* check-init.c, decl.c, expr.c, gcj.texi, java-tree.h,
[official-gcc.git] / gcc / flow.c
blobaa45def3e7c2f41118ee0da84036afbc314667f7
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED, REG_N_THROWING_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
141 #include "obstack.h"
142 #include "splay-tree.h"
143 #include "tree-pass.h"
145 #ifndef HAVE_epilogue
146 #define HAVE_epilogue 0
147 #endif
148 #ifndef HAVE_prologue
149 #define HAVE_prologue 0
150 #endif
151 #ifndef HAVE_sibcall_epilogue
152 #define HAVE_sibcall_epilogue 0
153 #endif
155 #ifndef EPILOGUE_USES
156 #define EPILOGUE_USES(REGNO) 0
157 #endif
158 #ifndef EH_USES
159 #define EH_USES(REGNO) 0
160 #endif
162 #ifdef HAVE_conditional_execution
163 #ifndef REVERSE_CONDEXEC_PREDICATES_P
164 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
165 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
166 #endif
167 #endif
169 /* This is the maximum number of times we process any given block if the
170 latest loop depth count is smaller than this number. Only used for the
171 failure strategy to avoid infinite loops in calculate_global_regs_live. */
172 #define MAX_LIVENESS_ROUNDS 20
174 /* Nonzero if the second flow pass has completed. */
175 int flow2_completed;
177 /* Maximum register number used in this function, plus one. */
179 int max_regno;
181 /* Indexed by n, giving various register information */
183 varray_type reg_n_info;
185 /* Regset of regs live when calls to `setjmp'-like functions happen. */
186 /* ??? Does this exist only for the setjmp-clobbered warning message? */
188 static regset regs_live_at_setjmp;
190 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
191 that have to go in the same hard reg.
192 The first two regs in the list are a pair, and the next two
193 are another pair, etc. */
194 rtx regs_may_share;
196 /* Set of registers that may be eliminable. These are handled specially
197 in updating regs_ever_live. */
199 static HARD_REG_SET elim_reg_set;
201 /* Holds information for tracking conditional register life information. */
202 struct reg_cond_life_info
204 /* A boolean expression of conditions under which a register is dead. */
205 rtx condition;
206 /* Conditions under which a register is dead at the basic block end. */
207 rtx orig_condition;
209 /* A boolean expression of conditions under which a register has been
210 stored into. */
211 rtx stores;
213 /* ??? Could store mask of bytes that are dead, so that we could finally
214 track lifetimes of multi-word registers accessed via subregs. */
217 /* For use in communicating between propagate_block and its subroutines.
218 Holds all information needed to compute life and def-use information. */
220 struct propagate_block_info
222 /* The basic block we're considering. */
223 basic_block bb;
225 /* Bit N is set if register N is conditionally or unconditionally live. */
226 regset reg_live;
228 /* Bit N is set if register N is set this insn. */
229 regset new_set;
231 /* Element N is the next insn that uses (hard or pseudo) register N
232 within the current basic block; or zero, if there is no such insn. */
233 rtx *reg_next_use;
235 /* Contains a list of all the MEMs we are tracking for dead store
236 elimination. */
237 rtx mem_set_list;
239 /* If non-null, record the set of registers set unconditionally in the
240 basic block. */
241 regset local_set;
243 /* If non-null, record the set of registers set conditionally in the
244 basic block. */
245 regset cond_local_set;
247 #ifdef HAVE_conditional_execution
248 /* Indexed by register number, holds a reg_cond_life_info for each
249 register that is not unconditionally live or dead. */
250 splay_tree reg_cond_dead;
252 /* Bit N is set if register N is in an expression in reg_cond_dead. */
253 regset reg_cond_reg;
254 #endif
256 /* The length of mem_set_list. */
257 int mem_set_list_len;
259 /* Nonzero if the value of CC0 is live. */
260 int cc0_live;
262 /* Flags controlling the set of information propagate_block collects. */
263 int flags;
264 /* Index of instruction being processed. */
265 int insn_num;
268 /* Number of dead insns removed. */
269 static int ndead;
271 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
272 where given register died. When the register is marked alive, we use the
273 information to compute amount of instructions life range cross.
274 (remember, we are walking backward). This can be computed as current
275 pbi->insn_num - reg_deaths[regno].
276 At the end of processing each basic block, the remaining live registers
277 are inspected and live ranges are increased same way so liverange of global
278 registers are computed correctly.
280 The array is maintained clear for dead registers, so it can be safely reused
281 for next basic block without expensive memset of the whole array after
282 reseting pbi->insn_num to 0. */
284 static int *reg_deaths;
286 /* Maximum length of pbi->mem_set_list before we start dropping
287 new elements on the floor. */
288 #define MAX_MEM_SET_LIST_LEN 100
290 /* Forward declarations */
291 static int verify_wide_reg_1 (rtx *, void *);
292 static void verify_wide_reg (int, basic_block);
293 static void verify_local_live_at_start (regset, basic_block);
294 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
295 static void notice_stack_pointer_modification (void);
296 static void mark_reg (rtx, void *);
297 static void mark_regs_live_at_end (regset);
298 static void calculate_global_regs_live (sbitmap, sbitmap, int);
299 static void propagate_block_delete_insn (rtx);
300 static rtx propagate_block_delete_libcall (rtx, rtx);
301 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
302 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
304 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
305 rtx, rtx, int);
306 static int find_regno_partial (rtx *, void *);
308 #ifdef HAVE_conditional_execution
309 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
310 static void free_reg_cond_life_info (splay_tree_value);
311 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
312 static void flush_reg_cond_reg (struct propagate_block_info *, int);
313 static rtx elim_reg_cond (rtx, unsigned int);
314 static rtx ior_reg_cond (rtx, rtx, int);
315 static rtx not_reg_cond (rtx);
316 static rtx and_reg_cond (rtx, rtx, int);
317 #endif
318 #ifdef AUTO_INC_DEC
319 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
320 rtx, rtx);
321 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
322 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
323 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
324 #endif
325 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
326 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
327 void debug_flow_info (void);
328 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
329 static int invalidate_mems_from_autoinc (rtx *, void *);
330 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
331 static void clear_log_links (sbitmap);
332 static int count_or_remove_death_notes_bb (basic_block, int);
333 static void allocate_bb_life_data (void);
335 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
336 note associated with the BLOCK. */
339 first_insn_after_basic_block_note (basic_block block)
341 rtx insn;
343 /* Get the first instruction in the block. */
344 insn = BB_HEAD (block);
346 if (insn == NULL_RTX)
347 return NULL_RTX;
348 if (LABEL_P (insn))
349 insn = NEXT_INSN (insn);
350 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
352 return NEXT_INSN (insn);
355 /* Perform data flow analysis for the whole control flow graph.
356 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
358 void
359 life_analysis (FILE *file, int flags)
361 #ifdef ELIMINABLE_REGS
362 int i;
363 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
364 #endif
366 /* Record which registers will be eliminated. We use this in
367 mark_used_regs. */
369 CLEAR_HARD_REG_SET (elim_reg_set);
371 #ifdef ELIMINABLE_REGS
372 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
373 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
374 #else
375 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
376 #endif
379 #ifdef CANNOT_CHANGE_MODE_CLASS
380 if (flags & PROP_REG_INFO)
381 init_subregs_of_mode ();
382 #endif
384 if (! optimize)
385 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
387 /* The post-reload life analysis have (on a global basis) the same
388 registers live as was computed by reload itself. elimination
389 Otherwise offsets and such may be incorrect.
391 Reload will make some registers as live even though they do not
392 appear in the rtl.
394 We don't want to create new auto-incs after reload, since they
395 are unlikely to be useful and can cause problems with shared
396 stack slots. */
397 if (reload_completed)
398 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
400 /* We want alias analysis information for local dead store elimination. */
401 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
402 init_alias_analysis ();
404 /* Always remove no-op moves. Do this before other processing so
405 that we don't have to keep re-scanning them. */
406 delete_noop_moves ();
408 /* Some targets can emit simpler epilogues if they know that sp was
409 not ever modified during the function. After reload, of course,
410 we've already emitted the epilogue so there's no sense searching. */
411 if (! reload_completed)
412 notice_stack_pointer_modification ();
414 /* Allocate and zero out data structures that will record the
415 data from lifetime analysis. */
416 allocate_reg_life_data ();
417 allocate_bb_life_data ();
419 /* Find the set of registers live on function exit. */
420 mark_regs_live_at_end (EXIT_BLOCK_PTR->il.rtl->global_live_at_start);
422 /* "Update" life info from zero. It'd be nice to begin the
423 relaxation with just the exit and noreturn blocks, but that set
424 is not immediately handy. */
426 if (flags & PROP_REG_INFO)
428 memset (regs_ever_live, 0, sizeof (regs_ever_live));
429 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
431 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
432 if (reg_deaths)
434 free (reg_deaths);
435 reg_deaths = NULL;
438 /* Clean up. */
439 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
440 end_alias_analysis ();
442 if (file)
443 dump_flow_info (file);
445 /* Removing dead insns should have made jumptables really dead. */
446 delete_dead_jumptables ();
449 /* A subroutine of verify_wide_reg, called through for_each_rtx.
450 Search for REGNO. If found, return 2 if it is not wider than
451 word_mode. */
453 static int
454 verify_wide_reg_1 (rtx *px, void *pregno)
456 rtx x = *px;
457 unsigned int regno = *(int *) pregno;
459 if (REG_P (x) && REGNO (x) == regno)
461 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
462 return 2;
463 return 1;
465 return 0;
468 /* A subroutine of verify_local_live_at_start. Search through insns
469 of BB looking for register REGNO. */
471 static void
472 verify_wide_reg (int regno, basic_block bb)
474 rtx head = BB_HEAD (bb), end = BB_END (bb);
476 while (1)
478 if (INSN_P (head))
480 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
481 if (r == 1)
482 return;
483 if (r == 2)
484 break;
486 if (head == end)
487 break;
488 head = NEXT_INSN (head);
490 if (dump_file)
492 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
493 dump_bb (bb, dump_file, 0);
495 fatal_error ("internal consistency failure");
498 /* A subroutine of update_life_info. Verify that there are no untoward
499 changes in live_at_start during a local update. */
501 static void
502 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
504 if (reload_completed)
506 /* After reload, there are no pseudos, nor subregs of multi-word
507 registers. The regsets should exactly match. */
508 if (! REG_SET_EQUAL_P (new_live_at_start,
509 bb->il.rtl->global_live_at_start))
511 if (dump_file)
513 fprintf (dump_file,
514 "live_at_start mismatch in bb %d, aborting\nNew:\n",
515 bb->index);
516 debug_bitmap_file (dump_file, new_live_at_start);
517 fputs ("Old:\n", dump_file);
518 dump_bb (bb, dump_file, 0);
520 fatal_error ("internal consistency failure");
523 else
525 unsigned i;
526 reg_set_iterator rsi;
528 /* Find the set of changed registers. */
529 XOR_REG_SET (new_live_at_start, bb->il.rtl->global_live_at_start);
531 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i, rsi)
533 /* No registers should die. */
534 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, i))
536 if (dump_file)
538 fprintf (dump_file,
539 "Register %d died unexpectedly.\n", i);
540 dump_bb (bb, dump_file, 0);
542 fatal_error ("internal consistency failure");
544 /* Verify that the now-live register is wider than word_mode. */
545 verify_wide_reg (i, bb);
550 /* Updates life information starting with the basic blocks set in BLOCKS.
551 If BLOCKS is null, consider it to be the universal set.
553 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
554 we are only expecting local modifications to basic blocks. If we find
555 extra registers live at the beginning of a block, then we either killed
556 useful data, or we have a broken split that wants data not provided.
557 If we find registers removed from live_at_start, that means we have
558 a broken peephole that is killing a register it shouldn't.
560 ??? This is not true in one situation -- when a pre-reload splitter
561 generates subregs of a multi-word pseudo, current life analysis will
562 lose the kill. So we _can_ have a pseudo go live. How irritating.
564 It is also not true when a peephole decides that it doesn't need one
565 or more of the inputs.
567 Including PROP_REG_INFO does not properly refresh regs_ever_live
568 unless the caller resets it to zero. */
571 update_life_info (sbitmap blocks, enum update_life_extent extent,
572 int prop_flags)
574 regset tmp;
575 unsigned i = 0;
576 int stabilized_prop_flags = prop_flags;
577 basic_block bb;
579 tmp = ALLOC_REG_SET (&reg_obstack);
580 ndead = 0;
582 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
583 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
585 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
586 ? TV_LIFE_UPDATE : TV_LIFE);
588 /* Changes to the CFG are only allowed when
589 doing a global update for the entire CFG. */
590 gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
591 || (extent != UPDATE_LIFE_LOCAL && !blocks));
593 /* For a global update, we go through the relaxation process again. */
594 if (extent != UPDATE_LIFE_LOCAL)
596 for ( ; ; )
598 int changed = 0;
600 calculate_global_regs_live (blocks, blocks,
601 prop_flags & (PROP_SCAN_DEAD_CODE
602 | PROP_SCAN_DEAD_STORES
603 | PROP_ALLOW_CFG_CHANGES));
605 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
606 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
607 break;
609 /* Removing dead code may allow the CFG to be simplified which
610 in turn may allow for further dead code detection / removal. */
611 FOR_EACH_BB_REVERSE (bb)
613 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
614 changed |= propagate_block (bb, tmp, NULL, NULL,
615 prop_flags & (PROP_SCAN_DEAD_CODE
616 | PROP_SCAN_DEAD_STORES
617 | PROP_KILL_DEAD_CODE));
620 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
621 subsequent propagate_block calls, since removing or acting as
622 removing dead code can affect global register liveness, which
623 is supposed to be finalized for this call after this loop. */
624 stabilized_prop_flags
625 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
626 | PROP_KILL_DEAD_CODE);
628 if (! changed)
629 break;
631 /* We repeat regardless of what cleanup_cfg says. If there were
632 instructions deleted above, that might have been only a
633 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
634 Further improvement may be possible. */
635 cleanup_cfg (CLEANUP_EXPENSIVE);
637 /* Zap the life information from the last round. If we don't
638 do this, we can wind up with registers that no longer appear
639 in the code being marked live at entry. */
640 FOR_EACH_BB (bb)
642 CLEAR_REG_SET (bb->il.rtl->global_live_at_start);
643 CLEAR_REG_SET (bb->il.rtl->global_live_at_end);
647 /* If asked, remove notes from the blocks we'll update. */
648 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
649 count_or_remove_death_notes (blocks, 1);
652 /* Clear log links in case we are asked to (re)compute them. */
653 if (prop_flags & PROP_LOG_LINKS)
654 clear_log_links (blocks);
656 if (blocks)
658 sbitmap_iterator sbi;
660 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
662 bb = BASIC_BLOCK (i);
664 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
665 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
667 if (extent == UPDATE_LIFE_LOCAL)
668 verify_local_live_at_start (tmp, bb);
671 else
673 FOR_EACH_BB_REVERSE (bb)
675 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
677 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
679 if (extent == UPDATE_LIFE_LOCAL)
680 verify_local_live_at_start (tmp, bb);
684 FREE_REG_SET (tmp);
686 if (prop_flags & PROP_REG_INFO)
688 reg_set_iterator rsi;
690 /* The only pseudos that are live at the beginning of the function
691 are those that were not set anywhere in the function. local-alloc
692 doesn't know how to handle these correctly, so mark them as not
693 local to any one basic block. */
694 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
695 FIRST_PSEUDO_REGISTER, i, rsi)
696 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
698 /* We have a problem with any pseudoreg that lives across the setjmp.
699 ANSI says that if a user variable does not change in value between
700 the setjmp and the longjmp, then the longjmp preserves it. This
701 includes longjmp from a place where the pseudo appears dead.
