rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2384 return simplify_gen_subreg (GET_MODE (x), map_val,
2385 GET_MODE (SUBREG_REG (x)),
2386 SUBREG_BYTE (x));
2388 break;
2390 case SET:
2391 if (replace_dest)
2392 SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2394 else if (MEM_P (SET_DEST (x))
2395 || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2396 /* Even if we are not to replace destinations, replace register if it
2397 is CONTAINED in destination (destination is memory or
2398 STRICT_LOW_PART). */
2399 XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2400 reg_map, nregs, 0);
2401 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2402 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2403 break;
2405 SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2406 return x;
2408 default:
2409 break;
2412 fmt = GET_RTX_FORMAT (code);
2413 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2415 if (fmt[i] == 'e')
2416 XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2417 else if (fmt[i] == 'E')
2419 int j;
2420 for (j = 0; j < XVECLEN (x, i); j++)
2421 XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2422 nregs, replace_dest);
2425 return x;
2428 /* Replace occurrences of the old label in *X with the new one.
2429 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2432 replace_label (rtx *x, void *data)
2434 rtx l = *x;
2435 rtx old_label = ((replace_label_data *) data)->r1;
2436 rtx new_label = ((replace_label_data *) data)->r2;
2437 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2439 if (l == NULL_RTX)
2440 return 0;
2442 if (GET_CODE (l) == SYMBOL_REF
2443 && CONSTANT_POOL_ADDRESS_P (l))
2445 rtx c = get_pool_constant (l);
2446 if (rtx_referenced_p (old_label, c))
2448 rtx new_c, new_l;
2449 replace_label_data *d = (replace_label_data *) data;
2451 /* Create a copy of constant C; replace the label inside
2452 but do not update LABEL_NUSES because uses in constant pool
2453 are not counted. */
2454 new_c = copy_rtx (c);
2455 d->update_label_nuses = false;
2456 for_each_rtx (&new_c, replace_label, data);
2457 d->update_label_nuses = update_label_nuses;
2459 /* Add the new constant NEW_C to constant pool and replace
2460 the old reference to constant by new reference. */
2461 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2462 *x = replace_rtx (l, l, new_l);
2464 return 0;
2467 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2468 field. This is not handled by for_each_rtx because it doesn't
2469 handle unprinted ('0') fields. */
2470 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2471 JUMP_LABEL (l) = new_label;
2473 if ((GET_CODE (l) == LABEL_REF
2474 || GET_CODE (l) == INSN_LIST)
2475 && XEXP (l, 0) == old_label)
2477 XEXP (l, 0) = new_label;
2478 if (update_label_nuses)
2480 ++LABEL_NUSES (new_label);
2481 --LABEL_NUSES (old_label);
2483 return 0;
2486 return 0;
2489 /* When *BODY is equal to X or X is directly referenced by *BODY
2490 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2491 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2493 static int
2494 rtx_referenced_p_1 (rtx *body, void *x)
2496 rtx y = (rtx) x;
2498 if (*body == NULL_RTX)
2499 return y == NULL_RTX;
2501 /* Return true if a label_ref *BODY refers to label Y. */
2502 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2503 return XEXP (*body, 0) == y;
2505 /* If *BODY is a reference to pool constant traverse the constant. */
2506 if (GET_CODE (*body) == SYMBOL_REF
2507 && CONSTANT_POOL_ADDRESS_P (*body))
2508 return rtx_referenced_p (y, get_pool_constant (*body));
2510 /* By default, compare the RTL expressions. */
2511 return rtx_equal_p (*body, y);
2514 /* Return true if X is referenced in BODY. */
2517 rtx_referenced_p (rtx x, rtx body)
2519 return for_each_rtx (&body, rtx_referenced_p_1, x);
2522 /* If INSN is a tablejump return true and store the label (before jump table) to
2523 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2525 bool
2526 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2528 rtx label, table;
2530 if (JUMP_P (insn)
2531 && (label = JUMP_LABEL (insn)) != NULL_RTX
2532 && (table = next_active_insn (label)) != NULL_RTX
2533 && JUMP_P (table)
2534 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2535 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2537 if (labelp)
2538 *labelp = label;
2539 if (tablep)
2540 *tablep = table;
2541 return true;
2543 return false;
2546 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2547 constant that is not in the constant pool and not in the condition
2548 of an IF_THEN_ELSE. */
2550 static int
2551 computed_jump_p_1 (rtx x)
2553 enum rtx_code code = GET_CODE (x);
2554 int i, j;
2555 const char *fmt;
2557 switch (code)
2559 case LABEL_REF:
2560 case PC:
2561 return 0;
2563 case CONST:
2564 case CONST_INT:
2565 case CONST_DOUBLE:
2566 case CONST_VECTOR:
2567 case SYMBOL_REF:
2568 case REG:
2569 return 1;
2571 case MEM:
2572 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2573 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2575 case IF_THEN_ELSE:
2576 return (computed_jump_p_1 (XEXP (x, 1))
2577 || computed_jump_p_1 (XEXP (x, 2)));
2579 default:
2580 break;
2583 fmt = GET_RTX_FORMAT (code);
2584 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2586 if (fmt[i] == 'e'
2587 && computed_jump_p_1 (XEXP (x, i)))
2588 return 1;
2590 else if (fmt[i] == 'E')
2591 for (j = 0; j < XVECLEN (x, i); j++)
2592 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2593 return 1;
2596 return 0;
2599 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2601 Tablejumps and casesi insns are not considered indirect jumps;
2602 we can recognize them by a (use (label_ref)). */
2605 computed_jump_p (rtx insn)
2607 int i;
2608 if (JUMP_P (insn))
2610 rtx pat = PATTERN (insn);
2612 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2613 return 0;
2614 else if (GET_CODE (pat) == PARALLEL)
2616 int len = XVECLEN (pat, 0);
2617 int has_use_labelref = 0;
2619 for (i = len - 1; i >= 0; i--)
2620 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2621 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2622 == LABEL_REF))
2623 has_use_labelref = 1;
2625 if (! has_use_labelref)
2626 for (i = len - 1; i >= 0; i--)
2627 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2628 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2629 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2630 return 1;
2632 else if (GET_CODE (pat) == SET
2633 && SET_DEST (pat) == pc_rtx
2634 && computed_jump_p_1 (SET_SRC (pat)))
2635 return 1;
2637 return 0;
2640 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2641 calls. Processes the subexpressions of EXP and passes them to F. */
2642 static int
2643 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2645 int result, i, j;
2646 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2647 rtx *x;
2649 for (; format[n] != '\0'; n++)
2651 switch (format[n])
2653 case 'e':
2654 /* Call F on X. */
2655 x = &XEXP (exp, n);
2656 result = (*f) (x, data);
2657 if (result == -1)
2658 /* Do not traverse sub-expressions. */
2659 continue;
2660 else if (result != 0)
2661 /* Stop the traversal. */
2662 return result;
2664 if (*x == NULL_RTX)
2665 /* There are no sub-expressions. */
2666 continue;
2668 i = non_rtx_starting_operands[GET_CODE (*x)];
2669 if (i >= 0)
2671 result = for_each_rtx_1 (*x, i, f, data);
2672 if (result != 0)
2673 return result;
2675 break;
2677 case 'V':
2678 case 'E':
2679 if (XVEC (exp, n) == 0)
2680 continue;
2681 for (j = 0; j < XVECLEN (exp, n); ++j)
2683 /* Call F on X. */
2684 x = &XVECEXP (exp, n, j);
2685 result = (*f) (x, data);
2686 if (result == -1)
2687 /* Do not traverse sub-expressions. */
2688 continue;
2689 else if (result != 0)
2690 /* Stop the traversal. */
2691 return result;
2693 if (*x == NULL_RTX)
2694 /* There are no sub-expressions. */
2695 continue;
2697 i = non_rtx_starting_operands[GET_CODE (*x)];
2698 if (i >= 0)
2700 result = for_each_rtx_1 (*x, i, f, data);
2701 if (result != 0)
2702 return result;
2705 break;
2707 default:
2708 /* Nothing to do. */
2709 break;
2713 return 0;
2716 /* Traverse X via depth-first search, calling F for each
2717 sub-expression (including X itself). F is also passed the DATA.
