2008-07-07 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / lambda.h
blob40e8502973cbd018777525ee93aa6dfe56ec64e5
1 /* Lambda matrix and vector interface.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef LAMBDA_H
22 #define LAMBDA_H
24 #include "vec.h"
26 /* An integer vector. A vector formally consists of an element of a vector
27 space. A vector space is a set that is closed under vector addition
28 and scalar multiplication. In this vector space, an element is a list of
29 integers. */
30 typedef int *lambda_vector;
31 DEF_VEC_P(lambda_vector);
32 DEF_VEC_ALLOC_P(lambda_vector,heap);
34 typedef VEC(lambda_vector, heap) *lambda_vector_vec_p;
35 DEF_VEC_P (lambda_vector_vec_p);
36 DEF_VEC_ALLOC_P (lambda_vector_vec_p, heap);
38 /* An integer matrix. A matrix consists of m vectors of length n (IE
39 all vectors are the same length). */
40 typedef lambda_vector *lambda_matrix;
42 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
43 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
44 represents the denominator for every element in the matrix. */
45 typedef struct lambda_trans_matrix_s
47 lambda_matrix matrix;
48 int rowsize;
49 int colsize;
50 int denominator;
51 } *lambda_trans_matrix;
52 #define LTM_MATRIX(T) ((T)->matrix)
53 #define LTM_ROWSIZE(T) ((T)->rowsize)
54 #define LTM_COLSIZE(T) ((T)->colsize)
55 #define LTM_DENOMINATOR(T) ((T)->denominator)
57 /* A vector representing a statement in the body of a loop.
58 The COEFFICIENTS vector contains a coefficient for each induction variable
59 in the loop nest containing the statement.
60 The DENOMINATOR represents the denominator for each coefficient in the
61 COEFFICIENT vector.
63 This structure is used during code generation in order to rewrite the old
64 induction variable uses in a statement in terms of the newly created
65 induction variables. */
66 typedef struct lambda_body_vector_s
68 lambda_vector coefficients;
69 int size;
70 int denominator;
71 } *lambda_body_vector;
72 #define LBV_COEFFICIENTS(T) ((T)->coefficients)
73 #define LBV_SIZE(T) ((T)->size)
74 #define LBV_DENOMINATOR(T) ((T)->denominator)
76 /* Piecewise linear expression.
77 This structure represents a linear expression with terms for the invariants
78 and induction variables of a loop.
79 COEFFICIENTS is a vector of coefficients for the induction variables, one
80 per loop in the loop nest.
81 CONSTANT is the constant portion of the linear expression
82 INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
83 one per invariant.
84 DENOMINATOR is the denominator for all of the coefficients and constants in
85 the expression.
86 The linear expressions can be linked together using the NEXT field, in
87 order to represent MAX or MIN of a group of linear expressions. */
88 typedef struct lambda_linear_expression_s
90 lambda_vector coefficients;
91 int constant;
92 lambda_vector invariant_coefficients;
93 int denominator;
94 struct lambda_linear_expression_s *next;
95 } *lambda_linear_expression;
97 #define LLE_COEFFICIENTS(T) ((T)->coefficients)
98 #define LLE_CONSTANT(T) ((T)->constant)
99 #define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
100 #define LLE_DENOMINATOR(T) ((T)->denominator)
101 #define LLE_NEXT(T) ((T)->next)
103 struct obstack;
105 lambda_linear_expression lambda_linear_expression_new (int, int,
106 struct obstack *);
107 void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
108 int, char);
110 /* Loop structure. Our loop structure consists of a constant representing the
111 STEP of the loop, a set of linear expressions representing the LOWER_BOUND
112 of the loop, a set of linear expressions representing the UPPER_BOUND of
113 the loop, and a set of linear expressions representing the LINEAR_OFFSET of
114 the loop. The linear offset is a set of linear expressions that are
115 applied to *both* the lower bound, and the upper bound. */
116 typedef struct lambda_loop_s
118 lambda_linear_expression lower_bound;
119 lambda_linear_expression upper_bound;
120 lambda_linear_expression linear_offset;
121 int step;
122 } *lambda_loop;
124 #define LL_LOWER_BOUND(T) ((T)->lower_bound)
125 #define LL_UPPER_BOUND(T) ((T)->upper_bound)
126 #define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
127 #define LL_STEP(T) ((T)->step)
129 /* Loop nest structure.