702 (In principle, the value still exists if it is in scope.)
703 If the pseudo goes in a hard reg, some other value may occupy
704 that hard reg where this pseudo is dead, thus clobbering the pseudo.
705 Conclusion: such a pseudo must not go in a hard reg. */
706 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
707 FIRST_PSEUDO_REGISTER, i, rsi)
709 if (regno_reg_rtx[i] != 0)
711 REG_LIVE_LENGTH (i) = -1;
712 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
716 if (reg_deaths)
718 free (reg_deaths);
719 reg_deaths = NULL;
721 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
722 ? TV_LIFE_UPDATE : TV_LIFE);
723 if (ndead && dump_file)
724 fprintf (dump_file, "deleted %i dead insns\n", ndead);
725 return ndead;
728 /* Update life information in all blocks where BB_DIRTY is set. */
731 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
733 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
734 int n = 0;
735 basic_block bb;
736 int retval = 0;
738 sbitmap_zero (update_life_blocks);
739 FOR_EACH_BB (bb)
741 if (bb->flags & BB_DIRTY)
743 SET_BIT (update_life_blocks, bb->index);
744 n++;
748 if (n)
749 retval = update_life_info (update_life_blocks, extent, prop_flags);
751 sbitmap_free (update_life_blocks);
752 return retval;
755 /* Free the variables allocated by find_basic_blocks. */
757 void
758 free_basic_block_vars (void)
760 if (basic_block_info)
762 clear_edges ();
763 basic_block_info = NULL;
765 n_basic_blocks = 0;
766 last_basic_block = 0;
767 n_edges = 0;
769 label_to_block_map = NULL;
771 ENTRY_BLOCK_PTR->aux = NULL;
772 ENTRY_BLOCK_PTR->il.rtl->global_live_at_end = NULL;
773 EXIT_BLOCK_PTR->aux = NULL;
774 EXIT_BLOCK_PTR->il.rtl->global_live_at_start = NULL;
777 /* Delete any insns that copy a register to itself. */
780 delete_noop_moves (void)
782 rtx insn, next;
783 basic_block bb;
784 int nnoops = 0;
786 FOR_EACH_BB (bb)
788 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
790 next = NEXT_INSN (insn);
791 if (INSN_P (insn) && noop_move_p (insn))
793 rtx note;
795 /* If we're about to remove the first insn of a libcall
796 then move the libcall note to the next real insn and
797 update the retval note. */
798 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
799 && XEXP (note, 0) != insn)
801 rtx new_libcall_insn = next_real_insn (insn);
802 rtx retval_note = find_reg_note (XEXP (note, 0),
803 REG_RETVAL, NULL_RTX);
804 REG_NOTES (new_libcall_insn)
805 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
806 REG_NOTES (new_libcall_insn));
807 XEXP (retval_note, 0) = new_libcall_insn;
810 delete_insn_and_edges (insn);
811 nnoops++;
815 if (nnoops && dump_file)
816 fprintf (dump_file, "deleted %i noop moves", nnoops);
817 return nnoops;
820 /* Delete any jump tables never referenced. We can't delete them at the
821 time of removing tablejump insn as they are referenced by the preceding
822 insns computing the destination, so we delay deleting and garbagecollect
823 them once life information is computed. */
824 void
825 delete_dead_jumptables (void)
827 basic_block bb;
829 /* A dead jump table does not belong to any basic block. Scan insns
830 between two adjacent basic blocks. */
831 FOR_EACH_BB (bb)
833 rtx insn, next;
835 for (insn = NEXT_INSN (BB_END (bb));
836 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
837 insn = next)
839 next = NEXT_INSN (insn);
840 if (LABEL_P (insn)
841 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
842 && JUMP_P (next)
843 && (GET_CODE (PATTERN (next)) == ADDR_VEC
844 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
846 rtx label = insn, jump = next;
848 if (dump_file)
849 fprintf (dump_file, "Dead jumptable %i removed\n",
850 INSN_UID (insn));
852 next = NEXT_INSN (next);
853 delete_insn (jump);
854 delete_insn (label);
860 /* Determine if the stack pointer is constant over the life of the function.
861 Only useful before prologues have been emitted. */
863 static void
864 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
865 void *data ATTRIBUTE_UNUSED)
867 if (x == stack_pointer_rtx
868 /* The stack pointer is only modified indirectly as the result
869 of a push until later in flow. See the comments in rtl.texi
870 regarding Embedded Side-Effects on Addresses. */
871 || (MEM_P (x)
872 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
873 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
874 current_function_sp_is_unchanging = 0;
877 static void
878 notice_stack_pointer_modification (void)
880 basic_block bb;
881 rtx insn;
883 /* Assume that the stack pointer is unchanging if alloca hasn't
884 been used. */
885 current_function_sp_is_unchanging = !current_function_calls_alloca;
886 if (! current_function_sp_is_unchanging)
887 return;
889 FOR_EACH_BB (bb)
890 FOR_BB_INSNS (bb, insn)
892 if (INSN_P (insn))
894 /* Check if insn modifies the stack pointer. */
895 note_stores (PATTERN (insn),
896 notice_stack_pointer_modification_1,
897 NULL);
898 if (! current_function_sp_is_unchanging)
899 return;
904 /* Mark a register in SET. Hard registers in large modes get all
905 of their component registers set as well. */
907 static void
908 mark_reg (rtx reg, void *xset)
910 regset set = (regset) xset;
911 int regno = REGNO (reg);
913 gcc_assert (GET_MODE (reg) != BLKmode);
915 SET_REGNO_REG_SET (set, regno);
916 if (regno < FIRST_PSEUDO_REGISTER)
918 int n = hard_regno_nregs[regno][GET_MODE (reg)];
919 while (--n > 0)
920 SET_REGNO_REG_SET (set, regno + n);
924 /* Mark those regs which are needed at the end of the function as live
925 at the end of the last basic block. */
927 static void
928 mark_regs_live_at_end (regset set)
930 unsigned int i;
932 /* If exiting needs the right stack value, consider the stack pointer
933 live at the end of the function. */
934 if ((HAVE_epilogue && epilogue_completed)
935 || ! EXIT_IGNORE_STACK
936 || (! FRAME_POINTER_REQUIRED
937 && ! current_function_calls_alloca
938 && flag_omit_frame_pointer)
939 || current_function_sp_is_unchanging)
941 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
944 /* Mark the frame pointer if needed at the end of the function. If
945 we end up eliminating it, it will be removed from the live list
946 of each basic block by reload. */
948 if (! reload_completed || frame_pointer_needed)
950 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
951 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
952 /* If they are different, also mark the hard frame pointer as live. */
953 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
954 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
955 #endif
958 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
959 /* Many architectures have a GP register even without flag_pic.
960 Assume the pic register is not in use, or will be handled by
961 other means, if it is not fixed. */
962 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
963 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
964 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
965 #endif
967 /* Mark all global registers, and all registers used by the epilogue
968 as being live at the end of the function since they may be
969 referenced by our caller. */
970 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
971 if (global_regs[i] || EPILOGUE_USES (i))
972 SET_REGNO_REG_SET (set, i);
974 if (HAVE_epilogue && epilogue_completed)
976 /* Mark all call-saved registers that we actually used. */
977 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
978 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
979 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
980 SET_REGNO_REG_SET (set, i);
983 #ifdef EH_RETURN_DATA_REGNO
984 /* Mark the registers that will contain data for the handler. */
985 if (reload_completed && current_function_calls_eh_return)
986 for (i = 0; ; ++i)
988 unsigned regno = EH_RETURN_DATA_REGNO(i);
989 if (regno == INVALID_REGNUM)
990 break;
991 SET_REGNO_REG_SET (set, regno);
993 #endif
994 #ifdef EH_RETURN_STACKADJ_RTX
995 if ((! HAVE_epilogue || ! epilogue_completed)
996 && current_function_calls_eh_return)
998 rtx tmp = EH_RETURN_STACKADJ_RTX;
999 if (tmp && REG_P (tmp))
1000 mark_reg (tmp, set);
1002 #endif
1003 #ifdef EH_RETURN_HANDLER_RTX
1004 if ((! HAVE_epilogue || ! epilogue_completed)
1005 && current_function_calls_eh_return)
1007 rtx tmp = EH_RETURN_HANDLER_RTX;
1008 if (tmp && REG_P (tmp))
1009 mark_reg (tmp, set);
1011 #endif
1013 /* Mark function return value. */
1014 diddle_return_value (mark_reg, set);
1017 /* Propagate global life info around the graph of basic blocks. Begin
1018 considering blocks with their corresponding bit set in BLOCKS_IN.
1019 If BLOCKS_IN is null, consider it the universal set.
1021 BLOCKS_OUT is set for every block that was changed. */
1023 static void
1024 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1026 basic_block *queue, *qhead, *qtail, *qend, bb;
1027 regset tmp, new_live_at_end, invalidated_by_call;
1028 regset registers_made_dead;
1029 bool failure_strategy_required = false;
1030 int *block_accesses;
1032 /* The registers that are modified within this in block. */
1033 regset *local_sets;
1035 /* The registers that are conditionally modified within this block.
1036 In other words, regs that are set only as part of a COND_EXEC. */
1037 regset *cond_local_sets;
1039 unsigned int i;
1041 /* Some passes used to forget clear aux field of basic block causing
1042 sick behavior here. */
1043 #ifdef ENABLE_CHECKING
1044 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1045 gcc_assert (!bb->aux);
1046 #endif
1048 tmp = ALLOC_REG_SET (&reg_obstack);
1049 new_live_at_end = ALLOC_REG_SET (&reg_obstack);
1050 invalidated_by_call = ALLOC_REG_SET (&reg_obstack);
1051 registers_made_dead = ALLOC_REG_SET (&reg_obstack);
1053 /* Inconveniently, this is only readily available in hard reg set form. */
1054 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1055 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1056 SET_REGNO_REG_SET (invalidated_by_call, i);
1058 /* Allocate space for the sets of local properties. */
1059 local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1060 sizeof (regset));
1061 cond_local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1062 sizeof (regset));
1064 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1065 because the `head == tail' style test for an empty queue doesn't
1066 work with a full queue. */
1067 queue = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1)) * sizeof (*queue));
1068 qtail = queue;
1069 qhead = qend = queue + n_basic_blocks - (INVALID_BLOCK + 1);
1071 /* Queue the blocks set in the initial mask. Do this in reverse block
1072 number order so that we are more likely for the first round to do
1073 useful work. We use AUX non-null to flag that the block is queued. */
1074 if (blocks_in)
1076 FOR_EACH_BB (bb)
1077 if (TEST_BIT (blocks_in, bb->index))
1079 *--qhead = bb;
1080 bb->aux = bb;
1083 else
1085 FOR_EACH_BB (bb)
1087 *--qhead = bb;
1088 bb->aux = bb;
1092 block_accesses = xcalloc (last_basic_block, sizeof (int));
1094 /* We clean aux when we remove the initially-enqueued bbs, but we
1095 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1096 unconditionally. */
1097 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1099 if (blocks_out)
1100 sbitmap_zero (blocks_out);
1102 /* We work through the queue until there are no more blocks. What
1103 is live at the end of this block is precisely the union of what
1104 is live at the beginning of all its successors. So, we set its
1105 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1106 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1107 this block by walking through the instructions in this block in
1108 reverse order and updating as we go. If that changed
1109 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1110 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1112 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1113 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1114 must either be live at the end of the block, or used within the
1115 block. In the latter case, it will certainly never disappear
1116 from GLOBAL_LIVE_AT_START. In the former case, the register
1117 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1118 for one of the successor blocks. By induction, that cannot
1119 occur.
1121 ??? This reasoning doesn't work if we start from non-empty initial
1122 GLOBAL_LIVE_AT_START sets. And there are actually two problems:
1123 1) Updating may not terminate (endless oscillation).
1124 2) Even if it does (and it usually does), the resulting information
1125 may be inaccurate. Consider for example the following case:
1127 a = ...;
1128 while (...) {...} -- 'a' not mentioned at all
1129 ... = a;
1131 If the use of 'a' is deleted between two calculations of liveness
1132 information and the initial sets are not cleared, the information
1133 about a's liveness will get stuck inside the loop and the set will
1134 appear not to be dead.
1136 We do not attempt to solve 2) -- the information is conservatively
1137 correct (i.e. we never claim that something live is dead) and the
1138 amount of optimization opportunities missed due to this problem is
1139 not significant.
1141 1) is more serious. In order to fix it, we monitor the number of times
1142 each block is processed. Once one of the blocks has been processed more
1143 times than the maximum number of rounds, we use the following strategy:
1144 When a register disappears from one of the sets, we add it to a MAKE_DEAD
1145 set, remove all registers in this set from all GLOBAL_LIVE_AT_* sets and
1146 add the blocks with changed sets into the queue. Thus we are guaranteed
1147 to terminate (the worst case corresponds to all registers in MADE_DEAD,
1148 in which case the original reasoning above is valid), but in general we
1149 only fix up a few offending registers.
1151 The maximum number of rounds for computing liveness is the largest of
1152 MAX_LIVENESS_ROUNDS and the latest loop depth count for this function. */
1154 while (qhead != qtail)
1156 int rescan, changed;
1157 basic_block bb;
1158 edge e;
1159 edge_iterator ei;
1161 bb = *qhead++;
1162 if (qhead == qend)
1163 qhead = queue;
1164 bb->aux = NULL;
1166 /* Should we start using the failure strategy? */
1167 if (bb != ENTRY_BLOCK_PTR)
1169 int max_liveness_rounds =
1170 MAX (MAX_LIVENESS_ROUNDS, cfun->max_loop_depth);
1172 block_accesses[bb->index]++;
1173 if (block_accesses[bb->index] > max_liveness_rounds)
1174 failure_strategy_required = true;
1177 /* Begin by propagating live_at_start from the successor blocks. */
1178 CLEAR_REG_SET (new_live_at_end);
1180 if (EDGE_COUNT (bb->succs) > 0)
1181 FOR_EACH_EDGE (e, ei, bb->succs)
1183 basic_block sb = e->dest;
1185 /* Call-clobbered registers die across exception and
1186 call edges. */
1187 /* ??? Abnormal call edges ignored for the moment, as this gets
1188 confused by sibling call edges, which crashes reg-stack. */
1189 if (e->flags & EDGE_EH)
1190 bitmap_ior_and_compl_into (new_live_at_end,
1191 sb->il.rtl->global_live_at_start,
1192 invalidated_by_call);
1193 else
1194 IOR_REG_SET (new_live_at_end, sb->il.rtl->global_live_at_start);
1196 /* If a target saves one register in another (instead of on
1197 the stack) the save register will need to be live for EH. */
1198 if (e->flags & EDGE_EH)
1199 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1200 if (EH_USES (i))
1201 SET_REGNO_REG_SET (new_live_at_end, i);
1203 else
1205 /* This might be a noreturn function that throws. And
1206 even if it isn't, getting the unwind info right helps
1207 debugging. */
1208 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1209 if (EH_USES (i))
1210 SET_REGNO_REG_SET (new_live_at_end, i);
1213 /* The all-important stack pointer must always be live. */
1214 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1216 /* Before reload, there are a few registers that must be forced
1217 live everywhere -- which might not already be the case for
1218 blocks within infinite loops. */
1219 if (! reload_completed)
1221 /* Any reference to any pseudo before reload is a potential
1222 reference of the frame pointer. */
1223 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1225 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1226 /* Pseudos with argument area equivalences may require
1227 reloading via the argument pointer. */
1228 if (fixed_regs[ARG_POINTER_REGNUM])
1229 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1230 #endif
1232 /* Any constant, or pseudo with constant equivalences, may
1233 require reloading from memory using the pic register. */
1234 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1235 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1236 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1239 if (bb == ENTRY_BLOCK_PTR)
1241 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1242 continue;
1245 /* On our first pass through this block, we'll go ahead and continue.