2718 If F returns -1, do not traverse sub-expressions, but continue
2719 traversing the rest of the tree. If F ever returns any other
2720 nonzero value, stop the traversal, and return the value returned
2721 by F. Otherwise, return 0. This function does not traverse inside
2722 tree structure that contains RTX_EXPRs, or into sub-expressions
2723 whose format code is `0' since it is not known whether or not those
2724 codes are actually RTL.
2726 This routine is very general, and could (should?) be used to
2727 implement many of the other routines in this file. */
2730 for_each_rtx (rtx *x, rtx_function f, void *data)
2732 int result;
2733 int i;
2735 /* Call F on X. */
2736 result = (*f) (x, data);
2737 if (result == -1)
2738 /* Do not traverse sub-expressions. */
2739 return 0;
2740 else if (result != 0)
2741 /* Stop the traversal. */
2742 return result;
2744 if (*x == NULL_RTX)
2745 /* There are no sub-expressions. */
2746 return 0;
2748 i = non_rtx_starting_operands[GET_CODE (*x)];
2749 if (i < 0)
2750 return 0;
2752 return for_each_rtx_1 (*x, i, f, data);
2756 /* Searches X for any reference to REGNO, returning the rtx of the
2757 reference found if any. Otherwise, returns NULL_RTX. */
2760 regno_use_in (unsigned int regno, rtx x)
2762 const char *fmt;
2763 int i, j;
2764 rtx tem;
2766 if (REG_P (x) && REGNO (x) == regno)
2767 return x;
2769 fmt = GET_RTX_FORMAT (GET_CODE (x));
2770 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2772 if (fmt[i] == 'e')
2774 if ((tem = regno_use_in (regno, XEXP (x, i))))
2775 return tem;
2777 else if (fmt[i] == 'E')
2778 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2779 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2780 return tem;
2783 return NULL_RTX;
2786 /* Return a value indicating whether OP, an operand of a commutative
2787 operation, is preferred as the first or second operand. The higher
2788 the value, the stronger the preference for being the first operand.
2789 We use negative values to indicate a preference for the first operand
2790 and positive values for the second operand. */
2793 commutative_operand_precedence (rtx op)
2795 enum rtx_code code = GET_CODE (op);
2797 /* Constants always come the second operand. Prefer "nice" constants. */
2798 if (code == CONST_INT)
2799 return -7;
2800 if (code == CONST_DOUBLE)
2801 return -6;
2802 op = avoid_constant_pool_reference (op);
2803 code = GET_CODE (op);
2805 switch (GET_RTX_CLASS (code))
2807 case RTX_CONST_OBJ:
2808 if (code == CONST_INT)
2809 return -5;
2810 if (code == CONST_DOUBLE)
2811 return -4;
2812 return -3;
2814 case RTX_EXTRA:
2815 /* SUBREGs of objects should come second. */
2816 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2817 return -2;
2819 if (!CONSTANT_P (op))
2820 return 0;
2821 else
2822 /* As for RTX_CONST_OBJ. */
2823 return -3;
2825 case RTX_OBJ:
2826 /* Complex expressions should be the first, so decrease priority
2827 of objects. */
2828 return -1;
2830 case RTX_COMM_ARITH:
2831 /* Prefer operands that are themselves commutative to be first.
2832 This helps to make things linear. In particular,
2833 (and (and (reg) (reg)) (not (reg))) is canonical. */
2834 return 4;
2836 case RTX_BIN_ARITH:
2837 /* If only one operand is a binary expression, it will be the first
2838 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2839 is canonical, although it will usually be further simplified. */
2840 return 2;
2842 case RTX_UNARY:
2843 /* Then prefer NEG and NOT. */
2844 if (code == NEG || code == NOT)
2845 return 1;
2847 default:
2848 return 0;
2852 /* Return 1 iff it is necessary to swap operands of commutative operation
2853 in order to canonicalize expression. */
2856 swap_commutative_operands_p (rtx x, rtx y)
2858 return (commutative_operand_precedence (x)
2859 < commutative_operand_precedence (y));
2862 /* Return 1 if X is an autoincrement side effect and the register is
2863 not the stack pointer. */
2865 auto_inc_p (rtx x)
2867 switch (GET_CODE (x))
2869 case PRE_INC:
2870 case POST_INC:
2871 case PRE_DEC:
2872 case POST_DEC:
2873 case PRE_MODIFY:
2874 case POST_MODIFY:
2875 /* There are no REG_INC notes for SP. */
2876 if (XEXP (x, 0) != stack_pointer_rtx)
2877 return 1;
2878 default:
2879 break;
2881 return 0;
2884 /* Return 1 if the sequence of instructions beginning with FROM and up
2885 to and including TO is safe to move. If NEW_TO is non-NULL, and
2886 the sequence is not already safe to move, but can be easily
2887 extended to a sequence which is safe, then NEW_TO will point to the
2888 end of the extended sequence.
2890 For now, this function only checks that the region contains whole
2891 exception regions, but it could be extended to check additional
2892 conditions as well. */
2895 insns_safe_to_move_p (rtx from, rtx to, rtx *new_to)
2897 int eh_region_count = 0;
2898 int past_to_p = 0;
2899 rtx r = from;
2901 /* By default, assume the end of the region will be what was
2902 suggested. */
2903 if (new_to)
2904 *new_to = to;
2906 while (r)
2908 if (NOTE_P (r))
2910 switch (NOTE_LINE_NUMBER (r))
2912 case NOTE_INSN_EH_REGION_BEG:
2913 ++eh_region_count;
2914 break;
2916 case NOTE_INSN_EH_REGION_END:
2917 if (eh_region_count == 0)
2918 /* This sequence of instructions contains the end of
2919 an exception region, but not he beginning. Moving
2920 it will cause chaos. */
2921 return 0;
2923 --eh_region_count;
2924 break;
2926 default:
2927 break;
2930 else if (past_to_p)
2931 /* If we've passed TO, and we see a non-note instruction, we
2932 can't extend the sequence to a movable sequence. */
2933 return 0;
2935 if (r == to)
2937 if (!new_to)
2938 /* It's OK to move the sequence if there were matched sets of
2939 exception region notes. */
2940 return eh_region_count == 0;
2942 past_to_p = 1;
2945 /* It's OK to move the sequence if there were matched sets of
2946 exception region notes. */
2947 if (past_to_p && eh_region_count == 0)
2949 *new_to = r;
2950 return 1;
2953 /* Go to the next instruction. */
2954 r = NEXT_INSN (r);
2957 return 0;
2960 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2962 loc_mentioned_in_p (rtx *loc, rtx in)
2964 enum rtx_code code = GET_CODE (in);
2965 const char *fmt = GET_RTX_FORMAT (code);
2966 int i, j;
2968 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2970 if (loc == &in->u.fld[i].rt_rtx)
2971 return 1;
2972 if (fmt[i] == 'e')
2974 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2975 return 1;
2977 else if (fmt[i] == 'E')
2978 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2979 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2980 return 1;
2982 return 0;
2985 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
2986 and SUBREG_BYTE, return the bit offset where the subreg begins
2987 (counting from the least significant bit of the operand). */
2989 unsigned int
2990 subreg_lsb_1 (enum machine_mode outer_mode,
2991 enum machine_mode inner_mode,
2992 unsigned int subreg_byte)
2994 unsigned int bitpos;
2995 unsigned int byte;
2996 unsigned int word;
2998 /* A paradoxical subreg begins at bit position 0. */
2999 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3000 return 0;
3002 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3003 /* If the subreg crosses a word boundary ensure that
3004 it also begins and ends on a word boundary. */
3005 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3006 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3007 && (subreg_byte % UNITS_PER_WORD
3008 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3010 if (WORDS_BIG_ENDIAN)
3011 word = (GET_MODE_SIZE (inner_mode)
3012 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3013 else
3014 word = subreg_byte / UNITS_PER_WORD;
3015 bitpos = word * BITS_PER_WORD;
3017 if (BYTES_BIG_ENDIAN)
3018 byte = (GET_MODE_SIZE (inner_mode)
3019 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3020 else
3021 byte = subreg_byte % UNITS_PER_WORD;
3022 bitpos += byte * BITS_PER_UNIT;
3024 return bitpos;
3027 /* Given a subreg X, return the bit offset where the subreg begins
3028 (counting from the least significant bit of the reg). */
3030 unsigned int
3031 subreg_lsb (rtx x)
3033 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3034 SUBREG_BYTE (x));
3037 /* This function returns the regno offset of a subreg expression.
3038 xregno - A regno of an inner hard subreg_reg (or what will become one).