130 The loop nest structure consists of a set of loop structures (defined
131 above) in LOOPS, along with an integer representing the DEPTH of the loop,
132 and an integer representing the number of INVARIANTS in the loop. Both of
133 these integers are used to size the associated coefficient vectors in the
134 linear expression structures. */
135 typedef struct lambda_loopnest_s
137 lambda_loop *loops;
138 int depth;
139 int invariants;
140 } *lambda_loopnest;
142 #define LN_LOOPS(T) ((T)->loops)
143 #define LN_DEPTH(T) ((T)->depth)
144 #define LN_INVARIANTS(T) ((T)->invariants)
146 lambda_loopnest lambda_loopnest_new (int, int, struct obstack *);
147 lambda_loopnest lambda_loopnest_transform (lambda_loopnest,
148 lambda_trans_matrix,
149 struct obstack *);
150 struct loop;
151 bool perfect_nest_p (struct loop *);
152 void print_lambda_loopnest (FILE *, lambda_loopnest, char);
154 #define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
156 void print_lambda_loop (FILE *, lambda_loop, int, int, char);
158 lambda_matrix lambda_matrix_new (int, int);
160 void lambda_matrix_id (lambda_matrix, int);
161 bool lambda_matrix_id_p (lambda_matrix, int);
162 void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
163 void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
164 void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
165 void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
166 int);
167 void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
168 lambda_matrix, int, int);
169 void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
170 int, int, int);
171 void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
172 void lambda_matrix_row_exchange (lambda_matrix, int, int);
173 void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
174 void lambda_matrix_row_negate (lambda_matrix mat, int, int);
175 void lambda_matrix_row_mc (lambda_matrix, int, int, int);
176 void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
177 void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
178 void lambda_matrix_col_negate (lambda_matrix, int, int);
179 void lambda_matrix_col_mc (lambda_matrix, int, int, int);
180 int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
181 void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
182 void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
183 void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
184 int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
185 void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
186 lambda_vector);
187 void print_lambda_matrix (FILE *, lambda_matrix, int, int);
189 lambda_trans_matrix lambda_trans_matrix_new (int, int);
190 bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
191 bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
192 int lambda_trans_matrix_rank (lambda_trans_matrix);
193 lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
194 lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
195 lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
196 void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
197 void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
198 lambda_vector);
199 bool lambda_trans_matrix_id_p (lambda_trans_matrix);
201 lambda_body_vector lambda_body_vector_new (int, struct obstack *);
202 lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
203 lambda_body_vector,
204 struct obstack *);
205 void print_lambda_body_vector (FILE *, lambda_body_vector);
206 lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *,
207 VEC(tree,heap) **,
208 VEC(tree,heap) **,
209 struct obstack *);
210 void lambda_loopnest_to_gcc_loopnest (struct loop *,
211 VEC(tree,heap) *, VEC(tree,heap) *,
212 VEC(tree,heap) **,
213 lambda_loopnest, lambda_trans_matrix,
214 struct obstack *);
215 void remove_iv (tree);
217 static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
218 static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
219 static inline void lambda_vector_add (lambda_vector, lambda_vector,
220 lambda_vector, int);
221 static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
222 lambda_vector, int);
223 static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
224 static inline bool lambda_vector_zerop (lambda_vector, int);
225 static inline void lambda_vector_clear (lambda_vector, int);
226 static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
227 static inline int lambda_vector_min_nz (lambda_vector, int, int);
228 static inline int lambda_vector_first_nz (lambda_vector, int, int);
229 static inline void print_lambda_vector (FILE *, lambda_vector, int);
231 /* Allocate a new vector of given SIZE. */
233 static inline lambda_vector
234 lambda_vector_new (int size)
236 return GGC_CNEWVEC (int, size);
241 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
242 and store the result in VEC2. */
244 static inline void
245 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
246 int size, int const1)
248 int i;
250 if (const1 == 0)
251 lambda_vector_clear (vec2, size);
252 else
253 for (i = 0; i < size; i++)
254 vec2[i] = const1 * vec1[i];
257 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
259 static inline void
260 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
261 int size)
263 lambda_vector_mult_const (vec1, vec2, size, -1);
266 /* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */
268 static inline void
269 lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
270 lambda_vector vec3, int size)
272 int i;
273 for (i = 0; i < size; i++)
274 vec3[i] = vec1[i] + vec2[i];
277 /* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */
279 static inline void
280 lambda_vector_add_mc (lambda_vector vec1, int const1,
281 lambda_vector vec2, int const2,
282 lambda_vector vec3, int size)
284 int i;
285 for (i = 0; i < size; i++)
286 vec3[i] = const1 * vec1[i] + const2 * vec2[i];
289 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
291 static inline void
292 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
293 int size)
295 memcpy (vec2, vec1, size * sizeof (*vec1));
298 /* Return true if vector VEC1 of length SIZE is the zero vector. */
300 static inline bool
301 lambda_vector_zerop (lambda_vector vec1, int size)
303 int i;
304 for (i = 0; i < size; i++)
305 if (vec1[i] != 0)
306 return false;
307 return true;
310 /* Clear out vector VEC1 of length SIZE. */
312 static inline void
313 lambda_vector_clear (lambda_vector vec1, int size)
315 memset (vec1, 0, size * sizeof (*vec1));
318 /* Return true if two vectors are equal. */
320 static inline bool
321 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
323 int i;
324 for (i = 0; i < size; i++)
325 if (vec1[i] != vec2[i])
326 return false;
327 return true;
330 /* Return the minimum nonzero element in vector VEC1 between START and N.