1246 Recognize first pass by checking if local_set is NULL for this
1247 basic block. On subsequent passes, we get to skip out early if
1248 live_at_end wouldn't have changed. */
1250 if (local_sets[bb->index - (INVALID_BLOCK + 1)] == NULL)
1252 local_sets[bb->index - (INVALID_BLOCK + 1)]
1253 = ALLOC_REG_SET (&reg_obstack);
1254 cond_local_sets[bb->index - (INVALID_BLOCK + 1)]
1255 = ALLOC_REG_SET (&reg_obstack);
1256 rescan = 1;
1258 else
1260 /* If any bits were removed from live_at_end, we'll have to
1261 rescan the block. This wouldn't be necessary if we had
1262 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1263 local_live is really dependent on live_at_end. */
1264 rescan = bitmap_intersect_compl_p (bb->il.rtl->global_live_at_end,
1265 new_live_at_end);
1267 if (!rescan)
1269 regset cond_local_set;
1271 /* If any of the registers in the new live_at_end set are
1272 conditionally set in this basic block, we must rescan.
1273 This is because conditional lifetimes at the end of the
1274 block do not just take the live_at_end set into
1275 account, but also the liveness at the start of each
1276 successor block. We can miss changes in those sets if
1277 we only compare the new live_at_end against the
1278 previous one. */
1279 cond_local_set = cond_local_sets[bb->index - (INVALID_BLOCK + 1)];
1280 rescan = bitmap_intersect_p (new_live_at_end, cond_local_set);
1283 if (!rescan)
1285 regset local_set;
1287 /* Find the set of changed bits. Take this opportunity
1288 to notice that this set is empty and early out. */
1289 bitmap_xor (tmp, bb->il.rtl->global_live_at_end, new_live_at_end);
1290 if (bitmap_empty_p (tmp))
1291 continue;
1293 /* If any of the changed bits overlap with local_sets[bb],
1294 we'll have to rescan the block. */
1295 local_set = local_sets[bb->index - (INVALID_BLOCK + 1)];
1296 rescan = bitmap_intersect_p (tmp, local_set);
1300 /* Let our caller know that BB changed enough to require its
1301 death notes updated. */
1302 if (blocks_out)
1303 SET_BIT (blocks_out, bb->index);
1305 if (! rescan)
1307 /* Add to live_at_start the set of all registers in
1308 new_live_at_end that aren't in the old live_at_end. */
1310 changed = bitmap_ior_and_compl_into (bb->il.rtl->global_live_at_start,
1311 new_live_at_end,
1312 bb->il.rtl->global_live_at_end);
1313 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1314 if (! changed)
1315 continue;
1317 else
1319 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1321 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1322 into live_at_start. */
1323 propagate_block (bb, new_live_at_end,
1324 local_sets[bb->index - (INVALID_BLOCK + 1)],
1325 cond_local_sets[bb->index - (INVALID_BLOCK + 1)],
1326 flags);
1328 /* If live_at start didn't change, no need to go farther. */
1329 if (REG_SET_EQUAL_P (bb->il.rtl->global_live_at_start,
1330 new_live_at_end))
1331 continue;
1333 if (failure_strategy_required)
1335 /* Get the list of registers that were removed from the
1336 bb->global_live_at_start set. */
1337 bitmap_and_compl (tmp, bb->il.rtl->global_live_at_start,
1338 new_live_at_end);
1339 if (!bitmap_empty_p (tmp))
1341 bool pbb_changed;
1342 basic_block pbb;
1344 /* It should not happen that one of registers we have
1345 removed last time is disappears again before any other
1346 register does. */
1347 pbb_changed = bitmap_ior_into (registers_made_dead, tmp);
1348 gcc_assert (pbb_changed);
1350 /* Now remove the registers from all sets. */
1351 FOR_EACH_BB (pbb)
1353 pbb_changed = false;
1355 pbb_changed
1356 |= bitmap_and_compl_into
1357 (pbb->il.rtl->global_live_at_start,
1358 registers_made_dead);
1359 pbb_changed
1360 |= bitmap_and_compl_into
1361 (pbb->il.rtl->global_live_at_end,
1362 registers_made_dead);
1363 if (!pbb_changed)
1364 continue;
1366 /* Note the (possible) change. */
1367 if (blocks_out)
1368 SET_BIT (blocks_out, pbb->index);
1370 /* Makes sure to really rescan the block. */
1371 if (local_sets[pbb->index - (INVALID_BLOCK + 1)])
1373 FREE_REG_SET (local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1374 FREE_REG_SET (cond_local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1375 local_sets[pbb->index - (INVALID_BLOCK + 1)] = 0;
1378 /* Add it to the queue. */
1379 if (pbb->aux == NULL)
1381 *qtail++ = pbb;
1382 if (qtail == qend)
1383 qtail = queue;
1384 pbb->aux = pbb;
1387 continue;
1389 } /* end of failure_strategy_required */
1391 COPY_REG_SET (bb->il.rtl->global_live_at_start, new_live_at_end);
1394 /* Queue all predecessors of BB so that we may re-examine
1395 their live_at_end. */
1396 FOR_EACH_EDGE (e, ei, bb->preds)
1398 basic_block pb = e->src;
1399 if (pb->aux == NULL)
1401 *qtail++ = pb;
1402 if (qtail == qend)
1403 qtail = queue;
1404 pb->aux = pb;
1409 FREE_REG_SET (tmp);
1410 FREE_REG_SET (new_live_at_end);
1411 FREE_REG_SET (invalidated_by_call);
1412 FREE_REG_SET (registers_made_dead);
1414 if (blocks_out)
1416 sbitmap_iterator sbi;
1418 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i, sbi)
1420 basic_block bb = BASIC_BLOCK (i);
1421 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1422 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1425 else
1427 FOR_EACH_BB (bb)
1429 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1430 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1434 free (block_accesses);
1435 free (queue);
1436 free (cond_local_sets);
1437 free (local_sets);
1441 /* This structure is used to pass parameters to and from the
1442 the function find_regno_partial(). It is used to pass in the
1443 register number we are looking, as well as to return any rtx
1444 we find. */
1446 typedef struct {
1447 unsigned regno_to_find;
1448 rtx retval;
1449 } find_regno_partial_param;
1452 /* Find the rtx for the reg numbers specified in 'data' if it is
1453 part of an expression which only uses part of the register. Return
1454 it in the structure passed in. */
1455 static int
1456 find_regno_partial (rtx *ptr, void *data)
1458 find_regno_partial_param *param = (find_regno_partial_param *)data;
1459 unsigned reg = param->regno_to_find;
1460 param->retval = NULL_RTX;
1462 if (*ptr == NULL_RTX)
1463 return 0;
1465 switch (GET_CODE (*ptr))
1467 case ZERO_EXTRACT:
1468 case SIGN_EXTRACT:
1469 case STRICT_LOW_PART:
1470 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1472 param->retval = XEXP (*ptr, 0);
1473 return 1;
1475 break;
1477 case SUBREG:
1478 if (REG_P (SUBREG_REG (*ptr))
1479 && REGNO (SUBREG_REG (*ptr)) == reg)
1481 param->retval = SUBREG_REG (*ptr);
1482 return 1;
1484 break;
1486 default:
1487 break;
1490 return 0;
1493 /* Process all immediate successors of the entry block looking for pseudo
1494 registers which are live on entry. Find all of those whose first
1495 instance is a partial register reference of some kind, and initialize
1496 them to 0 after the entry block. This will prevent bit sets within
1497 registers whose value is unknown, and may contain some kind of sticky
1498 bits we don't want. */
1501 initialize_uninitialized_subregs (void)
1503 rtx insn;
1504 edge e;
1505 unsigned reg, did_something = 0;
1506 find_regno_partial_param param;
1507 edge_iterator ei;
1509 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
1511 basic_block bb = e->dest;
1512 regset map = bb->il.rtl->global_live_at_start;
1513 reg_set_iterator rsi;
1515 EXECUTE_IF_SET_IN_REG_SET (map, FIRST_PSEUDO_REGISTER, reg, rsi)
1517 int uid = REGNO_FIRST_UID (reg);
1518 rtx i;
1520 /* Find an insn which mentions the register we are looking for.
1521 Its preferable to have an instance of the register's rtl since
1522 there may be various flags set which we need to duplicate.
1523 If we can't find it, its probably an automatic whose initial
1524 value doesn't matter, or hopefully something we don't care about. */
1525 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1527 if (i != NULL_RTX)
1529 /* Found the insn, now get the REG rtx, if we can. */
1530 param.regno_to_find = reg;
1531 for_each_rtx (&i, find_regno_partial, &param);
1532 if (param.retval != NULL_RTX)
1534 start_sequence ();
1535 emit_move_insn (param.retval,
1536 CONST0_RTX (GET_MODE (param.retval)));
1537 insn = get_insns ();
1538 end_sequence ();
1539 insert_insn_on_edge (insn, e);
1540 did_something = 1;
1546 if (did_something)
1547 commit_edge_insertions ();
1548 return did_something;
1552 /* Subroutines of life analysis. */
1554 /* Allocate the permanent data structures that represent the results
1555 of life analysis. */
1557 static void
1558 allocate_bb_life_data (void)
1560 basic_block bb;
1562 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1564 bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1565 bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1568 regs_live_at_setjmp = ALLOC_REG_SET (&reg_obstack);
1571 void
1572 allocate_reg_life_data (void)
1574 int i;
1576 max_regno = max_reg_num ();
1577 gcc_assert (!reg_deaths);
1578 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1580 /* Recalculate the register space, in case it has grown. Old style
1581 vector oriented regsets would set regset_{size,bytes} here also. */
1582 allocate_reg_info (max_regno, FALSE, FALSE);
1584 /* Reset all the data we'll collect in propagate_block and its
1585 subroutines. */
1586 for (i = 0; i < max_regno; i++)
1588 REG_N_SETS (i) = 0;
1589 REG_N_REFS (i) = 0;
1590 REG_N_DEATHS (i) = 0;
1591 REG_N_CALLS_CROSSED (i) = 0;
1592 REG_N_THROWING_CALLS_CROSSED (i) = 0;
1593 REG_LIVE_LENGTH (i) = 0;
1594 REG_FREQ (i) = 0;
1595 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1599 /* Delete dead instructions for propagate_block. */
1601 static void
1602 propagate_block_delete_insn (rtx insn)
1604 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1606 /* If the insn referred to a label, and that label was attached to
1607 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1608 pretty much mandatory to delete it, because the ADDR_VEC may be
1609 referencing labels that no longer exist.
1611 INSN may reference a deleted label, particularly when a jump
1612 table has been optimized into a direct jump. There's no
1613 real good way to fix up the reference to the deleted label
1614 when the label is deleted, so we just allow it here. */
1616 if (inote && LABEL_P (inote))
1618 rtx label = XEXP (inote, 0);
1619 rtx next;
1621 /* The label may be forced if it has been put in the constant
1622 pool. If that is the only use we must discard the table
1623 jump following it, but not the label itself. */
1624 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1625 && (next = next_nonnote_insn (label)) != NULL
1626 && JUMP_P (next)
1627 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1628 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1630 rtx pat = PATTERN (next);
1631 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1632 int len = XVECLEN (pat, diff_vec_p);
1633 int i;
1635 for (i = 0; i < len; i++)
1636 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1638 delete_insn_and_edges (next);
1639 ndead++;
1643 delete_insn_and_edges (insn);
1644 ndead++;
1647 /* Delete dead libcalls for propagate_block. Return the insn
1648 before the libcall. */
1650 static rtx
1651 propagate_block_delete_libcall (rtx insn, rtx note)
1653 rtx first = XEXP (note, 0);
1654 rtx before = PREV_INSN (first);
1656 delete_insn_chain_and_edges (first, insn);
1657 ndead++;
1658 return before;
1661 /* Update the life-status of regs for one insn. Return the previous insn. */
1664 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1666 rtx prev = PREV_INSN (insn);
1667 int flags = pbi->flags;
1668 int insn_is_dead = 0;
1669 int libcall_is_dead = 0;
1670 rtx note;
1671 unsigned i;
1673 if (! INSN_P (insn))
1674 return prev;
1676 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1677 if (flags & PROP_SCAN_DEAD_CODE)
1679 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1680 libcall_is_dead = (insn_is_dead && note != 0
1681 && libcall_dead_p (pbi, note, insn));
1684 /* If an instruction consists of just dead store(s) on final pass,
1685 delete it. */
1686 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1688 /* If we're trying to delete a prologue or epilogue instruction
1689 that isn't flagged as possibly being dead, something is wrong.
1690 But if we are keeping the stack pointer depressed, we might well
1691 be deleting insns that are used to compute the amount to update
1692 it by, so they are fine. */
1693 if (reload_completed
1694 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1695 && (TYPE_RETURNS_STACK_DEPRESSED
1696 (TREE_TYPE (current_function_decl))))
1697 && (((HAVE_epilogue || HAVE_prologue)
1698 && prologue_epilogue_contains (insn))
1699 || (HAVE_sibcall_epilogue
1700 && sibcall_epilogue_contains (insn)))
1701 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1702 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1704 /* Record sets. Do this even for dead instructions, since they
1705 would have killed the values if they hadn't been deleted. To
1706 be consistent, we also have to emit a clobber when we delete
1707 an insn that clobbers a live register. */
1708 pbi->flags |= PROP_DEAD_INSN;
1709 mark_set_regs (pbi, PATTERN (insn), insn);
1710 pbi->flags &= ~PROP_DEAD_INSN;
1712 /* CC0 is now known to be dead. Either this insn used it,
1713 in which case it doesn't anymore, or clobbered it,
1714 so the next insn can't use it. */
1715 pbi->cc0_live = 0;
1717 if (libcall_is_dead)
1718 prev = propagate_block_delete_libcall (insn, note);
1719 else
1722 /* If INSN contains a RETVAL note and is dead, but the libcall
1723 as a whole is not dead, then we want to remove INSN, but
1724 not the whole libcall sequence.
1726 However, we need to also remove the dangling REG_LIBCALL
1727 note so that we do not have mis-matched LIBCALL/RETVAL
1728 notes. In theory we could find a new location for the
1729 REG_RETVAL note, but it hardly seems worth the effort.
1731 NOTE at this point will be the RETVAL note if it exists. */
1732 if (note)
1734 rtx libcall_note;
1736 libcall_note
1737 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1738 remove_note (XEXP (note, 0), libcall_note);
1741 /* Similarly if INSN contains a LIBCALL note, remove the
1742 dangling REG_RETVAL note. */
1743 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1744 if (note)
1746 rtx retval_note;
1748 retval_note
1749 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1750 remove_note (XEXP (note, 0), retval_note);
1753 /* Now delete INSN. */
1754 propagate_block_delete_insn (insn);
1757 return prev;
1760 /* See if this is an increment or decrement that can be merged into
1761 a following memory address. */
1762 #ifdef AUTO_INC_DEC
1764 rtx x = single_set (insn);
1766 /* Does this instruction increment or decrement a register? */
1767 if ((flags & PROP_AUTOINC)
1768 && x != 0
1769 && REG_P (SET_DEST (x))
1770 && (GET_CODE (SET_SRC (x)) == PLUS
1771 || GET_CODE (SET_SRC (x)) == MINUS)
1772 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1773 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1774 /* Ok, look for a following memory ref we can combine with.
1775 If one is found, change the memory ref to a PRE_INC
1776 or PRE_DEC, cancel this insn, and return 1.