3039 xmode - The mode of xregno.
3040 offset - The byte offset.
3041 ymode - The mode of a top level SUBREG (or what may become one).
3042 RETURN - The regno offset which would be used. */
3043 unsigned int
3044 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3045 unsigned int offset, enum machine_mode ymode)
3047 int nregs_xmode, nregs_ymode, nregs_xmode_unit_int;
3048 int mode_multiple, nregs_multiple;
3049 int y_offset;
3050 enum machine_mode xmode_unit, xmode_unit_int;
3052 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3054 if (GET_MODE_INNER (xmode) == VOIDmode)
3055 xmode_unit = xmode;
3056 else
3057 xmode_unit = GET_MODE_INNER (xmode);
3059 if (FLOAT_MODE_P (xmode_unit))
3061 xmode_unit_int = int_mode_for_mode (xmode_unit);
3062 if (xmode_unit_int == BLKmode)
3063 /* It's probably bad to be here; a port should have an integer mode
3064 that's the same size as anything of which it takes a SUBREG. */
3065 xmode_unit_int = xmode_unit;
3067 else
3068 xmode_unit_int = xmode_unit;
3070 nregs_xmode_unit_int = hard_regno_nregs[xregno][xmode_unit_int];
3072 /* Adjust nregs_xmode to allow for 'holes'. */
3073 if (nregs_xmode_unit_int != hard_regno_nregs[xregno][xmode_unit])
3074 nregs_xmode = nregs_xmode_unit_int * GET_MODE_NUNITS (xmode);
3075 else
3076 nregs_xmode = hard_regno_nregs[xregno][xmode];
3078 nregs_ymode = hard_regno_nregs[xregno][ymode];
3080 /* If this is a big endian paradoxical subreg, which uses more actual
3081 hard registers than the original register, we must return a negative
3082 offset so that we find the proper highpart of the register. */
3083 if (offset == 0
3084 && nregs_ymode > nregs_xmode
3085 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3086 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3087 return nregs_xmode - nregs_ymode;
3089 if (offset == 0 || nregs_xmode == nregs_ymode)
3090 return 0;
3092 /* Size of ymode must not be greater than the size of xmode. */
3093 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3094 gcc_assert (mode_multiple != 0);
3096 y_offset = offset / GET_MODE_SIZE (ymode);
3097 nregs_multiple = nregs_xmode / nregs_ymode;
3098 return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3101 /* This function returns true when the offset is representable via
3102 subreg_offset in the given regno.
3103 xregno - A regno of an inner hard subreg_reg (or what will become one).
3104 xmode - The mode of xregno.
3105 offset - The byte offset.
3106 ymode - The mode of a top level SUBREG (or what may become one).
3107 RETURN - Whether the offset is representable. */
3108 bool
3109 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3110 unsigned int offset, enum machine_mode ymode)
3112 int nregs_xmode, nregs_ymode, nregs_xmode_unit, nregs_xmode_unit_int;
3113 int mode_multiple, nregs_multiple;
3114 int y_offset;
3115 enum machine_mode xmode_unit, xmode_unit_int;
3117 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3119 if (GET_MODE_INNER (xmode) == VOIDmode)
3120 xmode_unit = xmode;
3121 else
3122 xmode_unit = GET_MODE_INNER (xmode);
3124 if (FLOAT_MODE_P (xmode_unit))
3126 xmode_unit_int = int_mode_for_mode (xmode_unit);
3127 if (xmode_unit_int == BLKmode)
3128 /* It's probably bad to be here; a port should have an integer mode
3129 that's the same size as anything of which it takes a SUBREG. */
3130 xmode_unit_int = xmode_unit;
3132 else
3133 xmode_unit_int = xmode_unit;
3135 nregs_xmode_unit = hard_regno_nregs[xregno][xmode_unit];
3136 nregs_xmode_unit_int = hard_regno_nregs[xregno][xmode_unit_int];
3138 /* If there are holes in a non-scalar mode in registers, we expect
3139 that it is made up of its units concatenated together. */
3140 if (nregs_xmode_unit != nregs_xmode_unit_int)
3142 gcc_assert (nregs_xmode_unit * GET_MODE_NUNITS (xmode)
3143 == hard_regno_nregs[xregno][xmode]);
3145 /* You can only ask for a SUBREG of a value with holes in the middle
3146 if you don't cross the holes. (Such a SUBREG should be done by
3147 picking a different register class, or doing it in memory if
3148 necessary.) An example of a value with holes is XCmode on 32-bit
3149 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3150 3 for each part, but in memory it's two 128-bit parts.
3151 Padding is assumed to be at the end (not necessarily the 'high part')
3152 of each unit. */
3153 if (nregs_xmode_unit != nregs_xmode_unit_int
3154 && (offset / GET_MODE_SIZE (xmode_unit_int) + 1
3155 < GET_MODE_NUNITS (xmode))
3156 && (offset / GET_MODE_SIZE (xmode_unit_int)
3157 != ((offset + GET_MODE_SIZE (ymode) - 1)
3158 / GET_MODE_SIZE (xmode_unit_int))))
3159 return false;
3161 nregs_xmode = nregs_xmode_unit_int * GET_MODE_NUNITS (xmode);
3163 else
3164 nregs_xmode = hard_regno_nregs[xregno][xmode];
3166 nregs_ymode = hard_regno_nregs[xregno][ymode];
3168 /* Paradoxical subregs are otherwise valid. */
3169 if (offset == 0
3170 && nregs_ymode > nregs_xmode
3171 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3172 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3173 return true;
3175 /* Lowpart subregs are otherwise valid. */
3176 if (offset == subreg_lowpart_offset (ymode, xmode))
3177 return true;
3179 /* This should always pass, otherwise we don't know how to verify
3180 the constraint. These conditions may be relaxed but
3181 subreg_regno_offset would need to be redesigned. */
3182 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3183 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3185 /* The XMODE value can be seen as a vector of NREGS_XMODE
3186 values. The subreg must represent a lowpart of given field.
3187 Compute what field it is. */
3188 offset -= subreg_lowpart_offset (ymode,
3189 mode_for_size (GET_MODE_BITSIZE (xmode)
3190 / nregs_xmode,
3191 MODE_INT, 0));
3193 /* Size of ymode must not be greater than the size of xmode. */
3194 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3195 gcc_assert (mode_multiple != 0);
3197 y_offset = offset / GET_MODE_SIZE (ymode);
3198 nregs_multiple = nregs_xmode / nregs_ymode;
3200 gcc_assert ((offset % GET_MODE_SIZE (ymode)) == 0);
3201 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3203 return (!(y_offset % (mode_multiple / nregs_multiple)));
3206 /* Return the final regno that a subreg expression refers to. */
3207 unsigned int
3208 subreg_regno (rtx x)
3210 unsigned int ret;
3211 rtx subreg = SUBREG_REG (x);
3212 int regno = REGNO (subreg);
3214 ret = regno + subreg_regno_offset (regno,
3215 GET_MODE (subreg),
3216 SUBREG_BYTE (x),
3217 GET_MODE (x));
3218 return ret;
3221 struct parms_set_data
3223 int nregs;
3224 HARD_REG_SET regs;
3227 /* Helper function for noticing stores to parameter registers. */
3228 static void
3229 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3231 struct parms_set_data *d = data;
3232 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3233 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3235 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3236 d->nregs--;
3240 /* Look backward for first parameter to be loaded.
3241 Note that loads of all parameters will not necessarily be
3242 found if CSE has eliminated some of them (e.g., an argument
3243 to the outer function is passed down as a parameter).