331 We must have START <= N. */
333 static inline int
334 lambda_vector_min_nz (lambda_vector vec1, int n, int start)
336 int j;
337 int min = -1;
339 gcc_assert (start <= n);
340 for (j = start; j < n; j++)
342 if (vec1[j])
343 if (min < 0 || vec1[j] < vec1[min])
344 min = j;
346 gcc_assert (min >= 0);
348 return min;
351 /* Return the first nonzero element of vector VEC1 between START and N.
352 We must have START <= N. Returns N if VEC1 is the zero vector. */
354 static inline int
355 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
357 int j = start;
358 while (j < n && vec1[j] == 0)
359 j++;
360 return j;
364 /* Multiply a vector by a matrix. */
366 static inline void
367 lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
368 int n, lambda_vector dest)
370 int i, j;
371 lambda_vector_clear (dest, n);
372 for (i = 0; i < n; i++)
373 for (j = 0; j < m; j++)
374 dest[i] += mat[j][i] * vect[j];
378 /* Print out a vector VEC of length N to OUTFILE. */
380 static inline void
381 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
383 int i;
385 for (i = 0; i < n; i++)
386 fprintf (outfile, "%3d ", vector[i]);
387 fprintf (outfile, "\n");
390 /* Compute the greatest common divisor of two numbers using
391 Euclid's algorithm. */
393 static inline int
394 gcd (int a, int b)
396 int x, y, z;
398 x = abs (a);
399 y = abs (b);
401 while (x > 0)
403 z = y % x;
404 y = x;
405 x = z;
408 return y;
411 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
413 static inline int
414 lambda_vector_gcd (lambda_vector vector, int size)
416 int i;
417 int gcd1 = 0;
419 if (size > 0)
421 gcd1 = vector[0];
422 for (i = 1; i < size; i++)
423 gcd1 = gcd (gcd1, vector[i]);
425 return gcd1;
428 /* Returns true when the vector V is lexicographically positive, in
429 other words, when the first nonzero element is positive. */
431 static inline bool
432 lambda_vector_lexico_pos (lambda_vector v,
433 unsigned n)
435 unsigned i;
436 for (i = 0; i < n; i++)
438 if (v[i] == 0)
439 continue;
440 if (v[i] < 0)
441 return false;
442 if (v[i] > 0)
443 return true;
445 return true;
448 /* Given a vector of induction variables IVS, and a vector of
449 coefficients COEFS, build a tree that is a linear combination of
450 the induction variables. */
452 static inline tree
453 build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs)
455 unsigned i;
456 tree iv;
457 tree expr = fold_convert (type, integer_zero_node);
459 for (i = 0; VEC_iterate (tree, ivs, i, iv); i++)
461 int k = coefs[i];
463 if (k == 1)
464 expr = fold_build2 (PLUS_EXPR, type, expr, iv);
466 else if (k != 0)
467 expr = fold_build2 (PLUS_EXPR, type, expr,
468 fold_build2 (MULT_EXPR, type, iv,
469 build_int_cst (type, k)));
472 return expr;
475 /* Returns the dependence level for a vector DIST of size LENGTH.
476 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
477 to the sequence of statements, not carried by any loop. */
480 static inline unsigned
481 dependence_level (lambda_vector dist_vect, int length)
483 int i;
485 for (i = 0; i < length; i++)
486 if (dist_vect[i] != 0)
487 return i + 1;
489 return 0;
492 #endif /* LAMBDA_H */