1777 Return 0 if nothing has been done. */
1778 && try_pre_increment_1 (pbi, insn))
1779 return prev;
1781 #endif /* AUTO_INC_DEC */
1783 CLEAR_REG_SET (pbi->new_set);
1785 /* If this is not the final pass, and this insn is copying the value of
1786 a library call and it's dead, don't scan the insns that perform the
1787 library call, so that the call's arguments are not marked live. */
1788 if (libcall_is_dead)
1790 /* Record the death of the dest reg. */
1791 mark_set_regs (pbi, PATTERN (insn), insn);
1793 insn = XEXP (note, 0);
1794 return PREV_INSN (insn);
1796 else if (GET_CODE (PATTERN (insn)) == SET
1797 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1798 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1799 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1800 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1802 /* We have an insn to pop a constant amount off the stack.
1803 (Such insns use PLUS regardless of the direction of the stack,
1804 and any insn to adjust the stack by a constant is always a pop
1805 or part of a push.)
1806 These insns, if not dead stores, have no effect on life, though
1807 they do have an effect on the memory stores we are tracking. */
1808 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1809 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1810 concludes that the stack pointer is not modified. */
1811 mark_set_regs (pbi, PATTERN (insn), insn);
1813 else
1815 /* Any regs live at the time of a call instruction must not go
1816 in a register clobbered by calls. Find all regs now live and
1817 record this for them. */
1819 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1821 reg_set_iterator rsi;
1822 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1823 REG_N_CALLS_CROSSED (i)++;
1824 if (can_throw_internal (insn))
1825 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1826 REG_N_THROWING_CALLS_CROSSED (i)++;
1829 /* Record sets. Do this even for dead instructions, since they
1830 would have killed the values if they hadn't been deleted. */
1831 mark_set_regs (pbi, PATTERN (insn), insn);
1833 if (CALL_P (insn))
1835 regset live_at_end;
1836 bool sibcall_p;
1837 rtx note, cond;
1838 int i;
1840 cond = NULL_RTX;
1841 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1842 cond = COND_EXEC_TEST (PATTERN (insn));
1844 /* Non-constant calls clobber memory, constant calls do not
1845 clobber memory, though they may clobber outgoing arguments
1846 on the stack. */
1847 if (! CONST_OR_PURE_CALL_P (insn))
1849 free_EXPR_LIST_list (&pbi->mem_set_list);
1850 pbi->mem_set_list_len = 0;
1852 else
1853 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1855 /* There may be extra registers to be clobbered. */
1856 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1857 note;
1858 note = XEXP (note, 1))
1859 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1860 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1861 cond, insn, pbi->flags);
1863 /* Calls change all call-used and global registers; sibcalls do not
1864 clobber anything that must be preserved at end-of-function,
1865 except for return values. */
1867 sibcall_p = SIBLING_CALL_P (insn);
1868 live_at_end = EXIT_BLOCK_PTR->il.rtl->global_live_at_start;
1869 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1870 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1871 && ! (sibcall_p
1872 && REGNO_REG_SET_P (live_at_end, i)
1873 && ! refers_to_regno_p (i, i+1,
1874 current_function_return_rtx,
1875 (rtx *) 0)))
1877 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1878 /* We do not want REG_UNUSED notes for these registers. */
1879 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1880 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1884 /* If an insn doesn't use CC0, it becomes dead since we assume
1885 that every insn clobbers it. So show it dead here;
1886 mark_used_regs will set it live if it is referenced. */
1887 pbi->cc0_live = 0;
1889 /* Record uses. */
1890 if (! insn_is_dead)
1891 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1893 /* Sometimes we may have inserted something before INSN (such as a move)
1894 when we make an auto-inc. So ensure we will scan those insns. */
1895 #ifdef AUTO_INC_DEC
1896 prev = PREV_INSN (insn);
1897 #endif
1899 if (! insn_is_dead && CALL_P (insn))
1901 int i;
1902 rtx note, cond;
1904 cond = NULL_RTX;
1905 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1906 cond = COND_EXEC_TEST (PATTERN (insn));
1908 /* Calls use their arguments, and may clobber memory which
1909 address involves some register. */
1910 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1911 note;
1912 note = XEXP (note, 1))
1913 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1914 of which mark_used_regs knows how to handle. */
1915 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1917 /* The stack ptr is used (honorarily) by a CALL insn. */
1918 if ((flags & PROP_REG_INFO)
1919 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1920 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1921 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1923 /* Calls may also reference any of the global registers,
1924 so they are made live. */
1925 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1926 if (global_regs[i])
1927 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1931 pbi->insn_num++;
1933 return prev;
1936 /* Initialize a propagate_block_info struct for public consumption.
1937 Note that the structure itself is opaque to this file, but that
1938 the user can use the regsets provided here. */
1940 struct propagate_block_info *
1941 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1942 regset cond_local_set, int flags)
1944 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1946 pbi->bb = bb;
1947 pbi->reg_live = live;
1948 pbi->mem_set_list = NULL_RTX;
1949 pbi->mem_set_list_len = 0;
1950 pbi->local_set = local_set;
1951 pbi->cond_local_set = cond_local_set;
1952 pbi->cc0_live = 0;
1953 pbi->flags = flags;
1954 pbi->insn_num = 0;
1956 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1957 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1958 else
1959 pbi->reg_next_use = NULL;
1961 pbi->new_set = BITMAP_ALLOC (NULL);
1963 #ifdef HAVE_conditional_execution
1964 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1965 free_reg_cond_life_info);
1966 pbi->reg_cond_reg = BITMAP_ALLOC (NULL);
1968 /* If this block ends in a conditional branch, for each register
1969 live from one side of the branch and not the other, record the
1970 register as conditionally dead. */
1971 if (JUMP_P (BB_END (bb))
1972 && any_condjump_p (BB_END (bb)))
1974 regset diff = ALLOC_REG_SET (&reg_obstack);
1975 basic_block bb_true, bb_false;
1976 unsigned i;
1978 /* Identify the successor blocks. */
1979 bb_true = EDGE_SUCC (bb, 0)->dest;
1980 if (!single_succ_p (bb))
1982 bb_false = EDGE_SUCC (bb, 1)->dest;
1984 if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU)
1986 basic_block t = bb_false;
1987 bb_false = bb_true;
1988 bb_true = t;
1990 else
1991 gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU);
1993 else
1995 /* This can happen with a conditional jump to the next insn. */
1996 gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
1998 /* Simplest way to do nothing. */
1999 bb_false = bb_true;
2002 /* Compute which register lead different lives in the successors. */
2003 bitmap_xor (diff, bb_true->il.rtl->global_live_at_start,
2004 bb_false->il.rtl->global_live_at_start);
2006 if (!bitmap_empty_p (diff))
2008 /* Extract the condition from the branch. */
2009 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
2010 rtx cond_true = XEXP (set_src, 0);
2011 rtx reg = XEXP (cond_true, 0);
2012 enum rtx_code inv_cond;
2014 if (GET_CODE (reg) == SUBREG)
2015 reg = SUBREG_REG (reg);
2017 /* We can only track conditional lifetimes if the condition is
2018 in the form of a reversible comparison of a register against
2019 zero. If the condition is more complex than that, then it is
2020 safe not to record any information. */
2021 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
2022 if (inv_cond != UNKNOWN
2023 && REG_P (reg)
2024 && XEXP (cond_true, 1) == const0_rtx)
2026 rtx cond_false
2027 = gen_rtx_fmt_ee (inv_cond,
2028 GET_MODE (cond_true), XEXP (cond_true, 0),
2029 XEXP (cond_true, 1));
2030 reg_set_iterator rsi;
2032 if (GET_CODE (XEXP (set_src, 1)) == PC)
2034 rtx t = cond_false;
2035 cond_false = cond_true;
2036 cond_true = t;
2039 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
2041 /* For each such register, mark it conditionally dead. */
2042 EXECUTE_IF_SET_IN_REG_SET (diff, 0, i, rsi)
2044 struct reg_cond_life_info *rcli;
2045 rtx cond;
2047 rcli = xmalloc (sizeof (*rcli));
2049 if (REGNO_REG_SET_P (bb_true->il.rtl->global_live_at_start,
2051 cond = cond_false;
2052 else
2053 cond = cond_true;
2054 rcli->condition = cond;
2055 rcli->stores = const0_rtx;
2056 rcli->orig_condition = cond;
2058 splay_tree_insert (pbi->reg_cond_dead, i,
2059 (splay_tree_value) rcli);
2064 FREE_REG_SET (diff);
2066 #endif
2068 /* If this block has no successors, any stores to the frame that aren't
2069 used later in the block are dead. So make a pass over the block
2070 recording any such that are made and show them dead at the end. We do
2071 a very conservative and simple job here. */
2072 if (optimize
2073 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
2074 && (TYPE_RETURNS_STACK_DEPRESSED
2075 (TREE_TYPE (current_function_decl))))
2076 && (flags & PROP_SCAN_DEAD_STORES)
2077 && (EDGE_COUNT (bb->succs) == 0
2078 || (single_succ_p (bb)
2079 && single_succ (bb) == EXIT_BLOCK_PTR
2080 && ! current_function_calls_eh_return)))
2082 rtx insn, set;
2083 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
2084 if (NONJUMP_INSN_P (insn)
2085 && (set = single_set (insn))
2086 && MEM_P (SET_DEST (set)))
2088 rtx mem = SET_DEST (set);
2089 rtx canon_mem = canon_rtx (mem);
2091 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2092 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2093 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2094 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2095 add_to_mem_set_list (pbi, canon_mem);
2099 return pbi;
2102 /* Release a propagate_block_info struct. */
2104 void
2105 free_propagate_block_info (struct propagate_block_info *pbi)
2107 free_EXPR_LIST_list (&pbi->mem_set_list);
2109 BITMAP_FREE (pbi->new_set);
2111 #ifdef HAVE_conditional_execution
2112 splay_tree_delete (pbi->reg_cond_dead);
2113 BITMAP_FREE (pbi->reg_cond_reg);
2114 #endif
2116 if (pbi->flags & PROP_REG_INFO)
2118 int num = pbi->insn_num;
2119 unsigned i;
2120 reg_set_iterator rsi;
2122 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
2124 REG_LIVE_LENGTH (i) += num - reg_deaths[i];
2125 reg_deaths[i] = 0;
2128 if (pbi->reg_next_use)
2129 free (pbi->reg_next_use);
2131 free (pbi);
2134 /* Compute the registers live at the beginning of a basic block BB from
2135 those live at the end.
2137 When called, REG_LIVE contains those live at the end. On return, it
2138 contains those live at the beginning.
2140 LOCAL_SET, if non-null, will be set with all registers killed
2141 unconditionally by this basic block.
2142 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2143 killed conditionally by this basic block. If there is any unconditional
2144 set of a register, then the corresponding bit will be set in LOCAL_SET
2145 and cleared in COND_LOCAL_SET.
2146 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2147 case, the resulting set will be equal to the union of the two sets that
2148 would otherwise be computed.
2150 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2153 propagate_block (basic_block bb, regset live, regset local_set,
2154 regset cond_local_set, int flags)
2156 struct propagate_block_info *pbi;
2157 rtx insn, prev;
2158 int changed;
2160 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2162 if (flags & PROP_REG_INFO)
2164 unsigned i;
2165 reg_set_iterator rsi;
2167 /* Process the regs live at the end of the block.
2168 Mark them as not local to any one basic block. */
2169 EXECUTE_IF_SET_IN_REG_SET (live, 0, i, rsi)
2170 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
2173 /* Scan the block an insn at a time from end to beginning. */
2175 changed = 0;
2176 for (insn = BB_END (bb); ; insn = prev)
2178 /* If this is a call to `setjmp' et al, warn if any
2179 non-volatile datum is live. */
2180 if ((flags & PROP_REG_INFO)
2181 && CALL_P (insn)
2182 && find_reg_note (insn, REG_SETJMP, NULL))
2183 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2185 prev = propagate_one_insn (pbi, insn);
2186 if (!prev)
2187 changed |= insn != get_insns ();
2188 else
2189 changed |= NEXT_INSN (prev) != insn;
2191 if (insn == BB_HEAD (bb))
2192 break;
2195 free_propagate_block_info (pbi);
2197 return changed;
2200 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2201 (SET expressions whose destinations are registers dead after the insn).
2202 NEEDED is the regset that says which regs are alive after the insn.
2204 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2206 If X is the entire body of an insn, NOTES contains the reg notes
2207 pertaining to the insn. */
2209 static int
2210 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2211 rtx notes ATTRIBUTE_UNUSED)
2213 enum rtx_code code = GET_CODE (x);
2215 /* Don't eliminate insns that may trap. */
2216 if (flag_non_call_exceptions && may_trap_p (x))
2217 return 0;
2219 #ifdef AUTO_INC_DEC
2220 /* As flow is invoked after combine, we must take existing AUTO_INC
2221 expressions into account. */
2222 for (; notes; notes = XEXP (notes, 1))
2224 if (REG_NOTE_KIND (notes) == REG_INC)
2226 int regno = REGNO (XEXP (notes, 0));
2228 /* Don't delete insns to set global regs. */
2229 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2230 || REGNO_REG_SET_P (pbi->reg_live, regno))
2231 return 0;
2234 #endif
2236 /* If setting something that's a reg or part of one,
2237 see if that register's altered value will be live. */
2239 if (code == SET)
2241 rtx r = SET_DEST (x);
2243 #ifdef HAVE_cc0
2244 if (GET_CODE (r) == CC0)
2245 return ! pbi->cc0_live;
2246 #endif
2248 /* A SET that is a subroutine call cannot be dead. */
2249 if (GET_CODE (SET_SRC (x)) == CALL)
2251 if (! call_ok)
2252 return 0;
2255 /* Don't eliminate loads from volatile memory or volatile asms. */
2256 else if (volatile_refs_p (SET_SRC (x)))
2257 return 0;
2259 if (MEM_P (r))
2261 rtx temp, canon_r;
2263 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2264 return 0;
2266 canon_r = canon_rtx (r);
2268 /* Walk the set of memory locations we are currently tracking
2269 and see if one is an identical match to this memory location.
2270 If so, this memory write is dead (remember, we're walking
2271 backwards from the end of the block to the start). Since
2272 rtx_equal_p does not check the alias set or flags, we also
2273 must have the potential for them to conflict (anti_dependence). */
2274 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2275 if (anti_dependence (r, XEXP (temp, 0)))
2277 rtx mem = XEXP (temp, 0);
2279 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2280 && (GET_MODE_SIZE (GET_MODE (canon_r))
2281 <= GET_MODE_SIZE (GET_MODE (mem))))
2282 return 1;
2284 #ifdef AUTO_INC_DEC
2285 /* Check if memory reference matches an auto increment. Only
2286 post increment/decrement or modify are valid. */
2287 if (GET_MODE (mem) == GET_MODE (r)
2288 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2289 || GET_CODE (XEXP (mem, 0)) == POST_INC
2290 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2291 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2292 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2293 return 1;
2294 #endif
2297 else
2299 while (GET_CODE (r) == SUBREG
2300 || GET_CODE (r) == STRICT_LOW_PART
2301 || GET_CODE (r) == ZERO_EXTRACT)
2302 r = XEXP (r, 0);
2304 if (REG_P (r))
2306 int regno = REGNO (r);
2308 /* Obvious. */
2309 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2310 return 0;
2312 /* If this is a hard register, verify that subsequent
2313 words are not needed. */
2314 if (regno < FIRST_PSEUDO_REGISTER)
2316 int n = hard_regno_nregs[regno][GET_MODE (r)];
2318 while (--n > 0)
2319 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2320 return 0;
2323 /* Don't delete insns to set global regs. */
2324 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2325 return 0;
2327 /* Make sure insns to set the stack pointer aren't deleted. */
2328 if (regno == STACK_POINTER_REGNUM)
2329 return 0;
2331 /* ??? These bits might be redundant with the force live bits
2332 in calculate_global_regs_live. We would delete from
2333 sequential sets; whether this actually affects real code
2334 for anything but the stack pointer I don't know. */
2335 /* Make sure insns to set the frame pointer aren't deleted. */
2336 if (regno == FRAME_POINTER_REGNUM
2337 && (! reload_completed || frame_pointer_needed))
2338 return 0;
2339 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2340 if (regno == HARD_FRAME_POINTER_REGNUM
2341 && (! reload_completed || frame_pointer_needed))
2342 return 0;
2343 #endif
2345 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2346 /* Make sure insns to set arg pointer are never deleted
2347 (if the arg pointer isn't fixed, there will be a USE
2348 for it, so we can treat it normally). */
2349 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2350 return 0;
2351 #endif
2353 /* Otherwise, the set is dead. */
2354 return 1;
2359 /* If performing several activities, insn is dead if each activity
2360 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2361 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2362 worth keeping. */
2363 else if (code == PARALLEL)
2365 int i = XVECLEN (x, 0);
2367 for (i--; i >= 0; i--)
2368 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2369 && GET_CODE (XVECEXP (x, 0, i)) != USE
2370 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2371 return 0;
2373 return 1;
2376 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2377 is not necessarily true for hard registers until after reload. */
2378 else if (code == CLOBBER)
2380 if (REG_P (XEXP (x, 0))
2381 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2382 || reload_completed)
2383 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2384 return 1;
2387 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2388 Instances where it is still used are either (1) temporary and the USE
2389 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2390 or (3) hiding bugs elsewhere that are not properly representing data
2391 flow. */
2393 return 0;
2396 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2397 return 1 if the entire library call is dead.