3244 Do not skip BOUNDARY. */
3246 find_first_parameter_load (rtx call_insn, rtx boundary)
3248 struct parms_set_data parm;
3249 rtx p, before, first_set;
3251 /* Since different machines initialize their parameter registers
3252 in different orders, assume nothing. Collect the set of all
3253 parameter registers. */
3254 CLEAR_HARD_REG_SET (parm.regs);
3255 parm.nregs = 0;
3256 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3257 if (GET_CODE (XEXP (p, 0)) == USE
3258 && REG_P (XEXP (XEXP (p, 0), 0)))
3260 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3262 /* We only care about registers which can hold function
3263 arguments. */
3264 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3265 continue;
3267 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3268 parm.nregs++;
3270 before = call_insn;
3271 first_set = call_insn;
3273 /* Search backward for the first set of a register in this set. */
3274 while (parm.nregs && before != boundary)
3276 before = PREV_INSN (before);
3278 /* It is possible that some loads got CSEed from one call to
3279 another. Stop in that case. */
3280 if (CALL_P (before))
3281 break;
3283 /* Our caller needs either ensure that we will find all sets
3284 (in case code has not been optimized yet), or take care
3285 for possible labels in a way by setting boundary to preceding
3286 CODE_LABEL. */
3287 if (LABEL_P (before))
3289 gcc_assert (before == boundary);
3290 break;
3293 if (INSN_P (before))
3295 int nregs_old = parm.nregs;
3296 note_stores (PATTERN (before), parms_set, &parm);
3297 /* If we found something that did not set a parameter reg,
3298 we're done. Do not keep going, as that might result
3299 in hoisting an insn before the setting of a pseudo
3300 that is used by the hoisted insn. */
3301 if (nregs_old != parm.nregs)
3302 first_set = before;
3303 else
3304 break;
3307 return first_set;
3310 /* Return true if we should avoid inserting code between INSN and preceding
3311 call instruction. */
3313 bool
3314 keep_with_call_p (rtx insn)
3316 rtx set;
3318 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3320 if (REG_P (SET_DEST (set))
3321 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3322 && fixed_regs[REGNO (SET_DEST (set))]
3323 && general_operand (SET_SRC (set), VOIDmode))
3324 return true;
3325 if (REG_P (SET_SRC (set))
3326 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3327 && REG_P (SET_DEST (set))
3328 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3329 return true;
3330 /* There may be a stack pop just after the call and before the store
3331 of the return register. Search for the actual store when deciding
3332 if we can break or not. */
3333 if (SET_DEST (set) == stack_pointer_rtx)
3335 rtx i2 = next_nonnote_insn (insn);
3336 if (i2 && keep_with_call_p (i2))
3337 return true;
3340 return false;
3343 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3344 to non-complex jumps. That is, direct unconditional, conditional,
3345 and tablejumps, but not computed jumps or returns. It also does
3346 not apply to the fallthru case of a conditional jump. */
3348 bool
3349 label_is_jump_target_p (rtx label, rtx jump_insn)
3351 rtx tmp = JUMP_LABEL (jump_insn);
3353 if (label == tmp)
3354 return true;
3356 if (tablejump_p (jump_insn, NULL, &tmp))
3358 rtvec vec = XVEC (PATTERN (tmp),
3359 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3360 int i, veclen = GET_NUM_ELEM (vec);
3362 for (i = 0; i < veclen; ++i)
3363 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3364 return true;
3367 return false;
3371 /* Return an estimate of the cost of computing rtx X.
3372 One use is in cse, to decide which expression to keep in the hash table.
3373 Another is in rtl generation, to pick the cheapest way to multiply.
3374 Other uses like the latter are expected in the future. */
3377 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3379 int i, j;
3380 enum rtx_code code;
3381 const char *fmt;
3382 int total;
3384 if (x == 0)
3385 return 0;
3387 /* Compute the default costs of certain things.
3388 Note that targetm.rtx_costs can override the defaults. */
3390 code = GET_CODE (x);
3391 switch (code)
3393 case MULT:
3394 total = COSTS_N_INSNS (5);
3395 break;
3396 case DIV:
3397 case UDIV:
3398 case MOD:
3399 case UMOD:
3400 total = COSTS_N_INSNS (7);
3401 break;
3402 case USE:
3403 /* Used in loop.c and combine.c as a marker. */
3404 total = 0;
3405 break;
3406 default:
3407 total = COSTS_N_INSNS (1);
3410 switch (code)
3412 case REG:
3413 return 0;
3415 case SUBREG:
3416 total = 0;
3417 /* If we can't tie these modes, make this expensive. The larger
3418 the mode, the more expensive it is. */
3419 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3420 return COSTS_N_INSNS (2
3421 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3422 break;
3424 default:
3425 if (targetm.rtx_costs (x, code, outer_code, &total))
3426 return total;
3427 break;
3430 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3431 which is already in total. */
3433 fmt = GET_RTX_FORMAT (code);
3434 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3435 if (fmt[i] == 'e')
3436 total += rtx_cost (XEXP (x, i), code);
3437 else if (fmt[i] == 'E')
3438 for (j = 0; j < XVECLEN (x, i); j++)
3439 total += rtx_cost (XVECEXP (x, i, j), code);
3441 return total;
3444 /* Return cost of address expression X.
3445 Expect that X is properly formed address reference. */
3448 address_cost (rtx x, enum machine_mode mode)
3450 /* We may be asked for cost of various unusual addresses, such as operands
3451 of push instruction. It is not worthwhile to complicate writing
3452 of the target hook by such cases. */
3454 if (!memory_address_p (mode, x))
3455 return 1000;
3457 return targetm.address_cost (x);
3460 /* If the target doesn't override, compute the cost as with arithmetic. */
3463 default_address_cost (rtx x)
3465 return rtx_cost (x, MEM);
3469 unsigned HOST_WIDE_INT
3470 nonzero_bits (rtx x, enum machine_mode mode)
3472 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3475 unsigned int
3476 num_sign_bit_copies (rtx x, enum machine_mode mode)
3478 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3481 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3482 It avoids exponential behavior in nonzero_bits1 when X has
3483 identical subexpressions on the first or the second level. */
3485 static unsigned HOST_WIDE_INT
3486 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3487 enum machine_mode known_mode,
3488 unsigned HOST_WIDE_INT known_ret)
3490 if (x == known_x && mode == known_mode)
3491 return known_ret;
3493 /* Try to find identical subexpressions. If found call
3494 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3495 precomputed value for the subexpression as KNOWN_RET. */
3497 if (ARITHMETIC_P (x))
3499 rtx x0 = XEXP (x, 0);
3500 rtx x1 = XEXP (x, 1);
3502 /* Check the first level. */
3503 if (x0 == x1)
3504 return nonzero_bits1 (x, mode, x0, mode,
3505 cached_nonzero_bits (x0, mode, known_x,
3506 known_mode, known_ret));
3508 /* Check the second level. */
3509 if (ARITHMETIC_P (x0)
3510 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3511 return nonzero_bits1 (x, mode, x1, mode,
3512 cached_nonzero_bits (x1, mode, known_x,
3513 known_mode, known_ret));
3515 if (ARITHMETIC_P (x1)
3516 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3517 return nonzero_bits1 (x, mode, x0, mode,
3518 cached_nonzero_bits (x0, mode, known_x,
3519 known_mode, known_ret));
3522 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3525 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3526 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3527 is less useful. We can't allow both, because that results in exponential
3528 run time recursion. There is a nullstone testcase that triggered
3529 this. This macro avoids accidental uses of num_sign_bit_copies. */
3530 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3532 /* Given an expression, X, compute which bits in X can be nonzero.