2398 This is true if INSN copies a register (hard or pseudo)
2399 and if the hard return reg of the call insn is dead.
2400 (The caller should have tested the destination of the SET inside
2401 INSN already for death.)
2403 If this insn doesn't just copy a register, then we don't
2404 have an ordinary libcall. In that case, cse could not have
2405 managed to substitute the source for the dest later on,
2406 so we can assume the libcall is dead.
2408 PBI is the block info giving pseudoregs live before this insn.
2409 NOTE is the REG_RETVAL note of the insn. */
2411 static int
2412 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2414 rtx x = single_set (insn);
2416 if (x)
2418 rtx r = SET_SRC (x);
2420 if (REG_P (r) || GET_CODE (r) == SUBREG)
2422 rtx call = XEXP (note, 0);
2423 rtx call_pat;
2424 int i;
2426 /* Find the call insn. */
2427 while (call != insn && !CALL_P (call))
2428 call = NEXT_INSN (call);
2430 /* If there is none, do nothing special,
2431 since ordinary death handling can understand these insns. */
2432 if (call == insn)
2433 return 0;
2435 /* See if the hard reg holding the value is dead.
2436 If this is a PARALLEL, find the call within it. */
2437 call_pat = PATTERN (call);
2438 if (GET_CODE (call_pat) == PARALLEL)
2440 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2441 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2442 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2443 break;
2445 /* This may be a library call that is returning a value
2446 via invisible pointer. Do nothing special, since
2447 ordinary death handling can understand these insns. */
2448 if (i < 0)
2449 return 0;
2451 call_pat = XVECEXP (call_pat, 0, i);
2454 if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call)))
2455 return 0;
2457 while ((insn = PREV_INSN (insn)) != call)
2459 if (! INSN_P (insn))
2460 continue;
2461 if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)))
2462 return 0;
2464 return 1;
2467 return 0;
2470 /* 1 if register REGNO was alive at a place where `setjmp' was called
2471 and was set more than once or is an argument.
2472 Such regs may be clobbered by `longjmp'. */
2475 regno_clobbered_at_setjmp (int regno)
2477 if (n_basic_blocks == 0)
2478 return 0;
2480 return ((REG_N_SETS (regno) > 1
2481 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
2482 regno))
2483 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2486 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2487 maximal list size; look for overlaps in mode and select the largest. */
2488 static void
2489 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2491 rtx i;
2493 /* We don't know how large a BLKmode store is, so we must not
2494 take them into consideration. */
2495 if (GET_MODE (mem) == BLKmode)
2496 return;
2498 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2500 rtx e = XEXP (i, 0);
2501 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2503 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2505 #ifdef AUTO_INC_DEC
2506 /* If we must store a copy of the mem, we can just modify
2507 the mode of the stored copy. */
2508 if (pbi->flags & PROP_AUTOINC)
2509 PUT_MODE (e, GET_MODE (mem));
2510 else
2511 #endif
2512 XEXP (i, 0) = mem;
2514 return;
2518 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2520 #ifdef AUTO_INC_DEC
2521 /* Store a copy of mem, otherwise the address may be
2522 scrogged by find_auto_inc. */
2523 if (pbi->flags & PROP_AUTOINC)
2524 mem = shallow_copy_rtx (mem);
2525 #endif
2526 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2527 pbi->mem_set_list_len++;
2531 /* INSN references memory, possibly using autoincrement addressing modes.
2532 Find any entries on the mem_set_list that need to be invalidated due
2533 to an address change. */
2535 static int
2536 invalidate_mems_from_autoinc (rtx *px, void *data)
2538 rtx x = *px;
2539 struct propagate_block_info *pbi = data;
2541 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2543 invalidate_mems_from_set (pbi, XEXP (x, 0));
2544 return -1;
2547 return 0;
2550 /* EXP is a REG or MEM. Remove any dependent entries from
2551 pbi->mem_set_list. */
2553 static void
2554 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2556 rtx temp = pbi->mem_set_list;
2557 rtx prev = NULL_RTX;
2558 rtx next;
2560 while (temp)
2562 next = XEXP (temp, 1);
2563 if ((REG_P (exp) && reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2564 /* When we get an EXP that is a mem here, we want to check if EXP
2565 overlaps the *address* of any of the mems in the list (i.e. not
2566 whether the mems actually overlap; that's done elsewhere). */
2567 || (MEM_P (exp)
2568 && reg_overlap_mentioned_p (exp, XEXP (XEXP (temp, 0), 0))))
2570 /* Splice this entry out of the list. */
2571 if (prev)
2572 XEXP (prev, 1) = next;
2573 else
2574 pbi->mem_set_list = next;
2575 free_EXPR_LIST_node (temp);
2576 pbi->mem_set_list_len--;
2578 else
2579 prev = temp;
2580 temp = next;
2584 /* Process the registers that are set within X. Their bits are set to
2585 1 in the regset DEAD, because they are dead prior to this insn.
2587 If INSN is nonzero, it is the insn being processed.
2589 FLAGS is the set of operations to perform. */
2591 static void
2592 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2594 rtx cond = NULL_RTX;
2595 rtx link;
2596 enum rtx_code code;
2597 int flags = pbi->flags;
2599 if (insn)
2600 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2602 if (REG_NOTE_KIND (link) == REG_INC)
2603 mark_set_1 (pbi, SET, XEXP (link, 0),
2604 (GET_CODE (x) == COND_EXEC
2605 ? COND_EXEC_TEST (x) : NULL_RTX),
2606 insn, flags);
2608 retry:
2609 switch (code = GET_CODE (x))
2611 case SET:
2612 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2613 flags |= PROP_ASM_SCAN;
2614 /* Fall through */
2615 case CLOBBER:
2616 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2617 return;
2619 case COND_EXEC:
2620 cond = COND_EXEC_TEST (x);
2621 x = COND_EXEC_CODE (x);
2622 goto retry;
2624 case PARALLEL:
2626 int i;
2628 /* We must scan forwards. If we have an asm, we need to set
2629 the PROP_ASM_SCAN flag before scanning the clobbers. */
2630 for (i = 0; i < XVECLEN (x, 0); i++)
2632 rtx sub = XVECEXP (x, 0, i);
2633 switch (code = GET_CODE (sub))
2635 case COND_EXEC:
2636 gcc_assert (!cond);
2638 cond = COND_EXEC_TEST (sub);
2639 sub = COND_EXEC_CODE (sub);
2640 if (GET_CODE (sub) == SET)
2641 goto mark_set;
2642 if (GET_CODE (sub) == CLOBBER)
2643 goto mark_clob;
2644 break;
2646 case SET:
2647 mark_set:
2648 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2649 flags |= PROP_ASM_SCAN;
2650 /* Fall through */
2651 case CLOBBER:
2652 mark_clob:
2653 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2654 break;
2656 case ASM_OPERANDS:
2657 flags |= PROP_ASM_SCAN;
2658 break;
2660 default:
2661 break;
2664 break;
2667 default:
2668 break;
2672 /* Process a single set, which appears in INSN. REG (which may not
2673 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2674 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2675 If the set is conditional (because it appear in a COND_EXEC), COND
2676 will be the condition. */
2678 static void
2679 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2681 int regno_first = -1, regno_last = -1;
2682 unsigned long not_dead = 0;
2683 int i;
2685 /* Modifying just one hardware register of a multi-reg value or just a
2686 byte field of a register does not mean the value from before this insn
2687 is now dead. Of course, if it was dead after it's unused now. */
2689 switch (GET_CODE (reg))
2691 case PARALLEL:
2692 /* Some targets place small structures in registers for return values of
2693 functions. We have to detect this case specially here to get correct
2694 flow information. */
2695 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2696 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2697 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2698 flags);
2699 return;
2701 case SIGN_EXTRACT:
2702 /* SIGN_EXTRACT cannot be an lvalue. */
2703 gcc_unreachable ();
2705 case ZERO_EXTRACT:
2706 case STRICT_LOW_PART:
2707 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2709 reg = XEXP (reg, 0);
2710 while (GET_CODE (reg) == SUBREG
2711 || GET_CODE (reg) == ZERO_EXTRACT
2712 || GET_CODE (reg) == STRICT_LOW_PART);
2713 if (MEM_P (reg))
2714 break;
2715 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2716 /* Fall through. */
2718 case REG:
2719 regno_last = regno_first = REGNO (reg);
2720 if (regno_first < FIRST_PSEUDO_REGISTER)
2721 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2722 break;
2724 case SUBREG:
2725 if (REG_P (SUBREG_REG (reg)))
2727 enum machine_mode outer_mode = GET_MODE (reg);
2728 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2730 /* Identify the range of registers affected. This is moderately
2731 tricky for hard registers. See alter_subreg. */
2733 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2734 if (regno_first < FIRST_PSEUDO_REGISTER)
2736 regno_first += subreg_regno_offset (regno_first, inner_mode,
2737 SUBREG_BYTE (reg),
2738 outer_mode);
2739 regno_last = (regno_first
2740 + hard_regno_nregs[regno_first][outer_mode] - 1);
2742 /* Since we've just adjusted the register number ranges, make
2743 sure REG matches. Otherwise some_was_live will be clear
2744 when it shouldn't have been, and we'll create incorrect
2745 REG_UNUSED notes. */
2746 reg = gen_rtx_REG (outer_mode, regno_first);
2748 else
2750 /* If the number of words in the subreg is less than the number
2751 of words in the full register, we have a well-defined partial
2752 set. Otherwise the high bits are undefined.
2754 This is only really applicable to pseudos, since we just took
2755 care of multi-word hard registers. */
2756 if (((GET_MODE_SIZE (outer_mode)
2757 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2758 < ((GET_MODE_SIZE (inner_mode)
2759 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2760 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2761 regno_first);
2763 reg = SUBREG_REG (reg);
2766 else
2767 reg = SUBREG_REG (reg);
2768 break;
2770 default:
2771 break;
2774 /* If this set is a MEM, then it kills any aliased writes and any
2775 other MEMs which use it.
2776 If this set is a REG, then it kills any MEMs which use the reg. */
2777 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2779 if (REG_P (reg) || MEM_P (reg))
2780 invalidate_mems_from_set (pbi, reg);
2782 /* If the memory reference had embedded side effects (autoincrement
2783 address modes) then we may need to kill some entries on the
2784 memory set list. */
2785 if (insn && MEM_P (reg))
2786 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2788 if (MEM_P (reg) && ! side_effects_p (reg)
2789 /* ??? With more effort we could track conditional memory life. */
2790 && ! cond)
2791 add_to_mem_set_list (pbi, canon_rtx (reg));
2794 if (REG_P (reg)
2795 && ! (regno_first == FRAME_POINTER_REGNUM
2796 && (! reload_completed || frame_pointer_needed))
2797 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2798 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2799 && (! reload_completed || frame_pointer_needed))
2800 #endif
2801 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2802 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2803 #endif
2806 int some_was_live = 0, some_was_dead = 0;
2808 for (i = regno_first; i <= regno_last; ++i)
2810 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2811 if (pbi->local_set)
2813 /* Order of the set operation matters here since both
2814 sets may be the same. */
2815 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2816 if (cond != NULL_RTX
2817 && ! REGNO_REG_SET_P (pbi->local_set, i))
2818 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2819 else
2820 SET_REGNO_REG_SET (pbi->local_set, i);
2822 if (code != CLOBBER)
2823 SET_REGNO_REG_SET (pbi->new_set, i);
2825 some_was_live |= needed_regno;
2826 some_was_dead |= ! needed_regno;
2829 #ifdef HAVE_conditional_execution
2830 /* Consider conditional death in deciding that the register needs
2831 a death note. */
2832 if (some_was_live && ! not_dead
2833 /* The stack pointer is never dead. Well, not strictly true,
2834 but it's very difficult to tell from here. Hopefully
2835 combine_stack_adjustments will fix up the most egregious
2836 errors. */
2837 && regno_first != STACK_POINTER_REGNUM)
2839 for (i = regno_first; i <= regno_last; ++i)
2840 if (! mark_regno_cond_dead (pbi, i, cond))
2841 not_dead |= ((unsigned long) 1) << (i - regno_first);
2843 #endif
2845 /* Additional data to record if this is the final pass. */
2846 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2847 | PROP_DEATH_NOTES | PROP_AUTOINC))
2849 rtx y;
2850 int blocknum = pbi->bb->index;
2852 y = NULL_RTX;
2853 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2855 y = pbi->reg_next_use[regno_first];
2857 /* The next use is no longer next, since a store intervenes. */
2858 for (i = regno_first; i <= regno_last; ++i)
2859 pbi->reg_next_use[i] = 0;
2862 if (flags & PROP_REG_INFO)
2864 for (i = regno_first; i <= regno_last; ++i)
2866 /* Count (weighted) references, stores, etc. This counts a
2867 register twice if it is modified, but that is correct. */
2868 REG_N_SETS (i) += 1;
2869 REG_N_REFS (i) += 1;
2870 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2872 /* The insns where a reg is live are normally counted
2873 elsewhere, but we want the count to include the insn
2874 where the reg is set, and the normal counting mechanism
2875 would not count it. */
2876 REG_LIVE_LENGTH (i) += 1;
2879 /* If this is a hard reg, record this function uses the reg. */
2880 if (regno_first < FIRST_PSEUDO_REGISTER)
2882 for (i = regno_first; i <= regno_last; i++)
2883 regs_ever_live[i] = 1;
2884 if (flags & PROP_ASM_SCAN)
2885 for (i = regno_first; i <= regno_last; i++)
2886 regs_asm_clobbered[i] = 1;
2888 else
2890 /* Keep track of which basic blocks each reg appears in. */
2891 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2892 REG_BASIC_BLOCK (regno_first) = blocknum;
2893 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2894 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2898 if (! some_was_dead)
2900 if (flags & PROP_LOG_LINKS)
2902 /* Make a logical link from the next following insn
2903 that uses this register, back to this insn.
2904 The following insns have already been processed.
2906 We don't build a LOG_LINK for hard registers containing
2907 in ASM_OPERANDs. If these registers get replaced,
2908 we might wind up changing the semantics of the insn,
2909 even if reload can make what appear to be valid
2910 assignments later.
2912 We don't build a LOG_LINK for global registers to
2913 or from a function call. We don't want to let
2914 combine think that it knows what is going on with
2915 global registers. */
2916 if (y && (BLOCK_NUM (y) == blocknum)
2917 && (regno_first >= FIRST_PSEUDO_REGISTER
2918 || (asm_noperands (PATTERN (y)) < 0
2919 && ! ((CALL_P (insn)
2920 || CALL_P (y))
2921 && global_regs[regno_first]))))
2922 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2925 else if (not_dead)
2927 else if (! some_was_live)
2929 if (flags & PROP_REG_INFO)
2930 REG_N_DEATHS (regno_first) += 1;
2932 if (flags & PROP_DEATH_NOTES)
2934 /* Note that dead stores have already been deleted
2935 when possible. If we get here, we have found a
2936 dead store that cannot be eliminated (because the
2937 same insn does something useful). Indicate this
2938 by marking the reg being set as dying here. */
2939 REG_NOTES (insn)
2940 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2943 else
2945 if (flags & PROP_DEATH_NOTES)
2947 /* This is a case where we have a multi-word hard register
2948 and some, but not all, of the words of the register are
2949 needed in subsequent insns. Write REG_UNUSED notes
2950 for those parts that were not needed. This case should
2951 be rare. */
2953 for (i = regno_first; i <= regno_last; ++i)
2954 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2955 REG_NOTES (insn)
2956 = alloc_EXPR_LIST (REG_UNUSED,
2957 regno_reg_rtx[i],
2958 REG_NOTES (insn));
2963 /* Mark the register as being dead. */
2964 if (some_was_live
2965 /* The stack pointer is never dead. Well, not strictly true,
2966 but it's very difficult to tell from here. Hopefully
2967 combine_stack_adjustments will fix up the most egregious
2968 errors. */
2969 && regno_first != STACK_POINTER_REGNUM)
2971 for (i = regno_first; i <= regno_last; ++i)
2972 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2974 if ((pbi->flags & PROP_REG_INFO)
2975 && REGNO_REG_SET_P (pbi->reg_live, i))
2977 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2978 reg_deaths[i] = 0;
2980 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2982 if (flags & PROP_DEAD_INSN)
2983 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, reg), insn);
2986 else if (REG_P (reg))
2988 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2989 pbi->reg_next_use[regno_first] = 0;
2991 if ((flags & PROP_REG_INFO) != 0
2992 && (flags & PROP_ASM_SCAN) != 0
2993 && regno_first < FIRST_PSEUDO_REGISTER)
2995 for (i = regno_first; i <= regno_last; i++)
2996 regs_asm_clobbered[i] = 1;
3000 /* If this is the last pass and this is a SCRATCH, show it will be dying
3001 here and count it. */
3002 else if (GET_CODE (reg) == SCRATCH)
3004 if (flags & PROP_DEATH_NOTES)
3005 REG_NOTES (insn)
3006 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
3010 #ifdef HAVE_conditional_execution
3011 /* Mark REGNO conditionally dead.
3012 Return true if the register is now unconditionally dead. */
3014 static int
3015 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
3017 /* If this is a store to a predicate register, the value of the
3018 predicate is changing, we don't know that the predicate as seen
3019 before is the same as that seen after. Flush all dependent
3020 conditions from reg_cond_dead. This will make all such
3021 conditionally live registers unconditionally live. */
3022 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
3023 flush_reg_cond_reg (pbi, regno);
3025 /* If this is an unconditional store, remove any conditional
3026 life that may have existed. */
3027 if (cond == NULL_RTX)
3028 splay_tree_remove (pbi->reg_cond_dead, regno);
3029 else
3031 splay_tree_node node;
3032 struct reg_cond_life_info *rcli;
3033 rtx ncond;
3035 /* Otherwise this is a conditional set. Record that fact.
3036 It may have been conditionally used, or there may be a
3037 subsequent set with a complementary condition. */
3039 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
3040 if (node == NULL)
3042 /* The register was unconditionally live previously.
3043 Record the current condition as the condition under
3044 which it is dead. */
3045 rcli = xmalloc (sizeof (*rcli));
3046 rcli->condition = cond;
3047 rcli->stores = cond;
3048 rcli->orig_condition = const0_rtx;
3049 splay_tree_insert (pbi->reg_cond_dead, regno,
3050 (splay_tree_value) rcli);
3052 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3054 /* Not unconditionally dead. */
3055 return 0;
3057 else
3059 /* The register was conditionally live previously.
3060 Add the new condition to the old. */
3061 rcli = (struct reg_cond_life_info *) node->value;
3062 ncond = rcli->condition;
3063 ncond = ior_reg_cond (ncond, cond, 1);
3064 if (rcli->stores == const0_rtx)
3065 rcli->stores = cond;
3066 else if (rcli->stores != const1_rtx)
3067 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
3069 /* If the register is now unconditionally dead, remove the entry
3070 in the splay_tree. A register is unconditionally dead if the
3071 dead condition ncond is true. A register is also unconditionally
3072 dead if the sum of all conditional stores is an unconditional
3073 store (stores is true), and the dead condition is identically the
3074 same as the original dead condition initialized at the end of
3075 the block. This is a pointer compare, not an rtx_equal_p
3076 compare. */
3077 if (ncond == const1_rtx
3078 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
3079 splay_tree_remove (pbi->reg_cond_dead, regno);
3080 else
3082 rcli->condition = ncond;
3084 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3086 /* Not unconditionally dead. */
3087 return 0;
3092 return 1;
3095 /* Called from splay_tree_delete for pbi->reg_cond_life. */
3097 static void
3098 free_reg_cond_life_info (splay_tree_value value)
3100 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
3101 free (rcli);
3104 /* Helper function for flush_reg_cond_reg. */
3106 static int
3107 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
3109 struct reg_cond_life_info *rcli;
3110 int *xdata = (int *) data;
3111 unsigned int regno = xdata[0];
3113 /* Don't need to search if last flushed value was farther on in
3114 the in-order traversal. */
3115 if (xdata[1] >= (int) node->key)
3116 return 0;
3118 /* Splice out portions of the expression that refer to regno. */
3119 rcli = (struct reg_cond_life_info *) node->value;
3120 rcli->condition = elim_reg_cond (rcli->condition, regno);
3121 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3122 rcli->stores = elim_reg_cond (rcli->stores, regno);
3124 /* If the entire condition is now false, signal the node to be removed. */
3125 if (rcli->condition == const0_rtx)
3127 xdata[1] = node->key;
3128 return -1;
3130 else
3131 gcc_assert (rcli->condition != const1_rtx);
3133 return 0;
3136 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3138 static void
3139 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
3141 int pair[2];
3143 pair[0] = regno;
3144 pair[1] = -1;
3145 while (splay_tree_foreach (pbi->reg_cond_dead,
3146 flush_reg_cond_reg_1, pair) == -1)
3147 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3149 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3152 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3153 For ior/and, the ADD flag determines whether we want to add the new
3154 condition X to the old one unconditionally. If it is zero, we will
3155 only return a new expression if X allows us to simplify part of
3156 OLD, otherwise we return NULL to the caller.
3157 If ADD is nonzero, we will return a new condition in all cases. The
3158 toplevel caller of one of these functions should always pass 1 for
3159 ADD. */
3161 static rtx
3162 ior_reg_cond (rtx old, rtx x, int add)
3164 rtx op0, op1;
3166 if (COMPARISON_P (old))
3168 if (COMPARISON_P (x)
3169 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
3170 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3171 return const1_rtx;
3172 if (GET_CODE (x) == GET_CODE (old)
3173 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3174 return old;
3175 if (! add)
3176 return NULL;
3177 return gen_rtx_IOR (0, old, x);
3180 switch (GET_CODE (old))
3182 case IOR:
3183 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3184 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3185 if (op0 != NULL || op1 != NULL)
3187 if (op0 == const0_rtx)
3188 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3189 if (op1 == const0_rtx)
3190 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3191 if (op0 == const1_rtx || op1 == const1_rtx)
3192 return const1_rtx;
3193 if (op0 == NULL)
3194 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3195 else if (rtx_equal_p (x, op0))
3196 /* (x | A) | x ~ (x | A). */
3197 return old;
3198 if (op1 == NULL)
3199 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3200 else if (rtx_equal_p (x, op1))
3201 /* (A | x) | x ~ (A | x). */
3202 return old;
3203 return gen_rtx_IOR (0, op0, op1);
3205 if (! add)
3206 return NULL;
3207 return gen_rtx_IOR (0, old, x);
3209 case AND:
3210 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3211 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3212 if (op0 != NULL || op1 != NULL)
3214 if (op0 == const1_rtx)
3215 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3216 if (op1 == const1_rtx)
3217 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3218 if (op0 == const0_rtx || op1 == const0_rtx)
3219 return const0_rtx;
3220 if (op0 == NULL)
3221 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3222 else if (rtx_equal_p (x, op0))
3223 /* (x & A) | x ~ x. */
3224 return op0;
3225 if (op1 == NULL)
3226 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3227 else if (rtx_equal_p (x, op1))
3228 /* (A & x) | x ~ x. */
3229 return op1;
3230 return gen_rtx_AND (0, op0, op1);
3232 if (! add)
3233 return NULL;
3234 return gen_rtx_IOR (0, old, x);
3236 case NOT:
3237 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3238 if (op0 != NULL)
3239 return not_reg_cond (op0);
3240 if (! add)
3241 return NULL;
3242 return gen_rtx_IOR (0, old, x);
3244 default:
3245 gcc_unreachable ();
3249 static rtx
3250 not_reg_cond (rtx x)
3252 if (x == const0_rtx)
3253 return const1_rtx;
3254 else if (x == const1_rtx)
3255 return const0_rtx;
3256 if (GET_CODE (x) == NOT)
3257 return XEXP (x, 0);
3258 if (COMPARISON_P (x)
3259 && REG_P (XEXP (x, 0)))
3261 gcc_assert (XEXP (x, 1) == const0_rtx);
3263 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3264 VOIDmode, XEXP (x, 0), const0_rtx);
3266 return gen_rtx_NOT (0, x);
3269 static rtx
3270 and_reg_cond (rtx old, rtx x, int add)
3272 rtx op0, op1;
3274 if (COMPARISON_P (old))
3276 if (COMPARISON_P (x)
3277 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3278 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3279 return const0_rtx;
3280 if (GET_CODE (x) == GET_CODE (old)
3281 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3282 return old;
3283 if (! add)
3284 return NULL;
3285 return gen_rtx_AND (0, old, x);
3288 switch (GET_CODE (old))
3290 case IOR:
3291 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3292 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3293 if (op0 != NULL || op1 != NULL)
3295 if (op0 == const0_rtx)
3296 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3297 if (op1 == const0_rtx)
3298 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3299 if (op0 == const1_rtx || op1 == const1_rtx)
3300 return const1_rtx;
3301 if (op0 == NULL)
3302 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3303 else if (rtx_equal_p (x, op0))
3304 /* (x | A) & x ~ x. */
3305 return op0;
3306 if (op1 == NULL)
3307 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3308 else if (rtx_equal_p (x, op1))
3309 /* (A | x) & x ~ x. */
3310 return op1;
3311 return gen_rtx_IOR (0, op0, op1);
3313 if (! add)
3314 return NULL;
3315 return gen_rtx_AND (0, old, x);
3317 case AND:
3318 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3319 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3320 if (op0 != NULL || op1 != NULL)
3322 if (op0 == const1_rtx)
3323 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3324 if (op1 == const1_rtx)
3325 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3326 if (op0 == const0_rtx || op1 == const0_rtx)
3327 return const0_rtx;
3328 if (op0 == NULL)
3329 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3330 else if (rtx_equal_p (x, op0))
3331 /* (x & A) & x ~ (x & A). */
3332 return old;
3333 if (op1 == NULL)
3334 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3335 else if (rtx_equal_p (x, op1))
3336 /* (A & x) & x ~ (A & x). */
3337 return old;
3338 return gen_rtx_AND (0, op0, op1);
3340 if (! add)
3341 return NULL;
3342 return gen_rtx_AND (0, old, x);
3344 case NOT:
3345 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3346 if (op0 != NULL)
3347 return not_reg_cond (op0);
3348 if (! add)
3349 return NULL;
3350 return gen_rtx_AND (0, old, x);
3352 default:
3353 gcc_unreachable ();
3357 /* Given a condition X, remove references to reg REGNO and return the
3358 new condition. The removal will be done so that all conditions
3359 involving REGNO are considered to evaluate to false. This function
3360 is used when the value of REGNO changes. */
3362 static rtx
3363 elim_reg_cond (rtx x, unsigned int regno)
3365 rtx op0, op1;
3367 if (COMPARISON_P (x))
3369 if (REGNO (XEXP (x, 0)) == regno)
3370 return const0_rtx;
3371 return x;
3374 switch (GET_CODE (x))
3376 case AND:
3377 op0 = elim_reg_cond (XEXP (x, 0), regno);
3378 op1 = elim_reg_cond (XEXP (x, 1), regno);
3379 if (op0 == const0_rtx || op1 == const0_rtx)
3380 return const0_rtx;
3381 if (op0 == const1_rtx)
3382 return op1;
3383 if (op1 == const1_rtx)
3384 return op0;
3385 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3386 return x;
3387 return gen_rtx_AND (0, op0, op1);
3389 case IOR:
3390 op0 = elim_reg_cond (XEXP (x, 0), regno);
3391 op1 = elim_reg_cond (XEXP (x, 1), regno);
3392 if (op0 == const1_rtx || op1 == const1_rtx)
3393 return const1_rtx;
3394 if (op0 == const0_rtx)
3395 return op1;
3396 if (op1 == const0_rtx)
3397 return op0;
3398 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3399 return x;
3400 return gen_rtx_IOR (0, op0, op1);
3402 case NOT:
3403 op0 = elim_reg_cond (XEXP (x, 0), regno);
3404 if (op0 == const0_rtx)
3405 return const1_rtx;
3406 if (op0 == const1_rtx)
3407 return const0_rtx;
3408 if (op0 != XEXP (x, 0))
3409 return not_reg_cond (op0);
3410 return x;
3412 default:
3413 gcc_unreachable ();
3416 #endif /* HAVE_conditional_execution */
3418 #ifdef AUTO_INC_DEC
3420 /* Try to substitute the auto-inc expression INC as the address inside
3421 MEM which occurs in INSN. Currently, the address of MEM is an expression
3422 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3423 that has a single set whose source is a PLUS of INCR_REG and something
3424 else. */
3426 static void
3427 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3428 rtx mem, rtx incr, rtx incr_reg)
3430 int regno = REGNO (incr_reg);
3431 rtx set = single_set (incr);
3432 rtx q = SET_DEST (set);
3433 rtx y = SET_SRC (set);
3434 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3435 int changed;
3437 /* Make sure this reg appears only once in this insn. */
3438 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3439 return;
3441 if (dead_or_set_p (incr, incr_reg)
3442 /* Mustn't autoinc an eliminable register. */
3443 && (regno >= FIRST_PSEUDO_REGISTER
3444 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3446 /* This is the simple case. Try to make the auto-inc. If
3447 we can't, we are done. Otherwise, we will do any
3448 needed updates below. */
3449 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3450 return;
3452 else if (REG_P (q)
3453 /* PREV_INSN used here to check the semi-open interval
3454 [insn,incr). */
3455 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3456 /* We must also check for sets of q as q may be
3457 a call clobbered hard register and there may
3458 be a call between PREV_INSN (insn) and incr. */
3459 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3461 /* We have *p followed sometime later by q = p+size.
3462 Both p and q must be live afterward,
3463 and q is not used between INSN and its assignment.