3533 We don't care about bits outside of those defined in MODE.
3535 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3536 an arithmetic operation, we can do better. */
3538 static unsigned HOST_WIDE_INT
3539 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3540 enum machine_mode known_mode,
3541 unsigned HOST_WIDE_INT known_ret)
3543 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3544 unsigned HOST_WIDE_INT inner_nz;
3545 enum rtx_code code;
3546 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3548 /* For floating-point values, assume all bits are needed. */
3549 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3550 return nonzero;
3552 /* If X is wider than MODE, use its mode instead. */
3553 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3555 mode = GET_MODE (x);
3556 nonzero = GET_MODE_MASK (mode);
3557 mode_width = GET_MODE_BITSIZE (mode);
3560 if (mode_width > HOST_BITS_PER_WIDE_INT)
3561 /* Our only callers in this case look for single bit values. So
3562 just return the mode mask. Those tests will then be false. */
3563 return nonzero;
3565 #ifndef WORD_REGISTER_OPERATIONS
3566 /* If MODE is wider than X, but both are a single word for both the host
3567 and target machines, we can compute this from which bits of the
3568 object might be nonzero in its own mode, taking into account the fact
3569 that on many CISC machines, accessing an object in a wider mode
3570 causes the high-order bits to become undefined. So they are
3571 not known to be zero. */
3573 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3574 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3575 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3576 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3578 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3579 known_x, known_mode, known_ret);
3580 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3581 return nonzero;
3583 #endif
3585 code = GET_CODE (x);
3586 switch (code)
3588 case REG:
3589 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3590 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3591 all the bits above ptr_mode are known to be zero. */
3592 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3593 && REG_POINTER (x))
3594 nonzero &= GET_MODE_MASK (ptr_mode);
3595 #endif
3597 /* Include declared information about alignment of pointers. */
3598 /* ??? We don't properly preserve REG_POINTER changes across
3599 pointer-to-integer casts, so we can't trust it except for
3600 things that we know must be pointers. See execute/960116-1.c. */
3601 if ((x == stack_pointer_rtx
3602 || x == frame_pointer_rtx
3603 || x == arg_pointer_rtx)
3604 && REGNO_POINTER_ALIGN (REGNO (x)))
3606 unsigned HOST_WIDE_INT alignment
3607 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3609 #ifdef PUSH_ROUNDING
3610 /* If PUSH_ROUNDING is defined, it is possible for the
3611 stack to be momentarily aligned only to that amount,
3612 so we pick the least alignment. */
3613 if (x == stack_pointer_rtx && PUSH_ARGS)
3614 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3615 alignment);
3616 #endif
3618 nonzero &= ~(alignment - 1);
3622 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3623 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3624 known_mode, known_ret,
3625 &nonzero_for_hook);
3627 if (new)
3628 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3629 known_mode, known_ret);
3631 return nonzero_for_hook;
3634 case CONST_INT:
3635 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3636 /* If X is negative in MODE, sign-extend the value. */
3637 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3638 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3639 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3640 #endif
3642 return INTVAL (x);
3644 case MEM:
3645 #ifdef LOAD_EXTEND_OP
3646 /* In many, if not most, RISC machines, reading a byte from memory
3647 zeros the rest of the register. Noticing that fact saves a lot
3648 of extra zero-extends. */
3649 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3650 nonzero &= GET_MODE_MASK (GET_MODE (x));
3651 #endif
3652 break;
3654 case EQ: case NE:
3655 case UNEQ: case LTGT:
3656 case GT: case GTU: case UNGT:
3657 case LT: case LTU: case UNLT:
3658 case GE: case GEU: case UNGE:
3659 case LE: case LEU: case UNLE:
3660 case UNORDERED: case ORDERED:
3661 /* If this produces an integer result, we know which bits are set.
3662 Code here used to clear bits outside the mode of X, but that is
3663 now done above. */
3664 /* Mind that MODE is the mode the caller wants to look at this
3665 operation in, and not the actual operation mode. We can wind
3666 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3667 that describes the results of a vector compare. */
3668 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3669 && mode_width <= HOST_BITS_PER_WIDE_INT)
3670 nonzero = STORE_FLAG_VALUE;
3671 break;
3673 case NEG:
3674 #if 0
3675 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3676 and num_sign_bit_copies. */
3677 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3678 == GET_MODE_BITSIZE (GET_MODE (x)))
3679 nonzero = 1;
3680 #endif
3682 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3683 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3684 break;
3686 case ABS:
3687 #if 0
3688 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3689 and num_sign_bit_copies. */
3690 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3691 == GET_MODE_BITSIZE (GET_MODE (x)))
3692 nonzero = 1;
3693 #endif
3694 break;
3696 case TRUNCATE:
3697 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3698 known_x, known_mode, known_ret)
3699 & GET_MODE_MASK (mode));
3700 break;
3702 case ZERO_EXTEND:
3703 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3704 known_x, known_mode, known_ret);
3705 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3706 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3707 break;
3709 case SIGN_EXTEND:
3710 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3711 Otherwise, show all the bits in the outer mode but not the inner
3712 may be nonzero. */
3713 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3714 known_x, known_mode, known_ret);
3715 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3717 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3718 if (inner_nz
3719 & (((HOST_WIDE_INT) 1
3720 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3721 inner_nz |= (GET_MODE_MASK (mode)
3722 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3725 nonzero &= inner_nz;
3726 break;
3728 case AND:
3729 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3730 known_x, known_mode, known_ret)
3731 & cached_nonzero_bits (XEXP (x, 1), mode,
3732 known_x, known_mode, known_ret);
3733 break;
3735 case XOR: case IOR:
3736 case UMIN: case UMAX: case SMIN: case SMAX:
3738 unsigned HOST_WIDE_INT nonzero0 =
3739 cached_nonzero_bits (XEXP (x, 0), mode,
3740 known_x, known_mode, known_ret);
3742 /* Don't call nonzero_bits for the second time if it cannot change
3743 anything. */
3744 if ((nonzero & nonzero0) != nonzero)
3745 nonzero &= nonzero0
3746 | cached_nonzero_bits (XEXP (x, 1), mode,
3747 known_x, known_mode, known_ret);
3749 break;
3751 case PLUS: case MINUS:
3752 case MULT:
3753 case DIV: case UDIV:
3754 case MOD: case UMOD:
3755 /* We can apply the rules of arithmetic to compute the number of
3756 high- and low-order zero bits of these operations. We start by
3757 computing the width (position of the highest-order nonzero bit)
3758 and the number of low-order zero bits for each value. */
3760 unsigned HOST_WIDE_INT nz0 =
3761 cached_nonzero_bits (XEXP (x, 0), mode,
3762 known_x, known_mode, known_ret);
3763 unsigned HOST_WIDE_INT nz1 =
3764 cached_nonzero_bits (XEXP (x, 1), mode,
3765 known_x, known_mode, known_ret);
3766 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3767 int width0 = floor_log2 (nz0) + 1;
3768 int width1 = floor_log2 (nz1) + 1;
3769 int low0 = floor_log2 (nz0 & -nz0);
3770 int low1 = floor_log2 (nz1 & -nz1);
3771 HOST_WIDE_INT op0_maybe_minusp
3772 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3773 HOST_WIDE_INT op1_maybe_minusp
3774 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3775 unsigned int result_width = mode_width;
3776 int result_low = 0;
3778 switch (code)
3780 case PLUS:
3781 result_width = MAX (width0, width1) + 1;
3782 result_low = MIN (low0, low1);
3783 break;
3784 case MINUS:
3785 result_low = MIN (low0, low1);
3786 break;
3787 case MULT:
3788 result_width = width0 + width1;
3789 result_low = low0 + low1;
3790 break;
3791 case DIV:
3792 if (width1 == 0)
3793 break;
3794 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3795 result_width = width0;
3796 break;
3797 case UDIV:
3798 if (width1 == 0)
3799 break;
3800 result_width = width0;
3801 break;
3802 case MOD:
3803 if (width1 == 0)
3804 break;
3805 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3806 result_width = MIN (width0, width1);
3807 result_low = MIN (low0, low1);
3808 break;
3809 case UMOD:
3810 if (width1 == 0)
3811 break;
3812 result_width = MIN (width0, width1);
3813 result_low = MIN (low0, low1);
3814 break;
3815 default:
3816 gcc_unreachable ();
3819 if (result_width < mode_width)
3820 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3822 if (result_low > 0)
3823 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3825 #ifdef POINTERS_EXTEND_UNSIGNED
3826 /* If pointers extend unsigned and this is an addition or subtraction
3827 to a pointer in Pmode, all the bits above ptr_mode are known to be
3828 zero. */