3464 Change it to q = p, ...*q..., q = q+size.
3465 Then fall into the usual case. */
3466 rtx insns, temp;
3468 start_sequence ();
3469 emit_move_insn (q, incr_reg);
3470 insns = get_insns ();
3471 end_sequence ();
3473 /* If we can't make the auto-inc, or can't make the
3474 replacement into Y, exit. There's no point in making
3475 the change below if we can't do the auto-inc and doing
3476 so is not correct in the pre-inc case. */
3478 XEXP (inc, 0) = q;
3479 validate_change (insn, &XEXP (mem, 0), inc, 1);
3480 validate_change (incr, &XEXP (y, opnum), q, 1);
3481 if (! apply_change_group ())
3482 return;
3484 /* We now know we'll be doing this change, so emit the
3485 new insn(s) and do the updates. */
3486 emit_insn_before (insns, insn);
3488 if (BB_HEAD (pbi->bb) == insn)
3489 BB_HEAD (pbi->bb) = insns;
3491 /* INCR will become a NOTE and INSN won't contain a
3492 use of INCR_REG. If a use of INCR_REG was just placed in
3493 the insn before INSN, make that the next use.
3494 Otherwise, invalidate it. */
3495 if (NONJUMP_INSN_P (PREV_INSN (insn))
3496 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3497 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3498 pbi->reg_next_use[regno] = PREV_INSN (insn);
3499 else
3500 pbi->reg_next_use[regno] = 0;
3502 incr_reg = q;
3503 regno = REGNO (q);
3505 if ((pbi->flags & PROP_REG_INFO)
3506 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3507 reg_deaths[regno] = pbi->insn_num;
3509 /* REGNO is now used in INCR which is below INSN, but
3510 it previously wasn't live here. If we don't mark
3511 it as live, we'll put a REG_DEAD note for it
3512 on this insn, which is incorrect. */
3513 SET_REGNO_REG_SET (pbi->reg_live, regno);
3515 /* If there are any calls between INSN and INCR, show
3516 that REGNO now crosses them. */
3517 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3518 if (CALL_P (temp))
3520 REG_N_CALLS_CROSSED (regno)++;
3521 if (can_throw_internal (temp))
3522 REG_N_THROWING_CALLS_CROSSED (regno)++;
3525 /* Invalidate alias info for Q since we just changed its value. */
3526 clear_reg_alias_info (q);
3528 else
3529 return;
3531 /* If we haven't returned, it means we were able to make the
3532 auto-inc, so update the status. First, record that this insn
3533 has an implicit side effect. */
3535 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3537 /* Modify the old increment-insn to simply copy
3538 the already-incremented value of our register. */
3539 changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
3540 gcc_assert (changed);
3542 /* If that makes it a no-op (copying the register into itself) delete
3543 it so it won't appear to be a "use" and a "set" of this
3544 register. */
3545 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3547 /* If the original source was dead, it's dead now. */
3548 rtx note;
3550 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3552 remove_note (incr, note);
3553 if (XEXP (note, 0) != incr_reg)
3555 unsigned int regno = REGNO (XEXP (note, 0));
3557 if ((pbi->flags & PROP_REG_INFO)
3558 && REGNO_REG_SET_P (pbi->reg_live, regno))
3560 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3561 reg_deaths[regno] = 0;
3563 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3567 SET_INSN_DELETED (incr);
3570 if (regno >= FIRST_PSEUDO_REGISTER)
3572 /* Count an extra reference to the reg. When a reg is
3573 incremented, spilling it is worse, so we want to make
3574 that less likely. */
3575 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3577 /* Count the increment as a setting of the register,
3578 even though it isn't a SET in rtl. */
3579 REG_N_SETS (regno)++;
3583 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3584 reference. */
3586 static void
3587 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3589 rtx addr = XEXP (x, 0);
3590 HOST_WIDE_INT offset = 0;
3591 rtx set, y, incr, inc_val;
3592 int regno;
3593 int size = GET_MODE_SIZE (GET_MODE (x));
3595 if (JUMP_P (insn))
3596 return;
3598 /* Here we detect use of an index register which might be good for
3599 postincrement, postdecrement, preincrement, or predecrement. */
3601 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3602 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3604 if (!REG_P (addr))
3605 return;
3607 regno = REGNO (addr);
3609 /* Is the next use an increment that might make auto-increment? */
3610 incr = pbi->reg_next_use[regno];
3611 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3612 return;
3613 set = single_set (incr);
3614 if (set == 0 || GET_CODE (set) != SET)
3615 return;
3616 y = SET_SRC (set);
3618 if (GET_CODE (y) != PLUS)
3619 return;
3621 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3622 inc_val = XEXP (y, 1);
3623 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3624 inc_val = XEXP (y, 0);
3625 else
3626 return;
3628 if (GET_CODE (inc_val) == CONST_INT)
3630 if (HAVE_POST_INCREMENT
3631 && (INTVAL (inc_val) == size && offset == 0))
3632 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3633 incr, addr);
3634 else if (HAVE_POST_DECREMENT
3635 && (INTVAL (inc_val) == -size && offset == 0))
3636 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3637 incr, addr);
3638 else if (HAVE_PRE_INCREMENT
3639 && (INTVAL (inc_val) == size && offset == size))
3640 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3641 incr, addr);
3642 else if (HAVE_PRE_DECREMENT
3643 && (INTVAL (inc_val) == -size && offset == -size))
3644 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3645 incr, addr);
3646 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3647 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3648 gen_rtx_PLUS (Pmode,
3649 addr,
3650 inc_val)),
3651 insn, x, incr, addr);
3652 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3653 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3654 gen_rtx_PLUS (Pmode,
3655 addr,
3656 inc_val)),
3657 insn, x, incr, addr);
3659 else if (REG_P (inc_val)
3660 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3661 NEXT_INSN (incr)))
3664 if (HAVE_POST_MODIFY_REG && offset == 0)
3665 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3666 gen_rtx_PLUS (Pmode,
3667 addr,
3668 inc_val)),
3669 insn, x, incr, addr);
3673 #endif /* AUTO_INC_DEC */
3675 static void
3676 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3677 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3679 unsigned int regno_first, regno_last, i;
3680 int some_was_live, some_was_dead, some_not_set;
3682 regno_last = regno_first = REGNO (reg);
3683 if (regno_first < FIRST_PSEUDO_REGISTER)
3684 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3686 /* Find out if any of this register is live after this instruction. */
3687 some_was_live = some_was_dead = 0;
3688 for (i = regno_first; i <= regno_last; ++i)
3690 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3691 some_was_live |= needed_regno;
3692 some_was_dead |= ! needed_regno;
3695 /* Find out if any of the register was set this insn. */
3696 some_not_set = 0;
3697 for (i = regno_first; i <= regno_last; ++i)
3698 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3700 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3702 /* Record where each reg is used, so when the reg is set we know
3703 the next insn that uses it. */
3704 pbi->reg_next_use[regno_first] = insn;
3707 if (pbi->flags & PROP_REG_INFO)
3709 if (regno_first < FIRST_PSEUDO_REGISTER)
3711 /* If this is a register we are going to try to eliminate,
3712 don't mark it live here. If we are successful in
3713 eliminating it, it need not be live unless it is used for
3714 pseudos, in which case it will have been set live when it
3715 was allocated to the pseudos. If the register will not
3716 be eliminated, reload will set it live at that point.
3718 Otherwise, record that this function uses this register. */
3719 /* ??? The PPC backend tries to "eliminate" on the pic
3720 register to itself. This should be fixed. In the mean
3721 time, hack around it. */
3723 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3724 && (regno_first == FRAME_POINTER_REGNUM
3725 || regno_first == ARG_POINTER_REGNUM)))
3726 for (i = regno_first; i <= regno_last; ++i)
3727 regs_ever_live[i] = 1;
3729 else
3731 /* Keep track of which basic block each reg appears in. */
3733 int blocknum = pbi->bb->index;
3734 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3735 REG_BASIC_BLOCK (regno_first) = blocknum;
3736 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3737 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3739 /* Count (weighted) number of uses of each reg. */
3740 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3741 REG_N_REFS (regno_first)++;
3743 for (i = regno_first; i <= regno_last; ++i)
3744 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3746 gcc_assert (!reg_deaths[i]);
3747 reg_deaths[i] = pbi->insn_num;
3751 /* Record and count the insns in which a reg dies. If it is used in
3752 this insn and was dead below the insn then it dies in this insn.
3753 If it was set in this insn, we do not make a REG_DEAD note;
3754 likewise if we already made such a note. */
3755 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3756 && some_was_dead
3757 && some_not_set)
3759 /* Check for the case where the register dying partially
3760 overlaps the register set by this insn. */
3761 if (regno_first != regno_last)
3762 for (i = regno_first; i <= regno_last; ++i)
3763 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3765 /* If none of the words in X is needed, make a REG_DEAD note.
3766 Otherwise, we must make partial REG_DEAD notes. */
3767 if (! some_was_live)
3769 if ((pbi->flags & PROP_DEATH_NOTES)
3770 && ! find_regno_note (insn, REG_DEAD, regno_first))
3771 REG_NOTES (insn)
3772 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3774 if (pbi->flags & PROP_REG_INFO)
3775 REG_N_DEATHS (regno_first)++;
3777 else
3779 /* Don't make a REG_DEAD note for a part of a register
3780 that is set in the insn. */
3781 for (i = regno_first; i <= regno_last; ++i)
3782 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3783 && ! dead_or_set_regno_p (insn, i))
3784 REG_NOTES (insn)
3785 = alloc_EXPR_LIST (REG_DEAD,
3786 regno_reg_rtx[i],
3787 REG_NOTES (insn));
3791 /* Mark the register as being live. */
3792 for (i = regno_first; i <= regno_last; ++i)
3794 #ifdef HAVE_conditional_execution
3795 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3796 #endif
3798 SET_REGNO_REG_SET (pbi->reg_live, i);
3800 #ifdef HAVE_conditional_execution
3801 /* If this is a conditional use, record that fact. If it is later
3802 conditionally set, we'll know to kill the register. */
3803 if (cond != NULL_RTX)
3805 splay_tree_node node;
3806 struct reg_cond_life_info *rcli;
3807 rtx ncond;
3809 if (this_was_live)
3811 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3812 if (node == NULL)
3814 /* The register was unconditionally live previously.
3815 No need to do anything. */
3817 else
3819 /* The register was conditionally live previously.
3820 Subtract the new life cond from the old death cond. */
3821 rcli = (struct reg_cond_life_info *) node->value;
3822 ncond = rcli->condition;
3823 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3825 /* If the register is now unconditionally live,
3826 remove the entry in the splay_tree. */
3827 if (ncond == const0_rtx)
3828 splay_tree_remove (pbi->reg_cond_dead, i);
3829 else
3831 rcli->condition = ncond;
3832 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3833 REGNO (XEXP (cond, 0)));
3837 else
3839 /* The register was not previously live at all. Record
3840 the condition under which it is still dead. */
3841 rcli = xmalloc (sizeof (*rcli));
3842 rcli->condition = not_reg_cond (cond);
3843 rcli->stores = const0_rtx;
3844 rcli->orig_condition = const0_rtx;
3845 splay_tree_insert (pbi->reg_cond_dead, i,
3846 (splay_tree_value) rcli);
3848 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3851 else if (this_was_live)
3853 /* The register may have been conditionally live previously, but
3854 is now unconditionally live. Remove it from the conditionally
3855 dead list, so that a conditional set won't cause us to think
3856 it dead. */
3857 splay_tree_remove (pbi->reg_cond_dead, i);
3859 #endif
3863 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3864 This is done assuming the registers needed from X are those that
3865 have 1-bits in PBI->REG_LIVE.
3867 INSN is the containing instruction. If INSN is dead, this function
3868 is not called. */
3870 static void
3871 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3873 RTX_CODE code;
3874 int regno;
3875 int flags = pbi->flags;
3877 retry:
3878 if (!x)
3879 return;
3880 code = GET_CODE (x);
3881 switch (code)
3883 case LABEL_REF:
3884 case SYMBOL_REF:
3885 case CONST_INT:
3886 case CONST:
3887 case CONST_DOUBLE:
3888 case CONST_VECTOR:
3889 case PC:
3890 case ADDR_VEC:
3891 case ADDR_DIFF_VEC:
3892 return;
3894 #ifdef HAVE_cc0
3895 case CC0:
3896 pbi->cc0_live = 1;
3897 return;
3898 #endif
3900 case CLOBBER:
3901 /* If we are clobbering a MEM, mark any registers inside the address
3902 as being used. */
3903 if (MEM_P (XEXP (x, 0)))
3904 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3905 return;
3907 case MEM:
3908 /* Don't bother watching stores to mems if this is not the
3909 final pass. We'll not be deleting dead stores this round. */
3910 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3912 /* Invalidate the data for the last MEM stored, but only if MEM is
3913 something that can be stored into. */
3914 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3915 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3916 /* Needn't clear the memory set list. */
3918 else
3920 rtx temp = pbi->mem_set_list;
3921 rtx prev = NULL_RTX;
3922 rtx next;
3924 while (temp)
3926 next = XEXP (temp, 1);
3927 if (anti_dependence (XEXP (temp, 0), x))
3929 /* Splice temp out of the list. */
3930 if (prev)
3931 XEXP (prev, 1) = next;
3932 else
3933 pbi->mem_set_list = next;
3934 free_EXPR_LIST_node (temp);
3935 pbi->mem_set_list_len--;
3937 else
3938 prev = temp;
3939 temp = next;
3943 /* If the memory reference had embedded side effects (autoincrement
3944 address modes. Then we may need to kill some entries on the
3945 memory set list. */
3946 if (insn)
3947 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3950 #ifdef AUTO_INC_DEC
3951 if (flags & PROP_AUTOINC)
3952 find_auto_inc (pbi, x, insn);
3953 #endif
3954 break;
3956 case SUBREG:
3957 #ifdef CANNOT_CHANGE_MODE_CLASS
3958 if (flags & PROP_REG_INFO)
3959 record_subregs_of_mode (x);
3960 #endif
3962 /* While we're here, optimize this case. */
3963 x = SUBREG_REG (x);
3964 if (!REG_P (x))
3965 goto retry;
3966 /* Fall through. */
3968 case REG:
3969 /* See a register other than being set => mark it as needed. */
3970 mark_used_reg (pbi, x, cond, insn);
3971 return;
3973 case SET:
3975 rtx testreg = SET_DEST (x);
3976 int mark_dest = 0;
3978 /* If storing into MEM, don't show it as being used. But do
3979 show the address as being used. */
3980 if (MEM_P (testreg))
3982 #ifdef AUTO_INC_DEC
3983 if (flags & PROP_AUTOINC)
3984 find_auto_inc (pbi, testreg, insn);
3985 #endif
3986 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3987 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3988 return;
3991 /* Storing in STRICT_LOW_PART is like storing in a reg
3992 in that this SET might be dead, so ignore it in TESTREG.
3993 but in some other ways it is like using the reg.