3829 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3830 && (code == PLUS || code == MINUS)
3831 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3832 nonzero &= GET_MODE_MASK (ptr_mode);
3833 #endif
3835 break;
3837 case ZERO_EXTRACT:
3838 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3839 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3840 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3841 break;
3843 case SUBREG:
3844 /* If this is a SUBREG formed for a promoted variable that has
3845 been zero-extended, we know that at least the high-order bits
3846 are zero, though others might be too. */
3848 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3849 nonzero = GET_MODE_MASK (GET_MODE (x))
3850 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3851 known_x, known_mode, known_ret);
3853 /* If the inner mode is a single word for both the host and target
3854 machines, we can compute this from which bits of the inner
3855 object might be nonzero. */
3856 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3857 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3858 <= HOST_BITS_PER_WIDE_INT))
3860 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3861 known_x, known_mode, known_ret);
3863 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3864 /* If this is a typical RISC machine, we only have to worry
3865 about the way loads are extended. */
3866 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3867 ? (((nonzero
3868 & (((unsigned HOST_WIDE_INT) 1
3869 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3870 != 0))
3871 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3872 || !MEM_P (SUBREG_REG (x)))
3873 #endif
3875 /* On many CISC machines, accessing an object in a wider mode
3876 causes the high-order bits to become undefined. So they are
3877 not known to be zero. */
3878 if (GET_MODE_SIZE (GET_MODE (x))
3879 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3880 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3881 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3884 break;
3886 case ASHIFTRT:
3887 case LSHIFTRT:
3888 case ASHIFT:
3889 case ROTATE:
3890 /* The nonzero bits are in two classes: any bits within MODE
3891 that aren't in GET_MODE (x) are always significant. The rest of the
3892 nonzero bits are those that are significant in the operand of
3893 the shift when shifted the appropriate number of bits. This
3894 shows that high-order bits are cleared by the right shift and
3895 low-order bits by left shifts. */
3896 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3897 && INTVAL (XEXP (x, 1)) >= 0
3898 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3900 enum machine_mode inner_mode = GET_MODE (x);
3901 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3902 int count = INTVAL (XEXP (x, 1));
3903 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3904 unsigned HOST_WIDE_INT op_nonzero =
3905 cached_nonzero_bits (XEXP (x, 0), mode,
3906 known_x, known_mode, known_ret);
3907 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3908 unsigned HOST_WIDE_INT outer = 0;
3910 if (mode_width > width)
3911 outer = (op_nonzero & nonzero & ~mode_mask);
3913 if (code == LSHIFTRT)
3914 inner >>= count;
3915 else if (code == ASHIFTRT)
3917 inner >>= count;
3919 /* If the sign bit may have been nonzero before the shift, we
3920 need to mark all the places it could have been copied to
3921 by the shift as possibly nonzero. */
3922 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3923 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3925 else if (code == ASHIFT)
3926 inner <<= count;
3927 else
3928 inner = ((inner << (count % width)
3929 | (inner >> (width - (count % width)))) & mode_mask);
3931 nonzero &= (outer | inner);
3933 break;
3935 case FFS:
3936 case POPCOUNT:
3937 /* This is at most the number of bits in the mode. */
3938 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3939 break;
3941 case CLZ:
3942 /* If CLZ has a known value at zero, then the nonzero bits are
3943 that value, plus the number of bits in the mode minus one. */
3944 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3945 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3946 else
3947 nonzero = -1;
3948 break;
3950 case CTZ:
3951 /* If CTZ has a known value at zero, then the nonzero bits are
3952 that value, plus the number of bits in the mode minus one. */
3953 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3954 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3955 else
3956 nonzero = -1;
3957 break;
3959 case PARITY:
3960 nonzero = 1;
3961 break;
3963 case IF_THEN_ELSE:
3965 unsigned HOST_WIDE_INT nonzero_true =
3966 cached_nonzero_bits (XEXP (x, 1), mode,
3967 known_x, known_mode, known_ret);
3969 /* Don't call nonzero_bits for the second time if it cannot change
3970 anything. */
3971 if ((nonzero & nonzero_true) != nonzero)
3972 nonzero &= nonzero_true
3973 | cached_nonzero_bits (XEXP (x, 2), mode,
3974 known_x, known_mode, known_ret);
3976 break;
3978 default:
3979 break;
3982 return nonzero;
3985 /* See the macro definition above. */
3986 #undef cached_num_sign_bit_copies
3989 /* The function cached_num_sign_bit_copies is a wrapper around
3990 num_sign_bit_copies1. It avoids exponential behavior in
3991 num_sign_bit_copies1 when X has identical subexpressions on the
3992 first or the second level. */
3994 static unsigned int
3995 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
3996 enum machine_mode known_mode,
3997 unsigned int known_ret)
3999 if (x == known_x && mode == known_mode)
4000 return known_ret;
4002 /* Try to find identical subexpressions. If found call
4003 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4004 the precomputed value for the subexpression as KNOWN_RET. */
4006 if (ARITHMETIC_P (x))
4008 rtx x0 = XEXP (x, 0);
4009 rtx x1 = XEXP (x, 1);
4011 /* Check the first level. */
4012 if (x0 == x1)
4013 return
4014 num_sign_bit_copies1 (x, mode, x0, mode,
4015 cached_num_sign_bit_copies (x0, mode, known_x,
4016 known_mode,
4017 known_ret));
4019 /* Check the second level. */
4020 if (ARITHMETIC_P (x0)
4021 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4022 return
4023 num_sign_bit_copies1 (x, mode, x1, mode,
4024 cached_num_sign_bit_copies (x1, mode, known_x,
4025 known_mode,
4026 known_ret));
4028 if (ARITHMETIC_P (x1)
4029 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4030 return
4031 num_sign_bit_copies1 (x, mode, x0, mode,
4032 cached_num_sign_bit_copies (x0, mode, known_x,
4033 known_mode,
4034 known_ret));
4037 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4040 /* Return the number of bits at the high-order end of X that are known to
4041 be equal to the sign bit. X will be used in mode MODE; if MODE is
4042 VOIDmode, X will be used in its own mode. The returned value will always
4043 be between 1 and the number of bits in MODE. */
4045 static unsigned int
4046 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4047 enum machine_mode known_mode,
4048 unsigned int known_ret)
4050 enum rtx_code code = GET_CODE (x);
4051 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4052 int num0, num1, result;
4053 unsigned HOST_WIDE_INT nonzero;
4055 /* If we weren't given a mode, use the mode of X. If the mode is still
4056 VOIDmode, we don't know anything. Likewise if one of the modes is
4057 floating-point. */
4059 if (mode == VOIDmode)
4060 mode = GET_MODE (x);
4062 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4063 return 1;
4065 /* For a smaller object, just ignore the high bits. */
4066 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4068 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4069 known_x, known_mode, known_ret);
4070 return MAX (1,
4071 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4074 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4076 #ifndef WORD_REGISTER_OPERATIONS
4077 /* If this machine does not do all register operations on the entire
4078 register and MODE is wider than the mode of X, we can say nothing
4079 at all about the high-order bits. */
4080 return 1;
4081 #else
4082 /* Likewise on machines that do, if the mode of the object is smaller
4083 than a word and loads of that size don't sign extend, we can say
4084 nothing about the high order bits. */
4085 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4086 #ifdef LOAD_EXTEND_OP
4087 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4088 #endif
4090 return 1;
4091 #endif
4094 switch (code)
4096 case REG:
4098 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4099 /* If pointers extend signed and this is a pointer in Pmode, say that
4100 all the bits above ptr_mode are known to be sign bit copies. */
4101 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4102 && REG_POINTER (x))
4103 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4104 #endif
4107 unsigned int copies_for_hook = 1, copies = 1;
4108 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4109 known_mode, known_ret,
4110 &copies_for_hook);
4112 if (new)
4113 copies = cached_num_sign_bit_copies (new, mode, known_x,
4114 known_mode, known_ret);
4116 if (copies > 1 || copies_for_hook > 1)
4117 return MAX (copies, copies_for_hook);
4119 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4121 break;
4123 case MEM:
4124 #ifdef LOAD_EXTEND_OP
4125 /* Some RISC machines sign-extend all loads of smaller than a word. */
4126 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4127 return MAX (1, ((int) bitwidth
4128 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4129 #endif
4130 break;
4132 case CONST_INT:
4133 /* If the constant is negative, take its 1's complement and remask.
4134 Then see how many zero bits we have. */
4135 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4136 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4137 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4138 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4140 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4142 case SUBREG:
4143 /* If this is a SUBREG for a promoted object that is sign-extended
4144 and we are looking at it in a wider mode, we know that at least the
4145 high-order bits are known to be sign bit copies. */
4147 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4149 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4150 known_x, known_mode, known_ret);
4151 return MAX ((int) bitwidth
4152 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4153 num0);
4156 /* For a smaller object, just ignore the high bits. */
4157 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4159 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4160 known_x, known_mode, known_ret);
4161 return MAX (1, (num0
4162 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4163 - bitwidth)));
4166 #ifdef WORD_REGISTER_OPERATIONS
4167 #ifdef LOAD_EXTEND_OP
4168 /* For paradoxical SUBREGs on machines where all register operations
4169 affect the entire register, just look inside. Note that we are
4170 passing MODE to the recursive call, so the number of sign bit copies
4171 will remain relative to that mode, not the inner mode. */
4173 /* This works only if loads sign extend. Otherwise, if we get a
4174 reload for the inner part, it may be loaded from the stack, and
4175 then we lose all sign bit copies that existed before the store
4176 to the stack. */
4178 if ((GET_MODE_SIZE (GET_MODE (x))
4179 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4180 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4181 && MEM_P (SUBREG_REG (x)))
4182 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4183 known_x, known_mode, known_ret);
4184 #endif
4185 #endif
4186 break;
4188 case SIGN_EXTRACT:
4189 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4190 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4191 break;
4193 case SIGN_EXTEND:
4194 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4195 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4196 known_x, known_mode, known_ret));
4198 case TRUNCATE:
4199 /* For a smaller object, just ignore the high bits. */
4200 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4201 known_x, known_mode, known_ret);
4202 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4203 - bitwidth)));
4205 case NOT:
4206 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4207 known_x, known_mode, known_ret);
4209 case ROTATE: case ROTATERT:
4210 /* If we are rotating left by a number of bits less than the number
4211 of sign bit copies, we can just subtract that amount from the
4212 number. */
4213 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4214 && INTVAL (XEXP (x, 1)) >= 0
4215 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4217 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4218 known_x, known_mode, known_ret);
4219 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4220 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4222 break;
4224 case NEG:
4225 /* In general, this subtracts one sign bit copy. But if the value
4226 is known to be positive, the number of sign bit copies is the
4227 same as that of the input. Finally, if the input has just one bit
4228 that might be nonzero, all the bits are copies of the sign bit. */
4229 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4230 known_x, known_mode, known_ret);
4231 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4232 return num0 > 1 ? num0 - 1 : 1;
4234 nonzero = nonzero_bits (XEXP (x, 0), mode);
4235 if (nonzero == 1)
4236 return bitwidth;
4238 if (num0 > 1
4239 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4240 num0--;
4242 return num0;
4244 case IOR: case AND: case XOR:
4245 case SMIN: case SMAX: case UMIN: case UMAX:
4246 /* Logical operations will preserve the number of sign-bit copies.
4247 MIN and MAX operations always return one of the operands. */
4248 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4249 known_x, known_mode, known_ret);
4250 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4251 known_x, known_mode, known_ret);
4252 return MIN (num0, num1);
4254 case PLUS: case MINUS:
4255 /* For addition and subtraction, we can have a 1-bit carry. However,
4256 if we are subtracting 1 from a positive number, there will not
4257 be such a carry. Furthermore, if the positive number is known to
4258 be 0 or 1, we know the result is either -1 or 0. */
4260 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4261 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4263 nonzero = nonzero_bits (XEXP (x, 0), mode);
4264 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4265 return (nonzero == 1 || nonzero == 0 ? bitwidth
4266 : bitwidth - floor_log2 (nonzero) - 1);
4269 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4270 known_x, known_mode, known_ret);
4271 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4272 known_x, known_mode, known_ret);
4273 result = MAX (1, MIN (num0, num1) - 1);
4275 #ifdef POINTERS_EXTEND_UNSIGNED
4276 /* If pointers extend signed and this is an addition or subtraction
4277 to a pointer in Pmode, all the bits above ptr_mode are known to be
4278 sign bit copies. */
4279 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4280 && (code == PLUS || code == MINUS)
4281 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4282 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4283 - GET_MODE_BITSIZE (ptr_mode) + 1),
4284 result);
4285 #endif
4286 return result;
4288 case MULT:
4289 /* The number of bits of the product is the sum of the number of
4290 bits of both terms. However, unless one of the terms if known
4291 to be positive, we must allow for an additional bit since negating
4292 a negative number can remove one sign bit copy. */
4294 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4295 known_x, known_mode, known_ret);
4296 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4297 known_x, known_mode, known_ret);
4299 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4300 if (result > 0
4301 && (bitwidth > HOST_BITS_PER_WIDE_INT
4302 || (((nonzero_bits (XEXP (x, 0), mode)
4303 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4304 && ((nonzero_bits (XEXP (x, 1), mode)
4305 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4306 result--;
4308 return MAX (1, result);
4310 case UDIV:
4311 /* The result must be <= the first operand. If the first operand
4312 has the high bit set, we know nothing about the number of sign
4313 bit copies. */
4314 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4315 return 1;
4316 else if ((nonzero_bits (XEXP (x, 0), mode)
4317 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4318 return 1;
4319 else
4320 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4321 known_x, known_mode, known_ret);
4323 case UMOD:
4324 /* The result must be <= the second operand. */
4325 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4326 known_x, known_mode, known_ret);
4328 case DIV:
4329 /* Similar to unsigned division, except that we have to worry about
4330 the case where the divisor is negative, in which case we have
4331 to add 1. */
4332 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4333 known_x, known_mode, known_ret);
4334 if (result > 1
4335 && (bitwidth > HOST_BITS_PER_WIDE_INT
4336 || (nonzero_bits (XEXP (x, 1), mode)
4337 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4338 result--;
4340 return result;
4342 case MOD:
4343 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4344 known_x, known_mode, known_ret);
4345 if (result > 1
4346 && (bitwidth > HOST_BITS_PER_WIDE_INT
4347 || (nonzero_bits (XEXP (x, 1), mode)
4348 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4349 result--;
4351 return result;
4353 case ASHIFTRT:
4354 /* Shifts by a constant add to the number of bits equal to the
4355 sign bit. */
4356 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4357 known_x, known_mode, known_ret);
4358 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4359 && INTVAL (XEXP (x, 1)) > 0)
4360 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4362 return num0;
4364 case ASHIFT:
4365 /* Left shifts destroy copies. */
4366 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4367 || INTVAL (XEXP (x, 1)) < 0
4368 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4369 return 1;
4371 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4372 known_x, known_mode, known_ret);
4373 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4375 case IF_THEN_ELSE:
4376 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4377 known_x, known_mode, known_ret);
4378 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4379 known_x, known_mode, known_ret);
4380 return MIN (num0, num1);
4382 case EQ: case NE: case GE: case GT: case LE: case LT:
4383 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4384 case GEU: case GTU: case LEU: case LTU:
4385 case UNORDERED: case ORDERED:
4386 /* If the constant is negative, take its 1's complement and remask.
4387 Then see how many zero bits we have. */
4388 nonzero = STORE_FLAG_VALUE;
4389 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4390 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4391 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4393 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4395 default:
4396 break;
4399 /* If we haven't been able to figure it out by one of the above rules,
4400 see if some of the high-order bits are known to be zero. If so,
4401 count those bits and return one less than that amount. If we can't
4402 safely compute the mask for this mode, always return BITWIDTH. */
4404 bitwidth = GET_MODE_BITSIZE (mode);
4405 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4406 return 1;
4408 nonzero = nonzero_bits (x, mode);
4409 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4410 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4413 /* Calculate the rtx_cost of a single instruction. A return value of
4414 zero indicates an instruction pattern without a known cost. */
4417 insn_rtx_cost (rtx pat)
4419 int i, cost;
4420 rtx set;
4422 /* Extract the single set rtx from the instruction pattern.
4423 We can't use single_set since we only have the pattern. */
4424 if (GET_CODE (pat) == SET)
4425 set = pat;
4426 else if (GET_CODE (pat) == PARALLEL)
4428 set = NULL_RTX;
4429 for (i = 0; i < XVECLEN (pat, 0); i++)
4431 rtx x = XVECEXP (pat, 0, i);
4432 if (GET_CODE (x) == SET)
4434 if (set)
4435 return 0;
4436 set = x;
4439 if (!set)
4440 return 0;
4442 else
4443 return 0;
4445 cost = rtx_cost (SET_SRC (set), SET);
4446 return cost > 0 ? cost : COSTS_N_INSNS (1);
4449 /* Given an insn INSN and condition COND, return the condition in a
4450 canonical form to simplify testing by callers. Specifically:
4452 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4453 (2) Both operands will be machine operands; (cc0) will have been replaced.
4454 (3) If an operand is a constant, it will be the second operand.
4455 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4456 for GE, GEU, and LEU.
4458 If the condition cannot be understood, or is an inequality floating-point
4459 comparison which needs to be reversed, 0 will be returned.
4461 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4463 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4464 insn used in locating the condition was found. If a replacement test
4465 of the condition is desired, it should be placed in front of that
4466 insn and we will be sure that the inputs are still valid.
4468 If WANT_REG is nonzero, we wish the condition to be relative to that
4469 register, if possible. Therefore, do not canonicalize the condition
4470 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4471 to be a compare to a CC mode register.