3995 Storing in a SUBREG or a bit field is like storing the entire
3996 register in that if the register's value is not used
3997 then this SET is not needed. */
3998 while (GET_CODE (testreg) == STRICT_LOW_PART
3999 || GET_CODE (testreg) == ZERO_EXTRACT
4000 || GET_CODE (testreg) == SUBREG)
4002 #ifdef CANNOT_CHANGE_MODE_CLASS
4003 if ((flags & PROP_REG_INFO) && GET_CODE (testreg) == SUBREG)
4004 record_subregs_of_mode (testreg);
4005 #endif
4007 /* Modifying a single register in an alternate mode
4008 does not use any of the old value. But these other
4009 ways of storing in a register do use the old value. */
4010 if (GET_CODE (testreg) == SUBREG
4011 && !((REG_BYTES (SUBREG_REG (testreg))
4012 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
4013 > (REG_BYTES (testreg)
4014 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
4016 else
4017 mark_dest = 1;
4019 testreg = XEXP (testreg, 0);
4022 /* If this is a store into a register or group of registers,
4023 recursively scan the value being stored. */
4025 if ((GET_CODE (testreg) == PARALLEL
4026 && GET_MODE (testreg) == BLKmode)
4027 || (REG_P (testreg)
4028 && (regno = REGNO (testreg),
4029 ! (regno == FRAME_POINTER_REGNUM
4030 && (! reload_completed || frame_pointer_needed)))
4031 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4032 && ! (regno == HARD_FRAME_POINTER_REGNUM
4033 && (! reload_completed || frame_pointer_needed))
4034 #endif
4035 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4036 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4037 #endif
4040 if (mark_dest)
4041 mark_used_regs (pbi, SET_DEST (x), cond, insn);
4042 mark_used_regs (pbi, SET_SRC (x), cond, insn);
4043 return;
4046 break;
4048 case ASM_OPERANDS:
4049 case UNSPEC_VOLATILE:
4050 case TRAP_IF:
4051 case ASM_INPUT:
4053 /* Traditional and volatile asm instructions must be considered to use
4054 and clobber all hard registers, all pseudo-registers and all of
4055 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
4057 Consider for instance a volatile asm that changes the fpu rounding
4058 mode. An insn should not be moved across this even if it only uses
4059 pseudo-regs because it might give an incorrectly rounded result.
4061 ?!? Unfortunately, marking all hard registers as live causes massive
4062 problems for the register allocator and marking all pseudos as live
4063 creates mountains of uninitialized variable warnings.
4065 So for now, just clear the memory set list and mark any regs
4066 we can find in ASM_OPERANDS as used. */
4067 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
4069 free_EXPR_LIST_list (&pbi->mem_set_list);
4070 pbi->mem_set_list_len = 0;
4073 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
4074 We can not just fall through here since then we would be confused
4075 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
4076 traditional asms unlike their normal usage. */
4077 if (code == ASM_OPERANDS)
4079 int j;
4081 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
4082 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
4084 break;
4087 case COND_EXEC:
4088 gcc_assert (!cond);
4090 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
4092 cond = COND_EXEC_TEST (x);
4093 x = COND_EXEC_CODE (x);
4094 goto retry;
4096 default:
4097 break;
4100 /* Recursively scan the operands of this expression. */
4103 const char * const fmt = GET_RTX_FORMAT (code);
4104 int i;
4106 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4108 if (fmt[i] == 'e')
4110 /* Tail recursive case: save a function call level. */
4111 if (i == 0)
4113 x = XEXP (x, 0);
4114 goto retry;
4116 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4118 else if (fmt[i] == 'E')
4120 int j;
4121 for (j = 0; j < XVECLEN (x, i); j++)
4122 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4128 #ifdef AUTO_INC_DEC
4130 static int
4131 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
4133 /* Find the next use of this reg. If in same basic block,
4134 make it do pre-increment or pre-decrement if appropriate. */
4135 rtx x = single_set (insn);
4136 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4137 * INTVAL (XEXP (SET_SRC (x), 1)));
4138 int regno = REGNO (SET_DEST (x));
4139 rtx y = pbi->reg_next_use[regno];
4140 if (y != 0
4141 && SET_DEST (x) != stack_pointer_rtx
4142 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4143 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4144 mode would be better. */
4145 && ! dead_or_set_p (y, SET_DEST (x))
4146 && try_pre_increment (y, SET_DEST (x), amount))
4148 /* We have found a suitable auto-increment and already changed
4149 insn Y to do it. So flush this increment instruction. */
4150 propagate_block_delete_insn (insn);
4152 /* Count a reference to this reg for the increment insn we are
4153 deleting. When a reg is incremented, spilling it is worse,
4154 so we want to make that less likely. */
4155 if (regno >= FIRST_PSEUDO_REGISTER)
4157 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4158 REG_N_SETS (regno)++;
4161 /* Flush any remembered memories depending on the value of
4162 the incremented register. */
4163 invalidate_mems_from_set (pbi, SET_DEST (x));
4165 return 1;
4167 return 0;
4170 /* Try to change INSN so that it does pre-increment or pre-decrement
4171 addressing on register REG in order to add AMOUNT to REG.
4172 AMOUNT is negative for pre-decrement.
4173 Returns 1 if the change could be made.
4174 This checks all about the validity of the result of modifying INSN. */
4176 static int
4177 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4179 rtx use;
4181 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4182 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4183 int pre_ok = 0;
4184 /* Nonzero if we can try to make a post-increment or post-decrement.
4185 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4186 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4187 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4188 int post_ok = 0;
4190 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4191 int do_post = 0;
4193 /* From the sign of increment, see which possibilities are conceivable
4194 on this target machine. */
4195 if (HAVE_PRE_INCREMENT && amount > 0)
4196 pre_ok = 1;
4197 if (HAVE_POST_INCREMENT && amount > 0)
4198 post_ok = 1;
4200 if (HAVE_PRE_DECREMENT && amount < 0)
4201 pre_ok = 1;
4202 if (HAVE_POST_DECREMENT && amount < 0)
4203 post_ok = 1;
4205 if (! (pre_ok || post_ok))
4206 return 0;
4208 /* It is not safe to add a side effect to a jump insn
4209 because if the incremented register is spilled and must be reloaded
4210 there would be no way to store the incremented value back in memory. */
4212 if (JUMP_P (insn))
4213 return 0;
4215 use = 0;
4216 if (pre_ok)
4217 use = find_use_as_address (PATTERN (insn), reg, 0);
4218 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4220 use = find_use_as_address (PATTERN (insn), reg, -amount);
4221 do_post = 1;
4224 if (use == 0 || use == (rtx) (size_t) 1)
4225 return 0;
4227 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4228 return 0;
4230 /* See if this combination of instruction and addressing mode exists. */
4231 if (! validate_change (insn, &XEXP (use, 0),
4232 gen_rtx_fmt_e (amount > 0
4233 ? (do_post ? POST_INC : PRE_INC)
4234 : (do_post ? POST_DEC : PRE_DEC),
4235 Pmode, reg), 0))
4236 return 0;
4238 /* Record that this insn now has an implicit side effect on X. */
4239 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4240 return 1;
4243 #endif /* AUTO_INC_DEC */
4245 /* Find the place in the rtx X where REG is used as a memory address.
4246 Return the MEM rtx that so uses it.
4247 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4248 (plus REG (const_int PLUSCONST)).
4250 If such an address does not appear, return 0.
4251 If REG appears more than once, or is used other than in such an address,
4252 return (rtx) 1. */
4255 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4257 enum rtx_code code = GET_CODE (x);
4258 const char * const fmt = GET_RTX_FORMAT (code);
4259 int i;
4260 rtx value = 0;
4261 rtx tem;
4263 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4264 return x;
4266 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4267 && XEXP (XEXP (x, 0), 0) == reg
4268 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4269 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4270 return x;
4272 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4274 /* If REG occurs inside a MEM used in a bit-field reference,
4275 that is unacceptable. */
4276 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4277 return (rtx) (size_t) 1;
4280 if (x == reg)
4281 return (rtx) (size_t) 1;
4283 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4285 if (fmt[i] == 'e')
4287 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4288 if (value == 0)
4289 value = tem;
4290 else if (tem != 0)
4291 return (rtx) (size_t) 1;
4293 else if (fmt[i] == 'E')
4295 int j;
4296 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4298 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4299 if (value == 0)
4300 value = tem;
4301 else if (tem != 0)
4302 return (rtx) (size_t) 1;
4307 return value;
4310 /* Write information about registers and basic blocks into FILE.
4311 This is part of making a debugging dump. */
4313 void
4314 dump_regset (regset r, FILE *outf)
4316 unsigned i;
4317 reg_set_iterator rsi;
4319 if (r == NULL)
4321 fputs (" (nil)", outf);
4322 return;
4325 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
4327 fprintf (outf, " %d", i);
4328 if (i < FIRST_PSEUDO_REGISTER)
4329 fprintf (outf, " [%s]",
4330 reg_names[i]);
4334 /* Print a human-readable representation of R on the standard error
4335 stream. This function is designed to be used from within the
4336 debugger. */
4338 void
4339 debug_regset (regset r)
4341 dump_regset (r, stderr);
4342 putc ('\n', stderr);
4345 /* Recompute register set/reference counts immediately prior to register
4346 allocation.
4348 This avoids problems with set/reference counts changing to/from values
4349 which have special meanings to the register allocators.
4351 Additionally, the reference counts are the primary component used by the
4352 register allocators to prioritize pseudos for allocation to hard regs.
4353 More accurate reference counts generally lead to better register allocation.
4355 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4356 possibly other information which is used by the register allocators. */
4358 void
4359 recompute_reg_usage (void)
4361 allocate_reg_life_data ();
4362 /* distribute_notes in combiner fails to convert some of the
4363 REG_UNUSED notes to REG_DEAD notes. This causes CHECK_DEAD_NOTES
4364 in sched1 to die. To solve this update the DEATH_NOTES
4365 here. */
4366 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4368 if (dump_file)
4369 dump_flow_info (dump_file);
4372 struct tree_opt_pass pass_recompute_reg_usage =
4374 "life2", /* name */
4375 NULL, /* gate */
4376 recompute_reg_usage, /* execute */
4377 NULL, /* sub */
4378 NULL, /* next */
4379 0, /* static_pass_number */
4380 0, /* tv_id */
4381 0, /* properties_required */
4382 0, /* properties_provided */
4383 0, /* properties_destroyed */
4384 0, /* todo_flags_start */
4385 TODO_dump_func, /* todo_flags_finish */
4386 'f' /* letter */
4389 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4390 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4391 of the number of registers that died. */
4394 count_or_remove_death_notes (sbitmap blocks, int kill)
4396 int count = 0;
4397 unsigned int i = 0;
4398 basic_block bb;
4400 /* This used to be a loop over all the blocks with a membership test
4401 inside the loop. That can be amazingly expensive on a large CFG
4402 when only a small number of bits are set in BLOCKs (for example,
4403 the calls from the scheduler typically have very few bits set).
4405 For extra credit, someone should convert BLOCKS to a bitmap rather
4406 than an sbitmap. */
4407 if (blocks)
4409 sbitmap_iterator sbi;
4411 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
4413 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4416 else
4418 FOR_EACH_BB (bb)
4420 count += count_or_remove_death_notes_bb (bb, kill);
4424 return count;
4427 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4428 block BB. Returns a count of the number of registers that died. */
4430 static int
4431 count_or_remove_death_notes_bb (basic_block bb, int kill)
4433 int count = 0;
4434 rtx insn;
4436 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4438 if (INSN_P (insn))
4440 rtx *pprev = &REG_NOTES (insn);
4441 rtx link = *pprev;
4443 while (link)
4445 switch (REG_NOTE_KIND (link))
4447 case REG_DEAD:
4448 if (REG_P (XEXP (link, 0)))
4450 rtx reg = XEXP (link, 0);
4451 int n;
4453 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4454 n = 1;
4455 else
4456 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4457 count += n;
4460 /* Fall through. */
4462 case REG_UNUSED:
4463 if (kill)
4465 rtx next = XEXP (link, 1);
4466 free_EXPR_LIST_node (link);
4467 *pprev = link = next;
4468 break;
4470 /* Fall through. */
4472 default:
4473 pprev = &XEXP (link, 1);
4474 link = *pprev;
4475 break;
4480 if (insn == BB_END (bb))
4481 break;
4484 return count;
4487 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4488 if blocks is NULL. */
4490 static void
4491 clear_log_links (sbitmap blocks)
4493 rtx insn;
4495 if (!blocks)
4497 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4498 if (INSN_P (insn))
4499 free_INSN_LIST_list (&LOG_LINKS (insn));
4501 else
4503 unsigned int i = 0;
4504 sbitmap_iterator sbi;
4506 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
4508 basic_block bb = BASIC_BLOCK (i);
4510 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4511 insn = NEXT_INSN (insn))
4512 if (INSN_P (insn))
4513 free_INSN_LIST_list (&LOG_LINKS (insn));
4518 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4519 correspond to the hard registers, if any, set in that map. This
4520 could be done far more efficiently by having all sorts of special-cases
4521 with moving single words, but probably isn't worth the trouble. */
4523 void
4524 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4526 unsigned i;
4527 bitmap_iterator bi;
4529 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4531 if (i >= FIRST_PSEUDO_REGISTER)
4532 return;
4533 SET_HARD_REG_BIT (*to, i);
4538 static bool
4539 gate_remove_death_notes (void)
4541 return flag_profile_values;
4544 static void
4545 rest_of_handle_remove_death_notes (void)
4547 count_or_remove_death_notes (NULL, 1);
4550 struct tree_opt_pass pass_remove_death_notes =
4552 "ednotes", /* name */
4553 gate_remove_death_notes, /* gate */
4554 rest_of_handle_remove_death_notes, /* execute */
4555 NULL, /* sub */
4556 NULL, /* next */
4557 0, /* static_pass_number */
4558 0, /* tv_id */
4559 0, /* properties_required */
4560 0, /* properties_provided */
4561 0, /* properties_destroyed */
4562 0, /* todo_flags_start */
4563 0, /* todo_flags_finish */
4564 0 /* letter */
4567 /* Perform life analysis. */
4568 static void
4569 rest_of_handle_life (void)
4571 regclass_init ();
4573 life_analysis (dump_file, PROP_FINAL);
4574 if (optimize)
4575 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE | CLEANUP_LOG_LINKS
4576 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
4578 if (extra_warnings)
4580 setjmp_vars_warning (DECL_INITIAL (current_function_decl));
4581 setjmp_args_warning ();
4584 if (optimize)
4586 if (initialize_uninitialized_subregs ())
4588 /* Insns were inserted, and possibly pseudos created, so
4589 things might look a bit different. */
4590 allocate_reg_life_data ();
4591 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
4592 PROP_LOG_LINKS | PROP_REG_INFO | PROP_DEATH_NOTES);
4596 no_new_pseudos = 1;
4599 struct tree_opt_pass pass_life =
4601 "life1", /* name */
4602 NULL, /* gate */
4603 rest_of_handle_life, /* execute */
4604 NULL, /* sub */
4605 NULL, /* next */
4606 0, /* static_pass_number */
4607 TV_FLOW, /* tv_id */
4608 0, /* properties_required */
4609 0, /* properties_provided */
4610 0, /* properties_destroyed */
4611 TODO_verify_flow, /* todo_flags_start */
4612 TODO_dump_func |
4613 TODO_ggc_collect, /* todo_flags_finish */
4614 'f' /* letter */
4617 static void
4618 rest_of_handle_flow2 (void)
4620 /* If optimizing, then go ahead and split insns now. */
4621 #ifndef STACK_REGS
4622 if (optimize > 0)
4623 #endif
4624 split_all_insns (0);
4626 if (flag_branch_target_load_optimize)
4627 branch_target_load_optimize (epilogue_completed);
4629 if (optimize)
4630 cleanup_cfg (CLEANUP_EXPENSIVE);
4632 /* On some machines, the prologue and epilogue code, or parts thereof,
4633 can be represented as RTL. Doing so lets us schedule insns between
4634 it and the rest of the code and also allows delayed branch
4635 scheduling to operate in the epilogue. */
4636 thread_prologue_and_epilogue_insns (get_insns ());
4637 epilogue_completed = 1;
4638 flow2_completed = 1;
4641 struct tree_opt_pass pass_flow2 =
4643 "flow2", /* name */
4644 NULL, /* gate */
4645 rest_of_handle_flow2, /* execute */
4646 NULL, /* sub */
4647 NULL, /* next */
4648 0, /* static_pass_number */
4649 TV_FLOW2, /* tv_id */
4650 0, /* properties_required */
4651 0, /* properties_provided */
4652 0, /* properties_destroyed */
4653 TODO_verify_flow, /* todo_flags_start */
4654 TODO_dump_func |
4655 TODO_ggc_collect, /* todo_flags_finish */
4656 'w' /* letter */