4473 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4474 and at INSN. */
4477 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4478 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4480 enum rtx_code code;
4481 rtx prev = insn;
4482 rtx set;
4483 rtx tem;
4484 rtx op0, op1;
4485 int reverse_code = 0;
4486 enum machine_mode mode;
4488 code = GET_CODE (cond);
4489 mode = GET_MODE (cond);
4490 op0 = XEXP (cond, 0);
4491 op1 = XEXP (cond, 1);
4493 if (reverse)
4494 code = reversed_comparison_code (cond, insn);
4495 if (code == UNKNOWN)
4496 return 0;
4498 if (earliest)
4499 *earliest = insn;
4501 /* If we are comparing a register with zero, see if the register is set
4502 in the previous insn to a COMPARE or a comparison operation. Perform
4503 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4504 in cse.c */
4506 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4507 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4508 && op1 == CONST0_RTX (GET_MODE (op0))
4509 && op0 != want_reg)
4511 /* Set nonzero when we find something of interest. */
4512 rtx x = 0;
4514 #ifdef HAVE_cc0
4515 /* If comparison with cc0, import actual comparison from compare
4516 insn. */
4517 if (op0 == cc0_rtx)
4519 if ((prev = prev_nonnote_insn (prev)) == 0
4520 || !NONJUMP_INSN_P (prev)
4521 || (set = single_set (prev)) == 0
4522 || SET_DEST (set) != cc0_rtx)
4523 return 0;
4525 op0 = SET_SRC (set);
4526 op1 = CONST0_RTX (GET_MODE (op0));
4527 if (earliest)
4528 *earliest = prev;
4530 #endif
4532 /* If this is a COMPARE, pick up the two things being compared. */
4533 if (GET_CODE (op0) == COMPARE)
4535 op1 = XEXP (op0, 1);
4536 op0 = XEXP (op0, 0);
4537 continue;
4539 else if (!REG_P (op0))
4540 break;
4542 /* Go back to the previous insn. Stop if it is not an INSN. We also
4543 stop if it isn't a single set or if it has a REG_INC note because
4544 we don't want to bother dealing with it. */
4546 if ((prev = prev_nonnote_insn (prev)) == 0
4547 || !NONJUMP_INSN_P (prev)
4548 || FIND_REG_INC_NOTE (prev, NULL_RTX))
4549 break;
4551 set = set_of (op0, prev);
4553 if (set
4554 && (GET_CODE (set) != SET
4555 || !rtx_equal_p (SET_DEST (set), op0)))
4556 break;
4558 /* If this is setting OP0, get what it sets it to if it looks
4559 relevant. */
4560 if (set)
4562 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4563 #ifdef FLOAT_STORE_FLAG_VALUE
4564 REAL_VALUE_TYPE fsfv;
4565 #endif
4567 /* ??? We may not combine comparisons done in a CCmode with
4568 comparisons not done in a CCmode. This is to aid targets
4569 like Alpha that have an IEEE compliant EQ instruction, and
4570 a non-IEEE compliant BEQ instruction. The use of CCmode is
4571 actually artificial, simply to prevent the combination, but
4572 should not affect other platforms.
4574 However, we must allow VOIDmode comparisons to match either
4575 CCmode or non-CCmode comparison, because some ports have
4576 modeless comparisons inside branch patterns.
4578 ??? This mode check should perhaps look more like the mode check
4579 in simplify_comparison in combine. */
4581 if ((GET_CODE (SET_SRC (set)) == COMPARE
4582 || (((code == NE
4583 || (code == LT
4584 && GET_MODE_CLASS (inner_mode) == MODE_INT
4585 && (GET_MODE_BITSIZE (inner_mode)
4586 <= HOST_BITS_PER_WIDE_INT)
4587 && (STORE_FLAG_VALUE
4588 & ((HOST_WIDE_INT) 1
4589 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4590 #ifdef FLOAT_STORE_FLAG_VALUE
4591 || (code == LT
4592 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
4593 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4594 REAL_VALUE_NEGATIVE (fsfv)))
4595 #endif
4597 && COMPARISON_P (SET_SRC (set))))
4598 && (((GET_MODE_CLASS (mode) == MODE_CC)
4599 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4600 || mode == VOIDmode || inner_mode == VOIDmode))
4601 x = SET_SRC (set);
4602 else if (((code == EQ
4603 || (code == GE
4604 && (GET_MODE_BITSIZE (inner_mode)
4605 <= HOST_BITS_PER_WIDE_INT)
4606 && GET_MODE_CLASS (inner_mode) == MODE_INT
4607 && (STORE_FLAG_VALUE
4608 & ((HOST_WIDE_INT) 1
4609 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4610 #ifdef FLOAT_STORE_FLAG_VALUE
4611 || (code == GE
4612 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
4613 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4614 REAL_VALUE_NEGATIVE (fsfv)))
4615 #endif
4617 && COMPARISON_P (SET_SRC (set))
4618 && (((GET_MODE_CLASS (mode) == MODE_CC)
4619 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4620 || mode == VOIDmode || inner_mode == VOIDmode))
4623 reverse_code = 1;
4624 x = SET_SRC (set);
4626 else
4627 break;
4630 else if (reg_set_p (op0, prev))
4631 /* If this sets OP0, but not directly, we have to give up. */
4632 break;
4634 if (x)
4636 /* If the caller is expecting the condition to be valid at INSN,
4637 make sure X doesn't change before INSN. */
4638 if (valid_at_insn_p)
4639 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4640 break;
4641 if (COMPARISON_P (x))
4642 code = GET_CODE (x);
4643 if (reverse_code)
4645 code = reversed_comparison_code (x, prev);
4646 if (code == UNKNOWN)
4647 return 0;
4648 reverse_code = 0;
4651 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4652 if (earliest)
4653 *earliest = prev;
4657 /* If constant is first, put it last. */
4658 if (CONSTANT_P (op0))
4659 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4661 /* If OP0 is the result of a comparison, we weren't able to find what
4662 was really being compared, so fail. */
4663 if (!allow_cc_mode
4664 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4665 return 0;
4667 /* Canonicalize any ordered comparison with integers involving equality
4668 if we can do computations in the relevant mode and we do not
4669 overflow. */
4671 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4672 && GET_CODE (op1) == CONST_INT
4673 && GET_MODE (op0) != VOIDmode
4674 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4676 HOST_WIDE_INT const_val = INTVAL (op1);
4677 unsigned HOST_WIDE_INT uconst_val = const_val;
4678 unsigned HOST_WIDE_INT max_val
4679 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4681 switch (code)
4683 case LE:
4684 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4685 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4686 break;
4688 /* When cross-compiling, const_val might be sign-extended from
4689 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4690 case GE:
4691 if ((HOST_WIDE_INT) (const_val & max_val)
4692 != (((HOST_WIDE_INT) 1
4693 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4694 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4695 break;
4697 case LEU:
4698 if (uconst_val < max_val)
4699 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4700 break;
4702 case GEU:
4703 if (uconst_val != 0)
4704 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4705 break;
4707 default:
4708 break;
4712 /* Never return CC0; return zero instead. */
4713 if (CC0_P (op0))
4714 return 0;
4716 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4719 /* Given a jump insn JUMP, return the condition that will cause it to branch
4720 to its JUMP_LABEL. If the condition cannot be understood, or is an
4721 inequality floating-point comparison which needs to be reversed, 0 will
4722 be returned.
4724 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4725 insn used in locating the condition was found. If a replacement test
4726 of the condition is desired, it should be placed in front of that
4727 insn and we will be sure that the inputs are still valid. If EARLIEST
4728 is null, the returned condition will be valid at INSN.
4730 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4731 compare CC mode register.
4733 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4736 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4738 rtx cond;
4739 int reverse;
4740 rtx set;
4742 /* If this is not a standard conditional jump, we can't parse it. */
4743 if (!JUMP_P (jump)
4744 || ! any_condjump_p (jump))
4745 return 0;
4746 set = pc_set (jump);
4748 cond = XEXP (SET_SRC (set), 0);
4750 /* If this branches to JUMP_LABEL when the condition is false, reverse
4751 the condition. */
4752 reverse
4753 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4754 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4756 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4757 allow_cc_mode, valid_at_insn_p);
4761 /* Initialize non_rtx_starting_operands, which is used to speed up
4762 for_each_rtx. */
4763 void
4764 init_rtlanal (void)
4766 int i;
4767 for (i = 0; i < NUM_RTX_CODE; i++)
4769 const char *format = GET_RTX_FORMAT (i);
4770 const char *first = strpbrk (format, "eEV");
4771 non_rtx_starting_operands[i] = first ? first - format : -1;